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Abstract. The Peregrine signature scheme is one of the candidates
in the ongoing Korean post-quantum cryptography competition. It is
proposed as a high-speed variant of Falcon, which is a hash-and-sign
signature scheme over NTRU lattices and one of the schemes selected by
NIST for standardization. To this end, Peregrine replaces the lattice
Gaussian sampler in the Falcon signing procedure with a new sampler
based on the centered binomial distribution. While this modification of-
fers significant advantages in terms of efficiency and implementation, it
does not come with a provable guarantee that signatures do not leak in-
formation about the signing key. Unfortunately, lattice-based signature
schemes in the hash-and-sign paradigm that lack such a guarantee (such
as GGH, NTRUSign or DRS) have generally proved insecure.
In this paper, we show that Peregrine is no exception, by demonstrat-
ing a practical key recovery attack against it. We observe that the dis-
tribution of Peregrine signatures is a hidden transformation of some
public distribution and still leaks information about the signing key.
By adapting the parallelepiped-learning technique of Nguyen and Regev
(Eurocrypt 2006), we show that the signing key can be recovered from
a relatively small number of signatures. The learning technique alone
yields an approximate version of the key, from which we can recover the
exact key using a decoding technique due to Thomas Prest (PKC 2023).
For the reference implementation (resp. the official specification version)
of Peregrine–512, we fully recover the secret key with good probability
in a few hours given around 25,000 (resp. 11 million) signature samples.

Keywords: Cryptanalysis · Lattice-based signature · Statistical learn-
ing · NTRU



1 Introduction

As the potential advent of large-scale quantum computers puts all currently de-
ployed public-key cryptography at risk, preparing the transition to post-quantum
cryptography (PQC) is of great importance. To that end, NIST initiated its
PQC standardization process in 2016, and announced in 2022 an initial batch
of algorithms to be standardized by 2024, while other schemes remain under
consideration for future standardization. Concurrently, other standardization
bodies have launched their own processes and competitions for post-quantum
cryptography, such as those in China9, recently concluded, and the Republic of
Korea10, currently ongoing. In all these standardization efforts, constructions
based on structured lattices have been of particular interest, as their good bal-
ance of performance and bandwidth requirements have made them some of the
top contenders both for public-key encryption/KEMs and signatures.

Lattice-based signature candidates can be roughly divided into two families
according to their design paradigm: they either rely on the Fiat–Shamir heuris-
tic (often but not always paired with Lyubashevsky’s aborting technique) or on
the hash-and-sign framework based on lattice trapdoors. The two lattice-based
signatures already selected for standardization in the NIST process, namely
Dilithium [LDK+22] and Falcon [PFH+22], each represent one of those two
paradigms: Dilithium is a Fiat–Shamir with aborts scheme, while Falcon is a
hash-and-sign construction. They both have their pros and cons: Dilithium is a
simpler design that is easier to implement securely, whereas Falcon tends to be
faster and more compact at the cost of a much greater complexity of implemen-
tation and a somewhat reduced versatility in terms of parameter selection.

Hash-and-sign lattice-based signatures in general rely on the construction of
a certain lattice with a “good” and a “bad” basis, that play the role of the secret
signing key and the public verification key respectively. The good basis, also
called the trapdoor, has relatively short and fairly orthogonal vectors, and as such
can be used to approximate the closest vector problem to a good approximation
factor. The bad basis on the other hand consists of much larger vectors, and
is of little help in finding close vectors, even though it can still of course be
used to check lattice membership. The signing procedure can then be described
roughly as follows. The message to be signed is hashed to a random point in
the ambient space of the lattice, and the signer uses the trapdoor to compute
some lattice point close to that random point, and outputs it as the signature.
The verification consists in checking that the signature is indeed a lattice point
(which can be done with the “bad” public basis) and that it is sufficiently close
to the hashed message.

That general framework is the one followed by the first proposed lattice-based
signature schemes in the late 1990s, like GGH [GGH97] and NTRUSign [HHP+03].
Unfortunately, those early constructions turned out to be insecure: Nguyen and
Regev [NR06] showed that each signature would leak some information about
9 https://www.cacrnet.org.cn/site/content/854.html

10 https://kpqc.or.kr/
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the secret trapdoor, and that a few tens of thousands of signatures could suffice
to reconstruct the entire signing key. Several heuristic countermeasures against
this kind of statistical attacks were subsequently proposed and promptly broken
again, until Gentry, Peikert, and Vaikuntanathan [GPV08] finally presented a
provably secure solution to that issue. The crux of what is now called the GPV
framework is to randomize the signature generation in such a way that signa-
tures follow a distribution independent of the trapdoor (usually a certain discrete
Gaussian distribution supported on the lattice). This is the approach followed
by most of the secure hash-and-sign lattice-based signatures proposed afterward,
including Falcon. The reliance on Gaussian sampling, however, is also one of the
source of Falcon’s greater complexity compared to schemes like Dilithium.

Several variants of Falcon [EFG+22, KTW+22, ENS+23] have recently been
proposed to mitigate its shortcomings with respect to implementation complex-
ity while remaining firmly within the GPV framework and its provable security
guarantees. Nevertheless, trying to do away with the GPV framework altogether
and adopt more efficient countermeasures against statistical attacks may appear
like a tempting choice. This idea is the basic design principle of the Pere-
grine signature scheme, one of the candidates in the ongoing first round of
the Korean PQC competition. Peregrine avoids the Gaussian sampling in its
signature generation procedure entirely. Instead, it uses Babai’s round-off algo-
rithm [Bab86] to first compute a vector v close to the hashed message and then
adds a random noise e = Br to get the signature s = v + e where B is the
trapdoor and r is a random vector with coefficients following a centered bino-
mial distribution. The addition of e is presented as an effective countermeasure
against the Nguyen–Regev statistical attack [NR06] mentioned above. As noted
in [SKLN22], the rationale underlying this choice is that the centered binomial
distribution has “characteristics similar to a discrete Gaussian”, although it does
not offer a proof of security.

Hash-and-sign lattice signatures lacking such a proof, including the GGH
and NTRUSign schemes already mentioned, as well as newer proposals like
DRS [PSDS17], have generally been broken by statistical attacks [GS02, NR06,
DN12, YD18]. Since Peregrine employs an additional countermeasure to specif-
ically thwart this class of attacks, it is natural to analyze to what extent it
succeeds in doing so.

Our contributions. In this work, we show that, unfortunately, Peregrine is no
exception and can indeed be defeated with a statistical learning attack similar
to [NR06]. As experimental validation, we implement a practical key recovery
attack that effectively recovers the Peregrine signing key from a few tens of
thousands to a few million signature samples, depending on the precise variant
under consideration.

