
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–34. DOI:XXXXXXXX

SPA-GPT: General Pulse Tailor for Simple Power
Analysis Based on Reinforcement Learning

- Long Paper -

Ziyu Wang, Yaoling Ding, An Wang∗, Yuwei Zhang, Congming Wei, Shaofei
Sun and Liehuang Zhu

School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China,
wzy23,dyl19,wanganl,ywzhang,weicm,sfsun,liehuangz@bit.edu.cn

Abstract. Power analysis of public-key algorithms is a well-known approach in the
community of side-channel analysis. We usually classify operations based on the
differences in power traces produced by different basic operations (such as modular
exponentiation) to recover secret information like private keys. The more accurate the
segmentation of power traces, the higher the efficiency of their classification. There
exist two commonly used methods: one is equidistant segmentation, which requires a
fixed number of basic operations and similar trace lengths for each type of operation,
leading to limited application scenarios; the other is peak-based segmentation, which
relies on personal experience to configure parameters, resulting in insufficient flexibility
and poor universality.
In this paper, we propose an automated power trace segmentation method based on
reinforcement learning algorithms, which is applicable to a wide range of common
implementation of public-key algorithms. Reinforcement learning is an unsupervised
machine learning technique that eliminates the need for manual label collection. For
the first time, this technique is introduced into the field of side-channel analysis for
power trace processing. By using prioritized experience replay optimized Deep Q-
Network algorithm, we reduce the number of parameters required to achieve accurate
segmentation of power traces to only one, i.e. the key length. We also employ various
techniques to improve the segmentation effectiveness, such as clustering algorithm,
enveloped-based feature enhancement and fine-tuning method. We validate the
effectiveness of the new method in nine scenarios involving hardware and software
implementations of different public-key algorithms executed on diverse platforms
such as microcontrollers, SAKURA-G, and smart cards. Specifically, one of these
implementations is protected by time randomization countermeasures. Experimental
results show that our method has good robustness on the traces with varying segment
lengths and differing peak heights. After employ the clustering algorithm, our method
achieves an accuracy of over 99.6% in operations recovery. Besides, power traces
collected from these devices have been uploaded as databases, which are available for
researchers engaged in public-key algorithms to conduct related experiments or verify
our method.
Keywords: Side-channel Analysis · Power Trace Segmentation · Reinforcement
Learning · Deep Q-Network

1 Introduction
In 1999, Kocher first proposed side-channel analysis for cryptosystems and successfully
achieved key recovery using Timing Analysis and Simple Power Analysis (SPA) [KJJ99].

∗An Wang is the corresponding author.

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:wzy23, dyl19, wanganl, ywzhang, weicm, sfsun, liehuangz@bit.edu.cn
http://creativecommons.org/licenses/by/4.0/

2 SPA-GPT: General Pulse Tailor for Simple Power Analysis

Since then, side-channel analysis in cryptographic algorithms has received widespread
attention. Over the course of several decades, various side-channel analysis methods
have emerged, including Correlation Power Analysis (CPA) [BCO04], Template Attacks
[CRR02], Collision Attacks [Bog07], Mutual Information Analysis (MIA) [GBTP08], and
so on.

Public-key algorithms such as RSA and ECC are commonly used for identity recognition
and digital signatures. These algorithms exhibit significant power consumption patterns,
making them susceptible to SPA [MDS99]. As a result, SPA has become a core step for
evaluating the security of cryptographic devices in standards [ISO12, ISO15, ISO16]. Reg-
ular methods such as Montgomery ladder [JY02], square-and-multiply always [Cor99], and
atomicity-based implementations [GV10] can effectively resist SPA. However, Differential
Power Analysis (DPA) [KJJ99], CPA [BCO04], MIA [GBTP08] can still be used to recover
secret information. In order to counter these attacks, private key blinding is proposed as
a key defense mechanism, although it is worth noting that these methods are limited to
performing private key recovery with only a single trace. Correspondingly, researchers
have successively proposed several improved SPAs called horizontal attacks by combining
machine learning and mathematical analysis to address this type of defense.

Horizontal attacks that target single trace typically involve three steps: trace segmen-
tation, segments classification, and private key recovery. The quality of trace segmentation
directly impacts the accuracy of segments classification, which in turn affects private key
recovery. Currently, there are three strategies for trace segmentation:

• The first approach assumes that attackers have access to a device of the same model
as target device. By setting trigger signal through General-Purpose Input/Output
(GPIO), attackers can locate all power segments corresponding to each operation.
However, in practical scenarios, it is difficult to obtain such devices.

• The second approach involves connecting special devices [New23, BBGV16] with the
cryptographic device. While collecting power traces, trace segmentation is performed
using triggering systems based waveform-matching method. However, this method
requires establishing templates for each type of trace segments before performing
waveform matching. Besides, this segmentation approach is mostly used to locate
cryptographic operations in traces of block ciphers. When applied to public-key
algorithms, it is often too costly to to obtain usable results.

• The third approach involves directly segmenting traces without any other assisting
devices, which includes two methods, i.e. equidistant segmentation [HMH+12] and
peak-based segmentation [WHW+22]. Equidistant segmentation divides an entire
trace into segments of equal length, assuming that the number of segments are known.
Each trace segment corresponds to a basic operation which is related to the private
key. This segmentation method is only suitable when the length of each segment
corresponding to cryptographic operations is equal. Peak-based segmentation, on
the other hand, involves segmenting trace based on peaks. Manual configuration
of parameters is required, such as threshold of peak height and minimum distance
between peaks. This method is only applicable to traces with periodic peaks which
are produced by high-power-consuming operations. It is important to note that both
methods require manual determination of segmentation pattern or key parameters
(such as fixed lengths and peak heights), which is highly dependent on human
experience.

After segmenting a trace, alignment is necessary due to the inevitable timing deviations
during the execution of cryptographic algorithm on a device. For horizontal alignment,
there are general methods such as Peak Alignment and Dynamic Time Warping (DTW)
[vWWB11]. For vertical alignment, all segments can be adjusted to approximate horizontal

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 3

positions by subtracting their average. Once aligned, leakage analysis and feature extraction
are usually performed prior to the analysis to improve efficiency. Common leakage
assessment techniques include Test Vector Leakage Assessment (TVLA) [GGJR+11]
and Sum-of-Squared T-values (SOST) [PC15]. Common feature extraction methods
include Principal Component Analysis (PCA) [SHKS15] and Linear Discriminant Analysis
(LDA) [CLH19, BG98]. Afterwards, some classification methods, such as horizontal
correlation analysis [CFG+10], cluster-based analysis [HIM+13], and cluster combined
with neural network analysis [PCBP21, WHW+22], are applied to original or feature-
extracted trace segments to distinguish between operations and recover private keys. In
summary, almost all existing literature based on artificial intelligence algorithms focus on
automated classification of trace segments, while neglecting trace segmentation.

In this paper, we aim to introduce reinforcement learning to trace segmentation, in order
to push foreword fully automatic SPA on public-key algorithms. Reinforcement learning
algorithms were initially applied in the field of automatic control [Mat97] and subsequently
developed rapidly in stock prediction [AK22] and game competition [SHM+16]. In 2020,
this algorithm was introduced to the field of side-channel analysis to test the resilience
of cryptographic chips against timing attacks [PSM20]. Later, Ramezanpour et al. used
autoencoders to encode trace information and applied reinforcement learning to extract
key data, thereby improving the analysis efficiency, even in the absence of knowledge about
leakage models [RAD20]. In recent research, Rijsdijk et al. utilized Q-learning algorithm, a
type of reinforcement learning method, to adjust hyperparameters in side-channel analysis
based on a CNN network, enhancing the efficiency of key recovery [RWPP21]. Based on
the above survey and an observation that power traces produced by public-key algorithms
exhibit significant periodic characteristics, we propose a reinforcement learning-based trace
segmentation method that accurately segments traces of public-key algorithms. The main
contributions are as follows:

• We propose a new approach for segmenting traces of public-key algorithms automat-
ically based on reinforcement learning. The new method only require private key
lengths processed in the target device to be launched, which significantly reduces
reliance on manual expertise compared to existing methods. Experimental results
demonstrate that our method improves both accuracy and efficiency of segmentation,
and it is applicable to various software and hardware implementations of public-key
algorithms, such as SAKURA-G, smart cards, and AISCs.

• Moreover, our approach seamlessly integrates with horizontal attacks, enabling the
automation of entire SPA process. In the enhanced version of our method, segments
are classified to two sets by clustering algorithms, which improves the accuracy of
segmentation significantly. Experimental results show that the new method reaches
above 99.6% accuracy for the recovery of cryptographic operations in public-key
decryption or signature verification processes which are implemented in smart cards
and microcontrollers.

• Specifically, for a trace with less prominent segmentation features, we use envelope
detection to obtain envelope curve of the trace and then perform our new method to
the envelope curve, of which the segmentation points are mapped back to the original
trace. Besides, we propose a fine-tuning technique to make segmentation results
more organized. The experimental results demonstrate that equidistant, findpeak,
peakdistance segmentation methods fail to accurately segment power traces from
devices like smart cards, ASICs, and SAKURA-G. However, our approach enables
precise segmentation in these traces.

• Additionally, we organize all the traces involved in this paper and establish a database
which include various implementations of public-key algorithms for researchers to

4 SPA-GPT: General Pulse Tailor for Simple Power Analysis

validate our new method or conduct other experiments. The database includes five
implementations (software/hardware/software-hardware co-design) of RSA and one
implementation of ECC.

Paper Organization. In Section 2, we provide a brief introduction of SPA for public-key
algorithms and reinforcement learning algorithms. In Section 3, we present the basic
framework of SPA-GPT and discuss its details, including environment design, agent design,
and interaction between the agent and the environment. In the following Section 4, experi-
ments are conducted on three type of power traces produced by different implementation
of public-key algorithms to verify the advantages of SPA-GPT. In Section 5, we enhance
SPA-GPT in terms of environment, prepossessing and result fine-tuning to improve seg-
mentation effectiveness. In Section 6, more validation experiments of Enhanced SPA-GPT
are carried out on special power traces, followed by its performance and a summary of
all experimental results. Finally, we conclude our work and present a future out look in
Section 7.

