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ABSTRACT
Data marketplace is a critical platform for trading high-quality

and private-domain data. A basic functionality in the data market-

place is that a data seller (as a server) owns a private key-value

database and provides private query services to data buyers (as

clients). This relates to Private Information Retrieval (PIR) by Key-

word with symmetric privacy, abbreviated to KSPIR. In the context

of PIR, Client-preprocessing PIR supports fast online retrievals by

introducing a one-time, query-independent offline phase with lin-

ear offline communication, promising for deployment in the data

marketplace. However, there are remaining challenges. First, the

client-side storage and the online costs are still relatively large. Sec-

ond, current implementations only consider public array databases

(cannot handle private or key-valued databases). Third, existing

solutions are somewhat intricate for non-expert PIR developers.

To address these significant deficiencies, we propose a novel

client-preprocessing PIR framework Pai, which only requires con-

stant online time, communication, and client-side storage. Building

upon Pai, we present its KSPIR variant PaiKSPIR. We also explore an

alternative variant of KSPIR named Chargeable KSPIR (CKSPIR) for

the data marketplace application where the server seeks payment

from the client for retrieval. We have undertaken comprehensive

implementations and conducted extensive experiments for Pai. The
online query time is only about 1ms with 1KB communication

overhead for large key-value databases (e.g., 𝑛 = 2
24
). Given the

superior online time and storage, our protocol is well-suited in the

data marketplace for even real-time key-value retrievals.
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1 INTRODUCTION
The demand for data exchange increases for better distributing data

value. In today’s big data era, different enterprises and organizations

may own a lake of data they collect or generate [4, 48]. Meanwhile,

various parties (e.g., data science companies and institutions) may

seek access to such data for diverse data-driven tasks. This has

given rise to the data marketplace that facilitates transactional

interactions between data buyers and data sellers [5, 47].

A very basic and simple functionality in the data marketplace is

the data retrieval. Specifically, the data seller (as a server) owns a

private key-value database and provides query services to its data

buyers (as clients). Such functionality is the fundamental query in

data marketplace [5, 44]. Implementation becomes straightforward

if the server can directly see the queried key and answer its corre-

sponding value. However, in many scenarios, the queried key itself

is also sensitive and necessitates the secrecy protection to the data

seller. For example, the key may be a disease/medicine name in the

healthcare research, a business trend in e-commerce applications,

or a threat vulnerability in the network security defense. Revealing

such information to the data seller may lead to legal prohibition,

trade secret leakage, and potential collusion problems. In short,

data retrieval solutions require privacy both for the data seller and

the data buyers.

1.1 Background and Related Works
The problem of private data retrieval is closely associated with the

cryptographic primitive of Private Information Retrieval (PIR) [1].

Standard PIR allows a client to obtain an entry from a public array
store hosted on a server without revealing which entry is retrieved.

PIR has been one of the main research directions in cryptography

since its inception by Chor et al. [13, 14]. The naive PIR solution
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involves the server transmitting the entire database to the client for

each query. However, this method incurs significant communication

overhead, rendering it impractical for large-scale databases. A long

line of works [2, 3, 7–9, 11, 18, 20, 25, 26, 28, 29, 31, 34–37, 39, 40]

have been devoted to designing PIRs with low communication costs.

Many variants of PIR have also been studied. Chor et al. [12]

considered PIR by Keyword (KPIR), where the database is defined

as a set of 𝑛 key-value pairs and the client uses a search key to

retrieve the corresponding value. Ahmad et al. formally introduced

KPIR, allowing clients to retrieve the value corresponding to a key

from a public key-value store [1]. Gertner et al. [27] introduced

PIR with Symmetric privacy (SPIR), which additionally requires

that the client can only know its desired entry, thus preserving

server privacy. The data marketplace needs a solution supporting

keyword queries while protecting server privacy. This PIR variant

is called PIR by Keyword with Symmetric privacy (KSPIR), aka.,

Labeled Private Set Intersection (LPSI) [10, 15].

Although PIR and its variants have been studied for nearly three

decades, their efficiency is still not satisfactory due to two bottle-

necks. First, there is a fundamental barrier that the amount of server

computation will inevitably be linear in the size of the database,

formally proved by Beimel et al. [6]. Intuitively, the server must

touch every single entry during some query; otherwise, the server

learns that the queried entry is not one of the untouched entries.

Second, in order to achieve sublinear communication cost (other-

wise, the naive solution is sufficient), the client needs to somehow

encrypt its query while allowing the server to obliviously match

the queried entry. This involves Homomorphic Encryption (HE) or

similar cryptographic primitives that allow the server to do compu-

tations on the encrypted query [46]. HE-like primitives inevitably

invoke either algebra operations on large fields [42] or high-degree

polynomial operations on lattices [24], both of which are somewhat

inefficient, specially for real-time applications.

Several directions have been explored to circumvent the funda-

mental barrier of linear computation using HE. Beimel et al. [6]

proposed to use preprocessing to deal with the lower bound of

linear computation. Concretely, the protocol is divided into an of-
fline phase and an online phase. The offline phase is a one-time and

query-independent process, and its one-time nature enables the

cost to be amortized over multiple (adaptive) queries. Furthermore,

the query-independent property allows the execution of the offline

phase to occur before the client decides its queries. The main goal

of PIR with preprocessing is to facilitate a fast online phase, with a

specific focus on achieving sublinear online computation.

Client-Preprocessing Model. To date, the concretely efficient

preprocessing model is the client-preprocessing model. In this model,

the client downloads and stores “hints” from the server during the

offline phase. Then, the client can efficiently execute many online

queries with the help of these hints. Although the offline phase can

be fairly expensive or may even require downloading the entire

database, the amortized cost per query is extremely low, making the

client-preprocessing model promising. The client-preprocessing

model was initially introduced by Patel, Persiano, and Yeo [43],

with a concrete scheme that still needs linear server computation

per online query. Corrigan-Gibbs and Kogan [17] proposed the first

client-preprocessing PIR scheme with amortized sublinear server

computation. Follow-up works continue to make further improve-

ments [16, 30, 32, 33, 45, 49]. Very recently, Zhou et al. [50] proposed

an extremely simple efficient client-preprocessing PIR scheme Pi-
ano (short for Private Information Access NOw). The simplicity

lies in that the construction is completely self-contained and does

not invoke any existing PIR scheme as a building block. The effi-

ciency lies in that the scheme only needs lightweight cryptographic

primitives such as Pseudo-Random Functions (PRFs) (that can be

accelerated with AES-NI instructions), with �̃� (
√
𝑛)1 client storage

and �̃� (
√
𝑛) online communication (both the client request and the

server response) and server computation per query. Mughees, I and

Ren [38] further optimized the online query construction and pro-

posed a simple and practical client-preprocessing PIR (for simplicity

of notations, we name their scheme as Spam, short for Simple and

Practical AMortized), achieving a server response with constant

overhead. Both Piano and Spam offer fast online retrievals and are

potential solutions for real-time data retrievals in the marketplace.

1.2 Challenges
However, there are challenges for deploying client-preprocessing

PIR like Piano and Spam on the data marketplace.

Efficiency. Their concrete efficiency is still unsatisfactory due to

that their asymptotic online complexity is �̃� (
√
𝑛). This affects key-

value retrievals for real-time systems, in which the response time

is asked to be as short as possible.

Functionality. Their implementations only consider public ar-

ray databases (cannot handle private or key-valued databases). Al-

though there exist solutions to transform PIR to KSPIR, the addi-

tional efficiency costs are unknown.

Incomprehensibility. Their schemes involve relatively compli-

cated procedures such as “hint” generation and compressed encod-

ing that are hard to understand and implement for non-expert PIR

developers. In our experience, customers are willing to deploy such

schemes if they can understand and implement them on their own.

As a result, we ask the following question:

Can we construct a concretely efficient and easy-to-understand KSPIR
protocol with 𝑜 (

√
𝑛) or even �̃� (1) online time, communication, and

client-side storage in the client-preprocessing model?

1.3 Contributions
We present a novel client-preprocessing PIR framework Pai (as the
conventional symbol name 𝜋 for permutation) with asymptotically

near-optimal (up to polylogarithmic factors) efficiency features.

PIR with Significantly Reduced Online Costs. Pai circumvents

the lower bound by encoding the database with the help of the client

in the offline phase, i.e., encoding by encryption and permutation

(that is why we name it Pai), at the price of more offline communica-

tion cost and more server-side storage cost for each client. Similar

to Piano [50] and Spam [38], the offline communication cost of

Pai is still �̃� (𝑛). However, this allows Pai to enjoy constant online

time, communication, and client-side storage, enabling blazing fast

1
Throughout this work, we use �̃� ( ·) to hide polylogarithmic terms, i.e., for any

function 𝑓 (𝑛) , we have �̃� (𝑓 (𝑛) ) = 𝑂 (𝑓 (𝑛) · poly(log𝑛) ) .
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online query response that is well-suited in the data marketplace

for even real-time data retrievals.

The linear offline communication implies that the client must

have 𝑂 (𝑛) transient storage before submitting its query. Similar to

Piano and Spam, Pai also uses a streaming algorithm to achieve

�̃� (
√
𝑛) bandwidth and storage in the offline phase.

Efficiently Supporting KSPIR. Pai can be extended to KSPIR with

high efficiency, some of which were briefly discussed in Piano [50].

Specifically, Ali et al. [2] introduced amethod to convert PIR to KPIR,

and Freedman et al. [23] presented a method to convert KPIR to

KSPIR. Combining these two ideas, we can derive a transformation

from PIR to KSPIR. However, to our best knowledge, for the most

efficient PIR protocols in the client-preprocessing model (e.g., Piano
and Spam), there is no implementation to verify the efficiency of

the KSPIR protocol resulting from the conversions.

We apply the transformations of [2, 23] to Pai, Piano, and Spam,

respectively. Then, we obtain three new KSPIRs, denoted as PaiK-
SPIR, PianoKSPIR, and SpamKSPIR. We have implemented all of

these three KSPIRs, and compared them with the state-of-the-art

(SOTA) KSPIR without preprocessing by Cong et al. [15]. Our re-

sults concretely show that KSPIR can also enjoy fast online query

response in the client-preprocessing model.

Chargeable KSPIR. We also explore an alternative variant of

KSPIR, which arises from the data marketplace application context

where the server seeks payment from the client for retrieval. Note
that in KSPIR, the client may fail to retrieve a value (if its search key

is not in the key set of the database). In this case, it is unreasonable

to charge the client for the failed retrieval attempt.

