
Three Party Secure Computation with Friends and Foes

Bar Alon∗

alonbar08@gmail.com
Amos Beimel†

amos.beimel@gmail.com
Eran Omri∗

omrier@ariel.ac.il

October 17, 2023

Abstract

In secure multiparty computation (MPC), the goal is to allow a set of mutually distrust-
ful parties to compute some function of their private inputs in a way that preserves security
properties, even in the face of adversarial behavior by some of the parties. However, classical
security definitions do not pose any privacy restrictions on the view of honest parties. Thus,
if an attacker adversarially leaks private information to honest parties, it does not count as a
violation of privacy. This is arguably undesirable, and in real-life scenarios, it is hard to imagine
that possible users would agree to have their private information revealed, even if only to other
honest parties.

To address this issue, Alon et al. [CRYPTO 20] introduced the notion of security with friends
and foes (FaF security). In essence, (t, h)-FaF security requires that a malicious adversary cor-
rupting up to t parties cannot help a coalition of h semi-honest parties to learn anything beyond
what they can learn from their inputs and outputs (combined with the input and outputs of
the malicious parties). They further showed that (t, h)-FaF security with n parties is achievable
for any functionality if 2t + h < n, and for some functionality, (t, h)-FaF security is impossible
assuming 2t + h ≥ n. A remaining important open problem is to characterize the set of n-party
functionalities that can be computed with (t, h)-FaF security assuming 2t + h ≥ n.

In this paper, we focus on the special, yet already challenging, case of (1, 1)-FaF security for
three-party, 2-ary (two inputs), symmetric (all parties output the same value) functionalities.
We provide several positive results, a lower bound on the round complexity, and an impossibility
result. In particular, we prove the following.

1. We identify a large class of three-party Boolean symmetric 2-ary functionalities that can
be computed with (1, 1)-FaF full security.

2. We identify a large class of three-party (possibly non-Boolean) symmetric 2-ary function-
alities, for which no O(log κ)-round protocol computes them with (1, 1)-FaF full security.
This matches the round complexity of our positive results for various interesting function-
alities, such as equality of strings.

Keywords: MPC with friends and foes; full security; lower bounds; protocols

∗Department of Computer Science, Ariel University. Ariel Cyber Innovation Center (ACIC).
†Department of Computer Science, Ben Gurion University.

Contents
1 Introduction 1

1.1 Our Results . 2
1.2 Our Techniques . 4
1.3 Related Work . 8
1.4 Organization . 9

2 Preliminaries 9
2.1 Notations . 9
2.2 The Model of Computation . 10
2.3 FaF Security-With-Identifiable-Abort . 13
2.4 The Two-Party Model . 14

3 The Dealer Model 14

4 Feasibility Results for Three-Party FaF Security 20
4.1 A Compiler from 2-Party Standard Security to 3-Party FaF-Security 20
4.2 FaF Secure Protocols for Boolean Functionalities . 22

5 Lower Bound on the Round Complexity of FaF Secure Protocols 30

6 Impossibility for a Two-Input Three-Party Functionality 34

Bibliography 37

1 Introduction
In secure multiparty computation (MPC), the goal is to allow a set of mutually distrustful parties
to compute some function of their private inputs in a way that preserves security properties, even
despite adversarial behavior by some of the parties. Some of the most basic security properties
that may be desired are correctness, privacy, independence of inputs, fairness, and guaranteed
output delivery. The notion of full security captures all of the above security properties.1 Classical
security definitions (cf., [12]) assume the existence of a single adversarial entity controlling the
set of corrupted parties. A malicious adversary may deviate from the protocol in any way. In
particular, it may send non-prescribed messages to honest parties. Such messages could potentially
leak private information to honest parties, e.g., the secret input of some other honest party. Since
the classical definitions pose no restrictions on the view of honest parties in the protocol, they do
not count this as a violation of privacy. Moreover, even the protocol itself may instruct all parties to
send their inputs to other honest parties, if say, all possible corrupted parties have been previously
revealed (e.g., in the protocol of [18]). Again, this would still not count as a violation of privacy
according to the classical security definition. This is arguably undesirable in many situations that
fall into the MPC framework. Furthermore, when considering MPC solutions for real-life scenarios,
it is hard to imagine that possible users would agree to have their private inputs revealed to honest
parties (albeit not to malicious ones).

To address this issue, Alon et al. [1] introduced a new security definition called security with
friends and foes (FaF security) that, in addition to standard security requirement, poses a privacy
requirement on the view of subsets of honest parties. In essence, (t, h)-FaF security requires that for
every malicious adversary A corrupting t parties, and for any disjoint subset of h parties, both the
view of the adversary and the joint view of the additional h parties can be simulated (separately)
in the ideal model. The security of the protocol should hold even if the malicious adversary sends
to some h (semi-)honest parties non-prescribed messages. In fact, the adversary is allowed to send
messages after the protocol is terminated.

Alon et al. [1] accompanied the new security notion with several feasibility and impossibility
results. They showed that achieving (t, h)-FaF security with n parties against computational ad-
versaries is achievable for any functionality if and only if 2t + h < n. That is, if 2t + h < n then
for any n-party functionality there exists a (t, h)-FaF secure protocol computing it, and conversely,
if 2t + h ≥ n, then there exists a functionality that cannot be computed with (t, h)-FaF security.
Note that this does not rule out the existence of n-party functionalities that can still be computed
with (t, h)-FaF security, even when 2t + h ≥ n. Indeed, Alon et al. [1] also presented interesting
examples of such functionalities. This includes n-party coin tossing with (t, h)-FaF security as-
suming t < n/2 and h ≤ n − t, and three-party XOR with (1, 1)-FaF security, both of which are
known to be impossible to securely compute without an honest majority (with standard security
requirements) [9]. This raises the following natural question:

Which n-party functionalities can be computed with
(t, h)-FaF security assuming 2t + h ≥ n?

1Formally, security is defined via the real vs. ideal paradigm, where a (real-world) protocol is required to emulate
an ideal setting, in which the adversary is limited to selecting inputs for the corrupted parties and receiving their
outputs.

1

1.1 Our Results

In this paper, we are interested in the special, yet already challenging, three-party setting where all
parties output the same value and are interested in achieving (1, 1)-FaF security2. We show several
positive results, a lower bound on the round complexity required for achieving FaF security, and
an impossibility result. We next review our results, starting with describing the positive results.
Before doing so, we introduce a dealer model, which simplifies the proofs and descriptions of our
protocols.

The dealer model. The following dealer model serves as a middle ground between the ideal
world for FaF security and real-world protocols. It is useful for constructing protocols as it ab-
stracts away technical implementation issues. In particular, this allows our protocols to admit
information-theoretic security in the dealer model. Furthermore, in the dealer model we define, the
adversary receives no messages, and the only attacks it can perform are to change its input and
abort prematurely. This makes the security analysis of such protocols much simpler. Importantly,
we show a general compilation from protocols in the dealer model to protocols in the real world
and vice versa. The second direction, where we compile a real-world FaF secure protocol into a
FaF secure protocol in the dealer model, helps us describe impossibility results in a clear way. It
additionally gives more intuition into the impossibility result of Alon et al. [1], where the attacker
aborts by selecting a round independently from its view in the protocol. The above compilation
shows that indeed an attack cannot rely on the view of the adversary, apart from the round number.

In this dealer model, parties interact in rounds via a trusted dealer, and the malicious adversary
is only allowed to abort in each round. In more detail, the interaction proceeds as follows. First,
the parties send their inputs to the dealer. The dealer then computes backup values for each pair
of parties for each round. These values will later be used as the output of two parties in case the
remaining third party aborts. Then, in each round, the dealer approaches the parties in a certain
order, without revealing any information to the approached party, besides the round number. The
party being approached responds with either continue or abort. If it sends abort, then the dealer
sends to the remaining pair of parties a backup value (that depends on the round number). The
two parties output this value and halt. Additionally, the dealer also sends to each honest party the
appropriate backup values corresponding to the honest party and the aborting party (this models
FaF security where the malicious adversary may send its real world view to the other parties). If
no abort occurred then the dealer sends the output of the function to all parties.

Theorem 1.1 (Informal). Assume that secure protocols for oblivious transfer exist. Let f : X ×
Y ×Z →W be a three-party functionality. Then f can be computed with (1, 1)-FaF security if and
only if it can be computed with (1, 1)-FaF security in the dealer model.

Possibility results for (1, 1)-FaF security. We focus on (1, 1)-FaF security in the three-party
setting, assuming that only two parties hold inputs, and that all parties receive the same output
(i.e., symmetric functionalities). We provide several positive results in this setting.

In our first result, we show that if a 2-ary function (two inputs) f has a two-party protocol that
computes it with both (standard) malicious security and with (standard) semi-honest security, then
f can be computed as a three-party functionality with (1, 1)-FaF security, with all three parties

2The security notion was called FaF full security in [1].

2

obtaining the output. It is instructive to note that even if a two-party protocol is secure against
malicious adversaries, it may still not be secure against semi-honest adversaries [4].
Theorem 1.2 (Informal). Assume that secure protocols for oblivious transfer exist. Let f : X×Y →
W be a 2-ary function. Assume that there exists a protocol π for computing f as a symmetric two-
party functionality, providing both (standard) malicious and semi-honest security. Then f can be
computed as a symmetric three-party functionality with (1, 1)-FaF security.

Note that simply letting the two parties holding inputs run the secure protocol between them-
selves, and then having them send the output to the remaining third party does not work. This is
due to the fact that a corrupt party can lie about the outcome, and then the third party has no
way of detecting who is lying.

As an application, consider Boolean functionalities, namely, the output of the parties is a single
bit. Asharov et al. [3] characterized all two-party symmetric Boolean functionalities that can
be securely computed. We observe that the protocol they constructed also admits semi-honest
security. Thus, we may apply Theorem 1.2 to the class of functionalities captured by the (positive)
result of [3], and obtain the following result for three-party FaF-secure computation. First, for a
deterministic function f : X × Y × {λ} → {0, 1} we associate with it a matrix Mf ∈ {0, 1}|X |×|Y|
defined as Mf (x, y) = f(x, y) for all x ∈ X and y ∈ Y. Then we have the following.
Corollary 1.3. Assume that secure protocols for oblivious transfer exist. Let f : X × Y × {λ} →
{0, 1} be a three-party Boolean symmetric functionality. Assume that either the all-one vector or
the all-zero vector is an affine combination3 of either the rows or the columns of Mf . Then f can
be computed with (1, 1)-FaF security.

We now turn to our second positive result, providing several sufficient conditions for the exis-
tence of (1, 1)-FaF secure 3-party protocols for Boolean functionalities. For a Boolean function f
we let Mf be the negated matrix, defined as Mf (x, y) = 1− f(x, y) for all x ∈ X and y ∈ Y.
Theorem 1.4 (Informal). Assume that secure protocols for oblivious transfer exist. Let f : X ×
Y ×{λ} → {0, 1} be a three-party Boolean symmetric functionality. Assume that at least one of the
following holds.

1. Both Mf and Mf have a trivial kernel, or both MT
f and M

T
f have a trivial kernel, i.e., the

kernel contains only the all-zero vector.

2. The all-one vector is a linear combination of either the rows or columns of Mf , where all
coefficients are strictly positive.

Then f can be computed with (1, 1)-FaF security.
The round complexity of the protocol we construct is ω(log κ), where κ is the security parameter.

Below we present a lower bound on the round complexity that matches the upper bound for several
functionalities.

Observe that the class of functionalities captured by Theorem 1.4 is different from the class
of functionalities captured by Corollary 1.3. Indeed, for an integer m ≥ 2, consider the equality
function EQ : [m]2×{λ} → {0, 1}, defined as EQ(x, y) = 1 if x = y, and EQ(x, y) = 0 if x ̸= y. Then
the associated matrix MEQ is the m×m identity matrix, which clearly satisfies Item 1, hence it can
be computed with (1, 1)-FaF security. However, it cannot be computed as a two-party functionality
as it implies coin tossing. We provide a more general theorem alongside its proof in Section 4.2.

3A affine combination is a linear combination where the sum of the coefficients is 1.

3

Negative results. We now turn to our negative results. Our first result is a lower bound on
the number of rounds required for FaF security. We identify a class of functionalities such that, in
order to compute any of them with (1, 1)-FaF security, would require many rounds of interactions.
To simplify the presentation in this introduction, we limit the statement to Boolean functions (see
Theorem 5.2 for the generalization to non-Boolean functions).

Theorem 1.5 (Informal). Let f : X × Y × {λ} → {0, 1} be a deterministic three-party Boolean
functionality. Assuming that the matrix Mf has no constant rows, no constant columns, and that
no row or column has its negation appearing in Mf . Then there is no O(log κ)-round protocol
computing f with (1, 1)-FaF security.

Observe that the equality function EQ : [m]2 × {λ} → {0, 1}, where m ≥ 3, satisfies the
conditions in Theorem 1.5. Note that this matches the round complexity of the protocol from
Theorem 1.4.

Our final result states there exists a three-party non-Boolean functionality that depends on two
inputs, which cannot be computed with FaF security.

Theorem 1.6 (Informal). Assume the existence of one-way permutations. Then there exists a
three-party 2-ary symmetric functionality that cannot be computed with (1, 1)-FaF security.

We do not know if such impossibility results hold for a Boolean functionality, and we leave it
as an interesting open question.

1.2 Our Techniques

In this section, we provide an overview of our techniques. Let us first recall the definition of (1, 1)-
FaF security. We say that a protocol computes a functionality f with (1, 1)-FaF security, if for any
adversary A (statically) corrupting a party P the following holds: (i) there exists a simulator Sim
that can simulate (in the ideal-world4) A’s view in the real-world (so far, this is standard security),
and (ii) for any uncorrupted party Q ̸= P, there exists a “semi-honest” simulator SimQ, such that,
given the parties’ inputs and Sim’s ideal-world view (i.e., its randomness, inputs, auxiliary input,
and output received from the trusted party), can generate a view that is indistinguishable form the
real-world view of Q, i.e., (VIEWreal

Q , OUTreal) is indistinguishable from (VIEWideal
SimQ

, OUTideal).
We now proceed to describe our techniques. Throughout the rest of the section, we denote the

parties by A, B, and C, holding inputs x, y, and z, respectively.