2 Preliminary
2.1 Brief Description of SPA on Public-key Algorithms
Currently, there are two commonly used public-key algorithms: RSA [RSA78] and ECC
[Kob87, Mil85]. The sequence of cryptographic operations is directly related to the private
key. Taking RSA as an example, when a private key bit is “0”, the algorithm only performs
modular square. However, when a private key bit is “1”, the algorithm sequentially
performs modular square and modular multiplication. Due to the typically differences in
execution time and power consumption (voltage or current) among different cryptographic
operations, these variations are often reflected significantly in power traces. As a result,
SPA often involves analyzing segments corresponding to cryptographic operations produced
by a target device to obtain information about the private keys. Performing SPA on
implementations of public-key algorithms mainly involves three steps: the first step is
trace segmentation, the second step is segments classification, and the third step is private
key recovery.

After AI is introduced into SPA, clustering algorithms are employed to classify segments
of power traces, which improves automation of SPA process. However, manual expertise is
still required for power trace segmentation. This paper focuses on AI solution of power
trace segmentation to achieve full automation of SPA, as illustrated in Figure 1.

In our assumption, the start point of a cryptographic algorithm can be identified when
the upper computer (such as a PC) sends a decryption (or signature) request to the lower
computer (such as a smart card). But the end point of a cryptographic algorithm on
a trace is unknown in our scenario. That is to say, our method is applicable to traces
containing redundant segments that do not correspond to the target private key. Besides,
Our method is functionable to public-key algorithms with blinding protection. Specifically,
it involves analyzing a target trace without any prior knowledge.

2.2 Reinforcement Learning
Literature [SB98] summarizes the two main entities in reinforcement learning as agent and
environment. Agent serves as the actor responsible for taking actions, while environment
is the entity with which the agent interacts. Beyond the agent and the environment, we
identify three main subelements of a reinforcement learning system: policy, reward and
value function. Policy is used to map the current state of environment (referred to as a
state) to the action to be taken. Reward represents feedback given by the environment to

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 5

Length of the private key
Segmentation

Get the private key
SPA

.
.
.

Length of the private keyLength of the private key

Trace segmentsTrace segments

.
.
.

Trace segments

.
.
.

Trace segments

Length of the private keyLength of the private key

Single trace with multiple parameters

Single trace Get the operation
sequence

Get the operation
sequence Cluster

Manual
segmentation

DQN
segmentation

Semi-automationSemi-automation

 Previous works

 Our work

.
.
.

Trace segments

Length of the private key

Single trace with multiple parameters

Single trace Get the operation
sequence Cluster

Manual
segmentation

DQN
segmentation

Semi-automation

 Previous works

 Our work

Full-automationFull-automation

 Threshold of peak height,
minimum distance, and so on

.
..

Trace segments
.
..

Trace segments

Length of the private keyLength of the private key

Single trace with multiple parameters

Single trace with only one parameter Get the operations
sequence

Get the operations
sequence Cluster

Manual
segmentation

DQN
segmentation

Semi-automationSemi-automation

 Previous works

 Our work

.
..

Trace segments

Length of the private key

Single trace with multiple parameters

Single trace with only one parameter Get the operations
sequence Cluster

Manual
segmentation

DQN
segmentation

Semi-automation

 Previous works

 Our work

Full-automationFull-automation

 Threshold of peak height,
minimum distance, and so on

Figure 1: Automating segmentation processes combinated AI

the agent, indicating the quality of current action. Value function is used to evaluate the
long-term return. The interaction mechanism between the agent and the environment is
illustrated in Figure 2. At time t, the agent in state St takes an action At based on its
policy and value function. Subsequently, it receives a reward Rt+1 from the environment
and updates its state to St+1. The state and reward are used to enhance the decision-
making capabilities of the agent. As the agent attempts to complete the task given by the
environment, it may experience failures and restarts. The process from the start to the
end is defined as an episode, and each execution of an action is defined as a step.

Agent

Environment

: At time t

: At time t+1

: Receive reward

: Current state

: Take action

: At time t

: At time t+1

: Receive reward

: Current state

: Take action

Agent

Environment

: At time t

: At time t+1

: Receive reward

: Current state

: Take action

: At time t

: At time t+1

: Receive reward

: Current state

: Take action

Agent

Environment

: At time t

: At time t+1

: Receive reward

: Current state

: Take action

: At time t

: At time t+1

: Receive reward

: Current state

: Take action

Figure 2: The agent interacts with the environment

2.2.1 Q-learning

The Q-learning algorithm [WD92], characterized by the decision-making process of the
agent, is a value-based reinforcement learning algorithm. It utilizes a Q-table to store the
expected rewards Q(St, At) for a given state St, as shown in Figure 3. The update rule for
the table is given by Equation 1. The term γ maxa Q (St+1, a) represents the maximum
expected reward that the agent can obtain among all possible actions in state St+1. The
discount factor γ is used to adjust the agent’s focus on future rewards. When γ is set to 0,
the agent only considers the immediate reward in the current state. When γ is set to 1, the

6 SPA-GPT: General Pulse Tailor for Simple Power Analysis

agent takes into account the cumulative rewards for all steps until the end of the episode.
The parameter α, referred to as the learning rate, dictates the extent to which the current
experience should update the existing Q-values. A value of 0 means that this experience
will not be learned from, while a value of 1 means that the new Q-value will completely
replace the existing value in the table. The learning rate controls the extent to which the
agent updates its Q-values based on new information gained from each experience. After
multiple iterations, the Q-table will converge to a stable state. At this point, the agent
can accomplish its intended goal. For example, in the case of a robot navigating a maze,
the robot can use the Q-table to avoid traps and successfully reach the maze exit from
the entrance. The converged Q-values in the table provide the necessary guidance for the
agent to make optimal decisions and achieve its targets.

Q (St, At)← Q (St, At) + α
[
Rt+1 + γ max

a
Q (St+1, a)−Q (St, At)

]
(1)

 Action
State 𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 …

𝑆𝑆1 𝑄𝑄(𝑆𝑆1,𝐴𝐴1) = −1 𝑄𝑄(𝑆𝑆1,𝐴𝐴2) = 5 𝑄𝑄(𝑆𝑆1,𝐴𝐴3) = 0 …

𝑆𝑆2 𝑄𝑄(𝑆𝑆2,𝐴𝐴1) = 0 𝑄𝑄(𝑆𝑆2,𝐴𝐴2) = −10 𝑄𝑄(𝑆𝑆2,𝐴𝐴3) = 1 …

𝑆𝑆3 𝑄𝑄(𝑆𝑆3,𝐴𝐴1) = 0 𝑄𝑄(𝑆𝑆3,𝐴𝐴2) = 0 𝑄𝑄(𝑆𝑆3,𝐴𝐴3) = 3 …

… … … … …

Figure 3: A simple example of Q-table

2.2.2 Deep Q-Network

In the Q-learning algorithm, the storage cost and search time complexity of the Q-table
can be quite high. To address this issue, DeepMind proposed a deep neural network
to approximate the Q-table, which is known as the Deep Q-Network (DQN) algorithm
[MKS+13]. In DQN algorithm, there are two ways to implement deep neural network: the
first approach takes both the current state St and the action At as inputs and outputs the
Q-value. However, when the action space is large, this approach can be computationally
expensive due to the nonlinear mapping operations required for each candidate action.
The second approach only takes the current state St as input and outputs the Q-values of
all possible actions. This approach eliminates the candidate action space in the network’s
input layer, thereby reducing the computational cost of the nonlinear mapping operations.
The trace segmentation problem investigated in this paper falls into a large candidate
action space. Therefore, the latter approach is employed in our work.

Furthermore, this paper employs a dual-network training approach [MKS+15] to en-
hance training efficiency. Two Q-value networks, denoted as Q and Q̂, are established.
Initially, the Q and Q̂ networks have the same structure and weights. Then, the Q network
weights are iteratively updated using the formula α [Rt+1 + γ maxa Q (St+1, a)−Q (St, At)],
while keeping the weights of the Q̂ network unchanged. After several iterations of weight
updates, weights of the Q network are assigned to the Q̂ network. With multiple iterations,
the network converges, resulting in an agent capable of achieving the desired targets.

2.2.3 Prioritized Experience Replay

During the interaction between the agent and the environment, the proportion of valuable
experiences that are worth learning is relatively low. If only use random sampling to train

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 7

the network, it would be inefficient. Therefore, we adopt the Prioritized Experience Replay
(PER) method [SQAS16] to prioritize and emphasize a small number of valuable samples
for learning by the agent. PER method assigns priorities to experiences and samples them
based on their priorities during network training, rather than random sampling. Priority
is calculated using the TDerror, where TDerror = Rt+1 + γ ∗maxaQ(St+1, a)−Q(St, At).
A higher TDerror indicates that the current network’s estimation of the Q-values for this
experience is inaccurate and therefore the corresponding experience is more valuable for
learning. By assigning higher priorities to experiences with larger TDerror, PER method
focuses on experiences that provide the most learning potential and improves the learning
efficiency of the network. These experiences are stored in an experience pool, and when
new experiences are added to the pool, their priorities is initialized to the maximum
priority value in the pool. This ensures that these experiences will be sampled in next
training iteration. Additionally, a stochastic sampling strategy is introduced to prevent
the long-term under-sampling of low-priority experiences, ultimately reducing diversity.
This strategy ensures that the sampling frequency increases with priority, but still allows
for occasional sampling of low-priority experiences.

3 Basic SPA-GPT
In this section, we present an overview of Basic SPA-GPT, followed by detailed explanations
of its key elements.

3.1 Method
In this section, we illustrate our method for automatically segmenting traces of public-key
algorithms using reinforcement learning, under the condition of only knowing the key
lengths.

