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Abstract—Physical side-channel attacks are a major threat to
stealing confidential data from devices. There has been a recent
surge in such attacks on edge machine learning (ML) hardware
to extract the model parameters. Consequently, there has also
been some work, although limited, on building corresponding
side-channel defenses against such attacks. All the current
solutions either take the fully software or fully hardware-centric
approaches, which are limited either in performance or flexibility.

In this paper, we propose the first hardware-software co-design
solution for building side-channel-protected ML hardware. Our
solution targets edge devices and addresses both performance
and flexibility needs. To that end, we develop a secure RISC-
V-based coprocessor design that can execute a neural network
implemented in C/C++. The coprocessor uses masking to execute
various neural network operations like weighted summations,
activation functions, and output layer computation in a side-
channel secure fashion. We extend the original RV32I instruction
set with custom instructions to control the masking gadgets inside
the secure coprocessor. We further use the custom instructions
to implement easy-to-use APIs that are exposed to the end-user
as a shared library. Finally, we demonstrate the empirical side-
channel security of the design with 1M traces.

Index Terms—machine learning inference, side-channel analy-
sis, masking, flexibility.

I. INTRODUCTION

Model development in machine learning (ML) frameworks
has become an elaborate process with associated costs includ-
ing research to develop efficient and effective algorithms, and
training them over large proprietary datasets with expensive
hardware. Therefore, trained models are considered Intellec-
tual Property (IP) today. The confidentiality of these IPs has
become a big concern due to the growing number of model-
stealing attacks, including cryptanalytic [1], [2], and side-
channel-based [3]–[9] attacks. Physical side-channel attacks
can exploit the data-dependent power/electromagnetic (EM)
signatures to that end. These attacks are a major threat because
they are practical and hard to mitigate.

Although model stealing by exploiting power/EM side-
channels has been repeatedly shown, building corresponding
side-channel countermeasures is still largely unexplored. Ex-
isting works have focused on custom built hardware for pro-
tection [4], [5], [10]–[12] or integrated defenses into software
in a microprocessor-based implementation [13]. These solu-
tions lack either flexibility or efficiency. Indeed, 5a dedicated
hardware implementation requires the user to know the details
of the hardware design and may require the need to interface it

with another controller. custom hardware will be rigid in terms
of the neural network architectures it can support. Software-
based solutions, by contrast, offer flexibility but do not provide
custom hardware’s efficiency. Hardware-software co-design
methodology can address both concerns and has been used in
the context of side-channel protection for cryptography [14]
but is non-trivial to extend towards ML and requires making
the right trade-offs and design decisions.

In this work, we address both the flexibility and efficiency
limitations of earlier works by proposing the first RISC-V-
based coprocessor design for secure neural network process-
ing. There are two main advantages of having a RISC-V
core in the design: 1) usability: the solution is easier to use
without side-channel expertise for software developers who
know developing ML models in C/C++, 2) flexibility: the
hardware is capable of running different binaries that can
program neural networks with different hyperparameters. A
software-based approach may also provide these advantages
but will lack the performance benefits of coprocessor hardware
implementation. Thus, we believe that a hardware-software co-
design approach provides the best of both worlds in terms of
performance and flexibility. But achieving such a design is
non-trivial and requires a cross-cutting approach across hard-
ware, architecture, compiler, and software abstraction levels
with the right trade-offs.

We make the following contributions in this work.
1) Hardware: We design a runtime reconfigurable copro-

cessor core that can selectively mask or unmask a certain
layer operation to improve the performance and power
of overall inference. We further optimize the design by
reusing the unused datapaths when a certain layer is un-
masked to improve the resource utilization on hardware.

2) Architecture: We add custom instruction-set extensions
(ISE) in the RISC-V instruction set architecture (ISA) that
can trigger the masking primitives in the secure neural
network coprocessor. We also extend the original RISC-
V toolchain to identify the ISEs and accordingly generate
the binaries with these custom ISE embeddings.

3) Software: We develop a user-friendly software library to
run secure inference to abstract the details of the custom
ISEs from the user. We implement the software APIs
internally using the custom ISEs that we add to the ISA.

4) System Demonstration and Security Validation: We



Fig. 1. We add new instructions in the RISC-V toolchain by adding the
definitions and semantics of the new instructions in the opcode library of
GNU binutils. We expose the APIs via the mnet shared library that has
assembly implementations for the neural network operations. We load the
cross-compiled binary on the RISC-V core coupled with a coprocessor to
execute the neural network functions securely.

implement the complete system on an FPGA and validate
the first-order side-channel security of the design with
1M power traces using the test vector leakage assessment
(TVLA) and with differential attacks [15], [16].

5) Extensions: We propose extensions of our work for
higher precision convolutional neural networks. We dis-
cuss the masking of new types of functions like integer
convolutions, rectified linear unit (ReLU), and maxpool.

Fig. 1 outlines the flow of our solution and its security
validation. After we decide the ISEs and their encodings, we
modify the RISC-V compiler and the header files accordingly
to map the corresponding C code to our defined custom in-
structions. The host would then load the memory of the RISC-
V core with the generated firmware containing instructions and
data. The coprocessor and the RISC-V read the instructions
and data from the memory and process them accordingly.
The final bitstream is mapped onto an FPGA for functional
and side-channel security validation with standard t-tests and
differential attacks.

