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ABSTRACT
Private Information Retrieval (PIR) is a cryptographic primitive

that allows a user to access data from a database without disclos-

ing the specific information being requested, thereby safeguarding

privacy. PIR schemes suffer from a significant computational bur-

den. By running an offline preprocessing phase, PIR schemes can

achieve sublinear online computation. While protocols for semi-

honest servers have been well-studied in both single-server and

multi-server scenarios, scant attention has been given to scenarios

involvingmalicious servers. In this study, we introduce a straightfor-

ward yet efficient sublinear PIR scheme named Crust. The scheme

is tailored for verifiability and ensures privacy and data integrity

against malicious servers. Our proposal is designed to function

under two configurations: (i) with two non-colluding servers, or

(ii) with a standalone single server. Apart from its verifiability, our

scheme demonstrates notable efficiency. Regarding online computa-

tion efficiency, our scheme outperforms state-of-the-art two-server

schemes by a factor of 16 and single-server sublinear PIR schemes by

a factor of 6. Furthermore, relative to leading verifiable PIR schemes,

our scheme showcases approximately 1000 times greater efficiency.

To the best of our knowledge, this is the first PIR scheme to achieve

both verifiability and amortized 𝑂 (
√
𝑛) online computation.

1 INTRODUCTION
Private Information Retrieval (PIR) is a significant cryptographic

primitive in which servers possess a database structured as an array

of 𝑁 records. A client seeks to retrieve the 𝑖-th element without

revealing the index 𝑖 to the servers. PIR finds application in various

real-world scenarios such as private database search [22], private

media consumption [12], and credential breach reporting [23].

PIR schemes with sublinear online time. To improve the efficiency

of PIR, a series of studies have focused on developing more effi-

cient PIR protocols where the online computation is sublinear in

the database size. These sublinear PIR schemes, by providing im-

proved asymptotic efficiency, enable the application of PIR to large

databases. Corrigan-Gibbs and Kogan [7] (hereinafter referred to

as CK20) introduced an offline-online sublinear PIR construction,

which includes an offline preprocessing phase followed by an online

query phase. In this design, a single query requires the servers to

perform approximately 𝑂̃ (
√
𝑁 ) computation and communication.

This offline-online model acts as a foundational architecture for

sublinear PIR schemes, paving the way for a series of subsequent

research efforts [6, 15, 16, 21, 27].

Verifiability. The advent of cloud computing and the growing

trend of outsourcing computing tasks have led to a critical reevalu-

ation of the security model foundational to PIR. Most current PIR

schemes [7, 13, 17, 18, 21] operate under the assumption of semi-

honest servers, where the servers execute the protocol faithfully,

except for trying to deduce the queried index from the interactions.

Nonetheless, there exists the risk of malicious servers either de-

liberately providing false responses or doing so accidentally due

to system failures. The necessity for verifiability in PIR is as cru-

cial as in conventional non-private database queries. For instance,

the "Safe Browsing" service in Checklist [15] underscores a sce-

nario where malicious servers could mislead clients with incorrect

answers, potentially directing them towards harmful websites. An-

other scenario involves a PIR server managing private DNS queries

[25], where a malevolent server could carry out a DNS poisoning

attack [8], obstructing users’ access to specific online services or

redirecting them to fake sites operated by attackers.

Selective failure attack. Adapting PIR protocols to ensure verifia-

bility against malicious servers presents non-trivial challenges. The

existing research has identified that standard data authentication

techniques are susceptible to a particular type of assault known

as selective failure attacks [14]. In such attacks, a malicious server

deliberately selects specific database records to respond to a query,

aiming to infer the client’s queried index 𝑖 based on the outcome

of the client’s verification. For instance, even when records are

protected by digital signatures, a malicious server might replace the

first record in the database with an arbitrary item and a counterfeit

signature. Should the client query the first record and reject the

response due to the invalid signature, the server is then able to

deduce that the first record was the target of the query. Therefore,

to mitigate this type of attack, in this work, we will adopt a more

robust privacy definition.

Previous research [5, 9] has introduced verifiable PIR schemes

as measures against malicious servers and selective failure attacks.

However, these schemes are limited by requiring linear online com-

putation for the servers, which restricts their applicability to large

databases. To the best of our knowledge, no existing verifiable PIR

scheme simultaneously achieves sublinear computation and ensures
privacy against selective failure attacks. Thus, in this work, we re-

visit the domain of sublinear PIR schemes with the objective of

addressing this gap. Consequently, we present Crust, comprising

two verifiable PIR schemes: one tailored for a single-server setting

and another for a two-server setting, both of which offer sublinear
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computation and robust privacy safeguards against selective failure

attacks.

1.1 Our Contributions
Our contributions can be summarized as follows:

• We conduct an in-depth analysis of existing sublinear PIR con-

structions, pinpointing the obstacles that hinder the integration

of verifiability. Specifically, we highlight the challenge of incor-

porating verifiability into existing sublinear PIR schemes without

compromising privacy against selective failure attacks. To ad-

dress this challenge, we introduce a novel construction of sublin-

ear PIR against a semi-honest adversary in the two-server setting,

which later can be smoothly transitioned into efficient verifiable

PIR schemes.

• For potential malicious attacks, we present Crust, comprising

two innovative and efficient verifiable PIR schemes: one tailored

for the two-server setting and the other for the single-server

setting. Notably, these schemes represent the first instance of

verifiable PIR to concurrently achieve amortized 𝑂 (
√
𝑁 ) server

computation and communication efficiency (where 𝑁 is the size

of the database) and provide privacy protection against selective

failure attacks. We devise a pluggable verification procedure that

ensures data integrity without adding to the asymptotic com-

plexity. This procedure is integrated with the aforementioned

new PIR scheme to accomplish Crust. Our two-server scheme

provides verifiability in scenarios involving two non-colluding

servers, with one being semi-honest and the other malicious. The

single-server scheme ensures data integrity against a malicious

server, assuming the client holds a database digest from a trusted

database owner. A comparison for Crust and other advanced PIR

schemes is provided in Table 1.

• We have implemented our schemes and conducted a comprehen-

sive evaluation of the state-of-the-art schemes. In a semi-honest

scenario (excluding verification), our construction surpasses the

leading two-server scheme [16] by a factor of 16 and single-server

schemes by 6 times in online computation efficiency. In terms of

verifiability, the online computation efficiency only experiences

a modest 2 to 3 times increase, leading to approximately 1000

times greater online computation efficiency compared to the lead-

ing single-server verifiable PIR scheme [9], thereby establishing

our verifiable PIR schemes as a practical choice for real-world

applications.

1.2 Technical Overview
Our construction targets two primary objectives: verifiability and

efficiency. The aim is to incorporate verifiability into sublinear PIR

schemes without compromising efficiency.

• The problem of dummy queries. Recent works [15, 16, 19]
introduce additional fake queries, referred to as dummy queries,

to conceal the queried index, thereby securing the privacy of the

scheme. However, we have found that these dummy queries are

susceptible to selective failure attacks and can lead to a significant

increase in online computation, becoming a major obstacle in

achieving efficient verifiable PIR. We discuss this issue in detail

in Section 4.1.

• An efficient PIR without dummy queries. We propose a new

sublinear PIR construction that is efficient and avoids the use of

dummy queries. To enhance computational and communication

efficiency, we incorporate the technique of dividing the database

into blocks and using a pseudorandom function to compress

queries and storage. Furthermore, we introduce a new concept

termed "crumbs", retrieving extra records as hints to replace the

dummy queries. Consequently, we achieve an even more efficient

two-server PIR scheme against a semi-honest adversary, which

is detailed in Section 4.2.

• Apluggable verification procedure.Turning to defense against
malicious attacks, we design a pluggable verification procedure

that ensures data integrity with slightly additional overhead. The

main idea of this procedure is to utilize an extra hint to verify

the result. We combine this plugin with our newly designed PIR

scheme to achieve a sublinear two-server verifiable PIR, which is

discussed in Section 5.2.

• Adapting for single-server. Finally, we utilize standard tech-

niques [6, 27] to adapt our two-server scheme for single-server

setting. We discuss this transition in detail in Section 5.3.

2 RELATEDWORKS
2.1 Multi-server PIR
In schemes involving multiple servers (multi-server PIR), the client

interacts with 𝑘 > 1 servers, each holding a copy of the database.

Traditional multi-server PIR schemes have low communication

costs but involve linear computational overhead. Corrigan-Gibbs

and Kogan introduced the first sublinear PIR scheme in [7]. This

scheme, which consists of one client and two servers, is divided into

an offline phase and an online phase. During the offline phase, the

client obtains some additional information called hints from one

server about the database. In the online phase, the client utilizes

these hints at the other server to make queries. At the core of

their construction is a primitive named Puncturable Pseudorandom
Function (PPRF). The scheme needs parallel instances to ensure its

correctness. As a result, the scheme performs a single online query

in 𝑂̃ (𝜆
√
𝑁 ) online time (where 𝜆 is the security parameter), as well

as incurring an 𝑂̃ (𝑁 5/6) client storage requirement, rendering it

impractical for real-world applications. This framework is further

followed by a series of works, including [6, 15, 16, 21, 27].

Some of these works aim to improve the efficiency of the original

framework. The construction of hints in [7] does not support effi-

cient membership testing. To search for a suitable hint while making

an online query, the client either needs to perform approximately

𝑂 (𝑁 ) computations or maintain a searching result cache with a size

of 𝑂̃ (𝑁 5/6). Neither option is optimal. Hence, works like [15, 16, 21]

focus on leveraging improved PPRFs to reduce online computations,

communication costs, and client storage. For instance, [16] presents

a more practical construction named TreePIR along with a new

primitive called Weakly Puncturable Pseudorandom Function, which
facilitates efficient membership testing without significant client

storage requirements. However, this scheme introduces the com-

plexity of "dummy queries", which will be elaborated upon in this

paper. Nevertheless, the scheme remains loyal to the original PPRF-

based approach, which, as demonstrated in our benchmark, is costly

in practical scenarios.
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Table 1: A comparison of Crust and other state-of-the-art PIR schemes. Green cells indicate verifiability and represent the best
theoretical asymptotic complexity. The costs are averaged over

√
𝑁 queries.