To address this issue, we let the server know whether the client

successfully obtains a value and charge if and only if the retrieval

is successful. We introduce CKSPIR as a novel framework to model

and address this particular variant of KSPIR. We note that any

KSPIR (e.g., [10, 15]) can be converted to CKSPIR by letting the

client send a bit indicating whether it successfully retrieves a value

with its key. Based on the idea of Pai, we construct a more efficient

CKSPIR protocol PaiCKSPIR by inherently allowing the server to

know whether the retrieved key matches some key in the database.

Easy-to-understand for Non-expert Users. A side advantage of

Pai and its KSPIR/CKSPIR variants is that they are very easy to un-

derstand. Existing solutions either involve advanced cryptographic

tools like HE [15], or somewhat complicated “hint” generation

and consumption procedures [38, 50]. Instead, Pai only involves

encryption, permutation, and operations that are similar to the

well-known Diffie-Hellman key exchange [22]. This makes Pai easy
to understand and implement even for non-expert PIR developers.

Open-source Implementations and Evaluations. We imple-

mented Pai and its KSPIR variant in Java. The source code is avail-

able at https://github.com/alibaba-edu/mpc4j. We conduct exper-

iments with variants of database sizes 𝑛 = 2
20, 222, 224

and entry

sizes 64, 128, 256. Pai enjoys good concrete efficiency, e.g., 8.8 - 91.8×
better online communication cost and 2.5 - 8.8× better online time

than SOTA client-preprocessing PIRs (Paino and Spam). PaiKSPIR
with client-preprocessing enjoys extremely fast online queries, at

least three orders of magnitude improvement compared with the

SOTA KSPIR without preprocessing [15]. Concretely, the online

query time is only about 1ms with 1KB communications for large

key-value stores (e.g., 𝑛 = 2
24
). The online communication and

the online time of our PaiCKSPIR is even better than PaiKSPIR by

removing unnecessary protection operations for disallowing the

server to know whether there is a match in the query.

Trade-offs. Different from the (C)KSPIR where the server only

stores one (perhaps encoded) database for all clients, a limitation of

our Pai and its variants is the requisite for the server to store an (en-

coded) database for each of its clients. This limitation is sometimes

unacceptable for classic (C)KSPIR applications, e.g., safe browsing

[30] and private blocklist lookups [30]. However, since data sellers

and data buyers are typically enterprises and companies in the data

marketplace, such a limitation can be accepted when performing

one-to-one private retrieval services. We can conceptually think

that Pai and its variants enable encrypted caches in the offline phase

to provide extremely fast online queries for real-time requirements.

For situations where �̃� (
√
𝑛) online query cost is acceptable, one

can deploy (C)KSPIR variants of Piano and Spam, for which we

also provide concrete implementations.

2 PRELIMINARIES

Math Notations. Let 𝜆 be the computational security parameter

and 𝜅 be the statistical security parameter. For any integer 𝑛, we

use [𝑛] to represent the set {1, . . . , 𝑛}. For any two distributions

D0,D1, if no probabilistic polynomial time (PPT) algorithm can

distinguish them, then we say that D0 and D1 are computationally

indistinguishable, denoted D0 ≈𝑐 D1.

Protocol Notations. All of our protocols proceed between a server

and a client (the data seller and the data buyer in the data mar-

ketplace, respectively). In PIR, we use DB = (𝑣1, . . . , 𝑣𝑛) to denote

the database. In KSPIR and CKSPIR, the database DB is a set of

𝑛 key-value pairs, i.e., DB = {(𝑘𝑖 , 𝑣𝑖 )}𝑖∈[𝑛] . Let 𝑙𝑘 and 𝑙𝑣 denote

the length of 𝑘𝑖 and 𝑣𝑖 , respectively. Namely, we assume each 𝑘𝑖

belongs toK = {0, 1}𝑙𝑘 and each 𝑣𝑖 belongs toV = {0, 1}𝑙𝑣 . Finally,
we assume that the keys in the database are distinct, which implies

that 𝑙𝑘 ≥ log𝑛.

2.1 Problem Formulation
We consider the most fundamental query in the data marketplace

where a data seller (acts as the server) wants to provide a data

retrieval service for its private database of the form {(𝑘𝑖 , 𝑣𝑖 )}𝑖∈[𝑛] .
The data buyer (ask as a client) uses a key 𝑘 to ask for the value

𝑣𝑖 corresponding to 𝑘𝑖 ∈ {𝑘1, . . . , 𝑘𝑛} if 𝑘 = 𝑘𝑖 . We require that the

server cannot get any information of the key 𝑘 , while the client

can only obtain the value 𝑣𝑖 corresponding to 𝑘𝑖 ∈ {𝑘1, . . . , 𝑘𝑛} if
𝑘 = 𝑘𝑖 , or ⊥ if 𝑘 ∉ {𝑘1, . . . , 𝑘𝑛}, but no other information about

the server’s database. This relates to Private Information Retrieval

(PIR) by Keyword with symmetric privacy, abbreviated to KSPIR.

We also consider the standard PIR as the base of KSPIR, where the

database is a public array (𝑣1, . . . , 𝑣𝑛), and the client queries with

some index 𝑖 ∈ [𝑛]. The server should not know any information

about 𝑖 at this point, and the goal of the client is to obtain 𝑣𝑖 .

We finally consider a special application context where the server

seeks payment from the client for successful retrieval. To achieve

this goal, we let the server additionally know a Boolean value

3
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of whether 𝑘 ∈ {𝑘1, . . . , 𝑘𝑛}, representing the client queried the

information. This captures the situation where it is not reasonable

for the client to charge if the value is not successfully queried (i.e.,

𝑘 ∉ {𝑘1, . . . , 𝑘𝑛}). We name it Chargeable KSPIR (CKSPIR).

2.2 Adversarial Model
We consider a semi-honest (or passive) adversary. That is, the par-

ties will not deviate from the protocol. The adversary attacks the

protocol by corrupting one party (either the server or the client)

and using its internal state to infer information about the inputs

of the other party. Moreover, we assume the adversary cannot per-

form any side-channel attack. We also assume that the adversary

cannot break any standard cryptographic assumption, such as the

Decisional Diffie-Hellman (DDH) assumption [22].

2.3 Design Goals
PIR. In PIR, the server takes a database DB = (𝑣1, . . . , 𝑣𝑛) as input,
and the client takes an index 𝑖 ∈ [𝑛] as input. PIR has the following

properties.

Correctness. At the end, the client outputs 𝑣𝑖 .

Client-Privacy. The server knows nothing about 𝑖 . Concretely,
let Viewser (DB, 𝑖) be the view of the server in the protocol. There

exists a PPT algorithm Sim taking DB as input such that

Viewser (DB, 𝑖) ≈𝑐 Sim(DB).

KSPIR. In KSPIR, the server takes a database DB = {(𝑘𝑖 , 𝑣𝑖 )}𝑖∈[𝑛]
as input, and the client takes a search key 𝑘 as input. KSPIR has the

following properties.

Correctness. At the end, the client outputs 𝑧 = 𝑣𝑖 if there exists

some 𝑖 ∈ [𝑛] such that 𝑘𝑖 = 𝑘 ; otherwise, the client outputs 𝑧 =⊥.
Server-Privacy. The client knows nothing about DB except in-

formation contained in the key 𝑘 it requests and the entry 𝑧 it

obtains. Let Viewcli (DB, 𝑘) be the view of the client in the protocol.

There exists a PPT algorithm Sim taking 𝑘, 𝑧 as inputs such that

Viewcli (DB, 𝑘) ≈𝑐 Sim(𝑘, 𝑧) .

Client-Privacy. The server knows nothing about 𝑘 . Concretely,

let Viewser (DB, 𝑘) be the view of the server in the protocol. There

exists a PPT algorithm Sim taking DB as input such that

Viewser (DB, 𝑘) ≈𝑐 Sim(DB).

CKSPIR. CKSPIR additionally outputs a bit to the server, which

lets the server know whether the client successfully obtained a

value. In CKSPIR, the server takes a database DB = {(𝑘𝑖 , 𝑣𝑖 )}𝑖∈[𝑛]
as input, and the client takes a search key 𝑘 as input. CKSPIR has

the following properties.

Correctness. If there exists some 𝑖 ∈ [𝑛] such that 𝑘𝑖 = 𝑘 , then

the server outputs 𝑏 = 1, and the client outputs 𝑧 = 𝑣𝑖 . Otherwise,

the server outputs 𝑏 = 0, and the client outputs 𝑧 =⊥.
Server-Privacy. The client knows nothing about DB except the

information contained in 𝑘, 𝑧. Let Viewcli (DB, 𝑘) be the view of the

client in the protocol. Then there exists a PPT algorithm Sim taking

𝑘, 𝑧 as inputs such that

Viewcli (DB, 𝑘) ≈𝑐 Sim(𝑘, 𝑧) .

Client-Privacy. The server knows nothing about 𝑘 except the

information contained in 𝑏. Let Viewser (DB, 𝑘) be the view of the

server in the protocol. There exists a PPT algorithm Sim taking

DB, 𝑏 as inputs such that

Viewser (DB, 𝑘) ≈𝑐 Sim(DB, 𝑏) .

2.4 Oblivious Pseudo-Random Function
Oblivious Pseudo-Random Function (OPRF) [23] is a two-party

protocol, where the server has a master key𝑚𝑘 for a PRF F, and
the client holds an input 𝑥 . The protocol requires that the server

obtains nothing, and the client obtains the value F(𝑚𝑘, 𝑥) and noth-
ing else. In this work, we will use the OPRF protocol of [19] that

defines F(𝑚𝑘, 𝑥) = H(𝑥)𝑚𝑘
, where H is a hash function modeled

as a random oracle (RO). This protocol is secure under the DDH

assumption against semi-honest adversaries.

Public Parameters. Let G be a DDH-hard cyclic group with

prime order 𝑝 , and H : {0, 1}∗ → G a hash function modeled as a

random oracle.

Input. The server has a master key𝑚𝑘 ∈ Z∗𝑝 , and the client has

an input 𝑥 ∈ {0, 1}∗.
1. The client first samples 𝛽 ∈ Z∗𝑝 and sends H(𝑥)𝛽 to the server,

who responds with (H(𝑥)𝛽 )𝑚𝑘
.

2. The client outputs H(𝑥)𝑚𝑘 = ((H(𝑥)𝛽 )𝑚𝑘 )1/𝛽 .

3 PAI FRAMEWORK
The data marketplace requires (C)KSPIR to support private data

queries on key-value database, allowing the client to flexibly ex-

press its query request. Although PIR only allows the client to query
a public database for an index, it is the base for further constructing
(C)KSPIR. Our Pai framework also follows such paradigm. There-

fore, we start with a brief introduction to Pai in the PIR setting.