Proof of Theorem 1.1. We show that a functionality can be computed with (1, 1)-FaF security
if and only if it can be computed with in an appropriate dealer model. Let us begin with a more
detailed description of a dealer-model protocol. An r-round protocol in the dealer model for (1, 1)-
FaF security is described as follows. First, the parties send their inputs to the dealer. The dealer
then computes backup value ab0, . . . , abr, ac0, . . . , acr, and bc0, . . . , bcr. Then, for i = 1 to r, the
dealer does the following.

1. If no abort was ever sent, approach party A, which responds with either continue or abort.

2. If A responds with abort, then send x and bci−1 to B and C, sends ab0, . . . , abi−1 to B and
ac0, . . . , aci−1 to C, and halts. Parties B and C then output bci−1.

4All the adversary can do in the ideal-world is to select its input for the computation and receive the output.
Specifically, it cannot prevent the output from other parties or learn anything other than the output.

4

3. If A responds with continue, approach party B, which responds with either continue or abort.

4. If B responds with abort, then sends y and aci−1 to A and C, sends ab0, . . . , abi−1 to A and
bc0, . . . , bci to C, and halts. Parties A and C then output aci−1.

5. If B responds with continue, approach party C, which responds with either continue or abort.

6. If C responds with abort, then sends z and abi−1 to A and B, sends ac0, . . . , aci to A and
bc0, . . . , bci to B, and halts. Parties A and B then output abi−1.

If no abort was ever sent, then the dealer sends the last backup values (which must equal to f(x, y, z)
with high probability to ensure correctness), and the parties output the value they received. Show-
ing that the protocol in the dealer model can be emulated by a real world protocol (without the
dealer) is done using standard techniques. Specifically, the parties compute a 3-out-of-3 secret shar-
ing of the backup values, each signed using a signature scheme. This computation is done using
a FaF secure-with-identifiable-abort protocol. That is, the malicious and semi-honest adversaries
may learn the output first, and may prevent the honest party from receiving the output at the cost
of revealing the identity of the malicious party. Then, in every round, the parties send their shares
for the backup value of the other two parties. If a party changes its share (which is captured with
overwhelming probability using the signature scheme) or does not send any message at all, then
the remaining two parties reconstruct and output the last backup value that they can reconstruct.
See Section 3 for more details.

As for the other direction, we compile a real-world FaF secure protocol into a FaF secure
protocol in the dealer model. Here, the dealer samples randomness for the parties and executes the
protocol in its head. For each round i, it computes the value that a pair of parties output in case
the remaining third party aborts after sending i messages (honestly). It then uses these values to
define the backup values that it gives to the parties in the protocol.

Proof of Theorem 1.2. Recall that we are given a function f , for which there is a two-party
protocol π2 that computes f with both malicious security and with semi-honest security. We show
that f can be computed with (1, 1)-FaF security in the three-party setting when all parties receive
the output. Let r denote the number of rounds in π2. We assume without loss of generality that
the interaction in π2 is as follows. Each round i ∈ [r] is composed of two messages, the first sent
by A and the second sent by B.5 A malicious party may send any message that it wants, or send
no message at all. In the latter case, the honest party must output some value from the range of
the function (recall that π is fully secure). These values are called backup values. We denote by
a0, . . . , ar and b0, . . . , br the backup values of the parties A and B, respectively. Specifically, we let
ai be the output of A assuming that B sent the messages of the first i rounds honestly but did not
send the (i + 1)th message, and we let bi be the output of B assuming that A sent the messages of
the first i rounds honestly but did not send the (i + 1)th message.

We next construct a FaF secure three-party protocol π3. By Theorem 1.1, it suffices to do so in
the dealer model, i.e., it suffices to describe how the dealer computes the backup values. For every
i ∈ [r], the dealer sets abi = f(x, y), aci = ai, and bci = bi. Intuitively, a corrupt C cannot affect
the output of A and B. Moreover, as π2 admits semi-honest security, the backup values they receive

5Note that transforming a protocol into one with this structure might double the number of rounds.

5

reveal no information to them.6 As for a malicious A (a malicious B is completely symmetric), note
that A has no view. Therefore, to simulate an adversary A3 corrupting A, we only need to define
an appropriate distribution over the inputs (sent by the simulator to the trusted party), so that
the output in both the real and ideal world are indistinguishable. To do this, we emulate A3 using
an adversary A2 for the two-party protocol π2. The adversary A2 behaves honestly until the round
where A3 aborts, and aborts at the same round. By the assumed security of π2, this attack can
be simulated in the two-party ideal world. This defines a distribution over the inputs of A. Using
the same distribution in the three-party ideal world results in the same distribution for the output.
Now, consider a semi-honest party Q in the three-party protocol; the challenge in the FaF model
is to construct a view consistent with the input chosen by the malicious adversary controlling A,
and the messages B gets from the dealer. Let i denote the round where A aborts. If Q = B, then
the only information it receives in the real world is ab0, . . . , abi−1 and the output bci−1 = bi−1.
Since abj = f(x, y) for all j, this can be simulated in the ideal world, since the simulator for the
semi-honest B receives the input of the malicious party A. On the other hand, if Q = C, then in the
real world it receives ac0 = a0, . . . , aci−1 = ai−1. These values are generated by the simulator for A2
in the two-party setting. Moreover, they are generated consistently with the output bci−1 = bi−1.
Therefore, this simulator can be used to simulate the view of C.

Proof of Theorem 1.4. We now turn to our second positive result. Here we are given a three-
party Boolean symmetric functionality f : X × Y × {λ} → {0, 1} satisfying one of two conditions.
We show that it can be computed with (1, 1)-FaF security. Similarly to the previous result, we
may describe only the backup values for the protocol in the dealer model. We construct a protocol
inspired by the protocols of [14, 3], which follow the special round paradigm, however, the proof of
security follows a new construction for the simulator.

Roughly, a special round i∗ (whose value is unknown to all parties) is sampled at random
according to a geometric distribution with a sufficiently small parameter α > 0. Before round i∗ is
reached, the backup values aci of A and C, and bci of B and C, are random and independent. After
i∗ the backup values are equal to f(x, y). In more detail, for every i < i∗ we let aci = f(x, ỹi),
where ỹi ← Y is sampled uniformly at random, and for every i < i∗+ 1 we let bci = f(x̃i, y), where
x̃i is chosen according to some distribution that depends on the function. All other backup values
are equal to f(x, y). Finally, the backup values for A and B are all equal to f(x, y).7

First, observe that a corrupt C cannot attack the protocol, since it cannot prevent A and B from
outputting f(x, y), nor can it provide them with any new information. Next, similarly to [14, 3], a
corrupt B cannot attack since C learns the backup value aci before it learns bci. Thus, if B aborts
at round i∗ or afterwards, then A and C output f(x, y). Otherwise, if B aborts before i∗, then A
and C output an independent random value. Additionally, B cannot help either of the other parties
to obtain any additional information. We are left with the case where A is malicious, which can
generate an advantage for C by guessing i∗ + 1 and aborting in this round. This causes B and C
to output bci∗ = f(x̃i∗ , y), which is a random value. However, C receives aci∗ = f(x, y) from the
dealer.

We show that a simulator exists; we do so by constructing a different simulator than the one

6Note that here are using the fact that π2 is secure against semi-honest adversaries. Indeed, since A and B are
semi-honest, to properly simulate them in the ideal world we need to use a simulator that does not change its input.

7The choice of setting bci to equal f(x, y) only from round i∗ + 1 is so that A and C learn the output before B
and C. Another approach could be to modify the dealer model so that the dealer approaches B before A.

6

constructed by [14, 3]. There, the malicious simulator generates the view exactly the same as in
the real world, and the advantage of the adversary is simulated by sending to the trusted party an
input sampled according to a carefully chosen distribution. For our protocol, we let the malicious
simulator send an input according to the “expected” distribution, i.e., the one used in the real
world, which is either a random input before i∗ + 1 or the real input from i∗ + 1 onward.

We are now left with simulating the advantage that a semi-honest C has over the honest party
B. We define its simulator by sampling the backup values differently from the real world. In more
detail, let i denote the round where the malicious adversary aborted (set to r + 1 if no such round
exists). For every round j < i the simulator generates a backup value acj according to the same
distribution used in the real world, that is, acj is a random value if j < i∗, and acj = f(x, y) if j ≥ i∗

(note that since i > j it follows that i ≥ i∗ + 1 in this case, hence the simulator received f(x, y)
from the trusted party). At round i, if i > i∗ we let the simulator set aci = f(x, y). Otherwise, if
i ≤ i∗ then the simulator samples the backup value according to a carefully chosen distribution. We
show that under our assumptions on f , there exists a distribution such that the joint distribution
of the view generated by the simulator and the output of honest parties is indistinguishable from
the real world. We refer the reader to Section 4.2 for more details.

Proof of Theorem 1.5. We now sketch the proof of our lower bound on the round complexity
required for FaF secure computation. Recall that we fix a three-party functionality f : X × Y ×
{λ} → {0, 1}, for which the matrix Mf has no constant rows, no constant columns, and that no
row or column has its negation appearing in Mf . We show there is no O(log κ)-round protocol
computing f with (1, 1)-FaF security. We assume that f is such that Mf has no duplicated rows
and columns. This is without loss of generality since duplicating rows and columns, and removing
duplications, does not compromise the FaF security of the protocol.

Assume towards contradiction there exists an r = O(log κ)-round protocol computing f with
(1, 1)-FaF security. We assume without loss of generality that the protocol is in the dealer model
(note that the transformation from a real world FaF secure protocol to a FaF secure protocol in
the dealer model preserves the number of rounds). To gain some intuition, let us first consider a
malicious adversary B corrupting B that sends continue to the dealer until round r. The adversary
then aborts, causing A and C to output acr−1, and causing the dealer to send bcr = f(x, y) to C.

First, we claim that in order to simulate the attack, the malicious simulator SimB must send y
to the trusted party, except with negligible probability. Intuitively, this follows from the following
observation. Since Mf (·, y) is not constant, does not appear as duplication, and since the negation
of Mf (·, y) does not appear anywhere else in Mf , for any y′ ̸= y there exists x1, x2 ∈ X such that
Mf (x1, y) ̸= Mf (x2, y) and Mf (x1, y′) = Mf (x2, y′). Pictorially, the 2× 2 matrix

y y′()
x1 a b
x2 b b

where a ̸= b ∈ {0, 1}, is embedded in Mf restricted to y and y′ (in particular Mf contains an
embedded OR). Now, suppose that the malicious simulator SimB sends y′ to the trusted party.
Consider the semi-honest simulator SimB,C for a semi-honest C. Note that it will not be able to
distinguish between the case where A has input x1 from the case it has input x2. However, in the
real world C is able to distinguish between them since it receives the output f(x, y).

7

Next, given that SimB does send y to the trusted party, this implies that in the ideal world the
output of the honest party A is f(x, y). Therefore, the same must hold in the real world, except
with negligible probability. Recall that the malicious B aborted after receiving r messages from A,
thus the output of A is acr−1. This implies that acr−1 = f(x, y) except with negligible probability.

We can now continue with the same argument as before, this time applied to a malicious
adversary corrupting A and aborting after receiving r − 1 messages from B. We then apply this
argument inductively for all r rounds, each time accumulating another error (from when comparing
the real and ideal world). Similarly to the lower bound due to [14], we note that when formalizing
this argument, the error that is being accumulated each round is multiplicative, with the error
each time being O(|X | · |Y|). Therefore, after applying the argument r = O(log κ

log |X |+log |Y|) times, we
conclude that with constant probability the parties can compute f without any interaction at all,
which is a clear contradiction. We stress that our overall strategy is substantially different from
[14] in that we analyze what the simulator can send to the trusted party. We refer the reader to
Section 5 for a formal analysis.

Proof of Theorem 1.6. We now show there exists a three-party functionality that depends on
two inputs and cannot be computed with (1, 1)-FaF security. The functionality we consider and
the proof of impossibility are nearly identical to that of [1]. Let f be a one-way permutation. We
consider the following functionality. Party A holds two strings a and yB, and party B holds two
string b and yA. Party C holds no input. The output of all parties is (a, b) if f(a) = yA and
f(b) = yB, and ⊥ otherwise.

Assume towards contradiction there exists a (1, 1)-FaF secure protocol computing the function.
We may assume the protocol to be in the dealer model. Consider an execution where the strings
a and b are sampled uniformly and independently, and that yA = f(a), yB = f(b). An averaging
argument yields that there must exist a round i, where two parties, say A together with C, can
recover (a, b) with significantly higher probability than B together with C. Our attacker corrupts
A, sends its original inputs a and yB to the dealer, and sends continue until round i + 1. At round
i + 1 it sends abort.

Intuitively, in order to have the output of the honest party B in the ideal world distributed
as in the real world (where it is ⊥ with noticeable probability), the malicious simulator has to
change its input (sent to the trusted party) with high enough probability. However, in this case,
the semi-honest simulator for C, receives ⊥ from the trusted party. Since the only information it
has on b is f(b), by the assumed security of f , the simulator for B will not be able to recover b
with non-negligible probability. Hence, B’s simulator will fail to generate a valid view for B. The
detailed proof appears in Section 6.

1.3 Related Work

Understanding which functionalities can be computed with full security is the subject of many
papers in the standard setting. This started with the seminal result of Cleve [9], who showed that
fair two-party coin tossing is impossible. Surprisingly, Gordon et al. [14] showed that many two-
party functionalities can be computed with full security. In particular, they showed a functionality
containing an embedded XOR that can be computed with full security. This led to a series of
works trying to characterize which two-party functionalities can be computed with full security
[2, 3, 21, 11, 22]. In particular, [3] characterized the set of symmetric Boolean functionalities that
are computable with full security.

8

In the multiparty setting much less is known. In the honest majority setting, if the parties
are given secure point-to-point channels and a broadcast channel, then any functionality can be
computed with full security without any cryptographic assumptions [23]. The dishonest majority
setting was first considered by [13]. They showed that the three-party majority functionality, and
n-party OR can be computed securely, for any number of corruptions. The case where exactly
half of the parties can be corrupted was considered by Asharov et al. [3] . The setting of a
non-constant number of parties was considered in Dachman-Soled [10]. The “Best-of-both-worlds
security” definition [17, 19, 20] requires full security to hold in case of an honest majority, however,
if at least half of the parties are corrupted, then the same protocol should be secure-with-abort.
Finally, Halevi et al. [15] were the first to consider the solitary output setting, where only one party
obtains the output.

