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Abstract

We propose a generic compiler that can convert any zero-knowledge proof for SIMD circuits
to general circuits efficiently, and an extension that can preserve the space complexity of the
proof systems. Our compiler can immediately produce new results improving upon state of the
art.
• By plugging in our compiler to Antman, an interactive sublinear-communication protocol, we

improve the overall communication complexity for general circuits from O(C3/4) to O(C1/2).
Our implementation shows that for a circuit of size 227, it achieves up to 83.6× improvement
on communication compared to the state-of-the-art implementation. Its end-to-end running
time is at least 70% faster in a 10Mbps network.

• Using recent results on compressed Σ-protocol theory, we obtain a discrete-log-based constant-
round zero-knowledge argument with O(C1/2) communication and common random string
length, improving over the state of the art that has linear-size common random string and
requires heavier computation.

• We improve the communication of a designated n-verifier zero-knowledge proof fromO(nC/B+
n2B2) to O(nC/B + n2).
To demonstrate the scalability of our compilers, we were able to extract a commit-and-prove

SIMD ZK from Ligero and cast it in our framework. We also give one instantiation derived from
LegoSNARK, demonstrating that the idea of CP-SNARK also fits in our methodology.

1 Introduction
Assume that the verification of a statement is represented as a public circuit C : {0, 1}n → {0, 1}.
A zero-knowledge proof (ZKP) allows a prover to convince a verifier that it possesses a witness
w such that C(w) = 0, without the verifier learning any information beyond the circuit output.
The commit-and-prove zero-knowledge (CP-ZK) paradigm is among the most flexible and modular
design mechanisms for constructing ZKP. For instance, a CP-SNARKs allows a prover to commit to
a batch of secrets via a commitment scheme (e.g. vector commitment or polynomial commitment),
then prove relations between the committed values in ZK [CFQ19, CFF+21, Lip16]. A small
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communication footprint is achieved when the commitment is compressing and the proof is succinct.
On the other hand, schemes like VOLE-based ZKPs [BMRS21, WYKW21, YSWW21, DIO20] rely
on efficient interactive commitment scheme that separately commits to wire values in the circuit,
then prove the consistency between committed wire values with constant overhead. Though general
VOLE-ZKs incur communication complexity linear to the circuit size, they achieve high throughput
owing to the lightweight operations.

Generally, CP-ZK proof systems with sublinear communication involve two components after
the batch commitment of witnesses: (1) Hadamard product of committed vectors, (2) equality of
individual wires across different committed vectors. The former is used to demonstrate the correct
computation of multiplication gates and the latter is used to show that the committed wire values
are consistent with the circuit topology.

From SIMD-ZK to general ZK. From another perspective, the above approach can be viewed
as a conversion from commit-and-prove SIMD-ZK to general ZK. Define (B, C)-SIMD circuit which
contains B identical components of the circuit C. A SIMD-ZK proves that for input witnesses
(w1, . . . ,wB), C(wi) = 0 for i ∈ [B]. By exploiting the fact that operations are identical across B
components, SIMD-ZK schemes typically utilize vector commitments and batch proofs to achieve
communication sublinear in B · |C|. In more detail, denote by JwK a commitment to a vector
w. Define a witness matrix W = (w1∥ . . . ∥wB). Instead of viewing the ith column as the wit-
ness to the ith evaluation of C, a prover commits to each row vector and lets the verifier obtain
(Jw1K, . . . , Jw|C|K). In this way, for any gate (α, β, γ, ⋄) in C and ⋄ ∈ {Add,Mult}, the prover only
needs to prove that wγ = wα ⋄ wβ. ZKP schemes achieve O(|C|) proof size if both the vector
commitment and batch proof of additions and multiplications incur constant size.

Most of priors work on different proof systems indeed take this approach by first implementing
batch commitment and proof of multiplication gates, which are followed by a wiring consistency
check [GWC19, CHM+20, CFQ19, CFF+21, AHIV17, WYY+22, YW22]. However, they take
divergent paths to tackle the latter problem. A popular approach is to compile the circuit into
an algebraic format via a constraint system, e.g. rank-1 constraint system (R1CS) [GGPR13].
Define z := (1,x,w) in which x and w are the public and private inputs of the circuit. Denote
(L,R,O) as the matrices that represent the map from z to the vectors of the left, right and
output wires of multiplication gates a, b, c. Then the relation a ∗ b − c = 0 can be expressed as
(L ·z)∗ (R ·z)− (O ·z) = 0. In this way, the ZKP is reduced to proving matrix-vector products on
committed values. On the other hand, some ZKPs like [WYY+22] and [YW22] proceed differently:
they individually prove that wα[i] = wβ [j] for any i, j ∈ [B]. Although this approach yields better
scalability for the ZKP, it results in worse communication complexity, usually with a B2 factor.

An interesting question is whether we can design a generic compiler that translates any commit-
and-prove SIMD-ZK (CP-SIMD-ZK) into a general CP-ZK with sublinear communication. It would
facilitate the design of communication-efficient ZKP because it allows the focus to be shifted to the
design of SIMD-ZK primitives, which are generally easier than general-purpose ZKP.

From SIMD-ZK to scalable ZK. It is common for ZKPs to trade off scalability against succinct-
ness. On the one hand, although zk-SNARKs generate proofs of constant size or size sublinear to |C|,
their memory overhead is at leastO(|C|). The constant factor is large when public-key operations are
involved. This prevents them from being applied to large statements: prior benchmarks only focus
on statements represented by less than 225 constraints [CBBZ22]. Efforts are made to distribute the
zk-SNARK proof generation among a set of provers [WZC+18, OB22, SVdV16, KZGM21, BG22],
however, the overall computational and memory overhead is still prohibitive. They either need
to disclose secret input to all provers, or only aim to delegate computation to more powerful
workers but not to reduce the computational cost of them. Another line of work focuses on re-
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cursive SNARKs [KST22, KS22, BGH19] that allow a statement that can be divided into multiple
steps to be proven step-by-step, but they require the statement to be structured, i.e., each step
is represented by identical constraints. On the other hand, interactive ZKPs such as VOLE-
ZK [BMRS21, WYKW21, YSWW21, DIO20] achieve high scalability by “streaming” the circuit
evaluation. They evaluate the circuit gate-by-gate and only incur memory overhead linear in the
current gates that are evaluated. Neither the witness nor the circuit structure for future gates are
required to be known in advance. Hence these types of ZKPs scale to large circuits with billions
of gates. However, their drawback is the O(|C|) communication complexity and lack of public
verifiability.

Naturally, it would be interesting to study how to achieve scalability and succinctness at the
same time. Specifically, can we obtain efficient ZKPs with proof size sublinear to the circuit size,
without the memory overhead being lower bounded by the circuit size?

1.1 Our Contributions
In this work, we start from SIMD-ZK schemes and aim to obtain efficient general ZK and scalable
ZK. We first extend the SIMD-ZK functionality by adding a proof of linear map, which is easily
realized by most SIMD-ZK schemes. Then we design two compilers. The first one converts a wide
range of extended SIMD-ZK to general ZK, and the second one further converts it to scalable
ZK for memory-constrained provers to prove large statements. For both constructions, we also
demonstrate the generality of the compilers, i.e., our methods promote any SIMD-ZK to general
and possibly scalable ZK so that attention can be paid only to the design of the efficient SIMD-ZK,
instead of more complicated generic primitives. Our contributions are fourfold.

Extended SIMD-ZK. We propose a functionality that extends the SIMD-ZK functionality FSIMDZK

and denote it as FeSIMDZK. In addition to the subroutines commit, open and prove that are com-
monly supported by SIMD-ZK schemes, it also contains a proof of linear map that checks the
relation x = My for committed vectors (x,y). The functionality FeSIMDZK is the fundamental
building block of our constructions. Additionally, we observe that special attention needs to be
paid to the security of commit-and-prove procedures when designing a general framework for scal-
able ZK. Some commitment schemes may put a restriction on its proving phase. The security
consideration will be reflected as a counter in FSIMDZK and analyzed when such a commitment
scheme is encountered.

Compiling SIMD-ZK to general ZK. Based on the extended SIMD-ZK, we design a SIMD
compiler that allows a wide spectrum of SIMD-ZK to work for general circuits. To do so, it first
converts the general circuit into a SIMD circuit by ignoring the circuit connectivity, and proves
its satisfiability via a SIMD proof. This only utilizes the commit, open and prove thus can be
handled by the underlying SIMD-ZK. Then the compiler represents the wiring as a linear mapping
of committed wire values, and proves the wiring consistency by the proof of linear map from
FeSIMDZK. Our compiler is a generalization of a few works including Ligero [AHIV17, BFH+20]
and LegoSNARK [CFQ19], which utilize R1CS-style representations for the wiring of circuits and
reduce the statement to relations that can be better handled by the extended SIMD-ZK.

ZKP for large statements. Except for VOLE-based ZKP, most practical ZKPs incur large
RAM consumption, often linear to the circuit size. To relax the memory overhead, we propose a
framework for memory bounded provers to prove the correctness of large statements. It also relies
on FeSIMDZK and can easily achieve sublinear communication complexity for arbitrary large circuits
by properly instantiating the underlying SIMD-ZK. Particularly, it utilizes the proving technique
in our SIMD compiler to evaluate a circuit segment by segment and prove the connectivity of wires
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between these segments. Similar to the current scalable interactive ZK, it does not require the
whole circuit structure or the witness to be known in advance, hence allowing streaming.

Instantiation for various proof systems. To demonstrate the generality of our compiler, we
describe and analyze the detailed instantiation of our compiler with various CP-ZK that inherently
work well for SIMD circuits, including VOLE-based ZK [WYY+22], constant-round sublinear ZK
from Σ-protocol [AC20], designated multi-verifier ZK from packed Shamir sharing [YW22], MPC-
in-the-Head [AHIV17] and zk-SNARK from pairing [CFQ19]. We show how to adapt these work for
general ZK and scalable ZK by merely satisfying the minimum requirement, that is, realizing the
SIMD-ZK functionality. We emphasize that the transformation may affect the security guarantee
of the underlying SIMD-ZK, and extra security analysis will be provided in that case.

In many cases, applying our compiler yields concrete efficiency improvements over the state
of the art in various settings. We list our results in Section 2.2. Furthermore, we implement the
SIMD compiler and evaluate the compilation of a VOLE-based ZK [WYY+22] that is previously
designed for SIMD circuits. For a circuit of size |C| = 227, it shows up to 83.6× improvement on
communication, compared to the general VOLE-ZK Quicksilver [YSWW21]. In terms of running
time, it is 70% faster when bandwidth is 10Mbps and 30% faster when bandwidth increases to
25Mbps using the same set of parameters. Its running time can be further improved if sacrificing
communication by reducing batch size.

1.2 Related Work
Previous work on complexity-preserving zero-knowledge proofs study efficient proof generation with
constrained space or time budget [BHR+20, BHR+21, EFKP20, HR18, BC12, BCCT13]. Bootle et
al. propose elastic SNARKs that can either achieve linear time and space complexity, or reduce the
RAM consumption to O(logC) with O(C log2C) computational complexity [BCHO22]. Assume
an NP relation that can be verified in time T and space S by a RAM program, Bangalore et
al. [BBHV22] propose a public-coin ZKP based on collision-resistant hash functions that allows the
prover to run in time Õ(T ) and space Õ(S), with proof size Õ(T/S). Their space-preserving ZKP
is converted from Ligero [AHIV17].

Recent recursive zk-SNARK and incremental verifiable computation (IVC) propose succinct
arguments for composed circuits, which can be evaluated step by step [KST22, KS22, KS23, STW23,
BGH19, BCL+21]. These techniques increase the scalability of the prover, who separately generates
proof for each step while simultaneously proves its consistency with all previous steps without going
over the history data. They can potentially support streaming proofs in a way that the input and
witness for future steps are not necessary known until those steps are reached. However, many of
them only support structured circuit which are divided into a sequence of components that share
the same structure. More advanced IVCs cross this barrier, however they reveal the output of
each step thus does not provide the zero-knowledge guarantee when they are treated as general
ZK [KST22, KS22].

1.3 Notation and Functionalities
Notation. Denote λ as the computational security parameters and [1,m] as a set {1, 2, . . . ,m}.
For a vector x we define its i-th coordinate by xi. Given distribution ensembles {Xn}, {Yn}, we
write Xn ≈ Yn to denote that Xn is computationally indistinguishable to Yn. negl() is defined as a
negligible function such that negl(λ) = o(λ−c) for any positive constant c. A circuit C over a field
F consists of input, output, addition and multiplication gates, where input gates use circuit-input
wires as their output wires and output gates use circuit-output wires as their input wires. |C| = C
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is the number of multiplication gates in the circuit C. Define (B, C)-SIMD circuit as a circuit that
contains B copies of C.

Zero-knowledge proof FZK:

• Upon receiving (prove, C,w) from prover P and (verify, C) from verifier V, if C(w) = 0, then
output (true) to V, else output (false) to V.

Vector oblivious linear evaluation FVOLE. This functionality works over a field F, and upon
receiving (init) from P and V, if V is honest, then sample ∆ ← F, else receive ∆ ∈ F from the
adversary. Store ∆ and ignore all subsequent (init) commands. Upon receiving (extend, n) from P
and V, do the following:

• If V is honest, sample v ← Fn. Otherwise, receive v ∈ Fn from the adversary.

• If P is honest, sample u ← Fn and compute w := v + u ·∆ ∈ Fn. Otherwise, receive u ∈ Fn

and w ∈ Fn from the adversary, and then recompute v := w − u ·∆ ∈ Fn.

• Output (u,w) to P and v to V.

Commitment FCom. Similar to the functionality of Commit command in FSIMDZK:

• Upon receiving input (Commit,w) from P and (Commit) from V, pick a tag JwK and store
(JwK,w) in the memory. Return JwK to both parties.

• Upon receiving (Open, JwK), if a tuple (JwK,w) was previously stored, output (JwK,w) to V;
otherwise abort.

The descriptions of special honest-verifier ZK argument are deferred to Supplementary Mate-
rial A.1.

2 Technical Overview
2.1 From SIMD to General Circuit in ZK
Denote the prover as P and verifier as V. Define (B, C)-SIMD circuit as B identical repetitions
of a circuit C with size |C| = C. SIMD-ZK is designed for such circuits. First, we would like to
focus on converting SIMD-ZK to general ZK that works for arbitrary circuits. The functionality
of ZKP for SIMD circuits is shown in figure 1. P first groups and commits to the vectors of
witnesses. Then it use the underlying ZKP to prove the relation of committed values by directly
operating on commitments. Since elements in each vector are committed in a batch, the operations
on the commitment apply to all of the committed elements. For a SIMD-ZK to be interesting, it
usually costs less than separately evaluating C for B times. For example, AntMan [WYY+22] has a
complexity of O(B+C) for (B, C)-SIMD circuits, which shows significant saving on communication
compared with its non-SIMD opponents [YSWW21, DIO20] that incur O(BC) complexity.

