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Abstract
Secure inference of deep convolutional neural networks
(CNNs) under RNS-CKKS involves polynomial approxima-
tion of unsupported non-linear activation functions. However,
existing approaches have three main limitations: 1) Inflexibil-
ity: The polynomial approximation and associated homomor-
phic evaluation architecture are customized manually for each
CNN architecture and do not generalize to other networks.
2) Suboptimal Approximation: Each activation function is
approximated instead of the function represented by the CNN.
3) Restricted Design: Either high-degree or low-degree poly-
nomial approximations are used. The former retains high ac-
curacy but slows down inference due to bootstrapping opera-
tions, while the latter accelerates ciphertext inference but com-
promises accuracy. To address these limitations, we present
AutoFHE, which automatically adapts standard CNNs for se-
cure inference under RNS-CKKS. The key idea is to adopt lay-
erwise mixed-degree polynomial activation functions, which
are optimized jointly with the homomorphic evaluation archi-
tecture in terms of the placement of bootstrapping operations.
The problem is modeled within a multi-objective optimization
framework to maximize accuracy and minimize the number of
bootstrapping operations. AutoFHE can be applied flexibly on
any CNN architecture, and it provides diverse solutions that
span the trade-off between accuracy and latency. Experimen-
tal evaluation over RNS-CKKS encrypted CIFAR datasets
shows that AutoFHE accelerates secure inference by 1.32×
to 1.8× compared to methods employing high-degree poly-
nomials. It also improves accuracy by up to 2.56% compared
to methods using low-degree polynomials. Lastly, AutoFHE
accelerates inference and improves accuracy by 103× and
3.46%, respectively, compared to CNNs under TFHE.

1 Introduction

MLaaS, machine learning as a service, is a rapidly grow-
ing market with many commercial offerings like Ama-
zon Web Services (AWS), Google Google Cloud Platform
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Figure 1: AutoFHE can automatically adapt the standard CNN
with non-linear activations into a set of polynomial CNNs that
span the trade-off between accuracy and latency for ciphertext
inference. AutoFHE solutions can be deployed on the Cloud
server to satisfy a range of customer requirements.

(GCP), and Microsoft Azure. Its growth has been driven
by the widespread success of deep learning on many tasks
like vision [15, 24], language [14, 56], games [49, 51], sci-
ence [17, 28], and many more. Figure 1 shows a typical
MLaaS scenario. The Cloud (Alice) holds deep learning mod-
els, while the customer (Bob) has private data and requests
service from Alice. Bob wants to protect his private data
and does not want Alice to learn sensitive information. On
the other hand, deep learning models, including neural archi-
tectures and trained weights, are properties of Alice. Alice
spends considerable efforts to design neural architectures, like
ResNets [24], ViT [15], and MLP-Mixer [55] and consumes
huge computational resources to search for novel neural ar-
chitectures [39, 60] or train network weights [22, 57].

Homomorphic Encryption (HE): Secure inference of
deep learning models under leveled homomorphic encryp-
tion (LHE) [6, 20, 41] or fully homomorphic encryption
(FHE) [18,33,34] is a promising approach for resolving secu-
rity concerns between Bob and Alice in the context of MLaaS.
FHE enables us to evaluate a circuit with arbitrary depth,
including modern deep CNNs [33]. Figure 1 shows secure
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inference of CNNs under FHE. First, Bob generates a public
key to encrypt his private data and sends Alice the ciphertext.
Second, Alice applies neural networks to process the cipher-
text input, yielding an encrypted result. Finally, Bob uses the
secret key to decrypt the encrypted result. Under FHE, Bob
cannot learn Alice’s neural architectures and weights, while
Alice is also not exposed to Bob’s data or the outcome.

Polynomial CNNs: Non-arithmetic activation functions, such
as ReLU(x) = max(x,0), are a core component of modern
CNNs, aiding in learning non-linear decision boundaries be-
tween classes. For example, residual networks (ResNets) [24]
are composed of Conv-BN-ReLU triplets [24]. Since FHE
only supports multiplications and additions, ReLU must be
replaced by polynomial approximations to evaluate CNNs
under FHE. Existing methods to generate polynomial CNNs
fall into two categories; manual design of low-degree and
high-degree polynomial approximations.

(1) A number of approaches adopt low-degree (typically
≤ 3) polynomials [6, 12, 20, 41, 42, 45, 46] to substitute non-
arithmetic activation functions and train the resultant poly-
nomial neural networks from scratch. For instance, Cryp-
toNets [20], LoLa [6] and Delphi [45] employ a simple
quadratic activation function x2. Faster CryptoNets [12]
exploit more accurate low-degree approximation 2−3x2 +
2−1x + 2−2. SAFENet [42] adopts a1x3 + a2x2 + a3x + a4
or b1x2 + b2x+ b3 and HEMET [41] uses ax2 + bx+ c. Af-
ter low-degree polynomials are plugged into networks like
ResNets both network weights and polynomial coefficients are
trained from scratch using stochastic gradient descent (SGD).
However, polynomial layers often lead to unstable training
since they may dramatically amplify activations during for-
ward propagation and gradients during backward propaga-
tion. For example, gradient explosion was observed in prior
works [42, 45]. As such, low-degree approaches suffer from a
dilemma. On the one hand, since low-degree polynomials can-
not precisely approximate ReLU, polynomial networks have
to be trained from scratch and suffer from poor prediction ac-
curacy. On the other hand, using a higher degree polynomial
approximation of ReLU leads to training instability due to
exploding gradients. In either case, low-degree approaches
achieve lower accuracy than ReLU networks, e.g. on CIFAR-
10 HEMET [41] and SAFENet [42] report 83.7% and 88.9%
Top-1 accuracy, respectively. To mitigate gradient explosion,
AESPA [46] normalized the outputs of each polynomial basis
separately, leading to improved predictive accuracy.

(2) A few approaches use high-degree polynomials to ap-
proximate ReLU precisely. So, high-degree approaches do not
need to train polynomial networks from scratch and can in-
herit weights from pretrained ReLU networks. One representa-
tive polynomial approximation of ReLU is Minimax compos-
ite polynomials [32, 36]. By expressing ReLU as ReLU(x) =
x · (0.5+0.5 · sgn(x)), a composite polynomial is used to ap-
proximate sgn(x). The approximation of ReLU is defined as
AppReLU(x) = x ·(0.5+0.5 · pα(x)),x∈ [−1,1]. pα(x) is the

composite Minimax polynomial, and α quantifies approxima-
tion precision, i.e., |pα(x)−sgn(x)| ≤ 2−α. Given x∈ [−B,B],
the scaled AppReLU is defined as B ·AppReLU(x/B), with
a precision of B · 2−α. However, high-degree polynomials
consume many multiplicative levels and require numerous
bootstrapping operations, leading to a high computational
burden. MPCNN [33], the state-of-the-art approach for se-
cure inference of CNNs under RNS-CKKS, adopts Minimax
composite polynomials with a precision of α = 13. By choos-
ing to approximate each ReLU function with high precision,
MPCNN results in prediction accuracy that is comparable to
ReLU networks. However, the same high-degree AppReLU
replaces all ReLUs and consumes ∼ 50% levels. The cipher-
text quickly exhausts levels and uses bootstrapping to refresh
the zero-level ciphertext before every AppReLU layer (refer to
Figure 2). As such, the homomorphic evaluation architecture
needs to be customized for each CNN architecture. Moreover,
bootstrapping operations consume > 70% of inference time
(refer to Table 5) and result in prohibitively high latency.

Motivation: We propose AutoFHE to address the above-
mentioned limitations of existing methods for secure infer-
ence of CNNs. It is based on layerwise mixed-degree poly-
nomials and a hybrid of approximation and training methods.
The goal is to Automatically generate polynomial CNNs and
associated homomorphic evaluation architecture spanning a
trade-off front of accuracy and latency under FHE.

(1) LAYERWISE MIXED-DEGREE POLYNOMIALS: A plau-
sible solution to decrease the computational burden of secure
inference is to assign layerwise mixed-degree polynomials to
different ReLUs across a network based on the observation
that different layers in a network have varying degree of sen-
sitivity to approximation errors. SAFENet [42] demonstrated
that mixed-degree polynomials can exploit layerwise sensi-
tivity. However, current mixed-degree search frameworks are
limited in two aspects. i) small search space: e.g. SAFENet
only provides two polynomials, degree 2 and degree 3. The
small search space cannot include all possible solutions from
low-degree to high-degree polynomials. ii) scalarization of
multiple objectives: a weighted sum is used to balance mul-
tiple objectives [42, 45]. However, this approach requires a
pre-defined preference to weigh the different objectives. So,
they cannot generate diverse solutions to meet different re-
quirements in a single optimization run.

(2) HYBRID OF APPROXIMATION AND TRAINING: Pre-
cisely approximating ReLU allows MPCNN to achieve the
state-of-the-art ciphertext inference accuracy. Low-degree
approaches train polynomial CNNs from scratch to compen-
sate for loss in accuracy. We posit that by taking advantage
of approximation and training, we can inherit weights from
ReLU networks and fine-tune polynomial networks to adapt
learnable weights to layerwise mixed-degree polynomials. In
principle, such a design can allow for high ciphertext infer-
ence accuracy while reducing latency.