II. BACKGROUND

In this section, we briefly present relevant information on
the commonly assumed threat model for side-channel attacks
on ML hardware, the RISC-V framework, and hardware
masking to help understand the rest of the paper.

A. Threat Models in Power Side Channel Analysis

Threat model defines the capabilities of the assumed ad-
versary. The typical power side-channel model assumes that
the adversary can measure the power while the platform runs
secret computations. However, the leakage evaluation is time-
consuming because this model requires actual power measure-
ments. Thus, numerous theoretical models have been proposed
in the literature to model the leakage [17]–[19], which can then
be used to evaluate the security of a countermeasure without
running real experiments and find leakages early on in the
design phase. Eventually, the proofs are supplemented with
empirical validations on actual power traces as well to ensure
a complete security sign-off.

The glitch-extended probing model is a state-of-the-art the-
oretical model for a side-channel adversary on hardware [19],
[20]. In this model, the adversary can directly probe ‘t’ wires
in the circuit, and also get information on all the wires in its
input cone until the last registered point. Informally, security in
this model implies that by using the information from probing
‘t’ wires, the adversary cannot get any information about the
secrets even when glitches occur. The security of the primitives
in this model does not depend on the final hardware target
(ASIC or FPGA) because the proofs do not make assumptions
on the target hardware. Proving the security of large designs
quickly becomes infeasible, and thus, the typical approach is to
theoretically prove the security of smaller composable circuits,
called ‘gadgets’, and build a larger circuit from them.

Empirical security validation of full circuits rely on sta-
tistical evaluation of real power traces. Statistical evaluations
can be either model-based such as the differential power anal-
ysis (DPA) [16] that assumes a well-defined power model1,
or model-less such as the test vector leakage assessment
(TVLA) [15], which do make any assumptions on the power
model and just detect information leakage. In a DPA attack2,
the adversary 1) chooses an intermediate computation involv-
ing the secret, 2) collects multiple power measurements for
different inputs and also computes the power model values for
secret hypotheses, and 3) correlates3 the power models with
the power measurements, which usually yields a high value
for the correct hypothesis. TVLA is more generic. It does not
assume any power model and just detects information leakage
by checking if the distribution of power traces for a fixed
input is statistically indistinguishable from the distribution of
the power traces for random inputs. The test quantifies the
leakage using Welch’s t-score given by the following equation.

t =
µfixed − µrandom√

σ2
fixed

Nfixed
+

σ2
random

Nrandom

The leakage is considered statistically significant if the score
crosses the threshold of ±4.5. No information leakage in a
TVLA test implies no leakage in the DPA test too because

1A function that maps data to its approximate power profile; Hamming
weight and Hamming distance are two commonly used models

2We use correlation power analysis (CPA) but use ”DPA” interchangeably.
3Pearson correlation coefficient is commonly used as the metric.



the information is statistically insignificant for the DPA test to
correlate. However, for the sake of completeness, we provide
the results for both tests in Section V.

B. Threat of Physical Side-Channels for AI/ML

Traditionally, physical side-channel attacks have mostly
targeted cryptographic implementations to extract secrets, such
as the key in AES [21]. However, given the growing need for
confidentiality in machine learning models, numerous works
have shown successful attacks to also extract the model param-
eters from a device running machine learning inference [3],
[4], [6]. We follow the same attack setup for this work
and build defenses against it. The training happens securely
and the computed parameters are programmed into a secure
memory inside the edge device. The programmed device then
operates in an uncontrolled medium where an untrusted end
user (adversary) can have physical access. The adversary’s
goal is to learn the parameters of the neural network by
conducting a DPA on the power traces captured during the
inference computation on the device. These parameters include
weights and biases in fully connected layers and kernels in
convolution layers. Adversary aims to steal the exact values
of these parameters—known as the high-fidelity extraction of
the model parameters [1]. Additionally, we also follow the
assumption that adversary knows the hyperparameters of the
model either because it is public, or by using the techniques
mentioned in prior works [6].

To mitigate side-channel leakage, we use the masking
primitives from prior works that are proven first-order secure
in the glitch-extended probing model in cryptography [19],
[20]. We then validate the empirical security of our complete
design using both DPA and TVLA tests. We exclude invasive
attacks such as clock glitching, or laser fault injection on the
hardware. We also assume that only authenticated binaries
can be loaded into the core. Thus, either the model owner
programs the binary, or a third party first verifies their source
code with the model owner, then generates a valid token, and
then programs the binary on the device. If fault attacks or
secure boot are concerns, they can be handled by a different
layer of defense.

C. RISC-V ISA and Toolchain

RISC-V is an open-source instruction-set architecture with
47 base instructions that need to be present in any variant
of the ISA [22]. Additionally, it is developed in a modular
fashion to enable easy extensions over the base ISA. The
encoding space of instructions is split into standard, reserved,
and custom categories. The category is decided by bits [6:2]
of the instruction and the exact mapping is listed in the
latest ISA manual [22] of RISC-V. Any custom instructions
should preferably use the encoding space allotted to the custom
category because the standard space is already in use and the
reserved space is kept for possible future standardizations. See
Fig. 3 for more details on the encoding for various categories
in RISC-V ISA. The RISC-V cross-compiler (or toolchain) is
publicly available with its source code. It consists of many

Fig. 2. Circuit diagram of the first-order secure DOM AND gate. The two
domains are depicted by the pink and blue regions. The cross-domain partial
products are refreshed, registered, and eventually compressed to produce two
Boolean shares q0 and q1.

tools but the relevant ones for this work are the GCC, the
Binutils, and the Newlib as Fig. 1 shows. Binutils contains
the GNU assembler (as) and linker (ld). GCC is the GNU
compiler for C, and Newlib provides the required low-level
libraries for basic C routines like malloc, free, etc. Adding a
new custom instruction requires modifying the source code of
the toolchain and rebuilding it. The rebuilt toolchain can then
be used to generate the binary for a source code containing
the newly added custom instructions.