There are multiple ways to conduct the transformation from SIMD-ZK to general ZK. As
discussed in Section 1, such constructions usually need a wire consistency check on top of SIMD-
ZK. Taking AntMan [WYY+22] as an example, one can first arrange all gates in batches, commit
to their input and output wire values, then utilize a SIMD-ZK to prove that all batches of gates are
computed correctly. Then an extra protocol is invoked to prove the consistency of each individual
wire value that is repeatedly packed in multiple commitments, E.g. for batched wire values w1,w2 ∈
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Functionality FSIMDZK

Public parameter: Define B to be the batch size and τmax to be the maximum time that a commitment
can be used in the proof.

Commit: Upon receiving input (Commit,w ∈ FB) from P and (Commit) from V, pick a tag JwK and
store (JwK,w, ctrw = 0) in the memory. Return JwK to both parties.

Open: Upon receiving (Open, JwK), if a tuple (JwK,w) was previously stored, output (JwK,w) to V;
otherwise abort.

Prove: Upon receiving (Prove, C, Jw1K, . . . , JwmK), where the circuit C : {0, 1}m → {0, 1}, fetch wi from
the memory, for i ∈ [m]. If for any wi that JwiK does not exist or its counter ctrwi

≥ τmax, abort. Check
C(w1[i], . . . ,wm[i]) = 0 for all i ∈ [B]. If any check fails, abort; otherwise, return Pass. For i ∈ [m], set
ctrwi = ctrwi + 1.

Figure 1: Functionality of SIMD ZK.

FB and wire indices i, j ∈ [B], it aims to check whether they satisfy w1[i] = w2[j]. AntMan
requires O(B3) complexity for checking all combinations of (i, j) ∈ [B] × [B], which leads to a
total communication complexity of O(B3 + C/B). This translates to a O(C3/4) cost when setting
B = C1/4. The designated multi-verifier ZK from [YW22] also uses a similar wire consistency
check, which incurs O(n2B2) among n verifiers.

A better wire consistency check. We follow an idea similar to the above but manage to improve
the complexity from O(C3/4) to O(C1/2). As in AntMan [WYY+22], we ignore the wiring of the
circuit and pack the multiplication gates in blocks of size B, which results in C/B batches. The
SIMD proof is invoked to first commit to the input and output wires of the packed multiplication
gates, then prove the SIMD circuit satisfiability. They totally incur communication complexity
O(C/B). Then, we manage to perform the wire consistency check with cost O(B) rather than
O(B3).

Instead of considering the wire consistency among each pair of commitments that contain values
from the same wire as done in AntMan, we consider how they are all consistent with a global vector
w that contains all wire values in the circuit. Taking the left input wire of all multiplication gates
as an example. Define a circuit C that has a total of Bm wire values and Bn multiplication gates.
Assume global wire values w ∈ FBm and the values of left input wires across all multiplication
gates l ∈ FBn. For any i ∈ [Bn], the left wire of the i-th multiplication gate must be associated
a wire index αi ∈ [Bm] such that l[i] = w[αi]. Alternatively, one can define a mapping matrix
L ∈ {0, 1}Bn×Bm such that the i-th row Li is all-zero except at the entry Li[αi]. In this way, the wire
consistency check boils down to check l = Lw, where L is public and parties have commitments
{JliK}i∈[n] and {JwiK}i∈[m]. In the context of SIMD-ZK protocols, values in l and w are batch-
committed, meaning that operations on them are applied to every element in the vector. As
a result, it is not straightforward to use SIMD-ZK to prove wire consistency which intuitively
involves operations for separate elements.

We sketch our idea below. First, let V send a challenge vector r ∈ FBn and convert the check
of l ?

= Lw to the check of r⊺l ?
= r⊺Lw. This reduces the proof of a matrix-vector multiplication to

a proof of two inner products, with an increase in soundness error depending on the distribution
of r. To simplify the notation, we define a public vector v⊺ = r⊺L, then rewrite the above relation
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as r⊺l
?
= v⊺w. If we define a circuit C : F2n+2m+1 → F such that

C(r1, . . . , rn, l1, . . . , ln, v1, . . . , vm, w1, . . . , wm, q) :
∑
i∈[n]

ri · li −
∑
j∈[m]

vj · wj − q,

then P can prove the above statement by: 1) Divide each of the vectors in (r, l,v,w) into length-B
segments. Compute and commit to q :=

∑
i∈[n] ri ∗ li−

∑
j∈[m] vj ∗wj ∈ FB. Prove the consistency

between (r, l,v,w, q) by using a SIMD-ZK composed of B evaluations of the circuit C. 2) prove
that

∑
i q[i] = 0. This is not obvious, as it involves the computation of the sum of values in

one commitment. A naive way is for P to open the commitment to q, but it compromises the
zero-knowledge requirements because q is the linear combination of private circuit wire values. To
tackle the problem, P instead commits to a uniform vector r∗ ∈ FB under the constraint that∑

i∈[B] r
∗[i] = 0. It should be done before V samples r (else P can break soundness). After P

commits to the mask vector, V sends the challenge r and the new SIMD circuit is defined to be

C′(r1, . . . , rn, l1, . . . , ln, v1, . . . , vm, w1, . . . , wm, q, r∗)

=
∑
i∈[n]

ri · li −
∑
j∈[m]

vj · wj − q − r∗

P computes and commits to q ∈ FB such that

q =
∑
i∈[n]

ri ∗ li −
∑
j∈[m]

vj ∗wj − r∗.

The parties can now use the SIMD-ZK to prove B number of instances of C′ with committed inputsJr1K, . . . , JrnK, Jl1K, . . . , JlnK, Jv1K, . . . , JvmK, Jw1K, . . . , JwmK, JqK and Jr∗K. Finally, the proof of∑
i q[i] = 0 is specific to the underlying commitment schemes. The naive way is to let P fully open

q to V who verifies its sum locally. This would generally require O(B) communication complexity.
Soundness comes from the randomness of the challenge vector r that is sampled after P commits

to r∗. Assume that F is an exponentially large field and a cheating prover commits to (l,w) such
that l − Lw ̸= 0Bn. By Schwarz-Zippel, the probability that the erroneous values happen to be
corrected by r during the check of

∑
i q[i]

?
= 0 where q := r⊺l− r⊺Lw is 1/|F|, which is negligible.

Functionality FeSIMDZK

Public parameter: batch size B.
FeSIMDZK supports all that FSIMDZK supports and the following instruction.

Linear map: Upon receiving input (LinearMap, Jx1K, . . . , JxnK, Jy1K, . . . , JynK,M), check if tuple
(JxiK,xi) and (JyiK,yi) exists for i ∈ [n] and that x = My. If any check fails, abort; otherwise,
return Pass.

Figure 2: Functionality of extended SIMD zero-knowledge.

Plugging in the protocol. For a general circuit with a total of |w| = Bm wire values and
C = Bn multiplication gates, the above approach leads to a zero-knowledge proof of linear map
that can be instantiated by any SIMD-ZK. The actual communication complexity depends on
the cost of proving the inner product argument by the underlying SIMD-ZK, plus the opening
cost of the commitment scheme. Let (l, r,o) ∈ FnB be the batched wire values of left, right and
output of multiplication gates in the circuit. The wire consistency can be proven by checking
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(l
?
= Lw, r

?
= Rw,o

?
= Ow), where (L,R,O) ∈ FnB×mB are public maps that describe the circuit

connectivity. Furthermore, the SIMD-ZK protocol handles the rest of the multiplicative relation
check o

?
= l ∗ r. This scheme is captured in the extended SIMD-ZK functionality FeSIMDZK shown

in Figure 2. Compared to the common SIMD-ZK functionality shown in Figure 1, it additionally
supports the proof of linear map between committed vectors. Based on this extended SIMD-ZK,
we propose a compiler that compiles any SIMD-ZK into general ZK. By plugging this compiler
to AntMan [WYY+22], it improves its communication complexity from O(C3/4) to O(C1/2). In
another case, for compressed Σ-protocols [AC20], this yields a reduction of the CRS size from
O(C) to O(

√
C) for constant-round sublinear ZK. Eventually, the multi-verifier ZK [YW22] can be

improved from O(nC/B + n2B2) to O(nC/B + n2).
Memory constrained prover. The above construction can be viewed as a compiler that enables a
SIMD-ZK to handle arbitrary circuits C, where all wire values fit in a vector w of size O(C). Assume
the linear mapping matrices use succinct representation, the proof requires memory overhead O(C),
which upper bounds the largest circuit that the scheme can prove. We propose a second compiler
that further extends the previous idea to the streaming setting, in which the memory overhead is
proportional to the plaintext evaluation of the circuit. Furthermore, the whole circuit structure
and the witnesses are not required to be known until they are reached. Instead, P proves the
circuit segment-by-segment and only needs to evaluate the current and the previous one at a time:
the circuit C is split into segments C = (C1, . . . , Cn′). For any consecutive segments Cj and Cj+1,
let (wj , lj , rj ,oj) and (wj+1, lj+1, rj+1,oj+1) be the witness and the input and output wire values
of multiplication gates for each segment. P first uses a commit-and-prove SIMD-ZK to prove
the internal satisfiability of Cj including the linear and multiplicative relations of (wj , lj , rj ,oj).
Then P proves that the output wires of Cj correctly link to some input wires of Cj+1. Namely, it
additionally invokes the check of linear map to prove Mwj = w̃j+1, in which M is a map that
indicates the connectivity between Cj and Cj+1 and w̃j+1 are the input wire values of Cj+1. After
this, P and V discard everything for segment Cj and carry on with the check of internal circuit
satisfiability of Cj+1. The above step incurs memory overhead O(|wj | + |w̃j+1|). Based on this
framework, P is able to prove the satisfiability of a large circuit by separately evaluating a sequence
of smaller circuits.

2.2 Improved Commit-and-Prove ZK via SIMD Compiler
Now we show three commit-and-prove SIMD ZK protocols that take advantage of our compilers to
perform general ZKP with either reduced online communication complexity or reduced setup cost:

• The aforementioned AntMan [WYY+22] requires O(B + C) communication for (B, |C|)-SIMD
circuit and at least O(C3/4) for a general circuit. Our compiler transforms it into a general
VOLE-ZK with communication O(C/B +B), which is O(C1/2) when B = O(C1/2).

• A constant-round SHVZK argument of knowledge for NP from the discrete logarithm assumption
with sublinear communication O(C/B + B) = O(C1/2) and a CRS of size O(B) = O(C1/2),
where the computation is dominated by O(C1/2) C1/2-size Fast Fourier Transforms (FFT). It
builds upon the techniques from Attema et al. [AC20] (denoted as AC20) and is combined with a
2-round SHVZK for Hadamard product of [Gro09]. It improves upon a protocol of AC20 which
has a CRS of size O(C) and requires O(1) C-sized FFT. For (B, C)-SIMD circuit, our protocol
has O(C +

√
B) = O(C1/2) communication.

• A non-interactive designated n-verifiers ZK based on the packed Shamir secret sharing [YW22,
FY92]. Restricting B < n − 2t where t is the number of corrupted verifiers, it incurs O(nC)
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communication overhead for (B, C)-SIMD circuits and O(nC/B + n2B2) for arbitrary circuit of
size C, The cost is optimized to O(nC/B + n2) with the help of our compiler.

Additionally, we also demonstrate that Ligero [AHIV17] and its follow-up work [BBHV22] perfectly
fit our compilers. Although there is no improvement in terms of the proof size or computational
complexity, casting Ligero in our framework and using it as a commit-and-prove ZK allows us
to identify an important security consideration that would affect both the soundness and zero-
knowledge properties.

Compiling AntMan SIMD-ZK. The AntMan SIMD-ZK protocol consists of the following key
components: 1) a constant-size additive-homomorphic polynomial commitment scheme, 2) a proof
of multiplicative relation on committed polynomials, i.e. prove that f0(·) = f1(·) · f2(·). and 3) a
proof of degree reduction, i.e. for two polynomials (f(·), f̂(·)) with degrees d1 < d2, f(i) = f̂(i) for
i ∈ [d1 +1]. We write JfK for a commitment to the polynomial f(·). The AntMan protocol realizes
FSIMDZK as follows:

1. For each batch of B private inputs wα ∈ FB, P computes a degree-(B − 1) polynomial fα such
that fα(i) = wα[i]. P commits to fα so that P and V obtain JfαK.

2. The parties process the circuit in topological order. For any batch of k addition gates with
commitments to input wires (JfαK, JfβK), P and V locally computes the commitment to output
wires by JfγK = JfαK+ JfβK. For multiplication gates with input commitments JfαK and JfβK, P
computes wγ = wα ∗wα and a degree-(B − 1) polynomial fγ such that fγ(i) = wγ [i], i ∈ [B].
P also computes f̂γ(·) = fα(·) · fβ(·). P commits to them by generating JfγK and Jf̂γK.

3. For each multiplication gates with input and output wires (α,β,γ), P proves that (JfαK, JfβK, Jf̂γK)
is a multiplication triple and f̂γ(i) = fγ(i) for i ∈ [B].

4. When a batch of k output wires α, P opens the commitment to fα, from which V reconstructs
wα.

The overhead of AntMan SIMD-ZK lies in the commitment of batch circuit intermediate wire
values at Step 2, which takes O(C) for a (B, C)-SIMD circuit. The proof of multiplication and
degree reduction only incurs O(B) with random linear combination.

When applying the SIMD compiler to the AntMan SIMD-ZK, it takes O(C/B) to prove all mul-
tiplicative relations for a general circuit of size C. Namely, it checks C multiplication triples (l, r,o)
via SIMD-ZK. Additionally, it invokes the proof of linear map to check the wire consistency between
(l, r,o) and w, which contains intermediate wire values in the circuit. This procedure incurs O(B)
communication overhead at the final commitment opening. Hence, it takes O(C/B+B) ≥ O(C1/2)
in total to prove the satisfiability of arbitrary circuits. This protocol is referred as AntMan++.
We implemented the AntMan++ and evaluate its performance on proving general circuits of size
up to C = 227. It is compared with the prior practical VOLE-based ZK QuickSilver [YSWW21],
which requires O(C) communication overhead. More details are shown in Section 4.1.

SIMD-ZK based on Pedersen commitment. We briefly present a SHVZK argument of knowl-
edge for (B, C)-SIMD circuits which relies on the techniques of AC20 [AC20]. The key construction
of AC20 is a compression mechanism to handle ZK proof for general linear relations (the prover
wants to prove the correction of evaluation of a linear form over a committed vector). We expand
this technique to obtain a constant-round DLOG-based ZK proof for (B, C)-SIMD circuits with
O(C +

√
B) communication. When plugged into our compiler, we get a constant-round circuit ZK

with O(C1/2) communication, O(C1/2) CRS size, and with computation dominated by O(C1/2)
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FFTs of size O(C1/2). It improves over AC20 in both CRS size (from linear to square root) and
computation time.