Scheme Servers Communication Computation Verifiable

TreePIR [16] 2 𝑂 (
√
𝑁 ) 𝑂 (

√
𝑁 log

2 𝑁 ) ✗

DPF-PIR [11] 2 𝑂 (log𝑁 ) 𝑂 (𝑁 ) ✗

APIR(Merkle) [5] 2 𝑂 (
√
𝑁 log𝑁 ) 𝑂 (𝑁 log𝑁 ) ✓

Crust (Theorem 1) 2 𝑂 (
√
𝑁 ) 𝑂 (

√
𝑁 ) ✓

SimplePIR [13] 1 𝑂 (
√
𝑁 ) 𝑂 (𝑁 ) ✗

VeriSimplePIR [9] 1 𝑂 (
√
𝑁 ) 𝑂 (𝑁 ) ✓

Piano [27] 1 𝑂 (
√
𝑁 ) 𝑂 (

√
𝑁 log𝑁 ) ✗

APIR(LWE) [5] 1 𝑂 (
√
𝑁 ) 𝑂 (𝑁 ) ✓

Crust (Theorem 2) 1 𝑂 (
√
𝑁 ) 𝑂 (𝜆

√
𝑁 ) ✓

2.2 Single-server PIR
There is another line of works [6, 27] focusing on building single-

server PIR schemes based on [7]. The transition is non-trivial as

hints cannot be retrieved and utilized on the same server. Corrigan-

Gibbs et al. [6] applied the offline-online sublinear PIR framework

to the single-server setting. However, the inefficiencies of the two-

server scheme also apply to the single-server scheme, necessitating

parallel instances for correctness and resulting in large client stor-

age requirements. This workwas extended by Piano [27], combining

elements from [16] and [6] to create a straightforward and efficient

single-server scheme with amortized computation complexity of

𝑂 (𝜆
√
𝑁 ) and communication complexity of 𝑂 (

√
𝑁 ). Although this

scheme represents a step towards improved efficiency, it introduces

dummy queries that impede the integration of verifiability into

sublinear schemes, as will be discussed in Section 4.

2.3 Verifiable PIR
Some works have explored the concept of verifiable PIR, initially in-

troduced by Chor et al. [4] and further investigated by [1, 10, 24, 26].

The most recent works include [5, 9]. In [5], Colombo et al. give

a thorough definition of verifiable PIR (in their work, they refer

to it as authenticated PIR). The authors propose a straightforward

approach for multi-server verifiable PIR, leveraging precomputed

Merkle Proofs, and a method for predicate queries utilizing function

secret sharing [2, 3]. They also present constructions for single-

server verifiable PIR. Additionally, they introduce the concept of se-

lective failure attack in PIR queries. However, the proposed schemes

exhibit inefficiencies in both computation and communication, mak-

ing them impractical. In another work [9], verifiability is introduced

to the single-server scheme SimplePIR [13] with minimal computa-

tion overhead and only a 1.1-1.5× communication overhead. How-

ever, these contributions build upon existing PIR constructions that

involve online computation with a complexity of𝑂 (𝑁 ). To the best
of our knowledge, there have been no previous endeavors toward

imbuing sublinear PIR schemes with verifiability. This study aims to

bridge this gap by extending the notion of verifiability to sublinear

PIR schemes.

3 PRELIMINARIES
In this paper, we explore both two-server and single-server PIR

schemes. We assume a data owner O has a database D with 𝑁

records, whereD = (D0, . . . ,D𝑁−1) and each record is an element

in F
2
𝑝 . Further, we assume that 𝑁 is a perfect square, allowing for

the expansion of the database if this condition is not initially met.

For the two-server PIR scheme, our focus is on a client, C, and two

non-colluded servers, S
hint

and Squery. In the single-server setting,

our attention shifts to a single server S. We adopt the notation

[𝑘] to represent the set {0, 1, . . . , 𝑘 − 1}. The notation 𝑆 [ 𝑗] on a

set 𝑆 = {𝑆0, 𝑆1, . . . } is utilized to signify a set where 𝑆 [ 𝑗] = 𝑆 𝑗 .

The symbol 𝜆 is used to denote the security parameter, and negl(·)
indicates the negligible function. We use “B” to denote a value

assignment.

3.1 Offline-online PIR
In this section, we present a formal definition of PIR schemes oper-

ating in an offline-online model, as introduced in [7].

Definition 3.1 (Offline-online PIR). An offline-online PIR scheme Π
allows a client to retrieve a recordD𝑖 from the databaseD without

revealing the index 𝑖 to any of the 𝑘 servers. The scheme consists

of algorithm tuple Π = (𝑆𝑒𝑡𝑢𝑝, 𝐻𝑖𝑛𝑡,𝑄𝑢𝑒𝑟𝑦,𝐴𝑛𝑠𝑤𝑒𝑟, 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡):
• 𝑆𝑒𝑡𝑢𝑝 (1𝜆, 𝑁 ) → (𝑐𝑘, 𝑞ℎ). It generates a client key 𝑐𝑘 and hint

queries 𝑞ℎ given database size 𝑁 and the security parameter 𝜆.

• 𝐻𝑖𝑛𝑡 (D, 𝑞ℎ) → ℎ. It generates a hint ℎ from the database D and

hint queries 𝑞ℎ .

• 𝑄𝑢𝑒𝑟𝑦 (𝑐𝑘, 𝑖) → 𝑞. It generates a query 𝑞 given the hint ℎ and the

index to query 𝑖 . Note that the query 𝑞 may consist of multiple

sub-queries.

• 𝐴𝑛𝑠𝑤𝑒𝑟 (D, 𝑞) → 𝑎. It generates an answer 𝑎 in response to the

query 𝑞.

• 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (ℎ, 𝑎) → D𝑖 . It reconstructs the record D𝑖 with the

help of hint ℎ, given an answer 𝑎.

• 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑐𝑘, ℎ, 𝑎) → (𝑐𝑘, ℎ). It updates the hint ℎ, given the an-

swer 𝑎.

The scheme is required to adhere to two fundamental properties:

Correctness and Privacy. The correctness guarantees that the

client obtains the correct record D𝑖 with overwhelmingly high

probability, while privacy ensures that the servers gain no informa-

tion about the index 𝑖 during the query process. A more detailed

definition is available in Appendix B.

This study concentrates primarily on the two-server setting

(where 𝑘 = 2) and the single-server setting (where 𝑘 = 1). In the
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Figure 1: An illustration of CK20 [7] scheme, querying 𝑖 = 3.

two-server scenario, we assume non-colluding servers throughout

the scheme execution, consistent with prior works such as [5, 7].

Here, hints typically consist of a set containing the indexes of

specific records within the database D, combined with a parity

computed from these records. The terms "parity" or "hint parity"

are used to denote the parity included in a hint, while "set" or "hint

set" refers to the set enclosed within the hint.

3.2 Selective Failure Attack
In verifiable PIR schemes [5, 9, 26], the integrity of the answer pro-

vided by the server(s) to the client is typically ensured by enabling

the client to conduct additional verification protocols. However,

revealing that the answer is rejected can potentially divulge infor-

mation about the index being queried to an adversary. The concept

of a selective failure attack, initially introduced in [14], exploits

this information to the adversary’s advantage. As discussed in the

introduction, a malicious server could manipulate records in the

database selectively, thus deducing information about the queried

index 𝑖 from the outcomes of the verification. Privacy against a

selective failure attack can be formally defined as follows:

Definition 3.2 (Privacy Against Selective Failure Attack). Given

a security parameter 𝜆, A PIR scheme Π is private against selec-

tive failure attack if there exists a probabilistic polynomial time

simulator 𝑆𝑖𝑚(1𝜆, 𝑁 ) such that for an algorithm 𝑠𝑒𝑟𝑣 following the

protocol in Π honestly, any probabilistic polynomial time adver-

saries A corrupting one of the 𝑘 servers, A cannot distinguish the

view in the following worlds except for probability negligible in 𝜆.

• World 0: C interact with A who plays the role of the corrupted

server and 𝑠𝑒𝑟𝑣 who plays the role of honest servers. At each

step 𝑡 , A adaptively chooses the next index 𝑖𝑡 and C use 𝑖𝑡 as its

query. The client outputs 1 to A after each query if the answer

is accepted, otherwise 0.

• World 1: 𝑆𝑖𝑚 interact withA who plays the role of the corrupted

server and 𝑠𝑒𝑟𝑣 who plays the role of honest servers. At each step

𝑡 , A adaptively chooses the next index 𝑖𝑡 and 𝑆𝑖𝑚 runs without

the knowledge of 𝑖𝑡 . 𝑆𝑖𝑚 output a bit 𝑏 to A after each query.

A is allowed to deviate from the protocol arbitrarily.

Prior work [5] attempted to mitigate this attack by associating

the database with a digest and conducting linear computation on

the database. However, their approach did not lead to a sublinear

PIR scheme due to their reliance on PIR schemes that entail linear

computations.

4 A CONSTRUCTION OF EFFICIENT
TWO-SERVER PIR

We commence by presenting a construction for a two-server PIR

scheme in a semi-honest setting. Our construction is based on

the CK20 framework. We adopt a novel approach to constructing

hints and queries. This approach is designed to facilitate efficient

querying while ensuring that the construction does not hinder the

integration of verifiability.

4.1 Base Framework for Two-server PIR
Since we have chosen to build verifiable PIR based on existing sub-

linear PIRs [7, 16], a foundational understanding of these schemes is

imperative. We start with a "strawman" two-server PIR scheme, fol-

lowed by a discussion on rectifying the limitations of the protocol.

The strawman protocol is an offline-online PIR:

Offline phase:
• Setup: The client C samples𝑀 sets 𝑠𝑘 𝑗 , 𝑗 ∈ [𝑀], each contains

𝑠 random indexes in range [𝑁 ].
• Hint: C forwards these sets to the hint server S

hint
. S

hint
calcu-

lates parity for the sets as ℎ 𝑗 B
∑
𝑘∈𝑠𝑘 𝑗

D𝑘 , 𝑗 ∈ [𝑀]. C stores

these sets and their corresponding parities as the hint.

Online phase:
• Query: C first identifies a set 𝑠𝑘𝑡 containing the desired index 𝑖

and computes the set excluding this specific index, represented as

𝑠𝑘′𝑡 B 𝑠𝑘𝑡 \ {𝑖}. Additionally, C samples a new set 𝑠𝑘 containing

the index 𝑖 and 𝑠𝑘
′
B 𝑠𝑘 \ {𝑖}. The set 𝑠𝑘′ is sent to S

hint
, while

𝑠𝑘′𝑡 is sent to Squery.
• Answer: Upon receipt of these sets, the servers calculate the

parities for the two sets as 𝑎query B
∑

𝑗∈𝑠𝑘 ′𝑡 D𝑗 and 𝑎
hint
B∑

𝑗∈𝑠𝑘 ′ D𝑗 , respectively, and return these parities to C.
• Reconstruct: C reconstructs the desired record through the

calculation D𝑖 B ℎ𝑡 − 𝑎query.
• Refresh: C updates the used hints by setting 𝑠𝑘𝑡 B 𝑠𝑘 and

ℎ𝑡 B 𝑎
hint
+ D𝑖 .

The correctness of the protocol is straightforward. Nonetheless,

there are three critical issues inherent to the strawman protocol,

which are listed as follows:

(1) Efficient membership testing. Searching for an appropriate

set 𝑠𝑘𝑡 that contains the queried index 𝑖 during the online phase

is computationally expensive.