D. Hardware Masking

Masking is a common side-channel countermeasure. It splits
the secret variable into multiple statistically independent and
uniformly random shares and modifies the original algorithm
to process these shares instead of the original secret and
still maintain correct functionality. The power consumption is,
therefore, decorrelated from the secret since the computations
only happen on random shares. Based on whether the shares
are split using exclusive-OR operation or modular addition, the
scheme is respectively called Boolean or arithmetic masking.
Multiple masking schemes have been proposed in the litera-
ture [23], [24]. Fig. 2 shows the circuit of the domain-oriented
masking (DOM) based AND gate. We use it to mask Boolean
functions because it is secure in the glitch-extended probing
model and has a low randomness and area overhead [24]. It
can be composed securely with an additional register at the
output. Notably, this style of masking is also adopted in real-
world products such as Google’s OpenTitan [25].

E. Neural Networks Basics

Neural networks are a class of ML classifiers frequently
used for classification problems in computer vision, language
processing, etc. They consist of units called neurons that
perform a weighted summation followed by a bias addition
and a non-linear transformation. Multiple neurons are stacked
together in layers that feed their results to the next layers.
The layer is called fully connected (FC) if its neurons are
connected to all the neurons of the previous layer. Another
flavor of neural networks uses convolutional layers. The idea is
to process smaller regions of the image and extract meaningful
information before using the FC layers using kernels [26],
[27]. The connection weights or kernel values are tuned during



Fig. 3. Figures (a) and (b) respectively depict the overall opcode map for the
RISC-V ISA and the encoding of an R-type instruction. Our design uses the
major opcode of custom-0 (highlighted) to distinguish our proposed custom
instructions from the base instructions, and the minor opcode to distinguish
between each custom instruction.

the training process and typically in floating point represen-
tation. However, to reduce the power and memory footprint
for hardware implementations, quantized neural networks have
been proposed that limit the precision of the parameters to
fewer bits [28], with the extreme case being binary [29].
Interested readers can refer to the survey by Deng et al [30].

III. THE PROGRAMMING MODEL AND CUSTOM ISES

This section describes the programming interface to run ML
applications on our secure platform, and the custom ISEs that
we add to the ISA.

Instead of exposing the assembly-level custom ISEs directly
to the user, we expose C-based4 APIs, which are easier to
understand and debug. We provide the APIs as part of a shared
library. The rationale behind the syntax of the APIs is to keep
it close to existing ML frameworks. We develop an interface
similar to the Sequential model of TensorFlow Keras [31]. Our
proposed programming interface configures and executes each
layer of the neural network sequentially similar to the Keras
model that builds the model by stacking layers.

A key advantage of our solution is exploiting layer-wise
configurability of this software interface to activate/deactivate
the masking of each layer. This helps trading off security
with performance. Selective masking has also been explored
in cryptography—prior works propose masking only the first
and last rounds of AES because those are the most vulnerable
rounds in a DPA attack [32]. Neural networks are no different
in this regard. Additionally, this also enables only protecting
the parameters of the layers retrained using transfer learning
and saves the power and clock cycles spent on unnecessary
masking of layers with public parameters [33]. The library
provides the four following APIs.

void fetch_input(int* image, int num_images);
void input_layer(int* image, int num_images,

int* weight0, int num_weight0, int* bias,
int num_bias, int masking_enable);

void hidden_layer(int* weight, int
num_weight, int masking_enable);

void output_layer(int* weight, int
num_weight, int masking_enable);

4Our approach is not fundamentally limited to a particular software lan-
guage but we chose C given its suitability for embedded platforms.

We provide one API each for the input5 and the output
layer computations. We use the stacking approach for hidden
layers: each call to the hidden_layer(.) API triggers a
hidden layer computation where the hardware processes the
previous layer results to compute the results of the next layer.
We implement the APIs using inline assembly and custom
ISEs. We describe the encoding of the custom ISEs next.

Instructions in the RISC-V ISA are classified as either an
R, S, I, or U-type, which is based on how the 32 bits of the
instruction are encoded. We choose the R-type format shown
in Fig. 3(a) because some instructions require two source
operands and a destination operand. Fig. 3(b) shows how the
bits [6:2] are encoded for various categories of instructions.
The base opcode encoding space has the two least significant
bits [1:0] set to one. Since we only need 5 custom instructions,
we choose the standard 30-bit base encoding space.

We use the major opcode (bits [6:2]) to distinguish our cus-
tom instructions from the base instructions in RISC-V ISA and
the minor opcode (bits [14:12]) to distinguish between each
custom instruction. We choose the custom-0 space without loss
of generality. The major opcode for this space is 00010.