The first step involves setting the environment entity as the trace to be segmented. We
establish the following correspondences between key concepts in reinforcement learning
and the problem investigated in this paper:

• Action At: At time t, selecting an integer value from the range [F, C] as the length
of next trace segment, which represents the distance between the current segment
point and the next segment point. In this paper, we define F = Ltrace/(2 ∗ Lkey)
and C = Ltrace/Lkey to estimate the range of actions. Ltrace represents the length
of the trace, and Lkey represents the length of the key. The reason why using this
estimation for the action range will be further discussed in Section 3.2.4.

• State St: In this paper, we denote the trace to be segmented as T , where pos
represents the current position of the agent. The trace segment T [pos : pos + C]
represents the state at time t, which serves as the input to DQN network. The
purpose of setting state length as C is to allow the agent to have a comprehensive
understanding of trace segment it can reach.

• Reward Rt+1: At time t+1, the agent receives a reward after taking an action at time
t. Preliminary experiments have shown that the similarity between two complete
cryptographic operation segments in a trace is significantly higher than the similarity
between two randomly sampled trace segments. After comparing the effectiveness
and computational cost of metrics such as manhattan distance, euclidean distance,
and pearson correlation coefficient for measuring similarity, we define the reward as
the average euclidean distance between the trace segment obtained after executing
the current action and the previously obtained one.

8 SPA-GPT: General Pulse Tailor for Simple Power Analysis

The application of the above three concepts in our scenario is illustrated in Figure
4. Firstly, the DQN agent receives a fixed-length trace as its input state. Then, the
agent selects a segmentation point on the trace based on a certain strategy. After one
segmentation and receiving a reward, the agent moves to the new segmentation point,
enters a new state, and repeats this process until the segmentation is complete.

New State
State

DQN EnvironmentDQN Environment

Action

DQN Agent

Action

time t time t+1

Reward

Figure 4: Illustration of three key concepts in reinforcement learning

The flowchart of the trace segmentation method based on reinforcement learning is
shown in Figure 5. Please note that the data presented in the figure is for illustrative
purposes only. At time t, the agent is located at position pos in a trace. First, the state
St is inputted into the neural network, and the action with the highest Q-value is selected.
In order to learn more diverse segmenting strategies, we employ the ϵ-greedy method,
selecting an action with the maximum Q-value with a probability of ϵ, and selecting a
random action with a probability of 1 − ϵ . Then, based on the reward value, different
branches are executed: if the reward Rt+1 is negative, indicating a failed segmentation,
the agent enters the left branch, ends the current episode, and restarts from the beginning
by setting pos← 0 and episode← episode + 1. Specifically, if there is a redundant part
(non-cryptographic algorithm operation) at the end of the trace to be segmented, it can
also result in a negative reward. Therefore, upon detecting a negative reward, the number
of segmentation points in the current episode will be checked. If it falls within the valid
range, this segmentation will be considered a feasible result and stored. Continue executing
the aforementioned steps until the maximum number of episodes is reached, at which point
the algorithm terminates. It is worth noting that in the traces of public-key algorithms, the
segmentation points between two cryptographic operations are often not single points but
intervals. Therefore, there can be multiple ways to segment a trace. When the numbers
of episode reaches the predefined limit, the algorithm outputs all feasible segmentation
results.

Remark 1. M is usually set to a relatively large value. This not only ensures correct
segmentation for the majority of traces but also allows the algorithm to offer diverse
segmentation options, providing multiple ways to exploit leakage in the subsequent steps
of SPA.

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 9

episode < M
FalseTrue

Start a new episode

Collect
traces

Policy

St , At , Rt , St+1

t = t + 1

St

S*
t
, A

*
t
, R

*
t
, S

*
t+

1

A1A1

ExploreExplore

A2
A3

A4

Exploit

A2
A3

A4

Exploit

A1

Explore

A2
A3

A4

Exploit

Rt = 100, St+1

pos = pos + At

Rt = 100, St+1

pos = pos + At

Rt = 100, St+1

pos = pos + At

Rt = -50, St+1

pos = 0
Rt = -50, St+1

pos = 0

St , At , Rt , St+1St , At , Rt , St+1

episode = episode + 1episode = episode + 1

Get multiple resultsGet multiple results

reward > 0
FalseFalse TrueTrue

memory pool

...

memory pool

...

S0 , A0 , R0 , S1S0 , A0 , R0 , S1

St , At , Rt , St+1St , At , Rt , St+1

memory pool

...

S0 , A0 , R0 , S1

St , At , Rt , St+1

Figure 5: Overall workflow of Basic SPA-GPT based on reinforcement learning

3.2 Elements’ Details of DQN
3.2.1 Environment Design

In addition to selecting the entity, the design of an environment also requires formulating
reward rules, which include two aspects: distance calculation and the method of converting
distance into reward values. Algorithm 1 presents the pseudocode of calculating the distance,
denoted as CalDistance(snow,χ), where snow represents the trace segment obtained after
executing the action, and χ represents the set of already obtained trace segments. Due to
the variable lengths of trace segments, we employ the second-order B-spline interpolation
method [UAE93] to stretch two trace segments because the method requires the inputs
have the same length. The target length is set to the longer value between the two trace
segments. First of all, the algorithm applies the function B-splineInterpolation(snow, s)
to stretch each trace segment s in χ to the same length as snow. Then, it uses the function
EuclideanDistance(snow, s) to calculate the euclidean distance lk. Finally, it outputs
the average of distances.

The sign of the reward value serves as the criterion to determine whether the current
episode is terminated. In our work, the reward value of the current action is obtained
by setting a threshold and calculating the difference between the threshold and the
distance. The pseudocode of reward calculation is shown in Algorithm 2, denoted as

10 SPA-GPT: General Pulse Tailor for Simple Power Analysis

Algorithm 1: Distance calculation
Input: Current trace segment snow, trace segments set χ.
Output: Distance d.

1 k ← 0;
2 for s ∈ χ do
3 B-splineInterpolation(snow, s);
4 lk ← EuclideanDistance(snow, s);
5 k ← k + 1;
6 end
7 d←

∑k
0 li/k;

8 return d;

GetReward(snow, χ, lbase), where snow represents a trace segment obtained after an
action is executed, χ is a set of trace segments, and lbase (the determination of its value
is explained in Section 3.2.3) is the threshold used to determine whether to terminate
the current round and adjust the distribution of the reward. This adjustment ensures a
balanced distribution of positive and negative rewards. In Algorithm 2, the first step is
to calculate the distance d between the current trace segment and segments in χ using
Algorithm 1. Then, the difference between lbase and d is computed to obtain the reward
Rt+1. It is evident that the larger the distance, the smaller the reward. Next, based on
the reward’s sign, the variable done is assigned a value to indicate whether the current
episode should be terminated. Finally, the segment is stored in χ for subsequent distance
comparison and reward calculation. The output consists of the reward Rt+1 and the
termination signal done.

Algorithm 2: Reward calculation
Input: Current trace segment snow, trace segments set χ, threshold lbase.
Output: Reward Rt+1, termination signal done.

1 if χ = ∅ then
2 χ.append(tnow);
3 return done← False, Rt+1 ← 0;
4 end
5 d← CalDistance(tnow, χ);
6 Rt+1 ← (lbase − d);
7 if Rt+1 ≥ 0 then
8 χ.append(tnow);
9 done← False;

10 else
11 done← True;
12 end
13 return done, Rt+1;

3.2.2 Agent Design

We adopt a two-layer MLP network for agent. The number of neurons in the input layer
is determined by the dimensionality of state st. The hidden layers consist of two dense
layers with 40 neurons each. The number of neurons in the output layer is equal to the
size of the action space, which is the value of C −F . Both the network Q and the network
Q̂ adopt this structure, and their initial weights are the same.

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 11

The pseudocode of the agent’s action execution, as shown in Algorithm 3, is denoted
as Excute(At, T, pos, snow, χ, lbase). The agent performs an action At moving its position
to the specified position pos on the trace T . Then, the agent receives a reward Rt+1 with
signal done and get into a new state St+1.

Algorithm 3: Agent performs the action
Input: Action At, trace T , current position of the agent pos, current trace

segment snow, trace segments set χ, threshold lbase.
Output: Reward Rt+1, new position pos, a flag indicating whether to terminate

the current episode done.
1 snow ← T [pos : pos + At];
2 pos← pos + At;
3 (Rt+1, done)← GetReward(snow, χ, lbase);
4 St+1 ← T [pos : pos + C];
5 return St+1, Rt+1, done, pos;

3.2.3 Agent-Environment Interaction Design

The agent segments a trace within the environment, and the environment responds based
on reward, presenting the agent with a new state. To initiate the segmentation process,
the agent first determines a threshold lbase that is used to evaluate the correctness of
segmentation. Once an appropriate lbase is obtained, the agent proceeds to segment the
target trace. After completing multiple episodes of segmentation, the algorithm outputs
all results.

Algorithm 4 describes the interaction between the agent and the environment requiring
only the input of the target trace and key length. After initializing the variables using
Initial(D, θ, ϵ, lbase, Res, t), the value of lbase is calculated as the euclidean distance between
T [0 : C] and T [C : 2C]. However, this estimation of lbase often tends to be overestimated.
We employ the following mechanism to obtain a more appropriate value for lbase (Algorithm
4, lines 13-16): if the agent is able to continuously and randomly divide the trace into
⌈0.1 ∗ Lkey⌉ segments, indicating that a larger lbase allows the agent to receive positive
rewards even in cases where the segmentation results in errors, we will multiply the current
lbase by 0.9 to reduce its value and rerun the algorithm.

Once lbase is determined, the segmenting process begins at t = 0. The experience replay
buffer D is cleared, and each new experience has the same priority. The network weights θ
are initialized with random values. At each step, after the agent performs an action and
receives feedback from the environment, the agent stores the current segmenting point in
Res for that episode. Additionally, the experience (St, At, Rt+1, St+1) obtained at a step
is stored in the experience replay buffer D. After a certain number of steps (in our work,
30000 steps), experience will be used to train network. To improve training efficiency, we
set a training frequency of every 15 steps and the priority of experiences will be updated
using TDerror obtained during training. Additionally, in selection of actions using the
ϵ-greedy method, we adopt a dynamic adjustment strategy for ϵ. Initially, ϵ is set to 0,
and as the trains, ϵ gradually increases (with a step size of 0.0001). Once ϵ reaches 0.9, it
periodically resets to 1 to evaluate the fitting of the agent’s network.

