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Abstract. We show that the Xu et al.’s authentication and key agreement scheme
[IEEE Trans. Ind. Informatics, 18(10), 7118-7127, 2022] is flawed. (1) It confused some
operations for bilinear maps and presented some inconsistent computations. (2) It failed
to keep anonymity, not as claimed. The adversary can use any device’s public key stored
in the blockchain to test some verification equations so as to reveal the identity of a target
device.
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1 Introduction

Recently, Xu et al. [1] have presented an anonymous authentication and dynamic group key agree-
ment scheme for industry 5.0. It is designed to meet many security requirements, such as anonymity
and untraceability, session key establishment, forward and backward secrecy, resistance to replay
attack, impersonation attack, etc. In this note, we show that the scheme has some inconsistent
computations and fails to keep anonymity, not as claimed.

2 Review of the Xu et al.’s scheme

In the proposed scenario, there are two main kinds of entities, device (DE) and private key generator
(PKG). The DEs are general nodes, and have mobile capabilities. Each PKG is similar to a group
controller responsible for key generation, distribution, management, and group communication tasks.
Each group is dynamic, which means that DE may join or leave a group at any time. The scheme
consists of seven phases: initialization, registration, authentication without token, authentication
with token, group key generation, DE join, and DE leave.

Initialization. The system administrator picks a cyclic additive group G1 with a generator Q and a
cyclic multiplicative group G2. Both are of the prime order p. Select a bilinear map e : G1×G1 → G2

and a private key s, and set the public key as Ppub = sQ. Pick two random numbers n1j , n2j ,
and a unique identity IDPj for each PKGj . Store {s, n1j , n2j , IDPj} in the memory of PKGj .
Publish {p,G1, G2, Q, e, Ppub, h(·), Ek, Dk}. See Table I for descriptions of involved notations. For
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Table I: Notations

Symbol Description

TIDi Temporary identity of the DEi

IDDi The identity of DEi

IDPj The identity of PKGj

GIDk The identity of kth group
s, Ppub Private key and public key of all PKGs
Si, ai, bi The DEi’s private key
Wi, Ai, Bi The DEi’s public key
STi, ETi The authorized time slot range [STi, EYi]
Ek, Dk Symmetric encryption/decryption with key k
⊕ Bitwise XOR operation
(a, b) Concatenation of data a and data b
h(·) A hash function h(·) : {0, 1}∗ → {0, 1}l
ha(b) Perform a+ 1 hash operations on b

convenience, we now only depict the registration phase and authentication without token phase as
follows (see Table II).

3 Inconsistent computations

Pairings in elliptic curve cryptography are functions which map a pair of elliptic curve points to an
element of the multiplicative group of a finite field. Let n be a positive integer. Let G1 and G2 be
Abelian groups written in additive notation. Suppose that G1 and G2 have exponent n (i.e., [n]P = 0
for all P ∈ G1, G2). Suppose G3 is a cyclic group of order n written in multiplicative notation. A
pairing is a function ê : G1 ×G2 → G3 satisfying:

Bilinearity. For all P, P ′ ∈ G1 and all Q,Q′ ∈ G2 we have ê(P + P ′, Q) = ê(P,Q)ê(P ′, Q) and
ê(P,Q+Q′) = ê(P,Q)e(P,Q′).

Non-degeneracy. For all P ∈ G1, with P 6= 0, there is some Q ∈ G2 such that ê(P,Q) 6= 1. For
all Q ∈ G2, with Q 6= 0, there is some P ∈ G1 such that ê(P,Q) 6= 1.

To this day, the two practical examples of pairings are the Weil and Tate pairings on elliptic
curves over finite fields [2]. Both use a non-rational homomorphism φ : G2 → G1 to construct the
so-called self-pairing e : G1 × G1 → G3. In view of this fact, we find the Xu et al.’s scheme have
confused the basic operations for bilinear maps and presented some inconsistent computations. It
wrongly specifies that

For points (x, y) belonging to G1 or G2, we only focus on x. For example, for Q(xQ, yQ)
and a private key s′, we can obtain (xs′Q, ys′Q) by point multiplication operation s′Q, and
the corresponding public key P ′pub is xs′Q.

2



Table II: The Xu et al.’s authentication and key agreement scheme

DEi Registration PKGj : {s, n1j , n2j , IDPj}

Send the join request.
request

============⇒ Pick a unique identity IDDi.

Store {IDDi,Wi, Si}.
IDDi,Wi,Si⇐===============

[secure channel]
Compute Wi = h(IDDi), Si = sWi.

Create a new block containing {IDDi,Wi},
and link it to the Blockchain.