However, realizing the above goals presents multiple chal-

2



lenges. The design space, which includes layerwise mixed-
degree polynomials and the associated homomorphic eval-
uation architectures in terms of placement of bootstrapping
operations, is prohibitively large for effective manual design.
Therefore, in this paper, we advocate for automated optimiza-
tion of the joint polynomial and homomorphic architecture.
Contributions: We outline our contributions from two per-
spectives, design and system.

From a design perspective, our contributions are,

1. FLEXIBILITY: We jointly search for polynomial approxi-
mation and a compatible homomorphic evaluation archi-
tecture (placement of bootstrapping operations) so we can
automatically adapt any convolutional neural networks for
secure evaluation over FHE.

2. OPTIMAL APPROXIMATION: We approximate the end-to-
end function represented by the CNN instead of a stan-
dalone non-linear activation function. This allows us to
exploit the varying sensitivity of different layers to approx-
imation error, and obtain polynomial approximations with
high accuracy and efficient evaluation over FHE.

3. SEAMLESS DESIGN: We allow for layerwise mixed-
degree polynomials, which enables us to find a range of
models that span the accuracy and latency trade-off.

From a system perspective, our contributions are,

1. SEARCH SPACE: We design search space to include all
possible low-degree and high-degree polynomials to en-
able us to discover better solutions.

2. SEARCH OBJECTIVE: We formulate the search problem as
a multi-objective optimization. We automatically generate
diverse polynomial networks spanning the trade-off front
between accuracy and latency in a single optimization run.

3. SEARCH ALGORITHMS: We propose combining search
and training algorithms to search over large search spaces
efficiently, optimize coefficients of arbitrary polynomi-
als, and fine-tune layerwise mixed-degree polynomial net-
works. Specifically, we propose:

• MOS, a multi-objective search algorithm to search for
solutions within a large search space.

• R-CCDE, a gradient-free search algorithm to optimize
coefficients of composite polynomials.

• PAT, a fine-tuning algorithm that adapts network weights
to polynomial activations.

Experimental Results on encrypted CIFAR datasets show
that AutoFHE has a better trade-off of accuracy and latency
compared to high-degree and low-degree approaches under
RNS-CKKS. Compared to high-degree MPCNN [33], Aut-
oFHE accelerates inference by 111...333222×××∼∼∼ 111...888××× while improv-
ing accuracy by +++000...000888% ∼∼∼ 000...333% on CIFAR10. AutoFHE

speeds up inference by 111...111×××∼∼∼ 111...444××× while increasing accu-
racy by +++000...333666%∼∼∼ 000...777555% on CIFAR100. Compared to low-
degree AESPA [46], AutoFHE improves ciphertext accuracy
by +++222...555666% and +++222...444444% based on ResNet32 and ResNet44
backbones on CIFAR10 with similar latency. Furthermore,
we compare the accuracy-latency trade-off of networks across
two FHE schemes, namely RNS-CKKS and TFHE. Specif-
ically, we compare AutoFHE networks designed for RNS-
CKKS with REDsec [18], which is designed for TFHE. We
observe that AutoFHE improves accuracy by +++111000...000666% and
+++333...444666% compared to REDsec BNetS and BNet, respectively,
while simultaneously reducing the corresponding latency by
222444××× and 111000333×××, respectively.

Code: https://github.com/human-analysis/AutoFHE.

2 Preliminaries

RNS-CKKS: The full residue number system (RNS) vari-
ant of Cheon-Kim-Kim-Song (RNS-CKKS) [8, 10] is a lev-
eled homomorphic encryption (LHE) scheme for approximate
arithmetic. Under RNS-CKKS, a ciphertext ccc ∈ R 2

Qℓ
satis-

fies the decryption circuit [⟨ccc,sk⟩]Qℓ
= m+ e, where ⟨·, ·⟩ is

the dot product and [·]Q is the modular reduction function.
RQℓ

= ZQℓ
[X ]/(XN + 1) is the residue cyclotomic polyno-

mial ring. The modulus is Qℓ = ∏
ℓ
i=0 qℓ, where 0≤ ℓ≤ L. ℓ

is a non-negative integer, referred to as level, which denotes
the capacity of homomorphic multiplications. sk is the se-
cret key with Hamming weight h. m is the original plaintext
message, and e is a small error that provides security. A ci-
phertext has N/2 slots to accommodate N/2 complex or real
numbers. RNS-CKKS supports homomorphic addition and
multiplication:

Decrypt(ccc⊕ ccc′) = Decrypt(ccc)+Decrypt(ccc′)≈ m+m′

Decrypt(ccc⊗ ccc′) = Decrypt(ccc)×Decrypt(ccc′)≈ m×m′
(1)

Bootstrapping: LHE only allows a finite number of homo-
morphic multiplications, with each multiplication consuming
one level due to rescaling. Once a ciphertext’s level reaches
zero, a bootstrapping operation is required to refresh it to a
higher level and allow more multiplications. The number of
levels needed to evaluate a circuit is known as its depth. RNS-
CKKS with bootstrapping [7] is an FHE scheme that can
evaluate circuits of arbitrary depth. It enables us to homomor-
phically evaluate deep CNNs on encrypted data. Conceptu-
ally, bootstrapping homomorphically evaluates the decryption
circuit and raises the modulus from Q0 to QL by using the
isomorphism Rq0

∼= Rq0 ×Rq1 × ·· · ×RqL [4]. Practically,
bootstrapping [7] homomorphically evaluates modular reduc-
tion [·]Q by first approximating it by a scaled sine function,
which is further approximated through polynomials [7, 35].
Bootstrapping [4] has four stages: ModRaise, CoeffToSlot,
EvalMod, and SlotToCoeff. Bootstrapping incurs a lot of
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key switching operations (KSO), which are the most time-
consuming operation on the RNS-CKKS scheme [33]. The
refreshed ciphertext has level ℓ= L−K, where K levels are
consumed by bootstrapping [4] for polynomial approximation
of modular reduction.
Threat Model: In this paper, we assume the same
threat model as prior works under HE, like HEMET [41],
MPCNN [33], REDsec [18]. As discussed in the MLaaS sce-
nario, a customer uploads encrypted data to a Cloud server
and requests ML services. The Cloud uses neural networks
to process the ciphertext without decryption and send back
an encrypted result. Only the customer holds the secret key
and can decrypt the encrypted result. The Cloud cannot learn
sensitive information from the customer’s data and the re-
sult. The customer is also not exposed to the Cloud’s neural
networks, including architectures and weights.

3 AutoFHE

Given a neural network g(aaa,ωωω0(aaa)) with architecture aaa
and pretrained1 weights ωωω0(aaa) and M ReLU layers, Aut-
oFHE generates polynomial networks on a trade-off front by
maximizing accuracy and minimizing latency. For a given
architecture aaa during the search, every solution is represented
by a triplet of variables SSS(aaa) = (DDD(aaa),ΛΛΛ(aaa),ωωω(aaa)). We will
drop the architecture aaa from hereon for ease of notation. DDD is
the degree vector of all EvoReLU layers, ΛΛΛ is the coefficients
of all EvoReLU layers, and ωωω are the trainable weights of
the neural network which are initialized with ωωω0 and fine-
tuned for adaptation to the layerwise mix-degree polynomials.
We will assign each solution with the minimization objective
ooo(SSS) = {1−Acc(SSS),Boot(SSS)}. 1−Acc(SSS) is the validation
error, and Boot(SSS) is the number of bootstrapping operations.
Note that the accuracy and the number of bootstrapping opera-
tions depend on all the variables SSS. For instance, appropriately
adapting the network weights ωωω could allow us to use lower-
degree polynomial approximations of the activation functions,
which reduces the required number of bootstrapping calls.

AutoFHE is a search-based approach which comprises of
three main components: search space (Section 3.1), search
objective (Section 3.2) and search algorithm (Section 3.3).
We describe each of these in detail next.

3.1 Search Space
EvoReLU is a genetic polynomial function used to replace
the non-arithmetic ReLU function. We model it as follows,

y = EvoReLU(x) =


x, d = 1
α2x2 +α1x+α0, d = 2
x · (F (x)+0.5) , d > 2

(2)

1In our paper, pretrained neural networks especially refer to neural net-
works with ReLU activation.

where F (x) is a composite polynomial with K sub-
polynomials f dk

k with degree dk and seeks to approximate
0.5 · sgn(x) for d > 2.

F (x) = ( f dK
K ◦ · · · ◦ f dk

k ◦ · · · ◦ f d1
1 )(x),1≤ k ≤ K (3)

The total degree of F (x) is ∏
K
k=1 dk, and consequently the

degree of EvoReLU is d = ∏
K
k=1 dk +1. For d > 2 the multi-

plicative depth of EvoReLU is 1+∑
K
k=1⌈log2(dk +1)⌉ when

using the Baby-Step Giant-Step (BSGS) algorithm [4, 35] to
evaluate composite polynomial F (x). For d = 1 and d = 2,
the multiplicative depth is 0 and 2, respectively.

