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Abstract—The Number Theoretic Transform (NTT) is a power-
ful mathematical tool with a wide range of applications in various
fields, including signal processing, cryptography, and error cor-
rection codes. In recent years, there has been a growing interest
in efficiently implementing the NTT on hardware platforms for
lattice-based cryptography within the context of NIST’s Post-
Quantum Cryptography (PQC) competition. The implementation
of NTT in cryptography stands as a pivotal advancement,
revolutionizing various security protocols. By enabling efficient
arithmetic operations in polynomial rings, NTT significantly
enhances the speed and security of lattice-based cryptographic
schemes, contributing to the development of robust homomorphic
encryption, key exchange, and digital signature systems.

This article presents a new implementation of the Number
Theoretic Transform for FPGA platforms. The focus of the
implementation lies in achieving a flexible trade-off between
resource usage and computation speed. By strategically ad-
justing the allocation of BRAM and DSP resources, the NTT
computation can be optimized for either high-speed process-
ing or resource conservation. The proposed implementation
is specifically designed for polynomial multiplication with a
degree of 256, accommodating coefficients of various bit sizes.
Furthermore, the constant-geometry (Pease) method was utilized
as an alternative to the Cooley-Tukey graph method, resulting in
a notable simplification of BRAM addressing procedures. This
adaptability renders it suitable for cryptographic algorithms like
CRYSTALS-Dilithium and CRYSTALS-Kyber, which use 256-
degree polynomials.

Index Terms—Number Theoretic Transform, Post-Quantum
Cryptography, Hardware Cryptography, FPGA Implementation,
Polynomial Multiplication

I. INTRODUCTION

Quantum computers provide a severe threat to the informa-
tion security industry’s fast-evolving landscape. The security
of sensitive data and communication is put at risk by the
possibility of these computer systems breaking established
encryption techniques. The necessity to develop new crypto-
graphic techniques that can prevent both classical and quantum
attacks has given rise to the area of post-quantum cryptography
with the arrival of practical quantum computers.

The National Institute of Standards and Technology (NIST)
has organized a comprehensive standardization process for
post-quantum cryptography in response to the escalating sig-
nificance of quantum-based security threats and their po-
tential to compromise conventional cryptographic systems.
Several algorithms are submitted from all over the world.
These candidates include various mathematical techniques,
such as lattice-based cryptography, code-based cryptography,
multivariate polynomial cryptography, and more. Through an

inclusive and detailed assessment, NIST seeks to identify
cryptographic methods that exhibit robust resistance against
potential quantum attacks. After an extensive standardization
process, PQC competition’s winners were announced in July
2022. Lattice-based cryptographic algorithms have become
strong candidates in post-quantum cryptography competitions
because they offer a good balance of security and speed [1],
[2]. CRYSTALS-Dilithium was selected as a post-quantum
secure digital signature algorithm, while CRYSTALS-Kyber
was chosen as the public key encryption and key establishment
algorithm.

Lattice-based cryptography employs complex mathematical
structures known as lattices to build robust security measures
for data protection [3]. Within this framework, polynomial
multiplication is a fundamental operation that contributes to
the effectiveness and efficiency of cryptographic algorithms.
These cryptographic methods balance protecting sensitive
information and maintaining computational performance by
integrating polynomial multiplication with lattice-based tech-
niques [1], [2].

The Number Theoretic Transform is a powerful polynomial
multiplication technique, particularly in lattice-based cryptog-
raphy and other areas of computer science. It leverages number
theory principles to efficiently compute polynomial products
by transforming the polynomial multiplication problem into a
problem in the complex number domain. By converting the
convolution operation into a point-wise multiplication oper-
ation in the transformed domain, NTT significantly reduces
the computational complexity, making it an essential tool
for applications requiring efficient polynomial multiplication.
Its effectiveness in lattice-based cryptography and related
fields highlights the critical role NTT plays in enhancing the
performance of cryptographic algorithms and mathematical
computations.