(2) Space and communication efficiency. It is inefficient for the

clients to sample, store, and send the sets in plain, incurring

both 𝑂 (𝑁 ) storage and offline communication complexity for

the client to finish the protocol.

(3) Privacy. The sets 𝑠𝑘′𝑡 and 𝑠𝑘
′
never contains the queried index

𝑖 , effectively leaking some information about the index to query.

In existing literature, various approaches have been proposed to

tackle the challenges above. For example, [16] resolved the above

problems and introduced a sublinear PIR construction, leveraging

a primitive called Weakly Puncturable Pseudorandom Function. [27]
proposed a similar algorithm they name PossibleParities. However,
when it comes to verifiable PIR, the adaptability of these schemes

encounters obstacles, primarily due to the incorporation of “dummy

queries”, which will be detailed and elaborated on in the following.

4
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Figure 2: An illustration of dummy queries. The client sends
3 queries to the server, within which the first query is the
genuine query and the other two are dummy queries. Since
the client only rejects a false answer to the genuine query
but accepts a false answer to a dummy query, the server
can manipulate the records and infer information from the
client’s verification outcome.

The problem of dummy queries. Recent studies [15, 16, 19] fol-
lowing [7] have introduced the concept of “dummy queries”. These

dummy queries are randomly generated fake queries to obfuscate

the genuine query. In these schemes, a single query sent from the

client leaks information about the queried index 𝑖 to the servers. It

is the combination of the genuine query and the dummy queries

that effectively conceals the index 𝑖 . The servers respond to dummy

queries, while the client subsequently disregards the answers to

the dummy queries.

In the semi-honest setting, the scheme’s privacy hinges on the

assumption that the servers cannot distinguish the genuine query

from the dummy ones. However, in the context of verifiable PIR

and the consideration of selective failure attacks, dummy queries

introduce complications. During the verification process, the client

only rejects the servers’ responses if the answer to the genuine

query has been altered. This is due to the client’s lack of knowledge

about the randomly generated dummy query, preventing the client

from reconstructing and verifying the answer to a dummy query.

Given this scenario, the server can arbitrarily choose the answer it

tampers with and can deduce from the client’s verification result

whether the altered answer was the genuine one. This vulnerability

allows the malicious server to potentially learn which record the

client is interested in, impeding the incorporation of verifiability

into existing sublinear PIR schemes. An illustration of this problem

is presented in Figure 2. Apart from privacy concerns, computing

dummy answers also escalates online computational costs. Balanc-

ing efficiency and addressing selective failure attacks necessitates

that we eliminate dummy queries in our scheme.

4.2 Efficient PIR Without Dummy Queries
In this subsection, we present a new design for an efficient two-

server PIR scheme that avoids the use of dummy queries, yet pre-

serves the efficiency of query performance.We follow the strawman

protocol and try to address the aforementioned issues with three

optimization techniques: (i) enabling efficient membership testing

with a “divide-and-sample” technique, (ii) compressing the sets with

a pseudorandom function to improve space and communication

efficiency, and (iii) hiding the query index with a new concept called

“crumbs”. The techniques are detailed as follows:

Enabling efficient membership test. In the strawman protocol, the

indexes in each set 𝑠𝑘 𝑗 , 𝑗 ∈ [𝑀] are generated randomly, which im-

pedes efficient membership test. Drawing inspiration from existing

literature [16, 27], we employ a strategy of dividing the database

into

√
𝑁 blocks, each comprising

√
𝑁 elements. We generate each

set 𝑆 in the following way: within each block 𝑗 , sample a ran-

dom offset 𝑥 𝑗 , 𝑗 ∈ [
√
𝑁 ], these offsets would map to the actual set

𝑆 = {𝑥 𝑗 + 𝑗 ·
√
𝑁 | 𝑗 ∈ [

√
𝑁 ]}.

This method enables efficient membership testing. To determine

if the queried index 𝑖 is in a set 𝑆 , the client evaluate the ⌊𝑖/
√
𝑁 ⌋-

th item of 𝑆 and see if it equals 𝑖 −
√
𝑁 · ⌊𝑖/

√
𝑁 ⌋. This results in

the necessity of keeping the set ordered, in order to determine

the block an offset belongs to. Henceforth, we assume that a set

can be ordered and indexed similarly to a vector, which facilitates

simplicity.

Compressing sets with pseudorandom function. Previous works [7,
16] choose to utilize a puncturable pseudorandom function to com-

press the sets, thereby decreasing the communication cost. How-

ever, the puncturable pseudorandom function primitive is costly

in practice, as it incurs extra computation when evaluating the

set. Contrastingly, we opt for a plain pseudorandom function. Con-

cretely speaking, with a pseudorandom function parameterized by

a key 𝑠𝑘 , i.e., 𝑓𝑠𝑘 : [
√
𝑁 ] → [

√
𝑁 ], a set 𝑆 could be succinctly repre-

sented with a short 𝜆-sized key 𝑠𝑘 : 𝑆 = {𝑓𝑠𝑘 ( 𝑗) + 𝑗 ·
√
𝑁 | 𝑗 ∈ [

√
𝑁 ]}

where 𝜆 is the security parameter. Thus, the membership testing

can be expressed as:

𝑓𝑠𝑘 (⌊𝑖/
√
𝑁 ⌋) = 𝑖 −

√
𝑁 · ⌊𝑖/

√
𝑁 ⌋

For reference convenience, we denote the process of evaluating 𝑓

to a set 𝑆 as 𝐸𝑥𝑝𝑎𝑛𝑑 .

By abandoning the puncturable pseudorandom function prim-

itive, we achieve a significant performance boost. However, this

decision comes at the expense of losing the capability to remove an

element from the set while maintaining a succinct representation.

Consequently, the set needs to be depicted with a simple list of

values. The client retains and transmits offline each hint in 𝑂 (𝜆)
size, and sends online the plain set with 𝑂 (

√
𝑁 ) communication.

Guarding privacy with crumbs. The non-puncturable pseudoran-
dom function primitive offers reasonable space and communication

efficiency, albeit it raises a new challenge: concealing the removed

indexes while preserving item order. To address this challenge, we

propose the client retrieves additional hints, termed crumbs. A
crumb 𝑐 = (𝑢, 𝑜) consists of a random record 𝑢 and its correspond-

ing offsets in its block 𝑜 . During the offline phase, the client fetches

one random crumb from each block, resulting in a total of

√
𝑁

crumbs.

The idea is to utilize crumbs to mask the removed item. Specifi-

cally, when the client seeks to query the 𝑖-th record, after discov-

ering 𝑖 from the set, it finds a crumb 𝑐 = (𝑢, 𝑜) in the ⌊𝑖/
√
𝑁 ⌋-th

block, and replaces the index with 𝑜 . This process is illustrated in

Figure 3.

As each crumb contains merely one bare record, the true answer,

which excludes the crumb, can be easily obtained by excluding the

crumb’s contribution from the answer. Concretely, with 𝑎 as the

answer from S, 𝑢 as the value of the used crumb, the client updates

5
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(a) Query construction (b) Query process

Figure 3: An illustration of a query. The database contains 𝑁 = 16 items and is divided into
√
𝑁 = 4 blocks. a) A hint contains

one item in each block. The client wants to query record 𝑖 = 9, which is in the third block. The index is removed from the set,
and a crumb in the third block is added to the set. b) The query server answers with the sum of the set. The client samples a
new hint set to refresh the hint and crumb. The hint server answers with individual records. The index are written in plain for
illustration. They are actually represented with offsets in blocks.

the answer disregarding the crumb as 𝑎 B 𝑎 − 𝑢. Finally, the client
can reconstruct the record D𝑖 in the same way as in the strawman

protocol.

The obfuscation of removed items by crumbs is evident. The set

sent by the client to the query server now comprises one random

offset in each block, unrelated to the queried index 𝑖 . Our construc-

tion maintains sublinear efficiency: in the offline phase, the client

receives 𝑂 (𝜆
√
𝑁 ) sized parities which are evaluated by the server

in 𝑂 (𝜆𝑁 ) time. When amortized over polynomial times queries in

the online phase, each query incurs 𝑂 (
√
𝑁 ) communication and

computation. Note that in our techniques, we do not use dummy

queries. Jumping ahead, this approach allows us to implement a

smooth verification procedure, which will be detailed in Section 5.

4.3 Hint Retrieving and Refreshing
Retrieving and refreshing hints are also critical aspects of the offline-

online PIR scheme. It is essential for every record to be associated

with at least one hint; without this, querying the record during the

online phase would be unfeasible. Furthermore, the scheme must

accommodate multiple queries and spread the significant offline

costs over these queries to ensure efficiency. The client cannot

use a hint twice as the server would learn about the indexes by

comparing the queries. Therefore, hints must be refreshed after

being consumed in one query.

The offline retrieval of hints and crumbs is straightforward.

Given that the hint server S
hint

is semi-honest, all the hint sets can

be generated from one PRF key supplied by the client. The crumbs

can be fetched in the same way, by asking the server to send all the

records in one set rather than the sum of them.

The online refreshing of hints and crumbs is more complex. In

the strawman protocol, refreshing is accomplished by the client

sampling a new set that includes the queried index 𝑖 and interacting

with the hint server to acquire the hint for this set. However, in our

protocol, crumbs derived from the hint server cannot be employed

to obscure the removed item from the hint server. Otherwise, the

hint server can compare the query with the crumbs it sent to the

client, thus learning which block is replaced by a crumb. To resolve

this discrepancy, the client selects a new random index 𝑗 to substi-

tute 𝑖 within the block 𝑙 of the newly sampled set. To inform the

client about D𝑗 , the hint server responds to the query with

√
𝑁

plain records, each corresponding to an individual index in the set.

This allows the client to construct a new hint from the records along

with D𝑖 and to update the utilized crumb with D𝑗 . By adopting

this method for refreshing hints and crumbs, our scheme is now

capable of supporting a polynomial number of queries, in line with

the recent advancements discussed in [16]. A comprehensive proof

is provided in Appendix B.1. We give the full protocol in Figure 4.

Handling Changing Databases. Handling changing databases is a
frequent situation in applications. The optimizations and techniques

used in our approach integrate smoothly with current methods for

managing database modifications, including Checklist [15].

5 EFFICIENT VERIFIABLE PIR
In this section, we describe a technique for embedding verifiabil-

ity into a PIR scheme as a plugin. The concept of “plugin” signi-

fies that verifiability can be incorporated without modifying the

foundational structure of the original scheme. We will provide a

comprehensive design for such an enhancement to the PIR scheme

introduced in Section 4. Consequently, we introduce Crust, an effi-

cient framework that includes both an efficient two-server verifiable

PIR scheme and an efficient single-server verifiable PIR scheme.

5.1 Definition
We first formally present the concept of Verifiable Private Informa-
tion Retrieval (verifiable PIR), which extends the notion of offline-

online PIR as defined earlier.