EvoReLU is modeled to allow for automatic discovery
of common solutions in the literature for improving the la-
tency of inference on ciphertexts. For instance, for d = 1,
EvoReLU(x) = x is equivalent to removing the correspond-
ing ReLU layer through pruning [27, 42, 45]. Similarly, for
d = 2, EvoReLU(x) = α2x2+α1x+α0 is equivalent to using
low-degree approximations of ReLU through quadratic func-
tions [6,12,20,41,42,45]. Finally, for d > 2, EvoReLU(x) =
x · (F (x)+0.5) is equivalent to high-degree polynomial ap-
proximations [32, 33] of ReLU. In this case, EvoReLU bears
similarity to the Minimax composite polynomial in Lee et
al. [33, 36]. However, the objective for optimizing the coeffi-
cients differs significantly. While Lee et al. [33, 36] seek to
approximate a single ReLU function precisely, our goal is to
jointly optimize all EvoReLU functions in a neural network
aaa to approximate its corresponding function g(aaa,ωωω).

For the quadratic version of EvoReLU, we allow the coeffi-
cients α0, α1, and α2 to differ channel-wise when fine-tuning
polynomial CNNs. Such a design improves performance and
makes optimizing model weights ωωω more stable. For this
case, we also introduce a BatchNorm layer after the quadratic
EvoReLU for recentering and reshaping the distribution of
output activations. We can integrate the BatchNorm param-
eters into the polynomial coefficients. So, there is no extra
consumption of multiplicative levels.

We represent the composite polynomial F (x) by its degree
vector ddd = {dk}K

k=1,dk ∈N. Each sub-polynomial f dk
k (x) as a

linear combination of Chebyshev polynomials of degree dk,

f dk
k (x) =

1
βk

dk

∑
i=1

αiTi(x) (4)

where αi ∈ R and βk ∈ R. Ti(x) is the Chebyshev basis of
the first kind, αi are the coefficients for linear combination,
and scaling parameter βk is a parameter to scale the output.
The coefficients αααk = {αi}dk

i=1 control the polynomial’s shape,
while βk controls its amplitude. A composite polynomial with
the degree vector ddd has learnable parameters:

λλλ = {ααα1,β1, · · · ,αααk,βk, · · · ,αααK ,βK} (5)

A neural network with M ReLU activations needs M
EvoReLU polynomial activations. DDD = {ddd1,ddd2, · · · ,dddM} is
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Figure 2: Homomorphic evaluation architectures for Resid-
ual Networks (ResNets). 1st row: standard Conv-BN-ReLU
triplet [24]. 2nd row: MPCNN [33] which uses high-degree
polynomials. 3rd row: AESPA [46] which uses low-degree
polynomials. 4th row: The proposed AutoFHE, which uses
layerwise mixed-degree polynomials. Dashed rectangles in-
dicate the plausible locations where bootstrapping can be
placed. Both EvoReLU and the placement of bootstrapping
operations are searched.

the degree vector of all EvoReLUs and the corresponding
coefficient parameters are ΛΛΛ = {λλλ1,λλλ2, · · · ,λλλM}.
Homomorphic Evaluation Architecture refers to the place-
ment of ConvBN, polynomial, and bootstrapping. In MPCNN,
AppReLU depth is 14, ConvBN depth is 2, and the remain-
ing levels after bootstrapping are L−K = 16. So, bootstrap-
ping is placed after every AppReLU and ConvBN (Figure 2).
AESPA [46] uses degree 2 Hermite polynomial (HerPN) with
depth 2 to replace ReLU and Batchnorm. Therefore, every
4 Conv-HerPN should be followed by one bootstrapping op-
eration (Figure 2). In AutoFHE, EvoReLU is layerwise and
mixed-degree. The multiplicative depth of EvoReLU varies
layer by layer. AutoFHE introduces a flexible evaluation ar-
chitecture where bootstrapping can be called after ConvBN
or EvoReLU (Figure 2). The flexible evaluation architecture
of AutoFHE can better fit layerwise mix-degree EvoReLU.

Linear Scaling: Since the domain of Chebyshev polynomials
and bootstrapping is [−1,1], we need to scale the ciphertext
to [−1,1] before Chebyshev polynomials and bootstrapping
and reverse it after Chebyshev polynomials and bootstrapping.
To avoid consuming levels, scaling is integrated into other
operations. In MPCNN, the polynomial neural network with
AppReLU can be roughly regarded as piece-wise linear due
to high precision approximation of high-degree AppReLU.
MPCNN estimates domain of AppReLU using the training
dataset and uses the maximum number of all AppReLU do-
mains to scale down input images by ×1/B and scale up
ciphertext in the fully connected layer by ×B. In AESPA,
HerPN uses degree 2 Hermite polynomial and does not need
to scale input of HerPN. However, the input of bootstrap-
ping should be scaled to [−1,1]. The domain [−B,B] of each
bootstrapping can be estimated on the training dataset, then
integrate ×1/B into the previous HerPN and integrate ×B
into the next Conv layer. In AutoFHE, bootstrapping can be
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Figure 3: Scaling in AutoFHE. Color Key: integrate scaling
into previous operation; integrate scaling into next operation.

Variable Option

# polynomials (K) 6
poly degree (dk) {0,1,3,5,7}
coefficients (ΛΛΛ) R

Table 1: Search variables and options.

placed before EvoReLU and after EvoReLU. So, we need to
estimate domain [−Bin,Bin] and range [−Bout ,Bout ] of each
EvoReLU on the training dataset. Figure 3 shows possible
scaling scenarios in AutoFHE. We can integrate scaling into
the previous or next operation. Specifically, we can multi-
ply convolutional weight, batch norm weight and bias, and
polynomial coefficients by the scaling constant. The scaling
operation is conducted in plaintext and will not introduce ei-
ther extra level consumption. With the scaling EvoReLU can
now be expressed as,

EvoReLU(x) =


x, d = 1
α2x2 +α1x+α0, d = 2
x · (F (x/B)+0.5) , d > 2

(6)

Search Space: Our search space includes the number of sub-
polynomials (K) in our composite polynomial, the choice of
degrees for each sub-polynomial (dk), and the coefficients of

Backbone #ReLUs Dimension of DDD Search Space Size

ResNet20 19 114 1080

ResNet32 31 186 10130

ResNet44 43 258 10180

VGG11 10 60 1042

Table 2: Search space of AutoFHE for ResNet and VGG.
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the polynomials ΛΛΛ. Table 1 shows each variable’s options.
Note that choice dk = 0 corresponds to an identity place-
holder, so theoretically, the composite polynomial may have
fewer than K sub-polynomials. Furthermore, when the degree
of (pdk

k ◦ pdk−1
k−1 )(x) is less than or equal to 31 (maximum de-

gree of a polynomial supported on RNS-CKKS [32, 36]), we
merge the two sub-polynomials into a single sub-polynomial
pdk

k (pdk−1
k−1 )(x) with degree dk · dk−1 ≤ 31 before computing

its depth. This helps reduce the size of the search space and
leads to smoother exploration. Table 2 lists the number of
ReLUs of our backbone models and the corresponding dimen-
sion and size of search space for DDD. Searching for layerwise
EvoReLU is a challenging high-dimensional optimization
problem within a vast search space.

3.2 Search Objective
AutoFHE formulates the search problem as a multi-objective
optimization

min
DDD

{1−Accval (g(ωωω∗ | DDD,ΛΛΛ(DDD))) ,Boot(DDD)}

s.t. ωωω
∗ = argmin

ωωω

Ltrain (g(ωωω | DDD,ΛΛΛ(DDD)))

Ltrain = (1− τ)LCE + τLKL

(7)

where g(ωωω) is a neural network with M activa-
tion layers and the trainable network weight ωωω.
The outer multi-objective minimization formulation
minDDD {1−Accval (g(ωωω∗ | DDD,ΛΛΛ(DDD))) ,Boot(DDD)} for DDD is to
maximize the validation accuracy Accval as well as minimize
the number of bootstrapping operations. The coefficient
vector ΛΛΛ is formulated as a function of DDD. In Equation 7,
Accval is the Top-1 accuracy on a validation dataset val, Boot
is the number of bootstrapping operations. To determine
the number of bootstrapping operations, we count the level
consumption of all EvoReLU’s to determine where we
need to call bootstrapping. By minimizing the number of
bootstrapping operations, we search for the placement of
bootstrapping and minimize the wasted levels. For example,
consider that we have a ciphertext with a level equal to 2,
but the next operation consumes 10 levels. We must waste 2
levels and call bootstrapping to refresh the ciphertext first.
AutoFHE can minimize the wasted levels by adjusting the
depth of EvoReLU. {DDDi,ΛΛΛi} has its corresponding network
weight ωωωi that can compensate errors introduced by layerwise
EvoReLU {DDDi,ΛΛΛi}. We initialize ωωωi with the weight ωωω0 from
the pretrained ReLU network and then fine-tune the network
g(ωωωi) to minimize the training loss Ltrain(ωωωi) on the training
dataset. In summary, the objective in Equation 7 guides the
search algorithm to i) explore layerwise EvoReLU, including
its degrees and coefficients; 2) discover the placement of
bootstrapping to work well with layerwise mixed-degree
EvoReLU; 3) trade-off validation accuracy and inference
latency to return diverse polynomial networks.

