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Abstract

The Unitary Synthesis Problem (Aaronson-Kuperberg 2007) asks whether any n-qubit uni-
tary U can be implemented by an efficient quantum algorithm A augmented with an oracle that
computes an arbitrary Boolean function f . In other words, can the task of implementing any
unitary be efficiently reduced to the task of implementing any Boolean function?

In this work, we prove a one-query lower bound for unitary synthesis. We show that there
exist unitaries U such that no quantum polynomial-time oracle algorithm Af can implement
U , even approximately, if it only makes one (quantum) query to f . Our approach also has
implications for quantum cryptography: we prove (relative to a random oracle) the existence
of quantum cryptographic primitives that remain secure against all one-query adversaries Af .
Since such one-query algorithms can decide any language, solve any classical search problem,
and even prepare any quantum state, our result suggests that implementing random unitaries
and breaking quantum cryptography may be harder than all of these tasks.

To prove this result, we formulate unitary synthesis as an efficient challenger-adversary
game, which enables proving lower bounds by analyzing the maximum success probability of
an adversary Af . Our main technical insight is to identify a natural spectral relaxation of the
one-query optimization problem, which we bound using tools from random matrix theory.

We view our framework as a potential avenue to rule out polynomial-query unitary synthesis,
and we state conjectures in this direction.
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1 Introduction

This paper is about unitary synthesis, the task of implementing a given n-qubit unitary transfor-
mation U as a quantum circuit. Unitary synthesis is ubiquitous throughout quantum computing,
since virtually any quantum computational task — be it preparing a state, performing a measure-
ment, or transforming one state into another — can be done by implementing some unitary. Of
course, not every unitary can be implemented efficiently. As a special case, consider the classical
task of evaluating an (n − 1)-bit Boolean function f : {0, 1}n−1 → {0, 1}. This can be solved by
implementing an n-qubit unitary transformation, namely the unitary U : |x, b⟩ 7→ |x, b⊕ f(x)⟩, and
so Shannon’s classic counting argument [Sha49] implies that even these unitaries require Ω(2n/n)
gates to implement. But are worst-case unitaries hard to compute only because they can solve hard
classical problems? Or is it possible that unitaries could still be hard even if it were easy to solve
all classical problems?

This question was first posed in 2006 in an influential work by Aaronson and Kuperberg [AK07],
and it was later dubbed “the Unitary Synthesis Problem” by Aaronson in his 2016 Barbados
lectures [Aar16]. Formally, they considered poly(n)-size quantum oracle circuits A(·) that have the
ability to make quantum queries to an arbitrary Boolean function f : {0, 1}ℓ → {0, 1} on ℓ = poly(n)
bits. This gives these circuits the power to instantaneously compute any Boolean function of their
choice, and Aaronson and Kuperberg asked if this power enables them to efficiently implement any
unitary transformation as well. More concretely, they asked the following question.

The Unitary Synthesis Problem [AK07, Aar16]: Is there a universal efficient
oracle circuit A(·) such that for any unitary U , there is a corresponding Boolean function
f for which Af implements U?

In other words, the Unitary Synthesis Problem asks whether the task of implementing an
arbitrary unitary can be efficiently reduced to computing Boolean functions. Notably, if the answer
turns out to be negative, this would give strong evidence (in the form of a black-box separation)
that the hardest quantum problems are harder than the hardest classical problems.

Since it was first posed, the Unitary Synthesis Problem has become arguably the central open
problem in the rapidly growing field of unitary complexity, which we will discuss in more detail in
Sections 1.1 and 1.3 below. To date, there is no clear consensus on what the true complexity of
unitary synthesis should be: for all we knew, it might require as little as one query to the oracle,
or as many as 2Ω(n).

One reason this question is subtle is that algorithms that make just one query to an arbitrary
Boolean function are already quite powerful. For example, it turns out that such algorithms can
solve the state synthesis problem, in which the goal is to produce an arbitrary quantum state |ψ⟩
[Aar16, INN+22, Ros23a] (see Section 1.3 for discussion). The state synthesis and unitary synthesis
problems share a number of similarities, and there has been some speculation that extending state
synthesis techniques could lead to positive results on unitary synthesis (for example, see [INN+22,
Section 7.2]). An excellent treatment of these and related problems can be found in Aaronson’s
Barbados notes [Aar16], Rosenthal’s Ph.D. thesis [Ros23b], as well as in recent course notes of
Yuen [Yue22a, Yue22b].

How hard is unitary synthesis? There are several inefficient algorithms for the Unitary Synthe-
sis Problem, the most basic of which queries an oracle Õ(22n) times to learn a classical description of
U and then implements it using Õ(22n) gates. As noted by Yuen [Yue22a], this basic algorithm can
be implemented with a single quantum query to f using the Bernstein-Vazirani algorithm [BV97],
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at the expense of making the query extremely large: in particular, it requires a quantum query to
a Boolean function f : {0, 1}ℓ → {0, 1} on inputs of length ℓ = Õ(22n). If we restrict to algorithms
that only make efficient queries to f , i.e., queries that only evaluate f on ℓ = poly(n)-length in-
puts, the best known query complexity is O(2n/2), achieved by a Grover-style algorithm due to
Rosenthal [Ros22].

On the other hand, prior to this work, no general query lower bound for the Unitary Synthesis
Problem was known. There is a well-known lower bound due to Aaronson and Kuperberg [AK07]
that rules out a certain class of one-query algorithms Af , namely those that exactly implement a
unitary operation on their first n qubits for all choices of f . More recently, Rosenthal [Ros22] proved
a lower bound ruling out a different specialized class of many-query algorithms. We discuss both
of these lower bounds further in Section 1.3. However, the problem of ruling out (or constructing)
even one-query unitary synthesis algorithms has remained open since Aaronson and Kuperberg
first posed it nearly two decades ago (cf. Open Problem 4 and footnote 13 in [AK07]).

In this work, we resolve this open question and prove the first one-query lower bound for the
Unitary Synthesis Problem.

Theorem 1.1 (informal, see Theorem 4.18). There is no efficient oracle circuit A(·) that approxi-
mately implements an arbitrary n-qubit unitary U by making one quantum query to a U -dependent
Boolean function f .

Our lower bound applies even if the oracle circuit is allowed to use an unbounded number of
non-oracle gates and ancilla qubits. In fact, it even applies to circuits that are allowed to query f
on inputs which are extremely long, but not too extremely long; technically, we require that A(·)

can only query Boolean functions f : {0, 1}ℓ → {0, 1} on ℓ = o(2n) bits. Note that some restriction
on the size of the queries is necessary, due to the one-query Bernstein-Vazirani-style algorithm
mentioned above, which queries a Boolean function on ℓ = Õ(22n) bits. Finally, our lower bound
also extends to circuits that query arbitrary functions f with poly(n) bits of output, and to circuits
that make poly(n)-many non-adaptive queries, i.e., queries of the form

|x1⟩ |b1⟩ . . . |xt⟩ |bt⟩ 7→ |x1⟩ |b1 ⊕ f1(x1)⟩ . . . |xt⟩ |bt ⊕ ft(xt)⟩ .

This is because such queries can be simulated using a single query to a more complex function, via
another Bernstein-Vazirani trick (see Remark 3.6).

We prove Theorem 1.1 by leveraging a connection between the unitary synthesis problem and
quantum cryptography, as we discuss next.

1.1 Unitary synthesis and quantum cryptography

Background and motivation. The past few years have seen a surge of interest in so-called
inherently quantum problems, which are computational tasks in which either the input is a quan-
tum state, the output is a quantum state, or both. These include many of the most important
tasks in quantum computing, such as breaking computationally-secure quantum bit commitments,
performing quantum state tomography, preparing the ground state of a local Hamiltonian, and
decoding black hole radiation. The central goal of this area is to classify these problems according
to the computational resources needed to solve them. Normally, we would do so using the language
of computational complexity theory. However, after initial classification attempts, a mysterious,
recurring phenomenon has emerged: computational complexity theory appears to be completely
unable to classify many of these problems at all.
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As just one example of this phenomenon, let us look to the field of quantum cryptography,
where some of the most exciting work involving inherently quantum problems is being done to-
day. This is due to the remarkable discovery that certain quantum cryptographic primitives —
such as pseudorandom states and quantum bit commitments — are sufficient for a wide array of
cryptographic applications, and yet appear to be weaker than traditional “minimal” cryptographic
assumptions such as one-way functions or pseudorandom generators (PRGs).

Pseudorandom states. Of these quantum primitives, we focus on single-copy pseudorandom
states (PRSes), introduced by Ji, Liu, and Song [JLS18], which can be seen as a quantum analogue
of PRGs.1 Classically, a PRG is a set of K ≪ N := 2n efficiently computable n-bit strings {xk}k∈[K]

in which a string xk drawn uniformly at random from the set is computationally indistinguishable
from a truly random n-bit string. Quantumly, a (single-copy) PRS is a set of K ≪ N efficiently
computable n-qubit quantum states {|ψk⟩}k∈[K] in which a state |ψk⟩ drawn uniformly at random
from the set is computationally indistinguishable from a Haar random n-qubit state. Single-copy
PRSes are known to imply the existence of quantum bit commitments [Yan22, MY22, BCQ23],
which are a key ingredient in many cryptographic protocols, ranging from zero-knowledge proof
systems [BG22, GJMZ23] to secure multiparty computation [GLSV21, BCKM21, AQY22].

With these definitions in mind, what can we say about the computational complexity of breaking
cryptographic pseudorandomness? Classically, it is easy to see that secure PRGs do not exist if
P = NP. In fact, there is a polynomial-time black-box (Turing, or even Karp) reduction A(·) which
can break PRGs given oracle access to a function f : {0, 1}∗ → {0, 1} that decides an NP-complete
language. This explains why proving the existence of unconditionally secure PRGs has so far been
unsuccessful, as doing so would imply the breakthrough complexity theoretic lower bound P ̸= NP.

In the quantum setting, what can we say about the computational complexity of breaking a
PRS? Is there a complexity assumption that we can make, such as BQP = QMA, which would imply
that PRSes can be broken in polynomial-time? The answer to this question is currently unknown,
and the difficulty stems from the fact that the computational task associated with breaking a PRS
is an inherently quantum problem. In particular, the adversary’s goal is to distinguish between a
pseudorandom state and a Haar random state, given one of the two at random—a quantum-input,
classical-output task. On the other hand, traditional complexity classes such as P and PSPACE,
and even quantum complexity classes such as QMA, only capture problems with classical inputs.
For example, even though the witness for a QMA statement is a quantum state, the input to the
problem is always a classical string, such as the description of a local Hamiltonian.

How hard is it to break quantum cryptography? As a result of this mismatch between
classical-input and quantum-input problems, it is not at all clear how breaking a PRS is related to
traditional complexity assumptions. For example, a recent work of Kretschmer, Qian, Sinha, and
Tal [KQST23] has shown that the existence of PRSes is independent of the P-versus-NP question,
at least in the oracle setting, by constructing an oracle relative to which PRSes exist but P = NP.
However, [KQST23] derives security of their candidate PRS from the hardness of an oracle problem,
OR ◦ FORRELATION, which is easily solvable in PSPACE. Despite this, it is not clear whether a
PSPACE oracle should be powerful enough to break every PRS — in fact, it is not even clear that
an oracle for the halting problem would suffice.

1[JLS18] actually required a PRS to satisfy a stronger “many-copy” security notion, and subsequent works studied
the weaker notion of single-copy security (e.g., [MY22]). We will not consider many-copy security in this work, but
briefly mention that any polynomial-copy PRS can be broken given a single query to a PSPACE oracle [Kre21]. In
contrast, our connection to the unitary synthesis problem makes essential use of the single-copy security notion.
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This raises a tantalizing question: what if the existence of PRSes is independent of traditional
complexity altogether? Could we show that breaking a PRS does not black-box reduce to deciding
any language? Let us now relate this back to the Unitary Synthesis Problem. Given a PRS,
there always exists a unitary U which one could use to break the PRS if one could implement
it efficiently, namely any unitary which maps span{|ψ1⟩ , . . . , |ψK⟩} to span{|1⟩ , . . . , |K⟩}. If an
efficient quantum oracle circuit A(·) can synthesize such a U given oracle access to some Boolean
function f , then the PRS can be efficiently broken relative to f .

Our second main result is to rule out any single-query algorithm for this task, relative to a
random oracle.

Theorem 1.2 (informal, see Theorem 5.2). Relative to a random oracle, there exists a PRS (and
a quantum bit commitment scheme) secure against all one-query oracle algorithms Af for every
Boolean function f .

Theorem 1.2 offers the strongest evidence to date that the security of PRSes might be independent
of all of traditional computational complexity. Our two results, when taken together, demonstrate
the close connection between the Unitary Synthesis Problem and the security of PRSes; as we will
see below, we essentially prove these two results simultaneously, because in constructing a PRS
which cannot be broken with one query, we are implicitly constructing a unitary which cannot be
synthesized with one query.

1.2 Our approach

We prove Theorems 1.1 and 1.2 by analyzing an oracle version of the single-copy PRS security
game, which we call the “Oracle State Distinguishing Game” (see Section 3). To state this task,
let us define two pieces of relevant notation. First, given a Boolean function h : {0, 1}n → {±1},
we define the corresponding binary phase state as

|ψh⟩ :=
1√
N

·
∑

x∈{0,1}n
h(x) · |x⟩ .

Next, a function family is a function R : [K]×{0, 1}n → {±1}. We think of R as defining a family
of K Boolean functions as follows: for each 1 ≤ k ≤ K, we let Rk : {0, 1}n → {±1} be the function
Rk(·) := R(k, ·). In general, we require K ≪ N ; a typical setting will be K = N/2.

Definition 1.3 (Oracle State Distinguishing Game). Let R : [K]×{0, 1}n → {±1} be a uniformly
random function family. The Oracle State Distinguishing Game involves two parties, a challenger
and an adversary. The adversary is modeled as an oracle circuit A(·) which is allowed to query an
arbitrary Boolean function f depending on R. The game is played as follows.

1. The challenger samples a random bit b ∈ {0, 1}.

2. The challenger generates a random n-qubit state |ψ⟩ in one of two ways:

◦ If b = 0, the challenger samples a uniformly random k ∼ [K] and generates |ψ⟩ := |ψRk
⟩,

the binary phase state corresponding to the Boolean function Rk.

◦ If b = 1, the challenger samples a uniformly random Boolean function h : {0, 1}n → {±1}
and sets |ψ⟩ := |ψh⟩, the binary phase state corresponding to h.

3. The challenger sends |ψ⟩ to the adversary.
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4. The adversary runs the oracle circuit Af on |ψ⟩ and outputs a bit b′ ∈ {0, 1}.

5. If b′ = b, then the adversary wins. Otherwise, they lose.

Intuitively, the function family R specifies a family of pseudorandom states {|ψRk
⟩}k∈[K], and

the adversary’s goal is to distinguish a randomly chosen state from this from a uniformly random
binary phase state |ψh⟩. As discussed above, an algorithm for the Unitary Synthesis Problem yields
a successful adversary for the Oracle State Distinguishing Game, and so a query lower bound for the
Oracle State Distinguishing Game implies a query lower bound for the Unitary Synthesis Problem.
We show the following lower bound for the Oracle State Distinguishing Game.

Theorem 1.4. Suppose that Af is a one-query oracle circuit that achieves advantage ε in the
Oracle State Distinguishing Game. Then, Af must make a query of size at least ℓ = Ω(Kε2) bits.

This lower bound implies that for typical settings of K (such as K = N/2), to achieve a non-
negligible distinguishing probability, the adversary’s query must have length exponential in n; in
particular, a superpolynomial-length query is required whenever ε ≥ nω(1)/

√
K. This dependence

on K is optimal, as there are polynomial-time 1-query algorithms which do achieve distinguishing
advantage Ω(1/

√
K) (see Appendix C).

As discussed above, Theorem 1.4 immediately implies Theorem 1.1, our one-query lower bound
for the Unitary Synthesis Problem. In fact, since we show that the adversary’s distinguishing
advantage is negligible, this gives a unitary UR which is hard to synthesize even in an extremely
weak sense: no efficient one-query algorithm Af can correctly implement any unitary that even
remotely approximates the behavior of UR. In addition, since the Oracle State Distinguishing Game
is an oracle analogue of the security game for a single-copy PRS family, standard techniques (see
Section 5) allow us to transform Theorem 1.4 into a proof that, relative to a random oracle, there
exist PRS families and quantum bit commitment schemes secure against all one-query adversaries.
This gives Theorem 1.2.

These results demonstrate the usefulness of the Oracle State Distinguishing Game as a means
for studying the Unitary Synthesis Problem, and we believe that it is also a useful avenue for
proving stronger lower bounds against algorithms which use more than one query. To this end, we
make the following conjecture.

Conjecture 1.5 (Strong Non-Synthesis Conjecture). For all K ≥ nω(1), any polynomial-query
oracle algorithm Af wins the Oracle State Distinguishing Game with advantage at most negl(n).

A proof of Conjecture 1.5 would imply a negative resolution to the Unitary Synthesis Problem. In
addition, it would imply the existence of single-copy PRSes (and thus, quantum bit commitments)
secure against all efficient polynomial-query adversaries, relative to a random oracle. In other
words, computationally secure quantum cryptography would not black-box imply the existence of
any hard language. We note that the lower bound K ≥ nω(1) in Conjecture 1.5 is necessary; as
discussed above, if K = poly(n), then there is a simple attack that achieves 1/

√
K = 1/poly(n)

advantage.2

In Section 2.5, we state weaker conjectures which correspond to simpler cases of Conjecture 1.5.
In particular, in Conjecture 2.7, we give a self-contained mathematical conjecture which corresponds
to the simplest class of oracle adversaries that we do not know how to rule out.

2In fact, there is another attack that achieves advantage close to 1 in this regime, based on the LMR algorithm
[LMR14, Yue22b]. The adversary can make a single call to its R-dependent oracle f to generate m = poly(n) copies
of each state |ψRk ⟩. Then for each 1 ≤ k ≤ K, the adversary can test if the challenge state |ψ⟩ is equal to |ψRk ⟩ by
measuring |ψ⟩ ⊗ |ψRk ⟩

⊗m with {Πsym, Id−Πsym}, where Πsym is the projector onto the symmetric subspace. If they
are not equal, doing so will only perturb the state |ψ⟩ slightly, allowing the adversary to reuse it for further tests.
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Additional remarks. We make two final observations about the Oracle State Distinguishing
Game. First, note that the adversary’s task is to perform a measurement {M0,M1} which distin-
guishes between the two cases of the game. In particular, writing UR for the unitary written above,
the adversary would like to carry out the measurement specified by the two projectors

M0 := U †
R · (|1⟩⟨1|+ · · ·+ |K⟩⟨K|) · UR and M1 := Id−M0.

This is an example of a measurement synthesis task, an inherently quantum problem in which the
input is quantum but the output is classical. Measurement synthesis has been discussed much less
than state synthesis and unitary synthesis in the literature (the only work we are aware of that
discusses it is [BEM+23]). However, our results suggest that it is measurement synthesis that is
the hard problem at the core of unitary synthesis. Combined with the fact that state synthesis has
efficient one-query algorithms [Ros23a], this suggests that the crucial distinction between classical
problems and inherently quantum problems is whether the input, and not necessarily the output,
is classical or quantum.

Second, we note that the Oracle State Distinguishing Game is fairly robust to the precise
distribution of states used to specify it. For example, rather than specifying the game in terms of
random binary phase states, we could have specified it using Haar random states. In this version
of the game, K independent Haar random states |ψ1⟩ , . . . , |ψK⟩ are sampled in advance. Then the
adversary is given either (b = 0) one of these K states sampled uniformly at random, or (b = 1)
a new Haar random state |ψ⟩, and asked to distinguish between these two cases. Though we
do not prove it here, our lower bound in Theorem 1.4 also holds for this variant of the Oracle
State Distinguishing Game. One nice property of this distribution is that hardness of the Oracle
State Distinguishing Game for this distribution directly implies hardness of Unitary Synthesis for
a Haar-random unitary U . We refer the reader to Section 3.3 for further discussion.

1.3 Related Work

In this section, we elaborate on some works related to the Unitary Synthesis Problem and our
results. We discuss (1) prior lower bounds, (2) positive results on the closely-related state synthesis
problem, and (3) related work in unitary complexity theory.

1.3.1 Lower bounds for unitary synthesis

The best known prior lower bound for the Unitary Synthesis Problem comes from the original
paper on this topic by Aaronson and Kuperberg [AK07]. To understand their lower bound, let us
first make more explicit the computational model we are assuming for our oracle circuit A(·). A
general oracle circuit A(·) may wish to make use of additional ancilla qubits, in which case it will be
structured as follows: it will have an n-qubit input register and an input ancilla register initialized
to |0a⟩, as well as an n-qubit output register and an a-qubit output “junk” register. Indeed, if A(·)

does not have ancillas, then it is unable to query any oracle f on inputs of length greater than n,
which turns out to make A(·) quite weak. This is because for such an A(·), the number of possible
unitaries you can synthesize when ranging over all functions f is bounded by 22

n
, which is simply

not enough to “cover all unitaries” by a counting argument. (See Appendix B for a simple lower
bound along these lines.)

Now we can state the Aaronson and Kuperberg [AK07] lower bound. They showed a one-query
lower bound against any oracle circuit A(·) which has the following property: for every choice of
oracle f , the oracle circuit Af is required to exactly implement an n-qubit unitary on its first n
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qubits. Mathematically, this means that for any n-qubit state |ψ⟩, we must have that

Af · |ψ⟩ ⊗ |0a⟩ = (Uf · |ψ⟩)⊗
∣∣junkf〉 , (1)

where Uf is some n-qubit unitary which depends on f , and
∣∣junkf〉 is some a-qubit junk state which

depends on f . This defines a class of oracle algorithms that turns out to be highly restrictive, for
several reasons. We list two.

1. The class excludes algorithms Af such that Equation (1) only holds approximately, even with
inverse-exponential precision.

2. The model requires that the circuit Af implements a unitary for every oracle f . On the other
hand, there are many examples of oracle circuits not belonging to this class which expect the
oracle f to be “properly formatted”, and do not synthesize any unitary if f is not properly
formatted.

To elaborate on (2), consider the following simple attack: the oracle circuit Af queries f to learn
an ℓ-bit classical string s on an ancilla space, and then applies an n-qubit unitary Us that depends
on s. By the Bernstein-Vazirani trick, Af can learn an ℓ-bit string s in a single query by first
preparing the uniform superposition on ℓ qubits, then querying the Boolean function fs(x) := s ·x,
and finally applying a Hadamard transform. Even though this oracle circuit Af always implements
a unitary on the first n qubits when f computes an inner-product function, this is not guaranteed
in general: for arbitrary f , the oracle circuit may obtain a superposition over different s, in which
case the operation on the first n-qubits is not guaranteed to be unitary.

Indeed, Aaronson and Kuperberg are able to prove their lower bound against this class by
a counting argument : they prove that the number of distinct unitaries that a one-query oracle
circuit A(·) in this class can synthesize, ranging over all oracles f , is at most 42

n
[AK07, Theorem

6.7], irrespective of the number of ancilla qubits a. Unfortunately, as we discuss in Section 2.1
and Appendix B, these types of counting arguments are insufficient to prove a general query lower
bound.

A more recent lower bound, due to Rosenthal [Ros22], shows that unitary synthesis is hard
relative to a state synthesis oracle. Roughly speaking, this lower bound states that synthesizing a
unitary U requires roughly 2n/2 queries to an oracle that, on any classical input |x⟩, for x ∈ {0, 1}n,
outputs the state |x⟩ ⊗ U |x⟩. This shows that the power to produce any state of the form U |x⟩
is insufficient to implement U efficiently. However, the technique says little about the problem of
synthesizing U relative to an arbitrary function oracle f .

1.3.2 Relationship to state synthesis.

Let us contrast our one-query lower bound for the Unitary Synthesis Problem with the state of
affairs for a related problem known as state synthesis. State synthesis is the task of implementing a
quantum circuit that outputs a specified n-qubit quantum state |ψ⟩ when run on the all-0’s input.
Alternatively, one can view state synthesis as an easier version of unitary synthesis, where the goal
is merely to implement the unitary correctly on the all 0’s input, rather than on all possible inputs.

Like unitary synthesis, state synthesis requires large quantum circuits: it can be shown via
counting arguments that there exist worst-case states on n qubits that require circuits of size
Ω(2n/n) to compute approximately (see the excellent discussion of this in [Ros23b, Section 1.3.4]).