1.4 Organization

We present the preliminaries in Section 2. We describe the dealer model in Section 3. Then, in
Section 4 we present our positive results. In Section 5 we show our lower bound on the round
complexity of (1, 1)-FaF secure protocols. Finally, in Section 6 we show an impossibility for a 2-ary
three-party functionality.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and distributions, low-
ercase for values, and we use bold characters to denote vectors. For n ∈ N, let [n] = {1, 2 . . . n}.
For a set S we write s ← S to indicate that s is selected uniformly at random from S. Given a
random variable (or a distribution) X, we write x← X to indicate that x is selected according to
X. We let λ be the empty string. For a randomized function (or an algorithm) f we write f(x) to
denote the random variable induced by the function on input x, and write f(x; rnd) to denote its
value when the randomness of f is fixed to rnd.

To define security of protocols, we need to define computational indistinguishability between two
distribution ensembles (i.e., the distributions of the real and ideal world). A distribution ensemble
X = (Xa,n)a∈Dn,n∈N is an infinite sequence of random variables indexed by a ∈ Dn and n ∈ N,
where Dn is a domain that might depend on n. A ppt algorithm is probabilistic polynomial time,
and a pptm is a polynomial time (interactive) Turing machine. A ppt algorithm is non-uniform if
it receives an advice as an additional input. A function µ : N→ [0, 1] is called negligible, if for every
positive polynomial p(·) and all sufficiently large n, it holds that µ(n) < 1/p(n). We let neg(n)
denote an unspecified negligible function. Computational indistinguishability is defined as follows.

Definition 2.1. Let X = (Xa,n)a∈Dn,n∈N and Y = (Ya,n)a∈Dn,n∈N be two ensembles, and let ε =
ε(·). We say that X and Y are ε-computationally indistinguishable, denoted X

C≡ε Y , if for every
non-uniform ppt distinguisher D such that for all sufficiently large n and for all a ∈ Dn, it holds
that

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| < ε(n).

We say that X and Y are computationally indistinguishable, denoted X
C≡ Y , if they are n−c-

computationally indistinguishable for all c ∈ N.

9

Secret sharing schemes. A (threshold) secret-sharing scheme [25, 7] is a method in which a
dealer distributes shares of some secret to n parties such that t colluding parties do not learn
anything about the secret, and any subset of t + 1 parties can fully reconstruct the secret. We let
P = {P1, . . . , Pn} denote the set of participating parties. As a convention, for a secret s and a party
Pi ∈ P, we let s[i] be the share received by Pi. For a subset S ⊆ P we denote s[S] = (s[i])i∈S .

Definition 2.2 (Secret sharing). A (t + 1)-out-of-n secret-sharing scheme over a message space
M consists of a pair of algorithms (Share, Recon) satisfying the following properties:

1. (t + 1)-reconstructability: For every secret s ∈ M and every subset I ⊆ [n] of size |I| ≥
t + 1, if (s[1], . . . , s[n])← Share(s) then s = Recon(s[I]).

2. t-privacy: For every two secrets s1, s2 ∈ M, and every subset I ⊆ [n] of size |I| ≤ t, the
distribution of the shares s1[I] of s1 is identical to that of s2[I] of s2, where (s1[1], . . . , s1[n])←
Share(s1) and (s2[1], . . . , s2[n])← Share(s2).

In this work, we only consider 3-out-of-3 additive secret sharing schemes. Here, the message
space M is an additive group G, and Share(s) samples s[1], s[2] ← G independently, and sets
s[3] = s− s[1]− s[2]. The reconstruction algorithm simply adds all shares.

2.2 The Model of Computation

We follow the standard ideal vs. real paradigm for defining security [12, 8]. Intuitively, security is
defined by describing an ideal functionality, in which both the corrupted and non-corrupted parties
interact with a trusted entity. A real-world protocol is secure if an adversary in the real world
cannot cause more harm than an adversary in the ideal world. In the classical definition, this is
captured by showing that an ideal-world adversary (simulator) can simulate the full view of the
real world malicious adversary. For FaF security, we further require that the view of a subset of
the uncorrupted parties can be simulated in the ideal world (including the interaction with the
adversary). We next give a more detailed definition, tailored to the three-party setting.

The FaF Real Model

A three-party protocol π is defined by a set of three ppt interactive Turing machines {A, B, C}. Each
Turing machine (party) holds at the beginning of the execution the common security parameter
1κ, a private input, and random coins.

Throughout the entire work, we will assume the parties execute the protocol over a synchronous
network. That is, the execution proceeds in rounds: each round consists of a send phase (where
parties send their messages for this round) followed by a receive phase (where they receive messages
from other parties). We consider a fully connected point-to-point network, where every pair of
parties is connected by a communication line. We will consider the secure-channels model, where
the communication lines are assumed to be ideally private (and thus the adversary cannot read or
modify messages sent between two honest parties). Additionally, we assume the parties have access
to a broadcast channel, allowing each party to faithfully send the same message to all other parties.

An adversary is a non-uniform ppt interactive Turing machine. It starts the execution with
an input that contains the identity of the corrupted party, its input, and an additional auxiliary
input aux ∈ {0, 1}∗. We will only consider static adversaries that can choose the subset of parties
to corrupt prior to the execution of the protocol. At the end of the protocol’s execution, the

10

adversary outputs some function of its view (which consists of its random coins, its auxiliary input,
the input of the corrupted party, and the messages it sees during the execution of the protocol, and
specifically, including possibly non-prescribed messages sent to it by a malicious adversary).

We consider two adversaries. The first adversary we consider is a malicious adversary A that
controls a single party P ∈ {A, B, C}. We will refer to P as the malicious party. The adversary
has access to the full view of the corrupted party. Additionally, the adversary may instruct the
corrupted party to deviate from the protocol in any way it chooses. The adversary can send
messages (even if not prescribed by the protocol) to any uncorrupted party – in every round of the
protocol, and can do so after all messages for this round were sent. The adversary can also send
messages to the uncorrupted parties after the protocol is terminated. The adversary is also given
an auxiliary input auxA.

The second adversary is a semi-honest adversary AQ that controls a party Q ∈ {A, B, C} \ {P}
of the remaining parties (for the sake of clarity, we will only refer to P as corrupted). Similarly to
A, this adversary also has access to the full view of its party. However, AQ cannot instruct the
party to deviate from the prescribed protocol in any way, but may try to infer information about
the remaining non-corrupted party, given its view in the protocol (which includes the joint view of
P and Q). This adversary is given an auxiliary input auxQ. We will refer to Q as the semi-honest
party.

We next define the real-world global view for security parameter κ ∈ N, an input tuple (x, y, z),
and auxiliary inputs auxA, auxQ ∈ {0, 1}∗ with respect to adversaries A and AQ controlling the
parties P and Q respectively. Let OUTreal

π,A (κ, (x, y, z)) denote the outputs of the uncorrupted parties
(i.e., those in {A, B, C} \ {P}) in a random execution of π, with A corrupting the party P. Further
let VIEWreal

π,A (κ, (x, y, z)) be the output of the malicious adversary A during an execution of π. In
addition, we let VIEWreal

π,A,AQ
(κ, (x, y, z)) be the output of AQ during an execution of π when running

alongside A.
We let

REALπ,A(auxA), (κ, (x, y, z)) =
(

VIEWreal
π,A (κ, (x, y, z)) , OUTreal

π,A (κ, (x, y, z))
)

,

denote the view of the malicious adversary and the output of the uncorrupted parties, and we let

REALπ,A(auxA),AQ(auxQ) (κ, (x, y, z)) =
(

VIEWreal
π,A,AQ (κ, (x, y, z)) , OUTreal

π,A (κ, (x, y, z))
)

,

denote the view of the semi-honest adversary and the output of the uncorrupted parties.

The FaF Ideal Model

We next describe the interaction in the FaF security ideal model, which specifies the requirements
for fully secure FaF computation of the function f with security parameter κ. Let A be an adversary
in the ideal world, which is given an auxiliary input auxA and corrupts a party P called corrupted.
Further let AQ be a semi-honest adversary, which controls a party Q ∈ {A, B, C} \ {P} and is given
an auxiliary input auxQ. We stress that the classical formulation of the ideal model does not contain
the second adversary.

The ideal model roughly follows the standard ideal model, where the parties send their inputs
to a trusted party that does the computation and sends them the output. Additionally, we give the
semi-honest adversary AQ the ideal-world view of A (i.e., its input, randomness, auxiliary input,
and output received from the trusted party). This is done due to the fact that in the real world,

11

we cannot prevent the adversary from sending its entire view to the uncorrupted parties. Formally,
the ideal world is described as follows.

The FaF ideal model – Full security.

Inputs: Party A holds 1κ and x ∈ {0, 1}∗, party B holds 1κ and y ∈ {0, 1}∗, and party C holds 1κ

and z ∈ {0, 1}∗. The adversaries A and AQ are given each an auxiliary input auxA, auxQ ∈
{0, 1}∗ respectively, and the inputs of the party controlled by them. The trusted party T
holds 1κ.

Parties send inputs: Each uncorrupted party (including the semi-honest party) sends its input
to T. The malicious adversary A sends a value v′ as the input for corrupted party P. If the
adversary does not send any input, the trusted party replaces its input with a default value.
Write (x′, y′, z′) for the tuple of inputs received by the trusted party.

The trusted party performs computation: The trusted party T selects a random string rnd
and computes (wA, wB, wC) = f (x′, y′, z′; rnd), and sends wA to A, sends wB to B, and sends
wC to C.

The malicious adversary sends its (ideal-world) view: A sends to AQ its randomness, in-
puts, auxiliary input, and the output received from T.

Outputs: Each uncorrupted party (i.e., not P) outputs whatever output it received from T, party
P output nothing. A and AQ output some function of their respective views.

We next define the ideal-world global view for security parameter κ ∈ N, an input tuple (x, y, z),
and auxiliary inputs auxA, auxQ ∈ {0, 1}∗ with respect to adversaries A and AQ controlling the
parties P and Q respectively. Let OUTideal

f,A (κ, (x, y, z)) denote the output of the uncorrupted parties
(those in {A, B, C}\{P}) in a random execution of the above ideal-world process, with A corrupting
P. Further let VIEWideal

f,A (κ, (x, y, z)) be the output ofA in such a process (this output should simulate
the real world view of P). In addition, we let VIEWideal

f,A,AQ
(κ, (x, y, z)) be the view description being

the output of AQ in such a process, when running alongside A. We let

IDEALf,A(auxA) (κ, (x, y, z)) =
(

VIEWideal
f,A (κ, (x, y, z)) , OUTideal

f,A (κ, (x, y, z))
)

,

and we let

IDEALf,A(auxA),AQ(auxQ) (κ, (x, y, z),AQ) =
(

VIEWideal
f,A,AQ (κ, (x, y, z)) , OUTideal

f,A (κ, (x, y, z))
)

.

Having defined the real and ideal models, we can now define FaF full security of protocols according
to the real/ideal paradigm. For brevity, we will refer to it simply as FaF security. We define a more
general security notion, where the distinguishing advantage between the real and ideal worlds, is
required to be bounded by a function ε(κ) (we use this in Section 5 to state a more general lower
bound on the round complexity required for FaF secure computations).

Definition 2.3 (FaF security). Let π be a protocol for computing f , and let ε = ε(·) be a function
of the security parameter. We say that π computes f with (1, 1)-FaF ε-security, if the following
holds. For every non-uniform ppt adversary A, controlling at most one party P ∈ {A, B, C} in the

12

real world, there exists a non-uniform ppt adversary SimA controlling the same party (if there is
any) in the ideal model and for every non-uniform semi-honest ppt adversary AQ controlling at
most one party Q ∈ {A, B, C} \ {P} among the remaining parties, there exists a non-uniform ppt
adversary SimA,Q, controlling the same party (if there is any) in the ideal-world, such that{

IDEALf,Sim(auxA) (κ, (x, y, z))
}

κ∈N,x,y,z∈{0,1}∗,auxA∈{0,1}∗

C≡ε

{
REALπ,A(auxA) (κ, (x, y, z))

}
κ∈N,x,y,z∈{0,1}∗,auxA∈{0,1}∗

.

and {
IDEALf,SimA(auxA),SimA,Q(auxQ) (κ, (x, y, z), SimA,Q)

}
κ∈N,x,y,z∈{0,1}∗,auxA,auxQ∈{0,1}∗

C≡ε

{
REALπ,A(auxA),AQ(auxQ) (κ, (x, y, z),AQ)

}
κ∈N,x,y,z∈{0,1}∗,auxA,auxQ∈{0,1}∗

.

We say that π computed f with (1, 1)-FaF security if for all c ∈ N, π computes f with (1, 1)-FaF
κ−c-security.

Observe that the correctness of the computation (in an honest execution) is implicitly required
by the above definition. Indeed, as we allow the adversary to corrupt at most one party, by
considering adversaries that corrupt no party, the definition requires the output of all parties in
the real world to be indistinguishable from f(x, y, z).

We next define the notion of backup values, which are the values that honest parties output
in case the third party aborts (after sending messages honestly). Note that the notions of backup
values are well-defined for any (1, 1)-FaF secure protocol.

Definition 2.4 (Backup values). Let f : X × Y × Z → W be a three-party functionality, and
let π be an r-round protocol computing f with (1, 1)-FaF security. Let i ∈ {0, . . . , r}, sample the
randomness of the parties, and consider an honest execution of π with the sampled randomness
until all parties sent i messages. For two distinct parties P, Q ∈ {A, B, C}, the ith backup value of
the pair {P, Q} is the value that an honest P and Q output if the third party aborts after sending i
messages honestly.

2.3 FaF Security-With-Identifiable-Abort

Although the focus of this work is on full security, in some of our constructions we use protocols
admitting security-with-identifiable-abort. In terms of the definition, the only requirement that is
changed is that the ideal-world simulator operates in a different ideal model. We next describe the
interaction in the FaF-secure-with-identifiable-abort ideal model for the computation of the function
f with security parameter κ.

Unlike the full security ideal model, here the malicious adversary can instruct the trusted party
not to send the output to the honest parties, however, in this case, the adversary must publish
the identity of a corrupted party. In addition, since there is no guarantee that in the real world
the semi-honest parties will not learn the output, we always let the them receive their output in
the ideal execution. This allows us to simulate unfair protocols, where in addition to the malicious
adversary learning the output, it can decide whether the semi-honest parties can learn the output
as well.

13

Let A be a malicious adversary in the ideal world, which is given an auxiliary input auxA and
corrupts a party P ∈ {A, B, C}. Furthermore, let AQ be a semi-honest adversary, which controls a
party Q ̸= P and is given an auxiliary input auxQ.

The FaF ideal model – Security-with-identifiable-abort.

