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Abstract
We present staircase attack, the first attack on the incentive
mechanism of the Proof-of-Stake (PoS) protocol used in the
Ethereum 2.0 beacon chain. Our attack targets the penalty of
the incentive mechanism that penalizes inactive participation.
Our attack can make honest validators suffer from penalties,
even if they strictly follow the specifications of the protocol.
We show both theoretically and experimentally that if the
adversary controls 29.6% stake in a moderate-size system, the
attack can be launched continuously, so eventually all honest
validators will lose their incentives. In contrast, the adversarial
validators can still receive incentives, and the stake owned by
the adversary can eventually exceed the 1/3 threshold (system
assumption), posing a threat to the security properties of the
system.

In practice, the attack feasibility is directly related to
two parameters: the number of validators and the parame-
ter MAX_ATTESTATIONS, the maximum number of attestations
(i.e., votes) that can be included in each block. We further
modify our attack such that, with the current system setup
(850,000 validators and MAX_ATTESTATIONS =128), our attack
can be launched continuously with a probability of 80.25%.
As a result, the incentives any honest validator receives are
only 28.9% of its fair share.

1 Introduction

Ethereum [43], one of the most popular blockchain systems,
upgraded to 2.0 in Sep 2022. The system now uses a Proof-
of-Stake (PoS) protocol called Gasper as its core consensus
scheme [11], a Byzantine fault-tolerant (BFT) protocol that
tolerates Byzantine failures (i.e., arbitrary failures). Different
from conventional BFT protocols [12, 14–16, 22, 23, 46, 47]
that assume the adversary does not control over one-third of
nodes (also called validators) or Nakamoto consensus (the
consensus protocol of Bitcoin and Ethereum 1.0) that assumes
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the adversary does not control over 50% computational power,
PoS assumes that the adversary does not control more than
one-third of the total stake, where stake, in general, refers to
the account balance of the validators.

The PoS protocol of Ethereum assumes a partially syn-
chronous network [17], where there exists an unknown upper
bound for message processing and transmission. The protocol
is a combination of Casper friendly finality gadget (FFG) [10]
and a variant of the GHOST fork-choice rule [38] called
Hybrid Latest Message Driven Greedy Heaviest-Observed
Sub-Tree (HLMD GHOST). The protocol is epoch-based, and
there are many slots in each epoch, divided by physical clocks.
In each epoch, HLMD GHOST selects the canonical chain
based on the received block proposals. Informally speaking,
an honest block proposer will extend the canonical chain when
creating a new block, and an honest validator only votes for
blocks on the canonical chain (so the system is somewhat
live). Additionally, Casper is a gadget that essentially counts
the number of votes (also called attestations) so eventually
some blocks are finalized and honest validators will finalize
the same chain (so the system is safe).

Almost all PoS protocols [11, 21, 25] make an implicit as-
sumption similar to conventional BFT: all honest validators
are always online, and the system cannot support an unknown
number of validators that may go to sleep [34]. This is in
sharp contrast to the Nakamoto consensus. While some aca-
demic efforts have been made to study PoS in the sleepy
model [4, 29], Ethereum utilizes the incentive mechanism
to encourage validators to stay online. The incentive mech-
anism for attestations consists of rewards and penalties. In
particular, validators whose attestations are finalized on-chain
will receive rewards, and validators whose attestations are
not finalized on-chain for a sufficiently long period of time
will suffer from penalties➀. The incentive mechanism has
been very successful in practice. According to the report pro-

➀Note that penalties are different from slashing conditions [10]. Slashing
conditions aim to penalize malicious behaviors such as equivocation, e.g., a
validator votes for blocks from two conflicting branches. In contrast, penalties
discourage inactive participation where validators do not vote.
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vided by rated.network, the participation rate of Ethereum has
reached 99.6%➀. Indeed, validators are incentivized to make
the system both safe and live so they can continue gaining
rewards from the blockchain.

An attack on the attestation incentive mechanism. We
present for the first time an attack on the incentive mechanism
of Ethereum PoS, and we call it staircase attack➁. Our work
focuses on the rewards and penalties for attestations only, so
we use attestation incentives to denote the incentive mech-
anism we study in this paper. Our attack can be launched
even if the network is synchronous, i.e., there exists a known
upper bound for message transmission and processing. The
goal of our attack is to force honest validators to be penalized,
even if they strictly follow the specifications of the protocol.
We begin with a warm-up attack where a single Byzantine
validator, upon some opportune epoch, is able to make some
honest validators suffer from penalties without any cost. We
then extend the attack to a scenario where Byzantine valida-
tors controlling 29.6% of the total stake may collude. After
an opportune epoch, the Byzantine validators can make half
of the honest validators suffer from penalties in every epoch.
As a result, eventually, all honest validators will lose their in-
centives. Meanwhile, none of the Byzantine validators suffer
from any penalties at all. The consequence of our attack is
thus the same as discouragement attack [9]: the fraction of the
stake controlled by the adversary may continue to increase,
posing safety threats. However, [9] only briefly mentions the
concept and does not provide the attack strategies. Therefore,
we consider our attack the first concrete instantiation of a
discouragement attack.

Our attack utilizes a parameter used in both HLMD GHOST
and Casper called the last justified checkpoint LJ. In Ethereum
PoS, Casper updates the LJ parameter, and HLMD GHOST
determines the canonical chain based on the LJ parameter.
The design of Ethereum PoS identifies the LJ parameter as
a frozen parameter that is not supposed to change within an
epoch. However, as Byzantine validators may withhold their
blocks (and attestations) and release them at any time, an
honest validator might update LJ in the middle of an epoch.
We show that by deliberately packing the attestations from
all Byzantine validators into one block and withholding such
a block, the honest validators always change their LJ in the
middle of an epoch. As a result, the canonical chain (output
by HLMD GHOST) may switch from an old branch to a new
one. Thus, attestations from honest validators included in the
old branch will be discarded and the corresponding honest
validators will be penalized.

Evaluation of the attack. We implement our attack using an
Ethereum implementation Prysm and conduct experiments
using 1,000 validators. Our experimental results match our

➀Data source (accessed in Oct 2023): https://www.rated.network/
➁We call it staircase attack because the branches the adversary constructs

in the attack look like a staircase (see Figure. 8).

theoretical analysis: if the adversary controls 29.6% valida-
tors, all honest validators lose their incentives. As the fraction
of stake controlled by the adversary grows, honest validators
may suffer from stake loss. For instance, if the adversary con-
trols 33.3% stake, all honest validators are expected to suffer
from a 20% stake loss compared to their fair share.
Attack feasibility and insights. Ethereum has over 850,000
validators as of Oct 2023. When demonstrating the feasi-
bility of our attack in such a large-scale system, we find a
somewhat surprising result. Specifically, the feasibility of our
attack is related to two parameters: the number of validators
and the number of attestations each block can carry, i.e., the
MAX_ATTESTATIONS parameter. Based on the system setup of
Ethereum, if we fix the MAX_ATTESTATIONS parameter, our
attack can be launched for a system with fewer than 16,384
validators. Alternatively, for a system with 850,000 valida-
tors, the attack can be launched if the MAX_ATTESTATIONS
parameter is increased from 128 to 2,048.

We further modify our attack to accommodate the system
parameters of today’s Ethereum system. With the modifica-
tion, our attack can be continued in each epoch with a proba-
bility of 80.25%, given that the adversary controls 33% of the
total stake. As a result, the attestation incentives of an honest
validator become only 28.9% of the fair share. As the largest
mining pool today already controls 32.66% of the total stake➂,
our attack can cause discouragement to honest validators.

Responsible disclosure. For ethical reasons, we dis-
closed our findings to the Ethereum Foundation in
April 2023, and the development team has taken mea-
sures since then to mitigate the attack. With the miti-
gation, the probability of continuing the attack in each
epoch is significantly reduced. The modified version
will become effective in the next update of the system.
The communication and the mitigation can be found
at https://github.com/ethereum/consensus-s
pecs/pull/3339#issuecomment-1637117341.