Overview of Pai. Figure 1 illustrates the framework of Pai. The
core design of Pai focuses on the offline phase (preprocessing),

including three key steps as below.

• Step 1: Encoding and Permuting the Database. Two random

encoding algorithms are used to encode the indices and

entries, respectively. The database is simultaneously ran-

domly permuted, making the encoded database pseudoran-

dom from the server’s view while allowing the client to

retrieve and decode in the online phase.

• Step 2: Encoding the Database with the Client. We introduce

offline interaction so that the database encoding and per-

mutation are jointly executed by the server and client.

• Step 3: Reducing the Bandwidth via a Streaming Algorithm.

To achieve a low bandwidth in the offline interaction, the

database is represented in two dimensions so that the rows

and columns of the database are encoded and permuted

respectively. As will be subsequently demonstrated, this

approach reduces the offline bandwidth to �̃� (
√
𝑛), same as

in Piano and Spam.

Finally, during the online phase, the client sends the encoded

index to the server. The server finds and returns the matching

4



𝑣!,! 𝑣!,# … 𝑣!, $

𝑣#,! 𝑣#,# … 𝑣#, $

⋮ ⋮ ⋱ ⋮

𝑣 $,! 𝑣 $,# … 𝑣 $, $

ℎ?,?, 𝑒?,? ?,? ∈ $ , $

ℎ?,? = 𝐸'() 𝑖 𝑒?,? = 𝐸*+,-( 𝑣.

Online

Decode 𝑒?,?
(using 𝐸*+,-()

Encoding & Row 
Permutation

Query for 𝑖

𝑡!,?, 𝑐!,? ?∈ $

𝑡#,?, 𝑐#,? ?∈ $

…

𝑡 $,?, 𝑐 $,? ?∈ $

ℎ?,?, 𝑒?,? ?,? ∈ $ , $

Preprocessing
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Figure 1: The Pai framework. Three key steps are embedded in the encoding & row permutation and encoding & column
permutation that are jointly performed by the server (data seller) and client (data buyer).

encoded value, which can be efficiently decoded and by the client

to derive the final result.

From PIR to KSPIR.We introduce cuckoo hashing table [2] and

OPRF [23] to concretely convert our Pai (as well as Piano and Spam)

to corresponding KSPIR. More details are deferred to Section 5.

From PIR to CKSPIR.We can upgrade our PIR protocol to obtain

a more efficient CKSPIR. More details are deferred to Section 5.3.

4 PAI CONSTRUCTION AND ANALYSIS
4.1 Pai Construction
Nowwe are ready to describe our Pai construction in the PIR setting.

We later transform Pai into (C)KSPIR, supporting private key-value
database queries in the data marketplace applications.

Pai is designed in the client-preprocessing model and consists of

an offline phase and an online phase. In the offline phase, the client

helps the server encode the database to enable a very fast online

phase. Here we demonstrate how to design the aforementioned

three key steps in the offline phase. The detailed construction is

shown in Figure 2.

Step 1: Encoding and Permuting the Database. The foundational

concept behind our database encoding approach involves both

permutation and encryption of the database. To be precise, given

a public array database denoted as 𝑣 𝑗 for 𝑗 ∈ [𝑛], the encoding

procedure is articulated as follows.

(1) Choose a random permutation 𝜋 over [𝑛].
(2) Choose two encoding algorithms Eindex and Eentry, which

are used to encode the indices and entries, respectively.

(3) Then, the encoded database is {(ℎ 𝑗 , 𝑒 𝑗 )} 𝑗∈[𝑛] , where ℎ 𝑗 =
Eindex (𝜋 ( 𝑗)), 𝑒 𝑗 = Eentry (𝑣𝜋 ( 𝑗 ) ).

The main goal of the above encoding is to enable “secure” re-

trieval against the original database by using “insecure” retrieval

against the securely encoded (key-value) database. Specifically, we

aim to design the following online phase.

(1) When the client decides its search index 𝑖 , it computes

ℎ = Eindex (𝑖) as the query message.

(2) The server finds 𝑗 ∈ [𝑛] such that ℎ = ℎ 𝑗 and returns 𝑒 = 𝑒 𝑗
to the client as the response.

(3) The client decodes 𝑒 to 𝑣 and outputs 𝑣 .

To ensure the correctness of the protocol, it is imperative that the

client produces an output 𝑣 = 𝑣𝑖 . Two primary conditions must be

satisfied: (1) the response message is 𝑒𝜋−1 (𝑖 ) (which is the encoding

of 𝑣𝑖 ), and (2) extracting 𝑣𝑖 from 𝑒𝜋−1 (𝑖 ) is easy. To meet this, the

encoding functions are subjected to the following requirements.

• Eindex is deterministic and collision-resistant.

• Eentry is invertible. That is, the client can easily inverse 𝑣

from 𝑒 = Eentry (𝑣).
For the client-privacy guarantee, recall that the query message

is ℎ = ℎ 𝑗 = Eindex (𝑖) with 𝑗 = 𝜋−1 (𝑖), and the response message is

𝑒 𝑗 = 𝑒𝜋−1 (𝑖 ) . We need to guarantee that the server obtains nothing

about 𝑖 by seeing 𝑗 , ℎ 𝑗 , and 𝑒 𝑗 with the knowledge of all 𝑣𝑖 . We have

the following requirements.

• 𝜋−1
is a random permutation unknown to the server.

• Eindex is pseudorandom to the server, which guarantees

that ℎ 𝑗 leaks nothing about 𝑖 .

• Eentry is pseudorandom to the server, which guarantees

that 𝑒 𝑗 leaks nothing about 𝑣𝑖 .

For the deterministic, collision-resistant, and pseudorandom en-

coding function Eindex, we choose a Pseudo-Random Permutation

(PRP) (e.g., AES) with the client holding the PRP key. For the invert-

ible and pseudorandom encoding function Eentry, we instantiate
it with a Symmetric Key Encryption (SKE) scheme that is secure

against chosen-plaintext attack (CPA-secure) with the client hold-

ing the SKE key. A typical CPA-secure SKE is AES with CTR-mode.

Step 2: Encoding the Database with the Client. We now discuss how

to encode the database with the client holding the corresponding

keys. While it is feasible for the client to initially transmit the

encrypted keys and subsequently permit the server to employ HE

for computing the encoded database, this would lead to a rather

high computational overhead.

To make our offline phase practical, we follow the basic idea

of Piano and Spam and let the client download the entire data-

base and encode it. Specifically, the client chooses a PRP key 𝑝𝑘

and an encryption key 𝑒𝑘 of a CPA-secure SKE scheme. Moreover,

the client chooses a random permutation 𝜋 over [𝑛]. Then, it en-
crypts the database as {(ℎ 𝑗 , 𝑒 𝑗 )} 𝑗∈[𝑛] , where ℎ 𝑗 = P(𝜋 ( 𝑗)), 𝑒 𝑗 =

SKE.Enc(𝑒𝑘, 𝑣𝜋 ( 𝑗 ) ). Finally, it sends {(ℎ 𝑗 , 𝑒 𝑗 )} 𝑗∈[𝑛] to the server.

Compared with Piano and Spam, the client further needs to upload

the encoded database, which incurs extra offline communication.
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Figure 2: The construction of Pai.

Protocol ΠPai: PIR with �̃� (1) Client-Side Storage and Online Time

Input: The server S has a database DB = (𝑣1, . . . , 𝑣𝑛), and the client C has an index 𝑖 ∈ [𝑛].
Output: C outputs 𝑣𝑖 .

Offline Phase: S represents the database as a matrix (𝑣 𝑗0, 𝑗1 ) 𝑗0, 𝑗1∈[
√
𝑛] , where 𝑣 𝑗0, 𝑗1 = 𝑣 ( 𝑗0−1)

√
𝑛+𝑗1 . S and C agree on an CPA-secure

SKE scheme (SKE.Gen, SKE.Enc, SKE.Dec) and a PRP P : {0, 1}𝜆 × {0, 1}𝑙 → {0, 1}𝑙 with 𝑙 ≥ ⌈log𝑛⌉. Then, C chooses two random

permutations 𝜋0, 𝜋1 over [
√
𝑛], an SKE key 𝑒𝑘 , and two PRP keys 𝑝𝑘0, 𝑝𝑘1. We note that 𝜋0 is used for permuting the rows, and 𝜋1

is used for permuting the columns. S and C interact to encode the database in a streaming way.

(1) Row-Permuting. For each 𝑗1 ∈ [
√
𝑛], S and C perform the following steps.

(a) S sends {𝑣 𝑗0, 𝑗1 } 𝑗0∈[
√
𝑛] to C.

(b) For all 𝑗0 ∈ [
√
𝑛], C sets 𝑗 = (𝜋0 ( 𝑗0) − 1)

√
𝑛 + 𝑗1, and then C computes 𝑡 𝑗0, 𝑗1 = P(𝑝𝑘0, 𝑗) and 𝑐 𝑗0, 𝑗1 = SKE.Enc(𝑒𝑘, 𝑣 𝑗 ).

Then, C sends {(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗0∈[
√
𝑛] to S.

(c) Finally, C deletes {𝑣 𝑗0, 𝑗1 , (𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗0∈[
√
𝑛] from its local storage.

(2) Column-Permuting. For each 𝑗0 ∈ [
√
𝑛], S and C perform the following steps.

(a) S sends {(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗1∈[
√
𝑛] to C.

(b) For all 𝑗1 ∈ [
√
𝑛], C computes ℎ 𝑗0, 𝑗1 = P(𝑝𝑘1, 𝑡 𝑗0,𝜋1 ( 𝑗1 ) ), and 𝑒 𝑗0, 𝑗1 = SKE.Enc(𝑒𝑘, SKE.Dec(𝑒𝑘, 𝑐 𝑗0,𝜋1 ( 𝑗1 ) )). Then, C

sends {(ℎ 𝑗0, 𝑗1 , 𝑒 𝑗0, 𝑗1 )} 𝑗1∈[
√
𝑛] to S.

(c) Finally, C deletes {(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 ), (ℎ 𝑗0, 𝑗1 , 𝑒 𝑗0, 𝑗1 )} 𝑗0∈[
√
𝑛] from its local storage.

Online Phase: To query an index 𝑖 ∈ [𝑛], S and C proceed as follows.