Inputs: Party A holds 1κ and x ∈ {0, 1}∗, party B holds 1κ and y ∈ {0, 1}∗, and party C holds 1κ

and z ∈ {0, 1}∗. The adversaries A and AQ are given each an auxiliary input auxA, auxQ ∈
{0, 1}∗ respectively, and the inputs of the party controlled by them. The trusted party T
holds 1κ.

Parties send inputs: Each uncorrupted party sends its input to T. The malicious adversary A
sends a value v′ as the input for corrupted party P. If the adversary does not send any input,
the trusted party replaces its input with a default value. Write (x′, y′, z′) for the tuple of
inputs received by the trusted party.

The trusted party performs computation: The trusted party T selects a random string rnd
and computes (wA, wB, wC) = f (x′, y′, z′; rnd), and sends wP to A and sends wQ to AQ.

The malicious adversary sends its (ideal-world) view: A sends to AQ its randomness, in-
puts, auxiliary input, and the output received from T.

Malicious adversary instructs trusted party to continue or halt: The adversary A sends
either continue or (abort, P) to T. If it sent continue, then for every uncorrupted party P′ ̸= P
the trusted party sends it wP′ . Otherwise, if A sent (abort, P), then T sends (abort, P) to the
all honest parties.

Outputs: Each uncorrupted party (i.e., not P) outputs whatever output it received from T, party
P output nothing. A and AQ output some function of their respective views.

2.4 The Two-Party Model

In one of our results, we will be interested in the two-party setting with (standard) security against
both a malicious adversary and a semi-honest adversary, corrupting one party. In terms of def-
inition, both the real and ideal world in the two-party setting are defined analogously to the
three-party setting. That is, in the real world, two parties A and B interact, and each holds a
private input, the security parameter, and random coins. In the ideal world, the computation is
done via a trusted party in a similar way to the three-party definition. In this paper, we consider
both security against a malicious adversary, and security against a semi-honest adversary. We say
that a two-party protocol is fully secure if it is secure against any malicious adversary, and we say
that the protocol if it has semi-honest security if it is secure against any semi-honest adversary.

3 The Dealer Model
In the description of our positive results, it will be convenient to consider a model with a dealer.
Here, the real world is augmented with a trusted dealer, which is a pptm that can interact with
the parties in a limited way. Furthermore, the adversary is also limited when compared to a real
world adversary: the adversary is assumed to be fail-stop, namely, it acts honestly, however, it may

14

decide to abort prematurely. Additionally, it may change the input it sends to the dealer. This
model, which we show below to be equivalent to (1, 1)-FaF security, offers a much simpler way to
analyze the security of protocols. Moreover, our constructions will achieve information-theoretic
security in the dealer model. A similar model was already considered for standard security with a
dishonest majority [2, 3, 6, 5].

We next describe a blueprint for an r-round protocol in the dealer model for the (1, 1)-FaF
security model. That is, the blueprint instructs the dealer to compute 3r + 3 backup values and
does not specify how to compute these backup values. A protocol in the dealer model is obtained
from the blueprint by defining 3r + 3 functions computing these backup values. We will show that
such (1, 1)-FaF secure protocols exist if and only if a (1, 1)-FaF secure protocol exists in the real
world (assuming secure protocols for OT). For simplicity, we assume the function to be symmetric,
i.e., all parties obtain the same output.
. .
Protocol 3.1.
Inputs: Parties A, B, and C hold inputs x, y, and z, respectively.
Common input: All parties hold the security parameter 1κ.

1. The honest parties send their inputs to the dealer. The malicious adversary sends a value as
the input for the corrupted party. If the adversary does not send any input, the dealer replaces
it with a default value.

2. The dealer computes backup values ab0, . . . , abr, ac0, . . . , acr, and bc0, . . . , bcr. It is required
that ab0, ac0, and bc0, do not depend on the inputs of C, B, and A, respectively.

3. For i = 1 to r:
(a) The dealer approaches party A, which responds with either continue or abort.
(b) If A responds with abort, then the dealer sends x and bci−1 to B and C, sends

ab0, . . . , abi−1 to B and ac0, . . . , aci−1 to C, and halts. Parties B and C then output
bci−1.

(c) The dealer approaches party B, which responds with either continue or abort.
(d) If B responds with abort, then the dealer sends y and aci−1 to A and C, sends

ab0, . . . , abi−1 to A and bc0, . . . , bci to C, and halts. Parties A and C then output aci−1.
(e) The dealer approaches party C, which responds with either continue or abort.
(f) If C responds with abort, then the dealer sends z and abi−1 to A and B, sends ac0, . . . , aci

to A and bc0, . . . , bci to B, and halts. Parties A and B then output abi−1.

4. If no party aborted, the dealer sends abr to A, sends bcr to B, and sends acr to C.

5. Party A output abr, party B output bcr, and party C output acr.
. .

We stress that the dealer is always honest in the above execution. The security of the protocol
is defined by comparing the above execution to the ideal world defined previously. However, unlike
the real world, here the malicious adversary is only fail-stop. Thus, we say the protocol in the dealer
model is (1, 1)-FaF security if it is (1, 1)-FaF secure against fail-stop adversaries. Furthermore, note
that if the protocol is correct, then it is secure against semi-honest adversaries. This is because

15

the only information the adversary receives is the last backup value, which equals to the output.
Therefore, when proving security, it suffices to always consider the case where there is a malicious
adversary corrupting a party. Removing the dealer (i.e., constructing a (1, 1)-FaF secure protocol
without the dealer) can be done using standard techniques. We next provide an intuitive description
of the real-world protocol without the dealer. The formal protocol appears below.

At the beginning of the interaction, the parties compute a secret sharing of all the backup
values computed by the dealer, using a 3-out-of-3 secret sharing scheme, and all shares are signed.8
This computation is done using a (1, 1)-FaF secure-with-identifiable-abort protocol. Then, in each
round i, party C broadcasts its share of abi, then B broadcasts its share of aci, and finally, party
A broadcasts its share of bci. If a party does not send its share or it sends a different share (which
is caught using the signature scheme, except with negligible probability), then the remaining two
parties reconstruct the last backup value for which they hold the aborting party’s share.

Observe that the view of a corrupted party consists of only random independent shares. Thus,
it aborts (or sends an incorrect share) in the real world if and only if it aborts in the dealer
model. Additionally, the view of a semi-honest party consists of random shares, the backup value it
computes with the remaining honest party, and the shares it can reconstruct if given the malicious
party’s view. Thus, any attack in the real world can be emulated in the dealer model.

Additionally, the converse is also true. That is, if there is a (1, 1)-FaF secure protocol computing
f in the real world, there is a (1, 1)-FaF secure protocol computing f in the dealer model. Indeed,
the dealer simply computes the backup values of every pair of parties and interacts with the parties
as described in the above model. Thus, as the real world and the ideal model are essentially
equivalent, we will sometimes refer to the dealer model as the real world. We next formalize the
statement and its proof.
Theorem 3.2. Let f : X × Y × Z → W be a three-party functionality. Then, assuming secure
protocols for OT exist, f can be computed with (1, 1)-FaF security in the real world if and only if
it can be computed with (1, 1)-FaF security in the dealer model.

We prove the theorem by proving two lemmas, each handling a different direction of the state-
ment.
Lemma 3.3. Let f : X × Y × Z → W be a three-party functionality. Then, if secure protocols
for OT exist and f can be computed with (1, 1)-FaF security in the dealer model, then f can be
computed with (1, 1)-FaF security in the real world.
Proof. Assume there is a protocol πD computing f in the dealer model that is (1, 1)-FaF secure
against fail-stop adversaries. We construct a protocol πR computing f with (1, 1)-FaF security in
the real world.

Fix a signature scheme Sig = (Gen, Sign, Ver) (since OT implies one-way functions [16] and
one-way functions imply signature scheme [24], the assumption of the lemma implies signature
schemes). Let ShrGen denote the three-party functionality that, given the parties’ inputs, outputs
a 3-out-of-3 secret sharing for each of the backup values computed by the dealer, each signed using
the signature scheme. Formally, we define ShrGen as follows.
. .
Algorithm 3.4 (ShrGen).
Inputs: Parties A, B, and C hold inputs x, y, and z, respectively.
Common input: The parties hold the security parameter 1κ.

8The signature key can be replaced with a one-time MAC for every share.

16

1. Sample a signature scheme keys (pk, sk)← Gen(1κ).

2. For every i ∈ {0, . . . , r} do the following:

(a) Compute the backup values abi, aci, and bci, as the dealer computes them.
(b) If i = 0, then share each backup value in a 2-out-of-2 additive sharing scheme. Otherwise,

share each backup value in a 3-out-of-3 additive secret-sharing scheme.
(c) If i ≥ 1, then for each backup value of two parties, sign the share of the third party. That

is, for every i ∈ [r] compute the following values:
• σi,C ← Signsk(abi[C]).
• σi,B ← Signsk(aci[B]).
• σi,A ← Signsk(bci[A]).

3. Compute the following signatures:
• σab,A ← Signsk(abr[A]) and σac,A ← Signsk(acr[A]).
• σab,B ← Signsk(abr[B]) and σbc,B ← Signsk(bcr[B]).
• σac,C ← Signsk(acr[C]) and σbc,C ← Signsk(bcr[C]).

4. The parties obtain the following output.
• A receives the public key pk, the shares of the backup value (abi[A], aci[A])r

i=0 and
(bci[A])r

i=1, and the signatures (σi,A)r
i=1, σab,A, and σac,A.

• B receives the public key pk, the shares of the backup value (abi[B], bci[B])r
i=0 and

(aci[B])r
i=1, and the signatures (σi,B)r

i=1, σab,B, and σbc,B.
• C receives the public key pk, the shares of the backup value (aci[C], bci[C])r

i=0 and
(abi[C])r

i=1, and the signatures (σi,C)r
i=1, σac,C, and σbc,C.

. .

Additionally, for each party P, we let f-P denote the two-party functionality between the other
two parties, obtained from f by fixing the input of P to a default value (x0 if P = A, y0 if P = B, and
z0 if P = C). We consider the following three-party protocol πR for computing f , described in the
{ShrGen, f-A, f-B, f-C}-hybrid model. By [1, Theorem 4.2] there exists a protocol computing ShrGen
with (1, 1)-FaF security-with-identifiable-abort. Moreover, each f-P can be computed with semi-
honest security [26]. Thus, by the composition theorem, this implies the existence of a (1, 1)-FaF
secure protocol for computing f in the real world.9
. .
Protocol 3.5.
Inputs: Parties A, B, and C hold inputs x, y, and z, respectively.

Common input: The parties hold the security parameter 1κ.

1. The parties call ShrGen with (1, 1)-FaF security-with-identifiable-abort, with their inputs.

9Technically, the composition theorem in [1] doesn’t handle a subprotocol with semi-honest security after an abort
occurred. However, we note that since the aborting party receives no messages at all after it aborts, the proof of the
composition theorem can be easily extended to our setting.

17

2. If P aborts the execution, then the remaining two parties call f-P with their inputs and output
the result.

3. Otherwise, the parties do the following. For i = 1 to r:
(a) Party A broadcasts (bci[A], σi,A).
(b) If A did not send any message or Verpk(bci[A], σi,A) = Fail, then B and C reconstruct

and output bci−1.
(c) Otherwise, party B broadcasts (aci[B], σi,B).
(d) If B did not send any message or Verpk(aci[B], σi,B) = Fail, then A and C reconstruct and

output aci−1.
(e) Otherwise, party C broadcasts (abi[C], σi,C).
(f) If C did not send any message or Verpk(abi[C], σi,C) = Fail, then A and B reconstruct and

output abi−1.

4. If no abort occurred, then
• A broadcasts (abr, σab,A) and (acr, σac,A).
• B broadcasts (abr, σab,B) and (bcr, σbc,B).
• C broadcasts (acr, σac,C) and (bcr, σbc,C).

5. Since there is at most a single malicious party, each uncorrupted party received 3 shares for
at least one of the backup values (one from round r, one from the other honest party, and one
that they hold). Each party outputs the lexicographically first one.

. .

First, note that correctness is immediately implied from the correctness of the protocol in the
dealer model, stating that abr = bcr = acr. We next show the security of the protocol. Let AR be
a malicious adversary corrupting party P in the real world. We assume without loss of generality
that AR broadcasts its entire view after the protocol is terminated. First, assume that AR aborts
during the call to ShrGen. Then the output of the uncorrupted parties is determined by f-P. Thus,
the malicious simulator simply sends the default value to the trusted party. Now, fix a semi-honest
adversary AR

Q corrupting the party Q ̸= P in the real world. Recall that according to the definition
of the ideal world with secure-with-identifiable-abort, AR

Q obtains its output alongside the output
of AR. In the case of ShrGen, this amounts to receiving the shares and signatures for all backup
values. Aside from the 0th backup value of P and Q, all shares are from a 3-out-of-3 secret sharing
scheme. Thus, the semi-honest simulator only needs to generate the 0th backup value of P and Q.
By our assumption on the dealer model, this backup value does not depend on the honest party’s
input. Therefore, the simulator can compute it.

We now assume that AR does not abort during the call to ShrGen. We construct an adversary
AD corrupting P in the real world (Protocol 3.5). In each round, the adversary AD will generate
independent random shares and signatures, and use them to query AR for its message. If AR aborts
or changes its signed message, then AR replies to the dealer with abort, and outputs whatever AR

outputs. Otherwise, it replies with continue. By the assumed security of πD, there exists a malicious
simulator SimR for AD. We claim that SimR also simulates the real world adversary AR. Indeed,
by the definition of AD, it generates the entire view of AR, thus they output identically distributed
values.

18

Next, fix a semi-honest adversary AR
Q corrupting a party Q ̸= P in the real world. Consider the

following semi-honest adversary AD
Q corrupting the same party in the dealer model. First, it sends

to AR
Q its entire view, and random signed values to represent shares of backup values that were not

yet revealed. AD
Q then outputs whatever AR

Q outputs. By the assumed FaF security of the dealer
model protocol, there is a semi-honest simulator SimD

Q for AD
Q. Similarly to the malicious case, by

the definition of the adversaries in the dealer model, the output of AD
Q and AR

Q are identical. Thus,
SimD

Q also simulates AR
Q.

