A Note on "A Time-Sensitive Token-Based Anonymous Authentication and Dynamic Group Key Agreement Scheme for Industry 5.0"

Zhengjun Cao ${ }^{1}$, Lihua Liu ${ }^{2}$

Abstract

We show that the Xu et al.'s authentication and key agreement scheme [IEEE Trans. Ind. Informatics, 18(10), 7118-7127, 2022] is flawed. (1) It confused some operations for bilinear maps and presented some inconsistent computations. (2) It failed to keep anonymity, not as claimed. The adversary can use any device's public key stored in the blockchain to test some verification equations so as to reveal the identity of a target device.

Keywords: Key agreement, anonymity, authentication, blockchain.

1 Introduction

Recently, Xu et al. [1] have presented an anonymous authentication and dynamic group key agreement scheme for industry 5.0. It is designed to meet many security requirements, such as anonymity and untraceability, session key establishment, forward and backward secrecy, resistance to replay attack, impersonation attack, etc. In this note, we show that the scheme has some inconsistent computations and fails to keep anonymity, not as claimed.

2 Review of the Xu et al.'s scheme

In the proposed scenario, there are two main kinds of entities, device $(D E)$ and private key generator $(P K G)$. The DEs are general nodes, and have mobile capabilities. Each $P K G$ is similar to a group controller responsible for key generation, distribution, management, and group communication tasks. Each group is dynamic, which means that $D E$ may join or leave a group at any time. The scheme consists of seven phases: initialization, registration, authentication without token, authentication with token, group key generation, DE join, and DE leave.

Initialization. The system administrator picks a cyclic additive group G_{1} with a generator Q and a cyclic multiplicative group G_{2}. Both are of the prime order p. Select a bilinear map $e: G_{1} \times G_{1} \rightarrow G_{2}$ and a private key s, and set the public key as $P_{p u b}=s Q$. Pick two random numbers $n_{1_{j}}, n_{2_{j}}$, and a unique identity $I D P_{j}$ for each $P K G_{j}$. Store $\left\{s, n_{1_{j}}, n_{2_{j}}, I D P_{j}\right\}$ in the memory of $P K G_{j}$. Publish $\left\{p, G_{1}, G_{2}, Q, e, P_{p u b}, h(\cdot), E_{k}, D_{k}\right\}$. See Table I for descriptions of involved notations. For

[^0]Table I: Notations

Symbol	Description
$T I D_{i}$	Temporary identity of the $D E_{i}$
$I D D_{i}$	The identity of $D E_{i}$
$I D P_{j}$	The identity of $P K G_{j}$
$G I D_{k}$	The identity of k th group
$s, P_{p u b}$	Private key and public key of all $P K G \mathrm{~s}$
S_{i}, a_{i}, b_{i}	The $D E_{i}$'s private key
W_{i}, A_{i}, B_{i}	The $D E_{i}$'s public key
$S T_{i}, E T_{i}$	The authorized time slot range $\left[S T_{i}, E Y_{i}\right]$
E_{k}, D_{k}	Symmetric encryption/decryption with key k
\oplus	Bitwise XOR operation
(a, b)	Concatenation of data a and data b
$h(\cdot)$	A hash function $h(\cdot):\{0,1\}^{*} \rightarrow\{0,1\}^{l}$
$h^{a}(b)$	Perform $a+1$ hash operations on b

convenience, we now only depict the registration phase and authentication without token phase as follows (see Table II).

3 Inconsistent computations

Pairings in elliptic curve cryptography are functions which map a pair of elliptic curve points to an element of the multiplicative group of a finite field. Let n be a positive integer. Let G_{1} and G_{2} be Abelian groups written in additive notation. Suppose that G_{1} and G_{2} have exponent n (i.e., $[n] P=0$ for all $P \in G_{1}, G_{2}$). Suppose G_{3} is a cyclic group of order n written in multiplicative notation. A pairing is a function $\hat{e}: G_{1} \times G_{2} \rightarrow G_{3}$ satisfying:

Bilinearity. For all $P, P^{\prime} \in G_{1}$ and all $Q, Q^{\prime} \in G_{2}$ we have $\hat{e}\left(P+P^{\prime}, Q\right)=\hat{e}(P, Q) \hat{e}\left(P^{\prime}, Q\right)$ and $\hat{e}\left(P, Q+Q^{\prime}\right)=\hat{e}(P, Q) e\left(P, Q^{\prime}\right)$.

Non-degeneracy. For all $P \in G_{1}$, with $P \neq 0$, there is some $Q \in G_{2}$ such that $\hat{e}(P, Q) \neq 1$. For all $Q \in G_{2}$, with $Q \neq 0$, there is some $P \in G_{1}$ such that $\hat{e}(P, Q) \neq 1$.

