
Mitigating MEV via
Multiparty Delay Encryption

Amirhossein Khajehpour1, Hanzaleh Akbarinodehi2, Mohammad Jahanara3,
and Chen Feng1

1 The University of British Columbia, Kelowna
akhajehp@mail.ubc.ca, chen.feng@ubc.ca

2 University of Minnesota Twin Cities
akbar066@umn.edu
3 Scroll Foundation
mohammad@scroll.io

Abstract. Ethereum is a decentralized and permissionless network of-
fering several attractive features. However, block proposers in Ethereum
can exploit the order of transactions to extract value. This phenomenon,
known as maximal extractable value (MEV), not only disrupts the opti-
mal functioning of different protocols but also undermines the stability
of the underlying consensus mechanism.
In this work, we present a new method to alleviate the MEV problem
by separating transaction inclusion and execution, keeping transactions
encrypted before execution. We formulate the notion of multiparty delay
encryption (MDE) and construct a practical MDE scheme based on time-
lock puzzles. Unlike other encryption-based methods, our method excels
in scalability (in terms of transaction decryption), efficiency (minimizing
communication and storage overhead), and security (with minimal trust
assumptions). To demonstrate the effectiveness of our MDE scheme, we
have implemented it on a local Ethereum testnet. We also prove that
with the presence of just one honest attestation aggregator per slot, the
MEV threat can be significantly mitigated in a practical way.

Keywords: Maximal Extractable Value · Time-lock Puzzle · Multiparty
Computation.

1 Introduction

Blockchain-based smart contract platforms such as Ethereum offer several attrac-
tive features, including integrity and transparency in execution, censorship re-
sistance, and immutability. This has enabled a broad range of emerging applica-
tions [51,1] such as decentralized finance (DeFi). Today’s mainstream blockchain
platforms are designed in such a way that a block proposer has the authority
to decide the ordering of transactions within a block. However, this authority
enables block proposers to extract value, a phenomenon frequently referred to as
miner/maximal extractable Value (MEV) in the literature [18]. The magnitude
of MEV can, in certain instances, eclipse the conventional block rewards. As of

2 Khajehpour. Author et al.

the time of this writing, the realized value attributed to MEV since The Merge
has surged past an astonishing 300,000 ETH in price [23].

The ramifications of MEV ripple across the security and efficiency of the un-
derlying blockchain platform [43,34]. Most notably, should a substantial portion
of block proposers exploit MEV, the repercussions can be profound, including
(i) destabilization of the consensus mechanism [13], (ii) centralization of the
network [55], and (iii) financial inefficiencies that erode the user experience [18].

Motivated by the adverse implications of MEV, a myriad of MEV mitigation
strategies have been proposed in the literature [6,55]. Among these, the con-
cept of content-agnostic ordering [55] has emerged as one of the most promising
avenues of research. In essence, this research paradigm endeavors to order trans-
actions independently of their content. At its core, users can commit to their
transactions initially and then reveal them until the order has been established.
This concept can be realized through a commit-and-reveal protocol [55], lever-
aging either threshold encryption or time-lock encryption.

– Threshold encryption. This approach utilizes a key management commit-
tee with an honest majority (or super-majority). Users encrypt their transac-
tions using the committee’s public key, forcing block proposers to determine
the transaction order without knowing the content. The committee then
performs threshold decryption of the transactions and, subsequently, trans-
actions will be executed. Noteworthy projects such as Shutter network [48],
FairBlock [37], and several others [57,4,40,49] have embraced threshold en-
cryption. However, this approach has been criticized due to fundamental
vulnerabilities it may introduce into the system [46]. In particular, it relies
on a considerable portion of parties acting honestly and suffers from com-
munication/storage overhead.

– Time-lock encryption. In this approach, transactions remain encrypted
until a predetermined future moment when they can be automatically de-
crypted through some mathematical computation. Unlike threshold encryp-
tion, time-lock encryption eliminates the need for an explicit reveal phase,
thereby mitigating certain attack vectors (e.g., participants aborting the re-
veal phase [29,16,47]). Nevertheless, current time-lock encryption methods
encounter challenges in efficiently handling transaction decryption [29,6,32],
or impose additional communication/storage overhead on the network [10,21].

In this paper, we aim to push time-lock encryption to the next level by intro-
ducing a new protocol designed to overcome the limitations of current methods.
As we will soon see, our protocol is highly scalable in terms of transaction de-
cryption and bears minimal communication/storage overhead. Unlike threshold
encryption, our protocol doesn’t require the honest-majority assumption, rely-
ing solely on the presence of at least one honest party. Moreover, our protocol
seamlessly integrates with the Ethereum ecosystem through a straightforward
workflow. Commencing with a one-time setup phase, our protocol engages a
randomly generated committee of attesters (attestation aggregators) for each
slot. These attesters propose their shares of the current round public key along
with a time-lock puzzle concealing their shares of the secret key. Subsequently,

Mitigating MEV via Multiparty Delay Encryption 3

block proposers build blocks from encrypted transactions while simultaneously
deciphering transactions from previous slots’ time-lock puzzles.

The main contributions of this work can be summarized as follows.

– Formalization of k-MEV safe network. The MEV problem is formally
characterized building upon prior work [16,38] and the concept of k-MEV safe
domain is introduced based on the notion of input causality [44].

– Multiparty delay encryption. The notion of multiparty delay encryption
(MDE) is introduced. Then, with leveraging cryptographic time-lock puzzles,
an MDE is designed with its security rigorously established under standard
cryptographic assumptions.

– Scalable and efficient MEV mitigation. It is demonstrated that the
proposed multiparty delay encryption can fully mitigate the MEV prob-
lem within the defined k-MEV safe domain. Importantly, the safety of this
method endures even with the presence of just one honest attestation ag-
gregator in today’s Ethereum design. Additionally, the communication and
storage costs of our method are negligible and its scalability in handling
transactions is unrivaled.

– Implementation and feasibility. Our method is successfully implemented
in an Ethereum local network, demonstrating the feasibility of the proposed
solution.

The rest of this paper is organized as follows: In Section 2, we will discuss the
limitations of current time-lock encryption methods and then give an overview
of our method. In Section 3, we will formally introduce k-MEV safe network
and define our threat model. Section 4 focuses on preliminaries and notations
necessary for the rest of the paper. In Section 5, we will explain how we construct
a new time-lock puzzle primitive based on the previous works, and then use this
primitive to build our MDE. In Section 6, we will show the implementation
details of adding MDE to Ethereum consensus. Later, Section 7 briefly touches
upon other mitigation approaches and discusses their limitations compared to
our work. Finally, Section 8 concludes this paper and suggests potential future
directions.

2 Technical Overview

The initial idea of time-locked puzzles was introduced by Rivest et al. which
utilizes the sequential squaring assumption [45]. Informally speaking, time-lock
puzzles allow us to hide a message inside a mathematical structure and prove that
the message content only can be recovered after performing a time-consuming
calculation which does not have any shortcut nor is parallelizable. Our problem
then can be informally described as finding an efficient way to hide an arbitrary
number of messages (transactions in our case) via time-lock puzzles. Using the
initial version, however, if we hide more than one message with each inside
separate puzzles, then the computation needed to uncover all of them scales
linearly with the number of messages. Ideally, we want to be able to recover

4 Khajehpour. Author et al.

all the messages with the cost of only solving one puzzle. In what follows, we
will explain why the existing approaches fail to achieve this objective and then
introduce our new method.

2.1 Challenges With Using Existing Approaches

With recent advancements, the seminal work of [33] enabled participants to have
homomorphic properties in the puzzle space which laid the basis for many fu-
ture works. Homomorphism allows us to evaluate a circuit over the puzzle space;
meaning that, only by solving one single puzzle, the final output of the cir-
cuit will be revealed. Nevertheless, even via homomorphism we can not recover
all the messages simultaneously, a notion called, batch-solving. Thyagarajan et
al. [52] proposed extending the message space from ZN to ZNn to enable the
puzzle batch-solving method, where n as the maximum number of puzzles to
be batched together. In their method, the number n is fixed during setup phase
which restricts the system’s ability to accommodate additional participants after
it is setup. Furthermore, using large puzzle sizes leads to increased communica-
tion costs by a linear factor as well [50].

Later, Srinivasan et al.[50] proposed another approach which generates com-
pact puzzle; thus, supporting unbounded batch-solving and having final puzzle
size independent of the batch size. Via their method one can solve many ar-
bitrary puzzles at the cost of solving one puzzle; however, because of relying
on Indistinguishable Obfuscation (IO) constructions, it is yet far from being
practical [25].

In a recent study by [10], a fascinating concept of delay encryption was
introduced. Instead of hiding messages inside separate time-lock puzzles and
consolidating them into a single puzzle, the authors proposed a method that
involves hiding a secret key inside a time-lock puzzle, which corresponds to a
publicly known public key. Consequently, any participant within the system can
encrypt their messages using the public key. Once the puzzle is solved, the solver
gains the ability to decrypt all the messages simultaneously. Notably, the solving
algorithm only needs to tackle a single puzzle. However, there are significant
drawbacks to their approach. First, the storage requirements for computing the
decryption key are substantial and increase with the amount of delay. Second,
the setup time for their system increases proportionally with the delay as well,
resulting in substantial costs [36].

Similarly, Dowecket al. [21] have used a combination of delay encryption and
MPC where a committee of parties with the help of a coordinator create an
ElGamal public key. Then everyone can encrypt their messages via the public
key. Later, the coordinator will solve the discrete logarithm problem and find
the value of the secret key. Once the secret key is found, the coordinator can
decrypt all the messages. However, their approach relies on the computational
and parallelization assumption of all the participants, and their construction
only guarantees the expected mean value of the delay and does not guarantee
the required delay for every case.

Mitigating MEV via Multiparty Delay Encryption 5

2.2 Our Approach

Similar to the approach taken by [10,21], we introduce the notion of Multiparty
Delay Encryption (MDE). MDE’s core idea is to generate and publish the pair
(pk, ek), where pk is a public key with its secret key sk hidden inside a time-lock
puzzle which can be solved with the help of the extraction key ek. Consequently,
any message m that were encrypted via pk is kept secret until the time-lock
puzzle is solved and the value of sk is extracted.

MDE requires an initial one-time setup phase that can be run in a trustless or
distributed fashion. Subsequently, the protocol, when applied to the Ethereum
network, for each slot commences with a puzzle generator committee [p0, .., pn−1]
consisting of n distinct validators. Each committee member pi will then broad-
cast its puzzle shares through the network denoted by the pair (pki, eki) as
described before. Once all the puzzle shares (pki, eki) are received by the block
proposers, they will combine them into a single puzzle (pk, ek) and broadcast it.
At this point on, all participants in the Ethereum network have the ability to
encrypt their transactions via pk. Additionally, the next block proposers include
the encrypted transactions into the new blocks without executing them. Simul-
taneously, future block proposers start to solve the proposed aggregated puzzle
using ek. The encryption ensures that the transactions remain secure and confi-
dential until the appropriate time for their execution. Finally, once the solution
sk is revealed, the next block proposer in line unveils the transactions’ contents
using sk and executes them in order. This ensures that the execution order of
the transactions within a block is done securely and efficiently. Figure 2.2 illus-
trates this process. In general, for each slot, its block proposer is in charge of
two tasks: (i) including the transactions encrypted with the new public key and
(ii) executing old blocks’ transactions after solving their time-lock puzzles.

Multiparty Delay Encryption We now will provide a generalized overview
of the process involved in designing an MDE upon the time-lock puzzle concepts
introduced in the works of [33,31]. The informal definition of MDE is as follows
(with its formal definition provided in Section 4).

Definition 1. Multiparty Delay Encryption. Informal. MDE has an ini-
tial setup phase to generate the public parameters of the system. Following this,
a committee consisting of untrusted members is responsible for individually gen-
erating MDE shares, which are subsequently aggregated into a final share.
To ensure the integrity of the shares, each member is also required to publish
a verification proof of their share generation, demonstrating adherence to the
protocol and the absence of corruption. Each share comprises a public key and
an extraction key, with the latter concealing the secret key. The public key serves
the purpose of message encryption at a later stage. Within this protocol, any
participant has the capability to extract the private key using the aggregated ex-
traction key. Ultimately, the private key is employed to decrypt all the messages.

We need to define two properties for MDE.

6 Khajehpour. Author et al.

Fig. 1. An overview of the MDE protocol design in today’s Ethereum model. In
the beginning, puzzle generators (AttestionAggregators) broadcast their puzzle shares
through the attestations. Then, the block proposer combines all the puzzles into one.
Later, future block proposers, after observing the puzzle, start the solver procedure.
Meanwhile, everyone in the network can encrypt their transactions for the time-lock
public key. Finally, after revealing the solution, the next block proposer will execute
and reveal the encrypted transactions.