(1) Query. C computes ℎ = P(𝑝𝑘1, P(𝑝𝑘0, 𝑖)) and sends ℎ to S.
(2) Response. S finds ℎ 𝑗0, 𝑗1 such that ℎ 𝑗0, 𝑗1 = ℎ. Then, it sends 𝑒 = 𝑒 𝑗0, 𝑗1 to C.
(3) Extract. C decrypts and outputs 𝑧 = SKE.Dec(𝑒𝑘, 𝑒).

Step 3: Reducing the Bandwidth via a Streaming Algorithm. The basic
idea involves bandwidth �̃� (𝑛) during the offline phase. This makes

it necessary for the client to have �̃� (𝑛) transient storage (in the

offline phase). To solve a similar problem, Piano [50] and Spam
[38] leverage a streaming algorithm to reduce the bandwidth to

𝑂 (
√
𝑛), which significantly reduces the amount of storage required

by the client in the offline phase. Their idea is that the server sends

𝑂 (
√
𝑛) entries each time, and the client processes and then deletes

those entries from its storage. However, this idea does not apply

to our protocol since we need to permute the entire database. If

the client downloads 𝑂 (
√
𝑛) entries each time and uploads the pro-

cessed entries, then the server knows that the encoded entries it

receives are the permutation of the entries that the client down-

loaded previously, which leaks information about the permutation.

To reduce the bandwidth of Pai, we instead use the folding tech-

nique of [31], which represents the database as a 2-dimensional

hypercube. Then, the parties permute the rows and columns of

the database, respectively. As we will see, this allows us to reduce

the offline bandwidth to be �̃� (
√
𝑛). By representing the database

as a hypercube with a higher dimension 𝑑 , we can further reduce

the bandwidth to �̃� (𝑛1/𝑑 ). However, the offline communication

of our protocol will also increase by a factor of 𝑂 (𝑑). To make a

fair comparison with Piano and Spam, we set 𝑑 = 2 in both the

description and implementation of our protocol. In practice, one

can obtain the required tradeoff between offline bandwidth and

offline communication by using different 𝑑 .

The above three steps lead to an extremely simple online phase

in Pai. Assuming that the client has an index 𝑖 , the client first

computes and sends ℎ = P(𝑖) to the server. The server finds 𝑗 ∈ [𝑛]
such that ℎ = ℎ 𝑗 and returns 𝑒 = 𝑒 𝑗 to the client, where 𝑗 = 𝜋−1 (𝑖).
By decrypting 𝑒 𝑗 using the SKE key 𝑒𝑘 , the client obtains the value

𝑣𝜋 ( 𝑗 ) = 𝑣𝑖 .

4.2 Security Analysis for Pai
We show the security of Pai by proving the following theorem.

Theorem 1. ΠPai is a PIR satisfying correctness and client-privacy.

Proof. We show the correctness and client-privacy of ΠPai.

Correctness.We need to prove that the client’s output is 𝑣𝑖 . Assume

that 𝑖0, 𝑖1 ∈ [
√
𝑛] satisfy that 𝑖 = (𝑖0 − 1)

√
𝑛 + 𝑖1, then we have

ℎ =P(𝑝𝑘1, P(𝑝𝑘0, 𝑖)) = P(𝑝𝑘1, P(𝑝𝑘0, (𝑖0 − 1)
√
𝑛 + 𝑖1))

=P(𝑝𝑘1, 𝑡𝜋−1

0
(𝑖0 ),𝑖1 ) = ℎ𝜋−1

0
(𝑖0 ),𝜋−1

1
(𝑖1 ) .

This means that 𝑒 = 𝑒𝜋−1

0
(𝑖0 ),𝜋−1

1
(𝑖1 ) . Following the procedures in

the offline phase, we know that for any 𝑗0, 𝑗1 ∈ [
√
𝑛], 𝑒 𝑗0, 𝑗1 is an

encryption of 𝑣𝜋0 ( 𝑗0 ),𝜋1 ( 𝑗1 ) , which implies that 𝑒 is an encryption

of 𝑣𝑖0,𝑖1 = 𝑣𝑖 . Note that the output of the client is the decryption of

𝑒 . Therefore, the output of the client is 𝑣𝑖 .

Client-Privacy. Let Viewser (DB, 𝑖) be the view of the server. We

need to construct a PPT simulator Sim taking DB as input such that

Viewser (DB, 𝑖) ≈𝑐 Sim(DB).
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Note that Viewser (DB, 𝑖) consists of

(DB, {(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗0, 𝑗1∈[
√
𝑛] , {(ℎ 𝑗0, 𝑗1 , 𝑒 𝑗0, 𝑗1 )} 𝑗0, 𝑗1∈[

√
𝑛] , ℎ),

where ℎ = P(𝑝𝑘1, P(𝑝𝑘0, 𝑖)). Sim proceeds as follows.

(1) Sample two sets {𝑡∗
𝑗0, 𝑗1
} 𝑗0, 𝑗1∈[

√
𝑛] ,{ℎ∗𝑗0, 𝑗1 } 𝑗0, 𝑗1∈[

√
𝑛] of ele-

ments from {0, 1}𝑙 , where each set contains 𝑛 distinct and

random elements.

(2) Sample 2𝑛 ciphertexts {𝑐∗
𝑗0, 𝑗1

, 𝑒∗
𝑗0, 𝑗1
} 𝑗0, 𝑗1∈[

√
𝑛] of zero.

(3) Pick two random elements 𝑗∗
0
, 𝑗∗

1
∈ [
√
𝑛] and sets

ℎ∗ = ℎ∗
𝑗∗
0
, 𝑗∗

1

.

(4) Output the simulated view

(DB, {(𝑡∗𝑗0, 𝑗1 , 𝑐
∗
𝑗0, 𝑗1
)} 𝑗0, 𝑗1∈[

√
𝑛] , {(ℎ

∗
𝑗0, 𝑗1

, 𝑒∗𝑗0, 𝑗1 )} 𝑗0, 𝑗1∈[
√
𝑛] , ℎ

∗)

Now, we show that the real and simulated views are indistin-

guishable. First, since P is a PRP over {0, 1}𝑙 , both {𝑡 𝑗0, 𝑗1 } 𝑗0, 𝑗1∈[
√
𝑛]

and {ℎ 𝑗0, 𝑗1 } 𝑗0, 𝑗1∈[
√
𝑛] contain 𝑛 distinct and random elements in

{0, 1}𝑙 . Secondly, for any 𝑗0, 𝑗1 ∈ [
√
𝑛], by the CPA security of the

underlying SKE scheme, we know that the distribution of both

𝑐 𝑗0, 𝑗1 and 𝑒 𝑗0, 𝑗1 is indistinguishable from the distribution of a fresh

encryption of zero. Finally, by the correctness of our protocol, we

know that ℎ = ℎ𝜋−1

0
(𝑖0 ),𝜋−1

1
(𝑖1 ) . Note that 𝜋0, 𝜋1 are random per-

mutations over [
√
𝑛] unknown to the server, hence ℎ is a random

element in {ℎ 𝑗0, 𝑗1 } 𝑗0, 𝑗1∈[
√
𝑛] . From what has been discussed above,

the real and simulated views are indistinguishable. □

We remark that the security of Pai needs the assumption that

the client does not make any duplicate queries. The underlying

reason is that the client’s query is deterministic w.r.t. the client’s

indices, which allows the server to determine whether two queries

correspond to the same index. This would violate the security defi-

nition. Fortunately, this assumption can be relaxed without loss of

generality by letting the client save the retrieved indices and their

answers locally, with additionally �̃� (
√
𝑛) client storage cost.

Complexity Analysis.We analyze the complexity of ΠPai from

four aspects: communication, computation, bandwidth, and storage.

This analysis encompasses both the offline and online phases.

We first consider the offline phase. During this phase, the parties

are required to transmit 𝑛 plaintexts, 3𝑛 ciphertexts, and 3𝑛 strings,

each of a length 𝑙 , where 𝑙 ≥ ⌈log𝑛⌉. Hence, the total communica-

tion cost is �̃� (𝑛). In addition, the client needs to compute P 2𝑛 times,

2𝑛 encryptions, and 𝑛 decryptions. The total computation is also

�̃� (𝑛). Moreover, since parties run the offline phase in a streaming

way, and each message sent by the parties only contains

√
𝑛 plain-

texts or ciphertexts (and

√
𝑛 𝑙-bit long bitstrings), the bandwidth of

the protocol is �̃� (
√
𝑛). Finally, it is easy to see that the server-side

and client-side storage are �̃� (𝑛) and �̃� (
√
𝑛), respectively.

Next we consider the online phase. For each query in the online

phase, the parties transmit an 𝑙-bit stringℎ and a ciphertext 𝑒 . Hence,

the communication cost per query is �̃� (1). In addition, the client

needs to compute the PRP P one time in addition to executing

a single decryption. Since the computational complexity of the

permutations is a polynomial of the input length 𝑂 (log𝑛), and the

computational cost of the decryption is independent of 𝑛, the total

computational cost is �̃� (1). The bandwidth of the online phase is

�̃� (1), for sending ℎ and 𝑒 . The server-side storage is �̃� (𝑛), and the

client-side storage is �̃� (1) for 𝑝𝑘0, 𝑝𝑘1 and 𝑒𝑘 .

5 KSPIR AND CKSPIR
In this section, we show how to obtain client-preprocessing KSPIR

based on Piano, Spam, and our Pai. The construction is non-trivial,

and additional privacy problems should be considered. We also

provide concrete implementations for KSPIR and compare their effi-

ciency with SOTA KSPIR without preprocessing. The experimental

results show that client-preprocessing KSPIR also enjoys extremely

low online communication and computation costs, greatly facilitat-

ing the real-time query and retrieval needs of the data marketplace.

In addition, we can leverage our idea of Pai to construct a more

efficient CKSPIR, allowing the server to know whether it contains

the key that the client retrieves. This is normally considered as an

“extra leakage” in KSPIR. However, such “extra leakage” is some-

times necessary in the data marketplace. For example, the data

sellers can decide how many entries the client is truly retrieved

based on that “extra leakage” and ask for data pricing.

5.1 KPIR from PIR
Zhou et al. [50] proposed to use cuckoo hashing table [41] to con-

struct KPIR from Piano. Their construction can be traced back to

the idea introduced by Ali et al. [2].