It turns out, however, that state synthesis becomes easy if Boolean functions are easy [Aar16,
INN+22, Ros23a]. In particular, Rosenthal’s state-of-the-art result [Ros23a] gives a quantum-
polynomial time oracle algorithm A(·) such that for any n-qubit pure state |ψ⟩, there exists a
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Boolean function f : {0, 1}m → {±1} such that Af (1n) makes one quantum query to f and
outputs |ψ⟩ up to inverse exponential precision. For some intuition behind this result, observe
that binary phase states 1√

2n
·
∑

x∈{0,1}n f(x) · |x⟩ are trivial to synthesize with one query: simply

prepare the uniform superposition 1√
2n

·
∑

x∈{0,1}n |x⟩, and make one query to the phase oracle

Of : |x⟩ → f(x) · |x⟩. It turns out that worst-case states can then be synthesized via a careful
reduction to the binary phase state case. This can be viewed as a one-query reduction from the
task of state synthesis to the problem of computing an arbitrary Boolean function. In contrast, our
main result shows that no such reduction is possible for unitary synthesis.

1.3.3 Quantum cryptography and unitary complexity

A connection between (plain model) quantum cryptography and the Unitary Synthesis Problem
was recently discovered by Kretschmer [Kre23], who showed that if the Unitary Synthesis Problem
is resolved in the positive, then showing the existence of a secure PRS implies that BPP ̸= NEXP.
This result says that traditional complexity theory does have something to say about the existence
of PRSes, but only if unitaries are easy to synthesize.

Beyond “traditional complexity theory,” a very recent and intriguing line of work has introduced
a complexity theory of inherently quantum problems, with complexity classes corresponding to both
state synthesis problems and unitary synthesis problems [RY22, INN+22, Ros23a, MY23, BEM+23,
DGLM23]. As above, this line of work argues that traditional complexity theory is ill-equipped
to address the complexity of inherently quantum problems, as traditional complexity theory is
only about classical-input, classical-output problems, i.e., functions f : {0, 1}∗ → {0, 1}. In this
new theory of unitary complexity, the existence of secure PRSes does have complexity theoretic
implications (in particular, it implies the separation unitaryBQP ̸= unitaryPSPACE).

An important open direction is to study the relationship between these new inherently quantum
complexity theories and the traditional “classical” complexity theory. Interestingly, Kretschmer’s
result above [Kre23] suggests that these seemingly different complexity theories might be closer
than they first appear, if the Unitary Synthesis Problem is resolved in the positive. In particular,
his result, stated more broadly, is the following: suppose the Unitary Synthesis Problem is resolved
in the positive. Then unitaryBQP ̸= unitaryPSPACE implies that BPP ̸= NEXP. In this light, our
Theorem 1.1, providing negative evidence for the Unitary Synthesis Problem, can also be interpreted
as providing positive evidence that these complexity theories are in fact distinct.

1.4 Organization

The remainder of this paper is organized as follows. Section 2 gives a technical overview of our
proofs. Section 3.1 includes preliminary details about oracle circuits, building towards a simple
normal form for these circuits that we will use in our proofs. In Section 4, we give the proof of
our main result, the one-query lower bound for the Oracle State Distinguishing Game, which we
then use in Section 5 to show the existence of secure PRSes and quantum bit commitments relative
to a random oracle. Appendix A includes a second proof of our main result with slightly worse
parameters. In Appendix B, we show a counting lower bound against even many-query oracle
circuits which can only compute a small number of distinct unitaries, generalizing the one-query
lower bound of Aaronson and Kuperberg [AK07]. Finally, in Appendix C, we give a one-query
algorithm to match our main lower bound (Theorem 4.18) in its dependence on K.
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2 Technical overview

We will sketch the proof of Theorem 1.4, beginning by describing our mathematical model for
single-query adversaries in Section 2.1. Following this, we will develop our proof strategy in the
context of three different and increasingly complicated types of adversaries. First, in Section 2.2,
we will look at adversaries which use their one query to prepare a quantum advice state. Next, in
Section 2.3, we will look at adversaries which have no ancilla qubits and do not apply any gates
prior to their oracle query. Finally, in Section 2.4, we will look at general single-query adversaries.

2.1 Modeling the adversary

A single-query adversary can be modeled as a quantum circuit with an input register of n qubits
and an ancilla register of a qubits, for a size of m = n + a total qubits. Given an n-qubit input
state |ψ⟩, the adversary acts as follows.

1. The adversary will initialize its ancilla qubits to |0a⟩. Then, it applies a unitary U to |ψ⟩ |0a⟩.
Equivalently, it applies the isometry V := U · (Id⊗ |0a⟩) to |ψ⟩.

2. It then queries its oracle f : {0, 1}m → {±1}. This applies the unitary Of to its state, where
Of is the unitary defined as

Of · |z⟩ = f(z) · |z⟩ , for all z ∈ {0, 1}m.

3. Finally, the adversary performs a binary projective measurement {Π, Id − Π} on its state.
This produces a measurement outcome b′ ∈ {0, 1}, which it outputs as its guess.

After the oracle, the adversary’s state is Of · V · |ψ⟩. Thus, the probability it outputs b′ = 0 is

∥Π · Of · V · |ψ⟩ ∥2 = ⟨ψ| · V † · Of ·Π · Of · V · |ψ⟩ . (2)

Intuitively, one should think of the size m as “small”, say m = poly(n). This is because m is also
the length of the adversary’s oracle query, and it is necessary for us to assume a bound on the
query length so that the problem remains nontrivial. Otherwise, there is a simple attack based on
the Bernstein-Vazirani algorithm [BV97] which solves the problem using a single extremely large
query of length K ·N , which we describe below.

Example 2.1 (A one-query attack with exponential query size). Define fR : {0, 1}KN → {±1}
so that fR(z) = (−1)z·r, where r ∈ {0, 1}KN is a binary vector representation of R. Then if the
adversary queries fR on the uniform superposition over all z ∈ {0, 1}KN , it obtains the state

1√
KN

·
∑

z∈{0,1}KN

fR(z) · |z⟩ =
1√
KN

·
∑

z∈{0,1}KN

(−1)z·r · |z⟩ ,

The state on the right-hand side is simply the Hadamard transform of |r⟩, and thus the adversary
can obtain the entire truth table of R.

As it turns out, once we assume our adversary has “small” query length, it can be converted
to one with “small” size m as well (see Section 3.5). Hence, we may assume that the adversary’s
oracle is applied to all m qubits. We will now carry out the following change in notation that will
be applied throughout the paper: to simplify notation, we will set N := 2n and M := 2m and
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associate the set {1, . . . , N} with {0, 1}n and {1, . . . ,M} with {0, 1}m. As a result, a “Boolean”
function is now formatted as h : [N ] → {±1} and is associated with the phase state

|ψh⟩ =
1√
N

·
N∑
x=1

h(x) · |x⟩ ,

a function family is formatted R : [K]× [N ] → {±1}, and an oracle function is formatted f : [M ] →
{±1}. With this change in notation, the input state space becomes CN and the adversary’s state
space becomes CM , so that (i) the isometry V maps CN to CM , and (ii) the oracle unitary Of

has dimension M ×M . Thus, for any particular function family R : [K] × [N ] → {±1}, and any
one-query adversary A(·), the maximum achievable distinguishing advantage is equal to

max
f :[M ]→{±1}

∣∣∣ E
k∼[K]

[
Pr[Af (|ψRk

⟩) outputs “0”]
]
−E
h

[
Pr[Af (|ψh⟩) outputs “0”]

]∣∣∣,
where here and throughout this section we are writing h for a uniformly random Boolean function
h : [N ] → {±1}. Substituting in Equation (2), this is equal to

max
f

∣∣∣ E
k∼[K]

[
⟨ψRk

| · V † · Of ·Π · Of · V · |ψRk
⟩
]
−E
h

[
⟨ψh| · V † · Of ·Π · Of · V · |ψh⟩

]∣∣∣. (3)

Our goal is to prove Theorem 1.4, which can be phrased more formally as follows.

Theorem 2.2 (Theorem 1.4, rephrased). Let A(·) be a single-query adversary for the Oracle State
Distinguishing Game that acts on an M -dimensional Hilbert space. Then with high probability over
the choice of R : [K] × [N ] → {±1}, A(·) achieves maximum distinguishing advantage at most

O
(√

logM
K

)
.

Now let us now briefly discuss one potential approach for proving Theorem 1.4: counting
arguments. These are based on the simple observation is that the distinguishing advantage is
easily upper-bounded for any fixed oracle f , which corresponds to an adversary that does not
depend on R. This can be argued using standard concentration of measure tools from probability
theory, and the resulting concentration bound one can show is extremely good : in particular, the
probability that a fixed Af has distinguishing advantage at least ε is at most 2−Ω(ε2KN). Given this
degree of concentration, it is tempting to simply union bound over all choices of f to upper-bound
the maximum distinguishing advantage; this is known as a counting argument. Unfortunately, this
approach quickly begins to fail as the adversary’s space grows: the number of possible functions
f is 2M , where M is potentially much larger than KN . Recall that KN ≤ N2 = 22n, while M
could be (at least) 2poly(n), for an arbitrary poly(n). Thus, this type of counting argument cannot
give a general one-query lower bound. That said, it can rule out some interesting special cases
of adversaries, which we discuss in Appendix B. Finally, we note that there is a more powerful
version of counting arguments known as chaining (cf. [Ver18, Chapter 8]), but we were unable to
successfully apply chaining arguments to this problem.

In the next few subsections, we will describe an alternative approach for bounding the maximum
distinguishing advantage across all choices of f simultaneously via matrix concentration inequalities.

2.2 Adversaries with quantum advice

We begin with the simple but conceptually useful special case of one-query adversaries, namely
those that use the query to f to synthesize an f -dependent advice state. In other words, the
adversary acts as follows.
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1. First, it applies an isometry V that acts by appending a fixed m-qubit state |ϕ⟩. Thus, the
n-qubit input state |ψ⟩ is mapped to the (n + m)-qubit state |ψ⟩ ⊗ |ϕ⟩. (We are abusing
notation in this subsection by writing m only for the qubits in the advice state, rather than
for all of the qubits. We will return to the normal definition of m in Sections 2.3 and 2.4
below.)

2. Next, it makes an oracle query Of that acts as the identity on the input state |ψ⟩ and only
modifies |ϕ⟩. Then the adversary’s state becomes |ψ⟩⊗ |ϕf ⟩, where |ϕf ⟩ is some f -dependent
state.

In total, for such an adversary, Of · V · |ψ⟩ = |ψ⟩ ⊗ |ϕf ⟩. Attacks of this form can synthesize
many kinds of states: for example, if |ϕ⟩ is a uniform superposition, then |ϕf ⟩ can be any binary
phase state. (We remark that there are techniques in the cryptography literature for proving lower
bounds against quantum advice [HXY19, CLQ20, CGLQ20, Liu23]. However, the techniques seem
to be highly tailored to the advice setting and are not related to our approach.)

Supposing the adversary works in this manner, we can compute its maximum distinguishing
advantage on a uniformly random R : [K]× [N ] → {±1} as

max
f :[M ]→{±1}

∣∣∣∣ E
k∼[K]

[
⟨ψRk

| ⟨ϕf | ·Π · |ψRk
⟩ |ϕf ⟩

]
−E
h

[
⟨ψh| ⟨ϕf | ·Π · |ψh⟩ |ϕf ⟩

]∣∣∣∣ ,
by Equation (3). The benefit of focusing on advice states is that we can factor out the f -dependent
term |ϕf ⟩ from each expectation. To do so, for any Boolean function h : [N ] → {±1}, let Πh denote
the M ×M -dimensional matrix

Πh := (⟨ψh| ⊗ Id) ·Π · (|ψh⟩ ⊗ Id).

Note that 0 ≤ Πh ≤ Id, since |ψh⟩ is a unit vector and Π is a projection. Then we can rewrite the
distinguishing advantage as

max
f :[M ]→{±1}

∣∣∣ E
k∼[K]

[
⟨ϕf | ·ΠRk

· |ϕf ⟩
]
−E
h

[
⟨ϕf | ·Πh · |ϕf ⟩

]∣∣∣
= max

f :[M ]→{±1}

∣∣∣ ⟨ϕf | · ( E
k∼[K]

[
ΠRk

]
−E
h

[
Πh
])

· |ϕf ⟩
∣∣∣. (4)

Since |ϕf ⟩ is a unit vector, we can upper bound this by a maximum over all unit vectors, i.e.

(4) ≤ max
∥|v⟩∥=1

∣∣∣ ⟨v| · ( E
k∼[K]

[
ΠRk

]
−E
h

[
Πh
])

· |v⟩
∣∣∣

=
∥∥∥ E
k∼[K]

[
ΠRk

]
−E
h

[
Πh
]∥∥∥

op

=
∥∥∥ E
k∼[K]

[
ZRk

]∥∥∥
op
, for Zh := Πh −E

h

[
Πh
]
.

Here, we are writing ∥ · ∥op for the operator norm. Thus, we have reduced our problem to bounding
the operator norm of the average of K random matrices ZR1 , . . . , ZRK

.
We will bound this operator norm using the technique of matrix concentration, which gen-

eralizes scalar concentration bounds (such as Chernoff-Hoeffding bounds) to the random matrix
setting. Specifically, the matrix Hoeffding inequality (roughly) says the following (see [Tro12], The-
orem 1.3 or Theorem A.18 for the precise statement).
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Theorem 2.3 (Matrix Hoeffding (informal)). If K independent and identically distributed mean-
zero random D×D Hermitian matrices Z1, . . . ,ZK always have bounded operator norm, then with
high probability, ∥∥∥ E

k∼[K]
Zk

∥∥∥
op

≤ O
(√ log(D ·K)

K

)
.

(Note that the scalar Hoeffding bound can be recovered by taking D = 1 above.) To apply the
matrix Hoeffding inequality to our problem, we need to verify that when R : [K]× [N ] → {±1} is
uniformly random, our matrices ZR1 , . . . , ZRK

satisfy these properties. Indeed:

◦ ZR1 , . . . , ZRK
are independent and identically distributed since each Rk is an independent,

uniformly random Boolean function Rk : [N ] → {±1}.

◦ For each 1 ≤ k ≤ K, ZRk
has expectation zero:

E
R

[
ZRk

]
= E
R

[
ΠRk

]
−E
h

[
Πh
]
= 0.

◦ For each 1 ≤ k ≤ K, the operator norm ∥ZRk
∥op is always bounded by 2, since

∥ZRk
∥op =

∥∥∥ΠRk
−E
h

[
Πh
]∥∥∥

op
≤ ∥ΠRk

∥op +
∥∥∥E
h

[
Πh
]∥∥∥

op
≤ 2.

As a result, since in our setting D =M , an ε-distinguisher requires log(M) = Ω(Kε2), as claimed.
In other words, the adversary needs a huge advice state to win the distinguishing game.

In summary, our strategy involved identifying a well-behaved quantity that governs the advan-
tage of Af across all choices of f simultaneously. As we have seen, the operator norm is an example
of such a quantity: although bounding the quadratic form ⟨v| · (Ek∼[K] ZRk

) · |v⟩ for all vectors

|v⟩ would naively require the concentration of O(1/ε)M different scalars (corresponding to an ε-net
over CM ), matrix concentration shows that the operator norm behaves as if it has M , rather than
2M , “independent degrees of freedom”.

2.3 Adversaries with a trivial isometry

Let us recall Equation (3), our expression for the adversary’s maximum distinguishing advantage:

max
f :[M ]→{±1}

∣∣∣ E
k∼[K]

[
⟨ψRk

| · V † · Of ·Π · Of · V · |ψRk
⟩
]
−E
h

[
⟨ψh| · V † · Of ·Π · Of · V · |ψh⟩

]∣∣∣.
The advice state case above suggests the following approach to bounding this expression:

1. Factor the dependence on the oracle Of to the “outside” of the expression, and

2. Rely on a matrix concentration inequality to bound the advantage for all f simultaneously.

Unfortunately, the advice state case does not tell us whether this approach is possible, or how to
carry it out, in general. To gain some intuition, we will analyze another simple special case, the
case where V = Id, in which the adversary does not use any ancilla qubits and only applies the
identity unitary. In this case, M = N , and we will allow the adversary to query an arbitrary oracle
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f : [N ] → {±1}. Then the because V = Id, the adversary’s maximum distinguishing advantage on
a uniformly random R : [K]× [N ] → {±1} is given by

max
f :{0,1}n→{±1}

∣∣∣ E
k∼[K]

[
⟨ψRk

| · Of ·Π · Of · |ψRk
⟩
]
−E
h

[
⟨ψh| · Of ·Π · Of · |ψh⟩

]∣∣∣. (5)

Towards “factoring out” the Of dependence to the outside of the expression, we make use of the
fact that any binary phase state |ψh⟩ can be written as the product of a diagonal {±1}-matrix and
the uniform superposition state:

|ψh⟩ =
1√
N

·
N∑
x=1

h(x) · |x⟩ =

(
N∑
x=1

h(x) · |x⟩⟨x|

)
︸ ︷︷ ︸

Dh

·

(
1√
N

·
N∑
x=1

|x⟩

)
︸ ︷︷ ︸

|+N ⟩

= Dh · |+N ⟩ .

The key benefit of this “diagonal decomposition” is that the diagonal matrices Dh and Of commute,
which allows us to rewrite the state Of · |ψh⟩ as follows:

Of · |ψh⟩ = Of ·Dh · |+N ⟩ = Dh · Of · |+N ⟩ = Dh · |ϕf ⟩ ,

where |ϕf ⟩ := Of · |+N ⟩ is the binary phase state corresponding to f . Plugging this back into our
expression for the maximum distinguishing advantage, we can again employ a spectral relaxation:

(5) = max
f :{0,1}n→{±1}

∣∣∣ E
k∼[K]

[
⟨ϕf | ·DRk

·Π ·DRk
· |ϕf ⟩

]
−E
h

[
⟨ϕf | ·Dh ·Π ·Dh · |ϕf ⟩

]∣∣∣
= max

f :{0,1}n→{±1}

∣∣∣ ⟨ϕf | · ( E
k∼[K]

[
DRk

·Π ·DRk

]
−E
h

[
Dh ·Π ·Dh

])
· |ϕf ⟩

∣∣∣
≤
∥∥∥ E
k∼[K]

[
DRk

·Π ·DRk

]
−E
h

[
Dh ·Π ·Dh

]∥∥∥
op

=
∥∥∥ E
k∼[K]

ZRk

∥∥∥
op
, for ZRk

:= DRk
·Π ·DRk

−E
h

[
Dh ·Π ·Dh

]
.

As in the advice state case, our problem has again reduced to bounding the operator norm of
Ek∼[K] ZRk

for a uniformly random R. And just like before, the matrices ZR1 , . . . , ZRK
are mean-

zero, independent and identically distributed, and their norm is bounded by 2, since

∥ZRk
∥op ≤ ∥DRk

·Π ·DRk
∥op +

∥∥∥E
h

[
Dh ·Π ·Dh

]∥∥∥
op

≤ 2,

where the second inequality uses the fact that the Dh is a unitary matrix for any Boolean function
h : [N ] → {±1}, so ∥Dh ·M ·Dh∥op ≤ 1. Thus, we can apply the matrix Hoeffding inequality as
before. Since the ZR1 , . . . , ZRK

are N ×N matrices, matrices, we obtain a bound on the maximum
distinguishing advantage of

O

(√
log(N)

K

)
.

To summarize, the key new idea in this special case was to introduce a diagonal decomposition
which holds for arbitrary phase states |ψh⟩.
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2.4 The general one-query bound

Now we consider the case of a general adversary. Let us recall one last time Equation (3), our
expression for the adversary’s maximum distinguishing advantage:

max
f :[M ]→{±1}

∣∣∣ E
k∼[K]

[
⟨ψRk

| · V † · Of ·Π · Of · V · |ψRk
⟩
]
−E
h

[
⟨ψh| · V † · Of ·Π · Of · V · |ψh⟩

]∣∣∣.
The previous special case suggests the following strategy for bounding this expression:

1. First, for any Boolean function h : [N ] → {±1}, find a “diagonal decomposition” of the state
V · |ψh⟩ of the form

V · |ψh⟩ =
(
h-dependent diagonal matrix

)
· |fixed state⟩ ,

2. Next, use this decomposition to re-express Of · V · |ψh⟩ as

Of · V · |ψh⟩ = Of ·
(
h-dependent diagonal matrix

)
· |fixed state⟩

=
(
h-dependent diagonal matrix

)
· Of · |fixed state⟩

=
(
h-dependent diagonal matrix

)
· |f -dependent state⟩ .

Importantly, the diagonal decomposition should satisfy the following two properties:

1. the fixed state should have unit norm, so that we can perform a spectral relaxation, and

2. the h-dependent diagonal matrix should have bounded operator norm, so that we can apply
the matrix Hoeffding inequality.

Unfortunately, it turns out that for a general isometry V , a diagonal decomposition satisfying the
above requirements does not exist. Consider the following example.

Example 2.4 (No nice diagonal decomposition). Let M = N and let V be the N ×N Hadamard
transform V = H⊗n. For all Boolean vectors r ∈ {0, 1}n, let hr : {0, 1}n → {0, 1} denote the inner
product function hr(x) = r · x (mod 2). Then

|ψhr⟩ =
1√
N

·
∑

x∈{0,1}n
(−1)r·x · |x⟩ = H⊗n · |r⟩ ,

and thus V · |ψhr⟩ = H⊗n · |ψhr⟩ = |r⟩. Suppose that we try to write each |ψhr⟩ as the product of an
hr-dependent diagonal matrix and the uniform superposition state |+N ⟩ := (1/

√
N) ·

∑
x∈{0,1}n |x⟩.

That is, for each r ∈ {0, 1}n:

V · |ψhr⟩ = |r⟩ = Dr ·
( 1√

N
·
∑

x∈{0,1}n
|x⟩
)
.

Then the only choice of Dr satisfying the above is Dr =
√
N · |r⟩⟨r|, which has exponentially large

operator norm. Moreover, there is nothing special about the uniform superposition — no matter
what fixed state we use, there will exist hr such that Dr has exponentially large operator norm.

Thus, Example 2.4 shows that we cannot hope for a diagonal decomposition that satisfies our
desired conditions for all binary phase states |ψh⟩. Nevertheless, we will show that a meaningful
diagonal decomposition is still possible in the general case. The key insight, which we will show
next, is that for any isometry V , there exists a diagonal decomposition of V · |ψh⟩ in which the
h-dependent diagonal matrix has bounded operator norm with extremely high probability over the
choice of h : [N ] → {±1}.

15



2.4.1 The weight vector decomposition

Our goal is to find a diagonal decomposition of the form

V · |ψh⟩ = DV,h · |ϕ⟩ ,

in which DV,h has a “small” operator norm, with high probability over a uniformly random h. Let
us consider what would be implied if such a decomposition were to exist, and then work backwards
to construct the decomposition.

If such a decomposition exists, then for each 1 ≤ i ≤M , let us consider the i-th coordinates of
the left-hand and right-hand sides, which are given by

⟨i| · V · |ψh⟩ = ⟨i| ·DV,h · |ϕ⟩ = (DV,h)i,i · ϕi. (6)

Because DV,h has “small” operator norm for a “typical” h, this means that (DV,h)i,i is “small” for
a “typical” h. Hence, for such an h, the right-hand side of Equation (6) must be roughly equal to
ϕi, the magnitude of the i-th coordinate in |ϕ⟩. (More correctly, it must be not too much larger
than ϕi.) This, in turn, implies that the left-hand side of Equation (6) must be roughly equal to
ϕi as well, at least for a “typical” h. This motivates studying the magnitude of the i-th coordinate
of V · |ψh⟩ for a “typical” Boolean function h. We can do so by looking at its average squared
magnitude

pi := E
h
[|⟨i| · V · |ψh⟩|2]. (7)

In other words, pi denotes the probability that measuring the state V |ψh⟩ in the standard basis
results in an outcome of i. Then we expect the i-th coordinate of V ·|ψh⟩ to have magnitude roughly√
pi, and that suggests the following choice for our fixed state in the diagonal decomposition:

|wtV ⟩ :=
M∑
i=1

√
pi · |i⟩ ,

which we refer to as the weight vector for V . We observe that |wtV ⟩ is indeed a unit vector because

⟨wtV |wtV ⟩ =
M∑
i=1

pi = E
h

[ M∑
i=1

|⟨i| · V · |ψh⟩|2
]
= E
h

[
∥V · |ψh⟩∥2

]
= 1,

where the last equality holds because V is an isometry. Intuitively, the state |wtV ⟩ encodes how
much weight the isometry V places on each individual coordinate 1 ≤ i ≤M .

To compute the full diagonal decomposition, we write the isometry V : CN → CM explicitly as

V =

M∑
i=1

N∑
x=1

vi,x · |i⟩⟨x| =
M∑
i=1

|i⟩ ·
( N∑
x=1

vi,x ⟨x|
)
=

M∑
i=1

|i⟩⟨vi| ,

so that the ith coordinate of V · |ψh⟩ is given by

αh,i := ⟨i| · V · |ψh⟩ = ⟨i| ·
( M∑
i=1

|i⟩⟨vi|
)
· |ψh⟩ = ⟨vi|ψh⟩ ,

yielding the decomposition

V · |ψh⟩ =
M∑
i=1

αh,i · |i⟩ =

(
M∑
i=1

αh,i√
pi

· |i⟩⟨i|

)
︸ ︷︷ ︸

DV,h

·
( M∑
i=1

√
pi · |i⟩

)
= DV,h · |wtV ⟩ .
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2.4.2 Bounding the operator norm of DV,h.