Definition 2. MDE Correctness. Informal. If all the shares pass the ver-
ification, then for all the messages, the decryption and the encryption must
work properly.

Definition 3. MDE Security. Informal. With having at least one honest
party in the committee which generates the shares, the result of encryption
of any two messages must be indistinguishable any time earlier than the time is
needed to extract the secret key.

Construction To build the MDE, we start by studying time-lock puzzle itself.
According to [33], the tuple (u, v) ← (gr mod N, hrN (1 + N)s mod N2)
represents a time-lock puzzle hiding the secret s given the randomness r, g the

generator of JN , h = g2
T

mod N , RSA safe prime modulus N , and the delay

parameter T . Later, the puzzle can be solved via calculating x = u2
T

mod N
then s = (v/xN mod N2 − 1)/N . Additionally, it is easy to verify that the
puzzle pairs are linearly homomorphic. More precisely, assume that we have two
puzzles (u0, v0) and (u1, v1) hide the secrets s0 and s1 respectively, then the
puzzle (u0u1, v0v1) hides the secret s0 + s1.

Remember that we later need to generate the pair (pk, ek) where the secret
key sk corresponding to the public key pk is hidden within a time-lock puzzle

Mitigating MEV via Multiparty Delay Encryption 7

which can be solved via the extraction key ek. The first portion of each puzzle
u = gr is a valid ElGamal public key in JN and can be considered as pk for
sk = r. Unfortunately, via this construction, there is no way to extract sk after
solving the puzzle. Therefore, we need to modify it to meet all the necessary
requirements of our MDE.

In our modified version, each puzzle consists of the tuple (u, v, y, w)← (gr+s

mod N, hr+sN(1+N)s mod N2, gk mod N, hkN (1+N)r mod N2) where
k is another randomness factor. In this version, the portion u = gr+s mod N is
considered as the public-key pk and the tuple itself (u, v, y, w) as the extraction
key ek. But this time, its secret key sk = r + s can be extracted. First, the
solver calculates ū = u ∗ y, v̄ = v ∗ w = h(r+s)kN (1 + N)r+s mod N2, and

x = ū2
T

mod N . Second, the value of r + s can be accessed via ((v̄/xN

mod N2) − 1)/N . We call our modified construction Linearly Homomophic
Time-lock Puzzle (LHTP) and its details are presented in Appendix D. Also, we
showed that it is secure under the standard cryptographic assumptions, DCR
and strong sequential squaring.

To build MDE, we can assume that the public key pk is u, the extraction key
ek is (u, v, y, w), and the hidden secret key sk is r + s. Next, in order to satisfy
the safety property, we will utilize the homomorphic property of the time-lock
puzzle. In other words, assuming each party pi proposes the share consisting of
the public key pki = ui and extraction key eki = (ui, vi, yi, wi), the aggregated
public key and secret key will be pk = Πui and sk =

∑
ri + si. Similarly, the

aggregated extraction key will be eki = (Πui, Πvi, Πyi, Πwi). This way, we can
prove that the value of the aggregated secret key will remain hidden as long
as we have at least one honest party. To satisfy the correctness property, we
designed a non-interactive zero-knowledge protocol similar to the approach of
[31] which is shown in Figure 5.

3 System Model

The concept of MEV was first formalized by [16]. Then, it was extended to
cross-domain space in the work of [38]. In our work, we will adopt both of the
mentioned formalizations. Finally, we will utilize input causality [44] to introduce
the notion of k-MEV safe domain. First, we start by recalling the definition of
domain from [38]:

Definition 4. Domain. A domain χ is a tuple (P,A,S) which is a self-
contained system with a globally shared state where S shows the space of all the
possible states in χ. This state is mutated by various players through actions
(often referred to as “transactions”), that execute in a shared execution environ-
ment’s semantics where A is the set of all possible actions and the set P contains
all the players in χ.

Then, we can define an action adopted from [38]:

Definition 5. Action. Given the domain χ = (P,A,S), an action a ∈ A is a
mapping of a state to another state. For n ∈ N we denote by apply(s, [a1, .., an])

8 Khajehpour. Author et al.

the result of applying the sequence of actions [a1, .., an] to the state s, where
ai ∈ A. We also show the set of available actions corresponding to the player p
via Ap.

Since the systems that we are concerned about are blockchains, we also need
to introduce the concept of block into our model:

Definition 6. Block. Given the domain χ = (P,A,S), a block b ∈ A∗ is
a ordered sequence of actions [ab1, .., a

b
ℓb
] for ℓb ∈ N and abi ∈ A. Blocks have

limited size and each might have their own metadata according to the domain
constraints. We denote by bapply(s, b) the result of applying actions of the block
b to the state s; i.e. apply(s, [ab1, .., a

b
ℓb
]). Moreover, we use a similar notation

bapply(s, [b1, ..., bj]) to denote result of applying a sequence of blocks [b1, ..., bj]
on a state s

Below, we will use the modified version of the sequencer from [38]:

Definition 7. Sequencer. A sequencer is a player that orders actions and bun-
dles them into blocks, and thus influences future states of the domain.

Therefore, the current state can be seen as the result of applying a sequence
of blocks over the domain’s initial state.

Inspired by [16], we will define the notion k-MEV, which, informally speaking,
refers to the profit a player can make, if they mine k blocks using a specific set
of actions based upon a given state. In a formal sense:

Definition 8. k-MEV. Let the domain χ = (P,A,S). Assume we show the
balance of the party p ∈ P at the state s ∈ S via balance(s, p). Then, the k-
MEV of p starting from the state s via the set of actions A′ ⊂ A will be defined
as follows:

MEVk
A′(p, s) = max balance(bapply(s, [b1, .., bk]), p)− balance(s, p) (1)

where bi for every i ∈ Zk is a block with [abi1 , .., a
bi
ℓbi

] as its actions and the max-

imum is getting over every choice of abij ∈ A′ for j ∈ Zℓbi
.

We can now define our threat model and explain the power of the adversary
in our system. We assume that an arbitrary number of players can collude and
attempt to increase their payoff strategically; however, they have to follow the
domain’s constrains. For example, the stake of the players deviating from the
protocol can not exceed 1/3 of the entire stake in the Ethereum network. Now,
given the domain χ = (P,A,S), assume P ⊂ P is a coalition of players in
χ. Then, we denote all the possible actions that the coalition has access to via

AP ≜
⋃

p∈P Ap. We can also define the balance and k-MEV of P in a similar
way. Furthermore, similar to the idea of input causality, we will define the k-
MEV safe domain. In simple terms, we allow an adversarial coalition to corrupt
the sequencer for a continuous sequence of k blocks. If, during this period, the
coalition’s MEV does not surpass what they would normally gain, the domain is
referred to as k-MEV safe.

Mitigating MEV via Multiparty Delay Encryption 9

Definition 9. k-MEV Safe. Given the domain χ = (P,A,S), any coalition of
players P where P ⊂ P, any state s where s ∈ S, and A′ ⊂ A as all the actions
that the sequencer has received from other players which non of them has yet
been applied to s4. χ is a k-MEV safe domain if:

MEVk
AP

(P, s) = MEVk
A′∪AP

(P, s) (2)

Now, we are ready to explain how an k-MEV safe domain can protect Ethereum
from some of the popular MEV instances.

– Front-running: According to the k-MEV safe definition for k ≥ 1, there is no
motivation for any player to alter the transaction order within the current
block. Consequently, there would be no benefit to prioritize one’s transaction
ahead of a target transaction. Therefore, front-running is no longer a concern.

– Back-running: Just like front-running, placing a transaction immediately af-
ter a target transaction is no longer considered a valid strategy. Furthermore,
due to the unknown state of the preceding k blocks, there is a high likelihood
that the back-running opportunity may no longer exist, rendering the attack
economically unjustifiable. Additionally, in order to seize back-run opportu-
nity, every player would strive to take the first position in the k+1th block,
which can be relatively expensive due to the competition. Other than that,
the profit of back-running is already marginal compared to front-running
attacks; thus, further discouraging players from engaging in this attack.

– Sandwich attack: Similar to the argument regarding front-running, within
a k-MEV secure domain, there is no motivation for performing a sandwich
attack.

– PGA: By removing the incentives for front-running, back-running, and sand-
wich attacks, thereby significantly reducing the competition for transaction
slots within a block. This, in turn, eliminates the PGA threat as well.

– Time-bandit and undercutting attacks: As the value of k increases, the eco-
nomic viability of conducting time-bandit and undercutting attacks dimin-
ishes exponentially, eventually rendering them infeasible [20,24].

4 Priliminaries

4.1 Notation

We use x ←$ S to denote that x is uniformly sampled from the set S. || is
used for concatenation. |S| for the set S indicates the size of S. |N | for the
number N refers to the binary bit length of N . ||G|| for the group G refers to
the order of G. For the group G and α ∈ G, the notion ordG(α) refers to the
order of α in G, and, ⟨α⟩ refers to the subgroup generated by α. The group
JN = {x|

(
x
N

)
= +1} refers to all the elements whose Jacobi symbols with N

are +1. Note that ||JN || = 1/2||ZN∗ ||. The notion negl(λ) refers to a negligible
function where negl(λ) < 1/p(λ) for every polynomial p. Two groups G1 and G2

are denoted as isomorphic via G1
∼
= G2.

4 More precisely, actions from A′ has not been included into any blocks up until the
state s, from the initial state.

10 Khajehpour. Author et al.

4.2 Syntax

According to what was mentioned, below we will formally define the functional-
ities and requirements of an MDE scheme as follows:

Definition 10. Multiparty Delay Encryption. LetM be the message space.
Then, a multiparty delay encryption is a protocol that runs among an arbitrary
number of parties which consists of the tuple (Setup, Gen, Verify, Aggregate,
Encrypt, Decrypt, Extract) such that:

– Setup(1λ, T): A probabilistic algorithm that on receiving the security param-
eter 1λ outputs the system’s public parameters pp according to the delay T .
Setup runs only once at the beginning and can be a potentially distributed
algorithm.

– Gen(n, pp): A probabilistic algorithm that, on receiving the system’s public
parameters pp, and n ∈ N the maximum number of participants in generating
the final public-key, outputs the tuple (ek, pk) such that ek is the extraction
key corresponding to the encryption public-key pk.

– Verify(n, ek, pp): A probabilistic protocol that checks the construction of ek.
If it is according to the protocol, it returns true; otherwise, it returns false.
It also needs n, the maximum number of participants, for some verifications.

– Aggregate((ek1, pk1), (ek2, pk2), .., (ekk, pkk), pp): A deterministic algorithm
that receives system’s public parameters pp, and many (eki, pki) tuples. It
returns an aggregated (ek, pk), which will later be used for message encryp-
tion.

– Encrypt(m, pk): A probabilistic algorithm which on receiving the messagem ∈
M and the public-key pk, outputs c ∈ C, the encryption of m, according to
pk.

– Decrypt(c, sk): A deterministic algorithm that decrypts the ciphertext c via
the decryption key sk and returns a message m ∈M.

– Extract(ek, T , pp): A deterministic algorithm which receives the extraction
key ek and system’s public parameters pp along with delay T . Then, outputs
the decryption key sk that corresponds to ek or ⊥.

Definition 11. MDE Correctness. The MDE protocol Π = (Setup, Gen,Verify,
Aggregate, Encrypt, Decrypt, Extract) is correct if given λ, for all polynomials
T in λ, all messages m ∈ M, all n ∈ N that n = p0(λ) for a fixed poly-
nomial p0, all pp in the support set of Π.Setup(n, 1λ, T), and all (eki, pki)
where Verify(n, eki, pp) = true, given (ek, pk) ← Π.Aggregate((ek0, pk0), ..
(ekn−1, pkn−1), pp), and sk ← Π.Extract(ek, pp), the running time of the al-
gorithm Π.Extract(1λ, T , z) is bounded with p1(λ, T) for a fixed polynomial p1
and we have:

Π.Decrypt(Π.Encrypt(m, pk), sk) = m (3)

Definition 12. MDE Security. The MDE protocol Π = (Setup, Gen,Verify,
Aggregate,Encrypt, Decrypt, Extract) is secure if for any probabilistic polynomial

Mitigating MEV via Multiparty Delay Encryption 11

time adversary (A1,A2) which the depth of A2 is bounded by T ϵ(λ) from above
where T is a polynomial, 0 < ϵ < 1, and all n = p0(λ) for a fixed polynomial p0
such that:

Pr

pp← Π.Setup(n, 1λ, T),
((m0,m1), (ek1, pk1), ..