The training loss Ltrain used to optimize the weight ωωω is
(1− τ)LCE + τLKL, where LCE is the cross-entropy loss and
LKL is the Kullback–Leibler (KL) divergence loss. τ is a pre-
defined parameter to balance CE and KL loss. In Equation 7,
we omit the variable of Ltrain. Given EvoReLU (DDD,ΛΛΛ), the
variable is weight ωωω. The KL loss computes the distance
between distributions of logits of the polynomial network
and the ReLU network. We introduce the KL loss because it
can push the output of the polynomial network close to the
ReLU network. It can be regarded as knowledge distillation
(KD) [25]. We transfer knowledge from the ReLU network to
polynomial networks.

3.3 Search Algorithms
3.3.1 Multi-Objective Search

Multi-Objective Optimization: Given two solutions with
minimization objectives ooo1,ooo2 ∈ Rd , we want to minimize
all items of ooo1 and ooo2. If ooo1,i ≤ ooo2,i,∀i ∈ {1,2, · · · ,d} and
ooo1, j < ooo2, j,∃ j ∈ {1,2, · · · ,d}, ooo1 dominates ooo2 [13, 52]. It
means ooo1 is better than ooo2. It is denoted as ooo1 ≺ ooo2. A set of
solutions OOO = {oooi}N

i=1 can be grouped into sub-sets, {oooi}N1
i=1,

{oooi}N2
i=1, · · · , corresponding to the 1st trade-off front, the 2nd

trade-off front and so on. Solutions within the same trade-off
front are not dominated by each other. The 1st trade-off front
dominates the 2nd trade-off front, and so on.
MOS: Figure 4 and Algorithm 1 show our Multi-Objective
Search framework for AutoFHE. MOS is an evolutionary
search algorithm to solve the multi-objective optimization
in Equation 7. It maintains a population of solutions dis-
tributed on trade-off fronts of accuracy and the number of
bootstrapping operations. We crossover and mutate solutions
to improve every generation’s trade-off fronts, as shown in
Figure 4. During the search, we define the population size,
namely the number of solutions, N. These N solutions may
be grouped into multiple trade-off fronts, which can improve
exploration ability during search. We design operations to
search for layerwise mixed-degree polynomials:

1⃝ SELECT: Solutions of the current population are first
grouped to different trade-off fronts by non-dominated
sorting [13]. Solutions on the same trade-off front have
the same fitness. The 1st trade-off front has a higher
fitness than the 2nd trade-off front, and so on. We apply
the tournament selection [21] to improve the diversity
of offspring. Specifically, we randomly select three solu-
tions from the current population and keep the solution
with the highest fitness. We choose N′ solutions from the
current population to build the offspring. In our paper,
we set N′ = 6N.

2⃝ CROSSOVER enables network-level information ex-
change. As shown in Figure 4, we randomly and uni-
formly exchange EvoReLU layers between two solutions
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Figure 4: Multi-objective search of AutoFHE.

Algorithm 1: MOS
Input :Pretrained Network g(ωωω0), population size N,

offspring size N′, number of generations T ,
training dataset Train, mini-validation dataset
Minival;

Output :Trade-off front {DDDi,ΛΛΛi,ωωωi}⇒ oooi,1≤ i≤ N ;

for t← 1 to T do
{DDD j,ΛΛΛ j}N′

j=1← Select({DDDi,ΛΛΛi,oooi}N
i=1) ;

{DDD′j,ΛΛΛ′j}N′
j=1← Crossover({DDD j,ΛΛΛ j}N′

j=1) ;

{ωωω′j}N′
j=1← PAT({ωωω0;DDD′j,ΛΛΛ

′
j}N′

j=1, Train) ;

{ooo′j}N′
j=1← Eval({DDD′j,ΛΛΛ′j,ωωω′j}N′

j=1, Minival) ;{
DDD′j,ΛΛΛ

′
j,ωωω
′
j

}
⇒ ooo′j,1≤ j ≤ N′ ;

{oooi}N
i=1← Pareto({oooi}N

i=1∪{ooo′j}N′
j=1) ;

{DDDi,ΛΛΛi,ωωωi}⇒ oooi,1≤ i≤ N ;
{DDD j,ΛΛΛ j,ωωω j}N′

j=1← Select({DDDi,ΛΛΛi,ωωωi,oooi}N
i=1) ;

{DDD′j}N′
j=1← Mutate({DDD j}N′

j=1) ;

{ΛΛΛ′j}N′
j=1← R-CCDE({DDD′j}N′

j=1) ;

{ωωω′j}N′
j=1← PAT({ωωω′j;DDD′j,ΛΛΛ

′
j}N′

j=1, Train) ;

{ooo′j}N′
j=1← Eval({DDD′j,ΛΛΛ′j,ωωω′j}N′

j=1, Minival) ;{
DDD′j,ΛΛΛ

′
j,ωωω
′
j

}
⇒ ooo′j,1≤ j ≤ N′ ;

{oooi}N
i=1← Pareto({oooi}N

i=1∪{ooo′j}N′
j=1) ;

{DDDi,ΛΛΛi,ωωωi}⇒ oooi,1≤ i≤ N ;

(parents) to generate two new solutions. However, new
solutions cannot inherit weights from parent solutions
because weights are adapted to the parent’s layerwise
mixed-degree polynomials. So, we initialize weights
with pretrained weights and then fine-tune new solutions.

3⃝ R-CCDE optimizes EvoReLU coefficients.

4⃝ PAT fine-tunes new polynomial CNNs.

5⃝ MUTATION is to locally explore EvoReLU. We ran-
domly increase or decrease the degree to smoothly
change polynomials, as shown in Figure 4. We randomly
increase or decrease the degree of a sub-polynomial of

EvoReLU with predefined probabilities.

6⃝ PARETO refers to non-dominated sorting and crowd-
ing distance sorting [13]. We apply Pareto to select N
solutions from both population and offspring (N +N′

solutions) to build a new population (N solutions).

3.3.2 R-CCDE

Coevolution: The composite polynomial used by
EvoReLU is: y1 = f d1

1 (x|ααα1,β1), · · · , yK = f dK
K (yK−1|αααK ,βK).

The forward architecture of the composite polynomial,
x 7→ y1 7→ y2 · · · 7→ yK−1 7→ y is suitable for coevolu-
tion [43, 44, 58] and provides a natural decomposition.
We can sequentially adjust every sub-polynomial to
push the output y close to the target non-arithmetic
function. Given the degree ddd, the learnable parameter
of EvoReLU λλλ = (ααα1,β1, · · · ,αααK ,βK) is grouped into
{ααα1},{β1}, · · · ,{αααK},{βK}. The coefficient ααα controls
the shape of the sub-polynomial output, while the scaling
parameter β controls the amplitude. We sequentially update
{αααk} followed by βk, 1 ≤ k ≤ K, since i) sub-polynomials
close to input will have a larger effect on the output, and ii) it
is easier to learn coefficients by decoupling the amplitude
from the coefficients.
Differentiable Evolution: The EvoReLU variables {αααk}K

k=1
and {βk}K

k=1 are in the continuous space. We adopt a simple
yet effective search algorithm to optimize these variables.
Differentiable evolution (DE) [48] only uses the difference
between solutions to optimize continuous variables. Given
the following minimization problem in the continuous space

xxx∗ = argmin
xxx

F (xxx) (8)

where xxx ∈ Rd and F is the minimization objective. DE main-
tains a set of solutions XXX = {xxxi}N

i=1,xxxi ∈ Rd . The mutation,
crossover, and selection of DE are defined as:

Mutation: vvv = xxxi +F · (xxx j− xxxk) ,1≤ i, j,k ≤ N

Crossover: uuu[t] =

{
vvv[t], U(0,1)≤CR
xxxi[t], Otherwise

,1≤ t ≤ d

Selection: uuu =

{
uuu, F (uuu)≤ F (xxxi)

xxxi, Otherwise

(9)
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Algorithm 2: R-CCDE

Input :Composite polynomial F (x) = ( f dK
K ◦ f dk−1

k−1 ◦ · · · ◦ f d1
1 )(x) with parameters λλλ = {ααα1,β1, · · · ,αααk,βk, · · ·αααK ,βK},

target function q(x), number of generations T , scaling decay γ ;
Output :Context vector λλλ

∗ = (ααα∗1,β
∗
1, · · · ,ααα∗k ,β∗k , · · · ,ααα∗K ,β∗K);

Initial :λλλ
∗← LHS(∑

K
k=1 dk +K)

for t← 1 to T do
for k← 1 to K do

ααα⋆
k ← argminαααk

LF ,q(αααk|λλλ∗) s.t. αααk|λλλ∗ = (ααα∗1,β
∗
1, · · · ,αααk, · · · ,ααα∗K ,β∗K);