A cuckoo hashing table is specified by 𝑣 hash functionsH1, . . . ,H𝑣

with range [𝑚], where𝑚 = (1+𝜖) ·𝑛 for some 𝜖 > 0. The goal of the

cuckoo hashing table is to locate 𝑛 elements into𝑚 bins so that each

bin contains at most 1 element. The cuckoo hashing table avoids

possible collisions by inserting elements using a recursive eviction

procedure with the help of these 𝑣 hash functions: whenever an

element is located in an occupied bin, the occupying element is

evicted and recursively relocated with a different hash function. By

choosing suitable 𝜖 , we can always find suitable 𝑣 hash functions

with high probability. Like [2], we formalize the procedure of find-

ing suitable 𝑣 hash functions as Cuckoo.KeyGen(EB), where EB is

a database containing 𝑛 elements.

The KPIR construction works as follows. Let EB = {(ℎ𝑖 , 𝑒𝑖 )}𝑖∈[𝑛]
be the key-value database held by the server. First, the server

chooses 𝑣 hash functions by (H1, . . . ,H𝑣) ← Cuckoo.KeyGen(EB).
The server then inserts each (ℎ𝑖 , 𝑒𝑖 ) in the bin BH𝜏 (ℎ𝑖 ) for some

𝜏 ∈ [𝑣]. We remark that whether the insertion succeeds depends on

the selected hash functions. This means that the client may be able

to learn information about the database based on the selected hash

functions that result in a successful insertion. However, this does

not violate privacy since the database is not private in KPIR. For

empty bins, the server pads with dummy values that are denoted

by ⊥. The server finally sets the PIR database as DB = (𝑥1, . . . , 𝑥𝑚),
where each 𝑥 𝑗 is the element in 𝐵 𝑗 containing some (ℎ𝑖 , 𝑒𝑖 ), and
sends the descriptions of (H1, . . . ,H𝑣) to the client.

Whenever the client wants to query the key ℎ, it first computes

𝑖 𝑗 = H𝑗 (ℎ), 𝑗 ∈ [𝑣]. Then, the client runs PIR with the server, where

the server takes DB as the database, and the client takes indices

𝑖1, . . . , 𝑖𝑣 as inputs. At the end of PIR, the client obtains 𝑥𝑖1 , . . . , 𝑥𝑖𝑣 .

The client finds 𝑥𝑖 𝑗 such that the first entry of 𝑥𝑖 𝑗 is ℎ and outputs

the second entry of 𝑥𝑖 𝑗 . If no such 𝑥𝑖 𝑗 exists, then the client outputs

⊥. See Figure 3 for a tiny example with 𝑛 = 5 and 𝑣 = 3.
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𝑒!ℎ!
𝑒"ℎ"
𝑒#ℎ#
𝑒$ℎ$
𝑒%ℎ%

ℎ", 𝑒"

ℎ$ , 𝑒$
ℎ%, 𝑒%

⊥

ℎ#, 𝑒#
ℎ!, 𝑒!

𝐻!, 𝐻", 𝐻# ←
Cuckoo.KeyGen(𝐸𝐵)

𝐸𝐵𝐷𝐵

Insert

Query for ℎ

ℎ&!, 𝑣&! , 𝑗 ∈ 3
return 𝑣&! for ℎ&! = ℎ

PIR

𝑖' = 𝐻' ℎ , 𝑗 ∈ 3 𝐷𝐵

Figure 3: KPIR from PIR.

ℎ! 𝑒! = Sym.Enc 𝑒𝑘!, 𝑣!

ℎ" 𝑒" = Sym.Enc 𝑒𝑘", 𝑣"

… …

ℎ# 𝑒# = Sym.Enc 𝑒𝑘#, 𝑣#

𝑚𝑘 ←$ 𝒦%
ℎ& , 𝑒𝑘& = 𝐹 𝑚𝑘, 𝑘&

ℎ, 𝑒𝑘 = 𝐹 𝑚𝑘, 𝑘
OPRF

𝑘 𝑚𝑘

𝑒 = Sym.Dec 𝑒𝑘, 𝑣 /⊥
KPIR

ℎ 𝐸𝐵

𝐸𝐵

Query for 𝑘

Figure 4: KSPIR from KPIR.

5.2 KSPIR from KPIR
Freeman et al. [23] presented a method to construct (K)SPIR from

(K)PIR based on OPRF. The main idea is to let the server encrypt

each entry in the database by a session key 𝑒𝑘𝑖 derived from PRF F
with the master key𝑚𝑘 and each retrieval key 𝑘𝑖 . The server and

the client then run (K)PIR, and the client obtains the encrypted

entry corresponding to its retrieval key 𝑘 . To enable the client to

decrypt, they invoke OPRF that allows the client to only obtain the

corresponding session key 𝑒𝑘 for the retrieval key 𝑘 without the

server obtaining any information about 𝑘 .

For the sake of completeness, we review the transformation in

detail. See Figure 4 for a tiny example. The security proof of this

transformation can be found in [23, Section 4.2].

Let {𝑘𝑖 , 𝑣𝑖 }𝑖∈[𝑛] be the database in KSPIR. The server first en-

codes the database as follows.

(1) Let (SKE.Gen, SKE.Enc, SKE.Dec) be an semantically se-

cure SKE scheme.

(2) Let F be a PRF for an OPRF protocol. The server samples a

master key𝑚𝑘 .

(3) For each 𝑖 ∈ [𝑛], the server parses F(𝑚𝑘, 𝑘𝑖 ) as (ℎ𝑖 , 𝑒𝑘𝑖 ),
where ℎ𝑖 serves as the key of the encoded database, and 𝑒𝑘𝑖
is a SKE key.

(4) For each 𝑖 ∈ [𝑛], the server computes 𝑒𝑖 = SKE.Enc(𝑒𝑘𝑖 , 𝑣𝑖 ).
(5) Let EB = {(ℎ𝑖 , 𝑒𝑖 )} be the encoded database.

Now, we can obtain a KSPIR protocol from a KPIR protocol and

an OPRF protocol as follows.

(1) To query the key 𝑘 , the parties run an OPRF, where the

server takes𝑚𝑘 as input, and the client takes 𝑘 as input.

At the end of OPRF, the client obtains 𝑒𝑘 = F(𝑚𝑘, 𝑘). The
client parses 𝑒𝑘 as (ℎ, 𝑒𝑘).

(2) The parties run a KPIR protocol, where the server takes EB
as input and the client takes ℎ as input. Let 𝑒 be the output

of the client.

(3) If 𝑒 =⊥, then the client outputs⊥; otherwise, the client runs
𝑣 = SKE.Dec(𝑒𝑘, 𝑒) to decrypt 𝑒 and outputs 𝑣 .

5.3 More Efficient CKSPIR
Since PaiKSPIR is the KSPIR protocol with the best online efficiency,

the CKSPIR protocol directly converted from PaiKSPIR by allowing

the client to send the matching results to the server is the CKSPIR

protocol with the best online efficiency at present. In this section,

we present a new CKSPIR protocol that achieves better online

efficiency than PaiKSPIR. The full description of PaiCKSPIR is

shown in Figure 5.

Our CKSPIR protocol PaiCKSPIR is directly built upon Pai. How-
ever, since CKSPIR implements stronger functionality (keyword

search) and requires higher privacy (symmetric privacy), PaiCK-
SPIR has a much more complicated offline phase than Pai. Con-
cretely, the offline phase PaiCKSPIR is mainly different from that

of Pai in the following aspects (let {(𝑘𝑖 , 𝑣𝑖 )}𝑖∈[𝑛] be the database).
Encoding Functions. The two encoding algorithms Ekey and

Evalue (which play the roles of Eindex and Eentry in Pai) are used to

encode the keys and values, respectively. Instead of using a PRP,

we instantiate Ekey with the function 𝑓𝛽 (𝑘) = H(𝑘)𝛽 , where H is

a collision-resistant hash function (CRHF) that maps the keys to

elements of a DDH-hard group G of order 𝑝 for some large prime

𝑝 , and 𝛽 ∈ Z𝑝 is random key held by the client. In the random

oracle model, the function 𝑓𝛽 (𝑘) is a PRF under the Decisional

Diffie–Hellman (DDH) assumption [19]. As in Pai, Evalue is still

instantiated with an CPA-secure SKE scheme.

Offline Phase. In Pai, the server directly sends the database to the

client. In PaiCKSPIR, we must protect the privacy of the database.

Therefore, we let the server send an encryption of the database.

Concretely, we let the server sends (𝑡𝑖 , 𝑐𝑖 ) = (H(𝑘𝑖 )𝛼 , 𝑣𝑖⊕𝑟𝑖 ) instead
of just (𝑘𝑖 , 𝑣𝑖 ), where 𝛼 ∈ Z𝑝 is random, 𝑟𝑖 is a random value, and

⊕ is XOR. This prevents the client from obtaining information

about (𝑘𝑖 , 𝑣𝑖 ). Now, we can let the client encrypt the new database

{(𝑡𝑖 , 𝑐𝑖 )}𝑖∈[𝑛] using Ekey and Evalue. Concretely, the client chooses
a random 𝛽 ∈ Z𝑝 and an encryption key 𝑒𝑘 of a CPA-secure SKE

scheme. Moreover, the client chooses a random permutation 𝜋

over [𝑛]. Then, the client encrypts the database as {(ℎ𝑖 , 𝑒𝑖 )}𝑖∈[𝑛] ,
where ℎ𝑖 = 𝑡

𝛽

𝜋 (𝑖 ) , 𝑒𝑖 = SKE.Enc(𝑒𝑘, 𝑐𝜋 (𝑖 ) ). Finally, the client sends
{(ℎ𝑖 , 𝑒𝑖 )}𝑖∈[𝑛] to the server. Using the same idea as in Pai, we can
also reduce the offline bandwidth from �̃� (𝑛) to �̃� (

√
𝑛).

Online Phase. Since the server also participates in encoding the

database, PaiCKSPIR will have a different online phase from Pai.
Assume that the client has a search key 𝑘 , the client first computes

ℎ𝑐 = H(𝑘)𝛽 and then sends ℎ𝑐 to the server. Then the server com-

putes ℎ = ℎ𝛼𝑐 and checks whether there exists some ℎ 𝑗 such that
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ℎ 𝑗 = ℎ. By the properties of H, we can easily verify the correctness.

If the server finds that ℎ = ℎ 𝑗 , then it sends 𝑒 𝑗 to the client. By

decrypting 𝑒 𝑗 using the SKE key 𝑒𝑘 , the client obtains the value

𝑐𝜋 ( 𝑗 ) = 𝑣𝜋 ( 𝑗 ) ⊕ 𝑟𝜋 ( 𝑗 ) . To let the client obtain the value 𝑣𝜋 ( 𝑗 ) , we
still need to let the client obtain 𝑟𝜋 ( 𝑗 ) , which seems impossible due

to that the server does not know the permutation 𝜋 . To deal with

this, we use OPRF in our protocol. Concretely, instead of choosing

𝑟𝑖 at random, we let 𝑟𝑖 = F(𝑚𝑘, 𝑘𝑖 ), where F is a PRF and𝑚𝑘 is a

PRF key sampled by the server. Then, the client can obtain the value

𝑟𝜋 ( 𝑗 ) = F(𝑚𝑘,𝑘𝜋 ( 𝑗 ) ) = F(𝑚𝑘,𝑘) by running an OPRF protocol with
the server.