Finally, after M episodes of segmentation, the algorithm outputs all segmentation
results stored in Res and terminates the execution.

3.2.4 Discussion on the Rationality of Action Space

In most implementations, the two operations (such as modular square and modular
multiplication) have different execution times, which leads to varying lengths of trace

12 SPA-GPT: General Pulse Tailor for Simple Power Analysis

Algorithm 4: Trace segmentation using DQN
Input: Trace T , length of the key Lkey.
Output: Reward Res.

1 Initial(D, θ, ϵ, lbase, Res, t);
2 for episode ∈ {0, ..., M} do
3 pos← 0;
4 Res[episode].append(pos);
5 χ← ∅;
6 set ϵ← 1 for an episode periodically after ϵ reaches 0.9;
7 while True do
8 if ϵ > 0 then
9 With probability ϵ select At ← argmaxaQ (St, A; θ);

10 else
11 Select a random action At;
12 end
13 if ⌈0.1 ∗ Lkey⌉ times consecutive random selection then
14 lbase ← lbase ∗ 0.9;
15 goto line 1;
16 end
17 (St+1, Rt+1, done, pos)← excute(At, T, pos, snow, χ, lbase);
18 Res[episode].append(pos);
19 Store experience (St, At, Rt+1, St+1) in D with the highest priority;
20 if done then
21 break;
22 end
23 if t > 30000 and every 15 steps then
24 Train the network, update the priority of experiences;
25 if ϵ < 0.9 then
26 ϵ← ϵ + 0.0001;
27 end
28 end
29 t← t + 1;
30 end
31 end
32 return Res;

segments. So, a complete trace contains a number of valid operations in the range of
[Lkey, 2Lkey] (key = 0x000... or 0x111...). The average length of each trace segment falls
within the range of [Ltrace

2∗Lkey
, Ltrace

Lkey
].

We illustrate four possible scenarios in Figure 6. Here, l1 represents the segment of
a short-duration operation, and l2 represents the segment of a long-duration operation.
The red flags indicate the correct segmentation points under different conditions, and the
blue interval represents the available action range [l1, l2]. However, before executing the
segmentation algorithm, the lengths of l1 and l2 are unknown. It is necessary to ensure
that the action range covers the blue region, which satisfies Equation 2. Here, n1 and
n2 represent the number of trace segments with lengths l1 and l2, respectively, and it
should satisfy Lkey ≤ n1 + n2 ≤ 2Lkey, where Ltrace = n1l1 + n2l2. The derivation leads
to l2

l1
≤ 2 + n1

n2
. To utilize the average trace length for estimating the action range, it is

required that the length of the longer trace segment does not exceed twice the length
of the shorter one. In public-key algorithms implementations, this condition is easily

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 13

satisfied. What is more, randomization serves solely as a means of leakage prevention
and has minimal impact on the overall power consumption of the entire trace segment.
Otherwise, it would adversely affect algorithm efficiency and increase implementation costs.
Therefore, it is reasonable for this paper to use F = Ltrace

2∗Lkey
and C = Ltrace

Lkey
to estimate the

range of the action interval.

l1 l1

l1 l2

l2 l1

l2 l2

1

2

3

4

Figure 6: All possible combinations of two different length segments

We also provide the theoretically acceptable length of redundant part. Let LR represent
the length of the redundant part. Based on the above analysis, it is necessary to satisfy
Equation 3 when the trace contains redundancy. We then derived Equation 4, which
represents the valid proportion relationship between the redundant part and the decryption
(or signature) part. If the proportion of the redundant part exceeds the upper limit
specified in Equation 4, the action range will not include feasible segmentation points.

F = n1l1 + n2l2
2 ∗ Lkey

≤ l1, C = n1l1 + n2l2
Lkey

≥ l2 (2)

F = n1l1 + n2l2 + LR

2 ∗ Lkey
≤ l1, C = n1l1 + n2l2 + LR

Lkey
≥ l2 (3)

0 ≤ LR

Ltrace
≤ 1− 2

n1l1
n2l2

+ 1
(4)

4 Evaluation of Basic SPA-GPT

We have established an open-source power trace database1 of public-key algorithms to
validate our method. To avoid commercial disputes, we have only disclosed six traces, and
we have not publicly released some traces from third-party products. Table 1 presents
the key information about the traces in the database. For specific details regarding the
experimental setup, please refer to the documentation in the database. Some details of
the experimental configuration are omitted here. Part of the traces in the database were
collected from a black box perspective. All traces have undergone low-pass filtering. For
traces with excessive data points, we performed resampling to improve computational
efficiency. Furthermore, some cryptographic devices execute special operations, such as
precomputations, at the start of cryptographic calculations. As a result, there can be
significant differences between the initial unstable portion and the stable portion that follow.
We have addressed this problem by truncating the unstable portion at the beginning.
Alternatively, it is also possible to make the trace become stable through specialized
processing.

1Available at https://github.com/pilipili520/SPA-GPT

14 SPA-GPT: General Pulse Tailor for Simple Power Analysis

Table 1: The power trace database of public-key algorithms

Algorithm Lkey Operations Number Device Implementation Disclosure
RSA 1024 1562 smart card co-design Yes
RSA 1024 1536 ASIC X hardware Yes
RSA 1024 1531 SAKURA-G hardware Yes

RSA-RDa 1024 1531 SAKURA-G hardware Yes
RSA 1024 1517 ASIC Y co-design No
RSA 1024 1535 STM32F429 software Yes

RSA-CRT 1024 1496 USB Key co-design No
ECCb 128 192 AT89S52 software Yes
ECC 256 372 smart card co-design No

aWe have incorporated random delay method in RSA and call it RSA-RD.
bThis is a toy implementation due to limited memory and computational resources on the AT89S52.

4.1 Evaluation on Different Platforms
We applied our method to all traces in the power trace database, but did not achieve
satisfactory results for all of them. Basic SPA-GPT demonstrated good segmentation
performance on the traces of RSA on SAKURA-G, RSA-CRT on USB Key, and RSA
on ASIC X, which we present in this section (The last one has been included in the
appendix A). The remaining traces were processed using Enhanced SPA-GPT to improve
the segmentation results, as described in Section 6.

The parameter configuration of the DQN used in our experiment is shown in Table 2.
To ensure compatibility with most traces, we set the parameters to relatively large values.

Table 2: The key parameter settings of DQN in experiments

ID Parameter Value
1 learning rate 0.01
2 batch size 128
3 reward decay 0.01
4 memory pool size 5000
5 maximum episodes M 1000000

4.1.1 Hardware RSA on SAKURA-G

We implemented RSA on the SAKURA-G, and the power trace generated during the
execution of the algorithm are shown in Figure 7. For this trace, we are aware of
its characteristics and distinguishing features. The significant power consumption in
the depicted portion corresponds to RSA decryption, while the less significant power
consumption represents redundancy. After zooming in on the trace during the decryption
phase, we observed periodic spikes with regular patterns. Each cryptographic operation
corresponds to the interval between two prominent peaks.

We applied our method to segment this trace, and the results are shown in Figure 8.
The red dots indicate the segmentation positions. When we zoom in on the decrypted
traces, it is evident that each cryptographic operation has been accurately segmented and
preserves the significant “peaks” between them (which can be used to distinguish different
operations). We have marked the “Termination Point” on this trace, indicating the position
where the segmentation end. According to the termination condition, it is known that the
last segment is not valid. Therefore, unless otherwise specified in subsequent experiments,

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 15

0 0.5 1 1.5 2 2.5 3

106

-50

0

50
V

ol
ta

ge

0 0.5 1 1.5 2 2.5 3 3.5 4

104

-50

0

50

V
ol

ta
ge

Redundant

LeakagesPeaks

Figure 7: Power trace of RSA decryption on SAKURA-G

we will hide these points in other traces. Using horizontal analysis, we can fully recover
the correct private key based on this segmentation.

0 0.5 1 1.5 2 2.5 3

106

-50

0

50

V
ol

ta
ge

0 5000 10000
-50

0

50

V
ol

ta
ge

1.325 1.33 1.335

106
2.435 2.44 2.445

106Segmentation Point

Termination point

Figure 8: Power trace segmentation result of RSA decryption on SAKURA-G

In multiple experiments, we found that some segmentation results mistakenly identified
the redundant portion as decryption subtrace and performed segmentation on them. In
Section 5, we will present improvements to address this issue.

As a comparative experiment, we conducted equidistant segmentation on the same
trace. Figure 9 illustrates the results of equidistant segmentation, highlighting the method’s
inability to accurately segment the trace. This failure can be attributed to slight variations
in the lengths of different operations, which accumulate over time, causing significant
deviations in the later segments of the trace from their correct positions.

0 0.5 1 1.5 2 2.5 3

106

-50

0

50

V
ol

ta
ge

1.315 1.32 1.325 1.33 1.335 1.34 1.345 1.35 1.355

106

-50

0

50

V
ol

ta
ge

Figure 9: Erroneous result from equidistant segmentation method

In addition, we have heightened the segmentation difficulty in this experiment by
introducing random delay protection into the decryption algorithm’s implementation.

16 SPA-GPT: General Pulse Tailor for Simple Power Analysis

Even with the inclusion of random delays, maintaining time efficiency remains paramount.
Therefore, the length of the trace segment typically does not exceed the action range
discussed in Section 3.2.4. Our experimental results demonstrate good robustness, even
when dealing with traces containing random delays, as depicted in Figure 10.

0 0.5 1 1.5 2

106

-100

0

100

V
ol

ta
ge

0 5000 10000
-100

0

100

V
ol

ta
ge

1.1 1.105 1.11

106
2.22 2.225 2.23

106

Figure 10: Power trace segmentation result of RSA decryption on SAKURA-G containing
random delays

4.1.2 Co-design RSA-CRT on USB Key

This trace was collected while running RSA-CRT on a USB Key developed by a company
and we do not know its segmentation features. We use the subtrace during the calculation
of dp as an example for segmentation, as shown in Figure 11. The trace exhibits several
repetitive segments, but the exact repetition pattern is uncertain. Therefore, all the
repetitive segments could potentially represent a single cryptographic operation. For
example, in Figure 11, the highlighted yellow boxes indicate two possible patterns.