λλλ
∗← (ααα∗1,β

∗
1, · · · ,ααα⋆

k , · · · ,ααα∗K ,β∗K);
β⋆

k ← argminβk
LF ,q(βk|λλλ∗)+ γ ·βk

2 s.t. βk|λλλ∗ = (ααα∗1,β
∗
1, · · · ,βk, · · · ,ααα∗K ,β∗K);

λλλ
∗← (ααα∗1,β

∗
1, · · · ,β⋆

k , · · · ,ααα∗K ,β∗K);

where F ∈R is the scaling factor, CR∈R is the crossover rate,
and U(0,1) is the uniform distribution between 0 and 1. Equa-
tion 9 shows a simple strategy to update solutions by only
using difference. First, mutation updates xxxi with the scaled
difference F · (xxx j− xxxk). Then, we randomly select items from
vvv or xxxi to generate a new solution uuu. Finally, we evaluate F (uuu)
and use uuu to replace xxxi if F (uuu)≤ F (xxxi). DE only uses differ-
ence and does not suffer from gradient exploding. It maintains
a set of solutions and is not sensitive to initialization.
R-CCDE: We propose Regularized Cooperative Coevolution
Differentiable Evolution, called R-CCDE, to search for pa-
rameters of EvoReLU(x,λλλ;ddd), namely λλλ = {αααk,βk}K

k=1. The
scaling parameters {βk}K

k=1 are used to adjust the ampli-
tude of sub-polynomials during the search. After the search,
{βk}K

k=1 will be used to scale {αααk}K
k=1 and obtain coeffi-

cients of polynomials. The decomposition makes the search
easier by decoupling the shape and amplitude of polyno-
mials. We detail the implementation of R-CCDE in Al-
gorithm 2. R-CCDE takes as input a composite polyno-
mial F (x) = ( f dK

K ◦ f dk−1
k−1 ◦ · · · ◦ f d1

1 )(x) with parameters λλλ =
{ααα1,β1, · · ·αααk,βk · · ·αααK ,βK}. Because EvoReLU is defined
as y = EvoReLU(x) = x · (F (x)+0.5) in Equation 3, we
use the composite polynomial F (x) to approximate q(x) =
0.5 · sgn(x). We set the number of generations and the scaling
decay parameter to T and γ, respectively. The objective func-
tion LF ,q(·) is the ℓ1 distance between the composite polyno-
mial F (x) and the target function q(x). R-CCDE maintains
a context vector [44] λλλ

∗ = (ααα∗1,β
∗
1, · · · ,ααα∗K ,β∗K) as the best

solution so far. λλλ
∗ is initialized via Latin hypercube sampling

(LHS). In Algorithm 2, αααk and βk 1 ≤ k ≤ K are optimized
using DE sequentially and alternatively. In generation t, given
the k-th position, we optimize αααk as

ααα
⋆
k = argmin

αααk

LF ,q(αααk|λλλ∗)

s.t. αααk|λλλ∗ = (ααα∗1,β
∗
1, · · ·αααk, · · · ,ααα∗K ,β∗K)

(10)

where αααk is a variable, while other ααα’s and β’s are
fixed. A candidate solution of αααk is plugged into λλλ

∗.

Then, we evaluate the candidate solution αααk by evaluat-
ing LF ,q (ααα

∗
1,β
∗
1, · · · ,αααk, · · · ,ααα∗K ,β∗K). We adopt DE to solve

the single-objective optimization problem in the continuous
space. We maintain a set of candidate solutions of αααk, namely
XXX = {xxxi}N

i=1 ,xxxi ∈ Rdk . Mutation, crossover, and selection de-
fined in Equation 9 are applied to update solutions in XXX . Then,
the best solution in XXX is assigned to ααα⋆

k . We use ααα⋆
k to replace

ααα∗k in the context vector λλλ
∗ to update λλλ

∗

λλλ
∗ = (ααα∗1,β

∗
1, · · ·ααα⋆

k , · · · ,ααα∗K ,β∗K) (11)

In summary, i){αααk}K
k=1 and {βk}K

k=1 separately maintain their
sets of solutions that are optimized by DE; ii) the context
vector λλλ

∗ is not only the best solution so far. It allows different
variables to share information. When evolving {βk}K

k=1, the
objective introduces a regularization term

β
⋆
k = argmin

βk

LF ,q(βk|λλλ∗)︸ ︷︷ ︸
ℓ1 Distance

+ γ ·βk
2︸ ︷︷ ︸

Regularization

s.t. βk|λλλ∗ = (ααα∗1,β
∗
1, · · · ,βk, · · · ,ααα∗K ,β∗K)

(12)

where γ · β2
k is the regularization term and γ is the scal-

ing decay parameter. Without the regularization γ · β2
k , we

observe {βk}K
k=1 prefers large numbers. Because pdk

k (x) =
1
βk

∑
dk
i=1 αiTi(x), large {βk}K

k=1 numbers can make the com-
posite polynomial numerical stable because the polynomial
output is scaled to a small number. However, it is hard to
distinguish different solutions of {αααk}K

k=1. By introducing
the regularization term γ · β2

k , DE prefers large numbers in
earlier generations and gradually reduces βk. Therefore, DE
is not biased toward solutions with large βk numbers. We
use R-CCDE to optimize coefficients of quadratic and high-
degree EvoReLU. For quadratic EvoReLU in Equation 2, α2
is obtained by R-CCDE and α1 = 0.5, α0 = 0.

3.3.3 Polynomial-Aware Training

Replacing ReLU with EvoReLU in pretrained neural net-
works injects minor approximation errors, which leads to
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performance loss. Fine-tuning can mitigate this performance
loss by allowing the learnable weights (e.g., convolution or
fully connected layers) to adapt to the approximation error.
However, backpropagation through EvoReLU easily leads
to exploding gradients since the gradients may be amplified
exponentially due to many composite polynomials. From
Equation 2, high-degree EvoReLU can precisely approxi-
mate ReLU, while ReLU pruning (degree 1) and quadratic
EvoReLU (degree 2) have a larger approximation error. For
low-degree EvoReLU (degree ≤ 2), we can use SGD to com-
pute gradients because they do not amplify gradients. For
high-degree EvoReLU (degree > 2), we can use gradients
from the original non-arithmetic ReLU function for backprop-
agation. Specifically, during the forward pass, EvoReLU in-
jects slight errors captured by the training loss. During the
backward pass, we bypass high-degree EvoReLU and use
ReLU to compute gradients to update the weights of the linear
trainable layers. We refer to this procedure as Polynomial-
Aware Training (PAT). PAT is inspired by STE [3] and
QAT [26], which uses two different functions for forward-
and back-propagation. PAT is defined as:

∂EvoReLU(x)
∂x

=


1, d = 1
2α2x+α1, d = 2
∂ReLU(x)/∂x, d > 2

(13)

4 Experiments

Datasets: We benchmark AutoFHE on CIFAR10 and CI-
FAR100 [31]. Both datasets have 50,000 training and 10,000
validation images at a resolution of 32×32. CIFAR10 has 10
classes, while CIFAR100 includes 100 classes. The validation
images are treated as private data and used only for evaluating
the final networks. To guide the search process, we randomly
select 10,000 images from the training split as a minival [53]
dataset and use the Top-1 accuracy on the minival dataset to
optimize Equation 7. In addition, PAT uses the training split to
fine-tune polynomial networks. Finally, as our final result, we
report the Top-1 accuracy on the encrypted validation dataset
under RNS-CKKS.

Parameters: (1) TRAINING PARAMETERS: We train ReLU
networks (used by MPCNN and AutoFHE) and AESPA using
SGD optimizer with batch size 128, epochs 200, learning rate
0.1, momentum 0.9 and weight decay 0.0005. We use a cosine
learning rate scheduler. We clip gradients to 1 when we train
polynomial networks (AESPA or AutoFHE). (2) SEARCH
PARAMETERS: For MOS, we set the number of generations
to 10. Population size is proportional to the number of vari-
ables. We set population size to 10, 20, 30 and 40 for VGG11,
ResNet20, ResNet32 and ResNet44, respectively. The off-
spring size is 6× as the population size. When we mutate a
polynomial, its degree is decreased by −2 with a probability
of 0.5 and is increased by +2 with a probability of 0.3. For

Method Venue Scheme Polynomial Layerwise Strategy Arch

MPCNN [33] ICML22 CKKS high-degree ✕ approx manual
AESPA [46] arXiv22 CKKS low-degree ✕ train manual
REDsec [18] NDSS23 TFHE n/a n/a train manual

AutoFHE USENIX24 CKKS mixed ✓ adapt search

Table 3: AutoFHE and baselines. AutoFHE, MPCNN and
AESPA use fixed-point arithmetic under RNS-CKKS, while
REDsec adpots ternary neural networks under TFHE.