We are left with the case where there is no malicious adversary, yet there is a semi-honest
adversary (i.e., showing that semi-honest security holds). Security in this case follows from the
same argument as in the previous case (where there is a malicious adversary). Fix a semi-honest
adversary AR

Q corrupting a party Q in the real world. Consider the following semi-honest adversary
AD

Q corrupting the same party in the dealer model. It sends toAR
Q its entire view, and random signed

values to represent shares of backup values that were not yet revealed. AD
Q then outputs whatever

AR
Q outputs. By the assumed FaF security of the dealer model protocol, there is a semi-honest

simulator SimD
Q for AD

Q. Similarly to the previous case, the output of AD
Q and AR

Q are identical.
Thus, SimD

Q also simulates AR
Q. □

It is left to state and prove the second direction.

Lemma 3.6. Let f : X × Y × Z → W be a three-party functionality. If f can be computed with
(1, 1)-FaF security in the real world, then f can be computed with (1, 1)-FaF security in the dealer
model.

Proof. Assume there is a (1, 1)-FaF secure protocol πR computing f in the real world. To construct
a protocol in the dealer model, it suffices to describe the distribution of the backup values abi, aci,
and bci, for all i ∈ {0, . . . , r}. The dealer computes these values by executing πR in its head, and
evaluating the backup values of each pair, as defined in Definition 2.4. That is, it samples random
coins for the parties and executes πR in its head to compute the backup values.

We next show that the protocol is secure. Fix a malicious adversary AD corrupting a party
P in the dealer model. We construct an adversary AR that attacks the real world protocol πR by
emulating AD. First, it queries the dealer model adversary AD to obtain the input it sends to the
dealer, which it then passes to the ShrGen functionality. If AR aborts during the call to ShrGen,
then send a default value to the trusted party, output whatever AR outputs, and halt. Then, in
each round, the real world adversary AR queries AD to receive either continue or abort. If AD

sent continue, then AR sends the next message as an honest party would. Otherwise, it aborts
the protocol. Finally, after the execution of πR has terminated, AR sends its entire view to all
uncorrupted parties and outputs nothing if AD sent abort at some round, and otherwise, outputs
whatever an honest party would have. By the assumed security of the real world protocol πR,
there exists a simulator SimR for AR. We define the malicious simulator SimD for the dealer model
adversary AD to simply send to the trusted party whatever SimR sends, and output whatever SimR

outputs. Clearly, the output of the uncorrupted parties in the ideal world interacting with SimD

is identical to their output in the ideal world interacting with SimR. By the assumed security of
πR, this output is indistinguishable from the output of the uncorrupted parties in the real world.
By the definition of the dealer and AD, this output is identically distributed to the output in the
dealer model. Thus, the output in the ideal world interacting with SimD is indistinguishable from
the output in the dealer model.

19

We now consider a semi-honest adversary AD
Q corrupting a party Q ̸= P in the dealer model.

Consider the semi-honest adversary AR
Q corrupting the same party in the real world, which outputs

the following. It first computes what an honest Q outputs in the protocol, and additionally outputs
all backup values of the pair {P, Q} until the round in which AD aborted (recall that AD published
its view, hence the backup values can be computed). It then sends it to AD

Q and outputs whatever it
outputs. By the assumed (1, 1)-FaF security of πR, there exists a simulator SimR

Q in the ideal world,
generating a view for AR

Q. We define the simulator SimD
Q for the dealer model semi-honest adversary

AD
Q to output exactly what SimR

Q outputs. Since the two malicious simulators SimR and SimR
D send

the same input to the trusted party, the two semi-honest simulators SimR
Q and SimD

Q output identical
views. By the assumed security of πR, this view is indistinguishable from the output of AR

Q. By the
definition of the dealer and the real world adversaries, the output of AR

Q is identically distributed
to the output of AD

Q. Thus, the ideal world interacting with the two simulators SimD
Q and SimD is

indistinguishable from the dealer model.
□

4 Feasibility Results for Three-Party FaF Security
In this section, we present our positive results. In Section 4.1, we show that if a function can
be computed by a secure two-party protocol, then it can be computed by a three-party (1, 1)-FaF
secure protocol. Then, in Section 4.2 we provide feasibility results for symmetric Boolean functions,
where all parties output the same bit as output.

4.1 A Compiler from 2-Party Standard Security to 3-Party FaF-Security

The next theorem states that if a function can be computed as a two-party symmetric functionality
(i.e., both parties receive the same output) with security against a single malicious adversary and
with security against a single semi-honest adversary (and might be also (1, 1)-FaF secure), then
it can be computed with (1, 1)-FaF security as a three-party symmetric functionality. Note that
simply letting the two parties A and B run the secure protocol between themselves, and then having
them send the output to C does not work (since the original protocol might not be (1, 1)-FaF secure).
Furthermore, even if the original two-party protocol is (1, 1)-FaF secure, a corrupt party can lie
about the outcome, and then C has no way of detecting whether A is lying or B is.

Theorem 4.1. Let g : X ×Y → W be a symmetric 2-party functionality, and let f : X ×Y×{λ} →
W be the 3-party functionality symmetric variant of g, i.e., it is defined as f(x, y, λ) = g(x, y) for
all x ∈ X and y ∈ Y. Suppose that there exists a two-party protocol computing g that is both
fully secure and has semi-honest security. Then, assuming secure protocols for OT exist, f can be
computed with (1, 1)-FaF security.

Proof. Let π2 be the secure protocol for computing g that is assumed to exist, and let r denote
its number of rounds. We construct a three-party protocol π3 in the dealer model, computing f
with (1, 1)-FaF security. By Theorem 3.2 this implies the existence of a (1, 1)-FaF secure protocol
in the real world (assuming secure protocols for OT). Further let a0, . . . , ar and b0, . . . , br denote
the backup values of A and B, respectively (obtained by sampling randomness for A and B and
simulating them in π2). We assume without loss of generality that in each round, B is the first
to send a message. Thus, A obtains ai before B obtains bi. We next construct the three-party

20

protocol π3. Recall that a protocol in the dealer model is given by 3r + 3 functions for computing
the backup values for each pair of parties in each round. We define these backup values as follows.
Given inputs x and y of A and B, respectively, for every i ∈ {0, 1, . . . , r} let abi = f(x, y, λ), let
aci = ai, and let bci = bi. Recall, a0 is the output of A in π2 if B sent no message, and thus is
independent of y. Similarly, b0 is independent of x. Thus, the 0th backup value does not depend
on the third party’s input.

Correctness of π3 follows from the correctness of π2, which implies that ar = br = g(x, y) =
f(x, y, λ), except with negligible probability. We next show that π3 admits (1, 1)-FaF security
against any fail-stop adversary corrupting a single party. Fix an adversary A3 corrupting a party
P ∈ {A, B, C}. We separate the analysis into cases, depending on the identity of P.

Case 1: P ∈ {A, B}. We consider only the case where P = A. The case where P = B is similar.
Consider the adversary A2 for the two-party protocol π2 that corrupts A and behaves the same
as A3. That is, in each round it approaches A3 to obtain either continue or abort. If it received
continue, then it sends the next message honestly. Otherwise, it aborts and outputs whatever A3
outputs. By the assumed security of π2, there exists a simulator Sim2 for A2 in the two-party ideal
world of g. The simulator Sim3 for A3 simply executes Sim2 to obtain the input x∗ it sends to the
trusted party (in the two-party ideal world) and sends x∗ to T (in the three-party ideal world) to
obtain the output w. The simulator outputs nothing if A3 aborted at some round, and otherwise,
it sends w to A3 and outputs whatever A3 outputs. Since the distribution of the input x∗ that
Sim3 sends to the trusted party is identical to the distribution of the input that Sim2 sends to its
trusted party, the output of B and C in the three-party ideal world is identically distributed to
their output in the two-party ideal world. Moreover, since A3 receives no messages in the dealer
model (aside from the output if no abort occurred), it follows that the joint distribution of the view
generated by Sim3 and the output of B and C in the three-party ideal world is identical to the joint
distribution of A3 and the output of B in the three-party real world. Finally, as A2 aborts at the
same round as A3, it follows that the output of B in π2 is the same as in π3.

We next consider a semi-honest adversary AQ corrupting party Q ∈ {B, C}. Let us first consider
the case Q = B. Let i denote the round in which the malicious adversary aborted, set to r + 1 if
no such round exists. Then the view of B consists of ab0, . . . , abi−1 and its output bci−1 = bi−1.
Since abj = f(x, y, λ) for all j, it follows that the semi-honest simulator (holding both x and y)
can simply generate them, send them to AB, and output whatever it outputs. Clearly, the joint
distribution of the view of B and the output of C in the ideal world is identical to the corresponding
distribution in the real world.

Let us now consider a semi-honest C. Similarly to the previous case, we let i denote the round
in which the malicious adversary aborted, set to r + 1 if no such round exists. Then the view of
C consists of ac0 = a0, . . . , aci−1 = ai−1 and the output bci−1 = bi−1. We define its simulator as
follows. Run the malicious simulator Sim2 for the two-party setting, with the same randomness
used by SimA. This generates backup values a0, . . . , ai−1 that, by the security assumption of π2,
are consistent with the output bi−1. That is, the distribution of a0, . . . , ai−1 and bi−1 in π2, is
indistinguishable from the view generated by Sim2 and the output of B in the two-party ideal
world. Finally, the semi-honest simulator sends a0, . . . , ai−1 to the semi-honest adversary AC and
outputs whatever it outputs. As stated before, the backup values a0, . . . , ai−1 generated by the
simulator are consistent with the output bi−1 = bci−1. Therefore, the real world in the three-party
setting is indistinguishable from the ideal world.

21

Case 2: P = C. First, observe that regardless of what the adversary does, the output of A and
B in both worlds is f(x, y, λ). Now, fix a semi-honest adversary AQ corrupting party Q ̸= P. By
symmetry, we may assume that Q = A. Let i denote the round where the malicious adversary A3
aborts, set to r + 1 if no abort occurred. Then the view of AA is exactly ac0 = a0, . . . , aci = ai.
Now, consider a semi-honest adversary A2,A corrupting A in the two-party protocol π2 that outputs
a0, . . . , ai. Then its simulator Sim′A (that is assumed to exist) also simulates AA in the three-party
protocol π3. □

4.2 FaF Secure Protocols for Boolean Functionalities

In this section, we consider a Boolean three-party functionality that depends only on two inputs.
We provide three classes of such functions that can be computed with FaF security. Before stating
the theorem, we first introduce some notations.

Notations. For a 2-ary three-party functionality f : X ×Y × {λ} → {0, 1}, we will write f(x, y)
instead of f(x, y, λ) for brevity. Additionally, we associate a matrix Mf ∈ {0, 1}|X |×|Y|, whose rows
are indexed by elements x ∈ X , whose columns are indexed by elements y ∈ Y, and is defined as
Mf (x, y) = f(x, y). We further define the negated matrix Mf as Mf (x, y) = 1 −Mf (x, y) for all
x ∈ X and y ∈ Y.

Definition 4.2. The affine span of a collection of vectors over R is the set of all their linear
combinations where the sum of coefficients is exactly 1.

As a corollary of Theorem 4.1, we apply the characterization from [3] of the 2-party symmetric
Boolean functionalities that can be computed with full security. We obtain the following result.

Corollary 4.3. Let f : X ×Y × {λ} → {0, 1} be a Boolean 3-party functionality. Suppose that the
all-one vector or the all-zero vector is in the affine span of either the rows or the columns of Mf .
Then, assuming secure protocols for OT exist, f can be computed with (1, 1)-FaF security in the
dealer model.

Proof. Asharov et al. [3] proved that any function satisfying the conditions in the statement can
be computed with full security when viewed as a symmetric two-party functionality. We further
note that the protocol of [3] for computing such functions admits security against semi-honest
adversaries. To see this, recall that their protocol follows the special round paradigm of [14], where
before the special round i∗ the parties receive random independent value, and after i∗ they receive
the output.10 Thus, the view of the semi-honest party can be easily simulated using random values
before i∗, and using the output of the trusted party starting from i∗. Therefore, by Theorem 4.1 the
function f can be computed as a three-party functionality with (1, 1)-FaF security as claimed. □

We next state the main result of this section. We consider a collection of systems of linear
equations (that depend on the function f). The theorem roughly states that if any single one of
them has a solution, then there exists a FaF secure protocol computing f .

10In [3], at round i∗ − 1 party B receives a constant bit whose value depends only on the function (and not the
inputs).

22

Theorem 4.4. Let f : X × Y × {λ} → {0, 1} be a Boolean 3-party functionality. Suppose there
exists a probability vector p ∈ R|X | with no 0 entries, i.e., p = (px)x∈X satisfies px > 0 for all
x ∈ X and

∑
x∈X px = 1, such that for all x ∈ X it holds that Im(MT

f) contains the vector

vx =
(
Mf (x, y) ·

(
pT ·Mf (·, y)

))T

y∈Y
,

and such that Im(MT
f) contains the vector

ṽx =
(
Mf (x, y) ·

(
pT ·Mf (·, y)

))T

y∈Y
.

Then, assuming secure protocols for OT exist, f can be computed with (1, 1)-FaF security in the
dealer model.

Proof. We present a protocol that (1, 1)-FaF securely computes f in the dealer model. By Theo-
rem 3.2 this implies the existence of a (1, 1)-FaF secure protocol in the real world (assuming secure
protocols for OT). The protocol follows the special round paradigm of Gordon et al. [14], where
until a special (random and unknown) round i∗ the parties’ backup values are independent, and
from i∗ the backup values equal to the output of f . We next present the protocol. Recall that
in the dealer model, we may only describe the distribution of the backup values computed by the
dealer.

First, we denote the geometric distribution with parameter α > 0 as Geom(α), and it is defined
as Pri←Geom(α)[i = n] = (1 − α)n−1 · α, for all integers n ≥ 1. We further fix r(κ) = r = ω(log κ)
to be the number of rounds. We are now ready to describe the distribution of the backup values,
given inputs x and y of A and B, respectively. The dealer samples i∗ ← Geom(α), where α > 0
is sufficiently small that will be chosen below. Then, for every i ∈ {0, . . . , r}, the dealer computes
backup values as follows. For every i ∈ {0, . . . , i∗} sample x̃i ← p and for every i ∈ {0, . . . , i∗ + 1}
sample ỹi ← Y (i.e., ỹi is uniformly distributed over Y), independently. Then for every i ∈ {0, . . . , r}
the dealer sets abi = f(x, y) and sets

aci =
{

f(x, ỹi) if i < i∗

f(x, y) otherwise
; bci =

{
f(x̃i, y) if i < i∗ + 1
f(x, y) otherwise

The choice of setting bci to equal f(x, y) only from round i∗+1 is so that A and C learn the output
before B and C. Since r = ω(log κ) it follows that i∗ + 1 ≤ r except with negligible probability.
Therefore abr = bcr = acr = f(x, y) except with negligible probability, and thus the protocol is
correct.