In this research, we introduce a new implementation ar-
chitecture for FPGA platforms, centering on the NTT oper-
ation. We have developed a run-time configurable butterfly
unit capable of supporting Cooley-Tukey, Gentleman-Sande,
and pointwise multiplication operations simultaneously. This
design feature provides us the flexibility to use the same
butterfly unit for both forward and inverse NTT computations,
as well as point-wise multiplications during run-time. The
number of butterfly units used in the design is configurable
and can be set at compile-time. This parameter directly impacts
the utilization of Block RAM (BRAM) and Digital Signal
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Processors (DSPs) within the design. Consequently, depending
on specific requirements, it can be configured for either high-
speed computation or resource conservative design. Using
more butterfly units results in enhanced processing speed but
costs a higher consumption of BRAM and DSP resources.
We have used run-time configurable a Montgomery modular
multiplier, capable of effectively multiplying coefficients of
polynomials in R up to 31-bit in the butterfly units. Instead
of using Cooley-Tukey or Gentleman-Sande methods, we
preferred to use constant-geometry [4] method for easy to
address BRAMs. Our design offers an adaptable and generic
form for performing NTT operations on polynomials with a
degree of 256, supporting coefficients up-to 31 bits.

II. BACKGROUND AND RELATED WORK

Polynomial multiplication is a cornerstone operation in
many computational domains, from classic computer algebra
systems to cutting-edge cryptographic protocols. The sig-
nificance of efficient polynomial multiplication extends to
applications in signal processing, coding theory, and partic-
ularly emerging cryptographic schemes, such as lattice-based
cryptography and homomorphic encryption as we mentioned
in the introduction. Through leveraging the mathematical com-
plexities of NTT, polynomial multiplication can be executed
more rapidly, boosting the efficiency of applications that
heavily depend on it. Thus, utilizing NTT becomes critical
in advancing computational efficacy across several research
fields.

Efforts to implement the NTT on FPGA platforms have
gained momentum due to the demand for efficient and scalable
solutions to secure digital communication in a post-quantum
era. Researchers have explored various aspects of NTT FPGA
implementation, from algorithmic considerations to optimiza-
tion techniques and performance evaluations.

LATTICE-BASED CRYPTOGRAPHY

Lattice-based cryptography is an area of study in crypto-
graphic research that builds security primitives upon the hard-
ness of computational problems in lattices. These problems,
often related to the difficulty of finding the shortest vector in
a lattice or its closest variant, have been shown to be resistant
against quantum attacks, made lattice-based schemes potential
candidates for post-quantum cryptography. Both CRYSTALS-
Dilithium and CRYSTALS-Kyber, the winners of PQC com-
petition, are based on computational problems in lattices [5],
[6].

A prominent problem in lattice-based cryptography is the
Ring Learning With Error (Ring-LWE) problem. Unlike the
standard Learning With Error (LWE) problem, Ring-LWE
operates in polynomial rings and leverages the algebraic
structure of these rings to achieve both efficiency and security.
Mathematically, the Ring-LWE problem can be stated as
follows: given random samples from a ring R, distinguish
between the distributions (a, a · s + e) and (a, u), where s
is a secret element, e is an error term, and u is a uniformly
random element from the ring.

The Ring-LWE problem has found applications in various
cryptographic constructs, including encryption schemes, digi-
tal signatures, and fully homomorphic encryption. Its hardness
assumption, backed by worst-case hardness results in lattices,
provides a strong foundation for building secure and efficient
cryptographic protocols.

While lattice-based cryptography offers promising ways to
secure data against quantum threats, ongoing research aims to
optimize and further understand the mathematical foundations
and practical implications of Ring-LWE and other related
problems.

NUMBER THEORETIC TRANSFORM

Similar to the Fast Fourier Transform (FFT), NTT op-
erates on sequences of numbers but focuses on modular
arithmetic within a given number system. Let p be a prime
number, and ω be a primitive n-th root of unity modulo
p, where n is the length of the input sequence. The NTT
converts a sequence {a0, a1, . . . , an−1} into another sequence
{A0, A1, . . . , An−1}, where

Ak =

n−1∑
j=0

aj · ωjk (mod p)

This transformation enables efficient operations in the fre-
quency domain, allowing for the analysis and manipulation of
data in a different representation. Lets assume that two poly-
nomials a = {a0, a1, . . . , an−1} and b = {b0, b1, . . . , bn−1}
will be multiplied. The time complexity of polynomial multi-
plication is O(n2) if schoolbook technique is used. Utilizing
NTT technique necessitates the execution of the forward
NTT operation on polynomial a, followed by its application
on polynomial b. Subsequently, a point-wise multiplication
is performed on the coefficients of polynomials a and b.
Upon completion of these operations, the inverse NTT is
employed. Consequently, the polynomial multiplication of a
and b is effectively computed. NTT provides O(n log n) time
complexity, which is much more efficient than schoolbook
technique.