Our next step is to determine whether the random matrix DV,h actually has bounded operator
norm with high probability. Its operator norm is given by

∥DV,h∥op = max
1≤i≤M

|αh,i|√
pi
,

and we know from Equation (7) that for every 1 ≤ i ≤M ,

E
h
[|αh,i|2] = pi.

Therefore, if each coordinate αh,i has good enough (scalar) concentration, we can bound ∥Dh∥op
with high probability.

Thus, we have reduced the problem to understanding the concentration of the random variables

αh,i√
pi

=
1

√
pi

· ⟨vi|ψh⟩ =
N∑
x=1

vi,x√
pi

· h(x).

To see that this expression is small with high probability, we observe that it is a weighted linear
combination of the N i.i.d. {±1} random variables {h(x)}x∈[N ], has mean zero, and has variance

E
h

[∣∣∣αh,i√
pi

∣∣∣2] = Eh[|αh,i|2]
pi

=
pi
pi

= 1.

Therefore, standard (scalar) concentration tools (see Theorem 4.21) tell us that this random variable
exhibits “sub-Gaussian concentration,” implying (in this case) that it is larger than any t with
probability at most 2 · exp

(
−t2/2

)
. Union bounding over all M coordinates, we conclude that

∥DV,h∥op > t with probability at most 2M · exp
(
−t2/2

)
, and so it is, for example, unlikely to be

much larger than O(
√
logM).

2.4.3 Putting everything together

With the weight-vector decomposition in hand, we can proceed to bounding the adversary’s max-
imum distinguishing advantage along similar lines as in Section 2.3. To begin, we can rewrite the
state Of · V · |ψh⟩ as follows:

Of · V · |ψh⟩ = Of ·DV,h · |wtV ⟩ = DV,h · Of · |wtV ⟩ ,

for every function h. In other words, the choice of R-dependent function f here is accounted for
as the vector Of · |wtV ⟩, which is a unit vector for all functions f .

By an argument similar to the one in Section 2.3, we can then bound the adversary’s maximum
distinguishing advantage by the operator norm∥∥∥∥ E

k∼[K]
ZRk

∥∥∥∥
op

, where Zh := D†
V,h ·Π ·DV,h −E

h

[
D†
V,h ·Π ·DV,h

]
.

Thus, we have again reduced our problem to bounding the operator norm of an average of K
independent and identically distributed matrices ZRk

whose operator norms are bounded with high
probability. In particular, since the operator norm of ∥DV,h∥ is usually no more than O(

√
logM),
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over a uniformly random h, the operator norm of D†
V,h ·Π ·DV,h is usually no more than O(logM).

We would like to then conclude that
∥∥Ek∼[K] ZRk

∥∥
op

is at most

O
(√ logM

K

)
with high probability, which would imply our claimed result.

Unfortunately, we cannot quite apply the matrix Hoeffding inequality directly, which requires
that the matrices have bounded operator norm with probability 1, not just with high probability.
Getting around this issue requires some additional technical ideas, and we give two ways of handling
it in the main body of the paper.

1. Our first approach is to truncate the diagonal matrices DV,Rk
so that any entries whose

magnitude exceeds some number B are scaled down so that their magnitude is equal to B.
The result is that all matrices now have bounded operator norm, which means we are in
fact able to apply the matrix Hoeffding inequality. Ultimately, this results in a bound of
O(1/K1/4) on the adversary’s distinguishing advantage for reasonably small values of M
(say, M ≤ exp

(
K1/8/4

)
), which is more than enough to prove the one-query lower bound for

the Unitary Synthesis Problem. That said, this bound is not quite strong enough to prove
the bound claimed in Theorem 1.4.

2. To prove the precise bound claimed in Theorem 1.4 and thereby achieve the correct asymptotic
dependence on K, we give a somewhat different analysis.

(a) First, we show that it suffices to bound the expected distinguishing advantage on a ran-
dom R, rather than proving a bound with high probability. To show this, we show that
the maximum distinguishing advantage concentrates extremely well around its expecta-
tion (see Lemma 3.18).

(b) To bound the expected distinguishing advantage, we use a different technique called
“decoupling”, which is common in the random matrix theory literature [Ver11, vH17]. At
a high level, the technique (when combined with the ideas from this technical overview)
allows us to reduce to bounding the expected operator norm of the random matrix

E
k∼[K]

[D†
V,Rk

·Π ·DV,R′
k
],

where R and R′ are independent and uniformly random function families. This is easier
to give a sharp bound on because the dependence on each of R and R′ is linear rather
than quadratic, allowing us to prove an optimal bound on the expected value by applying
a different matrix concentration inequality for matrix Rademacher series (Theorem 4.10).
Unlike the matrix Hoeffding inequality, this matrix concentration inequality does not
require the matrices to have bounded operator norm with probability 1 (though it does
require the matrices to be random Rademacher matrices), which is why it gives stronger
bounds than we achieve using our first approach.

The second proof, which achieves the optimal dependence on K, is presented in Section 4. The
first proof is presented in Appendix A. We believe that theoretical computer scientists might find
the first proof more straightforward to follow.
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2.5 Future directions: beyond one query

Theorem 1.4 proves that efficient one-query oracle algorithms achieve at most negligible advantage
in the Oracle State Distinguishing Game (and thus cannot synthesize arbitrary unitaries). We
conjecture (see Conjecture 1.5) that efficient oracle circuits making poly(n)-many sequential queries
cannot win our distinguishing game. Towards resolving the full conjecture, we believe it may be
useful to focus on the special case of two-query adversaries. In this subsection, we present several
conjectures — all weaker than Conjecture 1.5 — that capture the simplest unresolved special cases
of two-query attacks.

First, we will need the following observation about the power of classical oracle queries. Let
us fix a function family R : [K] × [N ] → {±1} and a projective measurement P = {Πi}i∈[M ] with

M outcomes. Suppose the adversary, upon receiving |ψ⟩, applies an isometry V : CN → CM
followed by an oracle query Of . Next, it performs the measurement P, obtaining some outcome in
{1, . . . , D}. Depending on whether the adversary’s input state is sampled from the “pseudorandom”
or “random” distribution, the outcome of measuring P is distributed as either:

• Dist0: The result of applying P to Of · V · |ψRk
⟩, for a random k ∼ [K].

• Dist1: The result of applying P to Of · V · |ψh⟩, for a random h : [N ] → {±1}.

We observe that if the total variation distance (or statistical distance) between Dist0 and Dist1
is ε, then, by making one classical oracle query, the adversary can distinguish the two cases with
advantage ε. This is because the second query can be made to the Boolean function g : [M ] → {±1},
defined as g(i) = Sign(Pr[i ∼ Dist0]−Pr[i ∼ Dist1]). If the output of g is +1, the adversary guesses
that it was in the pseudorandom case, and if the output of g is −1, the adversary guesses that it
was in the Haar random case, and attains distinguishing advantage ε.

The “1.5-query” conjecture. We conjecture that adversaries that make one quantum query
followed by one classical query cannot win our distinguishing game.

Conjecture 2.5 (The 1.5-query conjecture.). Fix an isometry V : CN → CM and an M -outcome
projective measurement P = {Πi}i∈[M ] acting on CM . For any subset S ⊆ [M ], let ΠS :=

∑
i∈S Πi.

With high probability over a uniformly random R : [K]× [N ] → {±1}, the “1.5-query” adversary’s
distinguishing advantage,

max
S⊆[M ]

max
f :[M ]→{±1}

E
k∼[K]

[
⟨ψRk

|V † · Of ·ΠS · Of · V |ψRk
⟩
]
−E
h

[
⟨ψh|V † · Of ·ΠS · Of · V |ψh⟩

]
,

is at most negl(n).

One potential approach towards bounding this expression is to observe that if we fix a subset
S, the remaining expression has the same form as the maximum distinguishing advantage for a
one-query adversary. We can therefore apply the same weight-vector decomposition described
in Section 2.4.1 and invoke a spectral relaxation. The result is that the following is an upper bound
for the adversary’s distinguishing advantage:

max
S⊆[M ]

∥∥∥E
k

[
D†
V,Rk

·ΠS ·DV,Rk

]
−E
h

[
D†
V,h ·ΠS ·DV,h

]∥∥∥
op
, (8)

where the definitions of DV,h and DV,Rk
are the same as in Section 2.4.1.

The central difficulty we face is that matrix concentration inequalities are not sufficient to
bound Eq. (8). Indeed, they can be applied for any fixed choice of S, but it is unclear how to
bound the operator norm of 2M matrices simultaneously, one for each S. Nevertheless, we believe
that the expression (8) is in fact negligible with high probability over R.
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The “(1+ ε)-query” conjecture. Finally, we highlight a sub-class of 1.5-query adversaries that
we do not know how to rule out, which we refer to as (1 + ε)-query adversaries. Instead of making
an arbitrary first query to the oracle, these adversaries use their first query to synthesize an advice
state |v⟩ ∈ CM/N (similar to the adversaries we considered in Section 2.2); note that while |v⟩ is
technically restricted to states of a certain type, treating it as an arbitrary unit vector is essentially
without loss of generality.3

Conjecture 2.6 (The (1 + ε)-query conjecture.). Fix any M -outcome projective measurement
P = {Πi}i∈[M ] acting on CM . With high probability over a uniformly random R : [K]×[N ] → {±1},
the adversary’s distinguishing advantage

max
S⊆[M ]

∥∥∥ E
k∼[K]

[
(⟨ψRk

| ⊗ Id) ·ΠS · (|ψRk
⟩ ⊗ Id)

]
−E
h

[
(⟨ψh| ⊗ Id) ·ΠS · (|ψh⟩ ⊗ Id)

]∥∥∥
op

(9)

is at most negl(n).

Again, the difficulty we face in bounding Eq. (9) is that matrix concentration inequalities only
seem to apply when the subset S is fixed, and not when we maximize over all S.

A simple mathematical conjecture. Finally, in order to state the simplest mathematical
conjecture that captures this “simultaneous matrix concentration” problem, we give a slightly
different version of the above (1 + ε)-query conjecture (which corresponds to the case where |ψRk

⟩
and |ψh⟩ are Haar random).

Conjecture 2.7. Let c > 0 be any constant. Set parameters N = 2n, K = N/2 and M = 2n · 2nc
.

Let {Πi}i∈[M ] be projectors acting on CM such that
∑

i∈[M ]Πi = IdM . Sample K Haar-random unit

vectors |ψ1⟩ , . . . , |ψK⟩ ∈ CN . Then with probability 1− negl(n),

max
S⊆[M ]

∥∥∥ E
k∼[K]

[
(⟨ψk| ⊗ Id) ·ΠS · (|ψk⟩ ⊗ Id)

]
− E

|ψ⟩

[
(⟨ψ| ⊗ Id) ·ΠS · (|ψ⟩ ⊗ Id)

]∥∥∥
op

= negl(n).

where each Id is M/N ×M/N -dimensional and |ψ⟩ is Haar-random.

We note that it would be extremely surprising to us if Conjecture 2.7 turns out to be false,
since that would imply that a two-query algorithm can win (the Haar-random state version of) the
Oracle State Distinguishing Game.

3For example, the adversary can implement Rosenthal’s state synthesis algorithm [Ros23a] to prepare an arbitrary
quantum advice state.
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3 The Oracle State Distinguishing Game

The purpose of this section is to define the Oracle State Distinguishing Game and prove several
fundamental properties about it. We note that our main proof in Section 4 can be understood
without reading Sections 3.3 to 3.5.

The section is organized as follows. In Section 3.1, we introduce some notation and formalism for
oracle algorithms. In Section 3.2, we define the Oracle State Distinguishing Game. In Section 3.3
we show that hardness of the Oracle State Distinguishing Game for T -query adversaries implies
hardness of T -query unitary synthesis for any parameter T .

In Section 3.4, we appeal to concentration of measure to give (for any oracle adversary A) an
upper tail inequality on the optimal distinguishing advantage in the oracle state distinguishing
game, which implies that it suffices to bound the adversary’s expected distinguishing advantage
over the choice of R.

In Section 3.5, we show that two complexity measures of an oracle algorithm — query length
and space complexity — are tightly related in the oracle state distinguishing game. The assumption
that our adversaries are space-efficient as well as query-efficient will be crucial in both proofs of the
one-query lower bound.

Finally, in Section 3.6, we give an explicit “normal form” for one-query adversaries (using
Section 3.5), setting up simplified notation that suffices for Section 4.

3.1 Preliminary notation

We will use boldface to denote random variables. We will write ln(·) for the natural logarithm
and log2(·) for the base-2 logarithm.

Notation 3.1 (Register size versus dimension). A quantum register consisting of m qubits has
dimension M = 2m. Viewing it as a space of m qubits, it is natural to index the basis by binary
strings x ∈ {0, 1}m. On the other hand, viewing it as a space of dimensionM , it is natural to index
the basis by integers 1 ≤ i ≤ M . We can associate these two indexing schemes by associating the
number i with the string x that is the m-bit binary representation of i− 1. We will typically prefer
the second indexing scheme, and will therefore typically represent m-qubit states as

|ψ⟩ =
M∑
i=1

ψi · |i⟩ .

Throughout this work, we will consider algorithms which take as input a quantum state. We will
typically reserve n for the length of the input register in qubits and N := 2n for the dimension of
this register.

Most of our quantum state inputs will come in the form of binary phase states.

Definition 3.2 (Binary phase state). A Boolean function is a function h : {0, 1}n → {±1}. Due
to the association between {0, 1}n and [N ] given in Notation 3.1, we will typically prefer to write
such a function as h : [N ] → {±1}, and we will elect to still refer to such a function as a “Boolean
function”. The corresponding binary phase state is

|ψh⟩ :=
1√
N

·
N∑
x=1

h(x) · |x⟩ .
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Definition 3.3 (Phase oracle). Let f : [L] → {±1} be a Boolean function. Then the corresponding
phase oracle is the L× L diagonal unitary matrix Of given by

Of =

L∑
i=1

f(i) · |i⟩⟨i| .

Operationally, for any 1 ≤ i ≤ L, the oracle acts as Of · |i⟩ = f(i) · |i⟩. If L = 2ℓ for some integer ℓ,
then we refer to ℓ as the input length of the phase oracle and L as the dimension of the phase
oracle.

Phase oracles can be contrasted with bit flip oracles. A bit flip oracle Oflip
g is specified by a

function g : [M ] → {0, 1} and is defined as follows: for each 1 ≤ i ≤ M and b ∈ {0, 1}, it acts

as Oflip
g · |i, b⟩ = |i, b⊕ g(i)⟩. In general, a bit flip oracle can always be used to implement a phase

oracle, but the reverse is only partially true: implementing a bit flip oracle requires a controlled
phase oracle. However, we will see below that the class of phase oracles we consider are actually
powerful enough to implement controlled phase oracles, and hence can be converted to bit flip
oracles if desired.

Throughout this work, we will consider a class of circuits which take as input a quantum state
and are allowed to perform several queries to a phase oracle. We define these formally as follows.

Definition 3.4 (Oracle circuit). A t-query oracle circuit A(·) begins with an input register of n
qubits and an ancilla register of a qubits, each initialized to |0⟩, for a total of m = n + a qubits.
It then performs the m-qubit unitaries U1, . . . , Ut+1. In addition, between each pair of unitaries,
it performs a query to a phase oracle of input length ℓ, which acts on the first ℓ qubits. We write
A(·) = (n,m, ℓ, U1, . . . , Ut+1) in order to specify these parameters.

The precise execution of the oracle circuit depends on which Boolean function it is given query
access to. Given a Boolean function f : {0, 1}ℓ → {±1}, we write Af for the oracle circuit given
access to f . On input an n-qubit state, it computes the state

Ut+1 · Of · Ut · · · Of · U2 · Of · U1 · |ψ⟩ ⊗ |0a⟩ .

This is illustrated in Figure 1.

. . .

. . .

. . .

|ψ⟩

U1

Of

U2

Of

Ut

Of

Ut+1

|0a⟩

Figure 1: The execution of Af on input |ψ⟩.

Remark 3.5 (Querying multiple functions). Note that we have defined our oracle circuits so that
every application of the oracle gate queries the same Boolean function f . One can consider an
alternative model of t-query oracle circuits which are instead allowed to query a different Boolean
function fi for each oracle call 1 ≤ i ≤ t. However, one can simulate access to these t Boolean
functions using a single Boolean function f defined as f(bin(i), x) := fi(x), where bin(i) is the
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a = ⌈log2(t)⌉-bit binary encoding of i. Hence, an adversary which queries t different Boolean
functions can be simulated by an adversary which queries one Boolean function and has a small
a-qubit overhead. Thus, it is essentially without loss of generality to focus on adversaries which
query a single function, as we do. We note that this transformation is standard and appears, for
example, at the top of page 5 in Rosenthal’s Ph.D. thesis [Ros23b].

Remark 3.6 (Querying many-bit functions). Yet another model of t-query oracle circuits allows
for making bit-flip queries to d-bit output functions of the form |x⟩ |y⟩ 7→ |x⟩ |y ⊕ f(x)⟩ for x ∈
[M ], y ∈ {0, 1}d. As pointed out in [Ros23b] Section 2.1, such queries can be simulated by a single
quantum query to a 1-bit function:

|x⟩ |r⟩ 7→ (−1)r·f(x) |x⟩ |r⟩ .

The new function g(x, r) = r · f(x) has domain [M · 2d]. This also allows us to simulate parallel
queries of the form

|x1⟩ |b1⟩ . . . |xt⟩ |bt⟩ 7→ |x1⟩ |b1 ⊕ f(x1)⟩ . . . |xt⟩ |bt ⊕ f(xt)⟩

by defining x = (x1, . . . , xt). Therefore, our one-query lower bounds imply lower bounds against a
bounded (e.g., polynomial or sub-exponential) number of parallel queries.

3.2 Defining the Oracle State Distinguishing Game

In this section, we define the Oracle State Distinguishing Game. To begin, every such game is
parameterized by a particular family of functions, which is defined as follows.

Definition 3.7 (Function families). Let K and N be integers. A function family is a function
R : [K]× [N ] → {±1}. We think of R as defining a family of K Boolean functions as follows: for
each 1 ≤ k ≤ K, we let Rk : [N ] → {±1} be the function Rk(·) := R(k, ·).

We have chosen the letter “R” for function families as shorthand for the word “Random”, as
our function families will often (though not always) be random variables.

Definition 3.8 (Oracle State Distinguishing Game). Let R : [K] × [N ] → {±1} be a function
family. The Oracle State Distinguishing Game on R, denoted GameR, involves two parties, a
challenger and an adversary. It is played as follows.

1. The challenger samples a random bit b ∈ {0, 1}.

2. The challenger generates a random n-qubit state |ψ⟩ in one of two ways:

◦ If b = 0, the challenger samples a uniformly random k ∼ [K] and generates |ψ⟩ := |ψRk
⟩.

◦ If b = 1, the challenger samples a uniformly random x ∼ [N ] and sets |ψ⟩ := |x⟩.

3. The challenger sends |ψ⟩ to the adversary.

4. The adversary outputs a bit b′ ∈ {0, 1}.

5. If b′ = b, then the adversary wins. Otherwise, they lose.

The Oracle State Distinguishing Game, denoted GameN,K is played as follows. A uniformly random
function family R : [K] × [N ] → {±1} is sampled, and then the challenger plays GameR with the
adversary.
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Remark 3.9 (Computational complexity of the challenger). In the “b = 1 case”, the view of the
adversary is that it receives a maximally mixed state IdN/N . Hence, we can equivalently view the
challenger as sampling a random state from any distribution, so long as an average state drawn
from this distribution is maximally mixed. For example, we can equivalently view the challenger
as sampling a uniformly random Boolean function h : [N ] → {±1} and setting |ψ⟩ := |ψh⟩, or
sampling |ψ⟩ as an N -dimensional Haar-random state. We will typically prefer the first of these
points of view throughout this work.

We have chosen to have the challenger sample a random basis state |x⟩ in this case to empha-
size that the challenger is computationally efficient in our construction. Note that they can also
efficiently construct the state |ψRk

⟩ in the “b = 0 case” given oracle access to R. In particular,

they need only query the oracle R(k, ·) on the uniform superposition state |+N ⟩ := 1√
N
·
∑N

x=1 |x⟩.

We will model our adversary as an oracle circuit A(·) with an N -dimensional input register.
Intuitively, the adversary will be allowed to select its own preferred oracle f to give it the best
chance of winning the Oracle State Distinguishing Game on R. When the game is played on a
uniformly random choice of the function family R : [K] × [N ] → {±1}, the adversary will be
allowed to select an oracle fR which depends on R.

Definition 3.10 (Adversary). An adversary is specified by an oracle circuit A(·). Let L be the
dimension of the queries the oracle circuit makes. Given oracle access to a Boolean function
f : [L] → {±1}, the adversary acts as follows. On input the quantum state |ψ⟩, it applies Af ,
and then it measures the first qubit in the standard basis. It outputs the measurement outcome
b′ ∈ {0, 1}.

Now we introduce several pieces of notation which will help us describe the adversary’s winning
probability in the Oracle State Distinguishing Game.

Notation 3.11 (Adversary’s acceptance probability). Let A(·) be an adversary which has an N -
dimensional input register and makes L-dimensional queries. Let h : [N ] → {±1} be a Boolean
function, and let f : [L] → {±1} be another Boolean function. We will use the notation

pA(h | f) := Pr[Af outputs “0” on |ψh⟩].

Let R : [K] × [N ] → {±1} be a function family. Then in the “b = 0 case”, the probability
the adversary wins GameR can be expressed in this notation as Ek∼[K][pA(Rk | f)]. As for the
“b = 1 case” let us follow Remark 3.9 and view the challenger as sampling a uniformly random
Boolean function h : [N ] → {±1} and setting |ψ⟩ := |ψh⟩; given this state, the adversary wins with
probability 1− pA(h | f). Putting these two together, the probability the adversary wins GameR is

1

2
· E
k∼[K]

[pA(R | f)] + 1

2
·E
h
[1− pA(h | f)]. (10)

Note that the adversary can trivially win with probability 1/2 by always outputting b′ = 0. Thus,
we care about the amount by which the adversary’s acceptance probability differs from 1/2, which
is known as its advantage.

Definition 3.12 (Distinguishing advantage). Let R : [K]× [N ] → {±1} be a function family. Let
A(·) be an adversary with an N -dimensional input register. Let L be the dimension of A(·)’s queries,
and let f : [L] → {±1} be a Boolean function. Then the distinguishing advantage of Af on GameR

is defined as

∆A(R | f) := 2 ·
∣∣∣Pr[Af wins on GameR]− 1

2

∣∣∣.
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The factor of 2 in front was chosen so that the distinguishing advantage is a number between 0
and 1 and is equal to 1 if the adversary always wins (or loses). If we plug in Equation (10) for the
adversary’s winning probability, we can rewrite the distinguishing advantage as

∆A(R | f) =
∣∣∣ E
k∼[K]

[pA(Rk | f)]−E
h
[pA(h | f)]

∣∣∣,
where h : [N ] → {±1} is a uniformly random Boolean function. This equation is the form that we
will most typically express the distinguishing advantage in, and it explains why we refer to this as
the distinguishing advantage, which is because it expresses how well the adversary’s output can be
used to distinguish between the two cases.

The adversary’s goal is to maximize the distinguishing advantage, and it can do so by picking
the best possible function f : [L] → {±1} to perform oracle queries to. This motivates the following
quantity, which is the main quantity we will be studying throughout this paper.

Definition 3.13 (Maximum distinguishing advantage). Let R : [K] × [N ] → {±1} be a func-
tion family. Let A(·) be an adversary which has an N -dimensional input register and makes L-
dimensional queries. The maximum distinguishing advantage of A(·) on GameR is defined as

∆A(R) := max
f :[L]→{±1}

{∆A(R | f)}.

Finally, the maximum distinguishing advantage of A(·) on GameK,N is equal to

∆avg
A := E

R
[∆A(R)],

where R : [K]× [N ] → {±1} is a uniformly random function family.

The goal of this work is to show that ∆avg
A is small for any adversary A(·) which makes a single

query of length ℓ = o(K). Moreover, we will prove that in the same parameter regime, with high
probability over R, ∆A(R) is small.

3.3 Relationship to the Unitary Synthesis Problem

In this section, we formalize the Unitary Synthesis Problem and its relationship to the Oracle State
Distinguishing Game. Or, rather, we will suggest one possible way of formalizing the Unitary Syn-
thesis Problem, as there seems to be no generally agreed upon precise formulation of the problem.
For example, the task is to approximate a general n-qubit unitary U , but there are many different
ways of defining what it means to approximate a unitary. This was addressed by Scott Aaronson
in a comment on the Shtetl-Optimized blog [Aar21], in which he said the following.