(ekn−1, pkn−1), τ)← A1(T, pp),

A2(1
λ, ek, c, pp, τ) = b (ekn, pkn)← Π.Gen(n, pp),

b←$ {0, 1}
(ek, pk)← Π.Aggregate((ek1, pk1),
.., (ekn−1, pkn−1), (ekn, pkn), pp),

c← Π.Encrypt(mb, pk)

≤ 1

2
+ negl(λ)

5 Multiparty Delay Encryption

In this section, we will present some details of MDE as well as its security and
correctness proofs.

Algorithm 1 Assuming Π is an LHTP protocol and Ψ is any zero-knowledge
exponent range proof protocol such that Ψ.Verify(b, x, a, N) checks that given
x = be mod N whether e is less than a or not. Then, the description of
algorithm is as follows:

– Setup(1λ, T): Runs pp← Π.Setup(1λ, T) and returns pp.
– Gen(n, pp): It works similar to the Π.Gen with a difference in choosing the

boundries of s and r. Additionally, it constructs a valid public key as the
multiplication of u and y as follows. More precisely, it samples s, r ←$ ZN/2n

and k ←$ ZN/2. Then, outputs (ek, pk) such that: ek = (u, v, y, w), pk = u

for u = gr+s mod N , y = gk mod N , v = h(r+s)N (1 +N)s mod N2,
and w = hkN (1 +N)r mod N2.

– Verify(n, ek, pp): Let ek compiles into (u, v, y, w). First, it checks that u and
y ∈ JN , and v, w ∈ JN2 . Then, checks the exponent range of u to be in ZN/n

via Ψ .Verify(g, u,N/n,N). Next, the prover samples x ←$ Z(N/2+N/n)∗22λ ,

t ←$ Z(N/n)∗22λ and sends a = gx mod N, b = hxN (1 + N)t mod N2

along with τ = gt mod N to the verifier. Then, on receiving e ←$ Z2λ

from the verifier, returns (α, β) for α = (r+s+k)e+x and β = (r+s)e+ t.
Finally, to verify the puzzle (u, v), returns gα = (uy)e ∗a ∧ hαN (1+N)β =
(vw)eb ∧ gβ = ue ∗ τ .

– Encrypt(m, pk, pp): Samples r ←$ ZN/2 and returns (c1, c2) with c1 = gr and
c2 = m ∗ pkr.

– Decrypt((c1, c2), sk, pp): Returns c2/c
sk
1 .

– Aggregate((ek1, pk1), ..(ekn, pkn), pp): Runs ek = Π.Eval(ek1, ..ekn, pp), and
returns (ek, pk) for pk = Πpki.

– Solve(ek, pp): Compiles ek into the tuple (u, v, y, w) and returns Π.Solve((uy,
vw, ⊥, ⊥), pp).

12 Khajehpour. Author et al.

Now, we prove the main theorem of this section:

Theorem 1. Given that Π is a secure time-lock puzzle, Algorithm 1 is a secure
multiparty delay encryption.

Proof. Correctness: First of all, we need to show that with the Verify proce-
dure, a party proves the knowledge of sk for a given ek in zero-knowledge. Its
corresponding relation is:

R = {(N, g, h, u, v, y, w) : ∃r, s, k ∈ N | r + s ∈ ZN/2n ∧ u = gr+s

∧ y = gk ∧ vw = hN(r+s+k)(1 +N)r+s mod N2}

Therefore, we state the below theorem whose proof is in Appendix F:

Theorem 2. Algorithm 1’s Verify procedure is a public-coin honest-verifier
zero-knowledge proof corresponding to the relation R.

Note that the Verify is easily convertible to malicious-verifier zero-knowledge
proof via the Fiat-Shamir heuristic. Figure 5 shows the Gen and Verify procedures
of Algorithm 1.

Next, to prove the correctness of Theorem 1, assume there are n number of
shares with the extraction, and public keys eki = (ui, vi, yi, wi) and pki, where ∀i
Verify(n, eki, pki) = true, we can conclude that there exists ri, si, ki ∈ N where
ri + si ∈ ZN/2n such that ui = gri+si , yi = gki , viwi = hri+si+ki(1 +N)ri+si

mod N2 as the result of Theorem 2. Let ek = (ū, v̄, ȳ, w̄) = Aggregate((ek1,
pk1), .. (ekn, pkn)). Then, the output of Solve(ek, pp) will be s̄← Π.Solve(z, pp)
for z = (ūȳ, v̄w̄,⊥,⊥). Additionally, according to Lemma 12, s̄ =

∑
ri + si

mod N . Also, we know that ri, si ∈ ZN/2n. Therefore,
∑
ri + si < ZN . Thus,

Solve gives us
∑
ri + si. Moreover, pk = g

∑
si,ri and consequently, pk = gsk. Fi-

nally, given a message m ∈M, Decrypt((c1, c2), sk, pp) for (c1, c2) =Encrypt(m,
pk, pp):

c2/c
sk
1 = m ∗ pk r/gr∗sk = m ∗ gsk/gsk = m

Security: We start by stating another variant of the security for Algorithm 1
whose proof is in Appendix G:

Lemma 1. Given a MDE algorithm Π, for any PPT adversary A whose depth is
bounded by T ϵ(λ) from above where T is a polynomial, 0 < ϵ < 1, and n = p0(λ)
for a fixed polynomial p0:

Pr

 pp← Π.Setup(n, 1λ, T),
A(1λ, zb, pp) = b b←$ {0, 1}, z0 ← Π.Gen(n, pp),

z1 ←$ JN × JN2 × JN × JN2

 ≤ 1

2
+ negl(λ) (4)

Lemma 1 shows that the tuple (ek, pk, pp) is indistinguishable from a uniform
tuple for the bounded adversary A2. According to MDE security Definition 12,

Mitigating MEV via Multiparty Delay Encryption 13

MDE pp = (N, g, T, h)

1. Prover Verifier

2. Gen(n, pp) :

3. s←$ ZN/2n

4. r ←$ ZN/2n

5. k ←$ ZN/2

6. u← gr+s mod N

7. v ← h(r+s)N (1 +N)s mod N2

8. y ← gk mod N

9. w ← hkN (1 +N)r mod N2

10. (u, v, y, w)

11. Verify(n, ek, pp):

12. (u, v, y, w)← ek

13. Verify that:

14. u ∈ JN
15. v ∈ JN2

16. y ∈ JN
17. w ∈ JN2

18. x←$ Z(N/2+N/n)∗22λ ,

19. t←$ ZN/n∗22λ

20. a← gx mod N, b← hxN (1 +N)t mod N2

21. τ ← gt mod N

22. (a, b, τ)

23. e←$ Z2λ

24. e

25. α← (r + s+ k)e+ x

26. β ← (r + s)e+ t

27. (α, β)

28. Verify that:

29. gα = (uy)e ∗ a

30. ∧ hαN (1 +N)β = (vw)eb

31. ∧ gβ = ue ∗ τ
32. ∧ a, τ ∈ JN ∧ b ∈ JN2

33. ∧ α ∈ Z(N/2+N/n)∗2λ+(N/2+N/n)∗22λ

34. ∧ β ∈ ZN/n∗2λ+N/n∗22λ

Fig. 2. MDE schematic

14 Khajehpour. Author et al.

we know that (ek, pk) ← Π.Aggregate((ek1, pk1), (ek2, pk2), .. (ekn, pkn), pp).
Following the result of Lemma 1, we can replace (ekn, pkn) with a random sample
from JN × JN2 × JN × JN2 . Therefore, the tuple (ek, pk) is also indistinguish-
able from a random tuple for any A2. It is obvious to show that the output of
Π.Encrypt(m, pk, pp) will also remain random which completes the proof.

6 Implementation

In this section, we explain how we can adopt MDE to design an k-MEV Ethereum
network. First, we will review some of the necessary sub-components of Ethereum
post-merge network. Then, we will give a high-level overview of our implemen-
tation design and describe the changes needed to apply to Ethereum’s consensus
layer. Finally, we will prove that our design is indeed an k-MEV safe network
and discuss how to choose an appropriate delay value.

6.1 Ethereum Background

In Ethereum network, after The Merge, time is partitioned into predetermined
units called slots, where a single validator is randomly chosen in each slot to
propose a block. At each slot 5 attestation committees are formed by randomly
grouping validators together, and they collaborate to vote and provide attesta-
tions on blocks. Each validator of an attestation committee individually provides
votes via attestations for consensus mechanisms [12]. Attestations are signed
with BLS signatures 3, hence, the ones that share an identical vote can be in-
stantly aggregated into a single attestation by BLS signature aggregation. In
each committee a subset of validators are selected at random to perform the
task of aggregation, and they are denoted as aggregators.

6.2 Design

In order to apply MDE to today’s Ethereum network, we need to introduce
several new data structures.

Data Structures Below are the necessary data structures for Algorithm 1.

class MDEPublicParams:

N: bytes # size:" lambda/4"

G: bytes # size:" lambda/4"

T: bytes # size:"8"

H: bytes # size:" lambda/4"

5 They are often called Beacon committees link

https://eth2book.info/capella/part2/building_blocks/committees/

Mitigating MEV via Multiparty Delay Encryption 15

class MDEVerifyProof:

A: bytes # size:" lambda/4"

B: bytes # size:" lambda/2"

Alpha: bytes # size:" lambda/2+1"

Beta: bytes # size:" lambda/2"

Tau: bytes # size:" lambda/4"

class MDEVerifiableShare:

Share: MDEShare

Share: MDEVerifyProof

class AggregatedAttestationData:

All the fields are signed via BLS signature

Slot: Integer

Index: Integer

LMD GHOST vote

Beacon_Block_Root: bytes

FFG vote

Source: Checkpoint

Target: Checkpoint

class MDEAggregatedAttestationData:

Signed via ECDSA

VerifiableShare: MDEVerifiableShare

The below field is signed via BLS signature

Attestation: AggregatedAttestationData

class MDEShare:

U: bytes # size:" lambda/4"

V: bytes # size:" lambda/2"

Y: bytes # size:" lambda/4"

W: bytes # size:" lambda/2"

class MDEShareInvalidityProof:

W: bytes # size:" lambda/4"

Pi: bytes # size:" lambda/4"

class MDEBlock:

PP: MDEPublicParams

Shares: []MDEShare

SK: bytes # size:"

lambda/4"

InvalidityProof: MDEShareInvalidityProof

Attestations: []AggregatedAttestationData

ENC_TX: []Transaction #

Encrypted transactions

16 Khajehpour. Author et al.

DEL_TX: []Transaction #

Delayed transactions

Note that the block header is extended with four additional fields, PP, Shares,
SK, and InvalidityProof. Additionally, we introduce two transaction types to
the ledger, Encrypted and Delayed transactions. The type Encrypted trans-
actions are those which are encrypted for a MDE’s public key, and Delayed

transactions are the Encrypted ones that are being decrypted in this block.

Notice that the encrypted transactions still have to pay fee, otherwise the
system will be susceptible to Denial-of-Service attacks. To avoid this issue, we
split the fee into two parts, an inclusion fee and an execution fee. The encrypted
transaction pays the inclusion fee by specifying a gas price and having a signature
in clear. The gas cost of inclusion is a function of the size of the encrypted
transaction. Note that the encrypted transaction will be considered valid only if
its sender can pay for its inclusion. Moreover, the encrypted transaction carries
a normal Ethereum transaction, that can be valid or not, and it pays for its
execution. In interest of saving space, we ignore this detail in the following
description of the protocol.

Protocol Let’s denote the Algorithm 1 with the tuple (Setup,Gen,Aggregate,
Verify, Solve). Assume Setup(1λ) was already done, and everyone knows the

public parameters pp = (N, g, T, h) where h = g2
T

and g is a generator of JN .
Note that the current total supply of ETH is roughly 120M, and every validator
must stake at least 32 ETH, hence, the maximum number of validators at the
time of this writing cannot exceed 120M/32 ≤ 4000000. Therefore, choosing n =
10000000 is more than enough for the current range of parameters in Ethereum.
Additionally, assume the time needed to run Π.Solve for the delay T is equal
to proposing d blocks, and let ω ∈ N be a window parameter which is smaller
than d. Note that even though the cryptographic assumption on which MDE is
relied is not parallelizable, when choosing the value of T we need to consider the
fastest hardware technology present and increase it adaptively over time. That
is because with the advancement in hardware technologies such as CPUs and
ASICs, performing basic math operations would become faster. For convenience,
we define the function Λ(b) such that given the block b returns (ek, pk) ←
Π.Aggregate((b.Shares0, b.Shares0.U), .., (b.Sharesn, b.Sharesn.U)). We also
use the notation b−i to represent the ith parent of the block b in the chain. Below
are the actors involved in Π and their corresponding responsibilities during each
slot of the network:

– Attestation Aggregation: Aggregators take on an additional task to help
collaboratively create the (public key, extraction key) pair for each slot. An
aggregator upon receiving the current attestations from other attestors, runs
(pk, ek)← Gen(n, pp), creates a new object of type MDEAggregatedAttestation
Data denoted by ta and sets ta.VerifiableShare← ek, and fills ta.Attestation
according to the protocol. Then, it signs ta.VerifiableShare via its ECDSA

Mitigating MEV via Multiparty Delay Encryption 17

private key and ta.Attestation with its BLS private key same as normal
Ethereum. Finally, it broadcasts ta.