Polynomial multiplication is generally based on two differ-
ent parameters:

• n: the degree of the polynomial ring
• k: the bit length of the coefficient modulus
While homomorphic encryption schemes use large n and k

parameters for polynomial multiplication, ranging from n =
1024 to n = 32768 and k = 14 to 60. Dilithium uses (n,k) =
(256,23); Kyber uses (n,k) = (256,13).

Post-quantum cryptographic algorithms and homomorphic
encryption schemes use NTT operation for the algorithm’s
efficiency. Therefore, several NTT implementations are de-
signed and proposed with different implementation concerns
for several platforms. Run-time reconfigurable NTT multipli-
cation is proposed with supporting six different parameter
sets [7] for FPGA platforms. Instead of applying the Cooley-
Tukey algorithm, the constant-geometry-based NTT operation
is implemented for ASIC platforms [8]. There also several
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Fig. 1. The Proposed Butterfly Unit

optimized NTT implementations for software [9] and GPU
[10] platforms.

Cooley-Tukey Algorithm

The Cooley-Tukey algorithm is a widely used method for
efficiently computing the NTT and its inverse NTT. It employs
a divide-and-conquer approach by recursively breaking down
a NTT of any composite size N = N1 × N2 into smaller
NTTs of sizes N1 and N2. This iterative process continues
until the base case of N = 2 is reached, at which point the
NTT computation can be efficiently carried out using butter-
fly operations. These butterfly operations involve combining
the results of the smaller NTTs to produce the final NTT
result. The Cooley-Tukey algorithm significantly reduces the
number of complex multiplications required compared to the
straightforward computation of the NTT, making it an essential
component in various applications involving signal processing.

 c0 

 c4 

BFU

BFU

BFU
 c2 

c6 

BFU

BFU

 c1 

 c5 

BFU

BFU

BFU
 c3 

 c7 

BFU

BFU

BFU

BFU

Fig. 2. Cooley-Tukey Graph based NTT operation for a polynomial degree
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III. THE PROPOSED ARCHITECTURE

Efficiently implementing NTT operation on FPGA plat-
forms requires a careful consideration of memory utilization
and computation speed. One key aspect in achieving optimal

performance is to strike a balance between memory usage
and computation speed, which is often referred to as the
memory-speed trade-off. In this section, we present a proposed
architecture that focuses on this trade-off to enhance the
efficiency of NTT computations on FPGA.

Proposed Butterfly Unit

The butterfly unit is a fundamental building block in the
NTT operation. It performs the essential complex multiplica-
tion and addition operations that contribute to the transfor-
mation of input data into NTT-domain coefficients. We have
designed a butterfly unit such that it can be used both in
forward and inverse NTT operation. Additionally, our pro-
posed butterfly unit provides pointwise multiplication. Figure
1 shows the internal structure of the proposed butterfly unit. It
receives four input parameters, denoted as a, b, w, mode, and
produces two outputs, a′ and b′. a and b are the coefficients of
the polynomial, where w is the corresponding twiddle factor.
mode is used for encoding behaviour of the module. It is 2-
bit, where ”00” denotes forward NTT, ”01” denotes inverse
NTT, and ”10” denotes point-wise multiplication. We used
7-stage pipeline delay in butterfly units to increase the clock
frequency.

Montgomery Multiplication

Montgomery multiplication is a technique commonly used
in modular arithmetic and cryptographic operations, partic-
ularly in modular exponentiation and elliptic curve cryp-
tography. It aims to accelerate modular multiplications by
reducing the number of expensive modular divisions. While
several modular multiplication algorithms exist, including the
Barrett and Karatsuba reduction methods, we selected the
Montgomery algorithm due to its fulfillment with our design
criteria. In Montgomery multiplication, the input operands
are first transformed into a new representation known as the
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Algorithm 1 Constant Geometry Based NTT Operation Algorithm
Require: Polynomial a(x) ∈ Rq , η number of used butterfly unit and n-th primitive root of unity ωn ∈ Zq

Ensure: Polynomial a′(x) ∈ Rq such that a′(x) = NTT (a(x))
1: x← 0
2: for i in 0 to η − 1 do
3: for j in 0 to 256/η − 1 do
4: RAM [i][j]← ai∗(256/η)+j ▷ Fills the RAMs with coefficients
5: RAM [i+ η][j]← 0 ▷ Generate other RAMs, Overall we need 2η RAMs
6: end for
7: end for
8: for i in 0 to 511 do
9: W [i]← ωi