DEi: {IDDi,Wi, Si} Authentication PKGj : {s, n1j , n2j , IDPj}
Pick random ai, bi and group identity GIDk.
Set a timestamp T1 and time-slot [STi, ETi].
Compute Ai = aiQ,Bi = biQ,TK = biPpub, Check the timestamp T1. Then compute TK = sBi,
DNT1 ← ETK(IDDi, STi, ETi, Ai), (IDDi, STi, ETi, Ai)← DTK(DNT1).
DNT2 = h(DNT1, Bi, T1, GIDk)Si. Retrieve (IDDi,Wi) from the blockchain. Check

DNT1,DNT2,Bi,GIDk,T1−−−−−−−−−−−−−−−−−−→
[open channel]

e(Q,DNT2) = e(Ppub, h(DNT1, Bi, T1, GIDk)Wi).

If so, generate TIDi and timestamp T2. Compute
Seedai = h(IDPj , date, STi, ETi, n1j ),
Seedbi = h(IDPj , date, STi, ETi, n2j ),
Si = sWi, SAi = h(IDDi, Si, Seedai, Seedbi),
TSai = hSTi−1(Seedai), TSbi = hz−ETi(Seedbi),

DNT3,DNT4,T2←−−−−−−−−−−−−−−−−− DNT3 ← ETK(TIDi, SAi, TSai , TSbi),
Check the timestamp T2. Then check DNT4 = h(DNT3, T2)Si. Insert
e(Q,DNT4) = e(Ppub, h(DNT3, T2)Wi). (IDDi, T IDi, Seedai, Seedbi, SAi, STi, ETi, Ai)
If so, (TIDi, SAi, TSai , TSbi)← ETK(DNT3). into the list L, which containing the parameters
Store (TIDi, SAi, TSai , TSbi , Ai). required to verify each DE’s token in each PKG.

It also wrongly formulates that

Wi = h(IDDi), Si = sWi, DNT4 = h(DNT3, T2)Si,

DNT2 = h(DNT1, Bi, T1, GIDk)Si,

e(Q,DNT2) = e(Ppub, h(DNT1, Bi, T1, GIDk)Wi),

e(Q,DNT4) = e(Ppub, h(DNT3, T2)Wi).

Clearly, Wi = h(IDDi) is not a point over the underlying elliptic curve. So do DNT2, DNT4. Thus,
the computations

e(Q,DNT2) = e(Ppub, h(DNT1, Bi, T1, GIDk)Wi),

e(Q,DNT4) = e(Ppub, h(DNT3, T2)Wi)

make no sense. Likewise, the following computations

e(xQ, DNT2) = e(xPpub
, h(DNT1, Bi, T1, GIDk)Wi),

e(xQ, DNT4) = e(xPpub
, h(DNT3, T2)Wi)

make no sense, too.
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One should remove the above wrong specification and formulate that Wi = h(IDDi)Q i.e.,
converting Wi into a point over the underlying elliptic curve. In this case, all

DNT2, h(DNT1, Bi, T1, GIDk)Wi, DNT4, h(DNT3, T2)Wi

are compatible with the bilinear map.

4 The loss of anonymity

Anonymity is a security requirement adopted by many protocols. As for this property, it argues that
(page 7124, [1]):

Among the messages sent during the authentication without token phase and authenti-
cation with token phase, only DNT1, DWT3, and HDEi contain the IDDi information.
However, IDDi in DWT3 and HDEi is protected by h(). In addition, if an adversary
wants to get IDDi from DNT1, he/she must get the TK key. However, according to
the computational Diffie-Hellman (CDH) problem, the adversary cannot obtain TK from
Ppub, Bi, or Q in polynomial time.

The argument is not sound. In fact, the legitimate PKGj needs to decrypt DNT1 to re-
trieve the identity IDDi, and then uses it to get the target public key Wi from the blockchain.
Though an adversary cannot decrypt the ciphertext, he can access the set Υ = {(IDDi,Wi)}1≤i≤n,
which is stored in the blockchain. The adversary who has captured {DNT1, DNT2, Bi, T1, GIDk} or
{DNT3, DNT4, T2} via open channels, can test the equation

e(Q,DNT2) = e(Ppub, h(DNT1, Bi, T1, GIDk)χ),

or e(Q,DNT4) = e(Ppub, h(DNT3, T2)χ), (ρ, χ) ∈ Υ

Practically, the size of Υ is moderate and the success probability of such testings is not negligible.
Once such a public key χ is searched out, the adversary can reveal the target identity. To achieve
true anonymity, we think, one should adopt other techniques.

5 Conclusion

We show that the Xu et al.’s key agreement scheme is flawed. We hope the findings in this note
could be helpful for the future work on designing such schemes.
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