0 0.5 1 1.5 2 2.5 3

105

-0.4
-0.2

0
0.2
0.4

V
ol

ta
ge

0 2000 4000 6000 8000 10000 12000
-0.6
-0.4
-0.2

0
0.2

V
ol

ta
ge

Figure 11: Power trace of RSA-CRT signature on USB Key

After applying our method to segment this trace, we obtained the segmentation results
shown in Figure 12. The number of segments falls within a reasonable range. After ana-
lyzing the results, we observed variations in the lengths of these trace segments, indicating
the timing leakage between different operations. As shown in Figure 12, “S” represents the
modular square operation, and “M” represents modular multiplication operation. Utilizing
this leakage information, we can fully recover the sequence of operations.

The peaks on this trace and the differences in distance between them are noticeable,
making it challenging to identify specific peaks or distance as reliable segmentation
criteria. We attempted to use specified peak height and minimum distance between them
(peakdistance) for segmentation. Despite multiple parameter adjustments, some operations
could not be correctly segmented, and redundant portion were also segmented, as shown
in Figure 13.

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 17

0 0.5 1 1.5 2 2.5 3

105

-0.6
-0.4
-0.2

0
0.2

V
ol

ta
ge

0 1000 2000 3000 4000
-0.6
-0.4
-0.2

0
0.2

V
ol

ta
ge

1.47 1.48 1.49 1.5

105
2.91 2.92 2.93 2.94

105

M S

Figure 12: Power trace segmentation result of RSA-CRT signature on USB Key

0 0.5 1 1.5 2 2.5 3

105

-0.6
-0.4
-0.2

0
0.2

V
ol

ta
ge

2 2.2 2.4 2.6 2.8 3

104

-0.6
-0.4
-0.2

0
0.2

V
ol

ta
ge

Miss

Figure 13: Error encountered in segmentation using peakdistance method

4.2 Learning Process of The Agent
We collected the reward of the agent during the learning process in previous section. Due
to the different characteristics of each trace, the number of episodes required for the
agent to mature varies as depicted in the Figure 14. During the early episodes, the agent
obtained low cumulative rewards because it was in the phase of gathering experience and
executing many random actions. Some of these actions may have resulted in premature
termination of the segmentation process. However, as the network is trained, it gradually
achieved higher cumulative rewards in the later episodes. But the total reward obtained by
the agent did not stabilize in a higher range and exhibited significant fluctuations. Even
after network convergence, the agent could still receive low rewards. This is because the
maximum value of ϵ was set to 0.9, allowing the agent to continue taking random actions
to explore multiple segmentation approaches.

It is worth noting that the episode with the highest total reward in Figure 14(a)
(38000-40000) does not correspond to the best segmentation result. This is because the
agent discovered a way to include redundant portion in the segmentation process. What is
more, due to the randomness introduced by ϵ, the rewards obtained by the agent in later
episodes did not stabilize within a specific range, as shown in Figure 14(b). However, the
highest reward values remained stable at higher levels, and these episodes demonstrated
accurate segmentation outcomes.

We also collected the loss during the learning process of the agent, as shown in Figure
15. Since reinforcement learning is not supervised learning, the experiences fed into the
agent’s network are autonomously collected. As the learning progresses, new experiences
are gradually accumulated. Therefore, the loss curve does not decrease smoothly. From
Figure 15(a), it can be observed that the agent has difficulty learning the segmentation
features (the learning curve shows significant fluctuations), which can be attributed to the
incorrect experiences obtained during the segmentation of redundancies. In Figure 15(b),
it is evident that the agent quickly learns the segmentation features (rapid decrease in loss),

18 SPA-GPT: General Pulse Tailor for Simple Power Analysis

which could be attributed to the fewer number of operations and distinct characteristics of
the trace segments.

1 2 3 4 5 6

104

0

0.5

1

1.5

2

2.5

3
R

ew
ar

d
104

0.5 1 1.5 2
episode 104

0

0.5

1

1.5

2

2.5

re
w

ar
d

105 Ukey CRT-RSA reward

2000 4000 6000 8000 1000012000
episode

0

5

10

15

20

re
w

ar
d

105 ebu RSA reward

0 2 4 6
learning step 104

0

5

10

15

co
st

Episode

FPGA RSA reward cost

0 1 2 3 4 5
learning step 104

0

10

20

30

40

50

co
st

Ukey CRT-RSA reward cost

0 1 2 3 4
learning step 104

0

50

100

150

200

co
st

ebu RSA reward cost
(a) RSA on SAKURA-G

1 2 3 4 5 6
episode 104

0

0.5

1

1.5

2

2.5

3

re
w

ar
d

104 FPGA RSA reward

0.5 1 1.5 2

104

0

0.5

1

1.5

2

2.5

R
ew

ar
d

105

2000 4000 6000 8000 1000012000
episode

0

5

10

15

20

re
w

ar
d

105 ebu RSA reward

0 2 4 6
learning step 104

0

5

10

15

co
st

FPGA RSA reward cost

0 1 2 3 4 5
learning step 104

0

10

20

30

40

50

co
st

Episode

Ukey CRT-RSA reward cost

0 1 2 3 4
learning step 104

0

50

100

150

200

co
st

ebu RSA reward cost
(b) RSA-CRT on USB Key

Figure 14: The total reward obtained by the agent of each episode
1 2 3 4 5 6

104

0

0.5

1

1.5

2

2.5

3

re
w

ar
d

104 FPGA RSA reward

0.5 1 1.5 2

104

0

0.5

1

1.5

2

2.5

re
w

ar
d

105 Ukey CRT-RSA reward

2000 4000 6000 8000 1000012000
0

5

10

15

20

re
w

ar
d

105 ebu RSA reward

0 2 4 6

Learning step 104

0

5

10

15

Co
st

episode

0 1 2 3 4 5

learning step 104

0

10

20

30

40

50

co
st

episode

CRT-RSA on USB Key Cost

0 1 2 3 4

learning step 104

0

50

100

150

200

co
st

episode

RSA on Device X Cost

(a) RSA on SAKURA-G

1 2 3 4 5 6

104

0

0.5

1

1.5

2

2.5

3

re
w

ar
d

104 FPGA RSA reward

0.5 1 1.5 2

104

0

0.5

1

1.5

2

2.5

re
w

ar
d

105 Ukey CRT-RSA reward

2000 4000 6000 8000 1000012000
0

5

10

15

20

re
w

ar
d

105 ebu RSA reward

0 2 4 6

learning step 104

0

5

10

15

co
st

episode

RSA on SAKURA-G Cost

0 1 2 3 4 5

Learning step 104

0

10

20

30

40

50

Co
st

episode

0 1 2 3 4

learning step 104

0

50

100

150

200

co
st

episode

RSA on Device X Cost

(b) RSA-CRT on USB Key

Figure 15: The Neural Network cost of each learning step

5 Enhanced SPA-GPT
Basic SPA-GPT demonstrates good performance on many traces, indicating a certain
level of versatility. Nevertheless, it does come with its limitations. To address these
shortcomings, we upgrade it to enhance segmentation performance, as follows:

• Assigning all trace segments into the same set can waste features. We optimize
the trace segments allocation method using clustering algorithms, which enhances
segmentation efficiency and allows the recovery of operation sequences for some
traces.

• Using only the euclidean distance threshold sometimes fails to accurately determine
the end position of cryptographic. We propose a new termination criterion by
integrating trace variance features to address this issue.

• Some traces are heavily affected by strong noise interference, and conventional filtering
techniques fail to yield satisfactory results. Therefore, we extract the envelopes before
performing segmentation.

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 19

• The segmentation results exhibit certain biases in some cases. We use fine-tuning
method to optimize the outcomes.

5.1 Enhanced Environment
The basic method described in Section 3 places all operations into a single set and then
calculates the average distance. This calculation is essentially an “average denoising”
applied to different parts of the trace segments. It utilizes only the common features
among the trace segments for identification. However, most public-key algorithms consist
of at least two operations. For trace segments that exhibit significant differences between
these different operations, it can affect the segmentation accuracy. Therefore, we divided
the trace segments into two separate sets based on the characteristics of the cryptographic
algorithm.

We utilize a state machine, as depicted in Figure 16, to illustrate the process of assigning
segments to two sets. In the state machine, E0 represents the state where both sets are
empty. E1 represents the state where set χ1 is non-empty while χ2 is empty. E2 represents
the state where both sets are non-empty. d1 and d2 represent the average distances between
the trace segment to be assigned and the trace segments in the two sets, respectively.
Firstly, both d1 and d2 are set to 0, and both sets are empty. When the agent performs
its first segmentation and obtains an initial trace segment, the environment will directly
place it into set χ1 (i.e., setting d1 to 0). At this point, the state of the sets becomes E1.
Subsequently, the agent carries out further segmentations. If a trace segment that satisfies
d1 ≤ lbase, the environment will place it into set χ1 and stay at E1. However, if a trace
segment that satisfies d1 > lbase, the environment will assign this segment to set χ2, and
the state transitions to E2. In E2 state, the environment assigns the trace segment to
the set corresponding to min (d1, d2). When a trace segment that satisfies d1 > lbase and
d2 > lbase, the environment terminates the current episode and resets both sets to empty,
returning to the E0 state.

E0

E1 E2

d1 > lbase and d2 > lbased1 < lbase

d1 < lbase

d1 > lbase

d1 < lbase or d2 < lbase

E0

E1 E2

d1 > lbase and d2 > lbased1 < lbase

d1 < lbase

d1 > lbase

d1 < lbase or d2 < lbase

Figure 16: The state machine of assigning the trace segments into two sets

However, in order to ensure that the initially immature agent gradually accumulates
sufficient experience, the threshold value lbase is set to be lenient. Consequently, the
environment assigns all trace segments to set χ1 and maintains the E1 state throughout,
resulting in suboptimal segmentation. To address this issue, we introduce a clustering
algorithm to assist with segment classification. After 30000 steps, we use the clustering
algorithm to reassign the trace segments between the two sets. The pseudocode of this
process is presented in Algorithm 5.