Our attack and analysis show some interesting insights
that may lead to future research directions. First, the incen-
tive mechanism is usually considered an economic factor
in a system and has never been considered in the design of
Byzantine-fault tolerant consensus protocols [11]. However,
the attacks on the incentive mechanism may make the PoS
protocol violate its own assumption (i.e., the fraction of stake
controlled by the adversary) and the security goals. Indeed,
the stake of the adversary may exceed one-third of the total
stake so eventually the safety and liveness of the system might
be violated. Therefore, it is interesting to learn whether the
security properties regarding the incentive mechanism can be
considered in the design of the consensus protocols. Second,
in PoS protocols like Gasper used in Ethereum, the number

➂Data source rated.network (accessed in Oct 2023) : https://www.ra
ted.network/
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of attestations that can be included in each block proposal
is closely related to both the incentives of validators and the
security goals of the system. Such a counter-intuitive finding
shows that the value of the MAX_ATTESTATIONS parameter
(and its closely related parameters) is not an easy engineering
decision and should be set up carefully.

Our contributions. Our paper makes the following contribu-
tions.

• We propose staircase attack on the incentive mechanism of
Ethereum’s PoS protocol. We begin with an attack without
considering the number of validators and the value of the
MAX_ATTESTATIONS parameter. We show that when the
adversary controls at least 29.6% of the total stake, the
attack can be launched continuously and eventually make
all honest validators lose their incentives.
• We implement the attack using 1,000 validators. By con-

ducting each experiment for one day (225 epochs), we show
that an adversary controlling 29.6% stake makes all hon-
est validators lose their incentives; if an adversary controls
33% stake, all honest validators are expected to suffer from
a 20% of stake loss compared to their fair share.
• Our feasibility analysis shows that the number of val-

idators and the MAX_ATTESTATIONS parameter have a di-
rect impact on whether the attack can be continuously
launched. Based on today’s system setup of Ethereum,
our attack can be launched under the following two con-
ditions: the system has no more than 16,384 validators;
the MAX_ATTESTATIONS parameter is increased from 128
to 2,048. We further modify our attack such that with a
probability of 80.25%, the attack can be continued in the
next epoch and the expected attestation incentives of honest
validators become only 28.9% of their fair share.

2 Related Work

Identified attacks against Ethereum PoS only. Many efforts
have been made to analyze Ethereum PoS since Ethereum an-
nounced its plans to upgrade to 2.0, as summarized in Table 1.

Balancing attack. A balancing attack aims to split honest val-
idators into two parts, forcing them to vote for two conflicting
branches with the same weight. Consequently, both chains
can not be finalized and the system suffers from liveness is-
sues [29, 37]. Ethereum fixed the balancing attack [8] using a
proposal boosting mechanism [36]. In short, proposal boost-
ing is a "temporary" weight assigned to the block proposed
and received in the current slot. As the two branches do not
have the same weight, the situation created in the balancing
attack will not last forever. Later, it was shown that the bal-
ancing attack can be revised to bypass the proposal boosting
mechanism [30]. In the last balancing attack, the cost of the
adversary is that at least one Byzantine validator will suffer
from the slashing condition. According to the specification of

Ethereum, slashed validators will suffer from stake loss and
eventually be removed from the system.
Bouncing Attack. In a bouncing attack, checkpoints from two
branches are justified one after the other. As a result, the
canonical chain jumps from one chain to another and neither
branch can not be finalized, causing a liveness issue [28, 35].
Ethereum’s upgrade in March 2023 fixed all known bouncing
attacks [20]. Our attacks are designed based on the latest
specifications.
Reorg Attack. In reorg attacks [32, 37], the adversary re-
organizes the chain to increase the fraction of the blocks
from Byzantine validators on the canonical chain to gain
more profit [24, 44, 49], decrease the chain quality [33] and
lower the performance of the system. An interesting fact is
that the reorg attacks in [32, 37] are fixed by proposal boost-
ing mechanism [8]. It was later mentioned informally that the
proposal boosting mechanism does not fully address the issue
and a revised attack called sandwich attack is proposed [13].

In contrast, to the best of our knowledge, we present the first
work that attacks the incentive mechanism by making honest
validators suffer from penalties. Additionally, the adversary
does not suffer from the slashing conditions.

Identified attacks against PoS in general. We summarize
some identified attacks against PoS in general, some of which
are applicable to Ethereum PoS as well.
Nothing-at-stake attack. A nothing-at-stake attack refers to
the attack where an adversary is willing to contribute to mul-
tiple forks at no cost (as the validators in PoS do not have to
compete to propose or vote) [7, 25, 26]. The goal of nothing-
at-stake attacks is usually the liveness and the performance
of the system. The avalanche attack is an example to PoS
GHOST [30]. In the attack, it was shown that by deliberately
working on multiple forks at the same time, the canonical
chain consists of blocks only from the adversary, so the sys-
tem is not live anymore. Note that Ethereum does not suffer
from nothing-at-stake attack, as a validator that equivocates
(e.g., it votes for two conflicting blocks) will be slashed.
Long-range attack. In a long-range attack, the adversary first
acquires the secret keys of some validators after they withdraw
their stake (and leave the system). The adversary then revises
the blocks proposed previously and rewrites the history of
the blockchain. Many protocols are designed to prevent the
attack [2, 3, 25, 42, 45]. The Casper protocol [10] used in
Ethereum is a solution to the long-range attack.
Grinding attack. Most PoS protocols use pseudorandom func-
tions (e.g., verifiable random functions (VRF) [27]) to select
block proposers. The way the randomness is generated usu-
ally depends on the blocks in the canonical chain [41]. In
practice, the roles of the nodes might be learned in advance.
Accordingly, a validator eligible to propose a block can manip-
ulate the value of the randomness (and the validators eligible
to propose subsequently) [1, 7]. The goal is to improve the
adversary’s chances of being selected as a block proposer (to
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attack type scheme timing assumption target slashed∗ experimentally
confirmed

issue
fixed

balancing attacks
Neu, Tas, and Tse. [29]

synchrony liveness
✗ ✗ ✓

Schwarz-Schilling et al. [37] ✗ ✗ ✓
Neu, Tas, and Tse. [30] ✓ ✗ ✗

bouncing attacks Nakamura [28] partially synchrony liveness ✗
✗ ✓

Pavloff et al. [35] ✗ ✓

reorg attacks
Neuder et al. [32]

synchrony chain quality ✗
✗ ✓

Schwarz-Schilling et al. [37] ✗ ✓
D’Amato et al. [13] ✗ ✓

staircase attack Our work synchrony incentive ✗ ✓ ✗⋆

Table 1: Comparison of known attacks against Ethereum PoS. ∗Slashed denotes whether at least one Byzantine validator will be
slashed. According to the specification of Ethereum, slashed validators will suffer from stake loss and eventually be removed
from the system. ⋆The issue has been reported to the community.

gain extra profits or decrease the chain quality).
Selfish mining. Selfish mining is an attack first known in Proof-
of-Work (PoW) [18]. In selfish mining, a mining pool (with a
number of validators) may collude [48] and gain more revenue
than the fair share. Selfish mining attack was later found to
be feasible in some PoS protocol as well [5, 7, 19, 31]. To
the best of our knowledge, selfish mining attack has not been
identified in Ethereum.

3 Review of Ethereum Proof-of-Stake

In this section, we review the Proof-of-Stake (PoS) protocol
used by Ethereum 2.0 [11, 35]. Our notations largely follow
the specifications by Ethereum foundation [39].

3.1 System Model

Nodes that participate in the PoS protocol are called valida-
tors. To become a validator, one must deposit at least 32
ETH as an initial stake in its account. Each validator’s vot-
ing power is weighted by its stake. There are N validators
{v1,v2, · · · ,vN}, where N may change over time as validators
join and leave the system. Each validator holds a private/pub-
lic key pair, and it may be Byzantine and arbitrarily deviate
from the protocol. Non-faulty validators are called honest
validators. Ethereum PoS assumes that the stake controlled
by Byzantine validators is limited to less than one-third of the
total stake.

To facilitate the description of our attack and without loss
of generality, we assume that N does not change and each
validator is assumed to hold at least 32 ETH. In this way,
we normalize each validator’s balance to 1 unit [11]. This
enables us to tally the number of attestations instead of taking
into consideration the fractions of the validators’ balance.
Accordingly, let f be the number of Byzantine validators, we
assume f < N/3. We believe this assumption is reasonable as

according to the data from beaconcha.in, the average actual
balance of the validators is 32.13 ETH➀.