“The unitary synthesis problem is interesting for any reasonable notion of approxi-
mating U . In other words, we lack a positive result even for the loosest notions of
approximation you mentioned, or a negative result even for the most stringent ones!
Once we have some results, then we can start worrying about these distinctions.”

The last few years have seen increasing interest in fundamentally quantum tasks, and as a result
we now do have some results on problems related to unitary synthesis [RY22, Ros22, BEM+23],
and these have given several ways of precisely formalizing unitary synthesis.
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Let us first recall several standard notions from quantum information theory. Given two n-qubit
density matrices ρ1 and ρ2, their trace distance is given by

Dtr(ρ1, ρ2) :=
1

2
· ∥ρ1 − ρ2∥1,

where ∥ · ∥1 is the trace norm. Given two quantum channels Φ1,Φ2, both with n-qubit inputs and
outputs, their diamond distance is given by

D⋄(Φ1,Φ2) := max
ρ

{Dtr((Φ1 ⊗ Id)(ρ), (Φ2 ⊗ Id)(ρ))},

where the maximization is over all 2n-qubit density matrices ρ, and both Id operators refer to the
n-qubit identity channel. For more background these distances, see [Wat18, Chapter 3].

Following [BEM+23], we will define what it means to approximate a unitary in terms of the
diamond distance.

Definition 3.14 (Approximating a unitary). Let U be an n-qubit unitary, and let ΦU be the
associated quantum channel. Let Φapprox be a quantum channel with n-qubit input and output
registers. Then Φapprox is said to ε-approximate U if D⋄(Φapprox,ΦU ) ≤ ε.

We will also define the channel associated with an oracle circuit A(·) in the natural way.

Definition 3.15 (Channel implemented by an oracle circuit). Given a t-query oracle circuit A(·) =
(n,m, ℓ, U1, . . . , Ut, Ut+1) and a Boolean function f : {0, 1}ℓ → {±1}, the associated n-qubit channel
ΦAf is defined as follows:

1. Given an n qubit input |ψ⟩, compute the state

Ut+1 · Of · Ut · · · · Of · U2 · Of · U1 · |ψ⟩ |0m−n⟩

2. Return the first n qubits as the output (and discard the rest).

With these definitions in hand, we can give a formal statement of the Unitary Synthesis Problem.

Definition 3.16 (The Unitary Synthesis Problem). Fix an error parameter ε(n) = 1/2Ω(n). Does
there exist a poly(n)-query oracle circuit A(·) computable by a poly(n)-sized quantum circuit such
that for all n-qubit unitaries U , there exists a Boolean function f : {0, 1}∗ → {±1} such that
D⋄(ΦAf ,ΦU ) ≤ ε(n)?

As discussed in Section 1.1, a bound on the maximum distinguishing advantage in the Oracle
Distinguishing Game immediately implies a lower bound for the worst-case version of the Unitary
Synthesis Problem, since there always exists an information-theoretic distinguisher that wins the
corresponding Oracle State Distinguishing Game for R. In fact, if we make a slight modification to
the Oracle State Distinguishing Game, then a the distinguishing advantage bound would imply a
slightly stronger claim, namely that Unitary Synthesis Problem is hard for a Haar-random U (we
note that this is technically the version of the problem stated by Aaronson and Kuperberg [AK07]).

In more detail, one can consider a variant of the Oracle State Distinguishing Game where every
|ψRk

⟩ is sampled as a Haar random state, rather than as a binary phase state (we do not give a
separate analysis for the version of Oracle State Distinguishing with Haar random states, but our
proof technique can easily be adapted to handle it). Next, suppose that there exists an oracle circuit
A(·) that can synthesize an n-qubit Haar random unitary U . Then for a random U and any K < N ,
there exists (with high probability) a choice of f such that Af implements the channel corresponding
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to U . In particular, this means that for a Haar-random subspace S = span{U † |1⟩ , . . . , U † |K⟩},
there exists f such that Af maps S to span{|1⟩ , . . . , |K⟩}. Such an oracle circuit A(·) can be
used to win the Oracle State Distinguishing Game, since the subspace span{|ψR1⟩ , . . . , |ψRK

⟩} is
distributed as a K-dimensional Haar-random subspace, and the ability to map this subspace to
span{|1⟩ , . . . , |K⟩} immediately yields a distinguisher for the game.

To summarize, we have argued that a lower bound for breaking a (single-copy) pseudorandom
state family — in an oracle setting where the K pseudorandom states are distributed as Haar
random states — directly implies hardness of synthesizing the first K columns of a Haar-random
unitary. Thus, we have the following claim.

Claim 3.17. If the maximum distinguishing advantage of any efficient t-query adversary in the
oracle distinguishing game is o(1), then there is no efficient t-query oracle algorithm for the Unitary
Synthesis Problem on a Haar-random unitary U .

3.4 Upper tail inequality for the maximum distinguishing advantage

Throughout this subsection, we will write A(·) = (n,m, ℓ, U1, . . . , Ut+1) for a t-query adversary with
an (N := 2n)-dimensional input register and (L := 2ℓ)-dimensional queries which is playing GameR

for function families of the form R : [K]× [N ] → {±1}.
Let R : [K]× [N ] → {±1} be a uniformly random function family. In this section, we consider

the random variable ∆A(R) corresponding to the maximum distinguishing advantage of A (Defini-
tion 3.13), and we show that it has strong one-sided concentration around its mean ∆A. Our main
result is as follows.

Lemma 3.18 (Upper tail for ∆A(R)). There exists a constant c > 0 such that the following is
true. Let R : [K]× [N ] → {±1} be a uniformly random function family. Then for all ε ≥ 0,

Pr
R
[∆A(R) ≥ ∆avg

A + ε] ≤ 4 · exp
(
−c · ε2KN

)
.

The main technical lemma we will need to prove this is the following version of Talagrand’s
concentration inequality, which is stated in [Ver18, Theorem 5.2.16].

Definition 3.19 (Lipschitz). Let g : [−1, 1]n → R be a function. It has Lipschitz constant C if for
all u, v ∈ [−1, 1]n,

|g(u)− g(v)| ≤ C · ∥u− v∥2.

Theorem 3.20 (Talagrand’s concentration inequality). There exists a constant c > 0 such that
the following is true. Let g : [−1, 1]d → R be a convex function with Lipschitz constant C. Let
v1, . . . ,vd be independent random variables satisfying |vi| ≤ 1 for all 1 ≤ i ≤ d. Then for all t ≥ 0,

Pr [|g(v1, . . . ,vd)−E[g(v1, . . . ,vd)]| ≥ t] ≤ 2 · exp
(
−c · t

2

C2

)
.

To derive Lemma 3.18 using Talagrand’s concentration inequality, we will view a uniformly
random function family R : [K] × [N ] → {±1} as a collection of KN independent {±1} random
variables. We would then like to apply Talagrand’s concentration inequality with the “g” function
set to the maximum distinguishing advantage ∆A(·), interpreted as a function of an input R. How-
ever, doing so faces two difficulties: first, ∆A(·) is defined only for {±1}-valued inputs, wheres the
“g” function in Talagrand’s concentration inequality must be defined over [−1, 1] inputs. Second,
∆A(·) is not convex. The first difficulty is straightforward to address, and we begin to do so in the
following definition.
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Definition 3.21 (Expanding the acceptance probability to bounded inputs). Let us fix a Boolean
function f : [L] → {±1}. Given as input the state |ψ⟩, the adversary applies the oracle circuit Af

and then measures the first qubit of the resulting state. We can therefore view the adversary as
applying a POVM measurement Ef := {Ef0 , E

f
1 } to |ψ⟩, where

Ef0 := (Af )† · (|0⟩⟨0| ⊗ Id⊗m−1
2 ) ·Af ,

and Ef1 := IdN − Ef0 . As a result, for any Boolean function h : [N ] → {±1}, we can write

pA(h | f) = ⟨ψh| · Ef0 · |ψh⟩ . (11)

We will now extend this expression to functions which are [−1, 1]-valued rather than {±1}-valued.
For a bounded function h : [N ] → [−1, 1] and a bit b ∈ {0, 1}, we define

∣∣ψh〉 := 1√
N

·
N∑
x=1

h(x) · |x⟩ , and pA,b(h | f) :=
〈
ψh
∣∣ · Efb ·

∣∣ψh〉 .
Note that

∣∣ψh〉 is sub-normalized, meaning that
〈
ψh
∣∣ψh〉 ≤ 1, and so it is no longer necessarily

a quantum state. In addition, if h : [N ] → {±1} is a Boolean function, then by Equation (11),
pA,b(h | f) still recovers our traditional definition of pA(· | f) when b = 0. As for the b = 1 case,
note that because h is a Boolean function,

pA,1(h | f) = ⟨ψh| · Ef1 · |ψh⟩ = ⟨ψh| · (IdN − Ef1 ) · |ψh⟩

= 1− ⟨ψh| · Ef0 · |ψh⟩ = 1− pA,0(h | f). (12)

However, this is not necessarily true of bounded functions h.
Now we address the second issue, that of ∆A(·) not being convex. To do so, we will have to

define two variants of ∆A(·) called ∆A,0(·) and ∆A,1(·) which we will eventually show are convex.
This motivates the following definition, which will only be used in this subsection.

Definition 3.22 (Modifying the distinguishing advantage). Let f : [L] → {±1} be a Boolean
function and R : [K]× [N ] → [−1, 1] be a bounded function. For b ∈ {0, 1}, we define

∆A,b(R | f) := E
k∼[K]

[pA,b(Rk | f)]−E
h
[pA,b(h | f)],

∆A,b(R) := max
f :[L]→{±1}

{∆A,b(R | f)}.

We note that unlike in the definition of ∆A(·), there is no absolute value in the definition of ∆A,b(·).
(This is needed so that we can later show that it is convex.) Finally, we define

∆avg
A,b := E

R
[∆A,b(R)],

where R : [K]× [N ] → {±1} is a uniformly random function family.

We will now make some observations about these definitions. Let R : [K] × [N ] → {±1} be a
function family. Then by Equation (12),

∆A,1(R | f) = E
k∼[K]

[pA,1(Rk | f)]−E
h
[pA,1(h | f)]

= E
k∼[K]

[1− pA,0(Rk | f)]−E
h
[1− pA,0(h | f)]

= − E
k∼[K]

[pA,0(Rk | f)] +E
h
[pA,0(h | f)] = −∆A,0(R | f).
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(As before, this is not necessarily true of bounded functions R.) Thus, we have that

∆A(R | f) = |∆A,0(R | f)| = max{∆A,0(R | f),−∆A,0(R | f)}
= max{∆A,0(R | f),∆A,1(R | f)}.

As a result,

∆A(R) = max
f :[L]→{±1}

{∆A(R | f)}

= max
f :[L]→{±1}

{
max{∆A,0(R | f),∆A,1(R | f)}

}
= max

{
max

f :[L]→{±1}
{∆A,0(R | f)}, max

f :[L]→{±1}
{∆A,1(R | f)}

}
= max{∆A,0(R),∆A,1(R)}. (13)

We will show the following concentration bound for these two variants of the maximum distin-
guishing advantage.

Lemma 3.23 (Concentration of the modified distinguishing advantages). There exists an absolute
constant c > 0 such that the following is true. Let b ∈ {0, 1}. Let R : [K] × [N ] → {±1} be a
uniformly random function family. Then for all ε ≥ 0,

Pr
R
[|∆A,b(R)−∆avg

A,b | ≥ ε] ≤ 2 · exp
(
−c · ε2KN

)
.

Before proving Lemma 3.23, let us see how it implies the main result of this subsection,
Lemma 3.18.

Proof of Lemma 3.18. First, we note that by Equation (13), ∆A(R) ≥ ∆A,b(R) for any function

family R : [K] × [N ] → {±1} and any b ∈ {0, 1}. Thus, we have that ∆avg
A ≥ ∆avg

A,b . Next, for a
uniformly random function family R : [K]× [N ] → {±1},

Pr
R
[∆A(R) ≥ ∆avg

A + ε]

= Pr
R
[max{∆A,0(R),∆A,1(R)} ≥ ∆avg

A + ε] (by Equation (13))

= Pr
R
[∆A,0(R) ≥ ∆avg

A + ε, or ∆A,1(R) ≥ ∆avg
A + ε]

≤ Pr
R
[∆A,0(R) ≥ ∆avg

A + ε] +Pr
R
[∆A,1(R) ≥ ∆avg

A + ε] (by the union bound)

≤ Pr
R
[∆A,0(R) ≥ ∆avg

A,0 + ε] +Pr
R
[∆A,1(R) ≥ ∆avg

A,1 + ε] (because ∆avg
A ≥ ∆avg

A,0 and ∆avg
A,1)

≤ Pr
R
[|∆A,0(R)−∆avg

A,0| ≥ ε] +Pr
R
[|∆A,1(R)−∆avg

A,1| ≥ ε]

≤ 2 · exp
(
−c · ε2KN

)
+ 2 · exp

(
−c · ε2KN

)
(by Lemma 3.23)

= 4 · exp
(
−c · ε2KN

)
.

This completes the proof.

Now we focus on proving Lemma 3.23. To do so, we would like to show that ∆A,0(·) and ∆A,1(·)
are convex and Lipschitz. Prior to doing so, however, we will first prove this for the pA,b(· | f)
function.

Lemma 3.24 (The pA,b functions are convex and Lipschitz). Let f : [L] → {±1} be a Boolean
function. Let b ∈ {0, 1}. Then pA,b(· | f) is convex and (2/

√
N)-Lipschitz.
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Proof. Consider two bounded functions h, h′ : [N ] → [−1, 1]. Let 0 ≤ t ≤ 1. Then

pA,b(t · h+ (1− t) · h′ | f) = ⟨ψt·h+(1−t)·h′ | · E
f
b · |ψt·h+(1−t)·h′⟩

= ∥(Efb )
1/2 · |ψt·h+(1−t)·h′⟩ ∥22

= ∥(Efb )
1/2 · (t · |ψh⟩+ (1− t) · |ψh′⟩)∥22.

Now, because ∥ · ∥2 is convex and x 7→ x2 is convex, we also have that ∥ · ∥22 is convex. Hence, by
Jensen’s inequality, this is at most

t · ∥(Efb )
1/2 |ψh⟩ ∥22 + (1− t) · ∥(Efb )

1/2 · |ψh′⟩ ∥22
= t · ⟨ψh| · Efb · |ψh⟩+ (1− t) · ⟨ψh′ | · E

f
b · |ψh′⟩

= t · pA,b(h | f) + (1− t) · pA,b(h′ | f).

And so pA,b(· | f) is convex. Next,

|pA,b(h | f)− pA,b(h
′ | f)|

= |
〈
ψh
∣∣ · Efb ·

∣∣ψh〉− 〈ψh′∣∣ · Efb ·
∣∣ψh′〉 |

= |
〈
ψh
∣∣ · Efb ·

∣∣ψh〉− 〈ψh∣∣ · Efb ·
∣∣ψh′〉+ 〈ψh∣∣ · Efb ·

∣∣ψh′〉− 〈ψh′∣∣ · Efb ·
∣∣ψh′〉 |

≤ |
〈
ψh
∣∣ · Efb ·

∣∣ψh〉− 〈ψh∣∣ · Efb ·
∣∣ψh′〉 |+ |

〈
ψh
∣∣ · Efb ·

∣∣ψh′〉− 〈ψh′∣∣ · Efb ·
∣∣ψh′〉 |

= |
〈
ψh
∣∣ · Efb · (

∣∣ψh〉− ∣∣ψh′〉)|+ |(
〈
ψh
∣∣− 〈ψh′∣∣) · Efb ·

∣∣ψh′〉 |.
By Cauchy-Schwarz, we can bound the first term by

∥Efb ·
∣∣ψh〉 ∥2 · ∥ ∣∣ψh〉− ∣∣ψh′〉 ∥2 ≤ ∥

∣∣ψh〉 ∥2 · ∥ ∣∣ψh〉− ∣∣ψh′〉 ∥2 (because 0 ⪯ Efb ⪯ I)

≤ ∥
∣∣ψh〉− ∣∣ψh′〉 ∥2 (because

∣∣ψh〉 is sub-normalized)

=
1√
N

· ∥h− h′∥2. (by definition of |ψh⟩ and |ψh′⟩)

A similar argument shows that the second term is also bounded by ∥h− h′∥2/
√
N . Putting these

together, this shows that pA,b(· | f) is (2/
√
N)-Lipschitz.

Next, we use this lemma to show that ∆A,b(· | f) is also convex and Lipschitz.

Lemma 3.25 (The ∆A,b(· | f) functions are convex and Lipschitz). Let f : [L] → {±1} be a
Boolean function. Let b ∈ {0, 1}. Then the map

R 7→ E
k∼[K]

[pA,b(Rk | f)] (14)

is convex and (2/
√
KN)-Lipschitz. In addition, ∆A,b(· | f) is also convex and (2/

√
KN)-Lipschitz.

Proof. We first prove the lemma for the map in Equation (14). Consider two bounded functions
R,R′ : [K]× [N ] → [−1, 1]. Let 0 ≤ t ≤ 1. Then by Lemma 3.24,

E
k∼[K]

[pA,b(t ·Rk + (1− t) ·R′
k | f)] ≤ E

k∼[K]
[t · pA,b(Rk | f) + (1− t) · pA,b(R′

k | f)]

= t · E
k∼[K]

[pA,b(Rk | f)] + (1− t) · E
k∼[K]

[pA,b(R
′
k | f)].
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Thus, this map is convex. Next,∣∣∣ E
k∼[K]

[pA,b(Rk | f)]− E
k∼[K]

[pA,b(R
′
k | f)]

∣∣∣ ≤ E
k∼[K]

|pA,b(Rk | f)− pA,b(R
′
k | f)|.

Now, we apply Lemma 3.24, which states that pA,b(· | f) is (2/
√
N)-Lipschitz. Hence, we can

upper-bound this by

E
k∼[K]

2√
N

· ∥Rk −R′
k∥2 =

2√
N ·K

·
K∑
k=1

∥Rk −R′
k∥2

≤ 2√
N ·K

·

√√√√K ·
K∑
k=1

∥Rk −R′
k∥22 =

2√
KN

· ∥R−R′∥2,

where the inequality is due to Cauchy-Schwarz. Thus, this map is (2/
√
KN)-Lipschitz. As for

∆A,b(· | f), we recall that it is defined as follows:

∆A,b(R | f) := E
k∼[K]

[pA,b(Rk | f)]−E
h
[pA,b(h | f)].

This is just the map in Equation (14), offset by a constant. Hence, it too is convex and (2/
√
KN)-

Lipschitz. This completes the proof.

We have finally reached our goal, which is to show that the ∆A,b(·) = maxf ∆A,b(· | f) functions
are convex and Lipschitz.

Lemma 3.26 (The ∆A,b(·) functions are convex and Lipschitz). Let b ∈ {0, 1}. Then ∆A,b(·) is

convex and (2/
√
KN)-Lipschitz.

Proof. Consider two bounded functions R,R′ : [K]× [N ] → [−1, 1]. Let 0 ≤ t ≤ 1. Then

∆A,b(t ·R+ (1− t) ·R′) = max
f :[L]→{±1}

{∆A,b(t ·R+ (1− t) ·R′ | f)}

By Lemma 3.25, the function ∆A,b(· | f) is convex. Hence, this is at most

max
f :[L]→{±1}

{t ·∆A,b(R | f) + (1− t) ·∆A,b(R
′ | f)}

≤ max
f :[L]→{±1}

{t ·∆A,b(R | f) + (1− t) ·∆A,b(R
′ | f)}

≤ t · max
f :[L]→{±1}

{∆A,b(R | f)}+ (1− t) · max
f :[L]→{±1}

{∆A,b(R
′ | f)}

= t ·∆A,b(R) + (1− t) ·∆A,b(R
′).

Hence, ∆A,b(·) is convex.
Now we show that ∆A,b(·) is Lipschitz. To do so, we will show that for any two bounded

functions R,R′ : [K]× [N ] → [−1, 1],

∆A,b(R)−∆A,b(R
′) ≤ 2√

KN
.

This will show that ∆A,b(·) is (2/
√
KN)-Lipschitz, as

|∆A,b(R)−∆A,b(R
′)| = max{∆A,b(R)−∆A,b(R

′),∆A,b(R
′)−∆A,b(R)} ≤ 2√

KN
.
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To begin,

∆A,b(R)−∆A,b(R
′) = max

f :[L]→{±1}
{∆A,b(R | f)} − max

f ′:[L]→{±1}
{∆A,b(R

′ | f ′)}.

Let f be function maximizing the first expression. Then this is equal to

∆A,b(R | f)− max
f ′:[L]→{±1}

{∆A,b(R
′ | f ′)} ≤ ∆A,b(R | f)−∆A,b(R

′ | f)

≤ 2√
KN

· ∥R−R′∥2. (by Lemma 3.25)

This completes the proof.

With this in hand, we can finally prove Lemma 3.23.

Proof of Lemma 3.23. By Lemma 3.26, ∆A,b(·) is convex and has Lipschitz constant (2/
√
KN).

Let R : [k] × [N ] → {±1} be a uniformly random function family. Viewing R as a collection of
KN independent {±1} random variables, we can apply Talagrand’s concentration inequality, which
states that there exists an absolute constant c > 0 such that

Pr
R
[|∆A,b(R)−E

R
[∆A,b(R)]| ≥ ε] ≤ 2 · exp

(
− c · ε2

(2/
√
KN)2

)
= 2 · exp

(
−
( c
4

)
· ε2KN

)
.

Recalling that ∆avg
A,b = ER[∆A,b(R)], this completes the proof.

3.5 The adversary’s space is bounded without loss of generality

In this subsection, we will show that if A(·) is an oracle circuit that makes t queries, each of which
has size at most ℓ, then we can assume without loss of generality that A(·) uses at most t · ℓ ancilla
qubits, in addition to the n qubits in its input register. We prove this by showing that for any such
oracle circuit (that potentially uses unbounded space), there is an oracle circuit B(·) that simulates
A(·) using only t · ℓ ancilla qubits. This will allow us to restrict our attention to adversaries that
are space-efficient when proving our one-query lower bounds, which is necessary given the technical
tools we apply. We begin by defining in what sense B(·) simulates A(·).

Notation 3.27 (Query register). In this subsection, we will assume that every oracle circuit makes
an oracle call on a register of exactly ℓ qubits. We will write L = 2ℓ for the dimension of this register,
and we will write Hquery := CL for the vector space corresponding to this register.

Definition 3.28 (Oracle circuit simulation). Let mB ≤ mA be integers. Consider two t-query
oracle circuits

A(·) = (n,mA = log2(MA), ℓ, U
A
1 , . . . , U

A
t+1), and

B(·) = (n,mB = log2(MB), ℓ, U
B
1 , . . . , U

B
t+1)

with ancilla dimensions DA := 2mA−ℓ and DB := 2mB−ℓ, respectively. Then B(·) simulates A(·) if
there exists an isometry T : CMB → CMA such that for all Boolean functions f : [L] → {±1},

UAt+1 · (Of ⊗ IdDA
) · UAt · · · (Of ⊗ IdDA

) · UA1 · (IdN ⊗ |0mA−n⟩)
= T · UBt+1 · (Of ⊗ IdDB

) · UBt · · · (Of ⊗ IdDB
) · UB1 · (IdN ⊗ |0mB−n⟩).
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Now we state the main lemma of this section, namely that an oracle circuit that makes t
queries of size ℓ can be converted to one of space n+ t · ℓ. Typical values for these parameters are
t, ℓ = poly(n), in which case this results in an oracle circuit of poly(n) space.

Lemma 3.29 (Space reduction for oracle circuits). Consider a t-query oracle circuit

A(·) = (n,mA, ℓ, U
A
1 , . . . , U

A
t+1).

Then A(·) can be simulated by a t-query oracle circuit

B(·) = (n,mB, ℓ, U
B
1 , . . . , U

B
t+1).

that uses mB = (n+ t · ℓ) qubits of space.

The key technical ingredient we will use in the proof of this lemma is the following method
for compressing an isometry with a large output dimension into an isometry with a small output
dimension.

Definition 3.30 (Compression of an isometry). Let V : CD → Hquery ⊗ CS be an isometry. Then
the compression of V is the isometry compress(V ) : CD → Hquery ⊗ CD defined as

compress(V ) :=

L∑
z=1

|z⟩ ⊗
√
Mz,

where Mz := V † · (|z⟩⟨z| ⊗ IdS) · V.

To get intuition for this definition, note that the operators {Mz} correspond to the following
measurement: first apply the original isometry V , and then measure the resulting query register
to obtain an outcome z. As a result, compress(V ) is the natural isometry that corresponds to the
{Mz} measurement. We note that compress(V ) is indeed an isometry, because

compress(V )† · compress(V ) =
( L∑
z=1

⟨z| ⊗
√
Mz

)
·
( L∑
z=1

|z⟩ ⊗
√
Mz

)
=

L∑
z=1

Mz =

L∑
z=1

V † · (|z⟩⟨z| ⊗ IdS) · V = V † · Idquery ⊗ IdS · V = IdB,

where the last step used the assumption that V is an isometry. The following technical lemma
gives one sense in which compress(V ) does indeed compress V , in that whenever V is used to
temporarily transition into Hquery ⊗ CS in order to query an oracle, we can use compress(V ) to
move into Hquery ⊗ CD instead with the exact same results.