As mentioned before, the Peregrine signature can be written as s = v+Br
where v is in the parallelepiped spanned by the trapdoor B, and r is drawn from
a centered binomial distribution. The support of Peregrine signatures is now
a set of adjacent parallelepipeds rather than a sole parallelepiped, and these ad-
jacent parallelepipeds are labeled by r. For random messages, the signatures are
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uniformly distributed in each parallelepiped and the probability of a random
signature in a certain parallelepiped only depends on the label r. We observe
that the signature distribution can be obtained by applying the linear transfor-
mation of B on some publicly known distribution. We call this general problem
the hidden transformation problem (HTP), and propose to revisit the classical
parallelepiped-learning technique of [NR06] in that context.

We show that this attack applies to Peregrine, allowing to fully exploit
the statistical leak on B, and demonstrate that it leads to a practical key recov-
ery. In particular, we notice that the reference implementation of Peregrine
does not coincide with the algorithmic description in the official specification.
Hence, we mount the attack on those two versions of Peregrine, and manage
to break both of them. Our attack combines several techniques in the literature.
We make use of the gradient descent algorithm in [TW20] as an improvement
of the original method in [NR06]. We also employ a decoding technique inspired
by Prest [Pre23] to recover the exact key from the approximation derived from
statistical learning. Finally, we show that around 25,000 (resp. 11 million) sig-
natures suffice to successfully recover the full key within a few hours with good
probability for the reference implementation (resp. the official specification ver-
sion) of Peregrine–512.

Roadmap. We start in Section 2 with the notations and background. Section 3
briefly describes the Peregrine signature scheme. In Section 4, we extend the
parallelepiped-learning technique to “learning a hidden transformation”. In Sec-
tion 5, we analyze and carry out practical attacks against both the reference
implementation and the official specification of Peregrine–512. Finally, we
conclude in Section 6 and suggest some possible avenues for future work.

2 Preliminaries

2.1 Notation

We denote by GLn(R) be the group of n× n invertible matrices with real coef-
ficients and Sn−1 be the unit sphere of Rn.

We describe (column) vectors in bold lowercase and write bi as the i-th
coordinate of vector b, i.e. b = (b1, . . . , bn). Given a = (a1, . . . , an), b =
(b1, . . . , bn) ∈ Rn, the inner product is 〈a,b〉 =

∑n
i=1 aibi. For a ∈ Rn, the

ℓ2-norm is ‖a‖ =
√
〈a,a〉, the ℓ1-norm is ‖a‖1 =

∑
i |ai| and ℓ∞-norm is

‖a‖∞ = maxi |ai|. The operation bxe means rounding x to the closest integer
and is naturally extended to the vector x by taking rounding coefficient-wisely.
We describe matrices in bold uppercase and denote by bi for the i-th column of
matrix B, i.e. B = (b1, . . . ,bn). We use Bt (resp. B−1) to denote the transpose
(resp. inverse) of B. Let In be n×n identity matrix. Given a differentiable func-
tion f : Rn → R, the gradient of f at w ∈ Rn is ∇f(w) = ( ∂f

∂x1
(w), . . . , ∂f

∂xn
(w)).
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2.2 Lattices

A lattice L is a discrete subgroup of Rm. It is the set of all integer combinations
of linearly independent vectors b1, . . . ,bn ∈ Rm, i.e. L = {

∑n
i=1 xibi | xi ∈ Z}.

The matrix B = (b1, . . . ,bn) is called the basis and n the rank of L. When
n = m, the lattice is said to be full-rank. We write L(B) to denote the lat-
tice generated by a basis B ∈ GLn(R). Given B ∈ GLn(R), the parallelepiped
spanned by B is P(B) =

{
xB | x ∈

[
− 1

2 ,
1
2

)n}
. The parallelepiped P(B) is a

fundamental region of the lattice L(B).

2.3 Statistics and Probability

For a distribution D, we write y ← D when the random variable y is sampled
from D. We also write y ∼ D a random variable y following the distribution
D. Let U(S) be the uniform distribution over the set S. Let #S be the number
of elements in the set S. We denote by E[y] the expectation of the random
variable y. A distribution D over R is called centered when Ey←D[y] = 0. For
a distribution D over Rn, we denote by Cov[D] = Ex←D[xxt] its covariance
matrix.

Given an even integer µ, the centered binomial distribution Bµ is defined over
[−µ

2 ,
µ
2 ] ∩ Z by the probability density function P [X = x] = µ!

(µ
2 +x)!(µ

2−x)!
· 2−µ.

2.4 Cyclotomic rings and NTRU

Let R = Z[x]/(xn/2 + 1) with n ≥ 4 a power of 2. Given h ∈ R and q a
rational prime with h invertible modulo q, the lattice LNTRU = {(s1, s2) ∈ R2 |
s1+s2h = 0 mod q} is called an NTRU lattice. In a typical NTRU cryptosystem,
the public key is h = g/f mod q where (f, g) is a pair of short polynomials in
R and used as the secret key. For short (F,G) ∈ R2 such that fG − gF = q,

Bf,g =

(
g G
−f −F

)
∈ R2×2 is an NTRU trapdoor basis of LNTRU .

3 The Peregrine Signature Scheme

Let us briefly describe the Peregrine signature scheme. We omit some details
that are not necessary for understanding our work and refer to [SKLN22] for the
complete description. Peregrine is specified by the parameters of Table 1.

As an NTRU-based hash-and-sign signature scheme, Peregrine uses an
NTRU trapdoor basis Bf,g as the secret key and the public key is h = g/f mod q.

Signing procedure. The signing algorithm of Peregrine is described in Algo-
rithm 1. It proceeds in two steps. The first step is in essence Babai’s round-off

algorithm [Bab86] outputting some integer vector (I1, I2) such that Bf,g ·
(
I1
I2

)
is

close to the hashed message
(
c
0

)
. This is implemented with a so-called ModDown
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Table 1. Parameters of Peregrine.

Symbol Description

n/2 (a power of two) degree of the underlying ring R = Z[x]/(xn/2 + 1)
q modulus
(µ1, µ2) parameters of the binomial distributions in signing
⌊β2⌋ signature acceptance bound

function, and the details are irrelevant to our attack. The second step, perhaps
inspired by the Gaussian sampling techniques [GPV08, Pei10], is randomizing

the close vector Bf,g ·
(
I1
I2

)
, which is attempted to defeat the parallelepiped-

learning attack [NR06]. The randomization is performed by adding a binomial
vector (J1, J2) to (I1, I2) without using Gaussian distribution.

Algorithm 1: Sign

Input: A message msg, an NTRU trapdoor Bf,g.
Output: A signature (r, s2).