To this day, the two practical examples of pairings are the Weil and Tate pairings on elliptic curves over finite fields [2]. Both use a non-rational homomorphism $\phi: G_{2} \rightarrow G_{1}$ to construct the so-called self-pairing $e: G_{1} \times G_{1} \rightarrow G_{3}$. In view of this fact, we find the Xu et al.'s scheme have confused the basic operations for bilinear maps and presented some inconsistent computations. It wrongly specifies that

For points (x, y) belonging to G_{1} or G_{2}, we only focus on x. For example, for $Q\left(x_{Q}, y_{Q}\right)$ and a private key s^{\prime}, we can obtain $\left(x_{s^{\prime} Q}, y_{s^{\prime} Q}\right)$ by point multiplication operation $s^{\prime} Q$, and the corresponding public key $P_{p u b}^{\prime}$ is $x_{s^{\prime} Q}$.

Table II: The Xu et al.'s authentication and key agreement scheme

$D E_{i}$	Registration	$P K G_{j}:\left\{s, n_{1_{j}}, n_{2_{j}}, I D P_{j}\right\}$
Send the join request. \quad request Store $\left\{I D D_{i}, W_{i}, S_{i}\right\}$.	$\Longleftarrow \frac{I D D_{i}, W_{i}, S_{i}}{[\text { secure channel] }}$	Pick a unique identity $I D D_{i}$. Compute $W_{i}=h\left(I D D_{i}\right), S_{i}=s W_{i}$. Create a new block containing $\left\{I D D_{i}, W_{i}\right\}$, and link it to the Blockchain.
$D E_{i}:\left\{I D D_{i}, W_{i}, S_{i}\right\}$	Authentication	PKG ${ }_{j}:\left\{s, n_{1}, n_{j},{ }^{\text {d }}\right.$, $\left.P_{j}\right\}$
Pick random a_{i}, b_{i} and group identity $G I D_{k}$. Set a timestamp T_{1} and time-slot $\left[S T_{i}, E T_{i}\right]$. Compute $A_{i}=a_{i} Q, B_{i}=b_{i} Q, T K=b_{i} P_{\text {pub }}$, $D N T_{1} \leftarrow E_{T K}\left(I D D_{i}, S T_{i}, E T_{i}, A_{i}\right)$, $D N T_{2}=h\left(D N T_{1}, B_{i}, T_{1}, G I D_{k}\right) S_{i}$.	DNT $1_{1}, D N T_{2}, B_{i}, G I D_{k}, T_{1}$ [open channel]	Check the timestamp T_{1}. Then compute $T K=s B_{i}$, $\left(I D D_{i}, S T_{i}, E T_{i}, A_{i}\right) \leftarrow D_{T K}\left(D N T_{1}\right)$. Retrieve $\left(I D D_{i}, W_{i}\right)$ from the blockchain. Check $e\left(Q, D N T_{2}\right)=e\left(P_{p u b}, h\left(D N T_{1}, B_{i}, T_{1}, G I D_{k}\right) W_{i}\right) .$ If so, generate $T I D_{i}$ and timestamp T_{2}. Compute Seeda $a_{i}=h\left(I D P_{j}\right.$, date, $\left.S T_{i}, E T_{i}, n_{1_{j}}\right)$, $S e e d b_{i}=h\left(I D P_{j}\right.$, date, $\left.S T_{i}, E T_{i}, n_{2_{j}}\right)$, $S_{i}=s W_{i}, S A_{i}=h\left(I D D_{i}, S_{i}\right.$, Seeda $_{i}$, Seedb $\left._{i}\right)$, $T S_{a_{i}}=h^{S T_{i}-1}\left(\right.$ Seeda $\left._{i}\right), T S_{b_{i}}=h^{z-E T_{i}}\left(\right.$ Seedb $\left._{i}\right)$, $D N T_{3} \leftarrow E_{T K}\left(T I D_{i}, S A_{i}, T S_{a_{i}}, T S_{b_{i}}\right)$,
Check the timestamp T_{2}. Then check $e\left(Q, D N T_{4}\right)=e\left(P_{p u b}, h\left(D N T_{3}, T_{2}\right) W_{i}\right)$. If so, $\left(T I D_{i}, S A_{i}, T S_{a_{i}}, T S_{b_{i}}\right) \leftarrow E_{T K}\left(D N T_{3}\right)$. Store $\left(T I D_{i}, S A_{i}, T S_{a_{i}}, T S_{b_{i}}, A_{i}\right)$.		$D N T_{4}=h\left(D N T_{3}, T_{2}\right) S_{i}$. Insert $\left(I D D_{i}, T I D_{i}, S e e d a_{i}, S e e d b_{i}, S A_{i}, S T_{i}, E T_{i}, A_{i}\right)$ into the list L, which containing the parameters required to verify each DE's token in each PKG.