R-CCDE, we set the search domain of ααα to [−5,5] and that
of β to [1,5]. We use the set of 20 solutions for optimizing
β. For ααα, we set the number of solutions equal to 20× the
number of variables. We set both the scaling factor F and the
crossover rate CR to 0.5. We set the scaling decay to γ = 0.01
and the number of iterations to 100. We run R-CCDE 10 times
with different random seeds and retain the best solution. (3)
FINETUNING PARAMETERS: To fine-tune AutoFHE poly-
nomial networks, we train them using PAT with batch size
128, learning rate 0.02, momentum 0.9, weight decay 0.0005,
and KL weight τ = 0.9. We clip gradients to 1. During the
search, to quickly estimate the accuracy of polynomial net-
works, we set epochs to 5. After the search, we set epochs to
90 and use the cosine annealing learning rate scheduler. (4)
CRYPTOGRAPHIC PARAMETERS: We followed MPCNN to
set the same cryptographic parameters [33] of RNS-CKKS for
MPCNN, AESPA and AutoFHE. The cyclotomic polynomial
uses degree N = 216. The Hamming weight of the secret key
is 192. The ciphertext level is L = 30, while bootstrapping
uses 14 levels (K = 14). Base modulus, special modulus, and
bootstrapping modulus are set to 51 bits, while default modu-
lus is set to 46 bits [33]. The cryptographic parameters satisfy
128-bit security [9, 33].

Hardware and RNS-CKKS Library: (1) SEARCH: On one
NVIDIA RTX A6000 GPU, the search process for ResNet-
20/32/44 and VGG11 on CIFAR10 took 44 hours, 64 hours,
88 hours, 13 hours, respectively. The search for ResNet32
and VGG11 on CIFAR100 took 67 and 12 hours, respectively.
To accelerate R-CCDE, we use 100 CPU threads of AMD
EPYC 7502 32-core processor. (2) FHE INFERENCE: We
evaluate latency under FHE on the publicly available Amazon
AWS instance, r5.24xlarge, which has 96 CPU threads and
768 GB RAM. We build C++ implementation of AutoFHE un-
der RNS-CKKS on top of MPCNN using Microsoft SEAL
library [50]. We adopt MPCNN implementations of Conv,
BN, Downsample, AvgPool, and FC layers.

Baselines: We compare the proposed AutoFHE with
two recent state-of-the-art approaches under RNS-CKKS,
high-degree polynomial and approximation-based approach
MPCNN [33] and low-degree polynomial and training-based
approach AESPA [46], as shown in Table 3. We also bench-
mark against REDsec [18] under TFHE to compare different
FHE schemes.

RNS-CKKS BASELINES: MPCNN uses high-degree
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Figure 5: Comparison of trade-offs between ciphertext ac-
curacy and amortized latency on encrypted CIFAR10. The
latency is evaluated on Amazon AWS r5.24large using 96
threads. RNS-CKKS approaches take 96 encrypted images
as input, while REDsec processes one image at a time. Circle
size is proportional to the number of bootstrapping operations.

Minimax composite polynomial approximation of ReLU
and reports high ciphertext accuracy (refer to Appendix A).
AESPA applies degree 2 Hermite polynomial to replace
ReLU, which reduces the multiplicative depth of polynomials
and greatly reduces the consumption of bootstrapping. Be-
cause AESPA was originally proposed under secure MPC, we
implement AESPA under RNS-CKKS (refer to Appendix B).
We use the same training parameters for MPCNN, AESPA and
AutoFHE. We estimate scaling parameters of MPCNN on
training datasets: 21.26 (ResNet20), 21.99 (ResNet32), 17.80
(ResNet44), 29.82 (VGG11) on CIFAR10 dataset and 63.40
(ResNet32) and 54.97 (VGG11) on CIFAR100.

TFHE BASELINE: The fast fully homomorphic encryption
scheme over the torus (TFHE) [11] provides very fast boot-
strapping by using bootstrapped binary gates. REDsec applies
efficient ternary networks (TNNs) under TFHE. REDsec re-
ports performance of BNetS and BNet on CIFAR10 under
CPU TFHE [54]. BNetS and BNet observe ciphertext accu-
racy 81.9% and 88.5%, and latency 1,081 and 4,622 seconds
per image on CIFAR10 dataset on AWS r5.24large instance
using 96 CPU threads [18]. The TFHE cryptographic parame-
ters used by REDsec satisfy 128 bits of security [18]. Please
note that REDsec uses a different parallel acceleration strat-
egy. REDsec takes advantage of all 96 CPU threads to process
one encrypted image, while RNS-CKKS approaches allocate
one thread to each image. Therefore, REDsec has the same
latency and amortized latency. When we evaluate the latency
of AutoFHE, MPCNN and AESPA on AWS r5.24large, we
input 96 encrypted images using 96 CPU threads. The amor-
tized latency is 1

96× as the latency under RNS-CKKS. So, the
amortized latency of REDsec and RNS-CKKS approaches is
comparable.

4.1 AutoFHE under RNS-CKKS

Trade-offs under FHE: Figure 5 shows trade-offs between ci-
phertext accuracy and amortized latency on CIFAR10 dataset.
We benchmark the performance of ResNet and VGGNet back-
bones on CIFAR10 and CIFAR100 datasets, as shown in
Table 4. For TFHE baseline REDsec, it reported 81.9% ci-
phertext accuracy with latency 1,081s per image and 88.5%
ciphertext accuracy with latency 4,622s per image on CI-
FAR10 [18]. We have the following observations:

RNS-CKKS vs TFHE

Neural networks under RNS-CKKS significantly
outperform those under TFHE in terms of both
ciphertext accuracy and latency.

From Figure 5, REDsec shows lower ciphertext accuracy
because ternary neural networks (TNNs) enormously com-
press models [38] compared to real-valued models used by
RNS-CKKS approaches. Real-valued networks have much
better representation learning ability than TNNs. In secure
inference of neural networks, REDsec has to evaluate millions
to billions of gates [18]. Although evaluating one gate is very
fast (10∼ 13 ms) [18] on TFHE [54], the latency of the whole
network is still extremely high. The most efficient solution
(ResNet20 with 5 bootstrapping operations) of AutoFHE re-
ports 999111...999666% ciphertext accuracy and 45s latency. Compared
to REDsec BNetS and BNet, AutoFHE improves ciphertext
accuracy by +++111000...000666% and +++333...444666%, respectively, while be-
ing 222444××× and 111000333××× faster in terms of amortized latency.

High-Degree vs Low-Degree vs Mixed-Degree

High-degree polynomials are suitable for shallow
and deep neural networks but suffer from high
latency. Low-degree polynomials can effectively
accelerate ciphertext inference but at the cost of a
significant drop in accuracy. Mixed-degree layer-
wise polynomials (AutoFHE) lead to a significantly
better trade-off between accuracy and latency.

From Figure 5 and Table 4, we observe that high-degree
MPCNN is able to preserve plaintext accuracy although it
consumes more levels (14) for AppReLU. Since MPCNN fo-
cuses on approximating the ReLU function, it can use weights
from ReLU networks and does not suffer from exploding ac-
tivations and gradients in the forward and backward passes of
data through the network. In summary, MPCNN is a plug-in
approach with high accuracy and high latency. Low-degree
AESPA reduces level consumption of each polynomial by 12
compared to MPCNN. AESPA polynomials only consume
26% and 22% of the bootstrapping operations in MPCNN for
ResNet and VGG, respectively. However, AESPA achieves
this at the cost of large drops in accuracy, 0.7% ∼ 3.6% on
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Figure 6: Trade-offs between ciphertext accuracy and amortized latency of ResNet and VGG backbones on CIFAR10.

Dataset
Backbone MPCNN [33] AESPA [46] AutoFHE

Network Params
Acc%
Plain

rapping
Bootst-

Acc%
Cipher Latency

Latency
Amortized

rapping
Bootst-

Acc%
Cipher Latency

Latency
Amortized

rapping
Bootst-

Acc%
Cipher Latency

Latency
Amortized

CIFAR10

ResNet20 269K 92.66 18 92.59 9,481s 99s 5 91.92 4,554s 47s 5 91.96 4,295s 45s
11 92.89 7,191s 75s

ResNet32 464K 93.46 30 93.39 16,910s 176s 8 90.60 6,841s 71s 8 93.16 6,860s 71s
19 93.56 12,111s 126s

ResNet44 658K 93.72 42 93.57 24,082s 251s 11 90.11 9,345s 97s 8 92.55 8,078s 84s
22 93.65 15,769s 164s

VGG11 123K 90.53 9 90.41 5,221s 54s 2 88.97 2,112s 22s 1 86.78 1,515s 16s
4 90.69 2,879s 30s

CIFAR100 ResNet32 472K 70.81 30 70.59 15,693s 163s 8 68.43 7,171s 75s 16 71.34 10,969s 114s

VGG11 129K 64.64 9 63.95 5,148s 54s 2 62.90 2,225s 23s 7 64.31 4,562s 48s

Table 4: AutoFHE under the RNS-CKKS scheme. Latency for 96 images is evaluated on AWS r5.24large using 96 threads.
Amortized latency is the average latency of each image. We report the ciphertext accuracy of 10,000 encrypted validation images.
For CIFAR10, we select two solutions with different bootstrapping for each backbone network. Color key: highest ciphertext
accuracy; lowest (amortized) latency; smallest number of bootstrapping operations.