6
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Two-server Scheme of Crust

Notation: The scheme involves a client C, a query server Squery and a hint server S
hint

. Assume a hint consists of a tuple of elements:

ℎ = (𝑠𝑘, ℎ𝑠 , 𝑠𝑟, ℎ𝑟 ). Assume a crumb consists of an offset and a value 𝑐 = (𝑜,𝑢). Assume 𝑓 𝑘𝑘𝑒𝑦 : {0, 1}𝜆 → {0, 1}𝜆 is a PRF that maps

one PRF key to many keys. 𝐸𝑥𝑝𝑎𝑛𝑑 a key 𝑠𝑘 involves calculating the set {𝑓𝑠𝑘 ( 𝑗) + 𝑗 ·
√
𝑁 | 𝑗 ∈ [

√
𝑁 ]}. 𝐸𝑥𝑝𝑎𝑛𝑑 a key 𝑠𝑟 involves

calculating the set {𝑓 𝑟𝑠𝑟 ( 𝑗) | 𝑗 ∈ [
√
𝑁 ]}. Suppose 𝑖 is the queried index.

Offline Phase:
• Setup: C samples one PRF key𝑚𝑘 ∈ {0, 1}𝜆 , initializes the hints to ℎ 𝑗 B (𝑓 𝑘𝑚𝑘 ( 𝑗), 0, 𝑓 𝑘𝑚𝑘 ( 𝑗 +𝑀), 0), 𝑗 ∈ [𝑀], and the crumbs

𝑐 𝑗 B (⊥,⊥), 𝑗 ∈ [
√
𝑁 ]. C sends𝑚𝑘 to the S

hint
.

• Hint:
– S

hint
evaluates𝑚𝑘 to PRF keys 𝑠𝑘 𝑗 , 𝑗 ∈ [𝑀] and 𝑠𝑟 𝑗 , 𝑗 ∈ [𝑀]. It further 𝐸𝑥𝑝𝑎𝑛𝑑s these keys to sets 𝑆 𝑗 , 𝑗 ∈ [𝑀] and 𝑆𝑅 𝑗 , 𝑗 ∈ [𝑀].

– S
hint

calculates the parities ℎ𝑠
𝑗
B

∑
𝑘∈[
√
𝑁 ] D𝑆 𝑗 [𝑘 ] , 𝑗 ∈ [𝑀] and ℎ𝑟𝑗 B

∑
𝑘∈[
√
𝑁 ] D𝑆 𝑗 [𝑘 ] · 𝑆𝑅 𝑗 [𝑘], 𝑗 ∈ [𝑀] for each set. The

parities are sent to C.
– In the 𝑗-th

√
𝑁 sized block ( 𝑗 ∈ [

√
𝑁 ]), S

hint
samples one record 𝑢 𝑗 as crumb, along with its corresponding offset 𝑜 𝑗 . It then sends

𝑐 𝑗 B (𝑜 𝑗 , 𝑢 𝑗 ), 𝑗 ∈ [
√
𝑁 ] to C. C stores these crumbs.

Online Phase:
• Query (Squery):
– Denote the block that 𝑖 is in as 𝑙 B ⌊𝑖/

√
𝑁 ⌋. C finds a hint ℎ𝑡 = (𝑠𝑘𝑡 , ℎ𝑠𝑡 , 𝑠𝑟𝑡 , ℎ𝑟𝑡 ) satisfies that 𝑓𝑠𝑘𝑡 (𝑙) = 𝑖 −

√
𝑁 · 𝑙 . If no such hint

exists, C samples a new hint with zero parities (𝑠𝑘𝑡 , ℎ𝑠𝑡 B 0, 𝑠𝑟𝑡 , ℎ
𝑟
𝑡 B 0).

– C 𝐸𝑥𝑝𝑎𝑛𝑑s 𝑠𝑘𝑡 to a set 𝑆 . It finds the crumb for this block 𝑐𝑙 = (𝑜𝑙 , 𝑢𝑙 ), and then replaces 𝑆 [𝑙] with crumb offset 𝑜𝑙 . C 𝐸𝑥𝑝𝑎𝑛𝑑s 𝑠𝑟𝑡
to set 𝑆𝑅, and 𝑆𝑅 [𝑙] is replaced by a random element 𝑟 . C sends 𝑆 and 𝑆𝑅 to Squery.

• Answer (Squery): Squery calculates the parities 𝑎𝑠 B
∑
𝑘∈[
√
𝑁 ] D𝑆 [𝑘 ] and 𝑎

𝑟 B
∑
𝑘∈[
√
𝑁 ] D𝑆 [𝑘 ] · 𝑆𝑅 [𝑘]. It sends 𝑎𝑠 and 𝑎𝑟 to C.

• Reconstruct: C reconstructs the answer D𝑖 B ℎ𝑠𝑡 − (𝑎𝑠 − 𝑢𝑙 ). It then verifies the answer by checking if

ℎ𝑟𝑡 − (𝑎𝑟 − 𝑟 · 𝑢𝑙 ) = 𝑓 𝑟𝑠𝑟𝑡 (𝑙) · D𝑖 . If the verification fails, C outputs ⊥. Otherwise, C outputs D𝑖 .

• Query (S
hint

):
– C samples a new PRF key 𝑠𝑘 with 𝑓

𝑠𝑘
(𝑙) = 𝑖 −

√
𝑁 · 𝑙 . C samples a new PRF key 𝑠𝑟 .

– C 𝐸𝑥𝑝𝑎𝑛𝑑s 𝑠𝑘 to a set 𝑆 , 𝐸𝑥𝑝𝑎𝑛𝑑 𝑠𝑟 to a set 𝑆𝑅. It then replaces 𝑆 [𝑙] with a random offset 𝑜 in block 𝑙 . C sends 𝑆 to S
hint

.

• Answer (S
hint

): S
hint

responds with

√
𝑁 entries D

𝑆 [ 𝑗 ] , 𝑗 ∈ [
√
𝑁 ].

• Refresh: C updates 𝑐𝑙 B (𝑜,D𝑆 [𝑙 ] ), updates ℎ𝑡 B (𝑠𝑘,D𝑖 +
∑
𝑘∈[
√
𝑁 ],𝑘≠𝑙 D𝑆 [𝑘 ] , 𝑠𝑟, 𝑆𝑅 [𝑙] · D𝑖 +

∑
𝑘∈[
√
𝑁 ],𝑘≠𝑙 𝑆𝑅 [𝑘] · D𝑆 [𝑘 ] )

Figure 4: The two-server scheme of Crust. The red part is the verification procedure and is utilized as a plugin, and this part can
be removed to achieve an even more efficient PIR scheme in a semi-honest setting.

Definition 5.1 (Verifiable Private Information Retrieval). A ver-
ifiable private information retrieval scheme Π allows a client to

retrieve a record D𝑖 from the database D without revealing the

index 𝑖 to any of the 𝑘 servers. The scheme consists of a tuple of

algorithms (𝑆𝑒𝑡𝑢𝑝, 𝐻𝑖𝑛𝑡,𝑄𝑢𝑒𝑟𝑦,𝐴𝑛𝑠𝑤𝑒𝑟, 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡, 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ):
• 𝑆𝑒𝑡𝑢𝑝 (1𝜆, 𝑁 ) → (𝑐𝑘, 𝑞ℎ). It generates a client key 𝑐𝑘 and hint

queries 𝑞ℎ given database size 𝑁 and the security parameter 𝜆.

• 𝐻𝑖𝑛𝑡 (D, 𝑞ℎ) → {ℎ,⊥}. It refuses the database D and output ⊥,
or generates a hint ℎ, given the database D and hint queries 𝑞ℎ .

• 𝑄𝑢𝑒𝑟𝑦 (𝑐𝑘, 𝑖) → 𝑞. It generates a query 𝑞 given the hint ℎ and the

index to query 𝑖 . Note that the query 𝑞 may consist of multiple

sub-queries.

• 𝐴𝑛𝑠𝑤𝑒𝑟 (D, 𝑞) → 𝑎. It generates an answer 𝑎 in response to the

query 𝑞.

• 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (ℎ, 𝑎) → {D𝑖 ,⊥}. It reconstructs the record D𝑖 ,

given the answer 𝑎 and the hint ℎ, or rejects the answer and

outputs ⊥.

• 𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ(𝑐𝑘, ℎ, 𝑎) → (𝑐𝑘, ℎ). It updates the hint ℎ, given the an-

swer 𝑎.

In the two-server setting (𝑘 = 2), as discussed in the introduction,

we assume a malicious query server and a semi-honest hint server.

The hint server will always follow the protocol honestly, while the

query server may deviate from the protocol. Prior work [5] adopts

a similar setting, but they do not require the client to be aware

of which server is semi-honest. The correct database is defined

as the one accepted by the 𝐻𝑖𝑛𝑡 algorithm. In the single-server

setting (𝑘 = 1), the correct database is identified by a database

digest provided by the data owner. According to the trusted digest,

the client may reject a false database in the 𝐻𝑖𝑛𝑡 algorithm. The

scheme should satisfy the following properties:

• Correctness. Given a security parameter 𝜆, for any sufficiently

large 𝑁 , any database D and index 𝑖 , if both servers and client

follow the protocol honestly, the client outputs D𝑖 with over-

whelmingly high probability.

7
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• Integrity.Given a security parameter 𝜆, for any sufficiently large

𝑁 , any database D and index 𝑖 , for any probabilistic polynomial

time adversary A, the probability that the client reconstructs an

incorrect record D̂𝑖 ≠ D𝑖 is negligible in 𝜆.

• Privacy (Concerning Selective Failure Attack). The servers
learn nothing about the index 𝑖 from the query, even with the

knowledge of whether 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 algorithm outputs ⊥.
For a formal definition, please refer to Appendix B.

5.2 Verifiability as a Plugin
We first introduce the construction of our verifiable PIR scheme in a

two-server setting. Recall that in numerous protocols for malicious-

securemultiparty computation, verifying the outcome of computing

a function𝑚 = 𝑓 (𝑥) with potential malicious participants involves

separately computing two values,𝑚 = 𝑓 (𝑥) and 𝑛 = 𝑔(𝑥) = 𝛼 𝑓 (𝑥),
where 𝛼 ∈ F

2
𝑝 represents a concealed coefficient. The verification

process then entails checking whether𝑚𝛼 = 𝑛. Honest participants

invariably succeed in this verification, whereas dishonest behavior

has only a negligible probability of passing it. In our protocol, we

adopt a similar approach to authenticate the query response 𝑎query.

Recall that in the construction from Section 4.2, the client initially

retrieves multiple hints from the hint server. Given our assumption

of a semi-honest hint server and the presence of a malicious query

server, our sole reliable resource is the honestly generated hints.