Specifically, for a group of B multiplication gates, we encode the values over all B evaluations
on left wire values i.e x ∈ FB into one polynomial f using pack secret sharing such that f(0)

$←−
F, f(i) = xi for i ∈ [1, B] and commit to it using Pedersen commitment to obtain JfK = gx′

hr

where x′ := (f(0),x) ∈ FB+1. The vector of right wire values y is committed in the same way as
x to get JgK. For the vector of output wire values z, we define h(X) := f(X)g(X) and JhK = gz′hr

where z′ := (h(0), z, h(B + 1), . . . , h(2B)) ∈ F2B+1. P can convince V that zi = xiyi for all
i ∈ [1, s] by revealing f(c), g(c) and h(c) where the challenge c is randomly picked by V. V now
checks f(c)g(c)

?
= h(c) while P needs to prove that the revealed values are correct evaluations of

f(X), g(X) and h(X) at c. This can be handled by using a ZK proof for linear relations since by
Langrage formula, f(c), g(c) and h(c) can be expressed as linear form on the committed vectors
x′,y′ and z′. Observe that this way, P can prove correctness of a batch of B-tuples of multiplication
gates, by showing that the evaluation of many different committed polynomials at a given challenge
c is correctly computed. This can be done using an amortized check over many executions, with
cost identical to that of a single execution. Using a sublinear argument for a batch of B-tuples of
multiplications, the circuit ZK can be obtained by combing our compiler with an amortized nullity
check over one commitment scheme which is used to check the consistency of output gates and
also of two different commitments of two vectors of the form x ∈ FB+1 and (x, aux) ∈ F2B+1. The
details of construction are shown in section 4.2.

Compiling multi-verifier ZK. Yang et al. [YW22] proposed an non-interactive designated multi-
verifier zero-knowledge proof (MVZK) that allows a prover to prove the correctness of a statement
to a set of n honest-majority verifiers. It leverages packed Shamir secret sharing (PSS) [FY92] to
support SIMD statements. At a high-level, P first distributes the witnesses to V in the form of PSS,
then utilize a polynomial compression protocol [GSZ20, BGIN21, BBC+19] to reduce the check of
all multiplications into a single multiplication triple. The PSS of witnesses serves as commitments
among all V, thus it can be viewed as a commit-and-prove SIMD ZK. Effort is made in [YW22] to
convert its SIMD-ZK to general ZK by arranging all wire connection as a tuple (Jw1K, Jw2K, i, j),
indicating that w1[i] = w2[j]. All tuples with the same (i, j) can be checked in a batch with
commitment-opening cost O(n2) by a random linear combination. Since i, j ∈ [B], the total wire
consistency check incurs O(n2B2). However, by applying our SIMD compiler, the overhead for
the check is reduced to O(n2). The cost to prove multiplicative relations remains O(nC/B). One
caveat is that this protocol is not flexible in choosing the batch size B. Assume the maximum
number of corrupted verifiers t < n/2, it requires that 2t + B < n to ensure that honest verifiers
have enough shares to determine the result.

SIMD-ZK from Ligero. Our compiler is partially inspired by Ligero [AHIV17], an MPC-in-
the-head based ZKP [IKOS07] that works for general circuits. At the core of Ligero, P batch
encodes the witness using the Reed-Solomon (RS) coding scheme and commits to each entry of
the codewords. V chooses a subset of entries in codewords, and applies the interleaved RS test,
linear constraint test and quadratic constraint test to verify the correctness of encoding, wiring
consistency and multiplicative consistency.

We first extract a commit-and-prove SIMD-ZK from Ligero and prove that it realizes FSIMDZK.
Applying our SIMD compiler would result in the original Ligero. We then identify a security
issue when applying SIMD Ligero to our memory-constrained framework designed for scalable-
ZK. Namely, although Ligero can be turned into a commit-and-prove ZK, its commitment only
supports a pre-determined limited number of invocations from the proving procedure. Following
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the MPC-in-the-head paradigm, the committing phase mentioned above is equivalent to emulating
a n-party computation of such circuit, then separately commit to the view of each party among
(P1, . . . , Pn). During the proving phase, P opens a subset of t < n views to V, who applies the
above mentioned tests. This is fine for one-shot proofs. However, general commit-and-prove ZK
does not restrict the number of times that the proving procedure is applied to a commitment. The
zero-knowledge property can be compromised if the number of opened views exceeds the degree
parameter of Reed-Solomon encoding. Although refreshing the commitment solves this issue, a
proof of equality across the obsolete and new commitments does not come for free. Our framework
covers this issue by adding a counter in FSIMDZK to check the usage of each commitment, and abort
the proving phase when an input commitment is overused.

3 Generic Compiler of ZK Proofs from SIMD Circuits to Arbi-
trary Circuits

In this section, we first present a construction for extended SIMD-ZK functionality FeSIMDZK which
supports the proof of linear map, in addition to the normal SIMD-ZK functionality FSIMDZK. Based
on the extended SIMD-ZK, we describe our compiler that enables a SIMD-ZK scheme to work for
general circuits. At last, we present a framework that allows SIMD-ZK schemes to prove large
statements with small memory footprints.

3.1 Extended SIMD-ZK
The protocol for extended SIMD-ZK is shown in Figure 3, which realizes the functionality FeSIMDZK.
It is based on the FSIMDZK functionality to perform the committing and opening of batched wire
values, as well as prove the element-wise multiplicative relations between these batches. It takes
input a public matrix M ∈ FBn×Bk and two vectors x = (x1, . . . ,xn) ∈ FBn and y = (y1, . . . ,yk) ∈
FBk from P, outputs 1-bit information to V indicating whether x = My. Essentially, it is a proof
of linear map. The first step is to reduce the proof of linear map to a proof of inner products,
which is achieved by a random linear combination: V uniformly samples r ∈ FBn and converts the
check of x ?

= My into r⊺x
?
= v⊺y, where v⊺ = r⊺M . After dividing these vectors into length-B

segments, P and V invoke the FSIMDZK functionality of batch size B. P inputs q and proves the
correctness of q =

∑n
i=1 ri ∗ xi −

∑k
j=1 vi ∗ yi ∈ FB. Eventually it opens the commitment to q

and let V check
∑B

i=1 q[i]
?
= 0. To ensure the privacy of P, it needs to make sure that only opened

commitment to q does not reveal information of x and y. It does so by the random mask r̃. The
impact of this mask on soundness is negligible since it is committed before r is sampled.

In terms of the cost, the protocol ΠeSIMDZK takes input k+ n vector commitments. During the
protocol execution, it additionally commits to k + n + 1 size-B vectors. If element-wise product
between a public vector and a committed vector is supported the underlying FSIMDZK, the number
of commitments is reduced to 1 size-B vector commitment. Parties invoke the Prove procedure
from FSIMDZK to prove a (B,n + k)-SIMD circuit. P also opens a size-B vector to V with cost at
most O(B). The cost is reduced if the underlying SIMD-ZK protocol provides an easier way to
prove

∑B
i=1 q[i] = 0 for a committed vector q without opening the commitment.

Theorem 1. Protocol ΠeSIMDZK (Figure 3) securely realizes the Functionality FeSIMDZK (Figure 2)
in the FSIMDZK-hybrid model, with soundness error |F|−1.

Proof. We first consider the case of a malicious prover and then the case of a malicious verifier.
In each case, we construct a PPT simulator S given access to functionality FeSIMDZK, and running
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Protocol ΠeSIMDZK

Inputs: The prover P and verifier V hold a public matrix M ∈ FBn×Bk for some integers n and k.
Commitments JxK and JyK are public, where x ∈ FBn and y ∈ FBk.
Protocol:

1. P uniformly samples a vector r̃ ∈ FB such that
∑B

i=1 r̃[i] = 0. Then FSIMDZK is invoked to obtain its
commitment Jr̃K.

2. V uniformly samples a vector r ∈ FBn and sends it to P. Everyone computes v = rTM ∈ FBk. Then
for i ∈ [k], FSIMDZK is invoked to construct JviK, where vi is the i-th B-sized vector of v. In the same
way, everyone can have access to {JriK}i∈[n].

3. P computes q ∈ FB , such that q[i] =
∑n

j=1 rj [i]xj [i] −
∑k

j=1 vj [i]yj [i] + r̃[i]. P invokes FSIMDZK to
obtain JqK.

4. Define circuit

CLin(a1, . . . , an, b1, . . . , bn, c1, . . . , ck, d1, . . . , dk, e, f)

:=

n∑
i=1

ai · bi −
k∑

i=1

ci · di + e− f,

then call FSIMDZK.Prove(CLin, Jr1K, . . . , JrnK, Jx1K, . . . , JxnK,Jv1K, . . . , JvkK, Jy1K, . . . , JykK, Jr̃K, JqK).
5. V sends (Open, JqK) to FSIMDZK, which returns q to V; V checks

∑B
i=1 q[i] = 0 and aborts if the check

fails.

Figure 3: The protocol for extended SIMD ZK from SIMD ZK.

a PPT adversary A as a subroutine while emulating FSIMDZK for A. We show that no PPT
environment Z can distinguish the real-world execution from the ideal-world execution.

Malicious prover. The simulator S simulates the view of adversary A for the protocol execution
of ΠeSIMDZK as follows:

1. By emulating the (Commit) command of FSIMDZK, S receives r̃ from A and sends a handler Jr̃K
to A.

2. S uniformly samples r ∈ FBn and sends to A. For i ∈ [k], after receiving (Commit,vi) from A,
S sends a handler JviK to A. Similarly, S sends JriK to A for i ∈ [n].

3. After receiving (Commit, q) from A, S emulates FSIMDZK by sending A another handler JqK.
4. S receives (Prove, C, τ1, . . . , τ2n+2k+2) from A and checks whether {τi}i∈[2n+2k+2] match their

corresponding tags. Then, for i ∈ [B], S checks whether
∑n

j=1 rj [i]xj [i]−
∑k

j=1 vj [i]yj [i]+ r̃[i]−
q[i] equals to 0 or not. If any check fails, S aborts; otherwise sends Pass to A.

5. S emulates the (Open) command of FSIMDZK and receives a handler τ from A. If τ does not
match JqK or the vector q previously sent by A does not satisfy

∑B
i=1 q[i] = 0, S aborts.

Define E to be the event that a cheating prover A successfully convinces V in the real world.
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This happens when r accidentally corrects the wrong input of A. Define z = My and

f(x1, . . . , xBn) =
Bn∑
i=1

xi(x[i]− z[i]) +
B∑
i=1

r̃[i].

With fixed x, z, r̃ and uniformly sampled r, we have

Pr [E|x ̸= My] = Pr [f(r) = 0|x ̸= My] = |F|−1.

since f(x1, . . . , xBn) is a Bn-variate degree-1 polynomial. Hence we conclude that A cannot dis-
tinguish between the real and ideal world except with probability |F|−1.

Malicious verifier. Similarly in this case, S interacts with A as follows:

1. To emulate the (Commit) command, S sends a handler Jr̃K to A.

2. S recieves r and (Commit,vi) from A for i ∈ [k]. Then S emulates FSIMDZK by sending A a
handler JviK for i ∈ [k]. In the same way, S sends A handlers {JriK}i∈[n].

3. Then, S plays the role of FSIMDZK and sends a handler JqK to A.

4. S receives (Prove, C, τ1, . . . , τ2n+2k+2) from A and checks whether {τi}i∈[2n+2k+2] match their
corresponding tags. Then S queries FeSIMDZK. If check fails or FeSIMDZK aborts, S aborts;
otherwise sends Pass to A.

5. By emulating the (Open) command of FSIMDZK, S uniformly samples a vector q ∈ FB such that∑B
i=1 q[i] = 0 and sends q to A.

The only difference between reality and the ideal world is the method of calculating vector q.
Following the constraint

∑B
i=1 q[i] = 0, S uniformly samples vector q. While in reality, each entry

of q is masked by vector r̃ chosen by P. As a result, in both worlds, all entries except one of q are
information-theoretic secure, so no one can distinguish one from another.

Overall, any PPT environment Z cannot distinguish between the real-world execution and
ideal-world execution, which completes the proof.

3.2 Compiling Extended SIMD-ZK
The general approach to compile a SIMD protocol into a generic protocol is to supplement it with
an additional proof of wiring consistency. Namely, denote w as a vector that includes all the wire
values in a circuit, then any input wire of a multiplication gate can be represented as the linear
combination of a series of values in w, who are the wire values that connect from the circuit inputs
or the output of other gates. This relation can be generally represented as a linear map M between
a vector of wire values x, and w, which should satisfy x = Mw. As shown in Figure 4, along with
the vector w, P also commits to (l, r,o) which are the batches of input and output wire values of
multiplication gates. Showing that o = l ∗ r is enough to prove that all multiplication gates are
computed correctly. Additionally, P also proves the correctness of (l = Lw, r = Rw,o = Ow), in
which (L,R,O) are the linear maps that defines the routing of wires that connects to the input
and output wires of multiplication gates. Additionally, the proof of 0 = Aw shows the correct
computation of all addition gates.

To handle a general circuit C, our compiler fully depends on the extended SIMD-ZK functionality
FeSIMDZK. Regarding the cost analysis, P commits to a total of k + 3n2 size-B vectors to V. They
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Protocol Πcompiler

Inputs: The prover P and verifier V hold an arbitrary circuit C over a large field F, where C contains
N1 = Bn1 addition gates, N2 = Bn2 multiplication gates and K = Bk wires for some n1, n2 and k.
Protocol:

1. Set c = 1. For each gate in the form (i, α, β, γ, T )

• If T = ADD, set Ai := Iα + Iβ − Iγ ; P sets w[γ] := w[α] +w[β]

• If T = MULT , set (Lc,Rc,Oc) := (Iα, Iβ , Iγ); P sets (l[c], r[c],o[c]) =: (w[α],w[β],w[α] ·w[β]).
Increase c by 1.

After the circuit is processed, matrix L,R,O ∈ FN2×K , and A ∈ FN1×K are public; P has
(l, r,o,w) ∈ FN2 × FN2 × FN2 × FK .

2. P splits wire values (l, r, o, w) into chunks of size B, i.e., {li, ri,oi}i∈[n2] and {wi}i∈[k], such
that each element is in FB . FeSIMDZK is invoked to obtain commitments {JliK, JriK, JoiK}i∈[n2] and
{JwiK}i∈[k].

3. Then, (LinearMap, {JliK}i∈[n2], {JwiK}i∈[k],L) is sent to FeSIMDZK to check that l = Lw; similarly
check that r = Rw, o = Ow, and that 0 = Aw.

4. Let circuit CMult : F3 → F such that CMult(x, y, z) := xy − z. For i ∈ [n2], send
(Prove, CMult, JliK, JriK, JoiK) to FeSIMDZK.