Ethereum PoS assumes that the network is partially syn-
chronous [17], i.e., there exists an unknown upper bound ∆

for message transmission and processing delay. However, our
attack can be launched even if the network is synchronous,
i.e., the value of ∆ is known to every validator.

3.2 Terminology and Notation

Ethereum PoS proceeds in epochs, and each epoch consists
of 32 slots. Given a slot number t, every validator is able to
obtain epoch number e←⌊ t

32⌋. Each slot lasts for 12 seconds
in the current production system. Within a slot, only a single
block can be proposed. A block b consists of the slot number,
a hash pointer to the parent block, a batch of transactions,
and a set of attestations (i.e., votes, to be described shortly).
Given a block b, the branch led by b is the path from b to
the genesis block (the first block of the blockchain history).
Each validator maintains a tree-based view about the blocks
proposed by the validators in the form of a block tree T . Ad-
ditionally, a checkpoint is a special type of block and there is
one checkpoint block per epoch. By default, the checkpoint
is the first block proposed in each epoch. If such a block does
not exist, the most recent preceding block becomes the check-
point. We use ep(b)← ⌊ t

32⌋, to denote the epoch number of
block b proposed in slot t.

Ethereum PoS consists of Hybrid Latest Message Driven
Greedy Heaviest-Observed Sub-Tree (HLMD GHOST) and
Casper FFG [11]. HLMD GHOST is a fork-choice rule that
recursively chooses the root of heaviest subtree and outputs
the leaf block as head. The chain led by head is also called
the canonical chain. Each honest validator will only vote for
the head of the canonical chain it is aware of or create a new

➀Data source (accessed in Oct 2023): https://www.beaconcha.in
/charts/average_balance
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block by extending the canonical chain. Additionally, Casper
FFG helps finalize the checkpoints, and once a checkpoint is
finalized, all the blocks on the chain led by the checkpoint are
finalized. As attestations are contained in blocks, we can also
say that the attestations are finalized on-chain.

Attestor and proposer. In each epoch, N validators are ran-
domly and evenly divided into 32 validator sets (determined
by the RANDAO protocol➀). Each validator set is allocated
for one slot of the epoch and validators (also called attestors)
in this set are allowed to vote. Additionally, in each slot, one
validator is randomly selected as the proposer, also according
to RANDAO. The proposer is the only validator that is allowed
to propose a block in the slot. Our work simply assumes RAN-
DAO is a pseudorandom function that randomly determines
the roles of the validators, i.e., the expected number of honest
attestors in each slot is (N− f )/32. Every validator is able to
determine its role in each slot of an epoch and verify the roles
of other validators one epoch in advance. A message from
validator vi is considered invalid if vi’s role is not verified.

Attestation. In Ethereum, a vote is also called an attestation.
An attestation (att) by validator vi consists of a slot number,
two checkpoints (source and target), and the hash of a block b.
We say att is an attestation for block b. By default, source is
vi’s last justified checkpoint (i.e., LJ, to be described shortly).
The target field is the highest checkpoint block in vi’s canoni-
cal chain. In practice, hashes of the checkpoints are included
in the attestation. In this paper, we use the checkpoints instead
for ease of understanding. Notably, the block b is the output
of the HLMD GHOST.

Justification and finalization. The justification and finaliza-
tion rules are defined in Casper for checkpoints only. Specifi-
cally, if attestations from more than two-thirds validators with
the same source and target are received, the target checkpoint
is justified. Additionally, if the descendant checkpoint of a
checkpoint cp is justified, cp becomes finalized. If cp is final-
ized, all the blocks on the chain led by cp are finalized and
the order of the finalized blocks will never be reversed.

Given a branch c in vi’s block tree T , we use V (c), J(c),
and C(c) to denote the number of attestations included in
chain c, the last justified checkpoint based on V (c), and the
highest checkpoint block in c, respectively. Given a block b
and a branch c led by b’s parent block, if the slot numbers of
b and b’s parent block indicate that b is from a new epoch,
LJ is updated to J(c). Ideally, LJ is updated at the beginning
of an epoch and is not changed during the epoch. In contrast,
J(c) is updated as V (c) is updated throughout the protocol.

Fork choice rule. The fork choice rule HLMD GHOST defines
the canonical chain and HLMD GHOST outputs the head of
the canonical chain. In particular, the block each attestor
votes for is the head of its canonical chain. Meanwhile, a
block proposer will extend the head of the canonical chain

➀RANDAO: https://github.com/randao/randao

when creating a new block b, i.e., by setting the hash pointer
of b as the hash of the head. Given a block tree T , the
canonical chain is defined as follows (an example is provided
in Figure. 1):
1. Prune any branch c ∈ T such that J(c) is lower than LJ.
Then calculate the weight of each block in the chain. Here,
weight is determined by the attestations. In particular, if
there exists an attestation for block b, the weight of b is
incremented by one.
2. Recursively calculate the sum of weights of each sub-
branch. The branch with the largest accumulative weight is
considered the heaviest subtree and becomes the canonical
chain.

4 5

10

1 2 1 3

0 22

1

2

1

11

1

1 2 1

block in canonical chain

pruned block

i
attestation with weight i 

vote for a block

Figure 1: Example of the fork choice rule HLMD GHOST.
Attestations are represented in dashed rounded rectangles and
blocks are represented in solid rectangles. The number shown
in each attestation denotes the weight of the attestation and
the number shown in each block denotes the weight of the
subtree. The rightmost branch is the canonical chain.

3.3 Workflow of Ethereum PoS

We summarize the workflow of Ethereum PoS in Figure. 2.
Each validator maintains three local parameters: the last jus-
tified checkpoint LJ, a set of received attestations Atts, and
the block tree T . In slot t, if vi is the proposer, it broadcasts a
(PROPOSE, t,vi,H(head),newatts, txs) message to all valida-
tors (lines 2-10). Here, head is the output of HLMD GHOST
and H(head) is the hash of head, serving as a hash pointer of
the parent block. The newatts consists of a set of attestations
vi has received. Given the canonical chain c, any attestation
that satisfies the following two requirements will be included
in newatts: 1) the attestation has not been included in c so
far; 2) the source is the same as LJ and the target is the same
as C(c). If vi is an attestor, it waits until 1/3 time of slot t
has elapsed (i.e., 4 seconds). Then, vi prepares an attestation
message (ATTEST, t,vi,H(head),LJ,C(c)) and sends it to all
validators, where LJ is the source, and the highest checkpoint
C(c) is the target (lines 11-16).

Upon receiving a block b from the proposer v j of slot t ′,
vi checks: 1) whether the epoch number of b is higher than
the epoch number of b’s parent block; 2) whether the epoch
number of J(c) is higher than LJ, where c is the branch led

5
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by b (line 21). If so, vi updates LJ to J(c). Validator vi then
processes the attestations included in b and updates its block
tree T , i.e., for each branch c ∈ T , update J(c), V (c), and
C(c) (lines 24-28). Last, if b is a block from the prior epoch
and ep(J(c))> ep(LJ), vi also updates its LJ (lines 30&31).

According to the finalization rules, before epoch e begins,
the epoch number of LJ of any validator (honest or not) is at
most e−2. Indeed, the rule of how checkpoints are finalized
is defined in Casper, inspired by the design of conventional
BFT protocols [40, 46].

3.4 The Attestation Incentive Mechanism
The incentive mechanism consists of rewards that encourage
active participation and penalties that discourage inactive
behavior [11, 39]. Validators with attestations finalized on-
chain will get rewards, and validators who do not have their
attestation finalized on-chain (after a sufficiently large number
of slots) will get penalties. Note that penalties differ from
the slashing conditions [11]: slashing conditions penalize
behaviors such as equivocation, while penalties only act on
inactive behavior. The slashing condition is also part of the
incentive mechanism of the system. We thus use attestation
incentives to denote rewards and penalties in this paper.

Generally speaking, the rewards and penalties of each val-
idator depend on its own stake, the total amount of stake, and
the corresponding attestation. For each validator vi, a base
reward Ibase is first decided, which is an equation of vi’s stake
and stake of all validators. Both rewards and penalties are then
calculated based on Ibase. The reward is R×WrIbase. Here, R
is the rewards scale with participation, which is related to
vi’s stake and the total stake of attestors who have their attes-
tations finalized on-chain. Wr is the weight determined by the
source, target, and block in the attestation. Additionally, the
penalty is WpIbase, where Wp is the weight determined by the
source and target of the attestation vi is supposed to send.