1 r
$← {0, 1}320, c← H(msg∥r)

2 (I1, I2)←
(⌊
− cF

q

⌉
,
⌊

cf
q

⌉)
3 repeat
4 (J1,0, . . . , J1,n/2−1)← B

n/2
µ1 , (J2,0, . . . , J2,n/2−1)← B

n/2
µ2

5 J1 ←
∑n/2−1

i=0 J1,i · xi, J2 ←
∑n/2−1

i=0 J2,i · xi

6

(
s1
s2

)
←

(
c
0

)
−Bf,g ·

(
I1 + J1

I2 + J2

)
7 until ∥(s1, s2)∥ ≤ ⌊β2⌋
8 return (r, s2)

Concrete parameters. This work focuses on the parameter set of Peregrine–512
that was claimed to reach NIST security level I, in which (n/2, q) = (512, 12289).
We noted some discrepancies between the reference implementation and the
official specification.

1. As per the specification, the key generation of Peregrine is almost the
same with that of Falcon, except that the coefficients of (f, g) are drawn
from the binomial distribution B26. The key generation should check if the
Gram–Schmidt norms of Bf,g are bounded by 1.17

√
q to ensure the optimal

trapdoor quality [DLP14]. However, this check is commented out in the
reference implementation, which yields the risk of weak keys. We follow the
key generation with such a check, while it would not affect our attack.
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2. While the specification suggests µ1 = µ2 = 26, the reference implementa-
tion in effect works with (µ1, µ2) = (6, 0). We mount the attack on both the
reference implementation and the specification version. The reference imple-
mentation uses much smaller (µ1, µ2) narrowing the support of signatures,
which greatly facilitates the attack in practice. However, larger binomial
parameters in the specification still cannot be an effective countermeasure.

Signature distribution. The signing procedure of Peregrine boils down to solv-
ing the approximate CVP in the NTRU lattice. The signature11 (s1, s2) is the
difference between the CVP solution to the target (c, 0). It can be rewritten as(

s1
s2

)
= Bf,g ·

(
R1 − J1
R2 − J2

)

where
(
R1

R2

)
= B−1f,g ·

(
c
0

)
−
(
I1
I2

)
. It is known that (R1, R2) is uniformly dis-

tributed over
[
− 1

2 ,
1
2

)n over the randomness of signed messages, then the distri-
bution of (s1, s2) is a hidden linear transformation (i.e. Bf,g) of a known distri-
bution. As a consequence, the statistics of (s1, s2) would leak secret information,
which opens up the avenue of cryptanalysis.

4 Learning a Hidden Transformation

As shown in Section 3, the distribution of Peregrine signatures is a hidden
linear transformation of some known distribution. Learning the hidden transfor-
mation enables a key recovery attack against Peregrine.

In this section, we extend the Nguyen-Regev parallelepiped-learning attack [NR06]
to more general Hidden Transformation Problem (HTP) defined as follows.

Definition 1 (HTPD). Let D be a public distribution over Rn. Given a hidden
matrix B = (b1, . . . ,bn) ∈ GLn(R) and a certain number of independent samples
y = Bx with x← D, find an approximation of ±bi’s.

4.1 The Algorithmic Framework

As our main use case is for D being the joint distribution of (x1, . . . , xn) with xi
independently drawn from some centered distribution Di, we choose to present
our exploitation in this restricted setting for the sake of clarity. The adaptation
to a general form of distribution is straightforward from there.

11 The term s1 can be recovered from the actual signature s2 along with the NTRU
public key and the hashed message.
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4.1.1 Distribution deformation. Let σi be the standard deviation of Di

and D(B) denote the distribution of y = Bx with x← D. We first describe the
covariance of the transformed distribution D(B).

Lemma 1. Let B ∈ GLn(R), then Cov[D(B)] = BΣBt where Σ = diag(σ2
1 , . . . , σ

2
n).

Proof. For y ∼ D(B), let y = Bx where x ∼ D. Then we have

Cov[D(B)] = E[yyt] = E[BxxtBt] = BE[xxt]Bt.

Since Di’s are centered, then E[xxt] = Σ and the proof is completed. ut

The covariance leakage shown in Lemma 1 allows us to reduce the general hidden
transformation problem to the case in which the covariance leakage is In, by
applying the exact matrix to de-bias the distribution.

Lemma 2. Let B ∈ GLn(R) and K = Cov[D(B)]. Let P ∈ GLn(R) such
that PPt = K−1. Then the distribution of Pty with y ∼ D(B) is D(C) with
C = PtB such that Cov[D(C)] = In. In particular, C is orthogonal when
Cov[D] = In.

Proof. Lemma 1 shows that K = BΣBt and then K−1 = B−tΣ−1B−1. By
definition, y ∼ D(B) can be written into y = Bx with x ∼ D. It follows
that Pty = PtBx follows the distribution D(C) with C = PtB. Moreover,
Cov[D(C)] = CΣCt = PtKP = In. ut

Lemma 2 translates directly into Algorithm 2, when we don’t have access
to the covariance of D(B) itself, but we only have a family of samples of this
distribution. Hence, we first approximate the covariance as precisely as possible,
and then compute the square root as in Lemma 1 and apply the transformation
to correct it. The estimation of the covariance is dependent of the prior we have
on D. In the most general context, we rely on the computation of the sample
covariance matrix12:

K =
1

#S − 1

∑
x∈S

xxt.

4.1.2 Mounting the recovery. We next generalize the statistical analysis
of the parallelepiped-learning attack [NR06] to the HTPD setting. Algorithm 2
reduces the HTP instance regarding (D,B) to the one regarding (D,C) such
that Cov[D(C)] = In. Let D = diag(σ1, . . . , σn) and D′ be the distribution of
D−1x for x ∼ D, then Cov[D′] = In. Let C′ = CD, then D(C) = D′(C′) and
C′ is orthogonal. Hence, the rest of this section focuses on the HTP instance in
which the hidden matrix C is orthogonal and the public distribution D satisfying
Cov[D] = In.
12 We recall that we supposed here that the distributions are centered. The term #S−1

is the standard Bessel correction and is necessary to get an unbiased estimator.
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Algorithm 2: Deform

Input: A distribution D and a set S of samples drawn from D(B).
Output: A matrix L deforms samples from D(B) into samples from a

distribution close to D(C) s.t. C = LB and Cov[D(C)] = In.
1 Using the samples in S to compute an approximation K of Cov[D(B)]
2 Compute K−1 and P such that K−1 = PPt

3 return L = Pt

Let m =
∑n

i=1 zici with zi ∼ Di, then m ∼ D(C). The fourth moment of
D(C) over w ∈ Rn is defined as

MD(C),4(w) = E[〈m,w〉4].