We now prove that the protocol is (1, 1)-FaF secure. Fix an adversary A corrupting a party
P ∈ {A, B, C}. Observe that a malicious C cannot attack the protocol, nor provide A and B with
any information they cannot have computed by themselves. Indeed, if C aborts at round i than
A and B output abi−1 = f(x, y). Moreover, a semi-honest A receives ac0, . . . , aci, which are either
random and independent bits, or equal to f(x, y). A semi-honest B receives similar values. Thus
we may assume P ̸= C. We next separate the proof into two cases.

Case 1: P = A. We first construct a simulator SimA for the adversary. Note that since A does
not receive messages during the execution of the protocol, as we can let the simulator abort at the

23

same round as A, we only need to describe the distribution over the inputs that the simulator sends
to the trusted party. The simulator we construct is different from other simulators used in similar
protocols, where the advantage of the adversary was simulated by sending to the trusted party
an input sampled according to a carefully chosen distribution. Instead, our malicious simulator
sends an input according to the distribution used in the real world. Then the simulator for the
semi-honest party simulates the advantage of the semi-honest party by sampling the backup values
differently from the real world. We now describe the malicious simulator.

1. Query A for the input x it sends to the dealer.

2. Sample i∗ ← Geom(α).

3. Approach A in every round to obtain either continue or abort.

4. If A aborts at round i, where i < i∗ + 1, then send x∗ ← p to the trusted party T.

5. If A aborts at round i where i ≥ i∗ + 1, or it never aborted, then send x∗ = x to T.

6. If A does not abort, send it the output that T sent to A. Otherwise, send A nothing. In
either case, output whatever A outputs, and halt.

Next, fix a semi-honest adversary AQ corrupting a party Q ∈ {B, C}. We now construct a
simulator for AQ. We may only consider the case where Q = C, since the simulator for a semi-
honest B holds both inputs x and y and thus can compute all backup values of A and B, which are
all equal to f(x, y). We construct the simulator SimA,C as follows.

1. Obtain the output w from the trusted party T, and receive the input x (sent to the dealer),
the randomness, and auxiliary input aux of SimA.

2. Compute i∗ and x∗ using the inputs and randomness of SimA. Additionally, let i denote the
round where A aborted (set to r + 1 if no such round exists).

3. For every j ∈ {0, . . . , i− 2}, sample acj the same as in the real world. That is, if j < i∗ then
acj = f(x, ỹj) where ỹj ← Y, and otherwise, set acj = w (note that in this case, i ≥ i∗ and
so w = f(x, y)).

4. Sample aci−1 as follows.
• If i < i∗+ 1 then set aci−1 = 1 with probability qx,x∗,w to be determined by the analysis

below, and set aci−1 = 0 with the remaining probability.
• Otherwise, if i ≥ i∗ + 1 then set aci−1 = w.

5. Send ac0, . . . , aci−1 to the semi-honest adversary, output whatever it outputs, and halt.

Before proving that the simulator is successful, we introduce additional notations.

24

Notations. For n ∈ N we let 1n and 0n denote the all-one and the all-zero vectors, respectively, of
dimension n. When n is clear from context, we will remove it for brevity. For a matrix M ∈ Rn×m

and a row i ∈ [n], we let M(i, ·) denote the row vector (M(i, j))j∈[m]. Similarly, for a column
j ∈ [m], we let M(·, j) denote the column vector (M(i, j))i∈[n].

We now turn to analyzing the simulator. Let i denote the round where A aborted (set to r + 1
if no abort occurred). Then in both worlds, the backup values given to the semi-honest adversary
AC are ac0, . . . , aci−1. Thus, it suffices to compare (ac0, . . . , aci−1, OUT) in both worlds, where OUT
denotes the output of the honest parties. First, note that ac0, . . . , aci−2 are identically distributed
in both worlds. Moreover, aci−1 and OUT can be computed given i∗ without using ac0, . . . , aci−2.
Thus, we may only compare the distribution of (aci−1, OUT) in both worlds. Next, observe that if
i > i∗ + 1 then aci−1 = OUT = f(x, y) in both worlds, hence we may condition on i ≤ i∗ + 1.

Let us first compute the probability of the event (aci−1, OUT) = (1, 1). Observe that in the real
world, it holds that OUT = bci−1. Additionally, since we condition on the event i ≤ i∗ + 1, it holds
that bci−1 = f(x̃i−1, y) where x̃i−1 ← X . Moreover, if i = i∗ + 1 then aci−1 = aci∗ = f(x, y),
and if i < i∗ + 1 then aci−1 = f(x, ỹi−1) where ỹi−1 ← Y. Therefore, in the real world, the event
(aci−1, OUT) = (1, 1) occurs with probability

Pr [(aci−1, OUT) = (1, 1) | i ≤ i∗ + 1]
= Pr [i < i∗ + 1 | i ≤ i∗ + 1] · Pr [f(x, ỹ) = 1] · Pr [f(x̃, y) = 1]

+ Pr [i = i∗ + 1 | i ≤ i∗ + 1] · f(x, y) · Pr [f(x̃, y) = 1]
= (1− α) · Pr [f(x, ỹ) = 1] · Pr [f(x̃, y) = 1] + α · f(x, y) · Pr [f(x̃, y) = 1] ,

where x̃← p and ỹ ← Y. On the other hand, in the ideal world OUT = f(x∗, y) where x∗ is chosen
with probability px∗ . Moreover, by the definition of the simulator, the probability that aci−1 = 1
given x∗ such that f(x∗, y) = 1 is qx,x∗,1. Thus (aci−1, OUT) = (1, 1) occurs with probability∑

x∗∈X :f(x∗,y)=1
px∗ · qx,x∗,1 =

∑
x∗∈X

px∗ · qx,x∗,1 · f(x∗, y).

To show that the simulator is successful, it suffices to show that for a sufficiently small α > 0, there
exists qx,x∗,1 such that the two expressions are equal for all y ∈ Y. Let sx = Pr [f(x, ỹ) = 1] and
let xx,1 = (px∗ · qx,x∗,1)x∗∈X . Then the equality of the two expressions may be written as

xT
x,1 ·Mf (·, y) = (1− α) · sx ·

(
pT ·Mf (·, y)

)
+ αMf (x, y) ·

(
pT ·Mf (·, y)

)
. (1)

Now, since we assume px∗ > 0 for all x∗ ∈ X , we can take qx,x∗,1 = xx,1(x∗)/px∗ . This value is
between 0 and 1 if and only if 0 ≤ xx,1(x∗) ≤ px∗ . Therefore, if a solution xx,1 exists, such that
0 ≤ xx,1(x∗) ≤ px∗ for all x∗ ∈ X , then this immediately implies the existence of qx,x∗,1 (and hence
the existence of a simulator). We now show that such a solution exists. First, recall that in the
statement of the lemma, Im(MT

f) contains

vx =
(
Mf (x, y) ·

(
pT ·Mf (·, y)

))T

y∈Y
.

Then, as Equation (1) should hold for all y ∈ Y, it is equivalent to

xT
x,1 ·Mf = (1− α) · sx ·

(
pT ·Mf

)
+ αvT

x , (2)

25

i.e., (xx,1 − (1− α) · sx · p)T ·Mf = αvT
x . Next, define the vector

x̃x,1 = xx,1 − (1− α) · sx · p
α

.

Then a solution to Equation (2) exists if and only if there exists a solution x̃x,1 to the system of
equations

x̃T
x,1 ·Mf = vT

x .

As we assume that vx ∈ Im(MT
f), a solution exists. However, recall that the solution must be so

that 0 ≤ xx,1(x∗) ≤ px∗ for all x∗ ∈ X . This holds if and only if for all x∗ ∈ X it holds that

−(1− α) · sx · px∗

α
≤ x̃x,1(x∗) ≤ px∗ − (1− α) · sx · px∗

α
.

Since (1−α) ·sx ·px∗ ≤ px∗ , the above interval grows arbitrarily large in both directions, as α tends
to 0. Thus, taking a sufficiently small α > 0 satisfies the constraints.

Let us now compute the probability of the event (aci−1, OUT) = (0, 1). In the real world, this
occurs with probability

(1− α) · (1− Pr [f(x, ỹ) = 1]) · Pr [f(x̃, y) = 1] + α · (1− f(x, y)) · Pr [f(x̃, y) = 1] , (3)

where x̃← p and ỹ ← Y. On the other hand, in the ideal world this occurs with probability∑
x∗∈X :f(x∗,y)=1

px∗ · (1− qx,x∗,1).

Now, recall that in the previous case, where we considered the probability that (aci−1, OUT) = (1, 1),
we showed that

(1− α) · Pr [f(x, ỹ) = 1] · Pr [f(x̃, y) = 1] + α · f(x, y) · Pr [f(x̃, y) = 1] =
∑

x∗∈X :f(x∗,y)=1
px∗ · qx,x∗,1.

Plugging this into Equation (3) we obtain

(1− α) · (1− Pr [f(x, ỹ) = 1]) · Pr [f(x̃, y) = 1] + α · (1− f(x, y)) · Pr [f(x̃, y) = 1]
= (1− α)Pr [f(x̃, y) = 1] + αPr [f(x̃, y) = 1]

−
(
(1− α) · Pr [f(x, ỹ) = 1] · Pr [f(x̃, y) = 1] + α · f(x, y) · Pr [f(x̃, y) = 1]

)
= (1− α)Pr [f(x̃, y) = 1] + αPr [f(x̃, y) = 1]−

∑
x∗∈X :f(x∗,y)=1

px∗ · qx,x∗,1

= Pr [f(x̃, y) = 1]−
∑

x∗∈X :f(x∗,y)=1
px∗ · qx,x∗,1

=
∑

x∗∈X :f(x∗,y)=1
(px∗ − px∗ · qx,x∗,1)

=
∑

x∗∈X :f(x∗,y)=1
px∗(1− qx,x∗,1),

26

which is the probability of the event occurring in the ideal world.
Finally, as the probabilities of all four cases sum to 1, it suffices to compute the probability of

the event (aci−1, OUT) = (1, 0). In the real world, this occurs with probability

(1− α) · Pr [f(x, ỹ) = 1] · (1− Pr [f(x̃, y) = 1]) + α · f(x, y) · (1− Pr [f(x̃, y) = 1]),

where x̃← p and ỹ ← Y. On the other hand, in the ideal world this occurs with probability∑
x∗∈X :f(x∗,y)=0

px∗ · qx,x∗,0.

Setting xx,0 = (px∗ · qx,x∗,0)x∗∈X , yields that equality of the two expressions may be written as

xT
x,0 ·Mf (·, y) = (1− α)sx ·

(
pT ·Mf (·, y)

)
+ αMf (x, y) ·

(
pT ·Mf (·, y)

)
.

A similar analysis to the first case shows that the assumption ṽx ∈ Im(MT
f) implies that for

any sufficiently small α > 0 there exists qx,x∗,0 such that the two expressions are equal.

Case 2: P = B. Intuitively, this is a simpler case than the previous one, since A and C obtain
the output before B and C, hence there is no advantage to simulate. Indeed, if B aborts at round
i ≥ i∗+ 1 then, although C receives bci = f(x, y), it holds that A and C output aci−1 = f(x, y). On
the other hand, if B abort at round i ≤ i∗, then both bci and aci−1 are random and independent.
We next formalize the above intuition. We construct a simulator SimA for the adversary as follows.

1. Query A for the input y it sends to the dealer.

2. Sample i∗ ← Geom(α).

3. If A aborts at round i, where i < i∗ + 1, then send y∗ ← Y to the trusted party T.

4. If A aborts at round i where i ≥ i∗ + 1 or it never aborted, then send y∗ = y to T.

5. If A did not abort, send it the output that T sent to A. Otherwise, send A nothing. In either
case, output whatever A outputs, and halt.

Next, fix a semi-honest adversary AQ corrupting a party Q ∈ {A, C}. We now construct a
simulator for AQ. Similarly to the previous case, we may only consider the case Q = C. We
construct the simulator SimA,C as follows.

1. Obtain the output w from the trusted party T, and receive the input x (sent to the dealer),
the randomness, and auxiliary input aux of SimA.

2. Compute i∗ and x∗ using the inputs and randomness of SimA. Additionally, let i denote the
round where A aborted (set to r if no such round exists).

3. For every j ∈ {0, . . . , i}, sample bcj the same as in the real world. That is, if j < i∗ + 1 then
bcj = f(x̃j , y) where x̃j ← p, and otherwise, set bcj = w (note that in this case, i ≥ i∗ + 1
and so w = f(x, y)).

4. Send bc0, . . . , bci to the semi-honest adversary, output whatever it outputs, and halt.

27

By construction, as noted earlier, in the real world the joint view of the semi-honest adversary
is bc0, . . . , bci, and the output of the honest party is aci−1 (set to r if no such round exists). By
construction, the same holds in the ideal world. Therefore, they are identically distributed. □

Theorem 4.4 identifies a set of functionalities that can be computed with (1, 1)-FaF security. We
do not know if there are functionalities that are not captured by Theorem 4.4, and we leave their
existence as an open question. Corollary 4.6 below provides two simple classes of functionalities
captured by Theorem 4.4.

The following lemma, states that for certain families of functionalities, there exists a solution
to one of the system of equations considered in Theorem 4.4.

Lemma 4.5. Let f : X × Y × {λ} → {0, 1} be a three-party 2-ary Boolean functionality. Suppose
that one of the following holds.

1. Both Mf and Mf have a trivial kernel.

2. The all-one vector is a linear combination of the rows of Mf , where all coefficients are strictly
positive.

Then there exists a probability vector p ∈ R|X | with no 0 entries, such that for all x ∈ X it
holds that Im(MT

f) contains the vector

vx =
(
Mf (x, y) ·

(
pT ·Mf (·, y)

))T

y∈Y

and Im(MT
f) contains the vector

ṽx =
(
Mf (x, y) ·

(
pT ·Mf (·, y)

))T

y∈Y
.