Dataset Backbone MPCNN [33] AESPA [46] AutoFHE
#Boot Linear(s) AppReLU(s) Boot(s) #Boot Linear(s) HerPN(s) Boot(s) #Boot Linear(s) EvoReLU(s) Boot(s)

CIFAR10

ResNet20 18 1180±32 1067±45 7138±95 5 2344±9 54±1 2108±14 5 2014±11 115±3 2092±37
11 2142±52 388±18 4473±71

ResNet32 30 2104±84 1708±103 12304±506 8 3582±173 79±2 3234±76 8 3540±41 38±1 3107±57
19 2962±95 646±20 8185±142

ResNet44 42 3084±93 2385±59 18071±433 11 4683±19 110±2 4393±105 8 4595±21 42±1 3265±94
22 4447±152 806±41 10256±184

VGG11 9 676±29 639±24 3809±92 2 1281±50 28±1 835±8 1 1056±6 14±1 402±21
4 1019±7 172±3 1661±4

CIFAR100 ResNet32 30 2062±64 1621±51 11815±123 8 3754±20 79±2 3225±78 16 3602±25 620±16 6528±131

VGG11 9 685±17 645±24 3752±82 2 1330±6 28±1 835±9 7 1145±15 338±18 3027±39

Table 5: Latency of operations under the RNS-CKKS scheme. We report the mean and standard deviation of latency of 96 images
in Table 4. Linear layers include Conv, BN, Downsample, AvgPool, and FC.

CIFAR10 and 1.7%∼ 2.4% on CIFAR100 compared to the
corresponding plaintext backbone models.

AutoFHE takes advantage of layerwise mixed-degree poly-
nomials to reduce bootstrapping consumption while main-
taining high accuracy. From Figure 6 and Table 4, Aut-
oFHE shows a better trade-off between ciphertext accu-
racy and latency than MPCNN and AESPA. Compared to

MPCNN on CIFAR10, AutoFHE accelerates encrypted im-
age inference by 111...333222×××∼∼∼ 111...888××× while improving accuracy
by +++000...000888%∼∼∼ 000...333% in comparison to MPCNN. Similarly, on
CIFAR100, AutoFHE speeds up inference by 111...111×××∼∼∼ 111...444×××
while increasing accuracy by +++000...333666%∼∼∼ 000...777555%. From Fig-
ure 6, compared to AESPA, AutoFHE improves ciphertext ac-
curacy by +++222...555666% and +++222...444444% for ResNet32 and ResNet44
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backbones on CIFAR10 with similar amortized latency. How-
ever, AESPA’s low-degree polynomials lead to an increasing
drop in accuracy with model depth. This starkly contrasts
with plaintext models, where deeper models are known to
improve performance. AutoFHE can improve performance
with depth while maintaining the same latency as AESPA. As
such, we observe from Figure 5 and Table 4 that AutoFHE
enjoys a much better trade-off between accuracy and latency.

In summary, the challenge of navigating the vast joint de-
sign space of polynomial approximations of non-linear acti-
vation functions and homomorphic evaluation architectures
limits manual approaches like MPCNN and AESPA to sim-
plify solutions like approximating non-linear activation func-
tions and uniform placement of bootstrapping operations. In
contrast, AutoFHE algorithmically navigates the design space
and identifies solutions that significantly pareto dominate
manual approaches in accuracy, latency, or both.

Approximation vs Training vs Adaptation

High-precision function approximation can pre-
serve plaintext accuracy without training, while
low-precision function approximation with training
leads to a loss in accuracy. AutoFHE is a hybrid
method that inherits the representation learning
ability of ReLU networks and adapts the network’s
learnable weights to layerwise polynomials.

On the one hand, MPCNN has a drop in accuracy of
0.07∼ 0.15% and 0.22∼ 0.69% compared to plaintext back-
bone models on CIFAR10 and CIFAR100, respectively. This
demonstrates that high-degree polynomials still introduce
slight approximation errors. On the other hand, AESPA has a
significant drop in accuracy, especially for deeper networks,
which was also observed by AESPA’s authors [46]. The re-
sults demonstrate that the representation learning ability of
(low-degree) polynomial neural networks is inferior to ReLU
networks [37]. Unlike AESPA, AutoFHE inherits the rep-
resentation learning ability from ReLU networks by using
pretrained weights and transferring knowledge. Furthermore,
we fine-tune polynomial networks using very small learn-
ing rates to adapt learnable network weights to layerwise
mixed-degree polynomial EvoReLU. Therefore, AutoFHE
can achieve the high-accuracy of ReLU networks and the
low-latency of low-degree polynomial networks. As such,
compared to MPCNN and AESPA, AutoFHE improves both
prediction accuracy and reduces inference latency over all
ResNet and VGG backbones.

Operations under RNS-CKKS: Table 5 shows the latency of
different operations under RNS-CKKS. AppReLU is a high-
degree polynomial, so its evaluation latency is higher than
degree 2 HerPN. The latency of EvoReLU is roughly between
AppReLU and HerPN. Low-bootstrapping solutions of Aut-
oFHE further speed up evaluation of polynomial compared

to HerPN, e.g. ResNet32 with eight bootstrapping, ResNet44
with eight bootstrapping and VGG11 with one bootstrapping.
In MPCNN, bootstrapping dominates latency with 74∼ 77%
of total inference time. In AESPA, linear layers and bootstrap-
ping operations consume similar runtime.

The latency of AutoFHE is similar to AESPA for
low-bootstrapping solutions and to MPCNN for high-
bootstrapping solutions. Linear operations of MPCNN are
faster than AESPA and AutoFHE since they are being eval-
uated at a lower level. For example, MPCNN ConvBN al-
ways takes level 2 ciphertext as input. The evaluation of
low-level ciphertexts is faster than high-level ciphertexts. For
AESPA and AutoFHE, polynomial activations (HerPN and
EvoReLU) have smaller multiplicative depth, and their linear
operations take ciphertexts at higher levels as input. From
Table 5, we observe that i) AutoFHE can effectively accel-
erate neural network inference on RNS-CKKS by remov-
ing time-consuming bootstrapping operations; ii) Layerwise
mixed-degree EvoReLU effectively explores how to reduce
the multiplicative depth of polynomials and further decrease
consumption of bootstrapping operations.

4.2 Layerwise AutoFHE

Depth Distribution: To analyze the layerwise mixed-degree
EvoReLU discovered by AutoFHE, we study (see Figure 7)
the distributions of multiplicative depth for different back-
bones on CIFAR10. In contrast to the uniform allocation used
by MPCNN and AESPA, the optimal layerwise allocation
of EvoReLU discovered by AutoFHE is highly non-uniform.
Such a distribution is challenging to design manually, thus
further motivating the need for automated design of layer-
wise mixed-degree polynomial approximations of activation
functions. From the distribution in Figure 7, we identify the
following design principles that can guide the design of poly-
nomial neural networks under RNS-CKKS.

Observation 1

Low and high bootstrapping solutions share a simi-
lar distribution of multiplicative depth.

In Figure 7, we provide two solutions with low and high
bootstrapping operations for each backbone. These two so-
lutions share similar depth distributions. Specifically, high-
degree polynomials are preferred in the same layers of low
and high bootstrapping solutions.

Observation 2

Depth distribution is linearly scalable.

Consider the depth distributions of VGG11(4) and
ResNet20(5), ResNet20(11) and ResNet32(19) in Figure 7.
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Figure 7: Multiplicative depth of layerwise mixed-degree EvoReLU layers.
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Figure 8: EvoReLU functions of AutoFHE for VGG11 with
4 bootstrapping operations. The top row shows EvoReLU for
layer 0∼ 4, and the bottom row shows layer 5∼ 9.

They have different numbers of layers. If we scale their dis-
tributions horizontally to match the number of layers, their
depth distributions are very similar. This demonstrates that
the number of layers and position of activations are the most
important factors affecting the sensitivity of layerwise ap-
proximation. Therefore, the depth distributions are linearly
scalable to the neural network’s depth.

Observation 3

Consecutive linear layers can be integrated into a
single operation to reduce multiplicative depth.

Many networks have consecutive linear (depth 0) layers,
especially ResNet44(22). In this case, it is possible to inte-
grate successive linear layers into a single linear layer, which
decreases the multiplicative depth and removes bootstrap-
ping operations. Table 5 demonstrates that reducing linear
operations is an effective way to further accelerate inference.

Layerwise EvoReLU: Figure 8 shows layerwise mixed-
degree EvoReLU functions for VGG11 with 4 bootstrap-
ping operations. High-degree EvoReLU functions can pre-
cisely approximate ReLU, e.g. layer 0, 1 and 2. Medium-

degree EvoReLU functions (layer 3, 5, 8) observe oscillation
but still are very close to ReLU. Degree 2 EvoReLU is a
quadratic function and introduces more approximation errors
compared to high-degree and medium-degree functions. For
high-degree and medium-degree polynomials, input will be
scaled to [−1,1] so we can prevent exploding activations. Fig-
ure 8 qualitatively shows that high-degree and medium-degree
EvoReLU functions can precisely approximate ReLU, and we
can use gradients of ReLU in PAT to prevent exploding gradi-
ents during backpropagation. Since degree 2 EvoReLU has a
relatively big approximation error, we use SGD rather than
approximate gradients from ReLU (refer to Equation 13).