It also wrongly formulates that

$$
\begin{aligned}
& W_{i}=h\left(I D D_{i}\right), \quad S_{i}=s W_{i}, \quad D N T_{4}=h\left(D N T_{3}, T_{2}\right) S_{i}, \\
& D N T_{2}=h\left(D N T_{1}, B_{i}, T_{1}, G I D_{k}\right) S_{i}, \\
& e\left(Q, D N T_{2}\right)=e\left(P_{p u b}, h\left(D N T_{1}, B_{i}, T_{1}, G I D_{k}\right) W_{i}\right) \\
& e\left(Q, D N T_{4}\right)=e\left(P_{p u b}, h\left(D N T_{3}, T_{2}\right) W_{i}\right)
\end{aligned}
$$

Clearly, $W_{i}=h\left(I D D_{i}\right)$ is not a point over the underlying elliptic curve. So do $D N T_{2}, D N T_{4}$. Thus, the computations

$$
\begin{aligned}
& e\left(Q, D N T_{2}\right)=e\left(P_{p u b}, h\left(D N T_{1}, B_{i}, T_{1}, G I D_{k}\right) W_{i}\right), \\
& e\left(Q, D N T_{4}\right)=e\left(P_{\text {pub }}, h\left(D N T_{3}, T_{2}\right) W_{i}\right)
\end{aligned}
$$

make no sense. Likewise, the following computations

$$
\begin{aligned}
& e\left(x_{Q}, D N T_{2}\right)=e\left(x_{P_{p u b}}, h\left(D N T_{1}, B_{i}, T_{1}, G I D_{k}\right) W_{i}\right), \\
& e\left(x_{Q}, D N T_{4}\right)=e\left(x_{P_{p u b}}, h\left(D N T_{3}, T_{2}\right) W_{i}\right)
\end{aligned}
$$

make no sense, too.

One should remove the above wrong specification and formulate that $W_{i}=h\left(I D D_{i}\right) Q$ i.e., converting W_{i} into a point over the underlying elliptic curve. In this case, all

$$
D N T_{2}, h\left(D N T_{1}, B_{i}, T_{1}, G I D_{k}\right) W_{i}, D N T_{4}, h\left(D N T_{3}, T_{2}\right) W_{i}
$$

are compatible with the bilinear map.

4 The loss of anonymity

Anonymity is a security requirement adopted by many protocols. As for this property, it argues that (page 7124, [1]):

> Among the messages sent during the authentication without token phase and authentication with token phase, only $D N T_{1}, D W T_{3}$, and $H D E_{i}$ contain the $I D D_{i}$ information. However, $I D D_{i}$ in $D W T_{3}$ and $H D E_{i}$ is protected by $h()$. In addition, if an adversary wants to get $I D D_{i}$ from $D N T_{1}$, he/she must get the $T K$ key. However, according to the computational Diffie-Hellman (CDH) problem, the adversary cannot obtain $T K$ from $P_{p u b}, B_{i}$, or Q in polynomial time.

The argument is not sound. In fact, the legitimate $P K G_{j}$ needs to decrypt $D N T_{1}$ to retrieve the identity $I D D_{i}$, and then uses it to get the target public key W_{i} from the blockchain. Though an adversary cannot decrypt the ciphertext, he can access the set $\Upsilon=\left\{\left(I D D_{i}, W_{i}\right)\right\}_{1 \leq i \leq n}$, which is stored in the blockchain. The adversary who has captured $\left\{D N T_{1}, D N T_{2}, B_{i}, T_{1}, G I D_{k}\right\}$ or $\left\{D N T_{3}, D N T_{4}, T_{2}\right\}$ via open channels, can test the equation

$$
\begin{aligned}
& e\left(Q, D N T_{2}\right)=e\left(P_{p u b}, h\left(D N T_{1}, B_{i}, T_{1}, G I D_{k}\right) \chi\right), \\
& \text { or } e\left(Q, D N T_{4}\right)=e\left(P_{p u b}, h\left(D N T_{3}, T_{2}\right) \chi\right),(\rho, \chi) \in \Upsilon
\end{aligned}
$$

Practically, the size of Υ is moderate and the success probability of such testings is not negligible. Once such a public key χ is searched out, the adversary can reveal the target identity. To achieve true anonymity, we think, one should adopt other techniques.

5 Conclusion

We show that the Xu et al.'s key agreement scheme is flawed. We hope the findings in this note could be helpful for the future work on designing such schemes.

References

[1] Z. Xu, et al.: A Time-Sensitive Token-Based Anonymous Authentication and Dynamic Group Key Agreement Scheme for Industry 5.0, IEEE Trans. Ind. Informatics, 18(10): 7118-7127 (2022)
[2] S. Galbraith: Pairings, Advances in Elliptic Curve Cryptography, London Mathematical Society Lecture Note Series 317, Cambridge University Press (2005)

[^0]: ${ }^{1}$ Department of Mathematics, Shanghai University, Shanghai, 200444, China
 ${ }^{2}$ Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, China. liulh@shmtu.edu.cn