4 An Attack on the Incentive Mechanism

In this section, we present staircase attack, an attack on the
incentive mechanism of the Ethereum PoS protocol. The goal
of this attack is to make honest validators suffer from penal-
ties, even if the network is synchronous and honest validators
strictly follow the specification of the PoS protocol.

We begin with a warm-up attack where a single Byzantine
validator can make (N− f )/32 honest validators suffer from
penalties. We then extend the warm-up attack and show that
if Byzantine validators (owning 29.6% of the total stake) col-
lude, half of the honest validators will be penalized. After the
attack is started, it can be launched in every epoch. Eventu-
ally, all honest validators will lose their incentives. In contrast,
Byzantine validators do not suffer from any penalties. The
only cost is that the incentives Byzantine validators can obtain
during the attack are slightly lower than their fair share.

The Ethereum Protocol for Validator vi

global parameters: slot t
local parameters: block tree T , attestation set Atts, last justified
checkpoint LJ.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
01 upon slot t do
02 as the proposer for slot t
03 let head be the output of HLMD GHOST
04 let c be canonical chain
05 for each attestation att in Atts
06 if att is not included in c and

source of att is LJ and target of att is C(c) then
07 newatts← newatts∪{att}
08 obtain a batch of transactions txs from mempool
09 create block b =(PROPOSE, t,vi,H(head),newatts, txs)
10 send b to all validators
11 as the attestor for slot t
12 wait until 1/3 time of slot t has elapsed
13 let head be the output of HLMD GHOST
14 let c be canonical chain
15 create attestation att =(ATTEST, t,vi,H(head),LJ,C(c))
16 send att to all validators
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 upon receiving b = (PROPOSE, t ′,vi,H(head),newatts, txs) from
the proposer v j of slot t ′ do
18 T ← T ∪{b}
19 let c be the branch led by b
20 ▷ Update LJ (exploited by our warm-up attack)
21 if ep(b)> ep(head) and ep(J(c))> ep(LJ) then
22 LJ← J(c)
23 ▷ Update J(c)
24 for each att ∈ newatts
25 let tar be the target in att
26 V (c)[tar]←V (c)[tar]+1
27 if V (c)[tar]≥ 2N/3 and ep(tar)> ep(J(c)) then
28 J(c)← tar
29 ▷ Update LJ (exploited by our staircase attack)
30 if ep(b)< ⌊ t

32⌋ and ep(J(c))> ep(LJ) then
31 LJ← J(c)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 upon receiving attestation att (with message type (ATTEST)) from
validator v j of slot t ′ do
33 Atts← Atts∪{att}

Figure 2: The Ethereum PoS Protocol. Codes are shown for
validator vi. H() denotes the hash function.

We show in Figure. 3 the meaning of legends used in the
figures of this paper.

4.1 Overview of the Attack Methodology

Our attack exploits the fact that even if the network is syn-
chronous, LJ might still be changed in the middle of an epoch.
Indeed, honest validators may not necessarily have received
the blocks and attestations from Byzantine validators. Accord-
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Legend

attestations from honest validators with source lower 
than the checkpoint block of the previous epoch

a block proposed by a Byzantine validator that includes       

a block proposed by an honest validator that includes       

attestations included in the block

attestations from Byzantine validators with source as 
the checkpoint block of the previous epoch

a block proposed by an honest validator that includes        

a pruned block

a block that will be received at time t

a withheld and released block

attestations from honest validators with source as the 
checkpoint block of the previous epoch

discarded attestations 

Meaning

tt

Figure 3: The meaning of legends used in the figures of this
paper. Figures in this paper are best viewed in color.

ing to the PoS protocol, a validator vi updates LJ in two cases.
First, vi receives the first block in some epoch e such that J(c)
is higher than its LJ (lines 20-22 in Figure. 2). Second, al-
though vi already enters epoch e, it has received a sufficiently
large number of attestations for an epoch lower than e (e.g.,
included in the blocks withheld in previous epoch(s) and re-
leased in epoch e➀) such that J(c) is higher than its LJ (lines
29-31 in Figure. 2).

We illustrate three examples in Figure. 4 to show three
possible cases of a validator when it enters an epoch e. Be-
fore epoch e, LJ is set as cp, and attestations by all honest
validators in epoch e have target set as block 0.

• Case 1: LJ is updated upon receiving the first block of
an epoch. As shown in Figure. 4a, in epoch e, v1 receives
block 0 to block 31. The attestations of all honest validators
are included in the blocks. As attestations from all honest
validators are received, the condition V (c)[0] > 2N/3 is
satisfied so J(c) is updated to block 0. In epoch e+ 1, v1
receives block 32 in the first slot. As the epoch number of
J(c) is greater than LJ, LJ is updated as block 0 (line 21 in
Figure. 2).
• Case 2: LJ is not updated in an epoch. As shown in

Figure. 4b, v2 receives block 0 to block 31, but no blocks
have been received in epoch e+ 1. In this case, the LJ is
not updated.
• Case 3: LJ is updated in the middle of an epoch. As

shown in Figure. 4c, validator v3 has received block 0 to
block 16 in epoch e. In epoch e+1, v3 receives block 33,
the parent of which is block 16. Different from the case for
validator v1, v3 has not received 2N/3 attestations and J(c)
is still cp, where c is the chain led by block 33. Later in slot

➀Note that according to the design of the system, a block tagged with
epoch e′ where e′ < e can still be accepted by validator vi even if vi already
enters epoch e.

0 16 17 31 32... ...

LJ is updated to block 0
Time

epoch e epoch 1e

(a) v1 receives block 32, the first block in epoch e+1. v1 updates its
LJ to block 0.

0 16 17 31... ... LJ is not updated 

Time

epoch e epoch 1e

(b) v2 has not received any blocks in epoch e+1 yet and does not
update its LJ.

0 16

17 31

...

...

LJ is not updated LJ is updated to block 0

Time

epoch e epoch 1e

33

t

(c) v3 receives block 33 and the chain led by block 33 does not include
2N/3 attestations. v3 does not update its LJ. When v3 later receives
blocks 17-31, the chain led by block 31 includes 2N/3 attestations
with target as block 0. v3 updates LJ to block 0.

Figure 4: Examples of updating LJ.

t of epoch e+1, v3 receives blocks 17 to 31, blocks created
in epoch e but received by v3 in slot t of epoch e+1. Now,
the blocks on the branch led by block 31 include enough
attestations in epoch e. Therefore, J(c) and LJ are updated
to block 0 (line 30 in Figure. 2).

It is worth mentioning that after LJ is updated, any branch
c such that J(c) is lower than LJ will be pruned in the block
tree, and HLMD GHOST will not output a block from a pruned
branch. Take the case for validator v3 as an example, we show
the block tree of v3 in Figure. 5 after v3 receives blocks 17-31.
In this example, before v3 receives blocks 17-31, branch c2 is
the canonical chain. After LJ is updated to block 0, branch c1
led by block 31 becomes the canonical chain. Branch c2 led
by block 33 will then be pruned as J(c2) = cp, lower than LJ
(block 0).

0 16

17 31

...
...

1( ) 0J c = 2( )J c cp=

1chain c

2chain c33

Figure 5: Validator v3’s block tree.

Our attack essentially utilizes this fact to force honest val-
idators to prune a branch led by a block from an honest val-
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idator, so the attestations on the pruned branch are discarded,
e.g., the attestations included in block 33 in Figure. 5. More-
over, these attestations will never be finalized on-chain, as
their source is lower than LJ (lines 5-7 in Figure. 2) and the
corresponding validators will be penalized. In the following,
we show that one Byzantine validator is able to make the
attestations from (N− f )/32 honest validator be discarded.
We then show that if all Byzantine validators collude, they can
utilize the re-organization of the chain to make half honest
validators suffer from penalties in every epoch.