For cases where there are significant differences in the trace segments corresponding to
cryptographic operations, the process of assigning segments to different sets is equivalent to
clustering of segments. The different sets correspond to labels, and based on these labels,
we can obtain the operation sequences corresponding to the private key, then recovering it.
To improve the quality of trace segmentation and the effectiveness segment classification
for cases where leakage intervals are not clearly visible, we utilize the SOST method [PC15]

20 SPA-GPT: General Pulse Tailor for Simple Power Analysis

Algorithm 5: Refined reward calculation and determination
Input: Current trace segment snow, two trace segment sets χ1 and χ2, threshold

lbase.
Output: Reward Rt+1, terminate signal done.

1 if χ1 = ∅ and χ2 = ∅ then
2 χ1.append(tnow);
3 return Rt+1 ← 0, done ← False;
4 end
5 d1 = CalDistance(tnow, χ1);
6 if χ2 = ∅ and lbase ≥ d1 then
7 χ1.append(tnow);
8 else if χ2 = ∅ and lbase < d1 then
9 χ2.append(tnow);

10 else
11 d2 ← CalDistance(tnow, χ2);
12 if d1 < d2 and d1 ≤ lbase then
13 Rt+1 ← lbase − d1;
14 χ1.append(tnow);
15 else if d1 > d2 and lbase ≥ d2 then
16 Rt+1 ← lbase − d2;
17 χ2.append(tnow);
18 else
19 Rt+1 ← lbase − (d1 + d2);
20 done← True;
21 end
22 end
23 return Rt+1 ← 0, done ← False;

to locate the leakage intervals. We only perform distance calculations and trace segments
reassignment based on these identified intervals.

When using the threshold obtained solely from euclidean distance calculation, there are
cases, as shown in Figure 17, where the agent segments the redundant portions in order
to obtain more rewards. However, this leads to the agent learning incorrect experiences.
Upon thorough observation of the majority of power traces, a clear discrepancy in variance
between the cryptographic operation intervals and the redundant portions has been
identified. Since this work assumes that the starting position of the public-key algorithm
on the trace is known, the initial state S0 can reflect the variance during the cryptographic
operation. We calculate the variance of S0 and set it as the threshold. Subsequently, we
calculate the variance of each step’s state St by the agent. If the variance is in a different
order of magnitude than the threshold, the reward for this step is set to negative, and the
current episode is terminated. This ensures that the segmenting termination point aligns
with a completion of the cryptographic algorithm.

5.2 Envelope-based Feature Enhancement
Due to the noise in the original power traces, it is common to apply filtering before analysis.
Figure 18 shows the result of applying a low-pass filter to the power trace of ASIC Y.
However, some segmentation features of the trace, such as sharp spikes, may overlap in
frequency with the noise signal. If the cutoff frequency of the filter is lowered further, it
will weaken the segmentation features, as depicted by the red curve in Figure 19. If the
cutoff frequency of the filter is not reduced, it will lead to the trace still being influenced

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 21

0 0.5 1 1.5 2 2.5 3

106

-40
-20

0
20
40

V
ol

ta
ge

2.44 2.445 2.45 2.455 2.46

106

-40
-20

0
20
40

V
ol

ta
ge

(a) RSA on SAKURA-G

0 1 2 3 4 5 6

105

-0.2

0

0.2

0.4

5.09 5.095 5.1 5.105 5.11 5.115 5.12 5.125

105

-0.2

0

0.2

0.4

(b) RSA on smart card

Figure 17: Performing segmentation without variance threshold

by noise, making it difficult to determine lbase and causing the state space to increase.
Consequently, the agent would need to expend a considerable amount of time gathering
experience. To remove noise signals while preserving segmentation features and enhancing
the learning speed of the agent, we employ a peak detection method to extract the lower
envelope of the trace. This involves specifying a window size and sliding it forward with a
fixed step size. The local minima within the window are selected as target points on the
envelope, and the curve between these points is interpolated using a third-order B-spline
interpolation method to make it as long as the filtered trace. The resulting envelope is
depicted by the blue curve in Figure 19.

0 2 4 6 8 10 12 14

105

20
40
60
80

100
120
140

V
ol

ta
ge

0.95 1 1.05 1.1

105

60

80

100

120

V
ol

ta
ge

Figure 18: Power trace of RSA decryption on ASIC Y

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07

105

100

110

120

130

140

150

V
ol

ta
ge

Filtered trace
Envelope of the filtered trace
Trace after reducing the filtering frequency

Figure 19: Comparison of envelope and low pass filtering frequencies

22 SPA-GPT: General Pulse Tailor for Simple Power Analysis

5.3 Fine-tuning Method
In order to provide more accurate trace segment for subsequent analysis, we fine tune the
segmentation results. We use a specific segmentation point as a “Pole”, and allow the
remaining segmentation points to slide within a certain time range to align their vertical
coordinates with the “Pole” as closely as possible. If it is not possible to adjust the points
to the same voltage within an appropriate range, the segmentation points are kept in their
original positions, as illustrated in Figure 20.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

0

0.2

0.4

0.6

0.8

1

V
ol

ta
ge

× ×

×

×
Stay here

Pole

Figure 20: Adjustment rules for segmentation points during fine-tuning process

After preprocessing, some traces may lose leakage information, which can impact feature
extraction. Therefore, it is necessary to map the segmented results of the preprocessed traces
back to the original traces. However, the envelope method can expand the segmentable
range, leading to deviations in the positions of the mapped segmentation points on its
original trace. Similarly, fine-tuning method are required to rectify these deviations.

6 Evaluation of Enhanced SPA-GPT
In this section, we evaluate Enhanced SPA-GPT on the traces of ECC on smart card,
RSA on smart card, RSA on ASIC Y, STM32F429, and ECC on AT89S52. The detailed
processes of the last two experiments are presented in the appendix B and C.

6.1 Experimental Validation of the Enhanced Environment
We applied the assigning the segments into two sets method from the enhanced environment
to the power traces of ECC on smart card, ECC on AT89S52, and RSA on STM32F429.
Additionally, we applied the whole improvements from the enhanced environment to
segment the power trace of RSA on smart card.

6.1.1 Software ECC on smart card

The ECC decryption is running on a smart card, and the power trace we collected are
shown in Figure 21. After zooming in on a local region of this trace, we initially speculate
that the downward spikes serve as segmentation feature between two operations. Moreover,
segmenting it based on these feature reveals two distinct categories of trace segments with
noticeable differences.

Figure 22(a) illustrates the experimental results without using clustering algorithm
for reassignment. In this case, the environment predominantly assigns most of the trace
segments to the same set, resulting in suboptimal segmentation. Figure 22(b) presents
the results after incorporating the clustering reassignment mechanism. To attain higher
rewards, the agent selects segmentation points within the region of the spikes, thereby

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 23

0 2 4 6 8 10 12

104

-0.4

-0.2

0

0.2
V

ol
ta

ge

0 1000 2000 3000 4000 5000 6000
-0.4

-0.2

0

0.2

V
ol

ta
ge

Gussing Difference Peaks

Figure 21: Power trace of ECC decryption on smart card

reducing the euclidean distance between trace segments within the same set and increasing
the differentiation between different sets.

8.65 8.7 8.75 8.8 8.85 8.9 8.95

104

-0.4

-0.2

0

0.2

V
ol

ta
ge

8.65 8.7 8.75 8.8 8.85 8.9 8.95

104

-0.4

-0.2

0

0.2

V
ol

ta
ge

Miss Point

(a) Without segments reassignment method8.65 8.7 8.75 8.8 8.85 8.9 8.95

104

-0.4

-0.2

0

0.2

V
ol

ta
ge

8.65 8.7 8.75 8.8 8.85 8.9 8.95

104

-0.4

-0.2

0

0.2

V
ol

ta
ge

Miss Points

(b) With segments reassignment method

Figure 22: Comparison of segmentation results with and without segments reassignment
method

The complete segmentation and operations recovery result for this trace are shown in
Figure 23. The black segments represent doubling point operations, the blue ones indicate
point addition operations, and the gray portions represent redundant parts. The number
of trace segments falls within a reasonable range, and the entire operation sequence is
correctly recovered.

Figure 23: Power trace segmentation and operations recovery result of ECC on smart card

24 SPA-GPT: General Pulse Tailor for Simple Power Analysis

6.1.2 Co-design RSA on smart card

We have implemented the RSA decryption based on Montgomery modular exponentiation
on the smart card platform, and the power trace generated during its execution are shown
in Figure 24. Upon zooming in, we observed that the large upward spikes can serve as
indicators for segmenting, and the features within the yellow boxes in the figure can be
utilized to distinguish between the two types of operations. However, due to the redundancy
in this trace and the inability to use euclidean distance threshold to accurately terminate
the segmentation, we used the variance threshold to identify redundant portion at the end.

0 1 2 3 4 5

105

-0.2

0

0.2

0.4

V
ol

ta
ge

0 1000 2000 3000 4000 5000 6000
-0.2

0

0.2

0.4

V
ol

ta
ge

Leakages
Peaks

Figure 24: Power trace of RSA decryption on smart card

During the segmentation process, the leakage positions identified using the SOST
method are shown in Figure 25. Based on this leakage interval, we perform the reassignment
of trace segments.

0 50 100 150 200 250 300 350 400 450

0

0.2

0.4

V
ol

ta
ge

0 50 100 150 200 250 300 350 400 450
0

5

10

SO
ST

 V
al

ue

104

Figure 25: Result of SOST method obtained during the segmentation process

We obtained the segmentation and operation sequence recovery results as shown in
Figure 26. The black segments represent the segments corresponding to square operations,
the blue ones represent the segments corresponding to multiplication operations, the
red ones represent correctly segmented but incorrectly recovered operations, the gray
portion represents redundancy. Through segmentation, we achieved an operations recovery
accuracy of 99.6%, excluding the last two operations caused by Montgomery reduction,
which can be handled as a special case during the key recovery phase. From this figure, it
can be observed that the leakage positions of the incorrectly recovered trace segments are
different from the others. We speculate that this discrepancy may be due to the electrical
characteristics of the smart card.