Figure 4: Generic ZK in the FeSIMDZK hybrid.

invoke the proof of linear map for 4 times to prove the wiring consistency, and the proof of element-
wise multiplication to prove the correctness of n2 batches of multiplication gates. An optimization
to reduce the cost for the proof of linear map is to combine the 4 of them into 1. Namely, define w′

to be the wire values excluding the input and output wires of multiplication gates. Construct the
witness vector w = (w′∥l∥r∥o) and prove the wiring consistency by proving 0 = A′w, in which
A′ ∈ FK×K is a map that describes the circuit wire connectivity.
Theorem 2. The Protocol Πcompiler (Figure 4) securely realizes the Functionality FZK in the
FeSIMDZK-hybrid model, with 0 soundness error.

Proof. Similarly, we construct a PPT simulator in two cases and argue that no PPT environment
Z can distinguish reality and the ideal world.
Malicious prover. The simulator S simulates the view of adversary A for the protocol execution
of Πcompiler as follows:

1. Following the protocol specification, S obtain matrix L,R,O and A from circuit C.

2. By emulating the (Commit) command of FeSIMDZK, S receives {li, ri,oi}i∈[n2] and {wi}i∈[k] from
A and sends A handlers {JliK, JriK, JoiK}i∈[n2] and {JwiK}i∈[k].

3. After receiving (LinearMap, {τi}i∈[n2+k],L) from A, S checks whether {τi}i∈[n2] match {JliK}i∈[n2]

and {τi}i∈[n2+1,n2+k] matches {JwiK}i∈[k]. Then, S checks whether l = Lw. If any check fails, S
aborts; otherwise, S sends Pass to A. Similarly, S handles other three (LinearMap) commands
from A.

4. For i ∈ [n2], S receives (Prove, C, τ1, τ2, τ3) from A and checks whether {τ1, τ2, τ3} match the
tags {JliK, JriK, JoiK}. In each round, S also checks that li[j] · ri[j] = oi[j] for j ∈ [B]. If any
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check fails, S aborts; otherwise, S sends Pass to A.

It is trivial that S is perfect, since whenever an ideal functionality is called in the protocol, S acts
exactly the same as the definition of the functionality. On the other hand, if the witness indeed
satisfies linear as well as the multiplication constraints, we can conclude that it satisfies circuit C.
Given the perfectness of the ideal functionality, we can conclude that the soundness error is 0.

Malicious verifier. The simulator S simulates the view of adversary A for the protocol execution
of Πcompiler as follows:

1. S follows the protocol specification and obtain matrix L,R,O and A from circuit C.

2. By emulating the (Commit) command of FeSIMDZK, S sends A handlers {JliK, JriK, JoiK}i∈[n2] and
{JwiK}i∈[k].

3. After receiving (LinearMap, {τi}i∈[n2+k],L) from A, S checks whether {τi}i∈[n2] match {JliK}i∈[n2]

and {τi}i∈[n2+1,n2+k] matches {JwiK}i∈[k]. Then, S queries FZK. If check fails or FZK aborts, S
aborts; otherwise, S sends Pass to A. Similarly, S handles other three (LinearMap) command
from A.

4. For i ∈ [n2], S receives (Prove, C, τ1, τ2, τ3) from A and checks whether {τ1, τ2, τ3} match the
tags {JliK, JriK, JoiK}. In each round, S also queries FZK. If any check fails or FZK aborts, S
aborts; otherwise, S sends Pass to A.

Similarly, since S acts according to the definition of the ideal functionality and there is no com-
mitment opening during the protocol, the simulation is perfect.

As a result, no PPT environment Z can distinguish between the real-world scenario and the
ideal-world execution, which completes the proof.

3.3 Generic ZK for Limited-Memory
Besides a basic-version compiler, we also present another compiler that can deal with a situation
where the prover’s memory is limited. Although a similar question has already been proposed
before [BCCT13, GGPR13, PS04, KST22], our construction does not rely on any complicated
assumption other than the realizatin of FeSIMDZK with the parameter τmax > 1. The protocol is
shown in Figure 5. We take the advantage of the commit-and-prove paradigm: instead of proving
the whole circuit at one time, circuit can be “partially” proved. The value of wires that connect
between different parts of the circuit can be reserved as commitments and used for the proof of
connectivity. Specifically, prover will clarify a space threshold parameter S before the proof, and
the original circuit C will be divided into ⌈|C|/S⌉ parts (denoted as C1, C2, . . . , C⌈|C|/S⌉), where each
part contains at most S gates. In each round, S gates of Ci will be read and processed in the
memory, and P generates the proof for Ci. At the end of each round, P commits to a vector which
contains all the wire values that are still active in Ci+1, and discards those that won’t be used in
the remaining circuit.

To support this pruning operation, we add a DEL gate to the encoding of the circuit. P reads
the circuit from a stream of (α, β, γ, T ), where T ∈ {ADD,MULT,DEL}. If T ∈ {ADD,MULT},
P processes gates α, β, γ similarly as the previous compiler. If T = DEL, P adds gate α to the
set D, which contains all the wire values that no longer appear in the next segment of the circuit.
After the proof of consistency inside Ci, P forms a new commitment to wire values that are not
in the set D. By applying FeSIMDZK.LinearMap, P proves that the committed wire values belongs
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Protocol Πsmall−space

Inputs: The prover P and verifier V hold an arbitrary circuit C over a large field F, and a space
threshold parameter S = sB for some integer s. P holds the secret input x such that C(x) = 0.
Protocol:

1. Let h() : Z → Z be a function map wire indices to physical indices and w be a dynamic list storing
wire value to be dealt with in the current round. Initially, set h(i) = i and w[i] = x[i] for all i ∈ [|x|].
Define function Im() : f → Z, returning the maximum index that f has the definition.

2. Let D = ∅ and W = Im(h) + S. Initialize L, R, O, A to be empty matrices. Read the next S gates
to the memory (or until the last gate). For each in the form (α, β, γ, T ):

• If T = ADD, set h(γ) := Im(h) + 1, compute r := Ih(α) + Ih(β) − Ih(γ) ∈ FW and append r to A.
P sets w[h(γ)] := w[h(α)] +w[h(β)]

• If T = MULT , set h(γ) := Im(h) + 1, append rows in FW Ih(α), Ih(β), Ih(γ) to matrices L,R,O
respectively. P sets w[h(γ)] := w[h(α)] ·w[h(β)] and append values w[h(α)],w[h(β)],w[h(γ)] to
vectors l, r,o respectively.

• If T = DEL, add α to D.

Suppose that there are S1 = s1B addition gates and S2 = s2B multiplication gates (S = S1 + S2),
and after processing S gates, |w| = kB. A ∈ FS1×W and L,R,O ∈ FS2×W are public.

3. P splits wire values (l, r, o, w) into chunks of size B, i.e., {li, ri,oi}i∈[s2] and {wi}i∈[k], such that each
element is in FB . FeSIMDZK is invoked to obtain commitments {JliK, JriK, JoiK}i∈[s2] and {JwiK}i∈[k].

4. Then, (LinearMap, {JliK}i∈[n2], {JwiK}i∈[k],L) is sent to FeSIMDZK to check that l = Lw; similarly
check that r = Rw, o = Ow, and that 0 = Aw.

5. Let circuit CMult : F3 → F such that CMult(x, y, z) := xy − z. For i ∈ [s2], (Prove, CMult, JliK, JriK, JoiK)
is sent to FeSIMDZK.

6. Let R = Domain(h) \ D. Suppose that |R| = k′. For the i-th element in R, let h′(R[i]) = i, and set
the ith row of H as Ih(R[i]).

7. P computes w′ such that for each w′[h′(i)] = w[h(i)]. Append 0 to w′ and 0 to H until the size of w′

becomes a multiple of B. Supppose that |w′| = k′B, and then P calls Commit to obatin {Jw′
iK}i∈[k′].

Update (h,w) := (h′,w′).

8. Both parties call (LinearMap, {w′
i}i∈[k′], {wi}i∈[k],H) to check the consistency between w and w′.

9. If more gates need to be processed, jump to step 2.

Figure 5: Generic ZK in limited-memory scenario.

to the output wires of Ci, which are also the input of Ci+1. P and V repeat this procedure for the
proof of each segment.

Now we claim that if the plaintext evaluation of circuit C requires memory space M , then in
our protocol, the prover’s space complexity is O(M). Denote oi as the output of subcircuit Ci, and
circuit input x is denoted as o0. In each round, we call FeSIMDZK.Prove to complete the proof for Ci
and FeSIMDZK.LinearMap to prove the transformation between Joi−1K and JoiK. As each subcircuit
contains at most S gates, proving Ci requires O(S) space. And also, using FeSIMDZK.LinearMap
to prove the consistency between Joi−1K and JoiK requires O(|oi−1| + |oi|) space, so the space
complexity of each round is O(S + |oi−1| + |oi|). As a result, the overall space complexity is
O(S + max{|oi−1| + |oi|}i∈[⌈|C|/S⌉]). Since in the plaintext evaluation of C, only active wire value
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Protocol ΠAntMan

Public inputs. The prover P and verifier V hold a general circuit C over a large field F, where C
contains n = |C| multiplication gates and m input gates. Let α1, . . . , αB ∈ F be B distinct elements that
are fixed for the whole protocol execution. Both parties invoke Initialize() in IT-PAC to obtain τ1.

Private input. P holds m witnesses w1, . . . ,wm ∈ FB such that C(w1[i], . . . ,wm[i]) = 0 for all i ∈ [B].

Commit: On input w ∈ FB , P computes polynomial f(·) =
∑B−1

i=0 fi · Xi such that for i ∈ [B],
f(αi) = wi. Both parties invoke (⟨b⟩, τ2) ← PreGen(f). P obtains ⟨b⟩ and V obtains τ2. If Λ has been
revealed, invoke (M,K)← Gen(τ1, τ2). P holds M and V holds K.

Open: On input (Jf(·)K, f(·),Λ), both parties compute that JµK := Jf(Λ)K − f(Λ). Let H : {0, 1}∗ →
{0, 1}λ be a random oracle. P sends H(Mµ) to V who checks whether H(Mµ) = H(Kµ).

Figure 6: The protocol of SIMDZK from AntMan.

needs to be read into the memory, memory upper bound M ≥ max{|o0|, |o1|, |o2|, . . . , |o⌈|C|/S⌉|}.
By choosing S < M , we can conclude that the space complexity of the protocol is O(M).

4 Efficient Instantiations of Our Compiler
The only assumption that our general compiler described in Section 3.2 makes is that the under-
lying ZKP realizes the extended SIMD-ZK functionality FeSIMDZK. The compiler for scalable ZK
described in Section 3.3 only additionally requires the parameter τmax > 1 for FeSIMDZK. In this
section, we show three instantiations of SIMD-ZK that benefits from these compilers, including

• A ZKP based on vector oblivious linear evaluation [WYY+22].

• A zk-SNARK from Σ-protocol [AC20].

• A designated multi-verifier ZKP based on packed Shamir secret sharing and recursive inner
product check [YW22].

All of these works are in the form of SIMD-ZK and originally require significant extra effort to
be converted into a general ZK. Our compilers are able to transform them into general ZK with
decrease in their proof size or setup cost. The only exception is the AntMan [WYY+22] which is
restricted by τmax = 1 thus does not fit into the second compiler for scalable ZK. In Supplementary
Material A.2 and A.3, we additionally describe a SIMD-ZK that is extracted from an MPC-in-the-
head scheme Ligero [AHIV17], and a construction from LegoSNARK [CFQ19]. Both our compilers
are generalizations of them and a follow-up work [BBHV22]. We show that Ligero SIMD-ZK
perfectly fits our compilers and discuss extra caution that need to take when compiling Ligero.

4.1 AntMan++: Sublinear Designated-Verifier ZK
AntMan [WYY+22] is a sublinear VOLE-based ZK proof for SIMD circuits, which only requires
communicating O(B + |C|) field elements to prove a (B, C)-SIMD circuit. It also presents a con-
struction for proving a single execution of an arbitrary circuit, by breaking down the circuits into
individual gates and batching them as SIMD circuits. The proving of SIMD circuits requires sending
O(|C|/B+B) field elements, and the cost to check the wire-value consistency is O(B3), which leads
to O(|C|3/4) communication complexity in optimal. It is the only sublinear-communication VOLE-
ZK protocol for proving an arbitrary circuit. In AntMan [WYY+22], the information-theoretic
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polynomial authentication code Πk
IT-PAC servers as a polynomial commitment scheme. For arbi-

trary degree-k polynomial f(·) known by P, an IT-PAC Jf(·)K consists of a MAC M ∈ F known by
P and a tuple of keys (K,∆,Λ) ∈ F3 known by V, such that M = K + f(Λ) ·∆. In the following,
we first detail the commitment scheme used in the AntMan protocol, then discuss how to enable
AntMan to prove arbitrary circuits.
Information-theoretic polynomial authentication code ΠIT−PAC. As shown in Figure 7,
the protocol is designed in the (FVOLE,FCom)-hybrid model. It adopts additively homomorphic
encryption (AHE) scheme to obliviously evaluate a polynomial, where the polynomial is known by
P and the secret point Λ is known by V. Then VOLE correlations further transform such oblivious
polynomial evaluation (OPE) into IT-PACs. A critical issue is to guarantee that the HE ciphertext
which encodes the evaluation point Λ is correct. Instead of using the zero-knowledge proof of
knowledge for the proof of validity (as done in several MPC protocols [KPR18, DPSZ12]), AntMan
utilizes a simple commit-and-open approach. Specifically, V first commits to the randomness that
are used to generate the HE ciphertexts ⟨Λ1⟩, . . . , ⟨Λk⟩. After receiving HE ciphertexts from V, P
performs the homomorphic evaluation and commits to all of HE ciphertexts ⟨b⟩ that it should send
to V for OPE. Then V opens the randomness and let P check the correctness of ⟨Λ1⟩, . . . , ⟨Λk⟩.
If they are valid, P opens ⟨b⟩ to continue with the execution of OPE. This allows the AntMan
protocol to remove the possible leakage of secret polynomials, which is incurred by homomorphically
performing polynomial evaluation upon incorrect ciphertexts.
Compiling AntMan. The AntMan protocol that realizes FSIMDZK is shown in Figure 6 (derived
from the original AntMan [WYY+22]). Below we show how to compile it into a ZK protocol
that proves the satisfiability of a single general circuit with sublinear communication, following the
protocol of our compiler Πcompiler.

Given a public circuit C, both parties scan the circuit following the procedure in figure 4 to calcu-
late wire rearrangement matrices L,R,O, as well as matrix A that describes addition gates. Then P
splits wire values (l, r, o, w) into chunks of size B, and calls Commit to obtain {JliK, JriK, JoiK}i∈[n2]

and {JwiK}i∈[k]. To prove l = Lw:

1. P uniformly samples a vector r̃ ∈ FB such that
∑B

i=1 r̃[i] = 0, and calls Commit to obtain Jr̃K.
2. V uniformly samples a vector r ∈ FBn2 and sends it to P. Both parties compute v = rTL ∈ FBk

and call Commit to obtain {JviK}i∈[k] and {JriK}i∈[n2].