Therefore, we opt to incorporate extra information within each

hint to enable subsequent answer verification by the client. Rather

than defining each hint as the sum of records within a specific set,

each hint now includes two components: the sum parity ℎ𝑠 and the

random parity ℎ𝑟 . For a specific set 𝑆 = {𝑥 𝑗 | 𝑗 ∈ [𝑠]}, the client
first sample a set of random numbers 𝑆𝑅 B {𝑟 𝑗 | 𝑗 ∈ [𝑠]}, then
ℎ𝑠 , ℎ𝑟 are defined as following:

ℎ𝑠 B
∑

𝑗∈[𝑠 ] D𝑥 𝑗
,

ℎ𝑟 B
∑

𝑗∈[𝑠 ] 𝑟 𝑗 · D𝑥 𝑗

Accordingly, the query process is divided into two distinct parts:

a sum query 𝑞𝑠 and a random query 𝑞𝑟 . Suppose 𝑥𝑖 is the queried

index. The definitions of 𝑞𝑠 and 𝑞𝑟 are as follows:

𝑞𝑠 B 𝑆 \ {𝑥𝑖 },
𝑞𝑟 B 𝑆𝑅 \ {𝑟𝑖 }

Upon receiving these two queries, the query server calculates the

answers 𝑎𝑠 and 𝑎𝑟 using a similar summation method:

𝑎𝑠 B
∑

𝑗∈[𝑠−1] D𝑞𝑠
𝑗
,

𝑎𝑟 B
∑

𝑗∈[𝑠−1] 𝑞
𝑟
𝑗
· D𝑞𝑠

𝑗

Subsequently, the query server sends the responses to the client,

who then reconstructs the answer D𝑥𝑖 B ℎ𝑠 − 𝑎𝑠 and verifies it by

checking whether

ℎ𝑟 − 𝑎𝑟 = 𝑟𝑖 · (ℎ𝑠 − 𝑎𝑠 )
If the query server responds truthfully, the left-hand side of the

equation simplifies to 𝑟𝑖 ·D𝑥𝑖 . Given thatℎ
𝑠−𝑎𝑠 = D𝑥𝑖 , the equation

should hold true. If the verification does not pass, the client outputs

⊥ to indicate a discrepancy. A more detailed discussion on the

integrity of this scheme is deferred to Appendix B.

In our framework, we further employ the optimization strategies

discussed in Section 4.2 to improve efficiency. The set 𝑆 is encoded

using a PRF with the key 𝑠𝑘 . The additional set, 𝑆𝑅, is similarly

encoded using another PRF with the key 𝑠𝑟 : it has a different range:

𝑓 𝑟𝑠𝑟 : [
√
𝑁 ] → F

2
𝑝 . Therefore, the set SR can be expanded using

the short key 𝑠𝑟 :

𝑠𝑟 → 𝑆𝑅 = {𝑓 𝑟𝑠𝑟 ( 𝑗) | 𝑗 ∈ [
√
𝑁 ]}

Next, we delve into concealing the removed item in an online query.

The removed item of the random set 𝑆𝑅 leaks the block that contains

the queried index 𝑖 . Recall that in the semi-honest scheme, a random

crumb 𝑐 conceals the removed index in 𝑆 . Similarly, in the malicious

setting, a random element 𝑟 ∈ F
2
𝑝 is utilized to hide the removed

item in 𝑆𝑅. More precisely, let 𝑙 B ⌊𝑖/
√
𝑁 ⌋ be the block containing

queried index 𝑖 , the client samples 𝑟 from F
2
𝑝 and replace 𝑆𝑅 [𝑙] with

𝑟 . After the client receives the answer 𝑎𝑟 , it can remove the crumb

value 𝑢 and update 𝑎𝑟 as 𝑎𝑟 B 𝑎𝑟 − 𝑟 · 𝑢. Subsequently, the client
carries out the verification by checking if ℎ𝑟 − 𝑎𝑟 = 𝑓 𝑟𝑠𝑟 (𝑙) · D𝑖 . If

the verification fails, the client outputs ⊥.
Formally, we present our two-server verifiable PIR scheme in

Figure 4, with the verification procedure highlighted in red color.

The efficiency of our scheme is comparable to the setup described

in Section 4. We propose the following theorem regarding security

and efficiency:

Theorem 1. The scheme described in Figure 4 is a two-server

offline-online verifiable private information retrieval scheme. On a

database of size 𝑁 , the efficiency of the scheme is as follows:

• Offline communication complexity: 𝑂 (𝜆
√
𝑁 ).

• Offline computation complexity: 𝑂 (𝜆𝑁 ).
• Online communication complexity: 𝑂 (

√
𝑁 ).

• Online computation complexity: 𝑂 (
√
𝑁 ).

• Amortized computation complexity: 𝑂 (
√
𝑁 ).

• Supports a polynomial number of queries.

Proof sketch. The correctness and integrity of our scheme fol-

low straightforwardly from the construction. The privacy of Crust

is derived from the fact that the client’s queries are indistinguish-

able from random sets containing one element in each block. The

server learns nothing from the verification result, as it can fully

anticipate it based on the answer, thus preventing selective failure

attacks. A formal proof can be found in Appendix B.

Efficiency. In the offline phase, the client sends one PRF key

to the hint server. The hint server in return sends𝑀 parities and√
𝑁 crumbs to the client. Assuming parities and crumbs are of

the same size as one database record and setting 𝑀 = Θ(𝜆
√
𝑁 ),

the total offline communication would be 𝑂 (𝜆
√
𝑁 ), and the offline

computation is 𝑂 (𝜆𝑁 ). In the online phase, the client searches

for a hint that contains the queried index 𝑖 , which takes 𝑂 (
√
𝑁 )

computation in expectation. The successive processing of the hint,

including evaluating the set, replacing the index with crumb, and

sampling a new set, also costs𝑂 (
√
𝑁 ) computation. One query with

a size of𝑂 (
√
𝑁 ) is then sent to both servers. Each server computes

the parities in𝑂 (
√
𝑁 ) time. The hint server answers the query with√

𝑁 records and the query server answers the query with 2 parities.

The client then verifies the answer in 𝑂 (1) time. Therefore, the

total online communication is 𝑂 (
√
𝑁 ) and the online computation

is 𝑂 (
√
𝑁 ). □

8
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5.3 Adapting for Single-server
We now transition to adapting our scheme for a single-server

verifiable PIR. In this scenario, we assume a data owner outsourcing

a database to a single server and producing a database digest which

the client is aware of. To accomplish such a transition, there are

two primary challenges:

(1) Refreshing hints. To facilitate the client’s ability to perform

multiple queries, an efficient mechanism for refreshing hints

online is necessary. However, the absence of a dedicated hint

server complicates the implementation of such a mechanism.

(2) Retrieving hints. Recall that in the two-server setting, the hint
server is tasked with supplying hints to the client. However, this

approach is not feasible in a single-server setting, as the query

server, being aware of the hints, could potentially deduce the

queried index by comparing the original hint with the query.

Additionally, it is pertinent to consider how the client ensures

the correctness of the database managed by an untrusted server.

We aim to tackle the above challenges in the following part.

Refresh hints with backup. To enable hint refreshing during the

online phase, we adopt the concept of backup hints [6]. In this

approach, the client acquires additional hints as "backup" during

the offline phase. These backup hints are then utilized to refresh

the hints that were consumed in the online phase.

In this method, the hints are classified into two types: main hints

and backup hints. The client retrieves the main hints as the hints

in the two-server scheme. In addition to that, the client samples 𝜆

backup hints for each of the

√
𝑁 blocks. A backup hint for block 𝑙

is a hint with the 𝑙-th offset kept empty. In other words, the backup

hint does not contain an index in block 𝑙 . The client makes queries

to the server as it does in the two-server scheme utilizing main

hints. Once a query to an index in block 𝑙 is completed, a backup

hint for block 𝑙 is obtained. The client incorporates the queried

index into the backup hint and updates the parities, transforming

the backup hint into a main hint. This transformation is achieved by

including an additional index in the hint to serve as the extra index.

In practice, the client represents a hint set with a tuple (𝑠𝑘, 𝑥). The
client evaluates a set by first expanding 𝑠𝑘 into a set 𝑆 . If 𝑥 ≠ ⊥, the
client replaces the entry 𝑆 [⌊𝑥/

√
𝑁 ⌋] with 𝑥 .

The crumbs follow a similar pattern. The client samples 𝜆 addi-

tional crumbs for each block during the offline phase and acquires

a new crumb from the block after issuing a query.

It can be shown that with 𝜆 backup hints and crumbs allocated for

each block, the scheme enables a client to execute up to

√
𝑁 queries

post one resource-intensive offline phase, with an overwhelming

probability of success. However, after that, the offline phase must

be reactivated to replenish these resources.

Retrieving hints by streaming the database. From the literature,

in the single-server setting, addressing the challenge of retrieving

hints offline can be approached in two ways: (i) [6] proposed the

use of homomorphic encryption for retrieving hints, whereas (ii)

[20, 27] recommended streaming the entire database to the client.

We adopt the latter approach since it is more efficient in practice.

The hint generation could be done in a block-wise streaming way.

The client requests one of the

√
𝑁 blocks from the server at one

time and updates all local hints. Specifically, when processing the

𝑗-th block, for a hint with parity ℎ𝑡 and PRF key 𝑠𝑘𝑡 , the client

updates ℎ𝑡 by ℎ𝑡 B ℎ𝑡 + D𝑓𝑠𝑘𝑡 ( 𝑗 ) . If the hint does not contain

any index in the block, indicating that it is a backup hint, it is

skipped. After all hints are updated, the block is replaced with a

new block fetched from the server. This ensures that the client’s

storage remains sublinear to database size.

Introducing verifiability. Leveraging the streaming strategy, in-

tegrating verifiability into our scheme is seamless: alongside the

additional parity, we require the trusted database owner to provide

a digest of the database, similar to the assumption made in [5].

Prior to executing online queries, the client validates the streamed

database against this digest, ensuring the authenticity and integrity

of the database content.

So far, we have tackled the primary challenges associated with

transitioning our two-server verifiable PIR scheme to a single-server

context. Before presenting our single-server construction, it is cru-

cial to underscore some advantageous properties that facilitate this

construction, which are similarly utilized in [6, 27]:

• A scheme support𝑂 (
√
𝑁 ) queries implies a scheme support

polynomial number of queries. By replaying the offline phase

after conducting approximately 𝑄 B Θ(
√
𝑁 ) queries and ensur-

ing the scheme concludes its offline setup within 𝑂𝜆 (𝑁 ) time,

which is a common characteristic in sublinear PIR schemes, the

client can offset the costly offline setup across the𝑄 queries. This

iterative offline-to-online cycle facilitates a polynomial number

of queries.

• Uniformly random query distribution.We assume there’s no

duplication in 𝑄 queries and the queried indexes are uniformly

random in the database, as aligned to prior works [6, 27].