Security Proof. We prove the following theorem to state the secu-

rity of ΠPaiCKSPIR.

Theorem 2. ΠPaiCKSPIR is a CKSPIR satisfying correctness, server-
privacy, and client-privacy.

Proof. We need to show the correctness, server-privacy, and

client-privacy of ΠPaiCKSPIR.

Correctness. We first consider the case that 𝑘 = 𝑘′
𝑖0,𝑖1

for some

𝑖0, 𝑖1 ∈ [
√
𝑛], then ℎ = ℎ𝜋−1

0
(𝑖0 ),𝜋−1

1
(𝑖1 ) , and the server will output

𝑏 = 1. Moreover, by the collision-resistance of H, for any ( 𝑗0, 𝑗1) ≠
(𝜋−1

0
(𝑖0), 𝜋−1

1
(𝑖1)), with overwhelming probability it holds that

ℎ ≠ ℎ 𝑗0, 𝑗1 . Therefore, with overwhelming probability, the server

will return 𝑒𝜋−1

0
(𝑖0 ),𝜋−1

1
(𝑖1 ) to the client. By the offline phase, we

know that 𝑒𝜋−1

0
(𝑖0 ),𝜋−1

1
(𝑖1 ) is an encryption of𝑚𝑖0,𝑖1 = 𝑣 ′

𝑖0,𝑖1
⊕ 𝑟𝑖0,𝑖1 .

Therefore, the client will output

𝑣 = SKE.Dec(𝑒𝑘, 𝑒) ⊕ 𝑟 = 𝑣 ′𝑖0,𝑖1 ⊕ 𝑟𝑖0,𝑖1 ⊕ F(𝑚𝑘, 𝑘𝑖0,𝑖1 ) = 𝑣 ′𝑖0,𝑖1 .

If 𝑘 ≠ 𝑘′
𝑗0, 𝑗1

for any 𝑗0, 𝑗1 ∈ [
√
𝑛], then by the collision-resistance

of H, the probability that there exists some 𝑖0, 𝑖1 ∈ [
√
𝑛] such that

H(𝑘′
𝑖0,𝑖1
)𝛼𝛽 = H(𝑘)𝛼𝛽 is negligible (𝛼, 𝛽 are random). Therefore,

with overwhelming probability, the server will output 𝑏 = 0 and

the client will output ⊥.
Server-Privacy. Let Viewcli (DB, 𝑘) be the view of the client. We

need to construct a PPT simulator Sim taking (𝑘, 𝑧) as input such
that

Viewcli (DB, 𝑘) ≈𝑐 Sim(𝑘, 𝑧) .
Note that Viewcli (DB, 𝑘) consists of

(𝑘, {(𝑠 𝑗0, 𝑗1 ,𝑚 𝑗0, 𝑗1 )} 𝑗0, 𝑗1∈[
√
𝑛] ,

{(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗0, 𝑗1∈[
√
𝑛] , resp, vcoprf , 𝑧)

where resp is the message received from the server in the online

phase, and vcoprf is the view of the client in the OPRF protocol. To

simulate this view, Sim performs as follows.

(1) Sample two random permutations 𝜋∗
0
, 𝜋∗

1
over the set [

√
𝑛],

two random values 𝛽∗
0
, 𝛽∗

1
∈ Z𝑝 (set 𝛽∗ = 𝛽∗

0
𝛽∗

1
), and one

SKE key 𝑒𝑘∗.
(2) Choose 𝑛 random group elements {𝑠∗

𝑗0, 𝑗1
} 𝑗0, 𝑗1∈[

√
𝑛] from G

and 𝑛 random values {𝑚∗
𝑗0, 𝑗1
} 𝑗0, 𝑗1∈[

√
𝑛] fromV .

(3) For all 𝑗0, 𝑗1 ∈ [
√
𝑛], compute 𝑡∗

𝑗0, 𝑗1
= (𝑠∗

𝜋∗
0
( 𝑗0 ), 𝑗1 )

𝛽∗
0 , 𝑐∗

𝑗0, 𝑗1
=

SKE.Enc(𝑒𝑘∗,𝑚𝜋∗
0
( 𝑗0 ), 𝑗1 ).

(4) If 𝑧 ≠⊥, choose random 𝑖∗
0
, 𝑖∗

1
∈ [
√
𝑛] and compute 𝑟∗ =

𝑚∗
𝑖∗
0
,𝑖∗

1

⊕ 𝑧. Otherwise, choose a random value 𝑟∗ fromV .

(5) If 𝑧 ≠⊥, compute resp∗ = SKE.Enc(𝑒𝑘∗, 𝑧 ⊕ 𝑟∗). Otherwise,
compute resp∗ =⊥.

(6) Invoke the OPRF simulator on (𝑘, 𝑟∗) and let vc∗oprf be the
output.

(7) Output the simulated view

(𝑘, {(𝑠∗𝑗0, 𝑗1 ,𝑚
∗
𝑗0, 𝑗1
)} 𝑗0, 𝑗1∈[

√
𝑛] ,

{(𝑡∗𝑗0, 𝑗1 , 𝑐
∗
𝑗0, 𝑗1
)} 𝑗0, 𝑗1∈[

√
𝑛] , resp

∗, vc∗oprf , 𝑧) .

It remains to show that the simulated view is indistinguishable

from the real view. Firstly, note that 𝑓𝛼 (𝑘) = H(𝑘)𝛼 is a PRF in

the RO model, hence each 𝑠 𝑗0, 𝑗1 is indistinguishable from a ran-

dom value. Moreover, 𝑡 𝑗0, 𝑗1 = (𝑠𝜋0 ( 𝑗0 ), 𝑗1 )𝛽0
, where 𝜋0 is a random

permutation over [
√
𝑛] that is sampled by the client. Therefore,

we know that 𝑠𝜋0 ( 𝑗0 ), 𝑗1 and 𝑠
∗
𝜋∗

0
( 𝑗0 ), 𝑗1 are indistinguishable, which

implies that 𝑡 𝑗0, 𝑗1 and 𝑡
∗
𝑗0, 𝑗1

are indistinguishable. On the other hand,

by the property of F, we know that every 𝑟 𝑗0, 𝑗1 = F(𝑚𝑘, 𝑘′
𝑗0, 𝑗1
) is a

pseudorandom value, hence every 𝑚 𝑗0, 𝑗1 = 𝑣 𝑗0, 𝑗1 ⊕ F(𝑚𝑘, 𝑘′
𝑗0, 𝑗1
)

is indistinguishable from a random value. Moreover, note that

𝑐 𝑗0, 𝑗1 = SKE.Enc(𝑒𝑘,𝑚𝜋0 ( 𝑗0 ), 𝑗1 ), where 𝑒𝑘 is a SKE key sampled

by the client. Since𝑚𝜋0 ( 𝑗0 ), 𝑗1 and𝑚
∗
𝜋∗

0
( 𝑗0 ), 𝑗1 are indistinguishable,

𝑐 𝑗0, 𝑗1 and 𝑐∗
𝑗0, 𝑗1

are indistinguishable. Now, we consider the mes-

sage (resp, vcoprf). We first consider the case of 𝑧 =⊥. In this case,

we have resp =⊥, and moreover, 𝑘 ≠ 𝑘′
𝑗0, 𝑗1

for all 𝑗0, 𝑗1 ∈ [
√
𝑛],

which implies that the OPRF output 𝑟 = F(𝑚𝑘, 𝑘) has not been
used in the offline phase, and we can just use a random value 𝑟∗

to simulate 𝑟 . Let Simoprf be the OPRF simulator, then we know

that vcoprf = Simoprf (𝑘, 𝑟 ) and vc∗oprf = Simoprf (𝑘, 𝑟∗) are indistin-
guishable. For the case of 𝑧 ≠⊥, by the correctness of our protocol,

we know that 𝑘 = 𝑘′
𝑖0,𝑖1

for some 𝑖0, 𝑖1 ∈ [
√
𝑛]. Note that the data-

base has been permuted by the server, hence 𝑖0, 𝑖1 are in fact two

random values. Furthermore, we have ℎ = ℎ𝜋−1

0
(𝑖0 ),𝜋−1

1
(𝑖1 ) , which

implies that the response message is 𝑒 = 𝑒𝜋−1

0
(𝑖0 ),𝜋−1

1
(𝑖1 ) , which is

an encryption of𝑚𝑖0,𝑖1 . Since 𝑖0, 𝑖1 are two random values, we can

just simulate 𝑒 by samples two random values 𝑖∗
0
, 𝑖∗

1
∈ [
√
𝑛] and

encrypts𝑚∗
𝑖∗
0
,𝑖∗

1

to 𝑒∗, which guarantees that 𝑒∗ and 𝑒 are indistin-

guishable. Moreover, since𝑚∗
𝑖∗
0
,𝑖∗

1

and𝑚𝑖0,𝑖1 are indistinguishable,

𝑟∗ = 𝑚∗
𝑖∗
0
,𝑖∗

1

⊕ 𝑧 and 𝑟 = 𝑚𝑖0,𝑖1 ⊕ 𝑧 are indistinguishable. This im-

plies that vcoprf = Simoprf (𝑘, 𝑟 ) and vc∗oprf = Simoprf (𝑘, 𝑟∗) are
indistinguishable.

Client-Privacy. Let Viewser (DB, 𝑘) be the view of the server. We

need to construct a PPT simulator Sim taking DB as input such that

Viewser (DB, 𝑘) ≈𝑐 Sim(DB) .
Note that Viewser (DB, 𝑘) consists of

(DB,{(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗0, 𝑗1∈[
√
𝑛] ,

{(ℎ 𝑗0, 𝑗1 , 𝑒 𝑗0, 𝑗1 )} 𝑗0, 𝑗1∈[
√
𝑛] , query, vcoprf , 𝑏),

where query = 𝑞 is the querymessage received from the client in the

online phase, and vcoprf is the view of the server in the OPRF proto-

col. Since the client offers no inputs in the offline phase, Sim can sim-

ulate themessages ({(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗0, 𝑗1∈[
√
𝑛] , {(ℎ 𝑗0, 𝑗1 , 𝑒 𝑗0, 𝑗1 )} 𝑗0, 𝑗1∈[

√
𝑛] )

perfectly. Moreover, since the server has no outputs in the OPRF

protocol, Sim can simulate vcoprf by invoking the OPRF simula-

tor on𝑚𝑘 and let vc∗oprf be the output. The security of the OPRF
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Figure 5: The construction of PaiCKSPIR.