3. P computes q ∈ FB, such that

q[i] =

n2∑
j=1

rj [i]lj [i]−
k∑

j=1

vj [i]wj [i] + r̃[i].

P calls Commit to obtain JqK.
4. Define circuit

CLin(a1, . . . , an2 , b1, . . . , bn2 , c1, . . . , ck, d1, . . . , dk, e, f)

:=

n2∑
i=1

ai · bi −
k∑

i=1

ci · di + e− f,

then call Prove(CLin, Jr1K, . . . , Jrn2K, Jl1K, . . . , Jln2K, Jv1K, . . . ,JvkK, Jw1K, . . . , JwkK, Jr̃K, JqK).
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Protocol Πk
IT-PAC

Let AHE = (Setup,KeyGen,Enc,Dec) be an additively homomorphic encryption scheme. Suppose that
two parties P and V have already agreed a set of public parameters par = Setup(1λ) and global key
∆ ∈ F. Let G be a PRG. Let k be the maximum degree of the polynomials committed in each IT-PAC.

Initialize.

1. V samples seed ← {0, 1}λ, and then V and P call the (Commit) command of FCom with input seed,
which returns a handle τ1 to P.

2. V samples Λ← F and runs ⟨Λi⟩ ← Enc(sk,Λi; ri) for all i ∈ [1, k] where (r0, r1, . . . , rk) = G(seed) and
sk← KeyGen(par; r0). Then, V sends the AHE ciphertexts ⟨Λ1⟩, . . . , ⟨Λk⟩ to P.

Pre-Gen. On input f ,

3. P and V sends (extend) to FVOLE, which returns u,w to P and v to V, such that w = v + u ·∆.

4. On input polynomial f(·) =
∑k

i=0 fi ·Xi ∈ F[X], P computes a ciphertext ⟨b⟩ with u+ b = f(Λ) via
⟨b⟩ =

∑k
i=1 fi · ⟨Λi⟩+ f0 − u.

5. P and V call the (Commit) command of FCom with inputs ⟨b⟩, which returns a handle τ2 to V.

Gen. On input (τ1, τ2),

6. V and P call the (Open) command of FCom on input τ1, which returns (seed, τ1) to P. In parallel, V
sends Λ to P. Then, P computes (r0, r1, . . . , rk) := G(seed) and runs sk← KeyGen(par; r0). P checks
that ⟨Λi⟩ = Enc(sk,Λi; ri) for all i ∈ [1, k], and aborts if the check fails. P sets M := w.

7. P and V call the (Open) command of FCom on input τ2, which returns (⟨b1⟩, . . . , ⟨bℓ⟩, τ2) to V. Then,
V runs b← Dec(sk, ⟨b⟩), and then computes K := v − b · Λ ∈ F.

8. Two parties obtain an IT-PAC [f(·)], where P holds (f(·),M) and V holds K.

Figure 7: Protocol for generating IT-PACs without ZK proofs in the (FVOLE,FCom)-hybrid model.

In the same way, check that r = Rw, o = Ow, and that 0 = Aw. After wire consistency
check, we check the correctness of multiplication gates. Define circuit CMult({xi,yi, zi}i∈[n2]) :=∨

i∈[n2]
(xiyi−zi), and call Prove(CMult, {JliK, JriK, JoiK}i∈[n2]). Then, V calls (Open, JqK) and checks∑B

i=1 q[i] = 0. V aborts if any check fails. The full description of SIMD AntMan is shown in
Protocol 6 and 8.

AntMan++. By applying our SIMD compiler to the original SIMD AntMan, we propose AntMan++,
which is a more efficient VOLE-based ZK proof for arbitrary circuits. Similar to the original
AntMan, we first batch arithmetic gates and prove their correctness. The generation of IT-PACs
of all the wire values incurs O(|C|/B) communication communication complexity. Additionally,
checking the correctness of multiplication gates requires an opening of size B.

The improvement of AntMan++ lies in the proof of wire consistency. As shown in Πcompiler, this
problem is transferred into proof of linear map. And we use a random vector to further transfer
linear-mapping proof into inner-product proof. In AntMan, we observe that the proof of inner
product between public and private vectors takes only O(B) communication overhead. Suppose
the challenge vector r is public and witness x is private, and the IT-PACs of two vectors are known
to both parties. After the secret evaluation point Λ is revealed, both parties can locally calculate
fr(Λ) because r is known. Via the additively homomorphic property of IT-PACs, both parties
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Protocol ΠAntMan (Cont.)

Prove: On input (C, Jw1K, . . . , JwmK), P and V do:
1. For each gate (α, β, γ, T ) in C, two parties holds IT-PAC of input wire vectors JfK and JgK:

• If T = ADD, both parties locally compute output IT-PAC JhK = JfK + JgK.
• If T = MULT , P computes a degree-(2B − 2) polynomial h̃(·) := f(·) · g(·) ∈ F[X] and a degree-

(B − 1) polynomial h(·) such that h(αi) = h̃(αi) for all i ∈ [B]. Then, P and V run sub-protocol
Π

(2B−2)
PAC to generate two IT-PACs Jh(·)K and Jh̃(·)K.

As there are n2 multiplication gates, the commitments of their outputs are denoted as Jh1K, . . . , Jhn2
K.

Consequently, their degree-(2B − 2) polynomials are denoted as Jh̃1K, . . . , Jh̃n2
K.

2. P samples two random polynomials r(·) and s(·) of respective degrees B − 1 and 2B − 2 in F[X]
such that r(αi) = s(αi) for i ∈ [1, t]. Then, P and V generate the corresponding IT-PACs Jr(·)K andJs(·)K.

3. V samples seed← {0, 1}λ and sends it to P. Then, two parties compute (χ1, . . . , χn2
) := Hash(seed) ∈

Fn2 .

4. P and V locally compute Jh(·)K := ∑n2

j=1 χj · Jhj(·)K + Jr(·)K and Jh̃(·)K := ∑n2

j=1 χj · Jh̃j(·)K + Js(·)K.
Then, P sends the polynomial pair (h(·), h̃(·)) to V, who checks that h(·), h̃(·) have the degrees B− 1

and 2B − 2 respectively and h(αi) = h̃(αi) for all i ∈ [1, t].

5. P and V run Gen(τ1, τ2) to open Λ to P, and then V can compute the local keys on all IT-PACs.

6. P and V run a VOLE-based zero-knowledge proof
DVZK

{
(Jfj(Λ)K, Jgj(Λ)K, Jh̃j(Λ)K)j∈[n2] | ∀j ∈ [n2], h̃j(Λ) = fj(Λ) · gj(Λ)

}
.

7. P and V locally compute [µ] := [h(Λ)]− h(Λ) and [ν] := [h̃(Λ)]− h̃(Λ). Then, two parties run Open
to check that µ = 0 and ν = 0.

8. Let Jv(·)K be the IT-PAC associated with the output values circuit C. P and V run Open to check
v(Λ) = 0.

If any check fails, V aborts.

Figure 8: The protocol of SIMDZK from AntMan (Cont.).

compute fr(Λ) · JxK, which is also the IT-PAC of Hadamard product of r and x. In this way,
both parties compute n+ k IT-PACs and add them up to obtain JqK. In the end, according to the
protocol in figure 3, both parties open the vector of size B and check whether their sum equals to
0. As a result, the communication cost of AntMan++ is O(|C|/B +B). When setting B = |C|1/2,
it results in O(|C|1/2).

Performance evaluation. We implement the AntMan++ protocol and benchmark its perfor-
mance. Its homomorphic encryption (HE) is supported by the Microsoft SEAL [SEA22] and other
cryptographic building blocks are from EMP-toolkits [WMK16]. Two Amazon EC2 m5.8xlarge in-
stances located in the same region are running as P and V. We manually throttle the network to sim-
ulate low-bandwidth settings. We use the same 59-bit FFT-friendly field as the AntMan [WYY+22].
The performance of AntMan++ is not affected by the circuit structure and we benchmark with
layered circuits for convenience. In all experiments, we randomly sample a circuit with 216 in-
put wires, 227 addition gates and 227 multiplication gates distributed at 212 layers. We compare
AntMan++ with the prior general VOLE-ZK Quicksilver [YSWW21].
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log2B
Comm. (MB) Running time (s)
Setup Online Setup Online

9 4.6 60.13 6.84 377.3
10 4.6 30.54 14.7 380.7
11 4.6 15.78 38.72 407.83
12 6.7 8.82 144.75 438.19

QS [YSWW21] 1087.23 185.43

Table 1: Performance of AntMan++ with variable batch size. Benchmarked with 1 thread,
50 Mbps bandwidth and circuit size C = 227.

Scheme-Threads Bandwidth (Mbps)
10 25 50 100

AM-1 461.71 449.75 446.55 444.17
AM-4 292.61 280.53 277.43 275.28
AM-8 263.55 249.89 248.24 246.07

QS-8 [YSWW21] 900.47 361.29 181.63 91.9

Table 2: Performance of AntMan++ with variable threads and bandwidth. Benchmarked
with circuit size C = 227 and batch size B = 211.

We first benchmark the running time and communication overhead with variable batch size
log2B ∈ [9, 12]. AntMan++ is split into the input-independent setup phase and online phase,
and their performance are reported separately. As shown in Table 1, the increase of B leads to the
significant reducing of the online communication overhead. The setup communication is dominated
by HE ciphertexts and rotation keys. For the security of HE, the ciphertext size is fixed for all
log2B ≤ 11 and start to increase when B ≥ 12. The running time for both setup and online phases
increase with B. The overhead mainly comes from the ciphertext rotation during the setup phase
as well as the HE evaluation and polynomial multiplication during the online phase. Although
its running time is 2.1× ∼ 3.2× longer than Quicksilver, the bandwidth usage is 17.5× ∼ 83.6×
smaller.

Then we show the running time with the variable network bandwidth and the number of threads
(Table 2). The batch size is fixed to be B = 211. AntMan++ is highly efficient in terms of network
communication with asymptotically O(C/B) overhead. Its running time does not significantly
deteriorate with the decreasing of bandwidth. On the another hand, AntMan++ is computationally
heavy but fully parallelable, thus multi-threading is effective on increasing its throughput. When
the number of threading is increased from 1 to 4, the running time is decreased by 36% ∼ 38%.
Compared to Quicksilver, it requires 70% less running time when bandwidth is 10Mbps and 30%
less when bandwidth is 25Mbps.

4.2 Constant-round SIMD-ZK in the Discrete Logarithm setting
Turning the attention to the circuit ZK in the discrete logarithm setting which traditionally can
be achieved with the communication cost linear to the circuit size, recently there are some efficient
works [Gro09, Seo11, BCC+16, AC20] significantly reducing the communication complexity from

21



linear to sublinear in constant rounds or to logarithm with logarithm round complexity. While
the discrete logarithm-based zero-knowledge arguments in [Gro09, Seo11] have constant moves
and sublinear communication, [BCC+16] based on [Gro09] and Bulletproof proposes an ingenious
recursive approach to achieve a communication and round complexity proportional to the logarithm
of the circuit size. Currently, the work of Cramer et al. [AC20] obtains the same result as [BCC+16]
by using a different approach i.e they firstly construct a compressed pivot for ZK proof of arbitrary
linear form (inspired by Bulletproof) then use this pivot as a black box combining with pack secret
sharing polynomial. When considering the circuit ZK of [AC20] in constant moves and without the
Fiat-Shamir heuristic, it achieves a sublinear communication complexity with the size of CRS to
be O(n) and the dominant computation cost to be equivalent to O(1)-interpolation of polynomials
of degree O(n) where n is the size of the circuit.
We present an SHVZK argument of knowledge for (B,C)- SIMD circuits and then for a general
circuit based on Pedersen’s commitment. We firstly state the compression and the amortization
techniques used in [AC20] by a formal construction. We show in detail that, a sublinear argument of
knowledge for linear form evaluation is actually achieved in constant-move with specific explanations
about communication and computation complexity while in [AC20] it only appears in the remark.
We then use these techniques to build batch check multiplications (section 4.2.3). Note that, the
batch check for multiplication gates is non-trivial, it is realized by carefully using the amortization
for many checks of different committed vectors over the same linear form. Finally, the construction
of SIMD ZK and the concrete efficiency of circuit ZK are described in section 4.2.4. Compared
with circuit ZK of [AC20], we obtained a better CRS size and computation complexity by taking
advantage of our compiler and the approach of dividing circuit into smaller ones, i.e our CRS size
is O(B) instead of O(|C|), our dominant computation cost is O(|C|/B) interpolations of polynomial
of degree O(B) while it is O(1) interpolations of polynomial of degree O(|C|) in [AC20].

4.2.1 Sublinear ZK Argument for Linear Form Evaluation

Given a linear form L : Zn
p → Zp, consider the relation

R = {(P ∈ G, L, y ∈ Zp;x ∈ Zn
p , r ∈ Zp) : P = gxhr, y = L(x)}

We have commitment P ∈ G to x ∈ Zn
p and the prover wants to convince the verifier that the

correctness of evaluation of L on the committed vector i.e y = L(x), while the information of x is
kept secret.
Without the loss of generality, for a dimension m and a vector g ∈ Gm, given k|m where k is the
number of parts to divide g into, if this is not the case the vector g can be appended with zeros,
then g := g1|g2| . . . |gk ∈ Zm

p and gi ∈ Zm/k
p for i ∈ [1, k]. Given a linear form L : Zm

p → Zp, let
us define k sub-linear forms Li : Z

m/k
p → Zp of L as x → L(x′) where vector x′ ∈ Zm

p such that
block i of x′ equals to x and other k − 1 blocks equal to 0s. As a result, L(x) =

∑k
i=1 Li(xi). The

notation JxK is a Pedersen commitment of vector x.
While in [AC20] divides the witness vector x ∈ Zn

p into 2 parts then recursive run protocol
log(n) − 1 times and get an honest-verifier proof of knowledge for relation R with O(log n) bits
communication in O(log n) moves. Observing from [Gro09], there is a trade-off between communi-
cation cost and the number of rounds, so we can generalize by dividing the witness into k = O(

√
n)

parts resulting in a protocol in constant-round with sublinear communication. This observation is
indicated informally in [AC20], we now state it in a formal protocol as Figure 9 with the detail of
complexity cost.
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Protocol Π(JxK, L, y;x)
Public parameters. (g, h, k) ∈ Gn+2, L : Zn

p → Zp, P = gxhr, y = L(x).
Protocol.

1. P → V. Prover picks randomly α
$←− Zn

p , β
$←− Zp. Prover sends t = L(α), A = gαhβ to verifier.

2. V → P. Verifier chosen randomly c0, c1
$−→ Zp and sends them to prover.

Prover defines z = c0x+α, γ = c0r + β and ẑ := (z, γ).
Define ĝ := (g, h) ∈ Gn+1, Q := AP c0kc1(c0y+t) and L̃(z, γ) := c1L(z). Note that Q := ĝẑkL̃(ẑ).