Put everything together, we present our single-server verifiable

PIR scheme in Figure 5, where the verification procedure is distinctly

marked in red color. Formally, we have the following theorem:

Theorem 2. The scheme described in Figure 5 is a single-server

offline-online verifiable private information retrieval scheme. On a

database of size 𝑁 , the efficiency of the scheme is as follows:

• Offline communication complexity: 𝑂 (𝑁 ).
• Offline computation complexity: 𝑂 (𝜆𝑁 ).
• Online communication complexity: 𝑂 (

√
𝑁 ).

• Online computation complexity: 𝑂 (
√
𝑁 ).

• Amortized computation complexity: 𝑂 (𝜆
√
𝑁 ).

• Supports a polynomial number of queries.

Proof sketch. The security proof is similar to that of the two-

server scheme. The intuition is that the view of a malicious query

server is the same in both the two-server and single-server schemes.

We refer readers to Appendix B for a formal proof.

Efficiency. Streaming the database to the client in the offline

phase requires𝑂 (𝑁 ) communication and𝑂 (𝜆𝑁 ) computation. This

is in linewith the state-of-the-art single-server sublinear PIR scheme

[27]. In the online phase, the cost is similar to that of the two-server

scheme. However, unlike the two-server scheme, the offline phase

must be rerun after 𝑄 queries. By setting 𝑄 = Θ(
√
𝑁 ), we achieve

an amortized communication cost of 𝑂 (
√
𝑁 ) and an amortized

computation cost of 𝑂 (𝜆
√
𝑁 ). □

9
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Single-server Scheme of Crust

Notation: The scheme involves a client C and a query server Squery. Assume a hint consists of a tuple of elements: ℎ = (𝑠𝑘, 𝑥, ℎ𝑠 , 𝑠𝑟, ℎ𝑟 ).
Assume a crumb consists of an offset and a value 𝑐 = (𝑢, 𝑜). 𝐸𝑥𝑝𝑎𝑛𝑑 a key 𝑠𝑘 involves calculating the set {𝑓𝑠𝑘 ( 𝑗) + 𝑗 ·

√
𝑁 | 𝑗 ∈ [

√
𝑁 ]}.

𝐸𝑥𝑝𝑎𝑛𝑑 a key 𝑠𝑟 involves calculating the set {𝑓 𝑟𝑠𝑟 ( 𝑗) | 𝑗 ∈ [
√
𝑁 ]}. Suppose 𝑖 is the queried index. A trusted database owner O

calculates a digest 𝑑 of the database D and makes it accessible to C.

Offline Phase:

• Setup: C samples main PRF keys 𝑠𝑘 𝑗 , 𝑗 ∈ [𝑀], backup keys 𝑠𝑘𝑘,𝑗 , 𝑗 ∈ [𝜆], 𝑘 ∈ [
√
𝑁 ] and 𝑠𝑟 𝑗 , 𝑗 ∈ [𝑀] with corresponding backup

keys 𝑠𝑟𝑘,𝑗 , 𝑗 ∈ [𝜆], 𝑘 ∈ [
√
𝑁 ], initializes the main hints to ℎ 𝑗 B (𝑠𝑘 𝑗 ,⊥, 0, 𝑠𝑟 𝑗 , 0), 𝑗 ∈ [𝑀], backup hints to

ℎ𝑘,𝑗 (𝑠𝑘𝑘,𝑗 ,⊥, 0, 𝑠𝑟𝑘,𝑗 , 0), 𝑗 ∈ [𝜆], 𝑘 ∈ [
√
𝑁 ] and crumb storage to 𝑐𝑘,𝑗 B (⊥,⊥), 𝑗 ∈ [𝜆], 𝑘 ∈ [

√
𝑁 ].

• Hint: The server streams the database to C. C initializes a digest 𝑑′. While streaming the 𝑙-th block, C updates the hints:

– Update main hints: ℎ𝑠
𝑗
B ℎ𝑠

𝑗
+ D𝑓𝑠𝑘𝑗 (𝑙 ) and ℎ

𝑟
𝑗
B ℎ𝑟

𝑗
+ 𝑓𝑠𝑟 𝑗 (𝑙) · D𝑓𝑠𝑘𝑗 (𝑙 ) for 𝑗 ∈ [𝑀].

– Update backup hints not in the block: ℎ𝑠𝑘,𝑗 and ℎ
𝑟
𝑘,𝑗 by ℎ

𝑠
𝑘,𝑗 B ℎ𝑠𝑘,𝑗 + D𝑓

𝑠𝑘𝑘,𝑗
(𝑙 ) and ℎ𝑟 𝑘,𝑗 B ℎ𝑟 𝑘,𝑗 + 𝑓𝑠𝑟𝑘,𝑗 (𝑙) · D𝑓 𝑟

𝑠𝑘𝑘,𝑗
(𝑙 ) for

𝑗 ∈ [𝜆], 𝑘 ∈ [
√
𝑁 ], 𝑘 ≠ 𝑙 .

– Update crumbs: 𝑐𝑙, 𝑗 to be randomly selected offset and corresponding record (𝑢𝑙, 𝑗 , 𝑜𝑙, 𝑗 ), 𝑗 ∈ [𝜆] in the block.

– C updates 𝑑′ with this database block.

– After that, C deletes the block from storage.

– C checks if 𝑑 = 𝑑′. If the equation does not hold, C aborts and outputs ⊥.

Online Phase:
• Query:
– Denote the block that 𝑖 is in as 𝑙 B ⌊𝑖/

√
𝑁 ⌋. C finds a hint ℎ𝑡 = (𝑠𝑘𝑡 , 𝑥𝑡 , ℎ𝑠𝑡 , 𝑠𝑟𝑡 , ℎ𝑟𝑡 ) that contains 𝑖 (either 𝑥𝑡 = 𝑖 or

𝑓𝑠𝑘𝑡 (𝑙) +
√
𝑁 · 𝑙 = 𝑖 and 𝑥𝑡 = ⊥ ∨ ⌊𝑥𝑡/

√
𝑁 ⌋ ≠ 𝑙 ). If no such hint exists, C samples a new hint (𝑠𝑘𝑡 , 𝑥𝑡 B ⊥, ℎ𝑠𝑡 B 0, 𝑠𝑟𝑡 , ℎ

𝑟
𝑡 B 0)

– C 𝐸𝑥𝑝𝑎𝑛𝑑s 𝑠𝑘𝑡 to a set 𝑆 . 𝑆 [⌊𝑥𝑡/
√
𝑁 ⌋] is replaced with 𝑥𝑡 if 𝑥𝑡 ≠ ⊥. It finds an unused crumb 𝑐𝑙,𝑒 = (𝑢𝑙,𝑒 , 𝑜𝑙,𝑒 ) in the block 𝑙 and

replaces 𝑆 [𝑙] with 𝑜𝑙,𝑒 . C 𝐸𝑥𝑝𝑎𝑛𝑑 𝑠𝑟𝑡 to set 𝑆𝑅, 𝑆𝑅 [𝑙] is replaced by a random element 𝑟 . C sends 𝑆 and 𝑆𝑅 to Squery.
• Answer: Squery calculates the parities 𝑎𝑠 B

∑
𝑘∈[
√
𝑁 ] D𝑆 [𝑘 ] and 𝑎

𝑟 B
∑
𝑘∈[
√
𝑁 ] D𝑆 [𝑘 ] · 𝑆𝑅 [𝑘]. It sends 𝑎𝑠 and 𝑎𝑟 to C.

• Reconstruct: C reconstructs the answer D𝑖 B ℎ𝑠𝑡 − (𝑎𝑠 − 𝑢𝑙,𝑒 ). It then verifies the answer by checking if

ℎ𝑟𝑞 − (𝑎𝑟 − 𝑟 · 𝑢𝑙,𝑒 ) = 𝑓 𝑟𝑠𝑟𝑡 (𝑙) · D𝑖 . If the verification fails, C outputs ⊥. Otherwise, C outputs D𝑖 .

• Refresh:
– C finds an unused backup hint ℎ𝑙, 𝑗 in the block 𝑙 , parses ℎ𝑙, 𝑗 as (𝑠𝑘,⊥, ℎ𝑠 , 𝑠𝑟, ℎ𝑟 ). If no such hint exists, C samples a new hint

(𝑠𝑘, 𝑥 B ⊥, ℎ𝑠 B 0, 𝑠𝑟, ℎ𝑟 B 0)
– C updates ℎ𝑡 B (𝑠𝑘, 𝑖, ℎ𝑠 + D𝑖 , 𝑠𝑟, ℎ

𝑟 + 𝑓𝑠𝑟 (𝑙) · D𝑖 ).

Figure 5: The single-server scheme of Crust. The red part is the verification procedure and is utilized as a plugin, and this part
can be removed to achieve an even more efficient PIR scheme in a semi-honest setting.

A practical online-offline paradigm. The concept of refreshing
backup hints can be applied in a two-server scheme. Concretely,

the client retrieves backup hints and crumbs from the hint server as

it does in the single-server scheme. However, rather than streaming

the database, the client sends PRF keys to the hint server, similar to

the approach used in the two-server scheme. This allows the client

to circumvent online interactions with a semi-honest server while

minimizing offline communication. This notion offers a practical

framework for service providers, enabling a database owner to

offer hints using cost-effective idle resources and delegate real-time

query processing to potentially untrustworthy servers.

6 EVALUATION
6.1 Experiment Setup
We have implemented both of the two schemes for Crust. Our code-

base is publicly accessible
1
. As for our construction, we carefully

chose parameters to guarantee a minimum security level of 128

bits. Given that the verification procedure in Crust is designed to

be pluggable, we evaluated two distinct versions of Crust: one with

the verification feature activated and another without it. In the pre-

sentation of our evaluation results, "Crust(NV)" denotes the version

of Crust where the verification procedure is not included.

We conducted a comprehensive evaluation of our construction’s

performance and benchmarked it against leading two-server PIR,

single-server PIR, and verifiable PIR schemes. For the two-server

PIR comparison, we selected DPF-PIR [11], TreePIR [16], and APIR

1
The code is available at https://anonymous.4open.science/r/crust-D745.
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(a) Online Time

(b) Online Communication

(c) Offline Time (d) Offline Communication

Figure 6: Comparison of two-server PIR schemes. The DPF-PIR and APIR schemes do not employ an offline-online model, and
only the computation time and communication overhead in the online phase are evaluated. The data of APIR on databases
larger than 2GB is estimated because it consumes more than 128 GB RAM.

[5] as our baselines. In the context of single-server settings, our

benchmarks include SimplePIR [13], VeriSimplePIR [9], Piano [27],

and the learning-with-errors (LWE) variant of APIR. Among these,

VeriSimplePIR and APIR are recognized as verifiable PIR schemes,

indicating they are designed to ensure the integrity of responses

in the presence of potentially malicious servers. The rest are predi-

cated on the assumption of a semi-honest server model. All bench-

marks were conducted on a single thread. For the two-server PIR

schemes, the operations of the two servers were executed serially.

The benchmark tests were performed on a server equipped with

a 32-core AMD EPYC 7K83 CPU and 128GB of RAM. These tests

were conducted on five databases, with sizes ranging from 32MB

to 32GB, each consisting of 32-byte records but differing in overall

database size.