Let αi = E[z4i ]. It holds that

MD(C),4(w) = E[〈m,w〉4] = E

( n∑
i=1

zi〈ci,w〉

)4


=

n∑
i=1

E[z4i ]〈ci,w〉4 + 3
∑
i̸=j

〈ci,w〉2〈cj ,w〉2

= 3‖w‖4 −
n∑

i=1

(3− αi)〈ci,w〉4.

Without loss of generality, we assume α1 ≤ α2 ≤ . . . ≤ αn. Lemma 3 shows the
local minima of the fourth moment over all unit w’s.

Lemma 3. Suppose that αi < 3 for all 1 ≤ i ≤ n, the local minimum of
MD(C),4(w) over all unit vectors w is obtained at ±c1, . . . ,±cn. There are no
other local minima.

Proof. Since C is orthogonal, MD(I),4(w) = 3‖w‖4 −
∑n

i=1(3 − αi)w
4
i has the

same local extrema with MD(C),4(w). Under the orthogonal transformation, the
local extreme points of two functions are one-to-one.

Let βi = 3 − αi > 0, then the minima of MD(I),4(w) are the maxima of
f(w) =

∑n
i=1 βiw

4
i as ‖w‖ = 1. It suffices to study the local maxima of f(w).

Using the method of Lagrange multipliers, we consider

F (w) =

n∑
i=1

βiw
4
i − λ

(
n∑

i=1

w2
i − 1

)
.

In order to meet ∇F = 0, each wi is either zero or ±
√

λ
2βi

and λ is determined
by the number of non-zero wi’s. These points can be divided into two sets: the
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points in the first set are ±ei’s where ei is the i-th column of the identity matrix
and the other set I contains the points with at least two non-zero coefficients.

We first prove that ±ei is a local maximum. Let w = (1− ϵi)ei +
∑

j ̸=i ϵjej
be some vector in B = {w : ‖w − ei‖2 < ϵ, ‖w‖ = 1, ϵi > 0}. Then

f(w) = βi(1− ϵi)4 +
∑
j ̸=i

βjϵ
4
j

≤ βi − βiϵi +max
j ̸=i
|ϵj | ·

∑
j ̸=i

βjϵ
2
j

≤ βi − βiϵi +max
j ̸=i
|ϵj | · β1

(
1− (1− ϵi)2

)
≤ βi − βiϵi +max

j ̸=i
|ϵj | · 2β1ϵi

≤ βi +
(
max
j ̸=i
|ϵj | · 2β1 − βi

)
ϵi

< βi = f(ei).

Above inequalities hold when ϵ < min{ 14 ,
βi

2β1
}, thus ±ei is indeed the local

maximum of f(w).
Then we prove that w =

∑n
i=1 ηiei ∈ I is not a local maximum. Let Kw =

{ei : 〈w, ei〉 6= 0} and k = #Kw. Let S be the subspace spanned by ei ∈ Kw

and |S denote the directly dimensional reduction into S. We next prove that w|S
forms the local minima of f |S , which implies w is no longer the local maximum of
f . The bordered Hessian matrix of Lagrange function F |S on the point w|S has

the form H =

(
0 2wt|S

2w|S dI

)
∈ R(k+1)×(k+1) and d > 0 is a constant related

to ηi. Notice that det(H) = det(dI) det(0 − wt|S(dI)−1w|S) = −dk−1 < 0.
Similarly, all leading principle minors of H have a negative determinant. The
above negative leading principle minors show that the w|S form the local minima
of f |S .

In conclusion, only ±ei’s are the local maximum of f(w). This also means
the local minima of MD(C),4 are only located at ±ci’s. ut

Now that we know that the secrets are exactly the local minima of the fourth
moment, we can retrieve them by gradient descent. Note that we have an explicit
expression of the gradient: for a unit vector w, the gradient of MD(C),4(w) is

∇MD(C),4(w) = 12w −
n∑

i=1

(12− 4αi)〈ci,w〉3ci.

The descent is implemented as a geodesic flow, similarly to [TW20], which is
significantly more efficient than the naive approach of [NR06]. Pseudocode is
provided in Algorithm 3. We point out that the gradient is not known exactly
so we need to approximate it using all the samples of S at each step, similarly to
that the covariance of D(B) is only known up to the best approximation allowed
by S.
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Algorithm 3: Descent

Input: A distribution D such that Cov[D] = In and a set S of samples
from D(C) where CCt = In.

Output: An approximation of one column of ±C.
1 Choose a random vector w uniformly over the unit sphere Sn−1

2 Use the samples in S to compute (an approximation of) the gradient
g = ∇MD(C),4(w)

3 h← −g + ⟨g,w⟩w
4 h← h/∥h∥
5 θ ← θ0
6 while θ ≥ θmin do
7 wnew ← w · cos θ + h · sin θ
8 wnew ← wnew/∥wnew∥
9 if

∣∣MD(C),4(wnew)−MD(C),4(w)
∣∣ < 1

2
· θ · ⟨h,g⟩ then

10 goto Step 14
11 end if
12 θ ← ν · θ
13 end while
14 w← wnew

15 if θ < θ0 then
16 θ0 ← θ/ν
17 goto Step 2
18 end if
19 return w

To sum up, after putting everything together, the general hidden transfor-
mation problem can be solved by Algorithm 4.

4.2 The Case of Peregrine

While Section 4.1 depicts the generic algorithmic framework for learning the
hidden transformation, we now discuss the concrete attack for Peregrine in
more details.

Exploiting the ring structure. Peregrine is built over Z[x]/(xn/2+1) and such
a ring structure can be used to greatly improve practical attacks [DN12]:

– We can generate n
2 additional samples from one signature transcript using

the ring automorphisms, i.e., by multiplying xi. This makes the approxima-
tions more accurate for the same amount of traces collected, for instance for
the empirical covariance estimation, we have:

K =
2

n#S − 2

∑
x∈S

n/2−1∑
i=0

vec(xi · x)vec(xi · x)t

where vec denotes the vector representation of the polynomial.

11



Algorithm 4: Solver

Input: A distribution D and a set S of samples drawn from D(B).
Output: An approximation of one column of ±B.

1 L← Deform(D,S)
2 S′ ← {Ls | s ∈ S}
3 D← diag(σ1, . . . , σn)
4 Let D′ be the distribution of D−1x for x ∼ D
5 w← Descent(D′, S′)

6 return σ−1
i L−1w for i minimizing Ezi←D′

i
[z4i ]

– All involved matrices (i.e. Σ, B and K) are now 2-by-2 overKR = R[x]/(xn/2+
1), which allows to make the computation of the Gram root P much faster.
In particular, our practical attacks leverage the Denman–Beavers iteration
[DJ76], at the ring level to compute an approximate P over K2×2

R in quasi-
linear time instead of requiring full rounds of linear algebra (which would
requires at least O(nω) time, with ω the exponent of matrix multiplication).