We add five custom instructions to control the coproces-
sor from RISC-V. The instruction names and operations are
explained below.

1) mnn.cfgwr rs1 rs2. This instruction stores the
pointer to a data structure (rs1) and its size (rs2) in
a configuration register inside the coprocessor. It is used
to store the pointers to the input pixels, the weights, and
the biases of the neural network. It is also used to store
the hyperparameters such as the sizes of the input, hidden,
and output layers.

2) mnn.<i/h/o>layer rs1. These instructions have
just one source operand (rs1) that controls the enabling
or disabling of masking for the layers. Based on the
opcode, the instructions mnn.ilayer, mnn.hlayer,
and mnn.olayer trigger the input, hidden and output
layer computations inside the coprocessor, respectively.

3) mnn.ifetch rs1 rs2. This instruction fetches the
required number of input pixels (rs2) from the host
PC. The user allocates the desired memory space for the
pixels and sends the associated pointer in this instruction
((rs1).). The hardware then uses this information to store
the fetched pixels from the host to that location.

IV. HARDWARE DESIGN OF THE COMPLETE SYSTEM

Fig. 4 shows the block diagram of our complete design.
The important blocks are the RISC-V core (referred to as just
core from hereon), the dual-ported memory accessible through
a shared bus, and the coprocessor. The coprocessor further
consists of the command decoder (CMD) and the secure neural
network unit (SNNU). In the following sections, we describe
the design details in a top-down fashion—how the design
sequentially processes the high-level commands from the host
PC to eventually perform the secure neural network inference.

5By input layer computation, we mean processing the input pixels to
compute the first hidden layer.



Fig. 4. The figure depicts major components of the RISC-V based SoC that
we design. Both the RISC-V and coprocessor share the memory interface. The
command decoder decodes the custom instructions sent on the PCPI interface
and relays appropriate commands to the coprocessor to execute the required
computations.

A. The RISC-V Integration

We select the open-source PicoRV32 RISC-V core6 for this
work because it has a low area footprint and provides the basic
features we need for our solution. The design communicates to
the host PC via the UART interface and processes the UART
signals in two steps. First, the uart2bus IP from OpenCores7

converts the UART signals received from the host PC to
address-based read and write commands. Then, the design
processes these commands using the host interface to generate
specific commands using address mapping. The UART can
be replaced with any other interface that can generate the
required bus signals for the host interface. This keeps our
design modular and is the reason why we did not merge the
two IPs into one that directly translates the UART signals to
design commands.

We depict the entire sequence of operations in Fig. 5.
The host first sends a software reset for a clean start and
then loads the cross-compiled RISC-V binary to the memory
using the romload command. The binary contains the model
parameters, hyperparameters, and custom ISEs to perform the
neural network inference. The start command activates the
core to fetch instructions. The core has an in-built peripheral
coprocessor interface (PCPI) that follows a valid-ready8 proto-
col. The CMD unit inside the coprocessor decodes the custom
instructions discussed in Section III and issues commands to
the SNNU to perform the respective computations based on
the decoded instruction. The logical sequence of instructions
is: mnn.ifetch, mnn.ilayer, a bunch of mnn.hlayer

6https://github.com/YosysHQ/picorv32
7https://opencores.org/projects/uart2bus
8Master sends a request to the slave with an asserted valid signal, and the

slave responds back with the expected output with an asserted ready signal.

Fig. 5. The figure depicts the entire start-up sequence of our proposed design.
The host first resets the design, then flashes the instructions to the memory,
then writes the inputs when requested by the hardware, and eventually reads
back the final classification result when it is available.

instructions, and finally the mnn.olayer. mnn.ifetch
sends a fetch request to the host. The host writes the pixels to
the desired memory location and sends an acknowledgment,
which unblocks the core to execute the remaining layer
execution instructions.

The core writes all the data such as input pixels, weights and
biases directly to the memory while executing the instructions
from the binary. The coprocessor can directly read from the
respective addresses during its computations because it shares
the memory access with the core. We choose to share the
memory between the core and coprocessor instead of having
distinct memories to avoid wasting cycles copying data from
one memory to another.

B. The Coprocessor Interface Design and Operating Principle

The CMD breaks down each custom instruction it receives
from the core into multiple commands for the SNNU. We
explain this next by describing how a typical high-level
instruction stream triggers multiple events in the NN unit. The
following listing gives an example of an instruction sequence
to perform inference using an MLP with one input, two hidden,
and one output layers. The Listing abstracts the initialization
of the pointers to data structures image, w0, w1,w2,
bias, and the respective sizes ni, nw0, nw1, nw2, nb
in the init() call. m_en variable is used to enable or disable
masking for a certain layer and can be updated accordingly.

int main(){
... //declare and initialize pointers and

variables
init(image,w0,w1,w2,bias);
fetch_input(image, ni);



m_en=1;
input_layer(image, ni, w0, nw0, bias, nb,

m_en);
hidden_layer(w1, nw1, m_en);
output_layer(w2, nw2, m_en);

}

The fetch_input(.) API triggers the CMD to assert
the pixel_req signal shown in Fig. 4. The host PC sends
pixels with the associated counts ranging from 0 to ni − 1.
The coprocessor adds these counts to the image pointer to
compute the write address for each pixel, and generates the
write request to the memory. The input_layer(.) API
internally first calls the mnn.cfgwr instruction to configure
the starting addresses and sizes of the bias, image, and weights
between the input and first hidden layer. The CMD accordingly
generates the write commands to the configuration registers
inside coprocessor to store this information. Next, the API
calls the mnn.ilayer that sends the masking configuration
of input layer via one operand. The CMD configures the
masking control register for the layer and then sends a trigger
pulse to initiate the input layer computations. The SNNU
computes the first hidden layer activations, stores them in a
local activation memory, and signals the CMD once done.