6.2 Two-server Schemes
The benchmark results for the two-server PIR schemes are depicted

in Figure 6. Among these schemes, our schemes (both Crust and

Crust(NV)) surpass the leading sublinear scheme, TreePIR [16],

in both computation and communication efficiency. This superior

performance primarily stems from our schemes’ simplified query

construction and the elimination of dummy queries. The removal

of costly PPRF and dummy queries in the online phase significantly

enhances performance, yielding an improvement of more than 16

times. Specifically, for a query on a 32 GB database, Crust(NV) re-

quires only 2.72 milliseconds, while TreePIR takes 43.2 milliseconds.

Even the "verifiable" version of Crust outperforms TreePIR in terms

of online computation speed, running one query in 6.16 millisec-

onds. Nonetheless, it does entail marginally higher communication

overhead. Regarding the offline phase, Crust(NV) incurs a lower

cost compared to TreePIR. This reduction is primarily due to the

simplified query construction.

DPF-PIR [11] is a linear PIR scheme, implying that its online

computation time scales linearly with the size of the database. For a

32 GB database, DPF-PIR completes a single query in 3372 millisec-

onds. In contrast, our scheme requires less than 10 milliseconds

to execute the same operation. This significant difference in per-

formance underscores the critical need for a sublinear PIR scheme,
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(a) Online Time
(b) Online Communication

(c) Offline Time (d) Offline Communication

Figure 7: Comparison of single-server PIR schemes. SimplePIR, APIR, and VeriSimplePIR do not employ an offline-online
model, and only the computation time and communication overhead in the online phase are evaluated.

especially when dealing with large databases, as it dramatically

enhances query efficiency and reduces computation time.

Comparison with verifiable PIR. It can be concluded that Crust

introduces only minimal overhead to achieve verifiability. APIR [5]

provides a leading two-server verifiable PIR scheme. From the figure,

our scheme surpasses APIR in computational efficiency across all

database sizes. Furthermore, the Merkle proof-based APIR results

in substantial database expansion, which hampers the ability to

execute the scheme on databases exceeding 2
28

records due to RAM

limitations.

6.3 Single-server Schemes
Next, we present the benchmark results among single-server PIR

schemes, as depicted in Figure 7. For this comparison, we select

Piano [27], a state-of-the-art single-server sublinear scheme, as

our benchmark counterpart. Piano necessitates the server to calcu-

late

√
𝑁 answers to conceal the queried index, thereby imposing

additional computation and communication costs. Consequently,

Crust outperforms Piano in both computation and communication,

with 6 times faster online computation and 10 times smaller online

communication.

In the offline phase, both Piano and Crust utilize a strategy that

involves streaming the database to the client, resulting in similar

communication costs. However, the parameter selection for Piano

results in a higher offline computation burden compared to both

versions of Crust. Specifically, Crust(NV) requires 90% less time

than Piano for offline computation, while the verifiable version of

Crust takes 75% less time than Piano.

Comparison with verifiable PIR. In comparison to the leading

single-server verifiable PIR scheme VeriSimplePIR [9], Crust in-

volves a 30% reduction in online communication costs and approxi-

mately 1000 times less online computation costs. When conducting

a query on a 32 GB database, Crust only demands 4.23 milliseconds,

showcasing the effectiveness of sublinear PIR schemes.

7 CONCLUSION
In this paper, we introduce Crust, a novel and efficient verifiable PIR

scheme applicable in both two-server and single-server settings,

where the verification procedure is pluggable. The efficiency of

Crust surpasses that of existing verifiable PIR schemes and sub-

linear PIR schemes. Our scheme is poised to push the boundaries
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of PIR and its applications, paving the way for enhanced privacy

protections and data integrity assurances.
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A HANDLING A MALICIOUS HINT SERVER IN
THE TWO-SERVER SETTING

A sublinear PIR scheme derived from the framework in [7] en-

counters challenges in maintaining integrity when the hint server

behaves maliciously. Essentially, the roles of S
hint

and Squery differ
in that the information acquired by client C from Squery undergoes
a cross-validation process with the knowledge from 𝑆

hint
, but not

the other way around. Specifically, there are two crucial points:

(1) The offline hint-retrieving phase only engages the hint server

and the client. The query server is not involved at all.

(2) A part of the hint, namely the removed items, is not sent to the

query server. These values are not cross-validated.

We demonstrate a possible strategy for the hint server to cheat

the client. We assume there’s a predefined genuine databaseD that

is sent to the two servers. So the concept of correctness is clear.

In the online phase, suppose the client has chosen a hint ℎ𝑡 =

(𝑠𝑘𝑡 , ℎ𝑠𝑡 , 𝑠𝑟𝑡 , ℎ𝑟𝑡 ) to query D𝑖 , in which case 𝑖 ∈ 𝐸𝑥𝑝𝑎𝑛𝑑 (𝑠𝑘𝑡 ). The
client retrieves the hint from a malicious hint server. If ℎ𝑠𝑡 , ℎ

𝑟
𝑡 are

generated with a false D̂𝑖 ≠ D𝑖 , the client would reconstruct D̂𝑖 .

The verification we introduced is not involved. Notice that 𝑖 will

be removed in the query, so the only chance that the client can

detect the cheating is when the client happens to use a crumb with

index 𝑖 in the query. The probability is
1√
𝑁
.

From a similar argument, the scheme is prone to selective failure

attacks when the hint server is malicious. Although the queries to

the hint server are independent from the queried index. The mere

fact that the client fails a query is informative enough for the hint

server. That means the client just used a "poisoned" hint and that

narrows down the queried index to possibly one hint set.

In such concerns, the scheme only tolerates one semi-honest hint

server and a malicious query server. It will be valuable future work
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to design a sublinear PIR scheme that can tolerate two malicious

servers.

B SECURITY PROOF
We will focus on the two-server protocol. As is introduced in the

brief analysis part, the single-server protocol can be easily reduced

to the two-server protocol, with minimal modification to the proof.

B.1 Extension to Multiple Queries
To show the scheme can handle polynomially many queries, it is

sufficient to show the distribution of hints remains the same after

each query.

Lemma 1. At the end of the offline phase, and after each query,

the client-side hints ℎ follow the same distribution, which is indis-

tinguishable from𝑀 random set with one random element in each

block.

Proof. At the end of the offline phase, the argument follows

directly from the scheme and the security of PRF. In the online

phase, it is sufficient to show that during each query, the consumed

hint and the refreshed hint follow the same distribution. Recall that

in a query to 𝑖 which falls into the 𝑙-th block, the found query set

𝑠𝑘𝑡 and the newly sampled set 𝑠𝑘 are both uniformly random in

every other block than 𝑙 and contains 𝑖 in block 𝑙 , which directly

gives us the lemma. □

From lemma 1, we are confident to say the proof for the first

query can be extended to the subsequent queries. In the rest of the

proof, unless otherwise specified, we assume the query in the proof

is the first one in the online phase.

B.2 Correctness
We first provide a formal definition of correctness.

Definition B.1 (Correctness for two-server scheme). Given a secu-

rity parameter 𝜆 for any sufficiently large 𝑁 , any database D and

index 𝑖 , if both servers and client follow the protocol in Figure 4

honestly, the client outputs D𝑖 with probability 𝑃𝐶𝑖 ≥ 1 − negl(𝜆).

There’s only one scenario in which the client cannot get a correct

correctness, namely in the 𝑄𝑢𝑒𝑟𝑦 algorithm the client cannot find

a hint containing the queried index. We show that such probability

is negligible by the following lemma:

Lemma 2. Each hint contains any specific index 𝑖 with probability

1√
𝑁
.

Proof. Each hint contains exactly one random element in each

block of size

√
𝑁 . Any specific index falls into one block and is

selected with probability
1√
𝑁
. □

From Lemma 2, the probability is at most (1 − 1√
𝑁
)𝑀 . With

𝑀 = Θ(𝜆
√
𝑁 ), (1 − 1√

𝑁
)𝜆
√
𝑁 < 𝑒−𝜆 .

Definition B.2 (Correctness for single-server scheme). Given a

security parameter 𝜆 for any sufficiently large 𝑁 , any database D
and index 𝑖 , if server and client follow the protocol in Figure 5

honestly, the client outputs D𝑖 with probability 𝑃𝐶𝑖 ≥ 1 − negl(𝜆).

For the single-server scheme, an extra risk is that a block runs

out of crumbs or backup hints if more than 𝜆 queries fall into it.

With𝑀 = Θ(𝜆
√
𝑁 ), we prove the following lemma

Lemma 3. The probability that more than 𝜆 queries fall into one

block is negligible.

Proof. The proof can be found in Claim A.1. in [6]. □

The rest of single-server correctness follows the same argument

as the two-server scheme.

B.3 Integrity
We first provide a formal definition of integrity.

Definition B.3 (Two-server Integrity). Given a security parameter

𝜆, for all probabilistic polynomial time adversaryAquery corrupting

the query server, define the following probability as 𝑃𝐼𝑖 (Aquery).

𝑃𝑟


𝑐 ∉ {D𝑖 ,⊥} :

(𝑐𝑘, 𝑞ℎ) ← 𝑆𝑒𝑡𝑢𝑝 (1𝜆, 𝑁 )
ℎ ← 𝐻𝑖𝑛𝑡 (D, 𝑞ℎ)

(𝑞
hint

, 𝑞query) ← 𝑄𝑢𝑒𝑟𝑦 (𝑐𝑘, 𝑖)
𝑎′
query

← Aquery (D, 𝑞query)
𝑐 ← 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (ℎ, 𝑎′

query
)


On all choices of 𝑖 , 𝑃𝐼𝑖 (Aquery) ≤ negl(𝜆).

The general idea of proving integrity has been shown in the

security analysis part. We will give formal proof here. We first

prove a useful lemma.

Lemma 4. For any non-zero offset Δ = (Δ𝑠 ,Δ𝑟 ) ∈ F2
2
𝑝 ,Δ ≠ (0, 0),

the following probability gives the chance that the client accepts a

false answer 𝑎′ = 𝑎+Δ from the query server. Denote the probability

as 𝑃Δ,𝑖 .

𝑃𝑟


𝑐 ≠ ⊥ :

(𝑐𝑘, 𝑞ℎ) ← 𝑆𝑒𝑡𝑢𝑝 (1𝜆, 𝑁 )
ℎ ← 𝐻𝑖𝑛𝑡 (D, 𝑞ℎ)

(𝑞
hint

, 𝑞query) ← 𝑄𝑢𝑒𝑟𝑦 (𝑐𝑘, 𝑖)
𝑎query ← 𝐴𝑛𝑠𝑤𝑒𝑟𝑄𝑢𝑒𝑟𝑦 (D, 𝑞query)

𝑐 ← 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (ℎ, 𝑎query + Δ)


On all choices of Δ, 𝑖 , 𝑃Δ,𝑖 ≤ 1

2
𝑝−1 .