3. P → V. For l ∈ [0, 2k − 2], prover computes:

ml :=
∏

i,j,l=k+i−j−1

ĝ
ẑj

i kL̃i(ẑj)

Observe by construction mk−1 = Q.
Prover sends mi to verifier for i ∈ [0, 2k − 2].

4. V → P. Verifier picks randomly c
$−→ Zp and sends c to prover.

Define g′ := ĝ1 ∗ ĝc
2 ∗ · · · ∗ ĝck−2

k−1 ∗ ĝck−1

k ∈ Gn+1/k (∗ is denoted as component-wise product), Q′ :=∏2k−2
l=0 mcl

l , L′ :=
∑k

i=1 c
i−1L̃i.

5. P → V. Prover defines and sends z′ :=
∑k

i=1 c
k−iẑi ∈ Zn+1/k

p to verifier.
Verifier checks g′z′

kL
′(z′) ?

= Q′.

Figure 9: HVZK argument Π(JxK, L, y;x) for relation R

Theorem 1. Π (Figure 9) is a 5-move protocol for relation R. This argument is perfect
completeness, special HVZK, and computationally special soundness. The total communication
costs include:

• P → V: 2k − 1 elements of G and (n+ 1)/k + 1 element of Zp.

• V → P: 3 elements of Zp.

The completeness comes from:

Q′ :=

2k−2∏
l=0

mcl

l =

2k−2∏
l=0

 ∏
i,j,l=k+i−j−1

ĝ
ẑj
i kL̃i(ẑj)

cl

=

2k−2∏
l=0

 ∏
i,j,l=k+i−j−1

ĝ
ẑj
i kL̃i(ẑj)

ck+i−j−1

=
k∏

i=1

(
ĝci−1

i

)∑k
j=1 c

k−j ẑj
k∏

i=1

(
kc

i−1
)L̃i(

∑k
j=1 c

k−j ẑj)

=
(
ĝ1 ∗ ĝc

2 ∗ · · · ∗ ĝck−2

k−1 ∗ ĝck−1

k

)z′

k
∑k

i=1 c
i−1L̃i(z

′) = g′z′kL
′(z′)

The remaining proof of this theorem is directly obtained from [AC20], [Gro09].

4.2.2 Amortization

In this section, we present some amortizations which allow the prover to prove that 1) many nullity
checks of different linear forms over the same committed vector x and 2) many evaluations of the
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same linear form over many different committed vectors in the 5-move protocols by the trade-off
of an insignificant communication cost compared to single check Π.

Compressed many nullity checks as one Given P = gxhr, s linear functions Li : Zn
p → Zp,

the prover want to prove that Li(x) = 0 for all i ∈ [1, s]. By the well-known Schwartz-Zippel
lemma, the prover can do many nullity checks at the cost of one single check plus one more element
of Zp (challenge) from the verifier to prover. Especially, the verifier sends a challenge φ

$←− Zp to
prover and both of them then define the new linear form L(x) :=

∑s
i=1 Li(x)φ

i−1. Observe that
L(x) = 0 implies Li(x) = 0 for all i ∈ [1, s] with the probability at least 1− (s− 1)/p ≈ 1 when s
is polynomial of λ and p is exponential. So, it requires only one single nullity check plus sending
one more challenge φ to do s nullity checks. instead of running sequentially s- Π(JxK, Li, 0;x) for
i ∈ [1, s].

Protocol Πzeros(JxK, L1, L2, . . . , Ls, 0;x)

Public parameters. (g, h) ∈ Gn+1, Li : Zn
p → Zp for i ∈ [1, s], P = comck(x, r) = gxhr.

Protocol.

1. V → P. Verifier chosen randomly φ
$−→ Zp and sends to prover.

2. Define L :=
∑s

i=1 Liφ
i−1.

3. Prove and verifier runs protocol Π(P,L, 0;x) for checking the evaluation of L(x) ?
= 0.

Figure 10: Many nullity checks Πzeros(JxK, L1, L2, . . . , Ls, 0;x)

Amortized over many commitments Given Pi = gxihri for i ∈ [1, s], the prover wants to
convince that the evaluation of the same linear form L on many committed vectors is correct i.e
yi = L(xi). Intuitively, a prover can do this batch evaluation checks of L over many committed
vectors xi at the same cost of evaluation checks of L over only one committed vector. We can
see that P̃ := A

∏s
i=1 P

ci
i is the Pedersen commitment of vector z =

∑i
i=1 xic

i
0 + α where A is

commitment of α then L(z) := L(α) +
∑s

i=1 c
i
0yi. Note that, assume c0

$←− Zp, if the prover knows
the open of P̃ , it means the prover has to know the open of each Pj with a probability of almost 1.
Indeed, if there exists an Pj such that prover does not know the opening xj then prover can cheat
when having a correct opening of P̃ with at most probability of s/p (a cheating prover succeeds
when c0 is the zero of some polynomial of degree at most s).
Following the protocol Π (Figure 9), we modify the definition as z =

∑i
i=1 xic

i
0+α, γ =

∑s
i=1 ric

i
0+

β and Q := A
∏s

i=1 P
ci0
i kc1(

∑s
i=1 c

i
0yi+t). So, prover and verifier now can interact following the same

last 3-move in Π.
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Protocol ΠAm(JxiK, L, yi;xi)i∈[1,s]

Public parameters. (g, h, k) ∈ Gn+2, L : Zn
p → Zp, Pi = gxihri , yi = L(xi) for i ∈ [1, s].

Protocol.

1. P → V. Prover picks randomly α
$←− Zn

p , β
$←− Zp. Prover sends t = L(α), A = gαhβ to verifier.

2. V → P. Verifier chosen randomly c0, c1
$−→ Zp and sends them to prover.

Prover defines z =
∑i

i=1 xic
i
0 +α, γ =

∑s
i=1 ric

i
0 + β and ẑ := (z, γ).

Define ĝ := (g, h) ∈ Gn+1, Q := A
∏s

i=1 P
ci0
i kc1(

∑s
i=1 ci0yi+t) and L̃(z, γ) := c1L(z). Note that Q :=

ĝẑkL̃(ẑ).

3. The last 3-move is the same as the protocol in the Figure 9.

Figure 11: Amortized over many commitments ΠAm(JxiK, L, yi;xi)i∈[1,s]

4.2.3 Batch argument for multiplication gates

Let’s consider m tuples of B multiplications (xj,i, yj,i, zj,i = xj,iyj,i)i∈[1,B] for each j ∈ [1,m].
This approach follows the commit and prove paradigm, i.e., the prover commits to the witness and
subsequently proves that it satisfies the required relation. The batch argument is based on algebraic
interpolation polynomial and the ZK proof Π which proves the correct evaluation of linear form
(consider Π as a black box).

• For j ∈ [1,m], P defines 2 random polynomials fj , gj of degree at most B such that fj(i) =
xj,i and gj(i) = yj,i for all i ∈ [1, B]. By Lagrange-interpolation fj , gj are well-defined from
xj := (fj(0), xj,1, xj,2, . . . , xj,B) ∈ ZB+1

p and yj := (gj(0), yj,1, yj,2, . . . , yj,B) ∈ ZB+1
p . Define

hj := fjgj , observe that degree of hj is at most 2B, hj(i) = zj,i for i ∈ [1, B] and hj is well-defined
from zj := (h(0), zj,1, zj,2, . . . , zj,B, h(B + 1), . . . , h(2B)) ∈ Z2B+1

p . P commits (xj ,yj , zj)j∈[1,m].

• V pick randomly c
$−→ Zp \ [1, B] and sends it to P.

• P reveals (fj(c), gj(c), hj(c))j∈[1,m]. Verifier now then checks hj(c)
?
= fj(c)gj(c). P can cheat

with negligible probability at most (2B)/(p−B).
Denote Lc : ZB+1

p → Zp, L
′
c : Z2B+1

p → Zp are public linear forms by Lagrange formula such that
Lc(xj) = fj(c), Lc(yj) = gj(c) and L′

c(zj) = hj(c) (fj , gj are corresponding to the same linear
form).

• P runs in parallel ΠAm(JxjK, JyjK, Lc, fj(c), gj(c);xj ,yj)j∈[1,m] and ΠAm(JzjK, L′
c, hj(c); zj)j∈[1,m].

We obtain an argument for n multiplications with sublinear communication cost when choosing
B = O(

√
n).

Theorem 2. There is an argument for showing the corrections of n multiplications with sublinear
communication cost in constant-round. This argument has the below properties:

• Perfect completeness, computational special soundness, and special HVZK.

• The size of CRS is 2B + 3 random elements of G.

• The total communication cost includes
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– P → V : 3n/B +O(
√
B) elements of G and (O(

√
B) + 3n/B)elements of Zp.

– V → P : 4 elements of Zp.

• The computation complexity is O(n/B) interpolations of polynomial of degree O(B) over Zp.

4.2.4 Instantiation of SIMD ZK

The prover P and verifier V hold a general circuit C over Zp, where C contains k addition gates,
n multiplication gates and m input gates. P holds B witnesses w1, . . . ,wB ∈ Zm

p such that
C(wi) = 0 for all i ∈ [1, B]. For B executions of circuit C, P and V pack B same-type gates
into a group in a straightforward way. In particular, for an index i, the parties pack the i-th
input/output/multiplication/addition gates from all B executions of circuit C into a group.

1. Commitment of gates
For each group j ∈ [1, |C|], the prover defines commitments for tuple of left wire values (l1,j , l2,j , . . . , lB,j),
right wire values (r1,j , r2,j , . . . , rB,j) and output wire values (o1,j , o2,j , . . . , oB,j) in the following
way

• For left wire values, the prover selects random polynomial fj(X) that defines a packed secret
sharing of the vector (l1,j , l2,j , . . . , lB,j) i.e fj(i) = li,j for i ∈ [1, B], prover then commit
vector lj := (fj(0), l1,j , l2,j , . . . , lB,j) as JljK. Similarly for the right wire values with random
polynomial gj(X).

• If the group contains addition gates then prover sends JljK, JrjK to verifier and the commitment
of output wire values JojK := JljKJrjK is non-interactive computed by both prover and verifier.

• Otherwise, if the group contains multiplication gates JojK is defined by the commitment of
vector oj := (h(0), o1,j , o2,j , . . . , oB,j , h(B + 1), . . . , h(2B)) where h(X) = f(X)g(X). Prover
then sends JljK, JrjK and JojK to verifier.

2. Correctness check of multiplication gates
Prover convinces verifier that the evaluation of multiplication gates is correct using the batch
arguments in section 4.2.3.

3. Consistency check of output gates
For output gates, prover wants to show that the value of all output gates is 0s. It means that
when j = |C|, JojK is the commitment of vector oj = (r, 0, 0, . . . , 0) ∈ ZB+1

p (w.r.t addition
output gates) or oj = (hj(0), 0, 0, . . . , 0, hj(B + 1), . . . , hj(2B)) ∈ Z2B+1

p (multiplication output
gates). Consider crs = (g1, g2, . . . , g2B+3) then prover has to convince that in JojK the powers
of set of generator {g2, g3, . . . , gB+1} are zeros. This constraint actually is a batch of B-nullity
checks for different linear forms over one committed vector. Prover and verifier then run Πzeros

for many nullity checks.

Informally, we achieve a ZK proof for (B,C)-SIMD circuits with communication O(|C| +
√
B).

Especially, sending commitments of gates costs at most 3|C| elements of G. For checking the
correction of multiplication gates and consistency of output gates, the communication cost is less
than 3 times the instantiation of Π over the committed vector of length 2B which has O(

√
B)

communication cost.
Sublinear circuit satisfiability Given an arbitrary circuit C, we present a ZK proof for circuit
satisfiability with sublinear communication cost based on generalized Pedersen commitments. Intu-
itively, the circuit C is divided into B smaller sub-circuits having the same number of input gates,
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addition gates, and multiplication gates then we do ZK proof in the batch of tuple B elements
corresponding with the same type of gate in B sub-circuits. Without loss of generality, assume
that the number of input gates, addition gates, and multiplication gates of circuit C are multiple
of B. If not the compiler to transfer general circuits in detail is explained in [WYY+22].

Since Pedersen’s commitment is homomorphic, additions are free in our system, there are two
constraints needed to prove 1) that multiplication gates are correctly computed and 2) the con-
sistency of wires between layers. The former constraints is handled by the batch multiplication
argument and the latter is proven using our compiler (section 3). Note here, we apply our com-
piler to prove in ZK the consistency of wires between layers (this is essentially a proof of a linear
map) and combine the high-level intuition underlying the analysis of our compiler with the analysis
of Attema et al. to obtain a direct security proof. Concretely, we carefully combine two works ([3]
and [28]) to obtain an SHVZK for SIMD circuit.

These two proofs use different commitments for two vectors which present for the same tuple
of output wire values of multiplication gates so then it requires to prove the consistency. Specif-
ically, for j group of multiplication gates, we have two commitments Jo′jK, JojK which committed
of two vectors o′j and oj . While o′j := (r, o1,j , o2,j , . . . , oB,j) ∈ ZB+1

p and oj := (hj(0), o1,j ,

o2,j , . . . , oB,j , hj(B + 1), . . . , hj(2B)) ∈ Z2B+1
p where r ∈ Zp. Prover therefore needs to prove thatJo′jK/JojK is the commitment of vector which having the power 0s of the set of generators {g2, g3, . . . ,

gB+1}. By the method described earlier, this is handled by a ΠAm for checking many nullities. The
protocol ΠZKPed of our sublinear ZK is shown in the Figure 12.

Theorem 3. There is a sublinear argument of knowledge for circuit satisfiability in constant-round
with the following properties:

• Perfect completeness, computational special soundness, and special HVZK.

• The number of rounds is 7.

• The size of CRS is O(
√
|C|) random elements of G.

• The dominant computation cost is equivalent to O(
√
|C|)-interpolations of polynomial of degree

O(
√
|C|).

Note that in our sublinear ZK based on DLOG setting, we do not directly derive the result from
the generic UC proof of security of the abstract compiler, and in particular, do not achieve UC
security. This would require the commitments to be extractable. The proof of the consistency
of wires follows our compiler, but there is some extra work needed to prove the consistency of
commitments (described above). As for the security analysis, the analysis of our ZK based on
DLOG is not directly inherited from the real-ideal security proof of instantiation of eSIMDZK, but
rather follows directly from the security analysis of the two works [AC20] and [Gro09]. Note that
we can define JxK in functionality 2 being Perdersen commitment of x, but in DLOG-setting, we
never need to extract the commitments, and the proofs of soundness and ZK are not in the UC
model.