Next, the code calls the hidden layer(.) API to compute
the second hidden layer of the neural network. In a generic
code, this API will be called as many times as the number
of hidden layers in the network. Each call to the API first
configures the details of the weights between the previous and
next hidden layer using the mnn.cfgwr, and then configures
the mask enable bit and triggers the hidden layer computations
using the mnn.hlayer instruction. The SNNU computes the
second hidden layer activations, stores them in the second local
activation memory, and communicates to the CMD once done.
Since the SNNU is layer-sequentialized, it only maintains two
activation memories, in which the writes and reads keep ping-
ponging. Finally, the code calls the output layer() API that
computes the non-binary output layer activations to produce
the inference result. The result is either Boolean-shared or not
based on the masking configuration of the output layer.

C. The Secure Neural Network Unit

In this subsection, we first describe the masking gadgets
that exist in prior literature for efficient masking of neural
network functions, which we augment for our baseline design.
Then, we describe our novel design changes to develop a
masked neural network design that can be reconfigured
in runtime to securely disable or enable the masking of
individual layers. We also discuss how we implement our
optimization of reusing the masking-related datapaths during
the evaluation of unmasked layers to improve the overall
inference latency. We finally discuss novel extensions of our
hardware to quantized neural networks beyond binarized.

1) Baseline Masked Hardware Design
Prior works observed that a straightforward application of

masking to neural network operations could be very expen-

sive [5]. One way to alleviate this issue is by incorporating
modular arithmetic in neural network functions [11]. The
key idea is to find a large enough modulus to minimize the
overflow and let the neural network perform a correct infer-
ence. Modular addition is compatible with arithmetic masking
and thus completely avoids the use of expensive Boolean
masking needed for masking regular additions. It significantly
reduces the area, latency, and randomness costs. We adopt
these techniques to build our baseline masked design.

(a) Weighted Summations. The design performs modular
additions instead of regular additions. We restrict the modulus
to a power of 2 for efficiency and the datapath width to
that power. To mask the modular additions, the hardware can
now utilize arithmetic masking. It splits the input pixels into
two independent additive shares and individually performs
weighted summations on each share. It sends the two shares
to the masked activation function next.

(b) Activation Function. The activation function is a thresh-
old function for binarized neural networks with modular
arithmetic; the threshold is half of the modulus. The function
checks the MSB to compare against the threshold. Prior works
propose building a masked carry propagator that evaluates
the Boolean shares of the MSB securely. Following the latest
work, we also use a Kogge-Stone tree to propagate the carry
and replace the regular AND gates in the logic with DOM
AND gates.

(c) Output Layer. Modular arithmetic perturbs the dis-
tribution of the output summations and leads to incorrect
classifications [11]. This is addressed by splitting the default
straightforward computation of the maximum confidence score
into two phases. The first phase finds the maximum below the
threshold of half modulus, and the second phase computes
the global maximum if no maximum was found below the
threshold. Finally, the masked output layer block returns the
Boolean shares of the confidence score and the classified class.

(d) Share Conversion. The design uses arithmetic masking
for weighted summations and Boolean masking for non-
linear operations like activation function, and output layer.
Share conversion should be performed with care otherwise
the conversion process itself can leak the secret [34]. We
adopt the prior proposed design for the conversions [11],
which is basically a pipelined version of the originally
proposed scheme by Golic et al [35]. The pipelining reduces
the glitches and makes the gadget secure in the probing model.

2) Hardware Support for Runtime Reconfiguration
Our programming model supports the selective activa-

tion/deactivation of masking for each layer, which is a key en-
abler in offering security-performance trade-off. Our hardware
has two critical features to this end. First, it re-uses the same
datapath for both settings while doubling the throughput for
unmasked layers via runtime dual datapath reuse. Second, the
re-use of the datapath do not reduce the security of masking.
Achieving these two properties is non-trivial and requires a



Fig. 6. The input layer schematic that depicts the reconfigurable paths for unmasked and masked modes. (a) shows how the design reads the pixels and
multiplexes them based on the toggle (tgl) and masking mode (men) signals to eventually feed them to the two accumulators (shown inside the dotted lines).
Similarly, (b) depicts how the design multiplexes the 32 weights once read to correctly feed them in the accumulator datapath for multiplications.

careful approach as we describe in detail in this subsection.
Fig. 6 shows the datapath of the runtime reconfigurable in-

put layer that supports both unmasked and masked modes. The
key components to be reused are the two MAC units that per-
form weighted summations on the two arithmetic shares when
the layer is masked. We develop a design that automatically
switches to using the two MAC units for unmasked layers.
Each node computation in a neural network involves adding
multiple partial products of the previous layer activations with
the corresponding weights. These partial product computations
are independent of each other. Thus, the design uses the
two datapaths to compute the even and odd partial products
and accumulate them into two parallel summations. Finally,
the design adds the accumulated summations to compute the
complete sum.