Proof. Let us first assume that both Mf and Mf have a trivial kernel. Here, any choice of p with
no zero entries works (e.g., the uniform probability vector). Indeed, vx ∈ Im(MT

f) if and only if it
is orthogonal to the kernel of M . By assumption, ker(Mf) = {0} hence any vector is orthogonal
to it. Similarly, ṽx ∈ Im(MT

f).
We now assume there exists a vector u ∈ R|X | with strictly positive entries, such that uT ·Mf =

1T . Here we take p = u/||u||1, where ||u||1 = ∑
x∈X ux is the ℓ1 norm of u. Let δ > 0 be such that

pT ·Mf = δ · 1T . (4)

Then

vx =
(
Mf (x, y) ·

(
pT ·Mf (·, y)

))
y∈Y

= (Mf (x, y) · δ)y∈Y = (δ · ex) ·Mf ,

where ex is the xth standard basis vector. Thus, vx ∈ Im(MT
f). It is left to show that ṽx ∈ Im(MT

f).
We assume that Mf is not the all-one matrix, as otherwise, the claim is trivial since ṽx = 0 and
Mf is the all-zero matrix. Let J denote the |X |× |Y| all-one matrix. Observe that by Equation (4)
and since p is a probability vector

pT ·Mf = pT · (J −Mf) = pT · J − δ · 1T
|Y| = (pT · 1|X | − δ) · 1T

|Y| = (1− δ) · 1T .

28

Since Mf is Boolean and p is a probability vector, for every y ∈ Y it follows that

δ = pT ·M(·, y) ≤ pT · 1 = 1,

with equality if and only if for every x ∈ X such that px > 0 it holds that M(x, y) = 1. Since p
has no zero entries and M is not the all-one matrix, we conclude that the inequality is strict; i.e.,
δ < 1. Therefore, a similar analysis to the previous case shows that

ṽT
x = ((1− δ) · ex) ·Mf .

□

Note that if MT
f satisfies the conditions in Lemma 4.5, then a secure protocol can be obtained

by switching the roles of A and B. Thus, we obtain the following corollary. Although less general
than Theorem 4.4, it is conceptually simpler.
Corollary 4.6. Let f : X ×Y×{λ} → {0, 1} be a three-party 2-ary Boolean functionality. Suppose
that one of the following holds.

1. Both Mf and Mf have a trivial kernel, or both MT
f and M

T
f have a trivial kernel, i.e., it

contains only the all-zero vector.

2. The all-one vector is a linear combination of either the rows or columns of Mf , where all
coefficients are strictly positive.

Then, assuming secure protocols for OT exist, f can be computed with (1, 1)-FaF security in the
dealer model.

Proof. If f satisfies Item 1 then either both Mf and Mf have a trivial kernel, or both MT
f and M

T
f

have a trivial kernel. In the former case, a secure protocol exists by applying both Theorem 4.4
and Lemma 4.5. In the latter case, we switch the roles of A and B. Thus, the matrix associated
with the new function is MT

f , and so we can again apply Theorem 4.4 and Lemma 4.5. The second
case where f satisfies Item 2 is handled similarly to the previous case. □

As an example of Corollary 4.6, consider the equality function EQm : [m]2×{λ} → {0, 1}, where
m ≥ 1 is an integer. It is defined as

EQm(x, y) =
{

1 if x = y

0 otherwise
.

Then, MEQm
is the m×m identity matrix. Therefore, it satisfies Item 1 of Corollary 4.6, hence it

can be computed with (1, 1)-FaF security. To exemplify Item 2, consider the functionality f given
by the following matrix

Mf =


0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1


Observe that the kernel of both Mf and MT

f contain (1, 1,−1,−1)T , hence Item 1 does not hold
for f . However, note that

Mf · (1/4, 1/4, 1/4, 1/4)T = (1/2, 1/2, 1/2, 1/2)T .

Therefore f satisfies Item 2, hence it can be computed with (1, 1)-FaF security.

29

Remark 4.7. Although only proved for deterministic functionalities, Corollary 4.6 (and the more
general Theorem 4.4) can be easily generalized to randomized functionalities by defining Mf (x, y) =
Pr [f(x, y) = 1] for all x ∈ X and y ∈ Y.

5 Lower Bound on the Round Complexity of FaF Secure Protocols
In this section, we present a lower bound on the round complexity required for certain FaF secure
computations. Specifically, we focus on deterministic three-party functionalities that depend on
two inputs. Before stating the result, we first define the notion of maximally informative input.
Roughly, an input x ∈ X for party A is said to be maximally informative if for any other input
x′ the input-output pair (x′, f(x′, y)) does not give to A more information about the input y of B
than the input-output pair (x, f(x, y)). We formalize this by requiring that for any x′ there exists
y0, y1 ∈ Y such that the input x can distinguish y0 from y1, while x′ cannot distinguish them.
Formally we define it as follows.

Definition 5.1 (Maximally informative input). Let f : X × Y × {λ} → W be a deterministic
three-party functionality. We say that an input x ∈ X is maximally informative if for every
x′ ∈ X \ {x} there exists y0, y1 ∈ Y such that f(x, y0) ̸= f(x, y1) and f(x′, y0) = f(x′, y1). A
maximally informative input y ∈ Y is defined analogously.

We are now ready to state our theorem. Roughly, it states that for any deterministic 2-ary
functionalities, if all inputs do not fix the output and are maximally informative, then for any ε,
the function cannot be computed with an O(log ε−1

log |X |+log |Y|)-round FaF secure protocol.

Theorem 5.2. Let f : X × Y × {λ} → W be a deterministic three-party functionality. For every
x ∈ X let px

..= maxw∈W Pr [f(x, y) = w] where y ← Y, and let p1 ..= maxx∈X px. Similarly, for
every y ∈ Y let py

..= maxw∈W Pr [f(x, y) = w] where x ← X , and let p2 ..= maxy∈Y py. Finally,
denote p = max{p1, p2}. Assume that there is no input that fixes the output of f and that all x ∈ X
and y ∈ Y are maximally informative (observe that this implies that p < 1). Then for any ε = ε(κ)
and any r-round protocol π computing f with (1, 1)-FaF ε-security, it holds that

r ≥
log

(
1
4ε

)
− log

(
1

1−p

)
log(9 · |X | · |Y|) .

The proof is given below. As a corollary, we get that for any f satisfying the conditions in
Theorem 5.2 there is no O(log κ)-round protocol computing f with (1, 1)-FaF security.

Corollary 5.3. Let f : X ×Y×{λ} → W be a deterministic three-party functionality. Assume that
there is no input that fixes the output of f and that all x ∈ X and y ∈ Y are maximally informative.
Then there is no O(log κ)-round protocol computing f with (1, 1)-FaF security.

Proof. Fix a constant c ∈ N and let ε(κ) = κ−c′ , where c′ = 2c · log(9 · |X | · |Y|). Since p, |X |, and
|Y| are constant, it holds that

c′ ≥
c · log κ · log(9 · |X | · |Y|) + log

(
1

1−p

)
log

(
κ
4

) ,

for all sufficiently large κ. By Theorem 5.2 it follows that r ≥ c · log κ. □

30

Below we show an example of a Boolean functionality that can be computed with (1, 1)-FaF
security and satisfies the conditions of Theorem 5.2.

For Boolean functions, the result can be stated in simpler terms using the associated matrix
Mf of the function. Observe that an input x ∈ X is maximally informative if and only if the
row Mf (x, ·) is either constant or the negation of the row, namely Mf (x, ·), does not appear in
Mf . Additionally, note that duplicating rows and columns, and removing duplications does not
compromise the FaF security of the protocol. Thus, we have the following corollary.

Corollary 5.4. Let f : X ×Y ×{λ} → {0, 1} be a deterministic three-party Boolean functionality.
Assuming that the matrix Mf has no constant rows, no constant columns, and that no row or
column has its negation appearing in Mf . Then there is no O(log κ)-round protocol computing f
with (1, 1)-FaF security.

As an example, for an integer m ≥ 3, consider the equality function EQm : [m]2 × {λ} → {0, 1}
defined as EQm(x, y) = 1 if x = y, and EQm(x, y) = 0 otherwise. Then MEQm

is the m × m
identity matrix. It has no constant rows and columns, and since m ≥ 3 no row or column has its
negation appearing in MEQm

. Therefore, by Corollary 5.4 any protocol computing it must have
round complexity of ω(log κ). Note that this matches the round complexity of the protocol given
by Corollary 4.6.

Towards proving Theorem 5.2, we first prove the following lemma, stating that in a FaF secure
protocol, if a semi-honest C learns an output f(x, y) with high probability and x and y are maxi-
mally informative, then with high probability the malicious simulator (of either a malicious A or a
malicious B) must send to the trusted party the input given to the party (i.e., x or y depending on
the identity of the corrupted party). In fact, we prove a more general result, which holds even for
inputs that are not maximally informative. We first define a way to compare the information that
two inputs can give. Intuitively, we say that x′ is more informative than x if for any two inputs y0
and y1 of B, if x can distinguish them, then so can x′.

Definition 5.5. Let f : X × Y × {λ} → W be a deterministic three-party functionality. For two
inputs x, x′ ∈ X , we say that x′ is more informative than x, denoted x ⪯ x′, if the following holds.
For any y0, y1 ∈ Y, if f(x, y0) ̸= f(x, y1) then f(x′, y0) ̸= f(x′, y1). We define the notion over the
inputs of B analogously.

We next state the lemma.

Lemma 5.6. Let f : X × Y × {λ} → W be a deterministic three-party functionality, and suppose
that there exists a protocol π computing it with (1, 1)-FaF ε-security, where ε = ε(κ). Let µ > 0
and fix a malicious adversary A corrupting A, for which there exists some algorithm M such that
for all x ∈ X and y ∈ Y, when applied to the view of C (i.e., the backup values it receives from
the dealer), it outputs f(x, y) except with probability at most µ. Then for any malicious simulator
SimA for A corrupting A in the ideal world, it holds that the input x∗ it sends to the trusted party is
more informative than x, i.e., x ⪯ x∗, except with probability at most 2|X | · (µ + ε). An analogous
statement can be made for a malicious B.

Proof. Intuitively, if the simulator sends x′ such that x ̸⪯ x′, then there exist y0, y1 ∈ Y such that
f(x, y0) ̸= f(x, y1) and f(x′, y0) = f(x′, y1). Therefore, on the one hand, the real-world adversary
can distinguish the case where B holds y0 from the case it holds y1. On the other hand, the simulator

31

will behave the same regardless of whether B has y0 or y1 as input, thus reaching a contradiction.
We next formalize the above intuition.

Assume towards contradiction there exists such an adversary A and an input x ∈ X , for which
its simulator sends x∗ such that x ̸⪯ x∗ with probability at least 2|X | · (µ + ε), infinitely often. We
show that the simulator SimA,C for the semi-honest party C cannot simulate its view with less than
ε advantage. Let Pκ,x denote the distribution from which x∗ is sampled given that A holds input
x and the security parameter is κ. To obtain a contradiction, we show that there exists y ∈ Y for
which

Prx∗←Pκ,x [M (SimA,C (1κ, x, x∗, f(x∗, y))) ̸= f(x, y)] ≥ µ + ε, (5)

infinitely often, where the probability is over x∗ and the random coins of SimA,C and M, when B
holds the input y. Indeed, if Equation (5) holds then the real and ideal worlds can be distinguished
with ε advantage by applying M to the view of C. For brevity, in the following, we define the
(randomized) algorithm S(x, x∗, w) = M (SimA,C (1κ, x, x∗, w)).

By assumption,

Prx∗←Pκ,x [x ̸⪯ x∗] ≥ 2|X | · (µ + ε)

infinitely often. Therefore, by the union bound it follows that for any such κ there exists x′ = x′κ ∈
X , where x ̸⪯ x′, such that

Prx∗←Pκ,x

[
x∗ = x′

]
≥ 2(µ + ε).

Then for every y ∈ Y, it holds that

Prx∗←Pκ,x [S (x, x∗, f(x∗, y)) ̸= f(x, y)]
≥ Prx∗←Pκ,x

[
S (x, x∗, f(x∗, y)) ̸= f(x, y) | x∗ = x′

]
· 2 (µ + ε)

= Pr
[
S

(
x, x′, f(x′, y)

)
̸= f(x, y)

]
· 2 (µ + ε)

infinitely often, where all probabilities are also taken over the random coins of S. To show Equa-
tion (5) and conclude the proof, it suffices to show that Pr [S (x, x′, f(x′, y)) ̸= f(x, y)] ≥ 1/2 for
some y ∈ Y.

Since x′ ̸⪯ x there exist y0, y1 ∈ Y such that f(x, y0) ̸= f(x, y1) and f(x′, y0) = f(x′, y1). Then
S (x, x′, f(x′, y0)) = S (x, x′, f(x′, y1)). However, since the only information S has on y is given by
the value f(x′, y), this means that S cannot distinguish y0 from y1. Formally, let w = f(x′, y0) =
f(x′, y1). Then S(x, x′, w) either outputs f(x, y0) with probability at least 1/2, or it outputs f(x, y1)
with probability at least 1/2. Therefore it errs on one of the inputs y0 and y1 with probability at
least 1/2. □

Before proving Theorem 5.2, we prove the following claim. Roughly, the claim states that for
a (1, 1)-FaF secure protocol, if at a given round the backup values equal to f(x, y) with somewhat
high probability, then the previous backup values equal to f(x, y) with a slightly smaller probability.

Claim 5.7. Let f : X × Y × {λ} → W be a deterministic three-party functionality, and suppose
that there exists an r-round protocol π computing it with (1, 1)-FaF ε-security in the dealer model.
Let i ∈ [r], let x ∈ X , let y ∈ Y, and let µ > 0. Then,

if Pr [aci ̸= f(x, y)] ≤ µ then Pr [bci ̸= f(x, y)] ≤ 2 |X | · (µ + ε) + ε.

32

Similarly,

if Pr [bci ̸= f(x, y)] ≤ µ then Pr [aci−1 ̸= f(x, y)] ≤ 2 |Y| · (µ + ε) + ε.

In particular,

if Pr [aci ̸= f(x, y)] ≤ µ then Pr [aci−1 ̸= f(x, y)] ≤ 9 · |X | · |Y| · (µ + ε).

Proof. The claim follows directly from Lemma 5.6 by considering a malicious adversary that sends
continue to the dealer until round i or i + 1. We prove only the first assertion, as the second is
analogous. Consider the following adversary Ai corrupting A: Instruct A to send to the dealer x
as its input, and to send continue until round i + 1 (if i = r then the A always sends continue until
the termination of the protocol). In round i + 1, instruct A to send abort to the dealer. Then C
obtains aci, and thus can compute f(x, y) except with probability at most µ. Thus, we may apply
Lemma 5.6 to Ai. Therefore, its malicious simulator must send x∗ ⪯ x, except with probability
at most 2 |X | · (µ + ε). By assumption, the only option for x∗ is the original input x itself. Now,
observe that in the real world, the output of (the fully honest party) B when the dealer interacts
with the adversary Ai is bci. Conversely, the output of B in the ideal world is f(x, y) except with
probability at most 2 |X | · (µ + ε). Therefore

Pr [bci ̸= f(x, y)] ≤ 2 |X | · (µ + ε) + ε,

as otherwise the real and ideal world can be distinguished with ε advantage by considering the
output of B.