Lemma 3.31 (compress compresses). Let V : CD → Hquery ⊗ CS be an isometry. Then for every
function f : [L] → {±1},

compress(V )† ·
(
Of ⊗ IdD

)
· compress(V ) = V † ·

(
Of ⊗ IdS

)
· V.
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Proof. The proof is via a straightforward calculation:

compress(V )† ·
(
Of ⊗ IdD

)
· compress(V )

=
( L∑
z=1

⟨z| ⊗
√
Mz

)
·
( L∑
z=1

f(z) · |z⟩⟨z| ⊗ IdD

)
·
( L∑
z=1

|z⟩ ⊗
√
Mz

)
=

L∑
z=1

f(z) ·Mz

=

L∑
z=1

f(z) · V † · (|z⟩⟨z| ⊗ IdS) · V

= V † ·
( L∑
z=1

f(z) · |z⟩⟨z| ⊗ IdS

)
· V

= V † ·
(
Of ⊗ IdS

)
· V.

That completes the proof.

Now we use this technical lemma to show that the action of compress(V ) followed by an oracle
is actually equivalent to the action of V followed by an oracle, up to an isometry.

Lemma 3.32 (Equivalence of compressed and uncompressed isometry). Let V : CD → Hquery⊗CS
be an isometry. Then there exists an isometry T : Hquery ⊗ CD → Hquery ⊗ CS such that for all
Boolean functions f : [L] → {±1},

T · (Of ⊗ IdD) · compress(V ) = (Of ⊗ IdS) · V.

Prior to proving this lemma, we will establish the following linear-algebraic proposition. We
expect that this proposition is well-known, although we were unable to find a reference for it.

Proposition 3.33 (Matching inner products implies an isometry). Let d1 ≤ d2 be integers. Con-
sider two sets of m vectors |x1⟩ , . . . , |xm⟩ ∈ Cd1 and |y1⟩ , . . . , |ym⟩ ∈ Cd2. Suppose that these sets
have the same pairwise inner products, meaning that

⟨xi|xj⟩ = ⟨yi|yj⟩ ,

for all 1 ≤ i, j ≤ m. Then there exists an isometry T : Cd1 → Cd2 such that T · |xi⟩ = |yi⟩, for all
1 ≤ i ≤ m.

Proof. DefineX :=
∑m

i=1 |xi⟩⟨i| and Y =
∑m

i=1 |yi⟩⟨i|. Because the two sets of vectors have matching
inner products,

X† ·X =
( m∑
i=1

|i⟩⟨xi|
)
·
( m∑
j=1

|xj⟩⟨j|
)
=

m∑
i,j=1

⟨xi|xj⟩ · |i⟩⟨j| (15)

=
m∑

i,j=1

⟨yi|yj⟩ · |i⟩⟨j| =
( m∑
i=1

|i⟩⟨yi|
)
·
( m∑
j=1

|yj⟩⟨j|
)
= Y † · Y.

Given a complex matrix A, we will denote by A+ the Moore-Penrose pseudo-inverse of A. The one
fact we will use about the pseudo-inverse, which can be found in [Pet12, Proposition 4.9.2], is that
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A+ · A is the projector onto the image of A†. Multiplying both sides of Equation (15) by (Y †)+

yields
(Y †)+ ·X† ·X = (Y †)+ · Y † · Y.

From our pseudo-inverse fact, (Y †)+ · Y † is the projector onto the image of (Y †)† = Y . Hence,
(Y †)+ · Y † · Y = Y .

(Y †)+ ·X† ·X = Y.

Now, let us define T := (Y †)+ ·X†, so that T ·X = Y . Note that for all 1 ≤ i ≤ m, this implies
that

T · |xi⟩ = T ·X · |i⟩ = Y · |i⟩ = |yi⟩ , (16)

as desired. Next, write

spanX := span{|x1⟩ , . . . , |xm⟩} and spanY := span{|y1⟩ , . . . , |ym⟩}.

Then we claim (i) T maps any vector in span⊥X to 0, and (ii) T is an isometry from spanX to spanY .
We prove these as follows.

(i) Let |u⟩ ∈ span⊥X . Because X
† =

∑m
i=1 |i⟩⟨xi|, we have that X† · |u⟩ = 0. Thus,

T · |u⟩ = (Y †)+ ·X† · |u⟩ = 0.

(ii) To show that T is an isometry mapping spanX to spanY , it suffices to show that it maps
any vector in spanX to spanY , and that it preserves lengths. Let |v⟩ ∈ spanX . Then |v⟩ =
α1 · |x1⟩+ · · ·+ αm · |xm⟩ for some complex coefficients α1, . . . , αm. By Equation (16),

T · |v⟩ = T ·
( m∑
i=1

αi · |xi⟩
)
=

m∑
i=1

αi · T · |xi⟩ =
m∑
i=1

αi · |yi⟩ ,

which is indeed an element of spanY . Next, the squared length of |v⟩ is

⟨v|v⟩ =
( m∑
i=1

α†
i · ⟨xi|

)
·
( m∑
j=1

αj · |xj⟩
)

=
m∑

i,j=1

α†
iαj · ⟨xi|xj⟩

=

m∑
i,j=1

α†
iαj · ⟨yi|yj⟩

=
( m∑
i=1

α†
i · ⟨yi|

)
·
( m∑
j=1

α†
j · |yj⟩

)
= (⟨v| · T †) · (T · |v⟩),

which is the squared length of T · |v⟩. This proves the claim.

Hence, T is an isometry mapping spanX to spanY , acts as 0 outside of spanX , and satisfies T · |xi⟩ =
|yi⟩, for all 1 ≤ i ≤ m. As a result, it can be extended to an isometry mapping Cd1 to Cd2 which
satisfies this property by picking any isometry that maps span⊥X to span⊥Y . This gives the desired
construction.

Now we prove Lemma 3.32.
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Proof of Lemma 3.32. For each f : [L] → {±1} and 1 ≤ x ≤ D, define

|Φf,x⟩ := (Of ⊗ IdS) · V · |x⟩ , and |Φ̂f,x⟩ := (Of ⊗ IdD) · compress(V ) · |x⟩ .

We will prove that there exists an isometry T : Hquery ⊗ CD → Hquery ⊗ CS such that

T · |Φ̂f,z⟩ = |Φf,x⟩ ,

for all 1 ≤ x ≤ D and Boolean functions f : [L] → {±1}. This will in turn imply the desired claim
by linearity. By Proposition 3.33, it suffices to show that { |Φf,x⟩}f,x and { |Φ̂f,x⟩}f,x have the same
pairwise inner products, i.e.

⟨Φ̂f,x|Φ̂g,y⟩ = ⟨Φf,x|Φg,y⟩ , (17)

for all 1 ≤ x, y ≤ D and Boolean functions f, g : [L] → {±1}. To complete the proof, we verify this
by direct calculation for all x, y, f, g:

⟨Φ̂f,x|Φ̂g,y⟩ = ⟨x| · compress(V )† ·
(
Of ⊗ IdD

)
·
(
Og ⊗ IdD

)
· compress(V ) · |y⟩

= ⟨x| · compress(V )† ·
(
Of ·g ⊗ IdD

)
· compress(V ) · |y⟩

= ⟨x| · V † ·
(
Of ·g ⊗ IdS

)
· V · |y⟩ (by Lemma 3.31)

= ⟨x| · V † ·
(
Of ⊗ IdS

)
·
(
Og ⊗ IdS

)
· V · |y⟩

= ⟨Φf,x|Φg,y⟩ ,

where f · g is the Boolean function defined as (f · g)(x) = f(x) · g(x), for all 1 ≤ x ≤ D. This
completes the proof.

With this in hand, we can finally prove the main result of this section, Lemma 3.29.

Proof of Lemma 3.29. In this proof, we will construct a sequence of isometries V1, . . . , Vt in which
for each 1 ≤ i ≤ t,

Vi : CN ⊗ (CL)⊗i−1 → Hquery ⊗ CN ⊗ (CL)⊗i−1 = CN ⊗ (CL)⊗i. (18)

Given a Boolean function f : [L] → {±1}, we will use the shorthand

ProdU,f,i := (Of ⊗ IdDA
) · UAi · · · (Of ⊗ IdDA

) · UA2 · (Of ⊗ IdDA
) · UA1 · (IdN ⊗ |0mA−n⟩),

ProdV,f,i := (Of ⊗ IdNLi−1) · Vi · · · (Of ⊗ IdNL) · V2 · (Of ⊗ IdN ) · V1 · IdN .

Operationally, ProdU,f,i corresponds to alternating between i unitaries and oracle calls, and similarly
for ProdV,f,i.

We will first prove the following statement: for each 0 ≤ i ≤ t, there exists an isometry
Ti : Hquery ⊗ CN ⊗ (CL)⊗i−1 → CMA , such that for every Boolean function f : [L] → {±1},

Ti · ProdV,f,i = ProdU,f,i. (19)

At the end, we will derive Lemma 3.29 from this statement.
The proof is by induction on t, the base case being t = 0. In this case, the statement follows

from setting T0 : CN → CMA as T0 := IdN ⊗ |0mA−n⟩. This is because

T0 · ProdV,f,0 = T0 · IdN = IdN ⊗ |0mA−n⟩ = ProdU,f,0,
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as desired. As for the induction step we suppose it is true for i ≤ t− 1 and prove that it holds for
i+ 1. By the induction hypothesis, we have that

ProdU,f,i+1 = (Of ⊗ IdDA
) · UAi+1 · ProdU,f,i = (Of ⊗ IdDA

) · UAi+1 · Ti · ProdV,f,i. (20)

Note that UAi+1 · Ti is an isometry mapping CN ⊗ (CL)⊗i to Hquery ⊗ CDA . Thus, if we set Vi+1 :=
compress(UAi+1 · Ti), then

Vi+1 : CN ⊗ (CL)⊗i → Hquery ⊗ CN ⊗ (CL)⊗i,

as desired. Applying Lemma 3.32, there exists an isometry

Ti+1 : Hquery ⊗ CN ⊗ (CL)⊗i → Hquery ⊗ CDA

such that for all Boolean functions f : [L] → {±1},

Ti+1 · (Of ⊗ IdNLi) · Vi+1 = (Of ⊗ IdDA
) · UAi+1 · Ti.

Plugging this into Equation (20), we have that

ProdU,f,i+1 = Ti+1 · (Of ⊗ IdNLi) · Vi+1 · ProdV,f,i = Ti+1 · ProdV,f,i+1.

Thus, the (i+ 1) case of the statement is also true, completing the proof by induction.
It remains to show that the existence of isometries V1, . . . , Vt and T0, . . . , Tt satisfying Eqs. (18)

and (19) implies Lemma 3.29. Recall that our goal is to construct an oracle circuit B(·) =
(n,mB, ℓ, U

B
1 , . . . , U

B
t+1) that uses mB = (n+ t · ℓ) qubits of space and simulates A(·) in the sense

of Definition 3.28: namely, there exists an isometry T : CMB → CMA such that for all Boolean
functions f : [L] → {±1},

UAt+1 · (Of ⊗ IdDA
) · UAt · · · (Of ⊗ IdDA

) · UA1 · (IdN ⊗ |0mA−n⟩)
= T · UBt+1 · (Of ⊗ IdDB

) · UBt · · · (Of ⊗ IdDB
) · UB1 · (IdN ⊗ |0mB−n⟩), (21)

where DA = 2mA−ℓ and DB = 2mB−ℓ. To this end, for 1 ≤ i ≤ t, we will extend each isometry
Vi : CN ⊗ (CL)⊗i−1 → CN ⊗ (CL)⊗i to a unitary UBi acting on mB = n + t · ℓ qubits as follows.

First, for 1 ≤ i ≤ t, define ŨBi to be an extension of the isometry Vi to a unitary on n+ ℓ · i qubits,
i.e.,

ŨBi · (IdNLi−1 ⊗ |0ℓ⟩) = Vi.

We then extend this to a unitary on n+ t · ℓ qubits by setting UBi := ŨBi ⊗ IdLt−i . Finally, we pick
UBt+1 := IdNLt .

To put everything together, we need to prove the existence of an isometry T satisfying Eq. (21).
Plugging in our definitions for UBi into Eq. (19), there exists an isometry Tt : CMB = CN⊗(CL)⊗t →
CMA such that for all Boolean functions f : [L] → {±1},

(Of ⊗ IdDA
) · UAt · · · · (Of ⊗ IdDA

) · UA1 · (IdN ⊗ |0mA−n⟩) (22)

= Tt · (Of ⊗ IdNLi−1) · Vt · · · (Of ⊗ IdN ) · V1 · IdN
= Tt · UBt+1 · (Of ⊗ IdDB

) · UBt · · · (Of ⊗ IdDB
) · UB1 · (IdN ⊗ |0mB−n⟩). (23)

The equation (22) = (23) shows that Tt almost satisfies the desired properties of the isometry
T : CMB → CMA that we want (Eq. (21)), except that in Eq. (21), there is an additional UAt+1

unitary applied on the left-hand side. To complete the proof, we set T = UAt+1 · Tt.

37



Simulating the measurement. Our notion of what it means for B(·) to simulate A(·) only
guarantees that there exists an isometry T such that (on any input) running B(·) and then applying
T produces the same state as running A(·). However, our aim is to use B(·) in place of A(·) as an
adversary in the Oracle State Distinguishing Game; recall that an adversary (Definition 3.10) in
this game first applies the oracle circuit on a given input state, and then measures the first qubit of
the resulting state to produce a guess bit b′. Thus, what we need is a way to run a low-space oracle
circuit B(·) so that when we measure the first qubit of the resulting state, the outcome distribution
is the same as if we had run A(·) and measured its first qubit.

Fortunately, we can resolve this issue with standard techniques from quantum information
(namely Naimark dilation; see, e.g., page 94 of [NC10]). First, define the mB-qubit binary-outcome
POVM {E0, E1 = Id− E0} where

E0 := T † · (|0⟩⟨0| ⊗ Id⊗mA−1
2 ) · T.

Now, observe that if we run B(·) and then measure {E0, E1 = Id − E0}, the resulting outcome
b′ is distributed exactly the same as it would be if we had instead run B(·), then applied T , and
measured the first qubit (and the latter is equivalent to running A(·) and measuring the first qubit).

To implement this POVM as a measurement of the first qubit of the adversary’s state, we will
define the isometry Vguess : CMB → C2 ⊗ CMB as

Vguess :=
∑

b∈{0,1}

|b⟩ ⊗
√
Eb.

We note that Vguess is in fact an isometry, since

V †
guess · Vguess =

( ∑
b∈{0,1}

⟨b| ⊗
√
Eb

)
·
( ∑
b∈{0,1}

|b⟩ ⊗
√
Eb

)
=

∑
b∈{0,1}

Eb = IdMB
.

Moreover, applying Vguess and measuring the first qubit of the resulting state produces the same
distribution as measuring {E0, E1}, since for any state |ψ⟩ ∈ CMB and any b ∈ {0, 1},

⟨ψ| · V †
guess · |b⟩⟨b| · Vguess · |ψ⟩ = ⟨ψ| ·

√
Eb ·

√
Eb · |ψ⟩ = ⟨ψ|Eb |ψ⟩ .

Thus, given any circuit B(·) = (n,mB, ℓ, U
B
1 , . . . , U

B
t+1) that simulates A(·) in the sense of Defi-

nition 3.28, we can easily modify B(·) to obtain another low-space t-query oracle circuit C(·) =
(n,mB + 1, ℓ, UC1 , . . . , U

C
t+1) that has the additional guarantee that running C(·) and measuring its

first qubit produces a guess from the correct output distribution.
Concretely, define Uguess to be an (mB + 1)-qubit unitary that extends the isometry Vguess in

the sense that Uguess · (|0⟩ ⊗ IdMB
) = Vguess. Then define

UCt+1 := Uguess · (Id2 ⊗ UBt+1).

The unitaries corresponding to 1 ≤ i ≤ t are defined as they are in B(·) except that they act on
one additional qubit, i.e., UCi := Id2⊗UBi . By the preceding discussion, these definitions guarantee
that running C(·) and measuring its first qubit yields the outcome distribution of the original oracle
adversary A(·). Thus, we have the following corollary of Lemma 3.29.

Corollary 3.34. Without loss of generality, any t-query adversary in the Oracle State Distinguish-
ing Game uses an oracle circuit (n,m, ℓ, U1, . . . , Ut, Ut+1) that requires m ≤ n + t · ℓ + 1 qubits of
space.
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3.6 One-query adversary model, final problem setup

In this section, we give a “normal form” for one-query adversaries A(·) with bounded query length.
By Corollary 3.34, for any A(·) with query length bounded by ℓ, we may assume without loss of
generality that A(·) uses at most a ≤ ℓ+ 1 ancilla qubits, for a total number of m = n+ a qubits.
As a result, following Definition 3.4, we may assume that Af operates as follows, for some choice
of unitaries U1, U2:

1. Given an n qubit input |ψ⟩, compute the state

U2 · Of · U1 · |ψ⟩ |0a⟩

2. Measure the first qubit of the resulting state in the standard basis.

In this special case, we simplify our notation slightly with the following definitions:

◦ Let M := 2m denote the dimension of the adversary’s final Hilbert space.

◦ Let V = U1 · (IdN ⊗ |0a⟩) denote the isometry describing A’s behavior prior to the query.

◦ Let Π = U †
2 ·(|0⟩⟨0|⊗ Id) ·U2 be the projection describing the adversary’s measurement applied

to Of · V · |ψ⟩.

To summarize, we have modeled the adversary as A(·) = (M,V,Π), where M is an integer, V :
CN → CM is an isometry, and Π ∈ CM×M is a projection. In this language, the adversary’s
probability of outputting “0” on a binary phase state |ψh⟩ is given by

pA(h | f) = ⟨ψh| · V † · Of ·Π · Of · V · |ψh⟩ .

Our goal in Section 4 will be to prove an upper bound on ∆A(R) (see Definition 3.12) of the form

∆A(R) = O

(√
logM

K

)

with high probability over R, which will establish a lower bound of m = log(M) = Ω(Kε2) for
adversaries with distinguishing advantage ε.
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4 Proof of the one-query lower bound

In this section, we will consider a single-query adversary A and show that its advantage in the
oracle state distinguishing game ∆A(R) is very small with overwhelming probability over R. By
Lemma 3.18, it suffices to bound the expectation E[∆A(R)] = ∆avg

A for every A.
We will bound this expected value as follows: in Section 4.1, we will apply a standard decoupling

trick to the expression for the adversary’s distinguishing advantage. Next, in Section 4.2 we will
develop a natural spectral relaxation of this decoupled distinguishing advantage. Following that, in
Section 4.3 we will use a matrix concentration inequality to bound the expectation of the spectral
relaxation in terms of a quantity that we call the width of a collection of binary phase states. Then,
in Section 4.4, we show how to bound the expected width of a random family of binary phase states.
Finally, in Section 4.5 we will combine these ingredients and complete the proof of the one-query
lower bound.

Notation. We will first fix some notation to use throughout the section. By Section 3.6, we
can model the adversary as A = (M,V,Π), where M is an integer (a typical value of which is
M = 2poly(n)), V : CN → CM is an isometry, and Π ∈ CM×M is a projection. Writing vi,x for the
(i, x)-th entry of V , we can express it as

V =

M∑
i=1

N∑
x=1

vi,x · |i⟩⟨x| =
M∑
i=1

|i⟩ ·
( N∑
x=1

vi,x ⟨x|
)
=

M∑
i=1

|i⟩⟨vi| ,

where |vi⟩ ∈ CN is the vector

|vi⟩ =
N∑
x=1

v†i,x |x⟩ .

Note that
M∑
i=1

⟨vi|vi⟩ = tr
(
V †V

)
= tr(IdN×N ) = N.

This motivates the following definition.

Definition 4.1 (Isometry weights). The isometry weights are the numbers

wtV,i :=
1
N · ⟨vi|vi⟩ ,

for 1 ≤ i ≤M . Note that these sum to one and therefore form a probability distribution.4

4.1 Decoupling the quadratic form

Our overall goal is to bound the adversary’s distinguishing advantage. Writing h : [N ] → {±1} for
a uniformly random Boolean function, the distinguishing advantage can be written as

E
R
[∆A(R)]

= E
R

[
max

f :[M ]→{±1}

∣∣∣ E
k∼[K]

[pA(Rk | f)]−E
h
[pA(h | f)]

∣∣∣]
= E

R

[
max
f

∣∣∣ E
k∼[K]

[ ⟨ψRk
| · V † · Of ·Π · Of · V · |ψRk

⟩]−E
h
[ ⟨ψh| · V † · Of ·Π · Of · V · |ψh⟩]

∣∣∣].
(24)

4It turns out that wtV,i is the probability that a standard basis measurement of V |ψh⟩, for uniformly random h,
results in an outcome of i.
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The coefficients of the vector |ψRk
⟩ are independent {±1} Rademacher random variables, and

indeed there are tools from random matrix theory which allow us to prove concentration bounds
on matrices whose entries are linear combinations of Rademachers. However, the first term in
Equation (24) is quadratic in the |ψRk

⟩ vector, and so these tools cannot be immediately applied.
What we would like to do is decouple the left random vector ⟨ψRk

| from the right random vector
|ψRk

⟩ so that this expression becomes a function of two independent random vectors, and is linear
in both of them, rather than being quadratic in a single random vector. This motivates the following
definition, a natural decoupled analogue of the distinguishing advantage.

Definition 4.2 (The decoupled distinguishing advantage). Let R,R′ : [K] × [N ] → {±1} be two
function families. Let f : [M ] → {±1} be a function, and let A denote a one-query adversary.
Then the corresponding decoupling distinguishing advantage is given by

∆Decup(R,R
′ | f) :=

∣∣∣ E
k∼[K]

[ ⟨ψRk
| · V † · Of ·Π · Of · V · |ψR′

k
⟩]
∣∣∣.

Unlike the normal distinguishing advantage, the decoupled distinguishing advantage has no
natural operational interpretation. However, it still gives a convenient upper bound to the normal
distinguishing advantage, as shown in the following lemma.

Lemma 4.3. Let R,R′ : [K] × [N ] → {±1} be two independent and uniformly random function
families. Then

E
R
[∆A(R)] ≤ 4 · E

R,R′
max
f

{
∆Decup(R,R

′ | f)
}
.

Decoupling inequalities are standard in the random matrix theory literature. Our proof follows
an outline similar to other decoupling arguments, for example those in [vH17, Lemma 5.2] and
[Ver11].

Proof of Lemma 4.3. Throughout this proof, we will adopt the following shorthand for convenience:
given an oracle O acting on CM , we will write

WO := V † · O ·Π · O · V.

For example, if h : [N ] → {±1} is a Boolean function, and R : [K] × [N ] → {±1} is a function
family, then

pA(h | f) = ⟨ψh| · V † · Of ·Π · Of · V · |ψh⟩
= ⟨ψh| ·WOf

· |ψh⟩ .

Let R : [K] × [N ] → {±1} be a uniformly random function family. Let R′ be an independent
copy of R. Then for each 1 ≤ k ≤ K, R′

k is distributed as a uniformly random function, even
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conditioned on R. As a result, the average distinguishing advantage is given by

E
R
[∆A(R)] = E

R

[
max
f

∣∣∣ E
k∼[K]

[pA(Rk | f)]−E
h
[pA(h | f)]

∣∣∣]

= E
R

[
max
f

∣∣∣ E
k∼[K]

[pA(Rk | f)]− E
R′

E
k∼[K]

[pA(R
′
k | f)]

∣∣∣]

≤ E
R,R′

[
max
f

∣∣∣ E
k∼[K]

[pA(Rk | f)]− E
k∼[K]

[pA(R
′
k | f)]

∣∣∣]

= E
R,R′

[
max
f

∣∣∣ E
k∼[K]

[pA(Rk | f)− pA(R
′
k | f)]

∣∣∣]

= E
R,R′

[
max
f

∣∣∣ E
k∼[K]

[⟨ψRk
| ·WOf

· |ψRk
⟩ − ⟨ψR′

k
| ·WOf

· |ψR′
k
⟩]
∣∣∣]

= E
R,R′

[
max
f

∣∣∣Re( E
k∼[K]

[( ⟨ψRk
|+ ⟨ψR′

k
|) ·WOf

· ( |ψRk
⟩ − |ψR′

k
⟩)]
)∣∣∣]

≤ E
R,R′

[
max
f

∣∣∣ E
k∼[K]

[( ⟨ψRk
|+ ⟨ψR′

k
|) ·WOf

· ( |ψRk
⟩ − |ψR′

k
⟩)]
∣∣∣]. (25)

For each 1 ≤ k ≤ K, consider the two vectors

|ψRk
⟩ ± |ψR′

k
⟩ = 1√

N
·
N∑
x=1

(Rk(x)±R′
k(x)) · |x⟩ .