We now derive the formulas for the fourth moment and its gradient for both
versions of Peregrine, namely the one appearing in the specification and the
one in the implementation code.

General computation. In the general setting considered at the start of this sec-
tion, whereD is the product of centered independent distributionsDi of standard
deviations σi not necessarily equal to 1, the discussion of Section 4.1.2 shows that
the fourth moment and its gradient have the following expressions:

MD(C),4(w) = 3‖w‖4 −
n∑

i=1

(3− αi)〈ci,w〉4,

∇MD(C),4(w) = 12w −
n∑

i=1

(12− 4αi)〈ci,w〉3ci.

where αi = E[z4i ], for zi distributed according to 1
σi
· Di. In particular, if we

denote by µ4,i the fourth moment of Di, we have αi = µ4,i/σ
4
i .

For the distributions Di of relevance to Peregrine, we can easily compute
those values αi using moment generating functions. In all cases, Di is a convo-
lution Di = U

(
[−1/2, 1/2)

)
+ Bµ for some µ ≥ 0. Now the moment generating

function of U
(
[−1/2, 1/2)

)
is given by:

MGFU([−1/2,1/2))(t) =
et/2 − e−t/2

t
=

sinh(t/2)

t/2
,

and that of Bµ for any even µ ≥ 0 is given by:

MGFBµ(t) =
(et/2 + e−t/2

2

)µ
= cosh(t/2)µ.

12



As a result:
MGFDi

(t) =
sinh(t/2) · cosh(t/2)µ

t/2

by multiplicativity in convolutions. On the other hand, by definition:

MGFDi
(t) = 1 +

σ2
i

2!
· t2 + µ4,i

4!
· t4 + o(t4).

Thus, it suffices to obtain a 4th order Taylor expansion of (4.2) to compute αi.

Specification version. According to the specification parameters,

Di = U
(
[−1/2, 1/2)

)
+Bµ with µ = 26

for all 1 ≤ i ≤ n. Thus:

MGFDi
(t) =

sinh(t/2) · cosh(t/2)26

t/2
= 1 +

79

24
· t2 + 10141

1920
· t4 + o(t4).

As a result:
αi =

4! · 10141/1920
(2! · 79/24)2

=
91269

31205

for all 1 ≤ i ≤ n. Hence, we obtain the corresponding fourth moment function
as:

MD(C),4(w) = 3‖w‖4 − 2346

31205

n∑
i=1

〈ci,w〉4

and its gradient as:

∇MD(C),4(w) = 12w − 9384

31205

n∑
i=1

〈ci,w〉3ci.

Reference implementation version. The reference implementation uses more ag-
gressive parameters: the binomial parameters (µ1, µ2) = (6, 0). Hence,

Di =

{
U
(
[−1/2, 1/2)

)
+Bµ with µ = 6 for 1 ≤ i ≤ n/2;

U
(
[−1/2, 1/2)

)
for n/2 + 1 ≤ i ≤ n.

For 1 ≤ i ≤ n/2, we therefore get:

MGFDi
(t) =

sinh(t/2) · cosh(t/2)6

t/2
= 1 +

19

24
· t2 + 541

1920
· t4 + o(t4)

and hence:
αi =

4! · 541/1920
(2! · 19/24)2

=
4869

1805
.
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On the other hand, for n/2 + 1 ≤ i ≤ n, we simply have:

MGFDi
(t) =

sinh(t/2)

t/2
= 1 +

1

24
· t2 + 1

1920
· t4 + o(t4)

and hence:
αi =

4!/1920

(2!/24)2
=

9

5
.

We therefore obtain the fourth moment function and its gradient for this version
as:

MD(C),4(w) = 3‖w‖4 − 546

1805

n/2∑
i=1

〈ci,w〉4 −
6

5

n∑
i=n/2+1

〈ci,w〉4,

∇MD(C),4(w) = 12w − 2184

1805

n/2∑
i=1

〈ci,w〉3ci −
24

5

n∑
i=n/2+1

〈ci,w〉3ci.

5 Practical Key Recovery Attack against Peregrine

By combining the statistical learning in Section 4 and the trick of [Pre23], we
propose a full key recovery attack against Peregrine–512. For both specifica-
tion and reference implementation versions, our attack is able to fully recover
the secret key of Peregrine in practice. In this section, we present the relevant
implementation details and collect the experimental results of our attacks.

5.1 Gradient Descent
As discussed in the previous section, our attack uses gradient descent to find
an approximation of secret vectors. The original gradient descent in [NR06]
computes a step δ for the iteration where wnew = w− δg and g is the gradient
∇MD(C),4(w). This converges slowly and does not behave well in our case. To
overcome this limitation, we instead implement the gradient descent following
the one in [TW20], as described in Algorithm 3. This algorithm takes adaptive
steps along geodesic paths on the unit sphere to search for a local minimum
of MD(C),4(w) restricted to the sphere, until ‖h‖ becomes sufficiently small.
This improves the speed of convergence and proves quite effective in our setting.
For simplicity’s sake, our attack uses the same gradient descent parameters as
in [TW20], namely θ0 = 0.25, θmin = 0.005 and ν = 0.8.

5.2 Correcting Approximate Errors with Lattice Decoding
Once it converges, the gradient descent of Algorithm 4 outputs a vector which
essentially follows a normal distribution centered at one of the basis vectors.
Equivalently, it can be expressed as one of the basis vector plus some normal error
vector, whose magnitude depends on the number of signatures in the attack. In
order to recover the basis vector and actually break the scheme, a post-processing
step is needed to correct the error.

14



The Nguyen–Regev decoding techniques. In their original attack against GGH
and NTRUSign [NR06], Nguyen and Regev mentioned two possible approaches
to carry out this post-processing. The first approach is simply to hope that the
error becomes less than 1/2 in infinity norm, so that the basis vector can be
directly obtained by coefficient-wise rounding. This is simple but typically re-
quires a relatively large number of signatures. The second approach is to use
lattice reduction: the search for the target basis vector is viewed as a bounded
distance decoding problem in the public lattice, which can be solved using stan-
dard techniques (Nguyen and Regev suggested applying Babai’s nearest plane
algorithm after reducing the public basis with BKZ; one could also reduce to
unique SVP with Kannan’s embedding technique and try to solve that unique
SVP instance with BKZ).