– Block proposer: To propose a new TDEBlock denotd by b, it performs the
following:
• First, sets b.PP ← pp. Assuming ta0, .., tan are all the newly arrived
MDEAggregatedAttestationData, verifies all of them via Verify(n, tai.Share,
pp). If any of the verifications fail, it drops that attestation; otherwise it
does append(b.Shares, ai.VerifiableShare.Share) and append(b.Attestations,
ai.Attestation).

• Let (ek, pk) ← Λ(b−d), and sk ← Solve(ek, pp). Then, sets b.SK ← sk.
Additionally, if b.SK = ⊥ fills b.InvalidityProof according to the
protocol ΠACorSol as well.

• If p.SK ̸=⊥, decrypts all the (etx0, etx1, .., etxn) ← b−d.ENC TX via
Decrypt(etxi, p.SK, pp), executes them in order, and puts them in b.DEL TX.

• Fills b.ENC TX with the pending transactions in the mempool, which are
encrypted via one of the b−1.U, b−2.U,.., b−w.U.

– User: Broadcasts the transaction tx in the following way. Let b be the latest
block in their view and (ek, pk)← Λ(b), then for the transaction tx, encrypts
it via etx← Encrypt(tx, pk, pp) and broadcasts etx.

Figure 6.2 shows an example block after applying all the changes. The rea-
son why we added the parameter ω is that we have to consider network de-
lay. Due to network delay, users might not be able to capture the last block’s
time-lock public key. Therefore, we allow them to encrypt their transactions
via the time-lock public key of the most recent w blocks. As an example, a
block that contains Encrypted transactions for three different public keys is
shown in Figure 6.2. Experiments show that ω = 3 is enough for d = 5 blocks.
Additionally, the main reason for separating MDEAggregatedAttestationData

from AggregatedAttestationData is to decrease the extra storage overhead on
MDEBlock. Later we will show how we can still guarantee the verifiability of the
puzzles. The additional checks described below should be added to the validation
procedure of the block b:

– ECDSA signature verification of all the b.Shares. They should be signed by
attestation aggregators’ public keys of b. If any of the signatures are invalid,
then b is a corrupted block and needs to be dropped.

– Validation of the puzzle of b−d. If b.InvalidityProof ̸=⊥ and passes the
verification checks of ΠACorSol, the block proposer of b−d is faulty, and we can
punish it in a crypto-economic way. Note that we can choose the number of
d small enough such that validators cannot withdraw their stakes too early.

– Check the validity of the solution SK. If b.InvalidityProof = ⊥, then given
(ek, pk)← Λ(b−d), if the solution is wrong, meaning that pk and b.SK does
not match, we must invalidate the block b and drop it.

Notice that when the block b’s puzzle, denoted as Λ(b), is proven to be invalid,
it indicates that at least one of the p.Shares is compromised. The MDEBlock

only stores MDEShare and lacks the necessary information to efficiently identify
corrupted shares. Nevertheless, it is known that the block proposer of b must

18 Khajehpour. Author et al.

Fig. 3. This figure shows a beacon block after applying the time-lock changes. There are
two additional fields in the block header (Time-lock Private key, and Time-lock Puzzle).
Additionally, every attestation includes a puzzle share that will later be aggregated into
the current block’s time-lock puzzle. Other than that, regular transactions will no longer
be supported, and the block body only contains Encrypted and Delayed transactions.
Moreover, the fields shown in red in the transaction object are in the encrypted format.

have received the MDEAggregatedAttestationDatas for all the MDEShares and
could have individually verified them before proposing the block. Therefore, if
the invalidation is successful, the responsibility lies with the block proposer. As a
result, no block proposer has the incentive to include an invalid MDEShare in the
block, as they would eventually be detected. Consequently, attestation aggrega-
tors also have no incentive to publish an unverifiable MDEVerifiableShare.

What remains to be shown is that the block proposer cannot have prior
knowledge of the solutions for all the MDEShares. First, the block proposer needs
to store the attestation aggregator’s signature over MDEShare. All the MDEShares
are already guaranteed to be generated via the attestation aggregators. Addi-
tionally, being elected as an attestation aggregator is a random process, and
collusion among all the aggregators is highly unlikely, given the assumption that

Mitigating MEV via Multiparty Delay Encryption 19

Fig. 4. A beacon block might contain Encrypted transactions that were encrypted via
different time-lock public keys. This is allowed because of the inevitable network delay.
For example, in this figure, block number 748123 has transactions that were encrypted
via the time-lock public key of block numbers 748122, 748121, and 748120.

2/3 of the stake is allocated by honest parties. Thus, the only way the block pro-
poser can attack the system is to only use the MDEShares from the attestation
aggregators with whom they collude. However, based on the network consensus
and reward mechanism, it is known that if the block proposer does not include
as many attestations as possible in their block, the block might not be finalized
in the future. This can be further ensured by adding an additional slot validity
requirement of having a minimum number of attestations.

Finally, the below theorem can be easily verified:

Theorem 3. Given that the domain χ = (P,A,S) is the Ethereum network,
our protocol produces a k-MEV safe network for any k ∈ N, assuming at least one
honest aggregated attestation is included in each slot and standard cryptographic
assumptions in Theorem 1.

Proof. Assume our network is in the state s ∈ S and P ∈ P is the set of block
proposers of any consecutive k blocks. Following the designed protocol, the block
proposer of each slot is enforced to include a valid aggregated puzzle into the
block. Additionally, given the security of Theorem 1, no information will be
leaked from current slot’s transactions until next k + 1th future block. Therefore
MEVk

A′∪AP
(P, s) will be no greater than MEVk

AP
(P, s) when A′ is consist of

actions corresponding to using all the available transaction in the mempool.
Consequently, our network becomes k-MEV safe.

Remark 1. In our protocol we adjust the values of d and w such that k = d−ω.
The windowing parameter ω ensures that the network propagation delay does

20 Khajehpour. Author et al.

not prevent users from getting their transactions included in the blocks which
are encrypted with relatively old public keys.

Gen Solve Aggregate Encrypt Decrypt Verify Solve / Gen
λ = 512 43.157 ms 1.853 s 13.822 µs 1.691 ms 652.461 µs 42.158 ms 42.93
λ = 1024 187.265 ms 3.575 s 29.976 µs 8.654 ms 4.688 ms 180.471 ms 19.09
λ = 2048 908.347 ms 8.395 s 135.559 µs 27.370 ms 28.586 ms 919.904 ms 9.24
λ = 4096 4,613.85 ms 24.398 s 349.99 µs 398.824 ms 206.372 ms 4,626.1 ms 5.28

Table 1. Time complexity of all of all the operations for different values of λ and
T = 0x093226. Experiments were run on a Macbook Pro 2.3 GHz Quad-Core Intel
Core i5 CPU.

λ = 512 λ = 1024 λ = 2048 λ = 4096
MDEPublicParams 384 + |T | 768 + |T | 1, 536 + |T | 3, 072 + |T |
MDEVerifyProof 769 1, 537 3, 073 6, 145
MDEShare 768 + |T | 1, 536 + |T | 3, 072 + |T | 6, 144 + |T |
MDEVerifiableShare 1, 537 + |T | 3, 073 + |T | 6, 145 + |T | 12, 289 + |T |
MDEShareInvalidityProof 256 512 1024 2048

Table 2. Space complexities in bytes for different values of λ. . Implementation avail-
able at https://github.com/RadNi/multiparty-delay-encryption.

6.3 Optimizing Delay

As mentioned before, the Ethereum network faces potential risks from MEV
threats. These threats have adverse effects not only on the experience of regular
users but also pose a significant risk to the overall safety of consensus. To provide
an example, let’s consider a scenario where a valuable frontrunning opportunity
arises within block b. In such a situation, if the potential profit from frontrun-
ning outweighs the cost of creating a fork, every miner would exert substantial
effort to create a fork on top of block b in order to exploit that opportunity
by themselves. However, in an k-MEV safe network, it can be informally stated
that no participant has any incentive to modify the transaction list of a block,
even after observing the state of the subsequent k blocks. Consequently, in order
to profit from MEV, one would need to mine at least k + 1 consecutive blocks,
either by forking the network or being selected as the legitimate miner for all
k + 1 slots.

When determining the optimal value for k, two factors need to be taken
into consideration. (i) Increasing the value of k enhances the network’s immu-
nity against two types of threats: reorganization attacks and MEV exploits. As

https://github.com/RadNi/multiparty-delay-encryption

Mitigating MEV via Multiparty Delay Encryption 21

the ledger expands, it becomes increasingly challenging to attack older blocks.
Moreover, profiting from MEV necessitates a miner to successfully mine at least
k+1 subsequent blocks, a task that becomes highly unlikely for sufficiently large
values of k. (ii) From the fact that no information about the block b will be re-
vealed until kth next block, we can conclude that it imposes an inevitable delay
on the system.

6.4 Transaction Encryption

In this work, we introduce a new parameter within the transaction, denoted
as InclusionFee. This parameter determines the gas amount that the sender is
willing to allocate per byte for the purpose of ensuring their transaction inclusion
in a block. It is noteworthy that our research exclusively concentrates on the
encryption of the recipient and data fields within transactions. We defer further
investigation of encrypting other fields such as value, sender, nonce, and fee to
future research endeavors.

It is essential to highlight that, given the utilization of the ElGamal encryp-
tion scheme, representing every encrypted transaction requires two points in the
group JN which is λ/2 bytes. For transactions with data field surpassing λ/4
bytes, additional storage is required. Nevertheless, through the integration of
symmetric key cryptography, optimization techniques can also be employed.

7 Related Work

MEV mitigation has already been well studied in the literature. Broadly speak-
ing, there are three other classes of approaches other than content-agnostic order-
ing: (i) Incentive Structure Adjustment, (ii) Order Fairness, and (iii) MEV-aware
Application Design.

7.1 Incentive Structure Adjustment

This method focuses on modifying the block reward or transaction fee structure
to discourage MEV extraction. The primary goal of this category is to redirect
the incentives of miners from selfish MEV extraction towards more socially bene-
ficial behaviors. The core idea behind this concept is commoditizing block space.
More specifically, block proposers sell block space to users who bid to have their
transaction bundles atomically included. These methods ensure two key compo-
nents in their design: (i) Transaction Semi-Privacy: Transaction content is only
shown to a limited set of parties such as block builders, and (ii) Atomicity: The
user pays only if the entire bundle is included. Flashbots MEV auction platform
is one example of this class [22] similar to [42]. More recently, the MEV-Boost of
Flashbots has gained significant attention which is an early implementation of
the Proposer-Builder Separation (PBS) technique [11]. As an obvious drawback
of this method, the block builders are trusted which can be seen as a single point
of failure.

22 Khajehpour. Author et al.

7.2 Order Fairness

In this approach, the order of transactions within a block is being fixed in a
non-malleable fashion under a certain set of rules to ensure fairness. First In
First Out (FIFO) model is the naive approach; however, not possible in a de-
centralized setting due to the propagation delay to different nodes in the net-
work [47]. An alternative is to involve a trusted third party to determine the
order, but this introduces trust issues into the system. Another option is to uti-
lize consensus-based solutions, such as those described in [28,26]. Unfortunately,
these approaches either operate only in a permissioned environment or rely on
other unrealistic assumptions like network strong synchrony [27]. Some proto-
cols have also employed Directed Acyclic Graph (DAG) ordering or the ”gossip
the gossip” method [19]. It’s important to note that achieving perfect fairness
in a distributed setting is impossible due to the Condorcet paradox from social
choice theory [28].

7.3 MEV-aware Application Design

Depending on the functionality of the underlying DApp, many previous works
have proposed application-specific designs. For example, CowSwap delegates the
responsibility of settling a batch to a third-party solver who competes to pro-
vide the most efficient settlement that maximizes trade surplus [17], or Fair-
TraDEX [35] where requires the blockchain to execute transactions in batch
instead of sequentially. It also requires the participant to join an anonymity set
for a sufficiently long time to become hidden within the anonymity set before
submitting a transaction. This approach has two major disadvantages compared
to other methods. First, analyzing their security is not DApp agnostic, and sec-
ond, they mostly fail when there is a consensus-level issue such as transaction
censorships and undercutting attacks.