Comparison with the Work of Attema–Cramer. The work of [AC20] described a logarithmic-
round and logarithmic communication protocol from the discrete logarithm assumption, and men-
tioned in a remark that their protocol can be made constant-round, at the cost of increasing the
communication to O(

√
C). This builds upon a “direct” reduction from proving satisfiability of an

arithmetic circuit to batch Hadamard arguments and proofs for linear relations. Working out the
details, the protocol of Attema–Cramer enjoys
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Protocol ΠZKPer

• Preprocessing circuit Every B same-type gate is divided into a group, the prover commits all left
wire and right wire values of B gates as in the SIDM-ZK framework. Then for every j-th group, we
have 2 commitments JljK, JrjK.
– If the j-th group includes addition gates, prover commits output wire values as in SIDM, i.eJojK := JljKJrjK.
– Otherwise, if this group contains multiplication gates, prover computes two commitments JojK andJo′jK while JojK is defined in SIMDZK for output wire values of multiplication gates and Jo′jK is

defined as the same of JljK, JrjK. Note that Jo′jK, JojK are used for showing the correction of routing
and multiplications respectively.

All the wires in circuit C are also divided into groups of B wires and each j-th group is committed
to getting the commitments JwjK as JljK, JrjK.

• Correctness check of multiplication gates is presented in section 4.2.

• Consistency check of wire routing We use high-level intuition of the compiler described in the
section 3 to prove the corresponding left wire, right wire, and output wire values of all gates to the
wire values of circuit. As described, the core idea of our compiler is that we transfer the proof of
consistency into a SIMD ZK which can be achieved with sublinear communication.

• Consistency of output wire values of multiplication gates Observe that for each group of multi-
plication gates, we have two commitments Jo′jK, JojK which committed of two vectors o′

j and oj . While
o′
j := (r, o1,j , o2,j , . . . , oB,j) ∈ ZB+1

p and oj := (hj(0), o1,j , o2,j , . . . , oB,j , hj(B + 1), . . . , hj(2B)) ∈
Z2B+1
p where r ∈ Zp. Prover therefore need to prove that Jo′jK/JojK is the commitment of vector which

having the power 0s of the set of generators {g2, g3, . . . , gB+1}. By the method described earlier, this
is handled by a ΠAm for checking many nullities.

If any check fails, V aborts.

Figure 12: The protocol of SHVZK for circuit satisfiability from Pedersen commitment.

• A constant number of rounds,

• O(
√
C) communication,

• O(C) CRS size,

• A computation dominated by O(1) executions of an FFT on degree-C polynomials (as well as
O(C) exponentiations).

In contrast, when using our approach (which proceeds by first building a ZK proof for SIMD
circuits via the techniques of Attema–Cramer combined with a careful batch checking argument,
then applying our general compile) also has constant round complexity and O(

√
C) communication,

but additionally achieves a sublinear CRS size O(
√
C), and the computation is dominated by

O(
√
C) executions of an FFT on degree-

√
C polynomials (as well as O(C) exponentiations). For
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large circuits, due to the polylogarithmic overhead of FFTs, this translates to a lower computational
overhead.

4.3 Multi-Verifier ZK
Yang et al. propose a non-interactive designated multi-verifier ZK (MVZK) proof [YW22]. In
this protocol, a prover P validates a statement to n verifiers (V1, . . . ,Vn) with its private input.
Verifiers are assumed honest-majority with adversary threshold t < n(1/2− ε) for 0 < ε < 1/2. P
distributes packed Shamir secret shares (PSS) of all batched circuit wire values to (V1, . . . ,Vn), who
jointly execute a distributed ZK to verify the correctness of the circuit evaluation [GSZ20, BGIN21,
BBC+19], with the assistance of P. A special coin tossing protocol is designed to maintain non-
interactiveness. This MVZK protocol can be viewed as a commit-and-prove ZK, in which the circuit
wire values are committed by the PSS. The hiding property is ensured by the privacy property of
PSS, for which a collusion of ≤ t parties can not reconstruct the secret values. The binding property
holds by the fact that any (n− t) > t+ 1 honest parties’ shares define the secret values.

In addition to proving the satisfiability of SIMD circuits, [YW22] also proposes a protocol for
the check of wiring consistency, which enables the PSS-based MVZK to work for general circuits.
Define a packing parameter B, for any indices i, j ∈ [B] and PSS [w1], [w2], the protocol proves
that w1[i] = w2[j]. Overall, the checking procedure incurs communication complexity O(n2B2).
Our compiler reduces it to O(n2). In the following, we first introduce a protocol that verifies
the multiplications, before delving into the multi-verifier zero-knowledge proof protocol for SIMD
circuits. Then we describe the realization of the functionality Fverifyprod, which recursively compress
the check of an inner product to a single multiplication triple.

SIMD-ZK from [YW22]. The protocol is shown in Figure 13. A commitment in MVZK is a
PSS for a vector of B values. The opening of a commitment is done by each verifier sending its
PSS share to all other verifiers, followed by all of them validating the shares and decoding the
committed values. The proving procedure takes the input of commitments to batch circuit input
wires and output wires of all multiplication gates. They are precomputed by P and distributed
to verifiers via PSS. At Step 1, verifiers locally arrange (JwαK, JwβK, JwγK) for the indices of all
batch multiplication triples (α, β, γ). The PSS for the input wires of batch multiplication gates are
obtained locally by linearly combining the PSS for previous batches. Next, parties invoke a Fiat-
Shamir procedure at Step 2 to sample a random coin χ ∈ K. The property of non-interactiveness
forbids the verifiers from sending messages to P. In this protocol, P computes the input to the Fiat-
Shamir transformation from the shares of parties and let verifiers verify their correctness, namely,
(com1, . . . , comn). In this way, verifiers are able to compute χ by hashing these commitments. In
the end, parties convert the multiplication triples to an inner product triple, which is verified by
Fverifyprod.

Inner product verification Fverifyprod. The functionality Fverifyprod takes input mℓ multiplication
triples and first convert it into a dimension-mℓ inner product triple {(JxiK, JyiK}mℓ

i=1 and JzK. Then
it verifies whether z =

∑mℓ
i=1 xi ∗ yi. It incurs only logarithmic communication and round-trip

complexity via a compression procedure. Define K to be a field extension of F and is exponentially
large to achieve negligible soundness error. The compression is done in the following steps.

1. Divide the triple into m inner product triples of dimension-ℓ

{(Jxi,1K, . . . , Jxi,ℓK), (Jyi,1K, . . . , Jyi,ℓK), JziK}mi=1

The shares {JziK}m−1
i=1 are directly distributed by P, and JzmK = JzK−∑m−1

i=1 JziK
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2. interpolate 2ℓ degree-(m− 1) polynomials

(Jf1(·)K, . . . , Jfℓ(·)K), (Jg1(·)K, . . . , Jgℓ(·)K)
such that Jfj(i)K = Jxi,jK and Jgj(i)K = Jyi,jK, for i ∈ [m], j ∈ [ℓ].

3. P computes zi =
∑ℓ

j=1 fj(i)∗gj(i) for i ∈ [m+1, 2m−1]. It distributes {JziK}2m−1
i=m+1 to parties.

4. Interpolate a degree-2(m− 1) polynomial Jh(·)K such that Jh(i)K = JziK for i ∈ [2m− 1].

5. Jointly sample a random element β ∈ K, and evaluate these 2ℓ+ 1 polynomials to β. Output a
dimension-ℓ inner product triple

(Jf1(β)K, . . . , Jfℓ(β)K), (Jg1(β)K, . . . , Jgℓ(β)K), Jh(β)K.
The above compression is executed recursively for logarithmic rounds to reduce the dimension of
inner product triple to constant. The last round of compression outputs a single multiplication
triple (f̃(β̃), g̃(β̃), h̃(β̃)), whose correctness will be checked by all parties. Two facts are omitted in
the above description, and we refer the readers to [YW22].

• The sampling of random point β ∈ K is done by Fiat-Shamir heuristic. It requires a public
message known by all parties. At step 3, instead of P distributing a PSS JzK, parties first hold
a random PSS JrK, then P broadcasts u = z + r. Then parties not only derive JzK = JrK − u,
but also attain the public message u.

• To achieve zero-knowledge, the multiplication triple output at the final round should not reveal
any private information. Some independent randomness will be added into the final round of
compression to mask the information computed from the witness.
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A Supplementary Material
A.1 Additional Preliminaries
The following definitions are provided for the instantiation of SHVZK argument of knowledge.
Definition 1(Generalized Pedersen Commitment [Ped92]). Given a Abelian group G of
prime order p. The Pedersen commitment works as follow:

• Set up a commitment key ck = (g, h) = {g1, g2, . . . , gn, h}
$←− Gn+1.

• Commitment of a vector x ∈ Zn
p is defined by comck(x, r) = hrgx = hr

∏n
i=1 g

xi
i where r

$←− Zp.

Pedersen commitment is perfectly hiding, computationally binding under the DDH assumption. It
satisfies homomorphic property, for all x1,x2 ∈ Zn

p , r1, r2
$←− Zp:

comck(x1, r1).comck(x2, r2) = comck(x1 + x2, r1 + r2)

Let R be an efficiently decidable binary relation for an NP language L . If x ∈ L and (x,w) ∈ R
then x is a statement and w is a witness. An interactive argument for R is a tuple of three
probabilistic polynomial time interactive algorithms Π = (Gen,P,V) called the common reference
string generator, the prover and the verifier. with the following properties:

• crs← Gen(1λ). On input 1λ generates public parameters par (such as group parameters), a crs.
For simplicity of notation, we assume that any group parameters are implicitly included in the
crs.

• We write tr ← ⟨P(x),V(y)⟩ for the public transcript produced by P and V when interacting
on inputs x and y. This transcript ends with V either accepting or rejecting. We sometimes
shorten the notation by saying ⟨P(x),V(y)⟩ = b, where b = 0 corresponds to V rejecting and
b = 1 corresponds to V accepting.

Definition 2(Perfect completeness). A proof system Π = (Gen,P,V) for R is perfectly
complete, if

Pr

[
⟨P(crs, x, w),V(crs, x)⟩ = 1

crs← Gen(1λ)
(x,w) ∈ R

]
= 1

Definition 3(Computationally soundness). A proof system Π is computational sound if for
every efficient adversary A

Pr

[
⟨A,V(crs, x)⟩ = 1

x /∈ L
crs← Gen(1λ)
x← A(1λ, crs)

]
= negl(λ)

An argument Π = (Gen,P,V) is public coin if the verifier’s messages are chosen uniformly at
random independently of the messages sent by the prover, i.e the challenges correspond to the
verifier’s randomness ρ. If there is a polynomial time algorithm that, given a statement x and a
(k1, . . . , kµ)-tree of accepted transcripts, produces a witness w for x, then the public coin protocol is
said to be (unconditionally) (k1 . . . , kµ)-special sound. Under the DL assumption, we state that the
protocol is computationally special sound if there exists an efficient algorithm that either extracts
a witness or finds a non-trivial DL relation between g1, . . . , gn, h.
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Protocol ΠRSEncode

Parameters. Define parameters n,B such that B < n. Ld
RS is the set of all valid Reed-Solomon

codeword. α1, . . . , αn, γ1, . . . , γB ∈ F are n + B evaluation points. A pseudorandom generator PRG :
{0, 1}κ → {0, 1}∗.

Input. Parameter d satisfying B ≤ d+ 1 < n, vector x ∈ FB and a randomness r ∈ {0, 1}κ.

Encode. If B < d + 1, compute (x̄1, . . . , x̄d−B+1) ← PRG(r). Interpolate a degree-d polynomial fx(·)
such that fx(γi) = xi for i ∈ [B] and and set fx(αi) = x̄i for i ∈ [d−B+1]. Output (fx(α1), . . . , fx(αn)).

Figure 14: Reed-Solomon Encoding.

Definition 4(Special honest-verifier zero-knowledge (SHVZK)). A public coin argument
Π is a SHVZK if if there exists a probabilistic polynomial time simulator S such that for all non-
uniform polynomial time adversaries A we have

Pr

[
A(tr) = 1
(x,w) ∈ R

crs← Gen(1λ)
(x,w, ρ)← A(crs); tr ← ⟨P(crs, x, w),V(crs, x)⟩

]
≈Pr

[
A(tr) = 1
(x,w) ∈ R

crs← Gen(1λ)
(x,w, ρ)← A(crs); tr ← S(crs, x, ρ)

]
where ρ is the public coin randomness used by the verifier.

A.2 SIMD ZK from Ligero
We present the SIMD ZK protocol modified from Ligero [AHIV17] with its security analysis. As
shown in Figure 16, the Protocol ΠLigeroSIMD is an instantiation of FSIMDZK. Its two building blocks
are the Reed-Solomon (RS) encoding described in Figure 14 and the Merkle commitment scheme
described in Figure 15.

Protocol ΠMerkleCnP

Define τmax to be the maximum time a commitment is used in the MerkleProve procedure.

MerkleCommit. On input a vector x of size |x| = n, Build a Merkle tree with 2⌈log2 n⌉ leaf nodes,
where the first n leaf nodes are elements in x and the rest are dummy. Output the root node τ ∈ {0, 1}2κ.
Initiate a counter ctr = 0 and associate it with τ .

MerkleProve. On input (x, Q) ∈ Fn×Nt, first check the counter ctr that associates with the commit-
ment to x. If ctr ≥ τmax, abort. Recompute the Merkle tree as described in MerkleCommit. Construct
σ which contains all sibling nodes that are on the path to the leaves in set {x[i]}i∈Q. Output σ. Set
ctx = ctr + 1.

MerkleVerify. On input (τ, {x[i]}i∈Q,σ), reconstruct the Merkle tree path from {x[i]}i∈Q,σ. Define
the Merkle tree root τ ′. If τ ̸= τ ′, output fail.

Figure 15: Merkle tree vector commitment.

Commit and open procedures. As described in Figure 14, to commit to a vector of field elements
w ∈ FB, the prover first pad it into a length-(d + 1) vector with randomly sampled d − B + 1
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elements, then encode them into a Reed-Solomon codeword u ∈ Fn. Eventually, the codeword
is committed by the Merkle commitment scheme specified in Figure 15. Assume a set of n + B
distinct evaluation points α1, . . . , αn, γ1, . . . , γB ∈ F. The (n, d+ 1)-RS codes naturally determines
a degree-d polynomial f(·) where f(αi) = ui for i ∈ [n] and fj(γi) = wi for i ∈ [B]. To open a
commitment, the prover simply reveal the vector w and the randomness used for padding.

Assume that during the commitment phase, P commits to m batches of wire values (w1, . . . ,wm)
to V, which are taken as inputs during the proving phase to convince V of the relation C(Jw1K, . . . ,JwmK) = 0. The proving phase (in Figure 16) for SIMD circuits inherits the tests of interleaved
linear codes and quadratic constraints over interleaved linear codes from the Ligero [AHIV17]
protocol. Throughout these steps, the challenges sampled and sent by V include the coefficients
(r, r̄) for random linear combination, and the set Q indicating the subset of t elements to be opened
among a length-n codeword.
Testing interleaved Reed-Solomon Codes. P additionally samples and commits to a random vector
wm+1 as a mask. Upon receiving the coefficients r̄ ∈ Fm+1, P responses with the polynomial
h(·) :=

∑m+1
j=1 r̄jfj(·), in which {fj(·)}j∈[m] are RS polynomials for committed wire values {wj}j∈[m]

and fm+1(·) is for wm+1. V first checks whether h(·) is a degree-(k−1) polynomial. This is equivalent
to check whether (h(α1), . . . , h(αn)) is a valid Reed-Solomon codeword. After P reveals {uj [i]}i∈Q
and proves the correctness of Merkle opening, V checks whether h(αi) :=

∑m+1
j=1 r̄juj [i] for i ∈ Q.