4.2 The Warm-up Attack
We now present a warm-up attack, where a single adversar-
ial validator vi can launch the attack, and (N− f )/32 honest
validators are expected to be penalized. To kick-start the at-
tack, vi waits for an opportune epoch. An epoch e is deemed
opportune if vi is eligible to propose in the first slot of epoch
e (let the slot number be t). Before epoch e, honest validators
maintain a consistent view of the canonical chain, and LJ of
all honest validators is the same checkpoint. According to
the discussion in §3, we know that before epoch e begins,
the epoch number of LJ is e− 2, and we use cpe−2 to de-
note the LJ of all validators. We also use cpe−1 to denote
the checkpoint block proposed in the first slot of epoch e−1
and assume that all validators receive cpe−1 in epoch e−1.
Given such an opportune epoch e, the attack strategies of vi
are summarized below.

(1) (Figure. 6a) Validator vi first creates a block bi that ex-
tends the head of the canonical chain c and withholds bi.
According to our assumption, the canonical chain c consists
of blocks from all proposers in epoch e− 1. As none of
the validators has received any block in epoch e yet, case 2
mentioned in §4.1 is satisfied: LJ is not updated and is still
cpe−2 for all honest validators. Thus, attestors of slot t (i.e.,
attestors that belong to the validator set in slot t) will then
send attestations using cpe−2 as source to all validators.

(2) (Figure. 6b) At the end of slot t, validator vi sends bi to
all validators. Here, the epoch number of block bi is greater
than bi’s parent block. Additionally, the chain c led by bi’s
parent block consists of the attestations from all validators
in epoch e−1, so J(c) is already set as cpe−1. As the epoch
number of J(c) = cpe−1 is greater than LJ = cpe−2, case 1
in §4.1 is satisfied and all honest validators update their LJ
to cpe−1 (lines 20-22 in Figure. 2).

(3) (Figure. 6c) After slot t, any attestations created by honest
attestors in slot t will be discarded by all honest validators.
To see why, given any attestation att mentioned in step (1),
the source of att is cpe−2. However, the LJ of all honest
validators is cpe−1. When any proposer creates a new block,
att j will be filtered (lines 6&7 in Figure. 2). Therefore, all
honest attestors in slot t will be penalized. According to our
discussion in §3.2, the expected number of honest attestors
penalized is thus (N− f )/32.

Time

ib

epoch e

slot t

ib

2 is eLJ cp −

end of t

2using  as ecp source−

...

epoch 1e

(a) Step 1: vi withholds block bi and honest validators do not update
their LJ. Honest attestors in slot t create attestation with cp as source.

Time

ib

epoch e

slot t slot 1t

ibib

1 is updated to eLJ cp −

...

epoch 1e

(b) Step 2: vi releases bi and all honest validators update their LJ to
bi.

Time

ib

epoch e

slot t slot 1t

ibib...

epoch 1e

discarded

(c) Step 3: Attestations with source different from bi will be discarded
and honest attestors in slot t will eventually be penalized.

Figure 6: Warm-up attack where vi is the Byzantine validator.
Before epoch e begins, the LJ of all validators is assumed to
be cpe−2, the checkpoint block proposed in the first slot of
epoch e−2. Additionally, all validators receive the checkpoint
block proposed in the first slot of epoch e−1.

4.3 The Staircase Attack

We are now ready to present our staircase attack, in which
Byzantine validators collude to launch the attack. Here, we
assume the adversary controls a set of Byzantine validators to
launch the attack and later discuss the number of Byzantine
validators the adversary needs to control. The goal is that half
of the honest validators will be penalized in each epoch after
the opportune epoch e. Note that in the warm-up attack, only
one Byzantine validator launches the attack. In our staircase
attack, all Byzantine validators withhold their attestations
and blocks, trying to make LJ non-frozen and updated in the
middle of an epoch. After that, the attestations released before
LJ is updated are not included in the canonical chain, resulting
in penalties for the corresponding honest validators.

Notations. We define several notations to assist the explana-
tion of our attack. We divide each epoch e into two periods:
the first period consists of slots before LJ is updated; the sec-
ond period consists of the rest of the slots in epoch e. Honest
attestors in the first period create attestations with some check-
point cp as the source, while honest attestors in the second
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period create attestations with cp′ as the source, where cp′

is higher than cp. We partition attestations from all valida-
tors into three sets: A1 denotes the attestations from honest
attestors in the first period; A2 denotes the attestations from
honest attestors in the second period; A3 denotes the attesta-
tions from all Byzantine attestors in epoch e. Our goal is to
make the attestations in A2 and A3 share the same source and
target, and the number of attestations in A2∪A3 is greater than
2N/3, so the canonical chain can be manipulated by the ad-
versary and attestations in A1 will be discarded. As illustrated
in Figure. 3, we use green, blue, and red rounded rectangles
to represent the attestations in A1, A2, and A3, respectively.

We use cadv to denote the branch withheld by Byzantine
validators. In our attack, after cadv is released, LJ is updated
by all honest validators. Similarly, chon is the branch seen by
honest validators before cadv is released.

The (one-time) attack. To kick-start a staircase attack, Byzan-
tine validators also need to wait for an opportune epoch, the
condition of which is exactly the same as our warm-up at-
tack: the proposer vi of the first slot t in epoch e is Byzantine.
Similar to our warm-up attack, we use cpe−2 to denote the
LJ of all validators and cpe−1 to denote the checkpoint block
proposed in the first slot of epoch e−1. The strategies of our
staircase attack are summarized below.

(1) (Figure. 7a) In slot t of epoch e, vi replays the warm-up
attack: vi withholds its block bi and releases bi at the end
of slot t, after which all honest validators update their LJ
as cpe−1. In epoch e, the Byzantine validators have two
strategies. First, all Byzantine validators in epoch e with-
hold their attestations (i.e., A3), regardless of which slot
each validator is the designated attestor. Second, the last
Byzantine proposer v j in slot t j (all proposers in the rest of
epoch e are honest➀) in epoch e includes the attestations
from the Byzantine validators in its block b j and withholds
b j. Note that not all the attestations from Byzantine valida-
tors are included in b j (as according to the protocol, a block
in some slot cannot include attestations with a higher slot
number). In this case, the attestations not included in b j can
simply be included in blocks proposed in epoch e+1 and
the corresponding validators will still receive their rewards.
At the end of epoch e, the chain c seen by all honest val-
idators consists of the attestations from all honest attestors
from slot t + 1 to t + 31 (the last slot in epoch e) where
source of these attestations is cpe−1. The expected number
of attestations on chain c is then 31(N− f )/32, equal to the
number of honest attestors from slot t +1 to t +31. Note
that even if the attestations from honest attestors in slot
t+31 are received by all honest validators and the proposer
of the first block in epoch e+1 includes these attestations,
the maximum number of attestations with bi as target is
still 31(N− f )/32. Namely, as we assume f = N/3, the

➀According to the RANDAO protocol, the roles of each validator in
epoch e can be predicted before epoch e begins.

number of attestations is 31
32 ×

2N
3 < 2N

3 , the requirement
for validators to update their J(c). Therefore, at the end of
epoch e, LJ and J(c) of all honest validators is cpe−1.

(2) (Figure. 7b) In epoch e+1, we divide the epoch into two
periods. Let t ′ be the first slot in epoch e+1, i.e., t ′ = t+32.
For now, we assume the first period ends at the end of slot
tadv−1 and discuss the value of tadv later. The adversary’s
strategy in the first period is to create two forks of the
chain, branch chon seen by honest validators and branch
cadv withheld by Byzantine validators. In the first period,
Byzantine validators prepare attestations with bi as source
and b j as target and withhold their attestations. The branch
chon thus consists of blocks from honest proposers for slots
[t ′, tadv−1]. The attestations included in chon will all have
source as cpe−1, and we let the set of attestations be A1.