Note that for each 1 ≤ k ≤ K and 1 ≤ x ≤ N , eitherRk(x)+R
′
k(x) ∈ {±2} andRk(x)−R′

k(x) = 0,
or vice versa. For each 1 ≤ k ≤ K, let S+

k : [N ] → {±1} be a random Boolean function distributed
as follows: if Rk(x) + R′

k(x) ∈ {±2}, then S+
k (x) = 1

2 · (Rk(x) + R′
k(x)). Otherwise, when

Rk(x) + R
′
k(x) = 0, choose S+

k (x) independently and uniformly at random from {±1}. Define
S−
k (x) similarly. Then the next two equations follow by definition:

2 ·E[ |ψS+
k
⟩] = |ψRk

⟩+ |ψR′
k
⟩ , and 2 ·E[ |ψS−

k
⟩] = |ψRk

⟩ − |ψR′
k
⟩ .

Plugging this in above,

(25) = 4 · E
R,R′

max
f

∣∣∣ E
S+,S−

E
k∼[K]

[ ⟨ψS+
k
| ·WOf

· |ψS−
k
⟩]
∣∣∣

≤ 4 · E
R,R′

E
S+,S−

max
f

∣∣∣ E
k∼[K]

[ ⟨ψS+
k
| ·WOf

· |ψS−
k
⟩]
∣∣∣.

The expression inside the max only depends on R and R′ through S+ and S−. Hence, this is equal
to

4 · E
S+,S−

max
f

∣∣∣ E
k∼[K]

[ ⟨ψS+
k
| ·WOf

· |ψS−
k
⟩]
∣∣∣ = 4 · E

S+,S−
max
f

{
∆Decup(S

+,S− | f)
}
.

But it can be checked that S+ and S− are just distributed as two independent and uniformly
random function families. This completes the proof.
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4.2 A spectral relaxation for the decoupled distinguishing advantage

In this section, we develop a spectral relaxation for the decoupled distinguishing advantage

∆Decup(R,R
′ | f) =

∣∣∣ E
k∼[K]

[ ⟨ψRk
| · V † · Of ·Π · Of · V · |ψR′

k
⟩]
∣∣∣.

As a precursor to this, we will develop a formula for expressing the vectors V · |ψRk
⟩ and V · |ψR′

k
⟩.

Let h : [N ] → {±1} be a Boolean function, and consider the binary phase state

|ψh⟩ =
1√
N

∑
x∈[N ]

h(x) |x⟩ .

The isometry V maps |ψh⟩ to

V · |ψh⟩ =
( M∑
i=1

|i⟩⟨vi|
)
· |ψh⟩ =

M∑
i=1

⟨vi|ψh⟩ · |i⟩ .

Thus, the amplitude on the i-th basis element is ⟨vi|ψh⟩. We would like to estimate the magnitude
of this amplitude for a “typical” binary phase state. This is given by the following proposition.

Proposition 4.4 (Typical amplitudes). Let h : [N ] → {±1} be a uniformly random Boolean
function. Then

E
h
| ⟨vi|ψh⟩ |2 = wtV,i,

where wtV,i is the isometry weight defined in Definition 4.1.

Proof. We calculate the expectation as follows:

E
h
| ⟨vi|ψh⟩ |2 = E

h
⟨ψh|vi⟩ · ⟨vi|ψh⟩

= E
h

( N∑
x=1

1√
N
h(x) · v†i,x

)
·
( N∑
y=1

vi,y · 1√
N
h(y)

)

=
1

N
·

N∑
x,y=1

v†i,xvi,y ·E
h
[h(x)h(y)]

=
1

N
·
N∑
x=1

|vi,x|2 =
1

N
⟨vi|vi⟩ ,

where the second-to-last equality used the fact that Eh[h(x)h(y)] = 1 if x = y and 0 otherwise,
because h is uniformly random. The proof concludes by applying the definition of wtV,i.

In light of this, it is natural to define the following vector, which contains the “typical” ampli-
tudes of V · |ψh⟩.

Definition 4.5 (The weight vector). The weight vector is the unit vector given by

|wtV ⟩ =
M∑
i=1

√
wtV,i |i⟩ .
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We can express V · |ψh⟩ in terms of the weight vector as

V · |ψh⟩ =
M∑
i=1

⟨vi|ψh⟩ · |i⟩ =
M∑
i=1

⟨vi|ψh⟩√
wtV,i

·
√
wtV,i · |i⟩ =

( M∑
i=1

⟨vi|ψh⟩√
wtv,i

· |i⟩⟨i|
)
· |wtV ⟩ . (26)

This motivates the following definition.

Definition 4.6 (The rescaling matrix). Let h : [N ] → {±1} be a Boolean function. Then the
corresponding rescaling matrix is the diagonal matrix given by

DV,h =

M∑
i=1

DV,h,i · |i⟩⟨i| , where DV,h,i =
⟨vi|ψh⟩√
wtV,i

.

By construction, we have that V · |ψh⟩ = DV,h · |wtV ⟩.

Remark 4.7. Loosely speaking, the size of the rescaling matrix indicates how close the amplitudes
of V · |ψh⟩ are to their “typical” values. If each diagonal entry of DV,h is close to 1 in magnitude,
then the amplitudes of V · |ψh⟩’s are roughly typical; otherwise, at least one of V · |ψh⟩’s amplitudes
is atypically large or small.

We can therefore express the decoupled distinguishing advantage as

∆Decup(R,R
′ | f) =

∣∣∣ E
k∼[K]

[ ⟨ψRk
| · V † · Of ·Π · Of · V · |ψR′

k
⟩]
∣∣∣

=
∣∣∣ E
k∼[K]

[ ⟨wtV | ·D†
V,Rk

· Of ·Π · Of ·DV,R′
k
· |wtV ⟩]

∣∣∣.
Now we observe that O and DV,Rk

are both diagonal matrices, and hence they both commute (and
similarly for DV,R′

k
). As a result, this is equal to

∆Decup(R,R
′ | f) =

∣∣∣ E
k∼[K]

[ ⟨wtV | · Of ·D†
V,Rk

·Π ·DV,R′
k
· Of · |wtV ⟩]

∣∣∣
=
∣∣∣ ⟨wtV | · Of · E

k∼[K]
[D†

V,Rk
·Π ·DV,R′

k
] · Of · |wtV ⟩

∣∣∣.
Note that for any function f , Of · |wtV ⟩ is a unit vector. We can therefore upper-bound this
expression by relaxing Of · |wtV ⟩ to be an arbitrary unit vector maximizing this expression. This
gives the spectral relaxation.

Definition 4.8 (Spectral relaxation). Let R,R′ : [K]× [N ] → {±1} be two function families, and
let A denote an adversary. The spectral relaxation of the decoupled distinguishing advantage is
given by

∆Spectral
Decup (R,R′) =

∥∥∥ E
k∼[K]

[D†
V,Rk

·Π ·DV,R′
k
]
∥∥∥
op
.

From the above discussion, the following lemma is immediate.

Lemma 4.9. Let R,R′ : [K]× [N ] → {±1} be two function families. Then

max
f

{
∆Decup(R,R

′ | f)
}
≤ ∆Spectral

Decup (R,R′).
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4.3 Expectation of the spectral relaxation with one parameter held fixed

The spectral relaxation is the operator norm of a matrix which is bilinear in both R and R′. Keeping
R fixed, we can consider a uniformly random R′ : [K] × [N ] → {±1}, and doing so makes this a
random matrix whose entries are linear combinations of random {±1} variables. The key technical
result we will use to study such matrices is the following, stated in [Tro15, Theorem 4.1.1].

Theorem 4.10 (Concentration for matrix Rademacher series). Let x1, . . . ,xn be n independent,
uniformly distributed {±1} random variables. Let Z be a d1× d2 complex matrix whose entries are
linear combinations of the xk’s, i.e.

Zi,j = ci,j,1 · x1 + · · ·+ ci,j,n · xn,

where each ci,j,k is a fixed, complex number. Let v(Z) be the matrix variance statistic of Z, i.e.

v(Z) = max{∥E[Z ·Z†]∥op, ∥E[Z† ·Z]∥op}.

Then
E[∥Z∥op] ≤

√
2 ln(d1 + d2) ·

√
v(Z).

Furthermore, for all t ≥ 0,

Pr
[
∥Z∥op ≥ t

]
≤ (d1 + d2) · exp

(
− t2

2 · v(Z)

)
.

We now use this to upper bound the expectation of the spectral relaxation when one of the
parameters is held fixed. It states that this expectation can be bounded in terms of a quantity
called the width of the function family R. Roughly speaking, the width is a measure of the “size”
of the diagonal rescaling matrices DV,Rk

, over all 1 ≤ k ≤ K. As discussed in Remark 4.7, when R
is a “typical” function family, we expect that these rescaling matrices should have small (i.e. close
to 1) entries on the diagonal, in which case the width of R will be small. For atypical function
families, on the other hand, the width might be large, but we expect such families to be extremely
rare.

Lemma 4.11 (Expectation of the spectral relaxation with one parameter held fixed). Let R :
[K]× [N ] → {±1} be a fixed function family. Define the width of R to be the quantity

width(R) := max
1≤i≤M

{ 1

K

K∑
k=1

| ⟨vi|ψRk
⟩ |2

wtV,i

}
.

In addition, let R′ : [K]× [N ] → {±1} be a uniformly random function family. Then

E
R′
[∆Spectral

Decup (R,R′)] ≤
√

2 ln(2M) · width(R)
K

.

Proof. For the reader’s convenience, we will recall the definition of the diagonal rescaling matrix
corresponding to a Boolean function h : [N ] → {±1}:

DV,h =
M∑
i=1

⟨vi|ψh⟩√
wtV,i

· |i⟩⟨i| .
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Note that each entry of DV,h is a linear combination of the Boolean values h(1), . . . , h(N). In
addition, note that

DV,h ·D†
V,h =

( M∑
i=1

⟨vi|ψh⟩√
wtV,i

· |i⟩⟨i|
)
·
( M∑
i=1

⟨ψh|vi⟩√
wtV,i

· |i⟩⟨i|
)

=

M∑
i=1

| ⟨vi|ψh⟩ |2

wtV,i
· |i⟩⟨i|

=
( M∑
i=1

⟨ψh|vi⟩√
wtV,i

· |i⟩⟨i|
)
·
( M∑
i=1

⟨vi|ψh⟩√
wtV,i

· |i⟩⟨i|
)
= D†

V,h ·DV,h. (27)

Our goal is to compute

E
R′
[∆Spectral

Decup (R,R′)] = E
R′

∥∥∥ E
k∼[K]

[D†
V,Rk

·Π ·DV,R′
k
]
∥∥∥
op
.

To this end, define the matrix

Z := E
k∼[K]

[D†
V,Rk

·Π ·DV,R′
k
] =

1

K
·
K∑
k=1

D†
V,Rk

·Π ·DV,R′
k
.

For each 1 ≤ k ≤ K, DV,R′
k
is a matrix whose entries are linear combinations of the R′

k(x)’s. As a
result, the entries of Z are linear combinations of the K ·N many {±1}-valued random variables
in R′. Hence, we can apply Theorem 4.10 to bound ER′ [∥Z∥op]. To do so, we must first compute
the matrix variance statistic of Z. To begin,

E
R′
[Z ·Z†] = E

R′

[( 1

K
·
K∑
k=1

D†
V,Rk

·Π ·DV,R′
k

)
·
( 1

K
·
K∑
k′=1

D†
V,R′

k′
·Π ·DV,Rk′

)]
=

1

K2
·

K∑
k,k′=1

D†
V,Rk

·Π · E
R′
[DV,R′

k
·D†

V,R′
k′
] ·Π ·DV,Rk′ . (28)

Now, if k ̸= k′, then R′
k and R′

k′ are distributed independently from each other. As a result, for
any fixed matrix C,

E
R′
[DV,R′

k
· C ·D†

V,R′
k′
] = E

R′
k

[DV,R′
k
] · C · E

R′
k′
[D†

V,R′
k′
] = 0, (29)

because DV,R′
k
and DV,R′

k′
are mean-zero. (For Equation (28) above we only need the C = IdM×M

case, but we will apply it below using a different matrix C.) On the other hand, if k = k′, then by
Proposition 4.4,

E
R′
[DV,R′

k
·D†

V,R′
k
] =

M∑
i=1

E
R

[ | ⟨vi|ψRk
⟩ |2

wtV,i

]
· |i⟩⟨i| (by Equation (27))

=

M∑
i=1

|i⟩⟨i| = IdM×M . (30)
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Combining these two facts, we have that

(28) =
1

K2
·
K∑
k=1

D†
V,Rk

·Π2 ·DV,Rk
⪯ 1

K2
·
K∑
k=1

D†
V,Rk

· IdM×M ·DV,Rk
=

1

K2
·
K∑
k=1

D†
V,Rk

·DV,Rk
.

Finally, we bound this by

1

K2
·
K∑
k=1

D†
V,Rk

·DV,Rk
=

1

K2
·
K∑
k=1

M∑
i=1

| ⟨vi|ψRk
⟩ |2

wtV,i
· |i⟩⟨i| (by Equation (27))

=
1

K
·
M∑
i=1

( 1

K
·
K∑
k=1

| ⟨vi|ψRk
⟩ |2

wtV,i

)
· |i⟩⟨i|

⪯ 1

K
·
M∑
i=1

width(R) · |i⟩⟨i| =
(width(R)

K

)
· IdM×M . (31)

So far, we have shown that

∥ E
R′
[Z ·Z†]∥op ≤

∥∥∥(width(R)
K

)
· IdM×M

∥∥∥
op

≤ width(R)

K
.

Thus far, we have only computed the first term in the matrix variance statistic of Z. Now we move
on to the second term. Fortunately, we can reuse many of the steps involved in computing the first
term to compute the second term:

E
R′
[Z† ·Z] = E

R′

[( 1

K
·
K∑
k=1

D†
V,R′

k
·Π ·DV,Rk

)
·
( 1

K
·
K∑
k′=1

D†
V,Rk′

·Π ·DV,R′
k′

)]
=

1

K2
·

K∑
k,k′=1

E
R′

[
D†
V,R′

k
·Π ·DV,Rk

·D†
V,Rk′

·Π ·DV,R′
k′

]

=
1

K2
·
K∑
k=1

E
R′

[
D†
V,R′

k
·Π ·DV,Rk

·D†
V,Rk

·Π ·DV,R′
k

]
. (by Equations (27) and (29))

Now, let h : [N ] → {±1} be a uniformly random Boolean function. Then h has the same distribu-
tion as R′

k. for each 1 ≤ k ≤ K. As a result, this is equal to

1

K2
·
K∑
k=1

E
h

[
D†
V,h ·Π ·DV,Rk

·D†
V,Rk

·Π ·DV,h

]
= E

h

[
D†
V,h ·Π ·

( 1

K2
·
K∑
k=1

DV,Rk
·D†

V,Rk

)
·Π ·DV,h

]
⪯ E

h

[
D†
V,h ·Π ·

((width(R)
K

)
· IdM×M

)
·Π ·DV,h

]
(by Equation (31))

=
(width(R)

K

)
·E
h

[
D†
V,h ·Π2 ·DV,h

]
⪯
(width(R)

K

)
·E
h

[
D†
V,h · IdM×M ·DV,h

]
=
(width(R)

K

)
·E
h

[
D†
V,h ·DV,h

]
=
(width(R)

K

)
· IdM×M . (by Equations (27) and (30))
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In total, this shows that

∥ E
R′
[Z† ·Z]∥op ≤

∥∥∥(width(R)
K

)
· IdM×M

∥∥∥
op

≤ width(R)

K
.

As a result, the matrix variance statistic of Z is

v(Z) = max{∥E[Z ·Z†]∥op, ∥E[Z† ·Z]∥op} ≤ width(R)

K
.

Now we apply Theorem 4.10. It states that

E
R′
[∥Z∥op] ≤

√
2 ln(2M) ·

√
v(Z) ≤

√
2 ln(2M) ·

√
width(R)

K
.

This completes the proof.

4.4 A bound on the width of a random state family

In the previous section, we showed that the expectation of the spectral relaxation, when one of the
input state families R′ : [K]× [N ] → {±1} is randomized, can be bounded by a parameter of the
other input family R referred to as its width. In this section, we show how to bound the expected
width of a uniformly random family of binary phase states R : [K] × [N ] → {±1}. For intuition,
recall that width(R) is defined to be the quantity

max
1≤i≤M

{ 1

K

K∑
k=1

| ⟨vi|ψRk
⟩ |2

wtV,i

}
. (32)

Let us fix a value 1 ≤ i ≤ M and consider the i-th average being maximized over. By Proposi-
tion 4.4, for each 1 ≤ k ≤ K, the k-th term in the average has expectation exactly equal to 1, and
indeed we will show that this term is close to 1 with high probability. As the i-th average is an
average over K such terms, we expect that it should be extremely close to 1 with an extremely
high probability, a probability so high that we can then union bound over all 1 ≤ i ≤M and show
that width(R) itself is close to 1 with high probability. From this, we will be able to conclude that
the expectation is close to 1 as well.

To start, let us focus on the k-th term in the i-th average. It is the absolute value squared of
the following quantity:

⟨vi|ψRk
⟩

√
wtV,i

=
1

√
wtV,i

·
N∑
x=1

(
vi,x ·

1√
N

·Rk(x)
)
=

N∑
x=1

( vi,x√
⟨vi|vi⟩

)
·Rk(x).

This is just a complex-weighted linear combination of random {±1} variables. In addition, the sum
of the squared weights is given by

N∑
x=1

∣∣∣ vi,x√
⟨vi|vi⟩

∣∣∣2 = 1

⟨vi|vi⟩
·
N∑
x=1

|vi,x|2 =
1

⟨vi|vi⟩
· ⟨vi|vi⟩ = 1.

We would like to show that weighted sums of this form are highly concentrated. In particular, we
will show that they posses a particular concentration property known as being sub-exponential.
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Definition 4.12 (Sub-exponential random variables). A random variable X is sub-exponential
with parameter γ > 0 if

Pr [|X| > t] ≤ 2 · exp
(
− t

γ

)
, for all t ≥ 0.

This is shown in the next lemma, whose proof we defer to Section 4.6.

Lemma 4.13 (Each term in the width is sub-exponential). There exists a constant γ ≥ 1 such
that the following is true. Let b1, . . . , bm be independent and uniform ±1 random variables, and let
a1, . . . , am be complex numbers such that |a1|2 + · · ·+ |am|2 = 1. Define S = a1 · b1 + · · ·+ am · bm.
Then the random variable |S|2 − 1 is mean-zero and sub-exponential with parameter γ.

Now that we have shown our random variables are well-concentrated, we would like to that
averages of them, as occur in the formula for the width (Equation (32) above), are extremely
well-concentrated. This can be shown using Bernstein’s inequality for averages of independent
sub-exponential random variables, which is stated in [Ver18, Corollary 2.8.3].

Theorem 4.14 (Bernstein’s inequality). There exists a constant c > 0 such that the following
is true. Let X1, . . . ,Xm be independent, mean-zero, sub-exponential random variables, each with
sub-exponential parameter at most γ. Then we have

Pr

[∣∣∣∣∣ 1m
m∑
i=1

Xi

∣∣∣∣∣ ≥ t

]
≤ 2 · exp

(
−c ·min

{
t2

γ2
,
t

γ

}
·m
)
, for all t ≥ 0.

Now we combine these ingredients to show the following tail bound on the width.

Lemma 4.15 (Tail bound on the width). There exists a constant c > 0 such that the following is
true. Let R : [K]× [N ] → {±1} be a uniformly random function. Then for all t ≥ 0,

Pr
R
[width(R) ≥ 1 + t] ≤ 2M · exp

(
−c ·min{t2, t} ·K

)
.

Proof of Lemma 4.15. For each 1 ≤ i ≤M and 1 ≤ k ≤ K, let us define the random variables

widthi,k(R) :=
|⟨vi|ψRk

⟩|2

wtV,i
and widthi(R) :=

1

K
·
K∑
k=1

widthi,k(R).

Lemma 4.13 states that there is a constant γ ≥ 1 such that (widthi,k(R) − 1) is sub-exponential
with parameter γ, for all 1 ≤ i ≤ M and 1 ≤ k ≤ K. Now, fix a value 1 ≤ i ≤ M . Since each
widthi,k(R) only depends on Rk, the random variables (widthi,k(R)− 1) are independent across all
1 ≤ k ≤ K. As a result, Bernstein’s inequality states that there exists a constant c > 0 such that
for all t ≥ 0,

Pr
R
[|widthi(R)− 1| ≥ t] = Pr

R

[∣∣∣ 1
K

·
K∑
k=1

(widthi,k(R)− 1)
∣∣∣ ≥ t

]
≤ 2 · exp

(
−c ·min

{
t2

γ2
,
t

γ

}
·K
)

≤ 2 · exp
(
−c ·min

{
t2

γ2
,
t

γ2

}
·K
)

(because γ ≥ 1)

= 2 · exp
(
−
( c
γ2

)
·min{t2, t} ·K

)
.
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Now, since the width is defined as width(R) = max1≤i≤M{widthi(R)}, we have that

Pr
R
[width(R) ≥ 1 + t] = Pr

R
[∃1≤i≤M{widthi(R) ≥ 1 + t}]

≤
M∑
i=1

Pr
R
[widthi(R) ≥ 1 + t] (by the union bound)

≤
M∑
i=1

Pr
R
[|widthi(R)− 1| ≥ t]

≤
M∑
i=1

2 · exp
(
−
( c
γ2

)
·min{t2, t} ·K

)
= 2M · exp

(
−
( c
γ2

)
·min{t2, t} ·K

)
.

This completes the proof, by taking the constant “c” in the lemma statement to be c/γ2.

Finally, we use our tail bound to derive an expectation bound on the width. Our proof will allow
us to prove a bound of 1 + o(1) for a wide range of parameters M and K, as our initial intuition
suggested. However, to get a bound which applies to the widest relevant range of parameters, we
will prove a slightly weaker O(1) bound, which is still sufficient for our applications.

Lemma 4.16 (Expectation bound on the width). There exists a constant C ≥ 1 such that the
following is true. Let R : [K]× [N ] → {±1} be a uniformly random function family. Suppose that
M ≤ eK . Then

E
R
[width(R)] ≤ C.

Proof. Fix some α ≥ 1, to be determined later. Then

E
R
[width(R)] =

∫ ∞

0
Pr[width(R) ≥ t]dt

=

∫ 1+α

0
Pr[width(R) ≥ t]dt+

∫ ∞

1+α
Pr[width(R) ≥ t]dt

≤ 1 + α+

∫ ∞

1+α
Pr[width(R) ≥ t]dt

= 1 + α+

∫ ∞

α
Pr[width(R) ≥ 1 + t]dt

≤ 1 + α+

∫ ∞

α
2M · exp

(
−cK ·min{t2, t

)
}dt (by Lemma 4.15)

= 1 + α+

∫ ∞

α
2M · exp (−cK · t) dt. (because α ≥ 1)

We can compute the integral exactly:

2M ·
∫ ∞

α
exp (−cK · t) dt = −2M

cK
· exp(−cK · t)

∣∣∣∣∞
α

=
2M

cK
· exp(−cK · α).

In total, this gives us a bound of

E
R
[width(R)] ≤ 1 + α+

2M

cK
· exp(−cK · α) ≤ 1 + α+

2M

c
· exp(−cK · α).
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Now we select α to be α = max{1, c−1}. Then we get a bound of

1 + max{1, c−1}+ 2M

c
· exp(−cK ·max{1, c−1}) ≤ 1 + max{1, c−1}+ 2M

c
· exp(−K).

When M ≤ eK , this is at most

1 + max{1, c−1}+ 2

c
,

which is a constant. Picking this for the “C” in the lemma statement completes the proof.

4.5 The one-query lower bound

Now we complete the proof of the one-query lower bound. We begin by proving a bound on the
expected value of the distinguishing advantage.

Theorem 4.17 (Expectation bound for the distinguishing advantage). There exists a constant
C > 0 such that the following is true. Let R : [K] × [N ] → {±1} be a uniformly random function
family. Then

E
R
[∆A(R)] ≤ C ·

√
ln(M)

K
.