n2
⌈log2q⌉ mod q ▷ Calculates twiddle factors

10: end for ▷ NTT operation starts
11: for s in 0 to 7 do ▷ Keeps the stage counter
12: for j in 0 to (256/2η)− 1 do
13: for i in 0 to (η/2)− 1 do
14: ω0 ←W [27−s(1 + 2(bitRev((i ∗ 256/η) mod 2s, s)))]
15: ω1 ←W [27−s(1 + 2(bitRev((i ∗ 256/η + 256/(2η)) mod 2s, s)))]
16: a0 ← RAM [i][j], b0 ← RAM [i+ η/2][j]
17: a1 ← RAM [i][j + 256/η], b1 ← RAM [i+ η/2][j]
18: c0, d0 ← BFU(a0, b0, w0), c1, d1 ← BFU(a1, b1, w1) ▷ Butterfly Operation
19: RAM [2i+ η][2x]← c0
20: RAM [2i+ η][2x+ 1]← d0
21: RAM [2i+ 1 + η][2x]← c1
22: RAM [2i+ 1 + η][2x+ 1]← d1
23: x← x+ 1
24: end for
25: end for
26: for i in 0 to η/2− 1 do
27: RAM [i]← RAM [i+ η]
28: end for
29: end for
30: for i in 0 to η − 1 do
31: for j in 0 to 256/η − 1 do
32: a′i∗(256/η)+j ← RAM [i][j] ▷ Constructs the output polynomial
33: end for
34: end for

Montgomery domain, which simplifies the modular reduction
step. The core of the algorithm involves a series of additions
and bit-wise operations.

Since we work with signals in the FPGA, we can work on
numbers of any bit length we want. While each coefficient
is stored in a 32-bit register for Dilithium parameters in the
software, we used 23-bit registers FPGA. This choice allowed
us to set the Montgomery constant as 223 instead of 232.
As a result, when we transform a polynomial into the NTT
domain, we obtain results that differ from the reference C-
Code provided by the Dilithium designers [6]. However, when
we perform the complete multiplication, we achieve the same
result.

Constant-Geometry Based NTT

Instead of using the Cooley-Tukey method, we used
constant-geometry based graph to perform NTT operation.

The Cooley-Tukey method is a good practice for software
platforms since it has a recursive design. However, imple-
menting recursive methods commonly brings more cost to
hardware platforms. In every stage, the butterfly unit input
comes from different addresses of BRAM. We would need
to construct an address arranger to rearrange the addresses,
which also comes with resource costs. However, every stage
rearrangements are the same in a constant-geometry based
graph [4]. It also provides flexibility on number of butterfly
units. Based on our choice of the number of butterfly units, the
number of BRAMs increases correspondingly; however, this
accelerates NTT operation. Algorithm 1 presents the pseudo-
code we developed.

For the efficient utilization of these butterfly units, an
enlargement in the number of Block RAMs (BRAMs) was
necessitated, resulting in a twofold increase. We harnessed
true-dual port BRAMs to accommodate this boost, which
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Fig. 3. Internal Structure of NTT Operation, where number of butterfly unit (η) is 4.

permits concurrent access to two distinct addresses within
a single cycle. This allocation was strategized such that the
coefficients of a given polynomial were uniformly distributed
across the first half of the BRAMs. In each computational
cycle, a coefficient was drawn sequentially from the upper
section of the BRAM and another from the middle portion.
These paired coefficients were then directed to their respective
designated butterfly units for processing. The resulting outputs
from these butterfly units were transferred directly to the latter
half of the BRAMs.

In Figure 3, we showed the internal structure of the NTT
operation stage by stage. Let us consider the scenario where
the forward NTT operation of a polynomial comprising 256
coefficients is undertaken, employing a designated butterfly
unit count (#BFU) of 4. The initial 64 coefficients will be
allocated to the first BRAM, followed by the subsequent 64
coefficients to the second BRAM, and so forth, maintaining
this pattern. The input of the first BFU is the first element of
the first BRAM and the first element of the third BRAM. The
inputs of the second BFU will be the 32nd elements of the first
BRAM and 32nd elements of the third BRAM. The pattern
is detailed in Figure 3. The results of BFUs will be directed
to the corresponding BRAMs. For the first BFU, the results
will be directed to the fifth BRAM. The output of the second
BFU will be moved to the sixth BRAM. In the next stage, the
inputs of the BFUs will come from the fifth, sixth, seventh,
and eighth BRAMs. The BRAMs will be used vice-versa in
each stage. After eight stages, the forward NTT operation of
the given polynomial will be computed.