8 Conclusion and Future Work

We reviewed the notions of MEV and k-MEV safe. Moreover, we explained why
a k-MEV safe ledger maintains a strong resistance against MEV extraction. Our
contribution starts with introduction of the notion of mulitparty delay encryp-
tion (MDE). Then, we proposed a construction for MDE based on the idea of
time-lock puzzles which. Next, we adopted our algorithm to minimally change
current specification of Ethereum network to achieve MEV resistance. We showed
that if there is at least one honest attestation aggregator per slot, and the basic
consensus assumptions are held, then Ethereum will become a k-MEV safe net-
work for k = d−ω, for an arbitrary windowing parameter ω and delay parameter
d. We mention some of the potential future works to add to our contributions in
the following:

– As it is pointed out in Table 2, even though the MDEShare already uses
small space, enabling MDE still might put considerable storage overhead

Mitigating MEV via Multiparty Delay Encryption 23

on the ledger when choosing larger λ. For example, choosing λ = 4096 will
increase the block size by 2.3 times 6. A potential solution for this issue
would be to only store a SNARK proof along with a single MDEShare that
is the aggregation of all the 64 MDEShares. Additionally, our current design
suggests using ECDSA signature schemes to prove the authenticity of the
MDEShares. Therefore, the block proposer can only prove that the aggregated
signature is the multiplication of different values which are signed by a set
of known public keys.

– Table 1 shows the time needed for different operations of our MDE. We can
apply many optimizations to accelerate the time complexity of the Gen al-
gorithm operations [30,39], which we leave for future work. Note that our
underlying math operations involve raising a fixed generator g and another
fixed number h to powers of two 7.

– The proposed Verify does not allow us to verify the aggregated share. An-
other useful feature that our MDE construction could have would be using
a suitable pseudo-random permutation to calculate the challenge e in such
a way that challenges from different shares can be aggregated appropriately
to preserve the verifiability of the aggregated share. Furthermore, recent ad-
vancements in composable zero-knowledge proofs [2,7] might enable us to
build composable and recursive proofs which can replace the Verify function-
ality.

– As it was mentioned, BLS signatures are aggregatable when the messages
to be signed are identical; however, when combining different MDEShares we
can not leverage this feature. Adopting BLS signature to our scheme to be
used instead of ECDSA signature would be highly of interest.

– Our protocol can be augmented with zero-knowledge proof ideas to also hide
the transaction’s metadatase.g. sender, gas limit, nonce, etc.

– Efficiently designing a trustless distributed RSA modulus generation has its
long literature [14,15,8]. However, RSA safe prime modulus generation [3]
has not been fully studied yet which can be another future contribution.

Acknowledgment

We like to express our gratitude to the Ethereum Foundation (Grant ID FY22-
0719) and Aquanow for their generous support, which made this research pos-
sible. Additionally, we appreciate Professor Shahram Khazaei for his valuable
comments and guidance.

References

1. Abou Jaoude, J., Saade, R.G.: Blockchain applications–usage in different domains.
Ieee Access 7, 45360–45381 (2019)

6 The average of Ethereum block size is almost 170, 000 bytes [56] and to store 64
aggregated attestations we need 6144× 64 = 393, 216 bytes.

7 In practice, we can almost always choose four as the generator g and simplify the
arithmetic operations even more.

24 Khajehpour. Author et al.

2. Albrecht, M.R., Cini, V., Lai, R.W., Malavolta, G., Thyagarajan, S.A.: Lattice-
based snarks: Publicly verifiable, preprocessing, and recursively composable. In:
Annual International Cryptology Conference. pp. 102–132. Springer (2022)

3. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Annual
International Cryptology Conference. pp. 417–432. Springer (2002)

4. Asayag, A., Cohen, G., Grayevsky, I., Leshkowitz, M., Rottenstreich, O., Tamari,
R., Yakira, D.: A fair consensus protocol for transaction ordering. In: 2018 IEEE
26th International Conference on Network Protocols (ICNP). pp. 55–65. IEEE
(2018)

5. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: International Conference on the Theory and Application
of Cryptographic Techniques (1997)

6. Baum, C., Hsin-yu Chiang, J., David, B., Frederiksen, T.K., Gentile, L.: Sok:
Mitigation of front-running in decentralized finance. In: International Conference
on Financial Cryptography and Data Security. pp. 250–271. Springer (2022)

7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. Algorithmica 79, 1102–1160 (2017)

8. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Annual in-
ternational cryptology conference. pp. 425–439. Springer (1997)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: In-
ternational conference on the theory and application of cryptology and information
security. pp. 514–532. Springer (2001)

10. Burdges, J., Feo, L.D.: Delay encryption. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 302–326. Springer
(2021)

11. Buterin, V.: State of research: increasing censorship resistance of transactions
under proposer/builder separation (pbs) (2022), https://notes.ethereum.org/
@vbuterin/pbs_censorship_resistance

12. Buterin, V., Hernandez, D., Kamphefner, T., Pham, K., Qiao, Z., Ryan, D.,
Sin, J., Wang, Y., Zhang, Y.X.: Combining ghost and casper. arXiv preprint
arXiv:2003.03052 (2020)

13. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability
of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. pp. 154–167 (2016)

14. Chen, M., Doerner, J., Kondi, Y., Lee, E., Rosefield, S., Shelat, A., Cohen, R.:
Multiparty generation of an RSA modulus. Journal of Cryptology 35(2), 12 (2022)

15. Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T., Shelat,
A., Venkitasubramaniam, M., Wang, R.: Diogenes: Lightweight scalable RSA mod-
ulus generation with a dishonest majority. In: 2021 IEEE Symposium on Security
and Privacy (SP). pp. 590–607. IEEE (2021)

16. Cline, D., Dryja, T., Narula, N.: Clockwork: An exchange protocol for proofs of
non front-running

17. CoWSwap: The smartest way to trade cryptocurrencies (2022), https://docs.
flashbots.net/flashbots-auction/overview

18. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP). pp. 910–927. IEEE (2020)

https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://docs.flashbots.net/flashbots-auction/overview
https://docs.flashbots.net/flashbots-auction/overview

Mitigating MEV via Multiparty Delay Encryption 25

19. Danezis, G., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Narwhal and tusk:
a DAG-based mempool and efficient BFT consensus. In: Proceedings of the Sev-
enteenth European Conference on Computer Systems. pp. 34–50 (2022)

20. Dembo, A., Kannan, S., Tas, E.N., Tse, D., Viswanath, P., Wang, X., Zeitouni,
O.: Everything is a race and Nakamoto always wins. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. pp. 859–
878 (2020)

21. Doweck, Y., Eyal, I.: Multi-party timed commitments. arXiv preprint
arXiv:2005.04883 (2020)

22. Flashbots: Flashbots auction (2022), https://docs.flashbots.net/

flashbots-auction/overview

23. Flashbots: Mev-explore pre-merge (2023), https://explore.flashbots.net

24. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. In: Annual international conference on the theory and applications
of cryptographic techniques. pp. 281–310. Springer (2015)

25. Kavousi, A., Abadi, A., Jovanovic, P.: Timed secret sharing. Cryptology ePrint
Archive (2023)

26. Kelkar, M., Deb, S., Kannan, S.: Order-fair consensus in the permissionless setting.
In: Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop. pp.
3–14 (2022)

27. Kelkar, M., Deb, S., Long, S., Juels, A., Kannan, S.: Themis: Fast, strong order-
fairness in Byzantine consensus. Cryptology ePrint Archive (2021)

28. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for Byzantine con-
sensus. In: Advances in Cryptology–CRYPTO 2020: 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21,
2020, Proceedings, Part III 40. pp. 451–480. Springer (2020)

29. Khalil, R., Gervais, A., Felley, G.: Tex-a securely scalable trustless exchange. Cryp-
tology ePrint Archive (2019)

30. Koc, C.K.: High-speed RSA implementation. Tech. rep., Technical Report TR-201,
RSA Laboratories (1994)

31. Liu, Y., Wang, Q., Yiu, S.M.: Towards practical homomorphic time-lock puzzles:
Applicability and verifiability. Cryptology ePrint Archive (2022)

32. Loe, A.F., Medley, L., O’Connell, C., Quaglia, E.A.: Tide: A novel approach to
constructing timed-release encryption. In: Australasian Conference on Information
Security and Privacy. pp. 244–264. Springer (2022)

33. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and appli-
cations. In: Annual International Cryptology Conference. pp. 620–649. Springer
(2019)

34. McLaughlin, R., Kruegel, C., Vigna, G.: A large scale study of the Ethereum
arbitrage ecosystem. In: 32nd USENIX Security Symposium (USENIX Security
23). pp. 3295–3312 (2023)

35. McMenamin, C., Daza, V., Fitzi, M., O’Donoghue, P.: Fairtradex: A decentralised
exchange preventing value extraction. In: Proceedings of the 2022 ACM CCSWork-
shop on Decentralized Finance and Security. pp. 39–46 (2022)

36. Medley, L., Loe, A.F., Quaglia, E.A.: Sok: Delay-based cryptography. Cryptology
ePrint Archive (2023)

37. Momeni, P., Gorbunov, S., Zhang, B.: Fairblock: Preventing blockchain front-
running with minimal overheads. In: International Conference on Security and
Privacy in Communication Systems. pp. 250–271. Springer (2022)

https://docs.flashbots.net/flashbots-auction/overview
https://docs.flashbots.net/flashbots-auction/overview
https://explore.flashbots.net

26 Khajehpour. Author et al.

38. Obadia, A., Salles, A., Sankar, L., Chitra, T., Chellani, V., Daian, P.: Unity
is strength: A formalization of cross-domain maximal extractable value. arXiv
preprint arXiv:2112.01472 (2021)

39. Orup, H.: Simplifying quotient determination in high-radix modular multiplication.
In: Proceedings of the 12th Symposium on Computer Arithmetic. pp. 193–199.
IEEE (1995)

40. Osmosis: The osmosis blockchain is a decentralized network, ran by 100+ validators
and full nodes, with many front-ends and development teams on it. explore our docs
and examples to quickly learn, develop & integrate with the osmosis blockchain.
(2022), https://docs.osmosis.zone/overview/

41. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Advances in Cryptology-EUROCRYPT’99: International Conference
on the Theory and Application of Cryptographic Techniques Prague, Czech Re-
public, May 2–6, 1999 Proceedings 18. pp. 223–238. Springer (1999)

42. Piatt, C., Quesnelle, J., Sheridan, C.: Eden network. Unpublished Manuscript
(2021)

43. Raun, C., Estermann, B., Zhou, L., Qin, K., Wattenhofer, R., Gervais, A., Wang,
Y.: Leveraging machine learning for bidding strategies in miner extractable value
(mev) auctions. Cryptology ePrint Archive (2023)

44. Reiter, M.K., Birman, K.P.: How to securely replicate services. ACM Transactions
on Programming Languages and Systems (TOPLAS) 16(3), 986–1009 (1994)

45. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

46. Rondelet, A., Kilbourn, Q.: Threshold encrypted mempools: Limitations and con-
siderations. arXiv preprint arXiv:2307.10878 (2023)

47. Sekar, V.: Preventing front-running attacks using timelock encryption. Ph.D. the-
sis, University College London (2022)

48. Shutter-Network: Introducing shutter network - combating front running and mali-
cious mev using threshold cryptography (2021), https://blog.shutter.network/
introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/

49. Sikka: Sikka projects (2022), https://sikka.tech/projects/
50. Srinivasan, S., Loss, J., Malavolta, G., Nayak, K., Papamanthou, C., Thyagara-

jan, S.A.: Transparent batchable Time-lock Puzzles and Applications to Byzantine
Consensus. In: IACR International Conference on Public-Key Cryptography. pp.
554–584. Springer (2023)

51. Tasatanattakool, P., Techapanupreeda, C.: Blockchain: Challenges and applica-
tions. In: 2018 International Conference on Information Networking (ICOIN). pp.
473–475. IEEE (2018)

52. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder,
D.: Verifiable timed signatures made practical. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1733–1750
(2020)

53. Thyagarajan, S.A.K., Castagnos, G., Laguillaumie, F., Malavolta, G.: Efficient cca
timed commitments in class groups. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. pp. 2663–2684 (2021)

54. Wesolowski, B.: Efficient verifiable delay functions. In: Advances in Cryptology–
EUROCRYPT 2019: 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part III 38. pp. 379–407. Springer (2019)

55. Yang, S., Zhang, F., Huang, K., Chen, X., Yang, Y., Zhu, F.: SoK: MEV counter-
measures: Theory and practice. arXiv preprint arXiv:2212.05111 (2022)

https://docs.osmosis.zone/overview/
https://blog.shutter.network/introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/
https://blog.shutter.network/introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/
https://sikka.tech/projects/

Mitigating MEV via Multiparty Delay Encryption 27

56. ycharts.com: Ethereum average block size (i:ebs) (2023), https://ycharts.com/
indicators/ethereum_average_block_size

57. Zhang, H., Merino, L.H., Estrada-Galinanes, V., Ford, B.: Flash freezing flash boys:
Countering blockchain front-running. In: 2022 IEEE 42nd International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW). pp. 90–95. IEEE
(2022)

https://ycharts.com/indicators/ethereum_average_block_size
https://ycharts.com/indicators/ethereum_average_block_size

28 Khajehpour. Author et al.

A Lemmas

Lemma 2. For every x ∈ N and N ∈ N, xN mod N2 = (x mod N)N

mod N2.