(3) (Figure. 7c) At the beginning of slot tadv (i.e., the second
period), the adversary releases the withheld chain cadv and
our goal here is for all honest validators to update their LJ
to bi and make cadv become the canonical chain. Here, we
need to dive into the attestations in cadv. According to the
discussion in step (1), the branch from bi to b j consists
of the attestations (with source as cpe−1 and target as bi)
from all attestors (Byzantine and honest) between slot t
and t j (the slot of b j). If the number of the attestations
is greater than 2N/3 (i.e., V (cadv)[bi]> 2N/3), all honest
validators will set their J(cadv) as bi. Therefore, we know
that if t j−t−1

32 > 2
3 , the condition V (cadv)[bi] > 2N/3 will

be satisfied. We show in Lemma 1 that this happens with
a probability of 98.84% if the adversary controls f = N/3
validators.
As J(cadv) is updated to bi after cadv is released, it is not
difficult to see that LJ will be updated to bi in the middle of
an epoch! Moreover, as J(chon) is still cpe−1 in the second
period of epoch e+ 1, the branch chon (up to bi) will be
pruned and cadv becomes the canonical chain. Any attes-
tations in A1 will be discarded since the source field in A1
is different from LJ of validators in the second period and
attestation in A1 will be filtered. Thus, the corresponding
attestors will be penalized.
As discussed in step (1), as J(chon) will never be updated to

bi in our attack, the branch chon (up to bi) will be pruned any-
way. Therefore, to maximize the number of honest attestors
that will be penalized (i.e., |A1|), we can set up tadv as large
as possible. In fact, tadv can be the last slot in epoch e+1, so
almost all honest validators will be penalized.

Lemma 1. Assuming that slot t is the first slot of epoch e
and f = N/3. Given the last slot t j of epoch e in which the
proposer vi is Byzantine (all proposers in the rest of epoch
e are honest), the probability that t j−t−1

32 ≥ 2/3 is at least
98.84%.

Proof. According to the definition, t j−t−1
32 < 2/3 happens

only if any proposer in slot t j + 1 to slot t + 31 is honest,
i.e., ⌊ 32

3 ⌋ = 11. We now calculate the probability that the
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( ) is not updated to hon iJ c b1 is updated to eLJ cp 1 is eLJ cp

ib chain honc

chain advc

(a) Step 1: In epoch e, the first Byzantine proposer vi replays the
warm-up attack. All Byzantine validators withhold their attesta-
tions. The last Byzantine proposer v j includes the attestations
from the Byzantine validators in its block b j and withholds b j.
LJ and J(c) of all honest validators are cpe−1.

(b) Step 2: In the first period of epoch e + 1 (before slot tadv
begins), branch chon is seen by honest validators and branch cadv
is withheld by Byzantine validators. LJ is not updated and is still
cpe−1 during this period. The attestations A1 included in chon
have cpe−1 as the source.

Time

jb

ib

epoch e

advt

the first period in epoch 1e

jb

the second period

discarded

pruned

( ) and  is updated to adv iJ c LJ b1( ) is hon eJ c cp

(c) Step 3: At the beginning of slot tadv, Byzantine validators release cadv. As cadv includes a sufficiently large fraction of attestations
with target as bi, LJ is updated to bi. In the second period, chon is pruned and cadv becomes the canonical chain. Attestations included
in chon are discarded and the corresponding validators will be penalized.

Figure 7: One-time staircase attack where all Byzantine validators collude. We assume that before epoch e begins, the LJ of all
validators is cpe−2 and the (checkpoint) block proposed in the first slot of epoch e−1 is cpe−1.

proposers in the last 11 slots in epoch e are all honest. As the
proposer of each slot is selected pseudorandomly according to
the RANDAO protocol, the probability of the above situation
is:

(
N− f

N
)11 ≈ 1.16%.

The probability that there is at least one Byzantine proposer
in one of the last 11 slots is thus:

Psucc = 1− (
N− f

N
)11 ≈ 98.84%.

Repeating the attack for every epoch. Our attack above
can in fact be continued in every epoch after e+ 1. This is
achieved by simply having the last Byzantine validator in each
epoch e′ withhold its block just as v j does and then repeat
steps (2) and (3) in epoch e′+1. For instance, in epoch e+1
of the (one-time) attack, the last Byzantine validator vk in slot
tk starts to withhold its block bk and all Byzantine attestors in
the rest of epoch e+1 withhold their attestations. In epoch
e+ 2, branch ce+2

hon that extends the canonical chain is seen
by all honest validators and Byzantine validators withhold
a branch ce+2

adv led by bk. After the end of the first period of

e+2, the withheld branch is released, in the hope that J(ce+2
adv )

and LJ is updated to the first block in epoch e+1 (denoted
as cpe+1) and J(ce+2

hon ) is still bi (the first block in epoch e).
After LJ of honest validators is updated to cpe+1, ce+2

hon will
be discarded.

Notably, same as our one-time attack, only the attestations
in A2 and A3 can be included in ce+2

adv . Therefore, we need
to ensure that J(ce+2

adv ) can be updated to cpe+1 (and also
every epoch after e+2 as well). Now it becomes clear why
we additionally need to define A2 and A3 in addition to A1.
We already know that the set of attestations from Byzantine
validators is A3 and |A3|= f , which is at most N/3. To ensure
that the branch ce+2

adv consists of 2N/3 attestations, set A2 must
consist of more than 2N/3− f attestations. To satisfy this
condition, we can set the three sets A1 to A3 with roughly
the same size and set tadv as the middle of an epoch e′, i.e.,
tadv = 16+ t ′, where t ′ is the first slot in e′.

Lemma 2. In our staircase attack, honest attestors that create
attestations in A1 will be penalized and |A1| ≤N/3, regardless
of the fraction of f in N.

Proof. Let |A3| be f . |A2| must be greater than 2N/3− f for
the branch by the adversary to become the canonical chain,
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Figure 8: Staircase attack where the attack is repeated in every epoch.

following the discussion above. Therefore, the size of A1 must
no more than than N−|A2∪A3|= N/3.

Theorem 1. According to the configuration in Ethereum
where Wr ≤ 27Wp/20 (see Appendix A for more details), the
expected incentive of any honest validators becomes lower
than 0 when f ≥ 8N/27≈ 29.6%N.

Proof. The incentive each validator receives is the difference
between the rewards and the penalties. According to our at-
tack, attestors that create attestations in A2 will receive re-
wards and attestors that create attestations in A1 will suffer
from penalties. Therefore, to lower the expected incentives
received by honest validators, we can simply let |A1|= N/3
according to Lemma 2. According to our discussion §3.4, to
determine the concrete amount, we also need to calculate R,
the rewards scale with participation. As attestations in A2 and
A3 are included in the canonical chain, R= |A2∪A3|/N≈ 2/3.
Therefore, the reward received by each honest validator is
R×WrIbase =

2
3WrIbase and the penalty of each validator is

WpIbase. Therefore, the incentives received by all honest val-
idators are ( 2

3 |A2|Wr−|A1|Wp)Ibase. Our goal is to learn the
expected incentives received by any honest validator. As the
number of honest validators is |A1∪A2|, the expected incen-
tives of each validator becomes:

Ihon = (
2
3
|A2|Wr−|A1|Wp)

Ibase

|A1∪A2|
.

As |A1|= N/3 and |A1∪A2|= N− f , we have:

Ihon = (
4

15
N− 9

10
f )

WpIbase

N− f
≤ 0.

We can simply set 4
15 N − 9

10 f ≤ 0 to satisfy the equation
above, so f ≥ 8N/27.

On the contrary, Byzantine validators do not suffer from
penalties. However, the rewards they receive will be decreased.
Following the discussion in Theorem 1, the reward each
Byzantine validator receives is Iadv =

2
3WrIbase in each epoch,

about 33% lower than the fair share.

5 Implementation and Evaluation

Implementation. We implement our attack using Prysm➀,
one of the most widely adopted Ethereum 2.0 beacon chain
implementations written in Golang. We modify the codes in
the Prysm as specified in Figure. 9, where changes we make
on top of the PoS protocol are highlighted in red and the files
we modify are included as comments. Our implementation has
exactly the same effect as the attack mentioned in §4.3 while
the actual implementation is slightly different. We have made
the scripts for our attacks and the logs of our experiments
available➁ and will open source them soon.

Experiment configuration. We establish a local testnet with
1,000 validators connected through a P2P LAN network and
vary the fraction of Byzantine validators to understand the
impact of our attack. We choose the LAN network as the
communication delay is negligible, demonstrating that our
attack can be launched even in a fully synchronous network.