Proof of Theorem 4.17. We will consider two regimes of parameters: M ≤ eK and M > eK . Let
us first consider the case of M ≤ eK . Let R,R′ : [K] × [N ] → {±1} be two independent and
uniformly random function families. Then

E
R
[∆A(R)] ≤ 4 · E

R,R′

[
max
f

{
∆Decup(R,R

′ | f)
}]

(by Lemma 4.3)

≤ 4 · E
R,R′

[∆Spectral
Decup (R,R′)] (by Lemma 4.9)

≤ 4 ·E
R

[√2 ln(2M) · width(R)

K

]
(by Lemma 4.11)

≤ 4 ·
√
E
R

[2 ln(2M) · width(R)

K

]
(by Jensen’s inequality)

≤ 4 ·
√

2 ln(2M) · C
K

(by Lemma 4.16, for some constant C ≥ 1)

≤ 4 ·
√

2 · (2 ln(M)) · C
K

(because M ≥ 2)

= 8
√
C ·
√

ln(M)

K
.

Picking the “C” in the theorem statement to be 8
√
C, this completes the M ≤ eK case. As for the

M > eK case, we note that because the distinguishing advantage is a difference of two probabilities,
it is always at most 1. Hence,

E
R
[∆A(R)] ≤ 1 ≤ 8

√
C ≤ 8

√
C ·
√

ln(M)

K
.

The first inequality is because C ≥ 1, and the second inequality is becauseM > eK . This completes
the M > eK case, and therefore completes the proof.
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Combining this with Lemma 3.18, we have our main technical result.

Theorem 4.18 (Main theorem). There exists a constants C1, C2 > 0 such that the following is
true. Let R : [K]× [N ] → {±1} be a uniformly random function family. Then

Pr
R

[
∆A(R) ≥ C1 ·

√
ln(M)

K
+ ε
]
≤ 4 · exp

(
−C2 · ε2KN

)
.

In particular, this implies Theorem 1.4.

4.6 Technical lemma: sub-exponential random variables

Now we prove Lemma 4.13. For convenience, we restate it here.

Lemma 4.19 (Lemma 4.13 restated). There exists a constant γ ≥ 1 such that the following
is true. Let b1, . . . , bm be independent and uniform ±1 random variables, and let a1, . . . , am be
complex numbers such that |a1|2 + · · · + |am|2 = 1. Define S = a1 · b1 + · · · + am · bm. Then the
random variable |S|2 − 1 is mean-zero and sub-exponential with parameter γ.

To compute the mean of |S|2 − 1, we will use the following proposition.

Proposition 4.20. Let b1, . . . , bm be independent and uniform ±1 random variables, and let
a1, . . . , am be complex numbers. Then S = a1 · b1 + · · ·+ am · bm satisfies

E[|S|2] =
m∑
i=1

|ai|2.

Proof. We calculate

E[|S|2] = E[S† · S] = E[
( m∑
i=1

ai · bi
)†

·
( m∑
j=1

aj · bi
)
]

= E
[ m∑
i,j=1

a†iaj · bibj
]
=

m∑
i,j=1

a†iaj ·E[bibj ] =
m∑
i=1

|ai|2,

where the final step used E[bibj ] = 1 if i = j and 0 if i ̸= j. This completes the proof.

To show concentration for |S|2 − 1, we use the following tail bound, a version of Hoeffding’s
inequality for complex-weighted random sums.

Theorem 4.21 (Sub-Gaussian concentration for sums of complex random variables). Let b1, . . . , bm
be independent and uniform ±1 random variables, and let a1, . . . , am be complex numbers. Then
S = a1 · b1 + · · ·+ am · bm satisfies

Pr[|S| ≥ t] ≤ 2 · exp
(
− t2

2 ·
∑m

i=1 |ai|2

)
.

As it turns out, this can be proved as a (very) special case of the matrix concentration tail
bound stated in Theorem 4.10.
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Proof of Theorem 4.21. We invoke Theorem 4.10 by treating S as a 1× 1 complex-valued matrix.
In particular, define the 1× 1 matrix

Ŝ :=
(
S
)
=
(
a1 · b1 + · · ·+ am · bm

)
.

Then its “matrix” variance parameter is

v(Ŝ) = max{∥E[Ŝ · Ŝ
†
]∥ op, ∥E[Ŝ

†
· Ŝ]∥ op} = ∥E

(
|S|2

)
∥
op

= E[|S|2] =
m∑
i=1

|ai|2,

where the final step used Proposition 4.20. Then the tail bound of Theorem 4.10 implies that for
all t ≥ 0,

Pr [|S| ≥ t] = Pr
[
∥Ŝ∥ op ≥ t

]
≤ 2 · exp

(
− t2

2 ·
∑

i∈[m] |ai|
2

)
.

This completes the proof.

The following is an immediate corollary of Theorem 4.21.

Corollary 4.22. Let S be as in Lemma 4.19. Then |S|2 is a sub-exponential random variable with
parameter γ = 2.

Proof. By Theorem 4.21,

Pr[|S| ≥ t] ≤ 2 · exp
(
− t2

2 ·
∑m

i=1 |ai|2

)
= 2 · exp(−t2/2).

Hence,
Pr[|S|2 ≥ t] ≤ 2 · exp(−t/2).

This means that |S|2 is a sub-exponential random variable with parameter γ = 2.

Now we want to show that |S|2 − 1 is also sub-exponential, taking advantage of the fact that
E[|S|2] = 1. To do so, we will use standard facts about sub-exponential random variables from
[Ver18, Section 2.7]. In particular, we will rely on an alternative method of parameterizing sub-
exponential random variables in terms of their moment generation functions (MGFs).

Definition 4.23 (Sub-exponential norm). Given a real random variable X, the MGF of |X| is
bounded at point κ > 0 if

E[exp(|X|/κ)] ≤ 2.

The smallest κ for which this equation is holds is given by the sub-exponential norm of X, denoted
∥X∥ψ1 , and is defined formally as follows:

∥X∥ψ1 = inf{t > 0 : E[exp(|X|/κ)] ≤ 2}.

We require two facts about this method of parameterizing sub-exponential random variables.
The first is stated in [Ver18, Proposition 2.7.1] and the second is stated in [Ver18, Exercise 2.7.10].

Proposition 4.24 (Approximate equivalence of the two parameterizations). There is an absolute
constant C1 > 0 such that the following is true. If the MGF of |X| is bounded at point κ, then X
is sub-exponential with parameter γ, for some γ ≤ C1 · κ. Likewise, if X is sub-exponential with
parameter γ, then the MGF of |X| is bounded at point κ, for some κ ≤ C1 · γ.
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Proposition 4.25 (Centering). There is an absolute constant C2 > 0 such that the following is
true. If X is a sub-exponential random variable, then so is X −E[X], and it satisfies

∥X −E[X]∥ψ1 ≤ C2 · ∥X∥ψ1 .

Now we prove Lemma 4.19.

Proof of Lemma 4.19. First, Proposition 4.20 states that

E[|S|2] =
m∑
i=1

|ai|2 = 1.

Hence, |S|2 − 1 is mean-zero. Next, Corollary 4.22 states that |S|2 is a sub-exponential random
variable with parameter γ1 = 2. Proposition 4.24 then implies that the MGF of ||S|2| is bounded
at point κ1, for some

κ1 ≤ C1 · γ1 = 2 · C1.

By definition of the sub-exponential norm, this immediately implies that ∥|S|2∥ψ1 ≤ 2 ·C1. Propo-
sition 4.25 then implies that

∥|S|2 − 1∥ψ1 = ∥|S|2 −E[|S|2]∥ψ1 ≤ C2 · ∥|S|2∥ψ1 ≤ C2 · 2 · C1.

Now |S|2−1 is a non-constant random variable, and in particular it is nonzero with finite probability.
In addition, it only obtains a discrete set of values. Hence, the infimum over {t > 0} in the definition
of the sub-exponential norm ∥|S|2−1∥ψ1 is achieved at a nonzero minimizing value κ2 > 0; in other
words, if we set

κ2 = ∥|S|2 − 1∥ψ1 ≤ 2 · C1 · C2,

then the MGF of ||S|2 − 1| is bounded at point κ2. Applying Proposition 4.24 again, this implies
that |S|2 − 1 is sub-exponential with parameter γ2, for some

γ2 ≤ C1 · κ2 ≤ 2 · C2
1 · C2.

Now, we note that if a random variable X is sub-exponential with parameter a > 0, then it is also
sub-exponential with parameter b, for any b ≥ a. This is because for all t > 0,

Pr [|X| > t] ≤ 2 · exp
(
− t

a

)
≤ 2 · exp

(
− t
b

)
.

Hence, because |S|2 − 1 is sub-exponential for parameter γ2 ≤ 2 ·C2
1 ·C2, it is also sub-exponential

for parameter γ = max{1, 2 ·C2
1 ·C2}. This is a constant which is greater than or equal to 1, which

completes the proof.

5 Pseudorandom states relative to a random oracle

In this section, we use Theorem 4.18 to derive Theorem 1.2, our lower bound for breaking pseu-
dorandom state families. We begin with a definition of (single-copy) pseudorandom states in the
plain model, for reference.

Definition 5.1 (Pseudorandom state family). Let n : N → N be a function and {|ψλ,k⟩}k∈{0,1}λ
be a family of n(λ)-qubit quantum states for each λ ∈ N. Then the state family ensemble

{{|ψλ,k⟩}k∈{0,1}λ}λ∈N

is a pseudorandom state (PRS) family if it has the following properties.
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◦ Efficient constructability: there is a polynomial-time quantum algorithm that on input
(1λ, k), for k ∈ {0, 1}λ, outputs |ψλ,k⟩.

◦ Stretch: n(λ) ≥ λ+ 1, for all λ.

◦ Pseudorandomness: for all algorithms A described by polynomial-size quantum circuit
families, we have that∣∣∣ Pr

k∼{0,1}λ

[
A(|ψλ,k⟩) outputs “0”

]
−Pr

|ψ⟩

[
A(|ψ⟩) outputs “0”

]∣∣∣ = negl(λ),

where |ψ⟩ is drawn from the Haar distribution on n(λ)-qubit states.

Our Oracle and Adversary Model. In this paper, we consider pseudorandom state families
defined relative to an oracle R : {0, 1}∗×{0, 1}∗ → {±1}. In that case, the efficient constructability
property requires that there is a quantum polynomial-time oracle algorithm that on input (1λ, k),
for k ∈ {0, 1}λ, outputs |ψλ,k⟩, given oracle access to R.

In addition, the pseudorandomness property should require that the PRS family be secure
against all algorithms Af , where A(·) is an oracle algorithm described by a polynomial-size oracle
circuit family and f = fR is an arbitrary R-dependent oracle; equivalently, A(·) is computable
by a family of quantum circuits output by a polynomial-time Turing machine with the help of
polynomial-size non-uniform advice.

The main result of this section (Theorem 5.2 below) proves that relative to a random oracle,
there are PRS families secure against all one-query attacks. Explicitly, the adversary model we
consider is as follows:

◦ For a given function R : {0, 1}∗ × {0, 1}∗ → {±1}, the adversary is described by an R-
dependent Turing machine and R-dependent collection of advice strings (zλ)λ∈N.

◦ On input zλ, the Turing machine outputs the description of a one-query oracle circuit A(·) :=

A
(·)
R,zλ

.

◦ On input the state |ψ⟩, the adversary executes the oracle circuit AfR(|ψ⟩) for a function
fR : {0, 1}∗ → {±1} that may depend on R.

Theorem 5.2 (Theorem 1.2 formalized). Let n(λ) be any efficiently computable polynomial function
in λ such that n(λ) ≥ λ + 1 for all λ. Then with probability 1 over the choice of a random
oracle R : {0, 1}∗ × {0, 1}∗ → {±1}, the following is true relative to R. There exists a PRS
family consisting of n(λ)-qubit quantum states that is secure against all polynomial-time quantum
algorithms Af that have polynomial-size non-uniform classical advice and make one query to an
arbitrary Boolean function f : {0, 1}∗ → {±1}.

Proof. For each λ ∈ N, we define the function family Rλ : {0, 1}λ × {0, 1}n(λ) → {±1} by setting

Rλ
k(x) := R(k, x),

for each k ∈ {0, 1}λ and x ∈ {0, 1}n(λ). Then the candidate PRS family is the state family ensemble
which contains the family of n(λ)-qubit quantum states

{ |ψRλ
k
⟩}k∈{0,1}λ ,
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for each security parameter λ ∈ N. By construction, the state |ψRλ
k
⟩ can be generated in time

poly(λ) given a single oracle call to R. Thus, all that remains is to establish security.
Security nearly follows from Theorem 4.18, except that the order of quantifiers is wrong: in

Theorem 4.18, the oracle circuit A(·) is not allowed to depend on R, although the function f it
queries is. However, in this setting, A(·) is allowed to depend on R. We handle this by a standard
quantifier-switching argument using the Borel-Cantelli lemma [BG81, IR89], which applies even in
the case of A with bounded non-uniformity.

The argument is as follows. We abuse notation and let A(·) denote a polynomial-time Turing

machine that on input zλ outputs a one-query oracle circuit A
(·)
zλ(·). The adversary runs Afzλ on

input state |ψ⟩ using an arbitrary R-dependent oracle f = fR. Here, z = {zλ}λ is a collection of
advice strings in which zλ has length poly(λ). Because A(·) runs in polynomial time, the query

length of Afzλ is bounded by some p(λ) = poly(λ). As a result, by Theorem 4.18 (setting ε = 1√
K
),

we know that for every security parameter λ ∈ N,

Pr
Rλ

[
∆Azλ

(Rλ) ≥
(1 + C1 ·

√
p(λ))√

K

]
≤ 4 · exp(−C2 ·N) = 4 · exp(−C2 · 2n(λ)) ≤ 4 · exp(−C2 · 2λ),

where the last inequality uses the fact that n(λ) ≥ λ+1. We may then union bound over the 2p(λ)

possible advice strings zλ and conclude that

Pr
Rλ

[
∃z : ∆Azλ

(Rλ) ≥
(1 + C1 ·

√
p(λ))√

K

]
≤ 2p(λ) · 4 · exp(−C2 · 2λ) ≤ 4 · exp(−c · 2λ),

for a universal constant c > 0 and all sufficiently large λ.
Let Eλ denote the above event. Then, we know that the summation∑

λ∈N
Pr

R:{0,1}∗×{0,1}∗→{±1}
[Eλ] <∞

converges to a real number. Therefore, by the Borel-Cantelli lemma,

Pr
R:{0,1}∗×{0,1}∗→{±1}

[
Eλ occurs for infinitely many λ

]
= 0.

Therefore, for all sufficiently large λ ∈ N,

∆Azλ
(Rλ) ≤ poly(λ)√

K
, (33)

no matter what advice z = {zλ}λ the algorithm is given. Finally, we observe that the probability
space above is uncountable. Therefore, we may union bound over all countably many polynomial-
time Turing machines A(·) and conclude that Equation (33) holds for all A(·) and all sufficiently
large λ ∈ N. This shows that the PRS family satisfies the claimed pseudorandomness property,
concluding the proof.
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A A matrix Chernoff proof of the one-query lower bound

In this section, we will give an alternative proof of the one-query lower bound using a variant of
the matrix Chernoff bound known as the matrix Hoeffding bound. Although this proof strategy
ultimately results in worse bounds than the proof presented in Section 4, we have included it
because we believe its techniques will be more familiar to a computer science audience. This
section is organized as follows: in Appendix A.1 we will develop a natural spectral relaxation of
the distinguishing advantage ∆A(R). Next, we will perform a slight modification to this spectral
relaxation in Appendix A.2 to handle function families R which produce outlier values. Finally, in
Appendix A.3 we will use these ingredients to complete the proof of the one-query lower bound.

59

https://www.math.uci.edu/~rvershyn/papers/decoupling-simple.pdf
https://www.henryyuen.net/spring2022/lec6-statesynthesis.pdf
https://www.henryyuen.net/spring2022/lec6-statesynthesis.pdf
https://www.henryyuen.net/spring2022/lec6-unitarysynthesis.pdf
https://www.henryyuen.net/spring2022/lec6-unitarysynthesis.pdf
https://www.henryyuen.net/spring2022/lec7-quantumprograms.pdf
https://www.henryyuen.net/spring2022/lec7-quantumprograms.pdf


We will largely follow the same notation as the proof in Section 4, which can be found in
Section 3.1 as well as in Section 4.2. For convenience, we repeat several important definitions and
results here.

Definition A.1 (Isometry weights, Definition 4.1 restated). The isometry weights are the numbers

wtV,i :=
1
N · ⟨vi|vi⟩ ,

for 1 ≤ i ≤M . Note that these sum to one and therefore form a probability distribution.

Proposition A.2 (Typical amplitudes, Proposition 4.4 restated). Let h : [N ] → {±1} be a uni-
formly random Boolean function. Then

E
h
| ⟨vi|ψh⟩ |2 = wtV,i.

Definition A.3 (The weight vector, Definition 4.5 restated). The weight vector is the unit vector
given by

|wtV ⟩ =
M∑
i=1

√
wtV,i |i⟩ .

Definition A.4 (The rescaling matrix, Definition 4.6 restated). Let h : [N ] → {±1} be a Boolean
function. Then the corresponding rescaling matrix is the diagonal matrix given by

DV,h =
M∑
i=1

DV,h,i · |i⟩⟨i| , where DV,h,i =
⟨vi|ψh⟩√
wtV,i

.

By construction, we have that V · |ψh⟩ = DV,h · |wtV ⟩.

Theorem A.5 (Sub-Gaussian concentration for sums of complex random variables, Theorem 4.21
restated). Let b1, . . . , bm be independent and uniform ±1 random variables, and let a1, . . . , am be
complex numbers. Then S = a1 · b1 + · · ·+ am · bm satisfies

Pr[|S| ≥ t] ≤ 2 · exp
(
− t2

2 ·
∑m

i=1 |ai|2

)
.

Now we move to the proof.

A.1 A spectral relaxation for the distinguishing advantage

Let h : [N ] → {±1} be a Boolean function, and consider the adversary’s execution on the binary
phase state |ψh⟩. First, it applies the isometry, resulting in the state

V · |ψh⟩ = DV,h · |wtV ⟩ .

Next, it applies an oracle Of . This will produce the state

Of ·DV,h · |wtV ⟩ .

Now we observe that Of and DV,h are both diagonal matrices, and hence they both commute. As
a result,

Of ·DV,h · |wtV ⟩ = DV,h · Of · |wtV ⟩ .
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Note that Of · |wtV ⟩ is always a unit vector, and that it is independent of h.
Finally, the adversary performs the measurement {Π, I −Π} and accepts if it observes the first

outcome. We can therefore calculate the acceptance probability of the adversary A with oracle
access to a function f : [M ] → {±1} as:

pA(h | f) = ⟨ψh|V † · Of ·Π · Of · V |ψh⟩

= ⟨wtV | Of ·D†
V,h ·Π ·DV,h · Of |wtV ⟩ .

Let R : [K]× [N ] → {±1} be a function family. By the above calculation and the definition of
the distinguishing advantage ∆A(R) allows us to conclude that

∆A(R) = max
f :[M ]→{±1}

∣∣∣ E
k∼[K]

[pA(Rk | f)]−E
h
[pA(h | f)]

∣∣∣
= max

f

∣∣∣ E
k∼[K]

⟨wtV | Of ·D†
V,Rk

·Π ·DV,Rk
· Of |wtV ⟩ −E

h
⟨wtV | Of ·D†

V,h ·Π ·DV,h · Of |wtV ⟩
∣∣∣

= max
f

∣∣∣ ⟨wtV | Of ·
(

E
k∼[K]

D†
V,Rk

·Π ·RV,Rk
−E
h
D†
V,h ·Π ·DV,h

)
· Of |wtV ⟩

∣∣∣.
Recall that Of · |wtV ⟩ is a unit vector which depends on V and f . We can therefore upper-bound
this expression by relaxing Of · |wtV ⟩ to be an arbitrary unit vector maximizing this expression.
This gives the spectral relaxation.

Definition A.6 (Spectral relaxation). Let R : [K]× [N ] → {±1} be a function family. The spectral
relaxation of the distinguishing probability on R is given by

∆Spectral
A (R) =

∥∥∥ E
k∼[K]

D†
V,Rk

·Π ·DV,Rk
−E
h
D†
V,h ·Π ·DV,h

∥∥∥
op
.

From the above discussion, the following lemma is immediate.

Lemma A.7. Let R : [K]× [N ] → {±1} be a function family. Then ∆A(R) ≤ ∆Spectral
A (R).

In the worst case, this relaxation can be quite poor. The following is an example in which the
relaxation is equal to

√
N −1, even though the distinguishing value ∆A(R) can never be more than

one.

Example A.8 (A large relaxation value). For this example, we will view the space CN as corre-
sponding to n qubits, so that the standard basis contains the vector |x⟩ for each x ∈ {0, 1}n. With
this viewpoint, a binary phase state is specified by a Boolean function h : {0, 1}n → {±1} and is
given by

|ψh⟩ =
1√
N

∑
x∈{0,1}n

h(x) |x⟩ .

Suppose the adversary’s strategy does not expand the Hilbert space (so that M = N). In addition,
suppose that the isometry V is just the n-qubit Hadamard transform V = H⊗n, and that the
measurement Π is just the n-qubit identity matrix Π = IN×N . In this case, the rows of V are just
the binary phase states |ψχα⟩, where χα : {0, 1}n → {±1} is the Boolean function χα(x) = (−1)⟨α,x⟩;
in other words,

V =
∑

α∈{0,1}n
|α⟩⟨ψχα | .
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As a result, the weight wtV,α = 1/N for all α ∈ {0, 1}n, and so the rescaling matrix is given by

RV,h =
∑

α∈{0,1}n

√
N · ⟨ψχα |ψh⟩ · |α⟩⟨α| .

Now we compute the two terms in the spectral relaxation. The second term is independent of the
function family R, and so we compute it first:

E
h
D†
V,h ·Π ·DV,h = E

h
D†
V,h ·DV,h = E

h

∑
α∈{0,1}n

N · | ⟨ψχα |ψh⟩ |2 · |α⟩⟨α| = IN×N ,

where the last equality used the fact that Eh ⟨ψχα |ψh⟩ |2 = wtV,α = N due to Proposition A.2. As
for the first term, consider a worst-case function family R in which every Rk is equal to the same
parity Rk = χα, for some α ∈ {0, 1}n. Then for every 1 ≤ k ≤ K, the rescaling matrix is given by
DV,Rk

=
√
N · |α⟩⟨α|. As a result,

E
k∼[K]

D†
V,Rk

·Π ·DV,Rk
−E
h
D†
V,h ·Π ·DV,h =

√
N · |α⟩⟨α| − IN×N .

The operator norm of this matrix is
√
N − 1, and so ∆Spectral

A (R) =
√
N − 1.

The reason that this example has such a large relaxation value is that the rescaling matrices
DV,Rk

all have an extremely large diagonal entry and therefore an extremely large operator norm.
We would like to rule out examples like this by only considering function families R in which the
rescaling matrices have operator norms which are not too much larger than 1. This motivates the
following definition.

Definition A.9 (B-bounded function families). A function h : [N ] → {±1} is B-bounded if
|DV,h,i| ≤ B for all 1 ≤ i ≤ M . In addition, a function family R : [K]× [N ] → {±1} is B-bounded
if Rk is B-bounded for all 1 ≤ k ≤ K.

Example A.8 showed that there exist worst-case function families R which are not B-bounded
for small values of B. However, the next lemma shows that an average-case function family will in
fact be B-bounded with extremely high probability.

Lemma A.10 (Random function families are bounded). Let R : [K]× [N ] → {±1} be a uniformly
random function family. Then

Pr
R
[R is not B-bounded] ≤ 4KM · e−B2/4.

This lemma follows as a simple corollary of the following lemma by applying it to each function
Rk separately and then union bounding over all 1 ≤ k ≤ K.

Lemma A.11 (Random functions are bounded). Let h : [N ] → {±1} be a uniformly random
Boolean function. Then

Pr
h
[h is not B-bounded] ≤ 2M · e−B2/2.

The key technical tool in the proof of this lemma is Theorem A.5

Proof of Lemma A.10. Fix a 1 ≤ i ≤M , and let us consider DV,h,i. By definition,

DV,h,i =
1

√
wtV,i

· ⟨vi|ψh⟩ =
1

√
wtV,i

·
N∑
x=1

vi,x · 1√
N
h(x) =

N∑
x=1

ax · h(x).
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where

ax =
1√

wtV,i ·N
· vi,x.

Note that

N∑
x=1

|ax|2 =
N∑
x=1

1

wtv,i ·N
· |vi,x|2 =

1

wtv,i ·N
· ⟨vi|vi⟩ =

1

wtv,i
· wtv,i = 1.

As a result, Theorem A.5 says that

Pr[|DV,h,i| ≥ B] ≤ 2 · exp

(
− B2

2 ·
∑N

x=1 |ax|2

)
= 2 · exp

(
−B

2

2

)
.

Union bounding over all 1 ≤ i ≤M , we have that

Pr
h
[h is not B-bounded] ≤

M∑
i=1

Pr[|DV,h,i| ≥ B] ≤
M∑
i=1

2 · e−B2/2 = 2M · e−B2/2.

This completes the proof.