Proof. Assume x = kN + r for k ∈ N, 0 ≤ r < N . Then,

xN mod N2 = (kN + r)N mod N2 = rN + rN−1 ∗ kN ∗N + ... kNN mod N2

= rN mod N2 = (x mod N)N mod N2

Lemma 3. Given a cyclic group Gc, its generator g, and an arbitrary element
x ∈ Gc, if x

α = 1, then either gcd(α, ||Gc||) ̸= 1 or x is the identity element.

Proof. If x is the identity element, then clearly xα = 1 for any α. There-
fore, assume otherwise. Then, ordGc(x) should divide α. Additionally, ordGc(x)
must divide ||Gc|| according to the Lagrange theorem. Therefore, gcd(α, ||Gc||) ≥
ordGc

(x) > 1

Lemma 4. Given a cyclic group Gc, its generator g, and arbitrary elements
x, y ∈ Gc such that xα = yβ, if gcd(||Gc||, d) = 1 and d divides both α and β,
then xα/d = yβ/d.

Proof. We have xαy−β = (xα/dy−β/d)d = 1. Via the result of Lemma 3 and con-
sidering the fact that d and ||Gc|| are coprime, we can conclude that xα/dy−β/d =
1 and finally xα/d = yβ/d

Lemma 5. Assume g is a generator of the cyclic group Gc. For an element
y ∈ Gc where gβ = yα such that α|β, then the discrete logarithm of y in Gc will
be β/α if gcd(α, ||Gc||) = 1.

Proof. Since α|β, then there exists some k such that gkα = yα. Therefore,
gkαy−α = 1 and (gky−1)α = 1. Finally, since gcd(α, ||Gc||) = 1, via the re-
sult of Lemma 2 we can conclude that gky−1 = 1. Therefore, y = gβ/α

Lemma 6. Assume N is an RSA modulus. With finding a non-trivial square
root of identity in Z∗

N an attacker can defactor N and break the RSA assumption.

Proof. Assume x ∈ Z∗
N is the square root of identity which means that x2 = 1

mod N . Therefore, (x − 1)(x + 1) = 0 mod N . Additionally, we know that
x ̸= ±1. Consequently, factors of N can be computed via gcd(x + 1, N) and
gcd(x− 1, N).

Lemma 7. Given an RSA modulus N in which the RSA strong assumption is
held, and y ∈ Z∗

N , no PPT algorithm can find x ∈ Z∗
N and e′ such that xe = ye

′

and gcd(e, e′) = 1 for a given e.

Proof. Proof by contradiction: Assume an adversary could find x and e′ such
that xe = ye

′
where gcd(e, e′) = 1. Therefore, there are some a and b such that

ea + e′b = 1. Consequently, xbe = ybe
′
= y1−ea =⇒ (xbya)e = y. Therefore,

the attacker can find the e-th root of y, which is xbya, and break the RSA strong
assumption in N .

Mitigating MEV via Multiparty Delay Encryption 29

Lemma 8. Given an RSA safe prime modulus N = p′q′ such that p′ = 2p + 1
and q′ = 2q + 1 for p, q sufficiently large prime numbers, assume e and α are
two numbers such that e < p, q, e < α, and gα = ue for an arbitrary u ∈ JN and
g a generator of JN . Then, either e must divide α or the strong RSA assumption
in JN will be broken.

Proof. Assume d← gcd(e, α) and d′ ← gcd(d, ||JN ||). We know that d′ must be
less than e; accordingly, it only can get the values 2 or 1. Below, each case is
analyzed separately:

– d′ = 1: Via Lemma 4 we can assume that d = 18. Then, given y ← g and
e← e, x← u and e′ ← α are found such that xe

′
= ye where gcd(e, e′) = 1

which contradicts the strong RSA assumption according to Lemma 7
– d′ = 2: Assume d ← 2kd̄ and gdω = udγ such that gcd(d̄, ||JN ||) = 1 and
gcd(ω, γ) = 1; therefore, via Lemma 4 we can assume that d̄ = 1. Conse-

quently, g2
kω = u2

kγ and therefore (gωu−γ)2
k

= 1. Because g is the genera-
tor, there is some ρ such that gρ = gωu−γ . Since ordJN (g) = ||JN || = 2pq,
there must be some k′ that 2kρ = k′2pq. Thus, 2ρ = k′/2k−12pq = k′′2pq,
and finally g2ρ = (gωu−γ)2 = 1. Therefore, (gω + uγ)(gω − uγ) = 0. Clearly,
if non of the gω + uγ and gω − uγ are zero, we could find two non-trivial
factors of N via gcd(N, gω ± uγ). Otherwise:
• gω = uγ : Considering y ← g, e← γ, e′ ← ω, and x← u using Lemma 7
we can break the RSA strong assumption in JN .
• gω = −uγ : Since gcd(ω, γ) = 1, at least one of ω or γ must be odd.
Without loss of generality, assume γ is odd. Then, gω = −uγ = (−u)γ .
Again, via Lemma 7, assuming y ← g, e ← γ, e′ ← ω, and x ← −u we
could break the RSA strong assumption. For the case that ω is odd, we
can use the equation −gω = uγ and reach the same contradiction.

Lemma 9. There is an isomorphism Z∗
N × ZN

∼
= Z∗

N2 [41].

Lemma 10. For the group F ← {(1+N)x mod N2 | x ∈ ZN} and ZN there
is an isomorphism F

∼
= ZN .

Proof. First

(1 +N)x mod N2 = 1 +Nx+ ...+Nx mod N2 = 1 +Nx,

Then, we define the isomorphism ψ : F → ZN such that:

ψ(1 +N)x = x

Clearly, ψ is bijective. Additionally:

ψ((1 +N)x+y) = x+ y = ψ((1 +N)x) + ψ((1 +N)y),

which shows that ψ is an isomorphism between F and ZN

8 Via taking e as e ∗ d′/d and α as α ∗ d′/d

30 Khajehpour. Author et al.

Lemma 11. For every odd N ∈ N,
(
1+N
N2

)
= +1.

Proof. (
1 +N

N2

)
=

(
1 +N

N

)
∗
(
1 +N

N

)
=

(
1 +N

N

)2

= +1

B Basic Definitions

Definition 13. Statistical Distance We show the statistical distance between
two random variables X and Y with ∆(X,Y) which is coming from the following
equation:

∆(X,Y) =
∑
a∈D

|Pr[X = a]− Pr[Y = a]|

Note that X and Y are both in domain D.

Definition 14. Statistically Indistinguishable Two random variables X and
Y in domain D are said to be statistically indistinguishable by parameter λ if:

∆(X,Y) = negl(λ)

Definition 15. Computationally Indistinguishable Two random variables
X and Y in domain D are said to be computationally indistinguishable by the
parameter λ if for every PPT algorithm D:

Pr

 b← {0, 1},
D(α) = b if b = 0 : α←$ X

else : α←$ Y

 ≤ 1

2
+ negl(λ) (5)

We show computational indistinguishability via X ≈c Y

Definition 16. Safe RSA Number The number N = pq where p and q are
prime numbers is a safe RSA number if p = 2p′+ 1 and q = 2q′+ 1 that both p′
and q′ are also large enough prime numbers.

Definition 17. Interactive Proof of Argument Π = (P, V) is an interac-
tive proof of argument for the language L for a PPT algorithm V in the size of
elements in L if:

1. Completness: If x ∈ L, Pr[(P, V)(x) = accept] = 1.
2. Soundness: If x /∈ L for every prover P ∗, Pr[(P ∗, V) = accept] ≤ negl(|x|)

Definition 18. Zero-knowledge An interactive protocol Π = (P, V) for the
language L given view(P, V)(x) as the transcript of executing Π between P and
V is said to be zero-knowledge if there exists a PPT algorithm S (Simulator)
such that for the two probability ensembles view(P, V)(x) and S(x) we have
view(P, V)(x) ≈c S(x)

Mitigating MEV via Multiparty Delay Encryption 31

Definition 19. Zero-knowledge Interactive Protocol The protocol Π(P, V)
is zero-knowledge interactive if it is complete, sound, and zero-knowledge.

Definition 20. Honest Verifier Interactive Zero-knowledge An Interac-
tive zero-knowledge protocol Π = (P, V) is considered honest verifier if in the
transcript between P and V , view(P, V)(x) the randomness being used by V is
also included.

Definition 21. Proof Of Knowledge Given LR = {x : ∃ws.t.R(x,w) =
accept} for a polynomial-time relation R and language L, the protocol Π =
(P, V) is a proof of knowledge if there exists a PPT extractor algorithm E such
that ∀x∈L R(x,E(x)) = accept.

C Cryptographic Assumptions

Assumption 1 Strong RSA[5] Given an RSA modulus N , and e ∈ Z∗
ϕ(N)

when e > 2, no P.P.T algorithm can efficiently find the value of m from c = me

mod N .

Assumption 2 Strong Sequential Squaring[33] Given N a safe RSA modu-
lus, g a generator of JN , for any PPT (A1,A2) which the depth of A2 is bounded
by T ϵ(|N |) from above where T is a polynomial and 0 < ϵ < 1:

τ ← A1(N,T, g)

A2(x, y, τ) = b x←$ ⟨g⟩, b←$ {0, 1},
if b = 0 : y ← x2

T

mod N
else : y ←$ ⟨g⟩

 ≤ 1

2
+ negl(|N |) (6)

Assumption 3 Decisional Composite Residuosity (DCR)[41] Given a
RSA modulus N and any PPT adversary A, the decisional composite residu-
osity assumption over Z∗

N2 states that:

Pr

x←$ Z∗

N ,
A(N, y) = b b←$ {0, 1},

if b = 0 : y ← xN mod N2

else : y ←$ Z∗
N2

 ≤ 1

2
+ negl(|N |) (7)

D Modified Linearly Homomorphic Time-lock Puzzle

We have borrowed the syntax of linearly homomorphic time-lock puzzle from [31,33]:

Definition 22. Homomorphic Time-Lock Puzzle (LHTP) Let Cλ for the
security parameter λ ∈ N be a class of circuits and S a finite domain. Then, a
homomorphic time-lock puzzle is a tuple (Setup, Gen, Solve, Eval) such that:

32 Khajehpour. Author et al.

– Setup(1λ, T): A probabilistic algorithm that outputs the system’s public pa-
rameter, pp, in a trusted/or distributed fashion according to the chosen delay
value T .

– Gen(s, pp): A probabilistic algorithm that, on receiving the system’s public
parameters pp and any arbitrary s ∈ S, outputs a puzzle z.

– Aggregate(C, z0, z1, .., zn, pp): A probabilistic algorithm that given a circuit
C ∈ Ck, a set of puzzles z0, .., zn, and system’s public parameters pp, outputs
an aggregated puzzle z̄ according to C.

– Solve(z, pp): A deterministic algorithm which receives a puzzle z and system’s
public parameters pp and outputs a solution s ∈ S or ⊥.

Definition 23. LHTP Correctness The LHTP protocol Π = (Setup, Gen,
Solve, Aggregate) is correct if given Cλ a class of circuits, for all polynomi-
als T in λ, all circuits c ∈ Cλ, all inputs (s0, .., sn) ∈ Sn, all pp in the sup-
port of Setup(1λ, T), and all zi in the support of Π.Gen(si, pp) , assuming z̄ ←
Π.Aggregate(c, z0, .., zn, pp), where the running time of the algorithm Π.Solve(1λ,
z̄) is bounded with p0(λ, T) for a fixed polynomial p0, for (s̄, π̄)← Π.Solve(z̄, pp):

s̄ = c(s0, .., sn) (8)

Definition 24. LHTP Security The LHTP protocol Π = (Setup, Gen, Solve,
Aggregate) is secure if for any PPT adversary (A1,A2) which the depth of A2 is
bounded by T ϵ(λ) from above where T is a polynomial and 0 < ϵ < 1 such that:
Solvability:

Pr

 pp← Π.Setup(1λ, T),
A2(1

λ, z, pp, τ) = b (m0,m1, τ)← A1(T, pp), b←$ {0, 1},
z ← Π.Gen(mb, pp)

 ≤ 1

2
+ negl(λ)

(9)

Definition 25. LHTP Compactness Given Cλ a class of circuits, the LHTP
protocol Π = (Setup, Gen, Aggregate, Solve) is compact if for all polynomials
T in λ, all circuits c ∈ Cλ, all inputs (s0, .., sn) ∈ Sn, all pp in the support
of Π.Setup(1λ, T), and all zi in the support of Π.Gen(si, pp), assuming z̄ =
Π.Aggregate(c, z0, .., zn, pp) we have:

– The running time of the algorithm Π.Aggregate(c, z0, .., zn, pp) is bounded by
p0(λ, |C|) for a fixed polynomial p0.