We vary the number of Byzantine validators using f =
296 (i.e., f ≈ 8N/27), f = 315, and f = 333 and assess the
incentives received by the validators. In each experiment, we
fix the identities of f Byzantine validators, run our testnet for
one day (225 epochs), and collect the attestation incentive of
each honest validator from their logs. As a comparison, we
also run the testnet for one day without launching the attack
and collect the incentives of all validators, the value of which
is also known as the fair share.
Evaluation results. We evaluate the incentive loss rate of
honest validators. In each experiment, we report the loss rate
of an honest validator in Figure. 10. The incentive loss rate is
calculated as follows. The incentive loss of an honest validator
is the difference between its fair share and the incentives
it receives when the attack is launched. The percentage of
incentive loss in the fair share is called the incentive loss rate.
The incentive loss rate can be interpreted as follows. If the

➀Prysm: https://github.com/prysmaticlabs/prysm
➁Scripts of our attacks and logs of the experiments: https://anonym

ous.4open.science/r/Staircase-Attack/
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The Workflow of a Byzantine Validator vk

global parameters: slot counter t
local parameters: last justified checkpoint LJ.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
01 upon slot t do
02 obtain a set I of Byzantine proposers in the current epoch,

ordered by the slot numbers the validators are allocated for
03 ▷ prysm/beacon-chain/rpc/prysm/v1alpha1/validator/proposer.go
04 ▷ prysm/validator/client/propose.go
05 as the proposer for slot t
06 follow lines 3-9 specified in Figure. 2
07 if t is the first slot in an epoch then
08 send b to all validators at the end of slot t
09 elseif vk is the last Byzantine proposer in I then
10 send b to all Byzantine validators at once and to all honest

validators at the beginning of the 17th slot in the next epoch
11 else send b to all validators at once
12 ▷ prysm/validator/client/attest.go
13 as an attestor for slot t
14 follow lines 12-15 specified in Figure. 2
15 send att to the last Byzantine proposer in I

Figure 9: The workflow of a Byzantine validator vk. The main
changes made on top of Figure. 2 are highlighted in red.

attack is not launched, the incentive loss rate is supposed to
be 0%. If the incentive loss rate is close to 100%, all honest
validators will lose their incentives.

Our results show a notable trend: as the attack is being
launched, the incentive loss rate of each honest validator in-
creases significantly and then stabilizes. For f = 296, the loss
rate eventually stabilizes at 100%, matching our results in
Theorem 1. For f = 315 and f = 333, the incentive loss rate
exceeds 100% and all the honest validators are expected to
suffer from stake loss. For instance, when f = 333, the incen-
tive loss rate is close to 120%, i.e., honest validators suffer
from a 20% stake loss compared to their fair share.
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Figure 10: The incentives loss rate of an honest validator for
experiments with 1,000 validators and f Byzantine validators.
Each experiment is launched for one day (225 epochs).

6 Attack Feasibility and Analysis

In this section, we analyze the feasibility of our attacks in the
current Ethereum system beyond 1,000 validators, assuming
f = N/3. Indeed, Ethereum has more than 850,000 validators
as of today➀, we thus analyze whether our attacks can be
launched in such a large-scale system. So far, we have pre-
sented three attacks on the incentive mechanism of Ethereum:
a warm-up attack where a single Byzantine validator can
launch the attack and make some honest validators suffer
from penalties; a one-time attack where Byzantine validators
collude to make all honest validators suffer from penalties; the
full staircase attack where Byzantine validators continuously
launch the attack in every epoch and all honest validators lose
their incentives. For the warm-up attack, the Byzantine val-
idator only needs to delay its block. Therefore, the warm-up
attack is feasible in the real Ethereum system. We thus focus
on our one-time attack and the full staircase attack.

Our analysis reveals a somewhat surprising result: the feasi-
bility of the attacks is directly related to the number of valida-
tors and the maximum number of attestations in each block.
Ethereum currently employs a committee-based scheme to
aggregate the signatures for attestations using the BLS signa-
ture [6]. Recall that every slot has N/32 validators randomly
selected by RANDAO. The validators in each slot are further
divided into several committees [39]. In every slot, matching
attestations (same target, source, and head) in the same com-
mittee are aggregated into one aggregated attestation. We use
Nc to denote the number of committees in each epoch and
Na to represent the number of aggregated signatures in every
block.

In the most recent configuration of Ethereum, Na is limited
by the parameter MAX_ATTESTATIONS (MAXATT for short), the
maximum number of attestations included in each block [39].
The value of Nc is determined as follows (also as shown
in Figure. 11), where MAXCOM is the maximum number
of committees in a slot (the actual parameter name is
MAX_COMMITTEES_PER_SLOT [39]):

Nc =

{
N/128, if N ≤ 4096×MAXCOM;
32×MAXCOM, otherwise.

(1)

Currently, the parameter MAXATT is 128 and the parameter
MAXCOM is 64. Thus we have Na = MAXATT = 128, Nc =
32×MAXCOM = 2048, and Nc = 16Na.

Lemma 3. To launch staircase attack, Na ≥ Nc.

Proof. In our staircase attack, the block proposed by the last
Byzantine validator in an epoch includes attestations from all
Byzantine validators. Therefore, Na is no less than the number
of aggregated attestations from Byzantine validators.

➀Data source (accessed in Oct 2023): https://www.beaconcha.in
/charts/validators
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Figure 11: The value of Nc as N grows. We use εc to denote
MAXCOM.

According to the RANDAO protocol, Byzantine attestors
are randomly distributed among Nc committees. Since attesta-
tions across committees cannot be aggregated, the number of
aggregated attestations from Byzantine validators is no less
than Nc, i.e., Na ≥ Nc.

Based on Lemma 3, we now analyze the impacts of system
parameters and the number of validators to our attack. We
also provide a modified attack to make our attack feasible in
today’s Ethereum system.
Impacts of the maximum number of attestations to our at-
tack. To satisfy the condition Na ≥ Nc specified in Lemma 3,
we need either a larger Na or a smaller Nc. We have the fol-
lowing observations:
• If the MAXATT parameter increases from 128 to 2,048, a

block can include aggregated attestations from all Byzan-
tine validators. This is mainly because Nc = 16Na in the
current system, and a 16-fold increase in MAXATT would
make Na = Nc. Alternatively, we can also set MAXCOM to
MAXCOM/16 to achieve the same result (as Nc depends on
MAXCOM), i.e., by decreasing MAXCOM from 64 to 4.
• There are many alternative ways for Na = Nc to be satisfied.

For instance, if the parameter MAXATT increases from 128
to 512 and the parameter MAXCOM decreases from 64 to 16,
the condition Na ≥ Nc is also satisfied.
Such a counter-intuitive finding shows that the values of

system parameters such as MAXATT and MAXCOM are not an
easy engineering decision and should be set up carefully.
Impacts of the number of the number of validators to our
attack. If we fix the MAXATT and MAXCOM parameters, our
attack can be launched with fewer than 16,384 validators.
This is because when we fix the value of parameters, we need
to set Nc ≤ Na = 128 according to Lemma 3. According to
equation (1), setting Nc as 32×MAXCOM will never make
Nc ≤ 128. As a result, we can set Nc = N/128 for Nc ≤ Na =
128 to hold. Accordingly,

N ≤ 128×128 = 16384.

Namely, if we do not change the system parameters, Ethereum
becomes vulnerable to our attack when the number of valida-
tors is below 16,384.
A modified attack on the current system. We can modify
our attack to be feasible in the current Ethereum system. The

main reason why our attack might fail in the current system
is that a block cannot include attestations from all Byzantine
validators. Our major modification is that attestations from
Byzantine validators do not have to be included in one block.
In particular, the attestations from Byzantine validators in the
first 28 slots are directly sent to all validators in the system.
Only the attestations from Byzantine validators in the last 4
slots are withheld. Among them, attestations in 2 slots are
included in the block proposed by the last Byzantine pro-
poser (mainly because a block may include attestations from
attestors in at most 2 slots, see Appendix B for more infor-
mation). Therefore, we require the slot of the last Byzantine
proposer to be one of the last 4 slots. Under the assumption
of f = 0.33N, the probability of repeating the attack is:

Psucc = 1−
(

N− f
N

)4

≈ 80.25%.

We provide the details of the modified attack in Appendix B. If
the attack cannot be repeated in the next epoch, the adversary
can wait for another opportune epoch to restart the attack.
Recall that our attack can be started if the proposer of the first
slot of an epoch is Byzantine. The probability of starting an
attack is thus 33%.

Combining the discussion above, we show the attestation
incentives of honest validators in Theorem 2 in Appendix B.
Specifically, if the adversary controls 33% of the total stake,
the attestation incentives of an honest validator become only
28.9% of the fair share.