This step validates whether the openings of t views are consistent with the previously claimed h(·).
Since h(·) is the linear combination of committed codewords, the passing of above steps validates the
correctness of RS encoding for all committed wire values. Intuitively, the zero-knowledge property
is preserved by the mask fℓ+1(·) corresponding to the randomly sampled wm+1. The soundness
requires that r̄ is uniformly sampled after P committing to wm+1 and it is hard for P to guess
correctly the subset Q of size t.
Testing quadratic constraints over interleaved Reed-Solomon Codes. Assume that there are ℓ
batches of multiplication gates in the SIMD circuit. P constructs and commits to wm+2 := 0B.
Unlike the (n, k)-RS encoding used during previous the commitment phase, P needs to per-
form a (n, 2k − 1)-RS encoding for wm+2, which results in a degree-(2k − 2) polynomial fm+2.
Upon receiving the challenge r ∈ Fm, P responses with the degree-(2k − 2) polynomial g(·) :=
fm+2(·)+

∑ℓ
j=1 rj

(
fαj (·)fβj

(·)− fγj (·)
)

where (αj , βj , γj) are the indices of input and output wires
of a batch of multiplication gates. It becomes clear at this point that the reason why fm+2 has
degree 2(k − 1) instead of k − 1 is to disguise the combination of circuit wire encodings, which is
a degree-(2k − 2) polynomial. If all multiplication gates are computed correctly, it should satisfy
that g(γi) = 0 for i ∈ [B]. After P reveals {uj [i]}i∈Q and proves the correctness of Merkle opening,
V checks their consistency with g(·). In terms of the security, the zero-knowledge is guaranteed by
the mask fm+2. Similar to the previous test, the soundness requires that r is uniformly sampled
after P committing to wm+2 and it is hard for P to guess correctly the subset Q of size t.

Security Analysis. We provide formal security analysis of the SIMD Ligero and pay attention to
the case then compiling SIMD Ligero to general ZK and scalable ZK. We claim that the protocol
ΠLigeroSIMD shown in Figure 16 securely realizes the functionality FSIMDZK. The proof separately
considers the case of corrupted verifier and prover. In each case, a PPT simulator S is constructed
to simulate the view of adversaries.

Malicious Verifier V∗. We construct a PPT simulator S to simulate the view of V∗ executing
the Protocol 16. S interacts with A in the following way.

1. S emulates a random oracle OH .
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Protocol ΠLigeroSIMD

Public inputs. Define Batch size B and Reed-Solomon parameters n, k, t such that k < n and B+t−1 ≤
k. α1, . . . , αn, γ1, . . . , γB ∈ F are n+B evaluation points.

Private inputs. P holds witness (w1, . . . ,wm) such that C(w1, . . . ,wm) = 0B .

Commit. On input w ∈ FB and degree d from P, parties proceed as follows: (By default, d = k − 1,
unless otherwise mentioned.)

1. P samples a uniform r ∈ {0, 1}κ and invokes (u, f(·))← RSEncode(w, r, d+1). The codeword u and
degree-d polynomial f(·) satisfy that u ∈ Ld

RS and f(γi) = w[i] for i ∈ [B].

2. P invokes τ ← MerkleCommit(u) and sends τ to V.

3. Output JwK := ((w, r,u, f(·)), τ) such that P holds (w, r,u, f(·)) and V holds τ .

Open. On input JwK := ((w, r,u, f(·)), τ) from P and V, P sends (w, r) to V. V recomputes
(u′, f ′(·))← RSEncode(w, r) then τ ′ ← MerkleCommit(u′). If τ ̸= τ ′, V aborts.

Prove. On input (Jw1K, . . . , JwmK), parties proceed as follows:

1. P uniformly samples wm+1 ∈ FB and constructs wm+2 := 0B . P and V invoke the above Commit
procedure to obtain Jwm+1K. They also invoke Commit with input d = 2(k − 1) to obtain Jwm+2K.

2. V uniformly samples r ∈ Fm, r̄ ∈ Fm+1 and sends them to P.

3. P holds {JwjK}j∈[m+2] := {(wj , rj ,uj , fj(·))}j∈[m+2]. P defines:

(a) g(·) := fm+2(·) +
∑ℓ

j=1 rj
(
fαj (·)fβj (·)− fγj (·)

)
where (αj , βj , γj) are the indices of input and

output wires of j-th batch of multiplication gates.
(b) h(·) :=

∑m+1
j=1 r̄jfj(·).

P sends the degree-(2k − 2) polynomial g(·) and degree-(k − 1) polynomial h(·) to V. V checks
whether g(γi) = 0 for i ∈ [B]. It also checks whether the codeword (h(α1), . . . , h(αn)) ∈ LRS . If not,
it aborts.

4. V uniformly samples a set Q ⊂ [n] of size |Q| = t, and sends it to P. For j ∈ [m + 2], P invokes
σj ← MerkleProve(JwjK.u, Q). It sends {uj [i]}i∈Q and the proof of opening σj to V. V invokes
MerkleVerify(JwjK.τ, {uj [i]}i∈Q,σj). If the verification fails, V aborts.

5. V checks the followings:

(a) For any batches of addition gates indexed by (α, β, γ), it satisfies that uα[i] + uβ [i]− uγ [i] = 0
for i ∈ Q.

(b) g(αi) := um+2[i] +
∑ℓ

j=1 rj
(
uαj [i] · uβj [i]− uγj [i]

)
for i ∈ Q.

(c) h(αi) :=
∑m+1

j=1 r̄juj [i] for i ∈ Q.

If any check fails, V aborts.

Figure 16: The protocol of SIMD ZK from Ligero.

2. S simulates the procedure MerkleCommit as an honest prover do. It stores the commitment τj
for each committed vector wj .

3. On simulating the Prove, S first commits to random (wm+1,wm+2). Upon receiving r, r̄ from
A, S samples a random degree-(2k − 2) polynomial g̃(·) such that g̃(γi) = 0 for i ∈ [B]. It also
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samples a random degree-(k − 1) polynomial h̃(·). It sends (g̃(·), h̃(·)) to A.

4. On receiving Q from A, S constructs {{uj [i]}i∈Q}m+2
j=1 in the following ways:

(a) Construct random {{uj [i]}i∈Q}mj=1 that can pass the check at step 5a.
(b) Randomly sample the rest of values except for uℓ+1 and uℓ+2.
(c) For i ∈ Q, set

um+2[i] := g̃(αi)−
ℓ∑

j=1

rj
(
uαj [i] · uβj

[i]− uγj [i]
)

.
(d) For i ∈ Q, set um+1[i] := h̃(αi)−

∑m
j=1 uj [i].

5. S simulates the procedure MerkleProve. It aborts if the counter of a commitment reaches the
maximum. Otherwise it samples random sibling nodes {σj}j∈[m+2] and sends {σj}j∈[m+2] to A.
S acts as an honest prover to compute Merkle trees from the above constructed codewords. It
constructs a list L which records all inputs to the random oracle OH when computing the root
node.

6. S simulates the procedure MerkleVerify by monitoring the random oracle query to OH . For any
query q = L[j] where j ∈ [m], answer the query with τj (stored when simulating MerkleCommit).
Otherwise sample a uniform answer τ̄ ∈ {0, 1}2κ.

We argue the indistinguishability between the real and ideal world from the view of A. S
emulates a programmable random oracle OH to handle oracle queries and program the oracle
output for certain inputs. At step 2, S simulates the Merkle tree commitment by a random value
τj of which the length is the same as a hash output. The polynomials g(·) and h(·) sent by S is
indistinguishable from their distribution in real-world because: (i) In the real world, degree-(2k−2)
polynomial satisfies g(γi) = 0 for i ∈ [B] and g(·) is masked by a random polynomial fm+2(·) such
that fm+2(γi) = 0 for i ∈ [B]. It is perfectly simulated by g̃(·) in the ideal world. (ii) In the real
world, h(·) is masked by a random polynomial fm+1(·). It is simulated by the random h̃(·) of the
same degree. At step 4, {{uj [i]}i∈Q}j∈[ℓ+2] constructed by S follows the real-world distribution as
long as the Reed-Solomon encoding has degree k > B + t− 1. In this case any t-out-of-n views are
random and independent of the encoded vector, thus indistinguishable from what are sampled by
S. At last, S monitors the random oracle and programs any oracle query in L for the computing of
the Merkle tree root. ΠLigeroSIMD requires that the randomness of the commitment contains enough
entropy so that there is negligible probability for A to make queries whose results match elements
in L.

Notes on achieving zero-knowledge. The protocol ΠLigeroSIMD shown in Figure 16 turns Ligero
into a commit-and-prove SIMD ZK. It comes with restriction such that a commitment can only
be used in a limited number of proofs. Also, this maximum number of usage τmax is determined
upon the committing phase. This has been reflected in the functionality FSIMDZK: a counter ctrw is
attached to the commitment to vector w. Each time a JwK contributes to a proof, ctrw increments.
A commitment should never be used again unless in the opening phase, if its counter reaches τmax.
In Ligero, it is related to the fact that each proving phase exposes t-out-of-n committed views,
which are t elements in each of size-n codeword. Once (k + 1)-out-of-n elements in the codeword
is disclosed, the commitment will be fully opened. Hence, the parameters chosen during the initial
committing phase fully determine τmax and it should guarantee t · τmax ≤ k.
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Malicious Prover P∗. We analyze the soundness error when A (as a cheating prover) causes S
to abort in the ideal world, but successfully cheats in the real world. Ligero follows the framework
of MPC-in-the-Head in a way that P first commits to n views to V by the Reed-Solomon code with
length-n codeword. Then V randomly chooses t of them to open and check. A cheating prover
P∗ is not caught if the opened t parties are among the honest parties that P∗ emulates. The
probability of such event is required to be negligible. Define Pr [succ] to be the probability that
the cheating prover A succeeds. We adapt the optimized soundness analysis in the full version of
Ligero [AHIV22]. We have

Pr [succ] ≤
(
k+e
t

)
+
(
2k−2

t

)(
n
t

) +
n+ 2

|F|

in which the error e < (n− k + 1)/2.

A.3 Succinct Non-Interactive Arguments from Pairing
Campanelli et al. propose LegoSNARK [CFQ19], a framework for commit-and-prove zk-SNARKs
(CP-SNARKs). In Figure 17, we present one of the detailed construction mentioned in the paper,
which naturally fits the intuition of FeSIMDZK. It has to be mentioned that in SNARK paradigm,
to achieve succinctness, batch size B is fixed as circuit size C. Basically what we are doing is to
show that SNARK can also be constructed via our methodology: parallel proof of multiplication
gate (FeSIMDZK.Prove) and wire consistency check (FeSIMDZK.LinearMap).

In this construction, P commits vector to its multilinear extension (MLE), which is the (unique)
multilinear polynomial fw : Fd → F such that w(b) = fw(b) for all b ∈ {0, 1}d. Formally, it is
defined as:

fw(X1, . . . , Xd) =
∑

b∈{0,1}d
χb(X1, . . . , Xd) ·w(b).

where χb(X1, . . . , Xd) =
∏d

i=1 χbi(Xi), χ1(X) = X and χ0(X) = 1−X.
Besides MLE, the protocol realizes our functionality based on two gadgets Fpoly and Fsc. Fpoly

checks the relation Rpoly over Fd×F ×F, where Rpoly(x, f, y) := y
?
= f(x). Fsc enables a prover to

convince a verifier of the validity of a statement of the form t =
∑

b∈{0,1}d g(b) where g : Fd → F. It
has already been realized in paper [LFKN90]. To achieve zero-knowledge, g is defined in the form∏2

i=0 gi(S), that all the gi’s, except g0, are committed. Namely, Fsc checks the relation Rsc(x,u),
with x ∈ F and u ∈ F×F2, that is formally defined as:

Rsc(g0, (t, g1, g2)) = 1⇔ g(S) =
2∏

i=0

gi(S) ∧ t =
∑

b∈{0,1}d
g(b).

The construction in Figure 17 is secure in the GGM and random oracle model, and it has only
linear proving time. The size of the proof in this protocol is O(log n), while it can be shrink to
O(1) by applying another method of proving Hadamard product [Lip16], with a log n blow-up in
prover’s computation cost.
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Protocol ΠLegoSNARK

Setup: Upon receiving maximum degree d, sample a bilinear group and define ⟨group⟩ := (G1,G2, q, g, e)
where e : G1 × G1 → G2 and g is a generator of G1. Sample random elements s1, . . . , sd+1 ∈ Fq and
compute vector

Σ := {gΠi∈W si}W∈2[d] ,

and then output the public parameters (⟨group⟩,Σ, gsd+1).

Commit: On input w, P computes its multilinear extension fw and uniformly samples r̃ ∈ F, and then
sends V the commitment JfwK = gfw(s1,...,sd)+r̃sd+1 ; To commit a single value w, the commitment JwK
is simply gw+r̃sd+1 .

Open: On input (JwK, w, r̃), V checks whether JwK = gw+r̃sd+1 .

Prove: For each gate (α, β, γ, T ) in the public circuit C, commitments to input wire vectors JfαK andJfβK are also public:

• If T = ADD, every party locally computes JfγK = JfαK · JfβK.
• If T = MULT :

1. P computes fγ such that fγ [i] = fα[i] · fβ [i] for i ∈ {0, 1}d. Then P calls Commit to obtain JfγK.
2. V picks a random point r and sends it to P.
3. P computes t = fγ(r) and calls Commit to obtain JtK. Then Fpoly is invoked to check that

fγ(r) = t.
4. P calls Fsc to prove that t =

∑
b∈{0,1}d ẽq(r, b) · fα(b) · fβ(b), where ẽq(r, b) = 1 when r = b,

otherwise 0.

If any check fails, V aborts.

Linear map: Upon receiving (JfxK, JfyK,M), to prove that x = My:

1. Trusted parties compute the MLE of matrix M, and form its commitment JfMK, as well as corre-
sponding proving and verification key.

2. V samples a random point r and sends to P. Then P uses Commit to obtain JgK, where g(S) =
fM(r,S).

3. V picks another random point σ and sends to P. P computes t = g(σ) = fM(r,σ) and commit t.

4. Fpoly is invoked to check that g(σ) = t and fM(r,σ) = t, and V calls Open to check the correctness
of JtK.

5. P computes fx(r) = k and calls Commit to obtain JkK, and V calls Open to check its correctness.

6. P calls Fsc to prove that k =
∑

b∈{0,1}d g(b) · fy(b).

If any check fails, V aborts.

Figure 17: The protocol of eSIMDZK from LegoSNARK.
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