Protocol ΠPaiCKSPIR: CKSPIR with �̃� (1) Client-Side Storage and Online Time

Input: The server S has a database DB = {(𝑘 𝑗 , 𝑣 𝑗 )} 𝑗∈[𝑛] ∈ (K ×V)𝑛 , and the client C has a search key 𝑘 ∈ K .
Output: If there exists some 𝑖 ∈ [𝑛] such that 𝑘𝑖 = 𝑘 , then S outputs 𝑏 = 1, and C outputs 𝑧 = 𝑣𝑖 . Otherwise, S outputs 𝑏 = 0, and
C outputs 𝑧 =⊥.

Offline Phase: S first samples a random permutation 𝜋 over [𝑛] and permutes its database as DB′ = {(𝑘′
𝑗
, 𝑣 ′

𝑗
)} 𝑗∈[𝑛] , where

(𝑘′
𝑗
, 𝑣 ′

𝑗
) = (𝑘𝜋 ( 𝑗 ) , 𝑣𝜋 ( 𝑗 ) ). Then, S represents the database as DB′ = {(𝑘′

𝑗0, 𝑗1
, 𝑣 ′

𝑗0, 𝑗1
)} 𝑗0, 𝑗1∈[

√
𝑛] . S and C agree on the following three

cryptographic primitives.

• A hash function H : K → G, where G is a DDH-hard group of order 𝑝 for some large prime 𝑝 .

• An CPA-secure SKE scheme (SKE.Gen, SKE.Enc, SKE.Dec).
• A PRF F : KF × K → V with an OPRF protocol, where KF is the key space of F.

The parties choose the required parameters.

• S chooses a master key𝑚𝑘 ∈ KF and a random value 𝛼 ∈ Z𝑝 .
• C chooses two random permutations 𝜋0, 𝜋1 over the set [

√
𝑛], two random values 𝛽0, 𝛽1 ∈ Z𝑝 (set 𝛽 = 𝛽0𝛽1), and one SKE

key 𝑒𝑘 .

Now S and C interact to encode the database in a streaming way.

(1) Row-Permuting. For each 𝑗1 ∈ [
√
𝑛], S and C perform the following steps.

(a) For all 𝑗0 ∈ [
√
𝑛], S computes 𝑠 𝑗0, 𝑗1 = H(𝑘′

𝑗0, 𝑗1
)𝛼 .

(b) For all 𝑗0 ∈ [
√
𝑛], S first computes 𝑟 𝑗0, 𝑗1 = F(𝑚𝑘, 𝑘′

𝑗0, 𝑗1
) and𝑚 𝑗0, 𝑗1 = 𝑣 ′

𝑗0, 𝑗1
⊕𝑟 𝑗0, 𝑗1 . Then, S sends {(𝑠 𝑗0, 𝑗1 ,𝑚 𝑗0, 𝑗1 )} 𝑗0∈[

√
𝑛]

to C.
(c) For all 𝑗0 ∈ [

√
𝑛], C first computes 𝑡 𝑗0, 𝑗1 = (𝑠𝜋0 ( 𝑗0 ), 𝑗1 )𝛽0

and 𝑐 𝑗0, 𝑗1 = SKE.Enc(𝑒𝑘,𝑚𝜋0 ( 𝑗0 ), 𝑗1 ). Then, C sends

{(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗0∈[
√
𝑛] to S.

(d) C deletes {(𝑠 𝑗0, 𝑗1 ,𝑚 𝑗0, 𝑗1 ), (𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗0∈[
√
𝑛] from its local storage.

(2) Column-Permuting. For each 𝑗0 ∈ [
√
𝑛], S and C perform the following steps.

(a) S sends {(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 )} 𝑗1∈[
√
𝑛] to C.

(b) For all 𝑗1 ∈ [
√
𝑛], C computes ℎ 𝑗0, 𝑗1 = 𝑡

𝛽1

𝑗0,𝜋1 ( 𝑗1 ) and decrypts 𝑥 𝑗0, 𝑗1 = SKE.Dec(𝑒𝑘, 𝑐 𝑗0, 𝑗1 ).
(c) For all 𝑗1 ∈ [

√
𝑛], C computes 𝑒 𝑗0, 𝑗1 = SKE.Enc(𝑒𝑘, 𝑥 𝑗0,𝜋1 ( 𝑗1 ) ). Then, C sends {(ℎ 𝑗0, 𝑗1 , 𝑒 𝑗0, 𝑗1 )} 𝑗1∈[

√
𝑛] to S.

(d) C deletes {(𝑡 𝑗0, 𝑗1 , 𝑐 𝑗0, 𝑗1 ), (ℎ 𝑗0, 𝑗1 , 𝑒 𝑗0, 𝑗1 )} 𝑗1∈[
√
𝑛] from its local storage.

Online Phase: To query the key 𝑘 , the parties proceed as follows (and they run the OPRF protocol to let C obtain 𝑟 = F(𝑚𝑘, 𝑘).
(1) Query. C first computes 𝑞 = H(𝑘)𝛽 and sends 𝑞 to S.
(2) Response. S computes ℎ = 𝑞𝛼 and checks whether there exists some ℎ 𝑗0, 𝑗1 such that ℎ 𝑗0, 𝑗1 = ℎ. If the answer is yes, S

outputs 𝑏 = 1 and sends 𝑒 = 𝑒 𝑗0, 𝑗1 to C. Otherwise, S outputs 𝑏 = 0 and sends ⊥ to C.
(3) Extract. If receiving ⊥ from S, then C outputs 𝑧 =⊥. Otherwise, C computes 𝑣 = SKE.Dec(𝑒𝑘, 𝑒) ⊕ 𝑟 and outputs 𝑧 = 𝑣 .

protocol guarantees that vc∗oprf and vcoprf are indistinguishable. To
simulate the message query, Sim performs as follows.

(1) If 𝑏 = 0, sample a random value 𝑞 ∈ V .

(2) Otherwise, choose two random values 𝑖∗
0
, 𝑖∗

1
∈ [
√
𝑛] and

compute 𝑞∗ = ℎ
1/𝛼
𝑖∗
0
,𝑖∗

1

.

We show that 𝑞 and 𝑞∗ are indistinguishable. First, consider the
case of 𝑏 = 1, which implies that 𝑘 = 𝑘′

𝑖0,𝑖1
for some 𝑖0, 𝑖1 ∈ [

√
𝑛].

In this case, the query message in the real view is 𝑞 = H(𝑘)𝛽 =

H(𝑘′
𝑖0,𝑖1
)𝛽 = ℎ

1/𝛼
𝜋−1

0
(𝑖0 ),𝜋−1

1
(𝑖1 )

, and the simulated query message is

𝑞∗ = ℎ
1/𝛼
𝑖∗
0
,𝑖∗

1

for random 𝑖∗
0
, 𝑖∗

1
∈ [
√
𝑛]. Note that 𝜋0 and 𝜋1 are two

random permutations over [
√
𝑛] that are unknown to the server.

Therefore, 𝜋−1

0
(𝑖0), 𝜋−1

1
(𝑖1) are two random values of [

√
𝑛] and 𝑞

and 𝑞∗ are indistinguishable.
Now, consider the case of 𝑏 = 0, which implies that 𝑘 ≠ 𝑘 𝑗0, 𝑗1 for

any 𝑗0, 𝑗1 ∈ [
√
𝑛]. In this case, the real query message 𝑞 is H(𝑘)𝛽 ,

where 𝛽 is sampled by the client. And the simulated query message

𝑞∗ is a random element of V . Since 𝛽 is unknown to the server,

H(𝑘)𝛽 is indistinguishable from a random element. Therefore, 𝑞

and 𝑞∗ are indistinguishable.
□

Complexity Analysis. Let us first consider the offline phase. In

the offline phase, the parties need to send 4𝑛 group elements, 𝑛

plaintexts, and 3𝑛 ciphertexts. Hence, the communication cost is

�̃� (𝑛). In addition, the server needs to compute H and F 𝑛 times, 𝑛

Xors and exponentiations. Moreover, the client needs to compute
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2𝑛 exponentiations, 2𝑛 encryptions, and 𝑛 decryptions. Overall, the

offline computational cost is �̃� (𝑛). Furthermore, since each message

sent by the parties contains

√
𝑛 group elements and

√
𝑛 plaintexts

or ciphertexts, the bandwidth of the protocol is �̃� (
√
𝑛). Finally, it

is easy to see that the server-side and client-side storage are �̃� (𝑛)
and �̃� (

√
𝑛), respectively.

Now, we consider the online phase. Note that the OPRF protocol

(described in Section 2.4) requires the parties to send two group

elements and compute the hash function one time and three ex-

ponentiations, hence both the communication and computational

costs are �̃� (1). In addition to executing the OPRF protocol, the

parties need to send a group element and a ciphertext (as well as a

bit 𝑏), which requires �̃� (1) communication. Moreover, the parties

need to compute the hash function H one time and two exponenti-

ations, which consumes �̃� (1) amount of computation. Finally, it is

easy to see that the bandwidth of the online phase is �̃� (1), and the

server-side and client-side storage are �̃� (𝑛) and �̃� (1), respectively.

6 IMPLEMENTATIONS AND EVALUATIONS
6.1 Implementation Details
We implement all our schemes and compare them with several

baselines. To eliminate performance gaps caused by programming

languages, we carefully study existing open-source codes, and re-

implement baselines mainly using Java. Here, we summarize each

baseline with implementation details.

Piano by Zhou et al. [50]. The authors provide a full implemen-

tation in Go and is open-sourced at https://github.com/pianopir/

Piano-PIR. Our re-implementation exactly follows all parameter set-

tings shown in their implementation. In their full implementation,

the client generates online queries with random indices. To support

our KSPIR construction, our re-implementation additionally allows

the client to query specific indices.
Spam byMughees et al. [38]. The authors implement their scheme

in C++. They set the computational security parameter 𝜆 to 80 rather

than 128 used in other baselines. To date, we have not found the

open-source repository. We fully implement Spam with the param-

eter setting shown in their work with 𝜆 = 128. We also try our best

to implement some optimizations shown in their work, including

two subset encoding (Section 3.2), pair backup “hints” generation

(Section 3.4), and improved median finding (Section 4.1).