IV. RESULTS AND CONCLUSION

This section presents the results of our proposed memory-
speed trade-off implementation of NTT operation within the
CRYSTALS-Dilithium algorithm. The NTT operation is piv-
otal in various cryptographic primitives. It has significant
attention due to its relevance in the context of the National
Institute of Standards and Technology (NIST) Post-Quantum
Cryptography (PQC) initiative.

Table II and Table III provide a comprehensive overview of
the outcomes obtained from our implementations. In Table II,
we present the results of the forward NTT implementation, fo-
cusing on memory consumption, execution time, and achieved
throughput. Our proposed trade-off mechanism allows for a
fine adjustment between memory utilization and processing
speed, catering to diverse application requirements. The vari-
ation in memory-speed trade-off is systematically explored,
highlighting the flexibility of our approach. Additionally, Table
III illustrates the outcomes of the inverse NTT implementation,
mirroring a similar analysis with a specific emphasis on
the trade-off between memory utilization and computational
efficiency.

To compare the effectiveness of our proposed approach, we
provide a comparative analysis in Table I. This table compares
our results with other prominent researchers in the field. By
doing so, we gain valuable insights into the performance
benchmarks of existing methodologies. The comparison covers
aspects such as memory consumption, execution time, and
balancing strategies, highlighting the improvements achieved
by our proposed memory speed balancing implementation.

Overall, the results presented in this section underscore the
significance of our contribution. Our memory-speed trade-off
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TABLE I
COMPARATIVE FPGA RESOURCE AND PERFORMANCE TABLE, FOR DILITHIUM NTT PARAMETERS (N,K) = (256,23)

Design LUT FF BRAM DSP Cycles Frequency(MHz) Platform
[11] 1919 1301 2 8 296 96.9 Artix-7
[12] 799 328 4.5 2 1405 172 Artix-7
[13] 2044 N/A 16 N/A 1170 216 Artix-7
[14] 524 759 17 1 533 311 Virtex-7
[15] 1899 2041 2 8 294 445 Zynq UltraScale+
[16] 1798 2532 3.5 48 502 637 Virtex UltraScale+
[17] 4509 3146 16 0 300 N/A Virtex UltraScale+

This Work,Our Smallest 1601 699 5 10 603 142.8 Virtex UltraScale+
This Work,Our Fastest 11558 4912 40 80 155 142.8 Virtex UltraScale+

TABLE II
PERFORMANCE RESULTS OF THE PROPOSED DESIGN FOR FORWARD NTT

OPERATION, WHERE (N,K) = (256,23) ON VIRTEX ULTRASCALE+

#BFU LUT FF BRAM DSP Cycles
2 1601 699 5 10 512+91 = 603
4 3080 1279 10 20 256+91 = 347
8 5496 2463 20 40 128+91 = 219

16 11558 4912 40 80 64+91 = 155

TABLE III
PERFORMANCE RESULTS OF THE PROPOSED DESIGN FOR INVERSE NTT

OPERATION, WHERE (N,K) = (256,23) ON VIRTEX ULTRASCALE+

#BFU LUT FF BRAM DSP Cycles
2 2405 794 4 10 512+128+102=742
4 4734 1462 8 20 256+64+102=422
8 7864 2796 16 40 128+32+102=262

16 15885 5559 32 80 64+16+102=182

implementation of the NTT operation offers a customizable
balance between resource utilization and computational swift-
ness. By configuring the number of butterfly units used in the
design, we generated various of implementations. We com-
pared our smallest and fastest results with the results of other
researchers. The results we obtained show that our flexible
design is comparable to other results. The comparative analysis
shows our approach’s competitiveness within the landscape of
lattice-based cryptography, aligning with the objectives of the
NIST PQC initiative. These findings collectively emphasize
the potential of our methodology to pave the way for efficient
and robust NTT solution.

As part of future work, we aim to expand the scope of
our research in several directions. Our NTT implementation
is designed to operate on polynomials with n = 256, sup-
porting coefficients of up to 31-bit. In the context of this
study, performance metrics were obtained for only Dilithium
(n, k) = (256, 23) parameters. First, we plan to obtain
performance results for a wider range of NTT parameters,
including those relevant to Kyber and other cryptographic
algorithms. Additionally, we intend to delve deeper into the
optimization of the Montgomery multiplier to enhance its
frequency performance. Finally, for the purpose of comprehen-
sive comparison and evaluation, we will consider performing
our NTT implementation on different FPGA platforms. These
future efforts will not only contribute to a more comprehensive
understanding of the algorithm’s flexibility and efficiency but

also pave the way for its broader applicability in various
computational contexts.
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