The same two approaches can also be applied in our setting. However, due
to the added noise in Peregrine, the magnitude of the error is substantially
larger than in GGH and NTRUSign (especially in the “specification” version
of Peregrine), and lattice dimensions are much larger than those considered
in [NR06]. This tends to make lattice reduction-based decoding fairly impracti-
cal: the complexity of lattice reduction attacks, while it quickly falls below the
claimed security level of the scheme itself, tends to remain too large to carry out
the decoding in practice right up until the point where coefficient-wise round-
ing becomes feasible13. This leaves component-wise rounding, possibly comple-
mented by “meet-in-the-middle” type combinatorial improvements, as the better
suited approach in our case, and it requires lots of signatures to succeed.

Prest’s trick. Fortunately, since Peregrine is an NTRU-based scheme, one can
do better than either of the Nguyen–Regev decoding techniques. As pointed out
by Prest in [Pre23], it suffices to correctly recover half of the coefficients of a basis
vector to break the scheme, since the remaining half can be deduced from the
first using the NTRU equation (in much the same way as signature compression
works in those schemes).

Formally, let b = (b(1), b(2)) ∈ LNTRU be the target vector to be recovered
and b′ =

(
(b′)(1), (b′)(2)

)
be the approximation output by Algorithm 4. Suppose

that we know at least n/2 indices i such that the rounding bb′ie matches the
corresponding coefficient bi of b. This means that the difference d = bb′ie−b =
(d(1), d(2)) has zeros in at least n/2 known positions. Now we have b(1)+b(2) ·h =
0 mod q by definition of the NTRU lattice, and therefore:⌊

(b′)(1)
⌉
+
⌊
(b′)(2)

⌉
· h = d(1) + d(2) · h mod q.

This is an equation of polynomials of degree n/2, and we know the entire left-
hand side; moreover, there are at most n/2 unknowns on the right-hand side.
Therefore, we can solve the linear system for d (which is of course exactly re-
vealed by its remainder modulo q since it is small) and hence recover b exactly.
13 For the practical exploitation we propose, the required block size would be of the

order of 200, which is intractable on a reasonable machine and orders of magnitude
larger than the simple exploitation via linear algebra.
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In order to apply this idea, one then needs to determine a subset of at least
n/2 coefficients of b′ that are likely to be correctly rounded to the corresponding
coefficient of b. In [Pre23], Prest does so by selecting a certain threshold ε ∈
(0, 1/2) and regarding a coefficient of b′ as correctly rounded when its fractional
part doesn’t exceed ε.

We proceed in a slightly different way, which bypasses the need to select a
threshold value, and which has some additional benefits discussed later in this
section: our approach is simply to select the n/2 coefficients that have the highest
probability of rounding correctly.

Rounding the best half of the coefficients. As discussed earlier, by standard prop-
erties of the gradient descent, we can model the vector b′ as a normal vector
centered around b. In particular, any fixed coefficient b′ of b′ follows a normal
distribution N (b, σ2) centered at the corresponding coefficient of b, and of a
certain variance σ2 (not a priori the same for all coefficients).

Then, we claim that the probability of correct rounding (i.e., the probability
that bb′e = b) is a function of the fractional part x = b′−bb′e (which is a known
value) and of σ (which we assume can be estimated in our setting). It can be
expressed as follows.
Lemma 4. Let b′ ∼ N (b, σ2) for some unknown integer center b, and known
standard deviation σ. Let x = b′−bb′e. The probability that bb′e = b is given by:

ψσ(x) =
ρσ(x)

ρσ(x+ Z)

where we let as usual ρσ(t) = exp
(
− t2/(2σ2)

)
.

Proof. Let e = b′− b ∼ N (0, σ2). Then e−x = bb′e− b is an integer, and is zero
exactly when bb′e = b. Therefore, the probability ψσ(x) of correct rounding is
given by:

ψσ(x) = Pr
[
e = x

∣∣e ∈ x+ Z
]
=

ρσ(x)

ρσ(x+ Z)
since ρσ is up to a constant factor the probability density function of the normal
distribution N (0, σ2) of e. ut

Now, let us first analyze our approach in a simple model where the distri-
bution of the entire vector b′ is a spherical Gaussian N

(
b, σ2 · In

)
of known

standard deviation σ. In particular, the correct rounding probability pi of the
i-th coefficient is given by ψσ(xi) for all i, with x = (x1, . . . , xn) = b′ − bb′e.
Furthermore, all the coefficients are independent; therefore, if we denote by:

0 ≤ p(1) ≤ p(2) ≤ · · · ≤ p(n) ≤ 1

the probabilities pi sorted in increasing order, the probability that the n/2 coef-
ficients of b′ with the highest probability of correct rounding are in fact correctly
rounded is given by:

psucc =

n∏
k=n/2+1

p(k).
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In order to analyze our probability of success, we can estimate the expectation
of log psucc (which is somewhat better behaved than psucc itself). To that end,
we show that the sum of the top half (or any constant fraction) of the order
statistics of n independent and identically distributed random variables has a
relatively convenient expression as follows.
Lemma 5. Let X1, . . . , Xn be independent and identically distributed real-valued
random variables with probability density function fX and CDF FX . Denote by
X(1) ≤ · · · ≤ X(n) the corresponding values in non-decreasing order (the order
statistics). Fix furthermore some constant α ∈ (0, 1) and let:

En,α = E
[ ∑
k>αn

X(k)

]
.

Then the following asymptotic equivalence holds:

En,α ∼
n→+∞

n

∫ +∞

F−1
X (α)

x · fX(x) dx = n

∫ 1

α

F−1X (u) du.

Proof. The well-known expression of the probability density function of X(k) is
given by (see e.g. [DN03, Eq. (2.1.6)]):

f(k)(x) =
n!

(k − 1)!(n− k)!
fX(x) · FX(x)k−1

(
1− FX(x)

)n−k
.

Thus, we get:

En,α =

∫ +∞

−∞
x · fX(x)

FX(x)

∑
k>αn

k

(
n

k

)
FX(x)k

(
1− FX(x)

)n−k
dx

=

∫ +∞

−∞
x · fX(x) · nφn,α

(
FX(x)

)
dx

where we have let:

φn,α(p) =
1

np

∑
k>αn

k

(
n

k

)
pk(1− p)n−k.

In particular, φn,α(p) = 1
pE
[
1
nZ |

1
nZ > α

]
for Z ∼ Binomial(n, p). Now 1

nZ

concentrates rapidly around p for large n. Therefore, 1
nZ > α happens with

probability very close to 1 if p > α, and very close to 0 if p < α. It easily follows
that φn,α(p) converges pointwise to 0 for p < α and to 1

pE
[
1
nZ
]
= p/p = 1 for

p > α. A dominated convergence arguments then yields:

En,α ∼ n
∫ +∞

−∞
x · fX(x) · JFX(x) > αK dx = n

∫ +∞

F−1
X (α)

x · fX(x) dx.