The final statement follows from applying the first two assertions. By the first part of the
statement, it follows that

Pr [bci ̸= f(x, y)] ≤ 2 |X | · (µ + ε) + ε.

Therefore, by the second part, it follows that

Pr [aci−1 ̸= f(x, y)] ≤ 2 |Y| · (2 |X | · (µ + ε) + ε + ε) + ε.

≤ 4 |X | · |Y| · (µ + ε) + 4|Y| · ε + ε

≤ 9 · |X | · |Y| · (µ + ε).

□

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Fix an r-round protocol π computing f with (1, 1)-FaF ε-security. By The-
orem 3.2 we may assume without loss of generality that π is in the dealer model. Assume towards
contradiction that

r <
log

(
1
4ε

)
− log

(
1

1−p

)
log(9 · |X | · |Y|) .

The idea is to apply Lemma 5.6 inductively, starting from the last round and going backward. By
Claim 5.7, at each iteration the probability the parties learn the output decreases by a factor that
is roughly the domain size. We then conclude there is a noticeable probability that the parties can
learn the output of the function without any interaction. We next formalize this intuition.

33

Consider an execution of π with x ← X and y ← Y. The correctness of the protocol implies
that

Pr [acr ̸= f(x, y)] ≤ ε

for all sufficiently large κ, where the probability is taken over the choice of x, y, and the random
coins of the parties. By applying Claim 5.7 inductively, we obtain

Pr [ac0 ̸= f(x, y)] ≤ (9 · |X | · |Y|)r · 2ε +
r−1∑
i=1

(9 · |X | · |Y|)i · ε.

= (9 · |X | · |Y|)r · 2ε +
9 · |X | · |Y| ·

(
(9 · |X | · |Y|)r−1 − 1

)
9 · |X | · |Y| − 1 · ε

≤ (9 · |X | · |Y|)r · 2ε + 2 ·
(
(9 · |X | · |Y|)r−1 − 1

)
· ε

≤ 4ε · (9 · |X | · |Y|)r .

Thus, the parties can compute f(x, y) correctly with probability at least 1 − 4ε (9 · |X | · |Y|)r,
without any interaction at all. By the assumption on the number of rounds r, this expression is
strictly larger than p. This is impossible, and so we conclude that r ≥

log(1
4ε)−log

(
1

1−p

)
log(9·|X |·|Y|) .

□

6 Impossibility for a Two-Input Three-Party Functionality
In this section, we show that there is a function with inputs from two parties that gives the same
output to 3 parties and cannot be computed with a (1, 1)-FaF secure protocol. We prove the
following.

Theorem 6.1. Assume the existence of one-way permutations. Then there exists a three-party
symmetric 2-ary functionality for which there is no protocol computing it with (1, 1)-FaF security.

The functionality we consider and the proof that no protocol computes it with FaF security is
nearly identical to that of [1]. Let f = {fκ : {0, 1}κ 7→ {0, 1}κ}κ∈N be a one-way permutation. De-
fine the symmetric 3-party functionality Swap =

{
Swapκ : {0, 1}2κ × {0, 1}2κ × {λ} 7→ {0, 1}2κ

}
κ∈N

as follows. Parties A and B each hold two strings (a, yB), (b, yA) ∈ {0, 1}2κ respectively, and party
C holds no input. The output is defined as:

Swapκ ((a, yB) , (b, yA) , λ) =
{

(a, b) if fκ(a) = yA and fκ(b) = yB

⊥ otherwise
.

We first show that in the FaF secure protocol in the dealer model, there exists a round where either
A and C gain an advantage in computing the correct output, or B and C gain this advantage.

Claim 6.2. Fix a correct r-round protocol π computing Swap in the dealer model, and consider an
execution of π using the following distribution over the inputs.

• a, b← {0, 1}κ are independent, and

• yA = fκ(a) and yB = fκ(b).

34

Then either there exists i ∈ {0, . . . , r} such that

Pr [aci = (a, b)]− Pr [bci = (a, b)] ≥ 1− neg(κ)
2r + 1 ,

or there exists i ∈ [r] such that

Pr [bci = (a, b)]− Pr [aci−1 = (a, b)] ≥ 1− neg(κ)
2r + 1 .

The probabilities above are taken over the choice of inputs and of the random coins for the parties.

Proof. The proof is done using a simple averaging argument. By correctness, it holds that acr =
(a, b), except with negligible probability. Additionally, since bc0 does not depend on the input of
A, i.e., on a and yB, the fact that fκ is one-way implies that bc0 = (a, b) with negligible probability.
Therefore,

1− neg(κ) ≤ Pr [acr = (a, b)]− Pr [bc0 = (a, b)]

=
r∑

i=0
(Pr [aci = (a, b)]− Pr [bci = (a, b)]) +

r∑
i=1

(Pr [bci = (a, b)]− Pr [aci−1 = (a, b)]) .

Since there are 2r + 1 summands, there must exist an i for which one of the differences is at least
1−neg(κ)

2r+1 . □

To prove Theorem 6.1, we next show that Swap cannot be computed with (1, 1)-FaF security.

Lemma 6.3. Assume that f = {fκ : {0, 1}κ 7→ {0, 1}κ}κ∈N is a one-way permutation. Then there
is no protocol that computes Swap with (1, 1)-FaF security.

Proof. Assume for the sake of contradiction that there exists a 3-party r-round protocol that
computes Swap with (1, 1)-FaF security. By Theorem 3.2, we may assume the protocol to be in the
dealer model. We fix a security parameter κ and consider an evaluation of Swap with the output
being (a, b). Formally, we consider the following distribution over the inputs.

• a, b← {0, 1}κ are independent, and

• yA = fκ(a) and yB = fκ(b).

By Claim 6.2, either there exists i ∈ {0, . . . , r} such that

Pr [aci = (a, b)]− Pr [bci = (a, b)] ≥ 1− neg(κ)
2r + 1 ,

or there exists i ∈ [r] such that

Pr [bci = (a, b)]− Pr [aci−1 = (a, b)] ≥ 1− neg(κ)
2r + 1 ,

where the probabilities above are taken over the choice of inputs and of the random coins for the
parties. Assume without loss of generality that there exists an i ∈ {0, . . . , r} such that the former
equality holds (the other case is done analogously). Define a malicious adversary A as follows. For

35

the security parameter κ, it corrupts A and instructs it to send (a, yB) to the dealer, and until
round i + 1, send it continue (if i = r then A sends continue until the termination of the protocol).
When the dealer approaches A at round i + 1, the adversary instructs A to reply with abort. This
causes B to output bci, and C to receive aci. We next show that no pair of simulators SimA and
SimA,C can produce a view for C in the ideal world. For that, we assume towards contradiction
that such simulators do exist. Let (a∗, y∗B) ∈ {0, 1}2κ be the input that SimA sends to the trusted
party. Additionally, denote q = Pr [bci = (a, b)].

We next separate the proof into two cases. For the first case, let us assume that
Pr [(a∗, y∗B) = (a, yB)] ≥ q + 1/p(κ) for some polynomial p(·) for infinitely many κ’s. Let OUTideal be
the output of (the honest party) B in the ideal world. Since fκ is a permutation we have that

Pr
[

OUTideal = (a, b)
]

= Pr [(a∗, y∗B) = (a, yB)] ≥ q + 1/p(κ).

On the other hand, in the real world B outputs bci, which satisfies

Pr [bci = (a, b)] ≤ Pr [aci = (a, b)]− 1− neg(κ)
2r + 1 < q.

Thus, by comparing the output of the honest B to (a, b) it is possible to distinguish the real from
the ideal with an advantage of at least 1/p(κ).

For the second case, we assume that Pr [(a∗, y∗B) = (a, yB)] ≤ q + neg(κ) for all sufficiently large
κ. Here we show how to distinguish between the view of C in the real world from its ideal world
counterpart. Recall that in the real world, the dealer sent to C the backup value aci. Let ãci denote
the output of SimA,C corresponding to the last backup value it simulates. First, observe that

Pr [ãci = (a, b) ∧ (a∗, y∗B) ̸= (a, yB)] = neg(κ).

Indeed, since fκ is a permutation and B does not change the input it sends to T, the output
computed by T will be ⊥. Moreover, as fκ is one-way, it follows that if ãci = (a, b) then the
simulator can be used to break the security of fκ. This can be done by sampling a ← {0, 1}κ,
computing f(a), and finally, compute ãci as done by SimA,C (if (a∗, y∗B) computed by SimA equals
to (a, yB) then abort). We conclude that

Pr [ãci = (a, b)] = Pr [ãci = (a, b) ∧ a∗ = a] + Pr [ãci = (a, b) ∧ (a∗, y∗B) ̸= (a, yB)]
≤ Pr [(a∗, y∗B) = (a, yB)] + neg(κ)
≤ q + neg(κ).

Therefore, by comparing (a, b) to the last backup value given to C, it is possible to distinguish with
advantage at least 1−neg(κ)

2r+1 − neg(κ). Indeed, in the real world the last backup value is aci which
equals (a, b) with probability at least

Pr [bci = (a, b)] + 1− neg(κ)
2r + 1 = q + 1− neg(κ)

2r + 1 ,

while in the ideal world the last backup value is ãci which equals (a, b) with probability at most
q + ¬(κ). □

36

Bibliography
[1] B. Alon, E. Omri, and A. Paskin-Cherniavsky. MPC with friends and foes. In Advances

in Cryptology–CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO
2020, Proceedings, Part II, volume 12171 of Lecture Notes in Computer Science, pages 677–706.
Springer, 2020.

[2] G. Asharov. Towards characterizing complete fairness in secure two-party computation. In
Proceedings of the 11th Theory of Cryptography Conference (TCC), volume 8349 of Lecture
Notes in Computer Science, pages 291–316, 2014.

[3] G. Asharov, A. Beimel, N. Makriyannis, and E. Omri. Complete characterization of fairness
in secure two-party computation of Boolean functions. In Proceedings of the 12th Theory of
Cryptography Conference (TCC), part I, volume 9014 of Lecture Notes in Computer Science,
pages 199–228, 2015.

[4] A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure com-
putation. In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666
of Lecture Notes in Computer Science, pages 80–97. Springer, 1999.

[5] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with a dishonest majority.
Journal of Cryptology, 28(3):551–600, 2015.

[6] A. Beimel, Y. Lindell, E. Omri, and I. Orlov. 1/p-secure multiparty computation without an
honest majority and the best of both worlds. J. Cryptol., 33(4):1659–1731, 2020.

[7] G. R. Blakley. Safeguarding cryptographic keys. In Managing Requirements Knowledge, In-
ternational Workshop on, pages 313–313. IEEE Computer Society, 1979.

[8] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

[9] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended ab-
stract). In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC),
pages 364–369, 1986.

[10] D. Dachman-Soled. Revisiting fairness in MPC: polynomial number of parties and general
adversarial structures. In Proceedings of the 18th Theory of Cryptography Conference (TCC),
part II, volume 12551, pages 595–620. Springer, 2020.

[11] V. Daza and N. Makriyannis. Designing fully secure protocols for secure two-party computation
of constant-domain functions. In Proceedings of the 15th Theory of Cryptography Conference
(TCC), part I, pages 581–611, 2017.

[12] O. Goldreich. Foundations of Cryptography – VOLUME 2: Basic Applications. Cambridge
University Press, 2004.

[13] S. D. Gordon and J. Katz. Complete fairness in multi-party computation without an honest
majority. In Proceedings of the 6th Theory of Cryptography Conference (TCC), volume 5444
of Lecture Notes in Computer Science, pages 19–35, 2009.

37

[14] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC), pages 413–422, 2008.

[15] S. Halevi, Y. Ishai, E. Kushilevitz, N. Makriyannis, and T. Rabin. On fully secure MPC with
solitary output. In Proceedings of the 17th Theory of Cryptography Conference (TCC), part I,
volume 11891 of Lecture Notes in Computer Science, pages 312–340, 2019.

[16] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptogra-
phy. In 30th Annual Symposium on Foundations of Computer Science, pages 230–235. IEEE
Computer Society, 1989.

[17] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with guaranteed
output delivery in secure multiparty computation. In C. Dwork, editor, Advances in Cryp-
tology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2006, Proceedings, volume 4117 of Lecture Notes in Computer
Science, pages 483–500. Springer, 2006.

[18] Y. Ishai, E. Kushilevitz, and A. Paskin. Secure multiparty computation with minimal inter-
action. In Annual Cryptology Conference, pages 577–594. Springer, 2010.

[19] Y. Ishai, J. Katz, E. Kushilevitz, Y. Lindell, and E. Petrank. On achieving the “best of both
worlds” in secure multiparty computation. SIAM journal on computing, 40(1):122–141, 2011.

[20] J. Katz. On achieving the “best of both worlds” in secure multiparty computation. In Pro-
ceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California,
USA, June 11-13, 2007, pages 11–20. ACM, 2007.

[21] N. Makriyannis. On the classification of finite Boolean functions up to fairness. In Proceedings
of the 9th Conference on Security and Cryptography for Networks (SCN), volume 8642 of
Lecture Notes in Computer Science, pages 135–154, 2014.

[22] N. Makriyannis. Fairness in two-party computation: characterizing fair functions. PhD thesis,
Universitat Pompeu Fabra, 2016.

[23] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS), pages 73–85, 1989.

[24] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore,
Maryland, USA, pages 387–394. ACM, 1990.

[25] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[26] A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science (FOCS), pages 160–164, 1982.

38

	Introduction
	Our Results
	Our Techniques
	Related Work
	Organization

	Preliminaries
	Notations
	The Model of Computation
	FaF Security-With-Identifiable-Abort
	The Two-Party Model

	The Dealer Model
	Feasibility Results for Three-Party FaF Security
	A Compiler from 2-Party Standard Security to 3-Party FaF-Security
	FaF Secure Protocols for Boolean Functionalities

	Lower Bound on the Round Complexity of FaF Secure Protocols
	Impossibility for a Two-Input Three-Party Functionality
	Bibliography