Proof. Let 𝑟 be the random element in F
2
𝑝 that is removed from

the random hint. In short, the reconstruction part can be rewritten

as

𝑃𝑟
[
𝑟 · (ℎ𝑠 − 𝑎𝑠 − Δ𝑠 ) = ℎ𝑟 − 𝑎𝑟 − Δ𝑟

]
Within which 𝑎𝑠 , 𝑎𝑟 are the answers, ℎ𝑠 , ℎ𝑟 are the hint parities.

Since the true answers always pass the verification, we have

𝑟 · (ℎ𝑠 − 𝑎𝑠 ) = ℎ𝑟 − 𝑎𝑟

So the probability can be further simplified as

𝑃𝑟 [𝑟Δ𝑠 − Δ𝑟 = 0]
Note that 𝑟 is a random element from PPRS and is indistinguish-

able from a hidden random value in F
2
𝑝 . The equation is the evalu-

ation of a non-zero degree-1 polynomial at a random point 𝑟 . Since

a degree-1 polynomial has at most 1 root in F
2
𝑝 , the probability is

at most
1

2
𝑝−1 . □
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With lemma 4 at hand, integrity follows directly.

Remark 1 (Database will small entries). On a database with small

entries 2
𝑝 < 2

𝜆
, having a random parity equal in size to one data-

base record is insecure. In practice, database entries can be aggre-

gated into larger sizes to ensure security.

The definition of the single-server integrity is similar.

Definition B.4 (Single-server Integrity). Given a security parame-

ter 𝜆, for all probabilistic polynomial time adversary A corrupting

the server, define the following probability as 𝑃𝐼𝑖 (A).

𝑃𝑟


𝑒 ∉ {D𝑖 ,⊥} :

𝑑 ← 𝐷𝑖𝑔𝑒𝑠𝑡 (1𝜆, 𝑁 ,D)
(𝑐𝑘, 𝑞ℎ) ← 𝑆𝑒𝑡𝑢𝑝 (1𝜆, 𝑁 )
{ℎ,⊥} ← 𝐻𝑖𝑛𝑡 (A(D), 𝑞ℎ, 𝑑)

𝑞 ← 𝑄𝑢𝑒𝑟𝑦 (𝑐𝑘, 𝑖)
𝑎′ ← A(D, 𝑞)
𝑒 ← 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (ℎ, 𝑎′)


On all choices of 𝑖 , 𝑃𝐼𝑖 (A) ≤ negl(𝜆).

The single-server version shares the same proof, with the only

difference being we need to introduce an extra part for the offline

setup to ensure the hints are correct. The proof can be done via a

basic argument on cryptographic hash functions and we omit it

here.

B.4 Privacy
There are two steps in the privacy proof. We first prove that the

scheme satisfies privacy, not putting selective failure into consider-

ation. This corresponds to the non-verifiable version of our scheme.

Then we show that the scheme satisfies selective failure privacy.

Definition B.5 (Privacy). Given a security parameter 𝜆, the scheme

is private with respect toSquery if there exists a probabilistic polyno-
mial time simulator 𝑆𝑖𝑚(1𝜆, 𝑁 ) such that for an algorithm 𝑠𝑒𝑟𝑣

hint

following the protocol of S
hint

honestly, any probabilistic poly-

nomial time adversaries A corrupting the query server Squery, A
cannot distinguish the view in the following worlds with probability

non-negligible in 𝜆.

• World 0: C interact with A who plays the role of Squery and

𝑠𝑒𝑟𝑣
hint

who plays the roll of S
hint

. At each step 𝑡 in the online

phase, A adaptively chooses the next index 𝑖𝑡 , and C uses 𝑖𝑡 as

its query.

• World 1: 𝑆𝑖𝑚 interact with A who plays the role of Squery and
𝑠𝑒𝑟𝑣

hint
who plays the roll of S

hint
. At each step 𝑡 in the online

phase, A adaptively chooses the next index 𝑖𝑡 , and 𝑆𝑖𝑚 runs

without the knowledge of 𝑖𝑡 .

A is allowed to deviate from the protocol arbitrarily. The privacy

with respect to S
hint

is defined symmetrically.

Intuitively, We are proving that the client’s queries are indistin-

guishable from queries to random indexes.

We prove the following lemma.

Lemma 5. For any query 𝑞 received by one of the two servers and

any two queried indexes 𝑖, 𝑖′,

𝑃𝑟 [𝑞 |𝑖] = 𝑃𝑟 [𝑞 |𝑖′]

Proof. 𝑞 can be divided into an index set 𝑞𝑠 and a random num-

ber set𝑞𝑟 . From the security of PRF,𝑞𝑠 is uniformly random in every

block except the block that contains 𝑖 or 𝑖′. When constructing 𝑞, 𝑖

or 𝑖′ is replaced by a random item in the block (a crumb). Therefore,

𝑞𝑠 is indistinguishable from a random set with one element in each√
𝑁 sized block.

𝑞𝑟 is merely

√
𝑁 random elements in F

2
𝑝 , its content is irrelevant

to the queried index 𝑖 or 𝑖′. The lemma follows. □

With Lemma 5 at hand, we can prove the privacy of the scheme.

We first prove the privacy with respect to Squery. In the offline

phase, Squery does not interact with the C. So we only need to

consider the online phase. Consider the following hybrid:

• Hyb 0: C interact with A who plays the role of Squery and

𝑠𝑒𝑟𝑣
hint

who plays the roll of S
hint

. At each step 𝑡 in the online

phase, A adaptively chooses the next index 𝑖𝑡 . C drops 𝑖𝑡 and

samples a random index 𝑖′𝑡 as its query.

From Lemma 5, Hyb 0 is indistinguishable fromWorld 0. The
simulator 𝑆𝑖𝑚 can be constructed as exactly what C does in Hyb 0.
Hyb 0 is indistinguishable fromWorld 1 because C never makes

use of the knowledge of 𝑖𝑡 . Therefore, the scheme satisfies privacy

with respect to Squery.
Privacy with respect toSquery in the offline phase follows simply

from the fact that the offline phase happens before any query is

made. The proof for the online phase is symmetric to the argu-

ment of privacy with respect to Squery. This completes the proof

of privacy in the semi-honest model.

Then we move on to the malicious model, where selective failure

is introduced. Privacy is defined differently.

Definition B.6 (Privacy Against Selective Failure). Given a se-

curity parameter 𝜆, the scheme is private against selective failure

with respect to Squery if there exists a probabilistic polynomial time

simulator 𝑆𝑖𝑚(1𝜆, 𝑁 ) such that for an algorithm 𝑠𝑒𝑟𝑣
hint

follow the

protocol of S
hint

honestly, any probabilistic polynomial time adver-

saries A corrupting the query server Squery, A cannot distinguish

the view in the following world with probability non-negligible in

𝜆.

• World 0: C interact with A who plays the role of Squery and

𝑠𝑒𝑟𝑣
hint

who plays the roll of S
hint

. At each step 𝑡 in the online

phase, A adaptively chooses the next index 𝑖𝑡 , and C uses 𝑖𝑡 as

its query. The client outputs 1 toA after each query if the answer

is accepted, otherwise 0.

• World 1: 𝑆𝑖𝑚 interact with A who plays the role of Squery and
𝑠𝑒𝑟𝑣

hint
who plays the roll of S

hint
. At each step 𝑡 in the online

phase, A adaptively chooses the next index 𝑖𝑡 , and 𝑆𝑖𝑚 runs

without the knowledge of 𝑖 . 𝑆𝑖𝑚 output a bit 𝑏 to A after each

query.

A is allowed to deviate from the protocol arbitrarily.

In the offline phase, Squery does not interact with the C. So we

only need to consider the online phase. Consider the following

hybrid:

• Hyb 0: C interact with A who plays the role of Squery and

𝑠𝑒𝑟𝑣
hint

who plays the roll of S
hint

. At each step 𝑡 in the online

phase, A adaptively chooses the next index 𝑖𝑡 . C drops 𝑖𝑡 and
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samples a random index 𝑖′𝑡 as its query. C outputs 1 to A after

each query if the answer is accepted, otherwise 0.

Hyb 0 is indistinguishable from World 0. A query to 𝑖𝑡 is indis-

tinguishable from a query to 𝑖′𝑡 , thus, we only need to prove that

the extra bit is indistinguishable in the two worlds. We argue the

bit has nothing to do concerning the input of C, but solely depends

on A. A could answer the query in two ways:

• A gives the correct answer 𝑎. From correctness, C output 1.

• A gives a false answer 𝑎′. From integrity, C output 0 with over-

whelming probability.

We see that the input of C does not affect if the bit is 1 or 0.

Therefore, the view ofA inHyb 0 andWorld 0 is indistinguishable.
The simulator 𝑆𝑖𝑚 can be constructed as exactly what the C do in

Hyb 0. Hyb 0 is indistinguishable from World 1 because C never

makes use of the knowledge of 𝑖𝑡 . Therefore, the scheme satisfies

privacy with respect to Squery.
The privacy with respect to S

hint
is defined separately.

Definition B.7 (Privacy Against Selective Failure). Given a se-

curity parameter 𝜆, the scheme is private against selective failure

with respect to S
hint

if there exists a probabilistic polynomial time

simulator 𝑆𝑖𝑚(1𝜆, 𝑁 ) such that for any algorithm 𝑠𝑒𝑟𝑣query, any

probabilistic polynomial time adversaries A passively corrupting

the hint serverS
hint

,A cannot distinguish the view in the following

world with probability non-negligible in 𝜆.

• World 0: C interact with A who plays the role of S
hint

and

𝑠𝑒𝑟𝑣query who plays the roll of S
hint

. At each step 𝑡 in the online

phase,A adaptively chooses the next index 𝑖𝑡 , and C uses 𝑖𝑡 as its

query. C output 1 toA after each query if the answer is accepted,

otherwise 0.

• World 1: 𝑆𝑖𝑚 interact with A who plays the role of S
hint

and

𝑠𝑒𝑟𝑣query who plays the roll ofSquery. At each step 𝑡 in the online
phase, A adaptively chooses the next index 𝑖𝑡 , and 𝑆𝑖𝑚 runs

without the knowledge of 𝑖 . 𝑆𝑖𝑚 output a bit 𝑏 to A after each

query.

We stress that A should follow the protocol honestly.

Privacy with respect to S
hint

in the offline phase follows simply

from the fact that the offline phase happens before any query is

made. The proof for the online phase is symmetric to the argument

with respect to Squery. This completes the proof of privacy in the

malicious model.

Privacy in the single-server setting is defined identically to the

two-server privacy with respect to Squery. We see that the only

difference is the 𝑠𝑒𝑟𝑣
hint

algorithm being replaced by a real inter-

action with A, which happens before any query is made and does

not affect privacy.
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