LPSI by Chen et al. [15]. We choose Labeled Private Set Intersec-

tion (LPSI) as the baseline for KSPIR. LPSI is a specific type of PSI

that allows the client to learn the labels of the elements in the inter-

section. Chen et al. [10] pointed out that LPSI is equivalent to KSPIR

in the batching setting, in the sense that the client can ask multiple

keys (elements) for entries (labels) in one query. The SOTA LPSI

was proposed by Cong et al. [15], with the open-sourced library

named APSI that is available at https://github.com/microsoft/APSI.

Their implementation invokes Microsoft SEAL library
2
for Fully

Homomorphic Encryption (FHE) and FourQ
3
for Elliptic Curve

Cryptography (ECC).

We implement Piano, Spam, and Pai under a unified API. Then,

we implement the transformation from PIR to KSPIR by invoking

2
https://github.com/microsoft/SEAL

3
https://github.com/microsoft/FourQlib

these schemes in a black-box manner with a cuckoo hash. Following

the estimates in [21], we choose the cuckoo hash parameters as

containing 3 hashes and the number of bins 𝑏 = 1.5𝑛 such that

inserting 𝑛 elements in the cuckoo hash fails with probability at

most 2
−𝜅

. In this way, we obtain the corresponding KSPIR, namely,

PianoKSPIR, SpamKSPIR, and PaiKSPIR. We finally implement our

PaiCKSPIR with FourQ ECC as the DDH-hard group.

In our implementation, we set the statistical security parameter

𝜅 to 40 and the computational security parameter 𝜆 to 128 for all

schemes. We utilize AES-NI hardware instruction that is inherently

supported by modern Java Virtual Machines for fast PRF and PRP

evaluations. The CPA-secure SKE used in Pai and PaiCKSPIR is in-

stantiated as AES with OFB encryption mode. The semantic-secure

SKE used in PianoKSPIR, SpamKSPIR, and PaiKSPIR is instantiated

as AES with CTR encryption mode.

6.2 Experimental Setup
We evaluate all schemes on a single Intel Core i9-9900Kwith 3.6GHz

and 128GB RAM. Our platform runs Ubuntu 20.04.6 LTS, with Mi-

crosoft SEAL 4.1.1, FourQ v3.1, and Java 17.0.1. All query costs are

computed as the average over 1000 queries, except the somewhat

inefficient APSI, which we average the cost over 100 queries. All

experiments are run on a single machine with the 10Gbps band-

width and 0.05ms RTT latency simulated by the Linux tc command.

All computations are performed on 8 threads.

We analyze the performances for databases with 𝑛 = 2
20, 222, 224

entries. The entry sizes are 64, 128, 256 bytes. Since our experiments

consider single-query setting rather than batch-query setting, for

APSI, we choose the single-query parameter 1M-1-32
4
for 𝑛 = 2

20

entries, and 16M-1-32
5
for 𝑛 = 2

22
and 𝑛 = 2

24
entries.

6.3 Evaluation Results
We analyze the experimental results for KSPIR and CKSPIR, respec-

tively. The metrics include the one-time pre-processing cost in the

offline phase and the costs of the queries in the online phase. We

further obtain the online client-side storage cost by using the JOL

(Java Object Layout) library
6
to measure the deep sizes (i.e., the size

of an object including the size of all referred objects, in addition

to the size of the object itself) of Objects packaging the client. Ta-

ble 1 shows the detailed experiment results for APSI, PianoKSPIR,
SpamKSPIR, PaiKSPIR, and PaiCKSPIR.

Evaluations for KSPIR. The online complexity of APSI is much

higher than that of the other three protocols, at least three orders of

magnitude more expensive. This shows that introducing preprocess-

ing in KSPIR extremely decreases the online costs. The advantage

of APSI is that the communication in the offline phase is very low.

However, due to the high offline computation complexity of APSI,
its overall offline time is similar to that of the other three protocols.

We argue that the application scenario of APSI is different from
that of the other three protocols. When low offline communication

complexity is required, APSI will be a better choice than others.

SpamKSPIR achieves better communication and computation

than PianoKSPIR. The online communication cost is 36.1 - 122.4×
4
https://github.com/microsoft/APSI/blob/main/parameters/1M-1-32.json

5
https://github.com/microsoft/APSI/blob/main/parameters/16M-1-32.json

6
http://hg.openjdk.java.net/code-tools/jol
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Table 1: Performance of LPSI, PianoKSPIR, SpamKPSIR, PaiKSPIR, and PaiCKSPIR on 𝑛 = 2
20, 222, 224 database sizes and

64, 128, 256 bytes entry sizes. “Comm.” stands for communication cost. Offline costs are the whole preprocessing. Online costs
are amortized over 1000 queries except APSI which are amortized over 100 queries. The best results for KSPIR are marked as
shallow green . The results are marked as green if PaiCKSPIR is even better than PaiKSPIR. Notice that, this work does not
focus on offline costs (all methods require comparable time for pre-processing), thus the results are not highlighted.

𝑛 = 2
20 𝑛 = 2

22 𝑛 = 2
24

64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes

Offline

Comm. (MB)

APSI 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

PianoKSPIR 120.069 216.124 408.235 480.085 864.153 1632.289 1920.341 3456.613 6529.158

SpamKSPIR 120.069 216.124 408.235 480.085 864.153 1632.289 1920.341 3456.613 6529.158

PaiKSPIR 624.359 1008.581 1777.023 2496.443 4032.715 7105.260 9985.771 16130.862 28421.042

PaiCKSPIR 432.0 688.0 1200.0 1728.0 2752.0 4800.0 6912.0 11008.0 19200.0

Offline

Time (s)

APSI 23.697 35.538 61.234 82.641 128.631 230.835 338.196 542.071 938.441

PianoKSPIR 17.388 15.517 18.294 70.225 63.999 69.712 288.962 255.728 296.759

SpamKSPIR 20.544 20.918 24.371 82.174 82.754 104.972 329.514 331.764 417.963

PaiKSPIR 16.218 17.331 20.157 60.437 67.729 78.297 249.635 275.815 308.757

PaiCKSPIR 33.311 33.525 35.030 119.743 123.880 128.781 470.224 487.166 516.738

Online

Comm. (KB)

APSI 5769.693 9401.396 17270.112 13517.358 22959.823 43418.503 47413.396 82277.844 157817.458

PianoKSPIR 301.311 536.436 1006.686 602.564 1072.814 2013.314 1205.313 2146.000 4027.375

SpamKSPIR 8.351 8.726 9.476 16.158 16.533 17.283 31.773 32.148 32.898

PaiKSPIR 0.391 0.578 0.953 0.391 0.578 0.953 0.391 0.578 0.953

PaiCKSPIR 0.172 0.234 0.359 0.172 0.234 0.359 0.172 0.234 0.359

Online

Time (ms)

APSI 3067.12 4072.03 6249.78 5464.79 8034.68 13886.16 15149.30 25075.80 47133.38

PianoKSPIR 4.398 5.208 6.754 7.121 9.032 11.323 14.363 17.201 21.827

SpamKSPIR 3.178 3.235 3.378 4.065 4.497 4.793 7.702 8.021 8.940

PaiKSPIR 1.391 1.436 1.444 1.045 1.031 1.071 1.055 0.989 1.008

PaiCKSPIR 0.883 0.906 0.878 0.671 0.673 0.670 0.634 0.649 0.617

Online

Client-Side

Storage (MB)

APSI 5.260 5.256 5.436 5.274 5.271 5.272 5.271 5.266 5.437

PianoKSPIR 21.888 28.172 40.740 40.272 53.444 79.789 81.095 109.272 165.626

SpamKSPIR 21.114 27.396 39.963 37.123 49.682 74.801 69.485 94.598 144.824

PaiKSPIR 4.931 5.161 4.950 4.760 4.990 4.778 4.758 4.988 4.776

PaiCKSPIR 5.139 4.921 5.156 4.969 4.749 4.985 4.969 4.753 4.985

better, and the online computation cost is 1.4 - 2.4× better. PaiK-
SPIR further achieves more efficient online phase than SpamKSPIR.
Concretely, PaiKSPIR reduces the online communication cost by

9.9 - 81.3×, and the online time by 2.3 - 8.9×. In addition, PaiKSPIR
introduces extremely low storage costs. Under the parameters we

tested, the concrete storage cost of PaiKSPIR is only 2.9% − 23.4%

than that of PianoKSPIR and SpamKSPIR.
The offline time of PaiKSPIR is similar to that of PianoKSPIR

and lower than that of SpamKSPIR. Also, PaiKSPIR has the disad-

vantage of high offline communication, which is about 4 - 6× larger
than that of PianoKSPIR and SpamKSPIR. Given that we have an

extremely fast online phase, a relatively high but reasonable offline

communication is acceptable.

Evaluations for CKSPIR. For online communication, PaiCKSPIR
is 2.3 - 2.7× better than PaiKSPIR, and for online time, PaiCKSPIR
is 1.5 - 1.7× better than PaiKSPIR. The main reason is that in the

general transformation from PIR to KSPIR (described in Section

5.1), a single keyword query requires the client to make 𝑣 = 3

index queries. For the offline phase, since PaiKSPIR uses our PIR

protocol with a database containing 𝑏 = 1.5𝑛 entries, PaiCKSPIR
has a lower offline communication, which is 1.4 - 1.5× better than

PaiKSPIR. Moreover, since that PaiCKSPIR uses much more public-

key operations (i.e., exponentiations), the offline time of PaiCKSPIR
is 1.6 - 2.1× higher than PaiKSPIR.

7 CONCLUSION
We propose a novel framework Pai under the client-preprocessing
PIR model for the data marketplace. Pai boasts 𝑂 (1) online time

and client-side storage, with the optimality retained up to a poly-

logarithmic factor. As a comparison, the online time and online

client-side storage of the state-of-the-art PIR protocols Piano and
Spam under the client-preprocessing model are both �̃� (

√
𝑛).

We then extended PIR to KSPIR and CKSPIR, meeting the funda-

mental key-value data retrieval requirement for the data market-

place. Our KSPIRs are obtained by applying the ideas from [23] and

[2] to Piano, Spam, and Pai. We implement all the KSPIR protocols,

and our experimental results show that PaiKSPIR achieves a better

efficiency than PianoKSPIR and SpamKSPIR. We also introduce

CKSPIR, which is mainly used when the server intends to charge

the client for a successful query. The experimental results show

that our PaiCKSPIR protocol achieves lower online time and similar

client-side storage compared with PaiKSPIR.
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