Making the change of variables u = FX(x), hence x = F−1X (u), du = fX(x) dx,
we also obtain:

En,α ∼ n
∫ 1

α

F−1X (u) du

as required.
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Based on the above, we conclude that

E
[
log psucc

]
= E

[ ∑
k>n/2

log p(k)

]
∼

n→+∞
n

∫ 1

1/2

F−1(u) du

where F is the common CDF of the log pi = logψσ(xi). We can compute, for all
t ≤ 0:

F (t) = Pr
[
logψσ(xi) ≤ t

]
= Pr

[
ψσ(xi) ≤ et

]
= Pr

[
|xi| ≥ ψ−1σ (et)

]
since ψσ is decreasing on [0, 1/2] and even (and xi ∈ [−1/2, 1/2)). Now if we
again let ei = b′i − bi ∼ N (0, σ2), we have xi = ei − beie, so that:

F (t) = Pr
[∣∣ei − beie∣∣ ≥ ψ−1σ (et)

]
= 1− 2Pr

[
0 ≤

∣∣ei − beie∣∣ < ψ−1σ (et)
]

= 1− 2Pr
[
ei ∈

[
0, ψ−1σ (et)

)
+ Z

]
= 1−

∑
k∈Z

erf

(
ψ−1σ (et) + k

σ
√
2

)
− erf

(
k

σ
√
2

)
.

This expression is somewhat cumbersome, but our attack approach is only work-
able when σ is small compared to 1, in which case all the terms in the sum over
k are actually negligible except for k = 0. Therefore, for small σ, the following
approximation holds:

F (t) ≈ 1− erf

(
ψ−1σ (et) + k

σ
√
2

)
.

And as a result, by inverting this formula we similarly obtain:

F−1(u) ≈ logψσ

(
σ
√
2 · erf−1(1− u)

)
.

Finally, recall that:

ψσ(x) =
ρσ(x)

ρσ(x+ Z)
=

exp
(
− x2

2σ2

)∑
k∈Z exp

(
− (x−k)2

2σ2

) =
1∑

k∈Z exp
(
2kx−k2

2σ2

) .
For σ small compared to 1, most of the terms in the sum in the denominator
are negligibly small. Keeping only the terms k ∈ {−1, 0, 1} provides a very close
approximation in the range of interest. Hence:

ψσ(x) ≈
1

1 + exp
(
2x−1
2σ2

)
+ exp

(−2x−1
2σ2

) =
1

1 + 2 exp(−1/2σ2) cosh(x/σ2)
.

Putting all together, we finally obtain the following approximation of E
[
log psucc

]
,

valid for large n and σ small compared to 1:

E
[
log psucc

]
≈ −n

∫ 1

1/2

log
(
1 + 2e−1/2σ

2

cosh
(√2
σ

erf−1(1− u)
))

du

(which can be simplified a bit further with the change of variables u 7→ 1 − u).
This expression is convenient for numerical computation, and lets us obtain
the plot of expE

[
log psucc

]
(which by Jensen’s inequality is a lower bound of

E
[
psucc

]
) according to σ given in Fig. 1.
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Modeling the Gaussian error. As discussed above, a somewhat simple model
of the error e = b′ − b is that it is distributed as a spherical Gaussian vector
N (0, σ2 · In) of standard deviation σ depending on the number N of signatures
used in the attack. As usual, we more precisely expect the standard deviation to
decrease proportionally14 to

√
N . In this model, we thus have σ ≈ Cσ/

√
N for

some constant Cσ that can be derived experimentally by curve fitting.
We for example find that the size of the error in the attack against the

specification version of Peregrine–512 is well-described by this model with
Cσ ≈ 840 (see Section 5.3 below). Plugging back the corresponding value of σ
in our estimate of the probability of success psucc, we obtain the graph in Fig. 2
of exp

(
E
[
log psucc

])
as a function of N , which already captures the behavior of

the attack fairly accurately as will be shown in Section 5.3.
However, it is not entirely accurate to model the error vector e as a spherical

Gaussian. Indeed, the gradient descent is not directly carried out with respect to
the original basis B of which b is a vector, but with respect to the deformed basis
LB. Therefore, a more accurate model describes the output w of the Descent
algorithm as a spherical15 Gaussian vector of covariance (σ′)2 · In, whereas the
recovered vector b′ output by Solver is given by an expression of the form b′ =
L−10 w. As a result, the error e = b′ − b is indeed Gaussian, but with a known
covariance matrix Σ = (σ′)2 ·L−10 (L−10 )t which is no longer scalar in general. As
before, σ′ decreases like the square root of the number of signatures: we have
another constant Cσ′ , derived experimentally, such that σ′ ≈ Cσ′/

√
N .

In this more accurate model, each of the coefficients ei of e remain normally
distributed, but with potentially distinct16 standard deviations σi. We therefore
use those values σi to compute the probabilities of correct rounding ψσi

(xi) of
the various coefficients, and still keep the top half most likely to be correctly
rounded when applying Prest’s trick.

This provides a practical improvement in our experiments compared to the
simpler model when all the σi’s are assumed to be equal. This holds even though
we still ignore the fact that the covariance Σ need not be diagonal, so that there
the various coefficients may not be independent. It might be possible to improve

14 In the Nguyen–Regev simple version of the gradient descent, the fact that the stan-
dard deviation is ∝ N−1/2+o(1) is a consequence of the analysis of [NR06, Sec. 6].
The Tibouchi–Wallet gradient descent [TW20] is trickier to analyze, but expectedly
follows the same asymptotic behavior in experiments.

15 In fact, since the gradient descent is carried out on the unit sphere, it would be even
more correct to model w as a Gaussian on the sphere, seen as a Riemannian manifold,
so that the corresponding error is essentially a centered spherical Gaussian not in
the whole space but on the tangent hyperplane. We ignore this further refinement
in what follows.

16 In fact, the symmetry provided by the ring structure ensures that there are at most
two distinct values of the σi’s, and those two values are moreover fairly close in
the specification version of Peregrine. They are however markedly different in
the reference implementation version, due to the two different binomial parameters
involved.
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Fig. 1. Expected success probability (more precisely exp
(
E
[
log psucc

])
≤ E

[
psucc

]
)

of our decoding approach for n = 1024 (i.e., Peregrine–512), assuming a spherical
Gaussian error of standard deviation σ.
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Fig. 2. Expected success probability (more precisely exp
(
E
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log psucc

])
) of our de-

coding approach for the attack on the specification version of Peregrine–512, as a
function of the number N of signatures.
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Table 2. The number of the successful key recovery on the reference implementation
for each instance and all 5 starting points.