In Fig. 6 (a), the design loads two consecutive pixels into the
hi and lo registers. The goal is to send the partial products of
lo and hi to the two MACs when the layer is unmasked. When
masked, the design should send arithmetic shares of lo and hi
in consecutive cycles; r is a fresh random mask generated
by a PRNG. The design alternates the output between lo
and hi pixels every cycle using the toggle tgl signal. The
second multiplexer sends either the unmasked lo and hi pixels,
or the masked shares to the MAC units based on the mask
configuration (men).

Fig. 7 depicts the datapaths for the hidden layer computa-
tion. The design uses the XNOR-popcount operation over the
previous layer activations to perform weighted summations
in the hidden layers. It stores the activations either in clear
or as Boolean shares depending on the masking mode. To
perform an unmasked layer computation, the design unmasks
the XNORed result before sending it to the MAC units. During
the masked mode, however, the design first sends the two
Boolean shares of the XNORed result to the Boolean-to-
arithmetic unit to convert them to arithmetic shares, and then
sends them to the MAC units for weighted summations. The
scheduling is similar for the rest of the layers.

Having such a reconfiguration required careful security con-
siderations throughout the design. If the input layer operates
in unmasked mode, then the design adds the final output from
the two MAC units and stores the activation result in the
memory. However, this path should be disabled in the masked
mode to prevent the reconstruction of the original summation.
We ensure this using a demultiplexer at the MAC outputs
which relays a zero instead of the actual MAC outputs if

Fig. 7. The reconfigurable hidden layer datapath. Each memory location
stores the Boolean shares for two activations–(3,2), and (1,0) are the shares
of two activations. Based on men, the design either recombines the shares
(inside recomb.) or sends them to the Boolean-to-arithmetic (B2A) block for
conversion to arithmetic shares to be used later during weighted summations.

masking is enabled. We add registers at the demultiplexer
outputs to prevent leaky glitches–the summations may get
temporarily combined during the masked mode if the men

signal arrives slightly later than the summations. Similarly, in
the hidden layer datapath shown in Fig. 7, we add registers at
the multiplexer outputs before the design performs the XOR-
sum to recombine the shares.

Applying modular arithmetic on the output layer activations
perturbs the output and causes incorrect classifications, which
has been solved previously using a thresholded maximum
computation [11]. We follow the same strategy to correctly
compute the inference result. However, instead of reusing the
high latency masked output layer also for the unmasked mode,
we instantiate a separate unmasked output layer unit. This unit
includes only a register and a comparator to keep comparing
each confidence score with the previous one and to update the
max register if it is greater. It was more advantageous to add
this small hardware to accelerate the unmasked output layer
result generation. Finally, based on the masking mode, the
design either selects the output of the masked output layer or
the unmasked output layer and communicates to the core.

3) Masking of Quantized and Convolutional Networks
In this subsection, we present novel solutions for neural

networks with higher precision than just one bit and those
that can include convolutions. Representing the weights and
activations with more than one bit enables the network to cap-
ture more subtleties in the parameters and improves the overall
classification accuracy because it can better approximate the
unknown function. Our solutions are not just confined to BNNs



Fig. 8. Masked datapath for a higher precision neural network. Masked ReLU
is constructed by performing a secure AND between the MSB and other input
bits using DOM-AND gadgets. Masked maxpool is constructed by securely
comparing the ReLU outputs and selecting the maximum.

and can be easily extended to neural networks with a higher
precision like 4 or 8-bit weights and activations. Next, we
describe how to mask an 8-bit quantized network with modular
arithmetic.

The unique operations for an 8-bit quantized neural network
compared to a BNN include (1) regular 8-bit multiplication
of the weights with the pixels instead of multiplexing 2’s
complement in the input layer and XNOR-popcount in hidden
layers, (2) a rectified linear unit (ReLU) function instead of a
sign function, and (3) computations of the maximum score in
the pooling window rather than simple OR operations. In the
baseline unmasked design, the hardware multiplies the 8-bit
signed weights in the kernel with the 8-bit signed input pixels
sequentially and accumulates the sum along with the bias. It
then feeds the sum to the ReLU unit. Equation (1) shows the
formulation of the ReLU function with the modular arithmetic

ReLUMOD(x) =

{
0, if x ≥ K

2

x, otherwise
(1)

where x is the output of the convolution and K is the
modulus. A convolution is generally followed by maxpool
over the activation values. This essentially involves finding
the maximum element in the pooling window and saving the
results for the subsequent layer computations.

Fig. 8 shows the datapath for a fully-masked higher-
precision neural network. In the masked design, the hardware
can still use arithmetic masking of input pixels before the
multiplication with the weights and perform convolutions in
parallel for the two arithmetic shares. At the completion of
each convolution, the hardware sends the arithmetic shares of
the resulting sum to the activation function. The activation
function needs to threshold the shares based on the MSB of
the actual sum. At the Boolean level, the ReLU function is
essentially a logical AND operation of the inverted MSB with
all the other bits of the input. Since this is a Boolean function,
the design first needs to convert the arithmetic shares of the
summation to Boolean shares. It can then perform a secure
AND operation of the MSB with the rest of the bits to yield
the two Boolean shares of the activation result.