5 Related Work

In this paper, we focus on secure inference under FHE. Se-
cure multiparty computation (MPC) is an alternative approach
for secure inference [19, 29, 30, 40, 42, 45, 47]. It is usually
employed in a hybrid protocol involving both MPC and HE.
MPC primitives include secret sharing, Yao’s garbled circuits
[2, 59], and Beaver’s multiplicative triples [1], etc. For ex-
ample: (1) Gazelle [29] adopts packed additively homomor-
phic encryption (PAHE) to evaluate linear layers (Conv and
FC layers) and garbled circuits to evaluate non-linear layers
(ReLU and MaxPooling layers). (2) Delphi [45] uses Gar-
bled circuits to evaluate ReLU, and Beaver’s multiplicative
triples to evaluate the polynomial approximation x2 of ReLU.
(3) Iron [23] employs the Brakerski-Fan-Vercauteren (BFV)
scheme [5, 16] for matrix multiplication. Non-linear opera-
tions, like SoftMax, GELU, and LayerNorm, are evaluated
through secret sharing.

Secure MPC-based approaches for secure inference must
carefully consider the trade-off between computation and
communication [29] since both the customer and the Cloud

13



perform computations. In some practical scenarios, sufficient
communication and computing resources on the client side
may not be available. Pure FHE-based approaches provide
customers a fire-and-forget [18] service, where they are not in-
volved in the computations and simply wait for the encrypted
result. However, FHE-based approaches may have higher la-
tency and memory footprint than secure MPC approaches.

In terms of polynomial neural networks, FHE approaches
have to replace all ReLU activations with polynomials since
FHE only supports multiplications and additions. Secure
MPC approaches usually replace only a fraction of ReLUs to
reduce online communication and computation costs and re-
tain a few ReLU layers to preserve accuracy, e.g. Delphi [45]
and SAFENet [42]. These approaches, however, only use low-
degree polynomials and observe a significant drop in accuracy
when most ReLU activations are replaced. AutoFHE can also
be employed for secure MPC schemes by changing the search
objective from the number of bootstrapping operations to
online communication or computation costs of secure MPC.

6 Conclusion

Non-interactive end-to-end inference of homomorphically en-
crypted ciphertext images over convolutional networks is an
attractive solution for mitigating the security and privacy con-
cerns of cloud-based MLaaS offerings. Adapting CNNs for
inference over FHE ciphertexts presents several challenges,
including the optimal design of polynomial approximations
of non-linear activation functions and associated homomor-
phic evaluation architecture. Existing solutions primarily rely
on manual designs, which are neither scalable nor flexible
enough to be applied to any architecture and cater to the
needs of different MLaaS customers.

To overcome these challenges, this paper introduced Aut-
oFHE, an automated approach for adapting any convolutional
neural network for secure inference under RNS-CKKS. It
is a multi-objective search algorithm that generates a set of
polynomial networks and their associated homomorphic eval-
uation architecture under FHE by trading off accuracy and
latency. It exploits layerwise mixed-degree polynomial activa-
tions across different layers in a network and jointly searches
for placement of bootstrapping operations for evaluation un-
der RNS-CKKS. We designed a custom search space for
layerwise mixed-degree polynomials and adopted multiple
objectives for optimization. We also proposed a combination
of search and training algorithms, including multi-objective
search algorithm MOS, composite polynomial coefficient op-
timization method R-CCDE, and polynomial aware network
training strategy PAT. We extensively evaluate AutoFHE on
ResNets and VGGNets over encrypted CIFAR datasets. Com-
pared to high-degree MPCNN, AutoFHE accelerates infer-
ence by 1.32× ∼ 1.8×. Compared to low-degree AESPA,
AutoFHE improves accuracy by up to 2.56%. Finally, models
under RNS-CKKS (AutoFHE) accelerate inference by 103×

and improve accuracy by 3.46% compared to models under
TFHE (REDsec).

Our results demonstrate the effectiveness of automated
search-based algorithms in navigating the large search
space of adapting convolution neural networks for inference
over FHE ciphertexts and discovering networks that Pareto-
dominate manually designed ones. In summary, an integrated
and automated design of polynomial approximations and ho-
momorphic evaluation architecture is an effective and flexible
approach for seamlessly adapting CNNs for inference on FHE
ciphertexts.
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A MPCNN under RNS-CKKS

MPCNN [33] is the state-of-the-art framework for homo-
morphically evaluating deep CNNs on encrypted data under
RNS-CKKS with high accuracy. Its salient features are as
follows.

(1) COMPACT PACKING: All channels of a tensor are
packed into a single ciphertext via multiplexed packing. Fur-
thermore, multiplexed parallel (MP) convolution was pro-
posed to process the ciphertext efficiently. Multiplexed pack-
ing can effectively avoid wasting slots due to strided convolu-
tions.

(2) HOMOMORPHIC EVALUATION ARCHITECTURE: To
refresh zero-level ciphertexts, bootstrapping operations are
placed after every ConvBN (as shown in Figure 2), except
for the first one. This hand-crafted homomorphic evaluation
architecture for ResNets is determined by the choice of cryp-
tographic parameters, the level consumption of operations,
and ResNet’s architectures.

(3) APPRELU: It replaces all ReLUs with the same high-
degree Minimax composite polynomial [32, 36] of degrees
{15,15,27}. By noting that ReLU(x)= x ·(0.5+0.5 ·sgn(x)),
where sgn(x) is the sign function, the approximated ReLU
(AppReLU) is modeled as AppReLU(x) = x · (0.5 + 0.5 ·
pα(x)),x ∈ [−1,1]. pα(x) is the composite Minimax poly-
nomial. The precision α is defined as |pα(x)− sgn(x)| ≤ 2−α.
AppReLU is expanded to arbitrary domains x ∈ [−B,B] of
pre-activations in CNNs by scaling it as B ·AppReLU(x/B).
B can be estimated on the training dataset.

(4) CRYPTOGRAPHIC PARAMETERS: MPCNN sets N =
216, L = 30 and Hamming weight h = 192. Base modulus,
special modulus, and bootstrapping modulus are set to 51 bits,

while default modulus is set to 46 bits. These cryptographic
parameters satisfy 128 bits of security [9].

(5) MULTIPLICATIVE DEPTH: The multiplicative depth
of Bootstrapping (i.e., K), AppReLU, ConvBN, DownSam-
pling, AvgPool, FC layers are 14, 14, 2, 1, 1, 1 respectively.
Statistically, when using MPCNN to homomorphically evalu-
ate ResNet-18/32/44 on CIFAR10 or CIFAR100, AppReLUs
consume ∼ 50% of total levels, and bootstrapping operations
consume > 70% of latency.

B AESPA under RNS-CKKS

AESPA [46] proposes HerPN to replace ReLU and Batch-
norm. HerPN is the approximation of ReLU using Hermite
polynomials followed by basis-wise normalization. The Her-
mite approximation is f (x) = ∑

∞
i=0 f̂ihi(x) where normal-

ized probabilist’s Hermite polynomial hi(x) = Hn(x)/
√

n!
and coefficient f̂i =

∫
∞

−∞
f (x)hi(x)e−x2/2. Given tensor xxx ∈

RN×C×H×W , HerPN is defined as:

f (xxx) = γγγ

d

∑
i=0

f̂i
hi(xxx)−µµµi√

σσσ2
i + ε

+βββ (14)

where mean µµµi ∈ RC and standard variance σσσi ∈ RC are com-
puted over output of each Hermite polynomial, hi(xxx). γγγ ∈ RC

and βββ ∈ RC are learnable parameters. AESPA uses the first
three Hermite bases, i.e., d = 2. Hermite bases and coeffi-
cients are:

h0(x) = 1 h1(x) = x h2(x) =
x2−1√

2
(15)

f̂0 =
1√
2π

f̂1 =
1
2

f̂3 =
1√
4π

(16)

HerPN can be cast as a second-degree polynomial to reduce
multiplicative depth, namely:

f (xxx) =
γγγ√

8π(σσσ2
2 + ε)

xxx2 +
γγγ

2
√

σσσ2
1 + ε

xxx+βββ+

γγγ

 1−µµµ0√
2π(σσσ2

0 + ε)
− µµµ1

2
√

σσσ2
1 + ε

− 1+
√

2µµµ2√
8π(σσσ2

2 + ε)

 (17)

From Equation 17, the depth of HerPN is 2. Hence, 4 Conv-
HerPN layers should be followed by one bootstrapping opera-
tion. AESPA was originally proposed for secure MPC [46].
Our paper adopts AESPA as a low-degree baseline under
RNS-CKKS. We design the homomorphic evaluation archi-
tecture of AESPA under RNS-CKKS as shown in Figure 2.
We build its C++ implementation on top of MPCNN by using
its implementations of Conv, BN, Downsample, AvgPool, and
FC layers.
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