N × 10−3 10 15 20 25 30 35 40 45 50

Instance 1 0 0 0 2 4 5 5 4 5

Instance 2 0 0 1 1 5 3 5 5 5

Instance 3 0 0 2 3 3 4 5 5 5

Instance 4 0 0 0 0 5 5 5 5 5

Instance 5 0 0 0 3 1 5 5 5 5

Instance 6 0 0 0 3 5 5 5 5 5

Instance 7 0 0 0 1 4 4 5 5 5

Instance 8 0 0 0 3 5 3 5 5 5

Instance 9 0 0 0 0 5 5 5 5 5

Instance 10 0 0 0 4 2 5 5 5 5

the attack further by leveraging the entire covariance matrix Σ instead of only
its diagonal coefficients, but we have not found a practical way to do so yet.

5.3 Experimental Results

We implemented the aforementioned key recovery attack against Peregrine.
The statistical learning part is implemented in Rust using f64 precision, and
some parallelization is used to compute the covariance, the fourth moment and
the gradient descent. The decoding part is implemented in Python. The code
of the attack can be found at https://github.com/lxhcrypto/Peregrine_
attack.

We validated the attack on both the reference implementation and the speci-
fication version of Peregrine–512. We performed experiments over 10 instances
and for each sample size N , we randomly chose 5 starting points in the gradient
descent. For each instance and sample size, the attack is counted a success if it
recovers the full secret key via decoding at least one approximation output by
the statistical learning algorithm with some starting point.

Based on experimental measures and curve fitting in the original basis (resp.
the deformed basis), we get the following estimates for the constants Cσ and Cσ′

describing the respective magnitude of the error vectors:

– Cσ ≈ 840 and Cσ′ ≈ 1.4 for the specification version;
– Cσ ≈ 41 and Cσ′ ≈ 0.15 for the reference implementation.

The curves are shown in Fig. 3.

Key recovery attack against the reference implementation. The attack on the
reference implementation is highly efficient. When N ≳ 50,000, one can get a
good approximation b′ such that ‖bb′e−b‖1 ≤ 7 with a good probability, which
allows to completely recover the key by a simple exhaustive search within half
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Fig. 3. Experimental measure of the constants Cσ (above) and Cσ′ (below) by curve
fitting. The left-hand graphs are for the specification version and the right-hand ones
for the reference implementation version. Experimental values measure over 10 Pere-
grine–512 instances and for each sample size, we use 5 random starting points in the
gradient descent.
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Table 3. The number of the successful key recovery on the specification version for
each instance and all 5 starting points.

N × 10−6 3 5 7 9 11 13 15 17 20

Instance 1 0 0 0 0 3 5 5 5 5

Instance 2 0 0 0 0 0 4 3 5 5

Instance 3 0 0 0 0 0 5 5 5 5

Instance 4 0 0 0 0 0 2 4 5 5

Instance 5 0 0 0 0 3 3 3 5 5

Instance 6 0 0 0 0 1 5 5 5 5

Instance 7 0 0 0 0 4 3 5 5 5

Instance 8 0 0 0 0 2 3 2 5 5

Instance 9 0 0 0 0 0 5 5 5 5

Instance 10 0 0 0 0 3 3 5 5 5

an hour. In order to further reduce the number of required signatures, one can
employ the decoding technique in Table 2 and give a successful key recovery
with 20,000 signatures on 2 out of 10 instances, and with 25,000 signatures on
8 out of 10 instances.

Key recovery attack against the specification. The attack on the specification
version is more costly, as the specification uses larger binomial parameters. It
now requires around 20 million signatures to succeed in key recovery by a simple
exhaustive search within half an hour. By resorting to the decoding technique of
Section 5.2, we achieve a successful attack with 11 million signatures on 6 out of
10 instances, as shown in Table 3. A visualization of the behavior of the decoding
technique is provided in Fig. 4 (on the first 5 instances so as not to crowd the
graph): each color represents a different instance, and each data point shows,
for a particular run of the gradient descent, the predicted probability of success
psucc =

∏n
k=n/2+1 ψσi

(xi) as well as the actual outcome (success or failure). As
we can see, the results closely match the model depicted in Fig. 2.

6 Conclusion and Perspectives

We have shown that the Peregrine signature scheme is vulnerable to a practical
statistical attack. More concretely, for the reference implementation (resp. the
specification) of Peregrine–512, we completely recover the signing key within a
few hours, provided that around 25,000 (resp. 11 million) signatures samples are
available. The same attack is expected to break the Peregrine–1024 parameters
as well.

The design weakness of Peregrine revealed by our attack does not seem
easy to fix. For secure hash-and-sign lattice signatures, the signature distribu-
tion is supposed to be simulatable without knowing the signing key. Currently,
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Fig. 4. Visualization of the “best half” decoding technique on the attack against the
specification version of Peregrine–512.

there are two main approaches to do so: Gaussian sampling due to [GPV08] and
rejection sampling due to [LW15]. Adapting Peregrine to either of those ap-
proaches would negate its claimed efficiency advantage over schemes like Falcon.
At the same time, continuing to pursue a strategy of heuristic countermeasures
without provable security guarantees appears increasingly hopeless.

This is especially the case as our attack can be further improved in various
ways, which we leave as possible avenues for future work:

– in our experiments, we only carry out the attack on 5 random starting points
per key instance. We could easily increase our success rate (and hence de-
crease the required number of signatures) by simply retrying with more
random starting points, as already noted in [NR06];

– moreover, up to negacyclic rotation and sign flips, there are only two equiva-
lence classes of basis vectors in the NTRU basis. As a result, given k starting
points in our attack, we expect to collect around k/2 approximation of each
of those two basis vectors. Averaging out or using majority vote is thus ex-
pected to reduce the standard deviation of the error by a factor

√
k/2, and

hence significantly improve the success rate. We only had time to carry out
partial experiments with that idea, but we could already confirm that it
consistently recovers the key in the specification version of Peregrine–512
with 9 million signatures samples;

– similarly, even when applying the attack with a single starting point, we can
use the methodology of Section 5.2 to estimate the expected number of incor-
rectly rounded coefficient among the “best half” (in the specification version
of Peregrine–512, it is e.g. ≈ 3.8 for 9 million signatures and ≈ 7.1 for
8 million). Decoding those remaining errors using combinatorial techniques
(ranging from a simple exhaustive search to basic meet-in-the-middle to ad-
vanced algorithms like those of May [May21] and Kirshanova–May [KM21])
should therefore let us reduce the required number of signatures for full
recovery significantly;
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– on the implementation side, the limiting factor in our experiments is the
speed of gradient descent in our relatively basic CPU implementation. We ex-
pect that a GPU implementation would greatly increase performance. Also,
tuning the parameters of the descent algorithm of [TW20], although time
consuming, may provide significant speed-ups as well.
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