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 25

4

2

0

?l

o

o

o

a
B
e
:u
o
>

� 0.4

监o.2f 11 l I 11 11 11 11 I 1 o
> 0

-0.2 I
户1 平日U吓比吓矿示沪示片了示，

-0.
0 500 1000 1500 2000

米 米

1.55 1.555 1.56 1.565 1.57

X 10 5

，

5.075 5.08 ► 5.085 5.09

Termination Point
5.095

x10 5

Figure 26: Power trace segmentation and operations recovery result of RSA on smart card

6.2 Experimental Validation of the Envelope-based Feature Enhance-
ment

We collected a power trace of ASIC Y running the RSA and used the envelope-based
feature enhancement method to perform the segmentation. In this case, we specified that
all trace segments were assigned to the same set. After obtaining the segmentation points
of the operations, we mapped these points back to the original power trace, resulting in
Figure 27. The number of trace segments obtained after running this method is valid. But,
this trace does not exhibit obvious leakage, making it difficult to effectively distinguish
between operation categories. Nonetheless, the individual operations differentiated using
this method can still be useful for assisting subsequent analysis.

Figure 27: Power trace segmentation and mapping result of RSA on ASIC Y

6.3 Experimental Validation of the Fine Tuning
We applied the fine-tuning method to the segmentation results of all power traces, achieving
similar results as shown in Figure 28(a). The left figure displays the original segmentation,
while the right figure shows the results after fine-tuning. As shown in Figure 28(b),

26 SPA-GPT: General Pulse Tailor for Simple Power Analysis

fine-tuning method effectively improves the issue of segmentation point position offset
that arises when mapping the segmentation points back to the original trace. It can be
observed that after fine-tuning, the noise parts outside of the leakage are reduced, which
is beneficial for subsequent analysis. However, it is worth noting that for the trace of
RSA-CRT on USB Key, which have significant amplitude variations, fine-tuning is not
suitable. This can result in the issue depicted in Figure 28(c), where the segmentation
points fail to get a complete trace segment.

0 0.5 1 1.5 2 2.5 3

106

-50

0

50

V
ol

ta
ge

0 0.5 1 1.5 2 2.5 3

106

-50

0

50

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-50

0

50

V
ol

ta
ge

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-50

0

50

(a) RSA on SAKURA-G

0 2 4 6 8 10 12 14

105

50

100

150

V
ol

ta
ge

0 2 4 6 8 10 12 14

105

50

100

150

0 5000 10000 15000

50

100

150

V
ol

ta
ge

0 5000 10000 15000

50

100

150

(b) RSA on ASIC Y

0 0.5 1 1.5 2 2.5 3

105

-0.5

0

0.5

V
o
lta

g
e

0 0.5 1 1.5 2 2.5 3

105

-0.5

0

0.5

6000 6500 7000 7500 8000 8500 9000 9500 10000
-0.5

0

0.5

V
o
lta

g
e

6000 6500 7000 7500 8000 8500 9000 9500 10000
-0.5

0

0.5 Miss PointsOriginal Points

(c) RSA-CRT on USB Key

Figure 28: Segmentation results after processing with fine-tuning method

6.4 Summary of Experimental Results
We summarized all experimental results in Table 3. When there is clear periodicity
and minimal variation between different trace segments, the segmentation task can be
effectively accomplished using Basic SPA-GPT. However, when leakage is present and
operations can be divided into two categories, employing the enhancement methods in
Enhanced SPA-GPT can yield higher-quality segmentation results. This allows for both
the completion of the segmentation task and the recovery of the private key operation
sequence.

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 27

Table 3: Experimental Results

Trace Equidistant Findpeak Peakdistance Basic
SPA-GPT

Enhanced
SPA-GPT a

RSA on smart card Fail Success Success Success Success
(Accop : 99.6%)

RSA on AISC X Fail Success Success Success NULL

RSA on SAKURA-G Fail Fail Success Success NULL

RSA (random delay)
on SAKURA-G Fail Fail Success Success NULL

RSA on ASIC Y Fail Fail Success Fail Success

RSA on STM32F429 Fail Fail Fail Fail Success
(Accop : 100%)

RSA-CRT on USB Key Fail Fail Fail Success NULL

ECC on AT89S52 Fail Fail Fail Fail Success
(Accop : 100%)

ECC on smart card Fail Fail Success Fail Success
(Accop : 100%)

aAccop represents the average accuracy for recovering operations using assigning the segments into two
sets method from the enhanced environment in Enhanced SPA-GPT.

7 Conclusion and Discussion
When collecting power traces of an unknown device, if the key length is known, our method
can be used for preliminary analysis. Thanks to advancements in artificial intelligence
algorithms and the improvement of computational resources, the agent in reinforcement
learning can discover more diverse segmentation approaches than manual experience.
This provides additional insights for subsequent analysis. In combination with horizontal
analysis, our method can directly yield the operation sequence corresponding to the private
key. This approach demonstrates strong robustness and performs well on many traces,
making it applicable to most of power traces from general cryptographic devices.

Currently, this work is only applied to power traces of public-key algorithms, but it is
also applicable to traces of block ciphers. Researchers in this community can customize
the environment to better adapt to the target traces. This can be done by modifying
rewards, adding state features, or selecting clustering algorithms that better suit the
dataset distribution. This method calculates the action range and threshold automatically.
However, if the sizes of individual segments are known, one can manually calculate the
action range and threshold to further improve the segmentation efficiency. For some traces,
the segmentable range may be larger, and the agent may choose points within the action
range that are not suitable as segmentation points. But, it can still receive high rewards.
To improve the segmentation results for such traces, better preprocessing methods are
required.

In the future, we plan to develop a visualization tool based on this method to demon-
strate the agent’s segmentation process. This tool will greatly enhance the efficiency of
analyzing public-key algorithms.

References
[AK22] Anil Berk Altuner and Zeynep Hilal Kilimci. A novel deep reinforcement

learning based stock price prediction using knowledge graph and community

28 SPA-GPT: General Pulse Tailor for Simple Power Analysis

aware sentiments. Turkish J. Electr. Eng. Comput. Sci., 30(4):1506–1524,
2022.

[BBGV16] Arthur Beckers, Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede.
Design and implementation of a waveform-matching based triggering system.
In François-Xavier Standaert and Elisabeth Oswald, editors, Constructive Side-
Channel Analysis and Secure Design - 7th International Workshop, COSADE
2016, Graz, Austria, April 14-15, 2016, Revised Selected Papers, volume 9689
of Lecture Notes in Computer Science, pages 184–198. Springer, 2016.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th Inter-
national Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer,
2004.

[BG98] Suresh Balakrishnama and Aravind Ganapathiraju. Linear discriminant
analysis-a brief tutorial. Institute for Signal and information Processing,
18(1998):1–8, 1998.

[Bog07] Andrey Bogdanov. Improved side-channel collision attacks on AES. In
Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas
in Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada,
August 16-17, 2007, Revised Selected Papers, volume 4876 of Lecture Notes in
Computer Science, pages 84–95. Springer, 2007.

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and
Vincent Verneuil. Horizontal correlation analysis on exponentiation. In Miguel
Soriano, Sihan Qing, and Javier López, editors, Information and Commu-
nications Security - 12th International Conference, ICICS 2010, Barcelona,
Spain, December 15-17, 2010. Proceedings, volume 6476 of Lecture Notes in
Computer Science, pages 46–61. Springer, 2010.

[CLH19] Valence Cristiani, Maxime Lecomte, and Thomas Hiscock. A bit-level approach
to side channel based disassembling. In Sonia Belaïd and Tim Güneysu,
editors, Smart Card Research and Advanced Applications - 18th International
Conference, CARDIS 2019, Prague, Czech Republic, November 11-13, 2019,
Revised Selected Papers, volume 11833 of Lecture Notes in Computer Science,
pages 143–158. Springer, 2019.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for
elliptic curve cryptosystems. In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume
1717 of Lecture Notes in Computer Science, pages 292–302. Springer, 1999.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Bur-
ton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
information analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2008, 10th International

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 29

Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings, volume
5154 of Lecture Notes in Computer Science, pages 426–442. Springer, 2008.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, volume 7, pages 115–136, 2011.

[GV10] Christophe Giraud and Vincent Verneuil. Atomicity improvement for elliptic
curve scalar multiplication. CoRR, abs/1002.4569, 2010.

[HIM+13] Johann Heyszl, Andreas Ibing, Stefan Mangard, Fabrizio De Santis, and
Georg Sigl. Clustering algorithms for non-profiled single-execution attacks on
exponentiations. In Aurélien Francillon and Pankaj Rohatgi, editors, Smart
Card Research and Advanced Applications - 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected
Papers, volume 8419 of Lecture Notes in Computer Science, pages 79–93.
Springer, 2013.

[HMH+12] Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic Stumpf, and Georg
Sigl. Localized electromagnetic analysis of cryptographic implementations.
In Orr Dunkelman, editor, Topics in Cryptology - CT-RSA 2012 - The
Cryptographers’ Track at the RSA Conference 2012, San Francisco, CA, USA,
February 27 - March 2, 2012. Proceedings, volume 7178 of Lecture Notes in
Computer Science, pages 231–244. Springer, 2012.

[ISO12] ISO. ISO/IEC 19790: Information Security Management Systems – Require-
ments. ISO/IEC Standard 19790, International Organization for Standardiza-
tion, 2012.

[ISO15] ISO. ISO/IEC 30104: Information technology — Security techniques —
Security requirements for cryptographic modules. ISO/IEC Standard 30104,
International Organization for Standardization, 2015.

[ISO16] ISO. ISO/IEC 17825: Information technology — Security techniques —
Testing methods for the mitigation of non-invasive attack classes against cryp-
tographic modulese. ISO/IEC Standard 1782590, International Organization
for Standardization, 2016.