Finally, to perform the Maxpool, the hardware has to com-
pare the Boolean shares of activations in the pooling window
with each other and find the maximum value. This is achieved
by using a masked comparator to compare the confidence
scores, and a masked multiplexer to select the higher score,
following the DOM-AND gates as in prior work [11].

TABLE I
AREA BREAKDOWN OF THE DESIGN IN TERMS OF MAJOR COMPONENTS.

Component FF LUT
uart2bus 153 223

Host Interface 23 40
PicoRV32 649 1400

CMD 12 15
SNNU 3118 2883
Misc 9 143
Total 3981 4797

V. IMPLEMENTATION RESULTS AND COMPARISONS

We present the area and performance results that sub-
stantiate our efficiency claims over software-only solutions
compared to previous work. We also present the side-channel
validations for our proposed solution.

A. Area and Latency

The total area cost of our proposed solution is 3981 FFs and
4797 LUTs on Spartan-6 FPGA using Xilinx ISE 14.7. We
chose this FPGA as it is used in Sakura-G side-channel verifi-
cation board. Table I shows the area of individual components.
Most of the area contribution is from the SNNU as expected.
In terms of latency, the increase in the number of cycles from
the fully unmasked to fully masked mode is 2.077×. The exact
latency varies linearly with the number of layers and number
of nodes per layer. Our design consumes 4997 cycles in the
unmasked mode and 10,150 cycles in the masked mode for a
BNN with 64 input nodes, 2 hidden layers with 64 neurons,
and 10 output nodes. In terms of the memory footprint of
our library, the binary has 82 fixed additional instructions
contributing 328 bytes.

Table II compares the area and latency of our solution
with prior works. It is difficult to make exact comparisons
between the works because of the varying hyperparameters,
parallelization modes, and implementation platforms (FPGA
versus ASIC versus microcontroller). Still, we try our best to
provide the comparison for completeness. We first choose a
common hyperparameter set of 784 input nodes, one hidden
layer of 512 nodes, and an output layer of 10 nodes for
comparison; [13] already uses this configuration. All the
works have a throughput of 1 summation/cycle9. Thus, we
assume that the latency varies linearly with the total number
of summations per inference, which is given as the sum of
products of the number of nodes in two subsequent layers.

We scale the originally quoted latency (the Latency column)
of the works to the expected latency of our chosen hyper-
parameter set (the Latency (N) column) for each work. The
ASIC work [12] does not quote any latency numbers, thus, we
assume it to be equal to the number of weighted summations.
The results show that the ASIC and FPGA solutions have a
comparable latency10 of around 4×105, which is much lower

9The ASIC solution [12] actually has a throughput of 8 summations/cycle
but we assume only 1 PE instantiation for this comparison.

10We refer to clock cycles. The actual latency might be much lower for an
ASIC because of the high design frequency compared to FPGAs.



TABLE II
AREA AND PERFORMANCE COMPARISON WITH PRIOR WORKS.
Work Area Latency Latency (N) Programmable

(LUT+FF) (cycles) (cycles)
[5] 17457 2.94× 106 4.2× 105 No

[11] 10644 2.91× 106 4.1× 105 No
[13] NA1 1.97× 107 19.68× 106 Yes
[12] NA2 NA3 4× 105 No

This work 8778 10150 4.67× 105 Yes
1 microcontroller-based solution; no LUT/FF equivalents;
2 ASIC solution; no LUT/FF equivalents;
3 No latency numbers in the manuscript;

than that of the microcontroller-based solution, as expected.
However, while the microcontroller is programmable, the
ASIC and FPGA are not. Our proposed solution is almost
as fast as the hardware solutions and provides the same
programmability benefits as that of a microcontroller. Thus,
our hardware-software co-design-based solution gives the best
of both worlds by providing both programmability and high
performance without sacrificing security.

B. Side-Channel Validation

We use both DPA and test vector leakage assessment
(TVLA) methods to perform side-channel validations [15]. We
use Sakura-G as the testing platform and Picoscope 3206D
as the oscilloscope. We run the design at 10 MHz and
set the sampling frequency of the oscilloscope at 125MHz.
Following prior published works at HOST [36]11, we validate
the empirical security with 1M power traces.

1) DPA Results.
We conduct DPA to demonstrate the side-channel vulnera-

bility of neural network hardware implementations against a
targeted attack. Furthermore, we also show how our proposed
solution resists such an attack. Fig. 9 shows the results of the
DPA attack on the unmasked and masked implementations.
We target the activation function for the attack, use the
hamming distance power model12, and hypothesize on the
possible weights. We set 8 input pixels to be non-zero, and
hypothesize on the corresponding weights for those pixels.
This reduces the number of hypotheses from 264, to 28. 13

Fig. 9 (a) clearly shows a high correlation only for the correct
hypothesis, at the exact point in time when the activation is
computed. The leakage is statistically significant after 6000
measurements. Fig. 9 (b) shows the same attack on the masked
implementation, which quantifiably fails even with 1M power
traces. Note that the latency of the target operation in the
masked design (3.2µs) is twice compared to that of the
unmasked design (1.6µs) because the unmasked design uses
both the datapaths to quickly compute the summations as
discussed in Section IV-C2.

11Some works also just used 100k traces [4], [37].
12The memory storing the activations is not reset between measurements.
13Note that our threat model assumes chosen-plaintext as in prior works;

hence, such attacks can be conducted.