– The size of z̄ is bounded by p1(λ, |c(s0, .., sn)|) for a fixed polynomial p1.

Algorithm 2 Linearly Homomorphic Time-Lock Puzzle (LHTP)

– Setup(1λ, T): Outputs system’s public parameters pp ← (N, g, T, h). N a

safe RSA number with |N | = 2λ, g a generator of the group JN , h ← g2
T

mod N , and T the delay parameter (minimum number of modular squaring
needed for solving the puzzle).

Mitigating MEV via Multiparty Delay Encryption 33

– Gen(s, pp): For the secret s ∈ ZN , samples the randomization r, k ←$ ZN and
outputs (u, v, y, w) such that: u ← gr+s mod N , v ← h(r+s)N (1 + N)s

mod N2, y ← gk mod N , and w ← hkN (1 +N)r mod N2.

– Aggregate((u0, v0, y0, w0), (u1, v1, y1, w1), ..(un, vn, yn, wn), pp): Returns (ū, v̄,
ȳ, w̄) for ū ← Π ui mod N , v̄ ← Π vi mod N2, ȳ ← Π yi, and
w̄ ← Π wi mod N2.

– Solve((u, v, y, w), pp): Calculates x← u2
T

mod N and sets

s← v/xN mod N2 − 1

N
. If s ∈ ZN returns s, otherwise returns ⊥.

Note that with having the puzzle z = (u, v, y, w) as the input, the Solve procedure
does not use y and w. We will later see their usage when constructing our MDE.
Additionally, to eliminate the need for trust during the Setup phase, we can
use an untrusted distributed RSA modules generation protocol using MPC [3].
Alternatively, we can also leverage class groups of imaginary quadratic order,
which only requires a public coin setup phase [53,50]. Now, lets prove the security
and correctness theorem of LHTP:

Theorem 4. Let N be an RSA safe prime modulus. If the strong sequential
squaring assumption is held in JN and the DCR assumption is held in Z∗

N2 , then
LHTP is a time-lock puzzle entitled to the correctness, security, and compactness
requirements.

Proof. We start by proving the correctness first.
Correctness: Lemma 12 directly implies the correctness condition.

Lemma 12. Given an LHTP protocol Π and the puzzle (u, v, y, w)← Π.Gen(s, pp)
for s ∈ N, the output of Π.Solve(u, v) will be s mod N .

Proof.

x = u2
T

= (gr+s)2
T

= g(r+s)2T

According to Lemma 2:

xN mod N2 = (x mod N)N mod N2

Assume s = qN + k for some q ∈ N and k < N . Therefore:

v/xN mod N2 = h(r+s)N (1 +N)s/g(r+s)N2T mod N2

= (1 +N)s mod N2 = 1 + sN mod N2 = 1 + kN

Finally:

v/xN mod N2 − 1

N
=
kN

N
= s mod N

Security: To prove the security, we first prove the following lemma:

34 Khajehpour. Author et al.

Lemma 13. Given a LHTP protocol Π and any PPT adversary (A1,A2) which
the depth of A2 is bounded by T ϵ(λ) from above where λ is the security parameter,
T is a polynomial and 0 < ϵ < 1:

Pr

pp← Π.Setup(1λ, T),
(s, τ)← A1(T, pp),

A2(1
λ, zb, pp, τ) = b b←$ {0, 1},

z0 ← Π.Gen(s, pp), z1 ←$ JN × JN2

×JN × JN2

 ≤ 1

2
+ negl(λ)

(10)

The proof of this lemma is in Appendix E. In other words, we proved that the
tuple (u, v, y, w) does not reveal anything about the secret s. Now, it is time
to prove the main security theorem. We do this by contradiction. Assume the
adversary (Ā1, Ā2) breaks the security of LHTP. Then we construct a new ad-
versary (A1,A2) to contradict the result of Lemma 13. A1 on receiving (T, pp)
calls (m0,m1, τ)← A1(T, pp). Without lose of generality, assume A2 can answer
the experiment correctly with non-negligible advantage σ when it is called by the
message m0. Then, A1 returns (m0, τ). Finally, A2 after receiving (1λ, zb, pp, τ)
outputs whatever Ā2(1

λ, zb, pp, τ) returns. Observe (A1,A2) has at least σ/2
which proves the security of LHTP.
Compactness: It is easy to verify that the size of the aggregated puzzle via
Aggregate function is polynomial to the circuit length and will not increase by
the number of puzzles. Additionally, note that Aggregate runs in polynomial time
to the circuit size.

E Proof of Lemma 13

Proof. Via a set of experiments, we have:
Hybrid H0: We begin by setting H0 as the original scheme. and sampling z1
from H0. Therefore, z1 ← Π.Gen(s, pp). Clearly, no adversary can distinguish
between z0 and z1 since they share the exact same distribution.
Hybrid H1: In this hybrid, the tuple (u, v, y, w) is constructed as r, s ←$ ZN ,
k ←$ ZN/2, u ← gr+s mod N , v ← h(r+s)N (1 + N)s mod N2, y ← gk

mod N and w ← cN (1 + N)r mod N2 for c ∈ JN . One can verify that
the only difference from H0 is that w instead of hkN (1 + N)r mod N2 is
w ← cN (1 +N)r mod N2, but for the rest it is the same as H0. We want to
show that given z0 ←$ H0 z1 ←$ H1 there can not be any efficient distinguisher
A = (A1,A2) which can succeeds in distinguishing between z0 and z1 via a
reduction against the strong sequential squaring assumption in JN . We prove by
contradiction via constructing a distinguisher R = (R1,R2), which breaks the
strong sequential squaring assumption. R1 on receiving (N,T, g) calculates h←
g2

T

, pp← (N, g, T, h) and calls (s, τ ′)← A1(T, pp), then, returns τ ← (s, pp, τ ′).
Next, the challenger calls R2 with (x, y, (s, pp, τ ′)). Then, R2 constructs ẑ ←
(û, v̂, ŷ, ŵ) where r̂,←$ ZN , û← gr̂+s, v̂ ← h(r̂+s)N (1 +N)s mod N2, ŷ ← x,

Mitigating MEV via Multiparty Delay Encryption 35

and ŵ ← (yN mod N2)(1 + N)r̂ mod N2. Now, consider two following
cases:

– x ←$ JN , y ← x2
T

: The tuple (N, g, g2
T

, x, y) is a squared tuple. There-

fore, (û, v̂, ŷ, ŵ) is a sample from H0 since ŷ = x and ŵ = xN2T (1 + N)r̂

mod N2.
– x ←$ JN , y ←$ JN : (N, g, g2

T

, x, y) is a uniform tuple and, consequently,
(û, v̂, ŷ, ŵ) is of the form H1 since ŵ = cN (1 +N)r̂ mod N2 for c = y.

Finally, R2 invokes A2(1
λ, ẑ, pp, τ ′) and outputs whatever A2 returns. Therefore,

R’s advantage in breaking the sequential squaring assumption in JN is equal to
A’s advantage in distinguishing between H0 and H1

Hybrid H2: In this hybrid, the tuple (u, v, y, w) is constructed such that r, s←$

ZN , u ← gr+s mod N , v ← h(r+s)N (1 + N)s mod N2, y ←$ JN and
w ← cN (1 + N)r mod N2 for c ∈ JN . The only difference between H1 and
H2 is that y is replaced with a uniformly chosen element from JN . Clearly, the
distribution of H2 and H1 are identical.
Hybrid H3: Now, in this hybrid, for the tuple (u, v, y, w) we have r, s ←$ ZN ,
c ←$ JN2 , u ← gr+s mod N, v ← hr+s(1 + N)s mod N2, y ←$ JN , w ←
c(1 + N)r mod N2. The only difference between H2 and H3 is the way w
is constructed. We will focus on the case where z0 is sampled according to H3

and z1 is sampled from H2. We prove the an adversary A = (A1,A2) who
can distinguish between z0, and z1 will break the DCR assumption over Z∗

N2 .
Via proof by contradiction, we construct the PPT adversary R such that on

receiving the input (N, y) chooses T and constructs g ←$ JN and h ← g2
T

mod N and sets pp← (N, g, T, h). Then, runs (s, τ ′)← A1(T, pp). Finally, calls
A2(1

λ, z, pp, τ) and returns the output of A2 where z = (û, v̂, ŷ, ŵ), r̂ ←$ ZN ,
û← gr̂+s mod N , v̂ ← hN(r̂+ŝ)(1+N)s mod N2, ŷ ←$ JN , w ← y(1+N)r̂

mod N2. Now, we show that the inputs of A2 are always according to either H2

or H3:

– x←$ Z∗
N , y = xN mod N2: Note that with probablity almost 1/2, x ∈ JN .

In that case, ŵ will be xN (1 + N)r mod N2 which has exactly the same
distribution as H2.

– y ←$ Z∗
N2 : Similarly, y ∈ JN2 with 1/2 probability. Then, ŵ = y(1 + N)r̂

mod N2 for a randomly chosen y from JN2 with 1/2 chance which is in the
form of H3.

Therefore, assuming the advantage of A is σ, R will have σ/2 advantage in
breaking DCR assumption over Z∗

N2 .
Hybrid H4: In this hybrid, w is replaced with a randomly chosen element from
JN2 . Therefore, H4 is consist of (u, v, y, w) for r, s←$ ZN , u← gr+s mod N, v

← h2
T

(1 + N)s mod N2, y ←$ JN , and w ←$ JN2 . Then, we first prove the
below lemma:

Lemma 14. For r ∈ ZN call Xr and Y as random variables which represent
x = c(1+N)r mod N2 for c←$ JN2 and y ←$ JN2 respectively. Then, Xr and
Y are statistically indistinguishable.

36 Khajehpour. Author et al.

Proof. First, we know that gcd((1 + N)r, N2) = 1. Additionally,
(

(1+N)r

N2

)
=

+1 according to the result of the Lemma 11 which implies that (1 +N)r ∈ JN2 .
Therefore (1 +N)r has an inverse element in JN2 and consequently, given x ∈
JN2 and r ∈ ZN , there exist a unique c ∈ JN2 such that x = c(1+N)r mod N2.
Thus, for every α ∈ JN2 we have:

Pr
c∈JN2

[c(1 +N)r mod N2 = a| r] = 1

||JN2 ||

Therefore:

∆(Xr, Y) =
1

2

∑
a∈Z∗

N2

∣∣∣Pr[Xr = a]− Pr[Y = a]
∣∣∣

=
1

2

∑
a∈JN2

∣∣∣ Pr
c∈JN2

[c(1 +N)r mod N2 = a| r]− 1

||JN2 ||

∣∣∣
=

1

2

∑
a∈JN2

∣∣∣ 1

||JN2 ||
− 1

||JN2 ||

∣∣∣ = 0

As mentioned, the only difference between H3 and H4 is in instantiating w.
Given the random variables Xr and Y as the distribution of w in H3 and H4

respectively, the result of Lemma 14 directly implies that the hybrids H4 and H3

are statistically indistinguishable.
Hybrid H5: In this hybrid, the tuple (u, v, y, w) is constructed as r, s←$ ZN , c←$

JN , u ← gr+s mod N, v ← cN (1 + N)s mod N2, y ←$ JN , w ←$ JN2 .
The only difference with H4 is the way v is constructed. Instead of hN (1 +N)s

mod N2 for a random c ∈ JN it is sampled as cN (1 + N)s mod N2. We
will show that if we sample z0 ←$ H4 and z1 ←$ H5, then an efficient dis-
tinguisher A = (A1,A2) between z0 and z1 with the advantage σ, has a non-
negligible advantage in distinguishing a squaring tuple in JN . Similar to the
approach we designed between the hybrids H0 and H1, we use the attacker

R = (R1,R2) such that on receiving the tuple (N,T, g), R1 sets h ← g2
T

and
pp ← (N, g, T, h). Then, calls (s, τ ′) ← A1(T, pp) and returns τ ← (s, pp, τ ′).
Then, R2 after receiving (x, y, h) samples the tuple z ← (û, v̂, ŷ, ŵ) such that
û ← x, v̂ ← yN (1 +N)s mod N2, ŷ ←$ JN , and ŵ ←$ JN2 . Finally, returns
the output of A2(1

λ, z, pp, τ ′). Now, we will show that with 5/8 probability, the
inputs to A2 are distributed according to either H4 or H5:

– x←$ JN , y ← x2
T

: Assume x = gα, Therefore, û = gα and v̂ = gαN2T (1 +
N)s mod N2. Since the distribution of α is close to uniform distribution
in ZN/2, and s also comes uniformly from ZN , with probability 1/4, α ≥ s

and we can write û as g(α−s)+s and v̂ as g((α−s)+s)N2T (1 +N)s mod N2.
Consequently, the tuple (û, v̂, ŷ, ŵ) has identical distribution as H4 with prob-
ability 1/4.