[JY02] Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 291–302. Springer, 2002.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[Mat97] Maja J. Mataric. Reinforcement learning in the multi-robot domain. Auton.
Robots, 4(1):73–83, 1997.

30 SPA-GPT: General Pulse Tailor for Simple Power Analysis

[MDS99] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Power analysis
attacks of modular exponentiation in smartcards. In Çetin Kaya Koç and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems, First
International Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999,
Proceedings, volume 1717 of Lecture Notes in Computer Science, pages 144–157.
Springer, 1999.

[Mil85] Victor S Miller. Use of elliptic curves in cryptography. In Conference on the
theory and application of cryptographic techniques, pages 417–426. Springer,
1985.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nat., 518(7540):529–533, 2015.

[New23] NewAE. Tutorial P1 Using a Custom Trigger. https://wiki.newae.com/
Tutorial_P1_Using_a_Custom_Trigger, 2023. Accessed: 2023-05-29.

[PC15] Guilherme Perin and Lukasz Chmielewski. A semi-parametric approach for
side-channel attacks on protected RSA implementations. In Naofumi Homma
and Marcel Medwed, editors, Smart Card Research and Advanced Applications
- 14th International Conference, CARDIS 2015, Bochum, Germany, November
4-6, 2015. Revised Selected Papers, volume 9514 of Lecture Notes in Computer
Science, pages 34–53. Springer, 2015.

[PCBP21] Guilherme Perin, Lukasz Chmielewski, Lejla Batina, and Stjepan Picek. Keep
it unsupervised: Horizontal attacks meet deep learning. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(1):343–372, 2021.

[PSM20] Zhixin Pan, Jennifer Sheldon, and Prabhat Mishra. Test generation using
reinforcement learning for delay-based side-channel analysis. In IEEE/ACM
International Conference On Computer Aided Design, ICCAD 2020, San
Diego, CA, USA, November 2-5, 2020, pages 109:1–109:7. IEEE, 2020.

[RAD20] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. SCARL: side-
channel analysis with reinforcement learning on the ascon authenticated
cipher. CoRR, abs/2006.03995, 2020.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforce-
ment learning for hyperparameter tuning in deep learning-based side-channel
analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):677–707, 2021.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An intro-
duction. IEEE Trans. Neural Networks, 9(5):1054–1054, 1998.

https://wiki.newae.com/Tutorial_P1_Using_a_Custom_Trigger
https://wiki.newae.com/Tutorial_P1_Using_a_Custom_Trigger

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 31

[SHKS15] Robert Specht, Johann Heyszl, Martin Kleinsteuber, and Georg Sigl. Improv-
ing non-profiled attacks on exponentiations based on clustering and extracting
leakage from multi-channel high-resolution EM measurements. In Stefan Man-
gard and Axel Y. Poschmann, editors, Constructive Side-Channel Analysis
and Secure Design - 6th International Workshop, COSADE 2015, Berlin,
Germany, April 13-14, 2015. Revised Selected Papers, volume 9064 of Lecture
Notes in Computer Science, pages 3–19. Springer, 2015.

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nat., 529(7587):484–
489, 2016.

[SQAS16] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. In Yoshua Bengio and Yann LeCun, editors, 4th Interna-
tional Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[UAE93] Michael Unser, Akram Aldroubi, and Murray Eden. B-spline signal processing.
i. theory. IEEE Trans. Signal Process., 41(2):821–833, 1993.

[vWWB11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker. Improv-
ing differential power analysis by elastic alignment. In Aggelos Kiayias, editor,
Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA
Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings,
volume 6558 of Lecture Notes in Computer Science, pages 104–119. Springer,
2011.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8:279–292, 1992.

[WHW+22] An Wang, Shulin He, Congming Wei, Shaofei Sun, Yaoling Ding, and Jiayao
Wang. Using convolutional neural network to redress outliers in clustering
based side-channel analysis on cryptosystem. In Meikang Qiu, Zhihui Lu, and
Cheng Zhang, editors, Smart Computing and Communication - 7th Interna-
tional Conference, SmartCom 2022, New York City, NY, USA, November
18-20, 2022, Proceedings, volume 13828 of Lecture Notes in Computer Science,
pages 360–370. Springer, 2022.

A Using Basic SPA-GPT to segment the power trace of
RSA on AISC X

We collected the power traces during the execution of RSA on ASIC X, which was
designed in a certain laboratory. After preprocessing steps such as alignment and averaging
(detailed processing methods are described in trace database), we obtained the trace shown
in Figure 29. Upon zooming in on the trace, we can observe regular variations of sharp
peaks. However, the amplitude of these peaks gradually decreases. The yellow boxes
indicate the speculated operation distinguishing features.

After applying our method to segment the trace, we obtained the result shown in Figure
30. Upon zooming in on the segmented regions, we can observe that the segmentation of
each trace segment is accurate. Furthermore, we can distinguish the difference between

32 SPA-GPT: General Pulse Tailor for Simple Power Analysis

0 1 2 3 4 5 6 7 8

105

-0.05

0

0.05

0.1
vo

lta
ge

0 500 1000 1500 2000 2500 3000 3500
-0.05

0

0.05

0.1

vo
lta

ge

6.63 6.635 6.64 6.645 6.65 6.655 6.66 6.665 6.67 6.675

105

-0.05

0

0.05

0.1

PeaksPeaks

Figure 29: Power trace of RSA decryption on ASIC X

the trace segments corresponding to “S” and “M”. Through horizontal analysis, we can
fully recover the correct private key.

0 1 2 3 4 5 6 7 8

105

-0.05

0

0.05

0.1

V
ol

ta
ge

0 500 1000 1500 2000 2500 3000
-0.05

0

0.05

0.1

V
ol

ta
ge

3.635 3.64 3.645 3.65 3.655 3.66 3.665

105
6.64 6.65 6.66 6.67

105

S M S M S M

Figure 30: Power trace segmentation result of RSA on ASIC X

B Using Enhanced SPA-GPT to segment the power trace
of ECC on AT89S52

We have implemented ECC decryption on the AT89S52 platform, and the power trace
generated during the algorithm execution are shown in Figure 31. After zooming in on
the power trace, we can observe periodic segments and a clear termination point. Among
them, the double operation exhibits a downward spike (represented by “D”), while the add
operation displays two downward spikes (represented by “A”). Additionally, the length of
the trace segments corresponding to these two operations differs. The segmentation and
operations recovery results are shown in Figure 32. The black trace segments represent
double operations, the blue ones represent add operations, and the gray portion represent
redundant parts. The segmentation result align with the individual operations, and the
segments classification is completely accurate. This demonstrates that our method can
correctly segment traces with differences in segment lengths.

C Using Enhanced SPA-GPT to segment the power trace
of RSA on STM32F429

We have implemented RSA decryption based on Montgomery modular exponentiation
on the STM32F429 target board, and the power trace generated during the algorithm
execution is shown in Figure 33. After zooming in on the power trace, it is evident that
there are noticeable differences between the modular square operation and the modular

Z Wang, Y Ding, A Wang∗, Y Zhang, C Wei, S Sun and L Zhu 33

0 0.5 1 1.5 2 2.5 3 3.5

104

-100

0

100
V

ol
ta

ge

0 500 1000 1500 2000 2500
-100

0

100

V
ol

ta
ge

 D A

Peaks

Figure 31: Power trace of ECC decryption on AT89S52

Figure 32: Power trace segmentation and operations recovery result of ECC on AT89S52

multiplication operation. The modular square operation exhibits lower spikes, while the
modular multiplication operation displays higher spikes.

After applying our method, the segmentation and operations recovery results are
depicted in Figure 34. Each operation corresponds to the interval between two segmentation
points. The black segments represent modular square operations, the blue ones represent
modular multiplication operations, and the gray regions indicate redundant parts. Except
for the last segment caused by Montgomery reduction operation (after the termination
point), we have correctly recovered all operations. However, due to the significant amplitude
variation in this trace, during fine-tuning, the segmentation point crosses an operation as
it adjusts towards the “pole”, as illustrated in the Figure 35. So, fine-tuning is not suitable
in this scenario.

0 0.5 1 1.5 2 2.5 3 3.5 4

105

-0.2

0

0.2

0.4

V
ol

ta
ge

0 5000 10000 15000
-0.2

0

0.2

0.4

V
ol

ta
ge

S

M

Figure 33: Power trace of RSA decryption on STM32F429

34 SPA-GPT: General Pulse Tailor for Simple Power Analysis

Figure 34: Power trace segmentation and operations recovery result of RSA on STM32F429

0 0.5 1 1.5 2 2.5 3 3.5 4

105

-0.2

0

0.2

0.4

V
ol

ta
ge

0 0.5 1 1.5 2 2.5 3 3.5 4

105

-0.2

0

0.2

0.4

1.52 1.54 1.56 1.58 1.6 1.62 1.64 1.66

104

-0.2

0

0.2

0.4

V
ol

ta
ge

1.52 1.54 1.56 1.58 1.6 1.62 1.64 1.66

104

-0.2

0

0.2

0.4
Original Points Miss Points

Figure 35: Segmentation results of power trace of RSA on STM32F429 after processing
with fine-tuning method

	Introduction
	Preliminary
	Brief Description of SPA on Public-key Algorithms
	Reinforcement Learning

	Basic SPA-GPT
	Method
	Elements' Details of DQN

	Evaluation of Basic SPA-GPT
	Evaluation on Different Platforms
	Learning Process of The Agent

	Enhanced SPA-GPT
	Enhanced Environment
	Envelope-based Feature Enhancement
	Fine-tuning Method

	Evaluation of Enhanced SPA-GPT
	Experimental Validation of the Enhanced Environment
	Experimental Validation of the Envelope-based Feature Enhancement
	Experimental Validation of the Fine Tuning
	Summary of Experimental Results

	Conclusion and Discussion
	Using Basic SPA-GPT to segment the power trace of RSA on AISC X
	Using Enhanced SPA-GPT to segment the power trace of ECC on AT89S52
	Using Enhanced SPA-GPT to segment the power trace of RSA on STM32F429