Fig. 9. Figure (a) top plot shows a high correlation peak only for the correct
hypothesis in black; the bottom plot shows its evolution with the number
of traces, which becomes statistically significant with confidence of 99.99%
(shown by the dotted lines) at 6000 traces. Figure (b) shows the same results
for the masked design, where we neither observe a high correlation peak for
the correct hypothesis nor does the correlation become statistically significant
before 1M traces demonstrating resistance to the DPA attack.

2) TVLA Results.
Since DPA is insufficient and atypical to exhaustively eval-

uate side-channel security, we also conduct the more generic
TVLA test. We conduct TVLA on four masked neural network
configurations C1 to C4 for a robust side-channel validation.
For all the experiments we set the hyperparameters as 1 input
layer with 64 nodes, 2 hidden layers with 64, and an output
layer with 10 nodes. C1 has all the layers unmasked, C2 is
all the layers masked, C3 has only the second hidden layer
unmasked, and C4 has only the output layer unmasked.

Fig. 10 shows the results of our experiments. Figures 10
(a) and (c) depict the overall power trace of a fully unmasked
and fully masked configuration. We can clearly observe the
two hidden layer computations using simple power analysis
as the two high amplitude bands; the bands have higher
amplitude in the case of the masked design compared to
the unmasked design, which is expected because of higher
activity of PRNGs and masked datapaths. Also, the layer
power activity is lower than that of the baseline processor
activity in the unmasked design, which is why the power
drops during the layer computations, and the power bumps
are actually between the layer executions. Also, the execution
time for the masked design is twice that of the unmasked
configuration, which is expected because of the dual path reuse
optimization in our design for the unmasked layers.

Figures 10 (b) and (d) show the TVLA evaluations of
configurations C1 and C2. All the layers are unmasked in C1;
thus, the t-scores cross the TVLA threshold of ±4.5. C2 has
all the layers masked, and therefore, we do not see the t-scores
crossing the threshold throughout the execution except the
input layer. This is because the design loads the pixels while
computing the arithmetic shares, and that load operation results
in the input correlations. This has been observed in prior works
too [5], [11], and is verified by running an experiment with
buffered arithmetic shares instead of generating them on-the-
fly. We also verify our design with that approach. We used
1M traces in each fixed and random dataset to validate the



Fig. 10. The figure shows averaged power consumption and TVLA results from our experiments. Figures (a) and (c) show the mean power trace for the
unmasked and masked designs, where, we observe higher activity in the masked design as expected. Figures (b), (d), (e), and (f) show the t-scores observed
for the configurations C1-C4 in order. C1 and C2 are fully-unmasked and fully-masked designs, therefore, we observe t-scores higher than ±4.5 (denoted by
horizontal dashed lines) throughout the trace in (b), but not in (d). C3 has only HL2 unmasked, and C4 has only OL unmasked. Hence, the t-scores cross the
threshold only during those regions in (e) and (f). The t-scores cross the threshold during input layer computations with masking because of input correlations.

side-channel security following prior works [5]. (e) and (f)
show the TVLA results for configurations C3 and C4. Masking
is disabled in the second hidden layer in C3, therefore, we
observe t-scores greater than the threshold during the second
hidden layer computation. The time of execution is reduced
to half with our optimization. Masking is re-enabled for the
output layer and we can observe the security empirically
as well because the t-scores stay within the limit of ±4.5
throughout the output layer computation. For configuration
C4, we observe no leakage during the second hidden layer
computation because masking is enabled, and higher t-scores
crossing the TVLA threshold during the output layer execution
because masking is disabled. Thus, the design successfully
masks/unmasks the layers based on user configuration.

C. Existing Coprocessors for ML Acceleration

Some existing works have built coprocessors for a RISC-V
core to accelerate ML [38]–[40]. However, none of them focus
on side-channel security—instead, they exclusively focus on

conventional design metrics such as power, performance, and
area. Our hardware-software co-designed approach is the first
one to consider side-channel security as a design dimension.
Our goal is not to provide the most power/performance/area-
optimized solution but to demonstrate the risk of side channels
and provide a side-channel-aware hardware-software co-design
framework. We quantify the relative overheads of the defense,
which is likely to preserve if the hardware is deeper pipelined
or parallelized for optimizations. Most prior works try to
integrate a systolic array to the RISC-V core, either through
the RISC-V vector extension or through a custom coprocessor
interface. Our proposed mitigation techniques are applicable
to all these works too, and the overheads should linearly scale
with the number of processing elements. Further research is
needed to quantify the exact amount, and such works can
utilize the analysis and results of this work.

VI. CONCLUSION
A custom hardware solution is suitable for efficient masking

of cryptographic applications, which have been thoroughly



standardized by NIST/ISO. By contrast, there are no such
standards for neural networks. Therefore, addressing the flex-
ibility/usability needs while preserving hardware efficiency is
a critical concern, which has not been explored before. This
paper demonstrates a hardware/software co-design approach
for flexibly and efficiently implementing the side-channel
masking for neural networks. Doing so required a full-stack
approach that tackles the application software model, com-
piler/microcode augmentations, micro-architecture integration,
and silicon verification. The results have shown the promise of
our approach in terms of integration to a higher-level language
and reasonable overheads. Our paper thus informs future
system designers, software developers, computer architects,
and silicon hardware engineers about the best practices and
future challenges.
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