– x ←$ JN , y ←$ JN : Then û = x and v̂ = yN (1 + N)s mod N2 for a
randomly chosen y from JN which clearly implies that (û, v̂, ŷ, ŵ) represents
a sample from H5.

Mitigating MEV via Multiparty Delay Encryption 37

Therefore, with probability 1/2∗1/4+1/2 = 5/8, A2 is fed with proper inputs and
can produce σ advantage. Consequently, R must have at least 5σ/8 advantage to
break the strong sequential squaring assumption in JN .
Hybrid H6: Same as H3, we can use c(1 +N)s mod N2 for c ←$ JN2 via a
reduction against the DCR assumption in Z∗

N2 .
Hybrid H7: Similar to what we did for H4, according to Lemma 11 we can
replace v with a random sample from JN2 .
Hybrid H8: Finally, it is easy to conclude that there is no information about
the secret s left in u. Therefore, we sample u from JN .

F Proof of Theorem 2

Proof. Clearly, the scheme is public − coin since the verifier only broadcasts a
randomly chosen e. Additionally, we already know that Ψ .Verify is a succinct
zero-knowledge argument of knowledge which guarantees that the exponent of u,
r + s is in ZN/n .
Correctness: The final step of Verify functionality in Algorithm 1 checks five
conditions which are easy to verify their correctness:

gα = g(r+s+k)e+x = (gr+sgk)e ∗ gx = (uy)e ∗ a
gβ = g(r+s)e+t = (gr+s)e ∗ gt = ue ∗ τ

hαN (1 +N)β = h((r+s+k)e+x)N (1 +N)(r+s)e+t mod N =
h(r+s+k)eN (1 +N)(r+s)e mod N ∗ htN (1 +N)x = (vw)eb

Soundness: We now try to build an emulator E that will extract the witness
r + s from a potentially malicious prover P ∗. E rewinds P ∗ to line number 23
of Figure 5 until it gets two accepting transcripts (α1, β1, τ1) and (α2, β2, τ2) for
the challenges e1, e2 ←$ Z2λ . Such that gα1 = (uy)e1 ∗ a, gα2 = (uy)e2 ∗ a.
Now, we want to find the discrete log of uy. Assuming e1 > e2, take e

′ = e1−e2,
α′ = α1 − α2, and β

′ = β1 − β2. Therefore, gα1/gα2 = (uy)e1 ∗ a/((uy)e2 ∗ a) =
gα

′
= (uy)e

′
. Next, according to Lemma 8, e′ must divide α′. Therefore:

– If e′ is odd: Since e′ < p and e′ < q, gcd(e′, |JN |) will be one. Note that the
order of the JN (group generated by g) is ϕ(N)/2 = 2pq. Then, via Lemma 5,
E can extract the discrete log of u as α′/e′.

– If e′ is even: We can write e′ as 2dē. Then given k = α′/e′, gke
′
= (uy)e

′
=

gk2
dē = (uy)2

dē. Therefore, via Lemma 4 and given gcd(ē, |JN |) = 1 we

can say that gk2
d

(uy)−2d = 1. Additionally, there must be some ρ such that
gk(uy)−1 = gρ; therefore, ρ2d = k′ ∗ |JN | = k′ ∗ 2pq for some k′ since |g| =
|JN |. Then, 2d−1 should divide k′ since p and q are large prime numbers.
Therefore, we can write 2ρ as k′/2d−12pq = k′′2pq for some integer k′′ =
k′/2d−1. Subsequently, we can conclude that (gk(uy)−1)2 = (gρ)2 = g2ρ = 1.
Via Lemma 6, we know that gk(uy)−1 can be non-trivial with only negligible
probability. Consequently, it must be ±1, which implies that we can find the
discreet logarithm of uy, which is k.

38 Khajehpour. Author et al.

Let d1 ← logg(u) and d2 ← logg(y). Therefore, so far, E could extract the
value of d1 + d2. Using α1 it can further find the value of x as well such that
gx = a. Via similar arguments, E can extract t. Additionally, following the result
of Lemmas 10 and 9, for F = {(1 + N)x | x ∈ ZN} we have Z∗

N × F
∼
= Z∗

N2 .
Note that the group h > is only a subgroup of Z∗

N with exactly 1/4 of the ele-
ments of Z∗

N . Therefore, we can write v as hv1N (1 + N)v2 lv mod N2, w as
hw1N (1+N)w2 lw mod N2, and b as hb1N (1+N)b2 lb mod N2 for some lv, lw
and lb ∈ Z∗

N2 such that for all i, j ∈ ZN , hiN (1 + N)j is co-prime to all of the

lv, lw and lb. Therefore, (vw)
e
1b = h((v1+w1)e1+b1)N (1+N)(v2+w2)e1+b2(lvlw)

e1 lb
mod N2 = hα1N (1 +N)β1 mod N2. It is easy to verify that (lvlw)

e1 lb must
be 1. Since the prover does not know e1 in advance, lvlw = lb = 1; therefore,
(vw)e1b = h((v1+w1)e1+b1)N (1+N)(v2+w2)e1+b2 = hα1N (1+N)β1 mod N2. As
a result, α1 = (v1 + w1)e1 + b1 and β1 = (v2 + w2)e1 + b2. Additionally, we
knew that α1 = (d1 + d2)e1 + x; thus, b1 = x and v1 + w1 = d1 + d2. Addi-
tionally, gβ1 = ue1τ which implies that β1 = d1e+ t. Finally, we can show that
d1e + t = (v2 + w2)e + b2, thus, d1 = v2 + w2 and b2 = t. Furthermore, E can
easily extract the value of v2 + w2 as well using β1. In conclusion, we showed
that E can extract the exponent of u and j in vw = hiN (1 +N)j mod N2 for
some i, and i has to be equal to logg(u).
Zero-knowledge: To show the zero-knowledge property, we use the method in-
troduced in [31]. The transcript of protocol between the prover and the verifier in
LTHP consists of T = (a, b, τ, e, α, β). Now we build a simulator to re-construct
a new transcript T ′ = (a′, b′, e′, α′, β′, τ) such that α′ ←$ Z(N/2+N/n)∗22λ , β

′ ←$

ZN/n∗22λ , τ
′ = gβ

′
/ue

′
, a′ ← gα

′
/ue

′
, b← hα

′N (1 +N)β
′
/ve

′
, e′ ←$ Z2λ which

is statistically indistinguishable from T with a set of hybrids:
Hybrid H0: It is the original transcript: a← gx, b← hxN (1 +N)t mod N2,
e← Z2λ , α← se+ x, β ← se+ t mod N, τ ← gt mod N .
Hybrid H1: Unlike the real transcript, sample α←$ [(r+ s+ k)e, (r+ s+ k)e+
(N/2 + N/n) ∗ 22λ) and a ← gα−(r+s+k)e. Clearly, H0 and H1 are statistically
indistinguishable.
Hybrid H2: Set a ← gα/(uy)e. It is easy to verify that this new transcript is
the same as H1.
Hybrid H3: This time, we extend the range of sampling α to α←$ Z(N/2+N/n)∗22λ .
Then, we prove that the statistical distance between H2 and H3 is negligible. The
only difference between these two is α. Therefore, with having X as the ran-
dom variable of α in H2 and Y as the same variable in H3 below, we show that
∆(X,Y) is negligible in parameter λ.

Mitigating MEV via Multiparty Delay Encryption 39

∆(X,Y) =
1

2

∑
α∈[0, (r+s+k)e)

1

(N/2 +N/n) ∗ 22λ

+
1

2

∑
α∈[(r+s+k)e, (N/2+N/n)∗22λ)

1

(N/2 +N/n) ∗ 22λ
− 1

(N/2 +N/n) ∗ 22λ

+
1

2

∑
α∈[(N/2+N/n)∗22λ, (r+s+k)e+(N/2+N/n)∗22λ)

1

(N/2 +N/n) ∗ 22λ

=
1

(N/2 +N/n) ∗ 22λ
× (r + s+ k)e

≤ 1

(N/2 +N/n) ∗ 22λ
× (N/2 +N/n) ∗ 2λ = 2−λ

Hybrid H4: Similarly, sample β ←$ [(r+s)e, (r+s)e+N/n∗22λ) and b← hα(1+
N)β−(r+s)e. It is easy to verify that H3 and H4 are statistically indistinguishable.
Hybrid H5: Set b← hαN (1+N)β/(vw)e and τ = gβ/ue This new transcript is
clearly the same as H4.
Hybrid H6: Finally, we extend the range of sampling α to β ←$ ZN/n∗22λ .
Same as before, we can prove that the statistical distance between H5 and H6 is
negligible. The only difference between these two is β. Therefore, with having X
as the random variable of β in H5 and Y as the same variable in H3 below we
show that ∆(X,Y) is negligible in parameter λ as it is shown below:

∆(X,Y) =
1

2

∑
β∈[0, (r+s)e)

1

N/n ∗ 22λ
+

1

2

∑
α∈[(r+s)e, N/n∗22λ)

1

N/n ∗ 22λ
− 1

N/n ∗ 22λ
+

1

2

∑
β∈[N/n∗22λ, (r+s)e+N/n∗22λ)

1

N/n ∗ 22λ

=
1

N/n ∗ 22λ
× (r + s)e ≤ 1

N/n ∗ 22λ
×N/n ∗ 2λ = 2−λ

Therefore, we proved that the real transcript T is statistically indistinguishable
from the transcript generated by the simulator, T ′.

G Proof of Lemma 1

Proof. Note that the main difference between Lemmas 13 and 1 is the sampling
range of s and r which are now instead from ZN/2n. Let σ be the advantage of
A in the experiment of Lemma 1. Then, using A, we construct the adversary
A = (A1,A2) that engages in the experiment of Lemma 13. A1 upon receiving
the (T, pp) returns a randomly generated s←$ ZN/2n and an empty advice τ ←⊥.
Then, A2 on receiving (1λ, zb, pp, τ) returns the output of A(1λ, zb, pp). It is easy
to verify that the advantage of A will be σ̄ = σ(1/2 ∗ 1/2n+ 1/2). Additionally,

40 Khajehpour. Author et al.

the result of Lemma 13 shows that σ̄ = negl(λ). Therefore, σ(1/2∗1/2n+1/2) =
negl(λ) = σ(1/4p(λ) + 1/2); thus, σ = negl(λ) ∗ 4p(λ)/(1 + 2p(λ)) = negl(λ).
Consequently, there cannot be any adversary that succeeds in the experiment of
Lemma 1.

H BLS Signature

Algorithm 3 BLS signature [9] Given e : G0 × G1 → GT a pairing oper-
ation between three algebraic groups G0, G1, and GT with prime order q and
generators g0, g1, gT respectively, and a hash function H :M→ G0:

– Gen: Returns (pk, sk) where sk ←$ Zq is the private key and pk ← gsk0 is the
public key.

– Sign(sk,m): For message m ∈M outputs H(m)sk.
– Verify(pk,m, σ): Outputs e(σ, g1) = e(pk,H(m))
– AggregateAndVerify((pk0,m0, σ0), ..(pkn,mn, σn)): Returns e(σ, g1) = Π e(pki,
H(mi))

– AggregateAndVerifySame(m, ((pk0, σ0), ..(pkn, σn))): Returns e(σ, g1) = e(Π
pki, H(m))

The function AggregateAndVerifySame can only be used when all the signatures
share the same message.

I Puzzle Invalidity Check

We recall the ΠACorSol from [31]. This protocol uses the VDF proposed by [54]
to allow a puzzle solver to prove the invalidity of a puzzle (u, v) ∈ JN × JN2 . Its
corresponding relation is:

R = {(N,T, u, v) : ∀s ∈ ZN , v ̸= u2
T

(1 +N)s mod N2}

Let Prime(2λ) be the set of the first 22λ primes. Then, the description of this
protocol between the prover P and the verifier V is as follows:

1. P sends w ← u2
T

mod N to V .
2. V picks a random prime number l from Prime(2λ) and sends l to P .
3. Let 2T = ql+ r for 0 ≤ r < l and q ∈ N. Then, efficiently computes π ← uq

mod N and sends π to V .
4. Finally, V outputs accept if w = πlur mod n and π ∈ ZN and N does not

divide (vw−N mod N2)− 1, and rejects otherwise.

Theorem 5. The protocol ΠACorSol is an honest-verifier argument for the rela-
tion R.

	Mitigating MEV via Multiparty Delay Encryption