7 Conclusion

We present staircase attack, the first attack on the incentive
mechanism of the Ethereum Proof-of-Stake (PoS) protocol.
Without considering the constraints of system parameters
such as the number of validators, we show that an adversary
that controls 29.6% stake can launch the attack and eventu-
ally all honest validators lose their attestation incentives. As
the fraction of stake controlled by the adversary increases,
honest validators may even suffer from stake loss. Moreover,
considering the values of system parameters, the feasibility of
our attack is closely related to two parameters: the number of
validators and MAX_ATTESTATIONS, the maximum number of
attestations included in each block. With the current Ethereum
setup (850,000 validators and MAX_ATTESTATIONS =128), we
show that an adversary that controls 33% stake can make
honest validators suffer from no incentives with a probability
of 80.25%. Our attack shows that in addition to the safety
and liveness properties considered in conventional consensus
protocols, properties regarding the incentives might also be
worth investigating in today’s blockchain systems.
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A Rewards and Penalties in Ethereum

In this section, we provide more details on attestation rewards
and penalties [39]. The reward weight of a validator Wr is
set to 54 if the corresponding attestation is finalized on-chain
and the head field in the attestation is correct (i.e., the block
matches the head of the canonical chain). If the attestation is
finalized on-chain but the head in the attestation is incorrect,
the reward weight Wr is set to 40. Finally, if the corresponding
attestation is not finalized on-chain➀, the penalty weight of a
validator Wp is set to 40.

➀The value can be found at https://github.com/ethereum/cons
ensus-specs/blob/dev/specs/altair/beacon-chain.md#incentiv
ization-weights
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As mentioned in §4, the attestations in A2 are finalized on-
chain, so the reward weights of the corresponding attestors Wr
are at most 54. Meanwhile, the attestations in A1 are discarded,
so the penalty weight of the corresponding attestors Wp is 40.
Thus, we have Wr ≤ 27Wp/20.

B Modified Staircase Attack

In this section, we provide a modified staircase attack. The
modified attack can be launched based on the latest system
configuration of Ethereum. We show the workflow of the
modified attack in Figure. 12. Compared to the attack pre-
sented in §4.3, we make three major changes. First, as shown
in Figure. 13, there are now three statuses for each Byzantine
validator: idle, repeat, and stop. The status is idle if the attack
is not being launched. The status is repeat if the attack is being
launched and can be repeated to the next epoch. The status is
stop if the attack cannot be repeated and will be stopped at the
end of the epoch. Here, the last epoch of the attack becomes
similar to that in our one-time staircase attack. Second, the
attestations from Byzantine validators in the first 28 slots are
not withheld. Instead, they are directly sent to all validators
in the system. The attestations from the Byzantine attestors
in the last four slots are sent to the last Byzantine proposer v j.
Third, to continuously launch the attack, slot tadv when the
last Byzantine proposer v j releases the block b j is not set to
the middle of an epoch. Instead, it is set to the beginning of
the 14-th slot of an epoch.

We also introduce a function called judge (lines 41-45).
Briefly speaking, given an epoch e, the judge function re-
turns 1 if the attack can be repeated in the next epoch and 0
otherwise.

Lemma 4. If the adversary controls 33% of the total stake
and the attack is being launched, all honest validators lose
their incentives or even suffer from stake loss.

Proof. We consider the attestations from honest validators
in epoch e while the attack is being launched. The attesta-
tions from honest validators in the first period of epoch e are
included in the branch ce

hon. The attestations from honest val-
idators in the last four slots are included in the branch ce+1

hon .
The rest attestations from honest validators are included in the
branch ce

adv and ce+1
adv . We thus consider the following three

cases.
(1) The branch ce

hon in the first 13 slots is pruned in epoch e.
Attestations from the honest attestations in the first 13 slots
are thus discarded.

(2) The branch ce+1
hon in the last 4 slots is pruned in epoch e+1.

The attestations from the honest attestations in the last 4
slots are thus discarded. Block b j can include attestations
with a number roughly equal to the number of attestations in
most 2 slots. This is because a block can include attestations
from 128 committees (i.e., MAXATT =128) and there are 64

The Workflow of a Byzantine Validator vk

global parameters: slot counter t, attack state statuscr, statusnxt
local parameters: last justified checkpoint LJ.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
01 init statuscr← idle, statusnxt ← idle
02 upon slot t do
03 let current epoch number be e← ⌊ t

32⌋
04 ▷ prysm/validator/client/runner.go
05 if t is the first slot in epoch e then
06 if statuscr = repeat then
07 if judge(e) = 1 and judge(e+1) = 1 then
08 statusnxt ← repeat
09 if judge(e) = 1 and judge(e+1) = 0 then
10 statusnxt ← stop
11 if statuscr = stop then
12 statusnxt ← idle
13 ▷ prysm/beacon-chain/rpc/prysm/v1alpha1/validator/proposer.go
14 ▷ prysm/validator/client/propose.go
15 as the proposer for slot t
16 follow lines 3-9 specified in Figure. 2
17 if statuscr = idle then
18 if t is the first slot in epoch e then
19 send b to all validators at the end of slot t
20 if judge(e) = 1 and judge(e+1) = 1 then
21 statusnxt ← repeat
22 if judge(e) = 1 and judge(e+1) = 0 then
23 statusnxt ← stop
24 else statusnxt ← idle
25 elseif vk is the last Byzantine proposer in I then
26 send b to all Byzantine validators at once
27 set tadv as follows
28 if statuscr = repeat then
29 tadv← the 14-th slot in epoch e+1
30 if statuscr = stop then
31 tadv← the last slot in epoch e+1
32 send b to all honest validators at the beginning of slot tadv
33 else send b to all validators
34 ▷ prysm/validator/client/attest.go
35 as an attestor for slot t
36 follow lines 12-15 specified in Figure. 2
37 if statuscr = repeat or statuscr = stop then
38 send att to the last Byzantine proposer in I
39 if t is the last slot in epoch e then
40 statuscr← statusnxt
41 function judge(epoch e)
42 obtain a set I of Byzantine proposers in epoch e
43 if there is a Byzantine proposer in the last four slots then
44 return 1
45 return 0

Figure 12: The workflow of a Byzantine validator vk.

committees (i.e., MAXCOM =64) in a slot. Therefore, the
attestations from honest attestations in the last 2 slots are
discarded.

(3) The branches ce
adv and ce+1

adv are not pruned, and the at-
testations from the honest validators in ce

adv and ce+1
adv are
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Figure 13: The status of the attack. Line numbers refer to
those in Figure. 12.

finalized on-chain.
Thus, the fraction of discarded attestations from honest valida-
tors in total attestations is Rhon = (13+2)/32. The expected
incentives of an honest validator is then Ihon is

(((1−Rhon)
N− f

N
+

f
N
)(1−Rhon)Wr−RhonWp)× Ibase.

Let f = 0.33N and Wr = 27Wp/20, we have the incentive
Ihon ≈−0.0382×WrIbase < 0, where WrIbase is the fair share
of an honest validator.

Theorem 2. If the adversary controls 33% of the total stake,
our modified attack makes the incentives of an honest valida-
tor decrease to 28.9% of its fair share.

Proof. The incentive of an honest validator in each epoch can
be modeled as a discrete-time Markov chain. In particular,
there are three states of the attack: the idle status (staircase
attack is not launched), the repeat status (staircase attack is
launched and being repeated in every epoch), and the stop
state (staircase attack can not be repeated and conduct a one-
time attack to penalize all honest validators). In each state, the
incentives of honest validators are WrIbase, Ihon, and−WpIbase,
respectively. Meanwhile, the transition matrix is shown as
follows:

P =

 2/3 Psucc/3 (1−Psucc)/3
0 Psucc 1−Psucc
1 0 0

 .

By applying the matrix to a n-epoch transition, we have matrix
P(n) = Pn. The P(n) becomes stable after n = 27, we have

P(n) ≈

 0.372 0.504 0.124
0.372 0.504 0.124
0.372 0.504 0.124

 ,

for n ≥ 27. Thus, the incentive of an honest validator
is equal to any entry in the matrix P(n) multiplied by
(WrIbase, Ihon,−WpIbase)

T, which is approximately 0.289×
WrIbase.
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