A.2 Truncating the spectral relaxation

Although Lemma A.10 shows that the overwhelming majority of function families R are B-bounded,
it will still be convenient to modify the spectral relaxation slightly so that the rare bad events do
not lead to extremely large values, as in Example A.8. We will handle this by truncation.

Definition A.12 (B-truncation). Let truncB : C → C be the function which, on input t ∈ C, acts
as follows:

truncB(t) =

{
t if |t| ≤ B

B · t/|t| if |t| > B.

By design, |truncB(t)| ≤ B for all t ∈ C. Now we use this to define a truncated version of the
rescaling matrix.

Definition A.13 (B-truncated rescaling matrix). Let h : [N ] → {±1} be a Boolean function.
Then the B-truncated rescaling matrix is the diagonal matrix given by

DV,h,B =
M∑
i=1

truncB(DV,h,i) · |i⟩⟨i| .

With this in hand, we can define truncated analogues of the distinguishing advantage and the
spectral relaxation.

Definition A.14 (B-truncated advantage and spectral relaxation). Let R : [K]× [N ] → {±1} be
a function family. Let h : [N ] → {±1} be a Boolean function. Given an oracle O, the B-truncated
acceptance probability is defined as

pA,B(h | f) = ⟨wtV | · Of ·D†
V,h,B ·Π ·DV,h,B · Of · |wtV ⟩

63



In addition, the B-truncated distinguishing advantage and B-truncated spectral relaxation are de-
fined as follows.

∆A,B(R) = max
f

∣∣∣ E
k∼[K]

pA,B(Rk | f)−E
h
pA,B(h | f)

∣∣∣
= max

f

∣∣∣ ⟨wtV | · Of ·
(

E
k∼[K]

D†
V,Rk,B

·Π ·DV,Rk,B −E
h
D†
V,h,B ·Π ·DV,h,B

)
· Of · |wtV ⟩

∣∣∣,
∆Spectral
A,B (R) =

∥∥∥ E
k∼[K]

D†
V,Rk,B

·Π ·DV,Rk,B −E
h
D†
V,h,B ·Π ·DV,h,B

∥∥∥
op
.

Note that the B-truncated spectral relaxation remains a spectral relaxation of the B-truncated
distinguishing advantage, in that ∆A,B(R) ≤ ∆Spectral

A,B (R).

As we have seen, a random function family is B-bounded with overwhelming probability. This
suggests that the B-truncated analogue of the distinguishing advantage should not be too far from
the regular distinguishing advantage. This is shown in the next lemma.

Lemma A.15 (Truncating doesn’t change the distinguishing advantage by much). Let R : [K] ×
[N ] → {±1} be a B-bounded function family. Then

∆A(R) ≤ ∆A,B(R) + 4M · e−B2/2.

Before proving this, we will need to establish the following technical lemma.

Lemma A.16. For any function family R : [K]× [N ] → {±1}, any function h : [N ] → {±1}, and
any function f ,

|pA(h | f)− pA,B(h | f)| ≤ 2.

Proof. The first step of the proof is a simple triangle inequality:

|pA(h | f)− pA,B(h | f)| ≤ |pA(h | f)|+ |pA,B(h | f)|
≤ 1 + |pA,B(h | f)|

= 1 + | ⟨wtV | · Of ·D†
V,h,B ·Π ·DV,h,B · Of · |wtV ⟩ |,

where the second inequality is because pA(h | f) is an acceptance probability and therefore at most
1. As for the second term, we note that

DV,h,B · Of · |wtV ⟩ = Of ·DV,h,B · |wtV ⟩

because DV,h,B and Of are diagonal matrices. Expanding DV,h,B · |wtV ⟩,

DV,h,B · |wtV ⟩ = DV,h,B ·
( M∑
i=1

√
wtV,i |i⟩

)
=

M∑
i=1

truncB(DV,h,i) ·
√
wtV,i |i⟩

=
M∑
i=1

truncB·√wtV,i
(DV,h,i ·

√
wtV,i) · |i⟩

=

M∑
i=1

truncB·√wtV,i
(⟨vi|ψh⟩) · |i⟩ .

64



We note that
|truncB·√wtV,i

(⟨vi|ψh⟩)| ≤ | ⟨vi|ψh⟩ |,

which is the amplitude on |i⟩ in the state V · |ψh⟩ due to Equation (26). As a result, DV,h,B · |wtV ⟩
is a subnormalized vector, and therefore so is Of ·DV,h,B · |wtV ⟩ because Of is a unitary matrix.
Putting everything together, this tells us that

| ⟨wtV | · Of ·D†
V,h,B ·Π ·DV,h,B · Of · |wtV ⟩ | ≤ 1,

because 0 ⪯ Π ⪯ Id. Thus, the sum of the two terms is at most 2.

Now we use this to prove Lemma A.15.

Proof of Lemma A.15. By definition,

∆A(R) = max
f

∣∣∣ E
k∼[K]

pA(Rk | f)−E
h
pA(h | f)

∣∣∣
= max

f

∣∣∣ E
k∼[K]

pA,B(Rk | f)−E
h
pA(h | f)

∣∣∣,
where the second equality holds because R is B-bounded, so pA(Rk | f) = pA,B(Rk | f) for every
1 ≤ k ≤ K. By the triangle inequality, this can be upper-bounded by

max
f

∣∣∣ E
k∼[K]

pA,B(Rk | f)−E
h
pA,B(h | f)

∣∣∣+max
f

∣∣∣E
h
pA,B(h | f)−E

h
pA(h | f)

∣∣∣
= ∆A,B(R) + max

f

∣∣∣E
h
pA,B(h | f)−E

h
pA(h | f)

∣∣∣
≤ ∆A,B(R) + max

f
E
h

∣∣∣pA,B(h | f)− pA(h | f)
∣∣∣.

Let us first focus on the second term. If h is B-bounded, then pA,B(h | f) = pA(h | f), and the
term inside the expectation is zero. Otherwise the term inside the expectation is at most 2, by
Lemma A.16. As a result, for every function f , the expectation is at most

2 ·Pr
h
[h is not B-bounded] ≤ 4M · e−B2/2,

by Lemma A.11. Putting everything together,

∆A(R) ≤ ∆A,B(R) + 4M · e−B2/2.

This completes the proof.

A.3 The one-query lower bound

Now we complete the proof of the one-query lower bound. The quantitative bound we prove is as
follows.

Theorem A.17. Let R : [K]× [N ] → {±1} be a uniformly random function family. Then

Pr
R
[∆A(R) ≥ 1/K1/4 + 4M · e−K1/8/2] ≤ 6KM · e−K1/8/32.
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We note that although this bound is quantitatively weaker than Theorem 4.18, it still gives a
strong lower bound. For our typical settings of K and M , it states that ∆A(R) is roughly bounded
by 1/K1/4 with all but a negligible probability. The key technical result we use to prove this is the
following variant of the matrix Chernoff bound, stated in [Tro12, Theorem 1.3].

Theorem A.18 (Matrix Hoeffding). Let {Zk} be a set of independent, Hermitian, random matrices
with dimension D. Let {Ck} be a set of fixed Hermitian matrices. Assume that for all k, EZk = 0
and Z2

k ⪯ C2
k . Set

σ2 =
∥∥∥∑

k

C2
k

∥∥∥.
Then

Pr
[
λmax

(∑
k

Zk

)
≥ t
]
≤ D · e−t2/8σ2

.

By applying matrix Hoeffding to both (
∑

k Zk) and −(
∑

k Zk), we can derive the following
concentration bound for the operator norm.

Corollary A.19 (Matrix Hoeffding for operator norm). Under the same assumptions as Theo-
rem A.18, we have that

Pr
[∥∥∥∑

k

Zk

∥∥∥
op

≥ t
]
≤ 2D · e−t2/8σ2

.

Proof of Theorem A.17. Let B ≥ 0 be a nonnegative real number to be determined later. By
Lemma A.15, we have that

∆A(R) ≤ ∆A,B(R) + 4M · e−B2/2.

for any B-bounded function family R. This means that if ∆A(R) ≥ ε + 4M · e−B2/2 for some
number ε to be determined later, it must either be the case that ∆A,B(R) ≥ ε or that R is not
B-bounded. Hence, by the union bound, if R : [K]× [N ] → {±1} is a random function family,

Pr
R
[∆A(R) ≥ ε+ 4M · e−B2/2] ≤ Pr

R
[∆A,B(R) ≥ ε] +Pr

R
[R is not B-bounded]

≤ Pr
R
[∆Spectral

A,B (R) ≥ ε] + 4KM · e−B2/2,

where the second inequality is due to Lemma A.10 and the fact that ∆A,B(R) ≤ ∆Spectral
A,B (R). We

will now focus on bounding the first term. By definition of the B-bounded spectral relaxation,

∆Spectral
A,B (R) =

∥∥∥ E
k∼[K]

D†
V,Rk,B

·Π ·DV,Rk,B −E
h
D†
V,h,B ·Π ·DV,h,B

∥∥∥
op
.

To analyze this, we note that for each 1 ≤ k ≤ K, Rk is distributed as a uniformly random function,
and so Rk has the same distribution as h. Hence, if we keep k fixed and randomize over R,

E
R
D†
V,Rk,B

·Π ·DV,Rk,B = E
h
D†
V,h,B ·Π ·DV,h,B.

This means that the random matrix

XRk
:= D†

V,Rk,B
·Π ·DV,Rk,B −E

h
D†
V,h,B ·Π ·DV,h,B

has ER[XRk
] = 0. In terms of these matrices, our goal is to bound

∥ E
k∼[K]

D†
V,Rk,B

·Π ·DV,Rk,B −E
h
D†
V,h,B ·Π ·DV,h,B∥ = ∥E

k
XRk

∥.

Note the following properties of XRk
:
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1. For each k, XRk
only depends on Rk. Hence, the random variables XRk

, over all 1 ≤ k ≤ K,
are independent and identically distributed.

2. XRk
is an M ×M matrix.

3. To bound the operator norm of XRk
, we begin with the bound

∥XRk
∥ = ∥D†

V,Rk,B
·Π ·DV,Rk,B −E

h
D†
V,h,B ·Π ·DV,h,B∥

≤ ∥D†
V,Rk,B

·Π ·DV,Rk,B∥+E
h
∥D†

V,h,B ·Π ·DV,h,B∥.

Now, let us bound the operator norm of D†
V,Rk,B

· Π · DV,Rk,B. Let |v⟩ be any unit vector.
Then because DV,Rk,B is a diagonal matrix whose diagonal entries have magnitude at most B,
DV,Rk,B · |v⟩ has norm at most B. Hence,

⟨v| ·D†
V,Rk,B

·Π ·DV,Rk,B · |v⟩ ≤ B2.

As a result, D†
V,Rk,B

·Π ·DV,Rk,B has spectral norm at most B2; a similar argument will show

that D†
V,h,B · Π · DV,h,B has spectral norm at most B2 as well. Thus, the spectral norm of

XRk
is at most 2B2, and so, X2

Rk
≤ 4B4 · Id always.

Now we are in a good place to apply matrix Hoeffding. In our setting, the matricesXR1 , . . . , XRK

are independent, Hermitian, and have dimension M . Furthermore, we know that X2
Rk

≤ 4B4 · Id
always. Hence, our value of σ2 is

σ2 =
∥∥∥ K∑
k=1

4B4Id
∥∥∥ = 4KB4.

Now, our goal is to bound

Pr
R
[∆Spectral

A,B (R) ≥ ε] = Pr
R

[∥∥∥ E
k∈[K]

XRk

∥∥∥
op

≥ ε
]

= Pr
R

[∥∥∥ 1

K

K∑
k=1

XRk

∥∥∥
op

≥ ε
]
= Pr

R

[∥∥∥ K∑
k=1

XRk

∥∥∥
op

≥ εK
]
.

This we can apply Corollary A.19 to, which tells us that

Pr
R
[∆Spectral

A,B (R) ≥ ε] ≤ 2M · e−ε2K2/8(4KB4) = 2M · e−ε2K/(32B4).

Putting everything together, we have

Pr
R
[∆A(R) ≥ ε+ 4M · e−B2/2] ≤ 2M · e−ε2K/(32B4) + 4KM · e−B2/2.

Now we select our constants to be ε = 1/K1/4 and B = K1/16. Then this states that

Pr
R
[∆A(R) ≥ 1/K1/4 + 4M · e−K1/8/2] ≤ 2M · e−K1/4/32 + 4KM · e−K1/8/2 ≤ 6KM · e−K1/8/32.

This completes the proof.
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B On the power of counting arguments

In this section, we will consider the power of counting arguments to show lower bounds for the
Oracle State Distinguishing Game. Counting arguments apply to the case when the adversary
cannot compute too many unitaries, which we formalize as follows.

Definition B.1 (Small oracle circuits). An oracle circuit A(·) is S-small if the number of distinct
unitaries Af , ranging over all oracles f , is at most S.

Although most oracle circuits are not “small” enough to be useful, there are a few interesting
families of small oracle circuits, which we state below. As always, we will write N := 2n for the size
of the oracle circuit’s input register, and M := 2m for the total size of the oracle circuit’s registers.

Example B.2 (Aaronson-Kuperberg adversaries). As described in Section 1.3, Aaronson and
Kuperberg [AK07] considered oracle circuits A(·) in which for every oracle f , Af exactly computes
some unitary transformation on its first n qubits. They showed that any such oracle circuit is
4N -small [AK07, Theorem 6.7].

Example B.3 (Adversaries with no ancillas but multiple oracles). Consider an oracle circuit with
n input qubits and no ancilla qubits which makes t queries. For this example only, we will depart
from our usual notation and allow the queries to be made to t potentially different functions
f1, . . . , ft. Then there are at most 2N choices for each function fi, and so this oracle circuit is
(2N )t = 2Nt-small. If t = poly(n), then this is 2N ·poly(n)-small.

Example B.4 (Small-ancilla adversaries). Let A(·) be an oracle circuit which makes multiple
queries to a single function f and uses n input qubits and a ancilla qubits, for a total of m = n+ a
qubits. Then A(·) is 2M -small.

Note that the bound in Example B.4 subsumes Example B.3. This is because by Remark 3.5,
an adversary which makes t queries to different functions f1, . . . , ft can be simulated by an oracle
circuit A(·) which uses ⌈log2 t⌉ additional ancilla qubits and queries a single function f .

Now we state our main bound, which rules out adversaries for the Oracle State Distinguishing
Game which are “small”.

Theorem B.5 (Counting bound). There is a universal constant c > 0 such that the following is
true. Consider the Oracle State Distinguishing Game played with a uniformly random function
family R : [K]× [N ] → {±1}. Let A(·) be an adversary which is S-small, for S = exp

(
c · ε2KN

)
.

Then
Pr
R

[
∆A(R) ≥ ε

]
≤ 2 · exp

(
−c · ε2KN

)
.

In the context of our examples, this rules out Aaronson-Kuperberg adversaries, so long as
K = Ω(1/ε2). This also rules out small-ancilla adversaries. For example, if adversary uses a =
1
2 · log2(K) ancilla qubits, then its total size isM = N ·

√
K, and so it is 2N

√
K-small, which is small

enough (assuming reasonable settings of parameters) for Theorem B.5 to apply. On the other hand,
Theorem B.5 cannot rule out general adversaries which use a = log2(K) ancilla qubits or more. For
example, a natural adversary might intend to perform the query (k, x) 7→ R(k, x) in superposition,
and to do so it needs log2(K) + n qubits, putting it in the range where Theorem B.5 no longer
applies. This shows the limitation of this style of counting argument: it becomes ineffective once
the adversary has even a small number of ancilla qubits.

Now we prove Theorem B.5. We will do so using a standard “concentration and union bound”
approach: we prove a tail inequality on the probability that Af results in a good attack for a fixed
f , and the we union bound over all f .
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Lemma B.6 (Success probability of no-query adversaries). There is a universal constant c > 0
such that the following is true. Let R : [K]× [N ] → {±1} be a uniformly random function family.
Let A(·) be an adversary that does not make any queries. Then

Pr
R

[
∆A(R) ≥ ε

]
≤ 2 · exp

(
−c · ε2KN

)
.

Proof. We prove this using tools from Section 3.4. Since A() makes no queries, let us fix an arbitrary
f and note that ∆A(R) = ∆A(R | f) for all function families R. Then

∆A(R | f) =
∣∣∣ E
k∼[K]

[pA(Rk | f)]−E
h
[pA(h | f)]

∣∣∣ = ∣∣∣ E
k∼[K]

[pA,0(Rk | f)]−E
h
[pA,0(h | f)]

∣∣∣, (34)

where pA,0(· | f) is the extension of pA(· | f) to bounded functions R : [K] × [N ] → [−1, 1] from
Definition 3.21. But the function R 7→ Ek∼[K][pA,0(Rk | f)] is convex and (2/

√
KN)-Lipschitz by

Lemma 3.25. Hence, if R : [K]× [N ] → {±1} is a uniformly random function family, Talagrand’s
inequality (Theorem 3.20) implies that

Pr
R

[∣∣∣ E
k∼[K]

[pA,0(Rk | f)]−E
h
[pA,0(h | f)]

∣∣∣ ≥ ε
]
≤ 2 · exp

(
−c · ε

2KN

4

)
for some absolute constant c > 0. But by Equation (34) the left-hand side is PrR[∆A(R) ≥ ε], and
so this completes the proof, with the “c” in the lemma statement being equal to c/4.

Deriving Theorem B.5 from Lemma B.6 is relatively straightforward.

Proof of Theorem B.5. Let A(·) be an S-small adversary, for a value of S to be determined later.
Then there exist S functions f1, . . . , fS such that the set of unitaries Af1 , . . . , AfS contains every
unitary computable by A(·). Fix a 1 ≤ i ≤ S. Then by hard-coding the function fi into A

(·), we
can view Afi as an oracle circuit that does not make any queries. Thus, Lemma B.6 says that

Pr
R
[∆Afi (R) ≥ ε] ≤ 2 · exp

(
−c · ε2KN

)
.

As a result, we can upper-bound the maximum distinguishing probability by

Pr
R
[∆A(R) ≥ ε] = Pr

R

[
max
f

{∆A(R | f)} ≥ ε
]

= Pr
R

[
max
i

{∆A(R | fi)} ≥ ε
]

≤
S∑
i=1

Pr
R
[∆A(R | fi) ≥ ε] (by the union bound)

=

S∑
i=1

Pr
R
[∆Afi (R) ≥ ε]

≤
S∑
i=1

2 · exp
(
−c · ε2KN

)
= S · 2 · exp

(
−c · ε2KN

)
.

Now, let us choose S to be S = exp
(
c/2 · ε2KN

)
. Then this upper bound on the maximum

distinguishing probability equals S · 2 · exp
(
−c/2 · ε2KN

)
. This concludes the proof, with the

constant “c” in the statement of the proof equal to c/2.
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C A one-query attack with advantage Ω(1/
√
K)

In this section, we give a one-query adversary for the Oracle State Distinguishing Game achieving
advantage Ω(1/

√
K) using only one ancilla qubit. This demonstrates that the dependence on K in

our main theorem (Theorem 4.18) is tight. The adversary is given as follows.

Definition C.1 (Hadamard adversary). On input an n-qubit state |ψ⟩, the Hadamard adversary

A
(·)
Had acts as follows.

1. Apply the n-qubit Hadamard H⊗n to |ψ⟩.

2. Measure H⊗n · |ψ⟩ in the standard basis. Let y ∈ {0, 1}n be the measurement outcome.

3. Query a bit flip oracle f : {0, 1}n → {0, 1} on y. Let b′ = f(y) ∈ {0, 1} be the result.

4. Output b′.

The Hadamard’s adversary’s one ancilla qubit is used to store the outcome of the query to
the bit flip oracle. Note that this can be simulated by an adversary which makes a query to a
phase oracle instead, as discussed following the statement of Definition 3.3. We also remark that
because the Hadamard adversary applies an n-qubit Hadamard, it will be more convenient to think
of the adversary’s state space as consisting of n-qubits, rather than being a single space of overall
dimension N := 2n. As a result, using the correspondence between {0, 1}n and [N ] mentioned in
Notation 3.1, we will prefer to format our function families as R : [K]× {0, 1}n → {±1}, with the
k-th binary phase state being

|ψRk
⟩ = 1√

N
·
∑

x∈{0,1}n
Rk(x) · |x⟩ .

Our main goal is to prove the following bounds on the Hadamard adversary’s distinguishing prob-
ability.

Theorem C.2 (Distinguishing advantage of the Hadamard adversary). There exists a constant
c > 0 such that the following is true. Let K,N ≥ c, and let R : [K] × {0, 1}n → {±1} be a
uniformly random function family. Then

E
R
[∆AHad

(R)] ≥ Ω
( 1√

K

)
.

When the Oracle State Distinguishing Game is played with some function family R : [K]×[N ] →
{±1}, with probability 1

2 the Hadamard adversary is given the state |ψRk
⟩ for k chosen uniformly

at random. We will write MR for the probability distribution on the measurement outcome y in
this case. In other words,

MR(y) := E
k∼[K]

| ⟨y| ·H⊗n · |ψRk
⟩ |2.

With the remaining 1
2 probability, the Hadamard adversary is given a uniformly random phase

state; equivalently, it is given the maximally mixed state IdN/N . In this case, the measurement
outcome y is distributed as a uniformly random string in {0, 1}n. We will write UN for this uniform
probability distribution, i.e. UN (y) := 1/N .

The Hadamard adversary measures a y which is sampled either from MR or UN , and it feeds
y into the function f , which can be thought of as a statistical test to distinguish these two distri-
butions. The following lemma characterizes the Hadamard adversary’s distinguishing advantage in
terms of the total variation distance dTV(·, ·) between these two distributions.
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Lemma C.3 (Distinguishing advantage equals TV distance).

∆AHad
(R) = dTV(MR,UN ) =

1

2
·
∑

y∈{0,1}n
|MR(y)− UN (y)| .

Proof. Let f : {0, 1}n → {0, 1} be a Boolean function. By definition,

∆AHad
(R | f) =

∣∣∣ E
k∼[K]

[pAHad
(Rk | f)]−E

h
[pAHad

(h | f)]
∣∣∣

=
∣∣∣ E
k∼[K]

Pr[AfHad outputs “0” on |ψRk
⟩]−E

h
Pr[AfHad outputs “0” on |ψh⟩]

∣∣∣
=
∣∣∣ ∑
y:f(y)=0

MR(y)−
∑

y:f(y)=0

UN (y)
∣∣∣.

The maximum distinguishing advantage is then computed by optimizing this expression over all f ,
but that is exactly the definition of the total variation distance.

Our goal is to calculate the expectation ER[∆AHad
(R)]. The following lemma gives an alterna-

tive expression for this expectation in terms of a new random variable.

Lemma C.4. Given a function family R : [K]× {0, 1}n → {±1}, define the quantity

XR :=
1

N
· E
k∼[K]

( ∑
x∈{0,1}n

Rk(x)
)2
.

Then for a uniformly random function family R : [K]× [N ] → {±1},

E
R
[∆AHad

(R)] =
1

2
·E
R
|XR − 1|.

Proof. By Lemma C.3,

E
R
[∆AHad

(R)] =
1

2
·
∑

y∈{0,1}n
E
R
|MR(y)− UN (y)| =

1

2
·
∑

y∈{0,1}n
E
R

∣∣∣MR(y)−
1

N

∣∣∣
=

1

2
· 1

N
·
∑

y∈{0,1}n
E
R

∣∣∣N · MR(y)− 1
∣∣∣. (35)

Now, fix a y ∈ {0, 1}n. Consider the random variable

N · MR(y) = N · E
k∼[K]

∣∣⟨y| ·H⊗n · |ψRk
⟩
∣∣2 = 1

N
· E
k∼[K]

( ∑
x∈{0,1}n

Rk(x) · (−1)x·y
)2
.

For each value of k, the corresponding term is distributed as the square of the sum of N independent
and uniformly random {±1} numbers, and the terms are independent across different values of k.
Hence, this random variable is distributed identically to XR. In addition, these K random variables
are independent. As a result, by linearity of expectation,

(35) =
1

2
· 1

N
·
∑

y∈{0,1}n
E
R
|XR − 1| = 1

2
·E
R
|XR − 1|.

This completes the proof.
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Now we study the distribution of the random variable XR. To begin, we compute its mean and
variance.

Lemma C.5. Let R : [K] × {0, 1}n → {±1} be a uniformly random function family. Then the
random variable XR has expectation 1 and variance 2/K · (N − 1)/N .

Proof. First, we compute the mean:

E
R
[XR] =

1

N
· E
R,k

[( ∑
x∈{0,1}n

Rk(x)
)2]

=
1

N
· E
R,k

[ ∑
x,y∈{0,1}n

Rk(x) ·R(k, y)

]

=
1

N
· E
k∼[K]

[ ∑
x,y∈{0,1}n

E
R

[
Rk(x) ·Rk(y)

]]
=

1

N
· E
k∼[K]

[N ] = 1.

Next, we compute the variance. To begin, note that for each R,

XR −E
R
[XR] = XR − 1 =

1

N
· E
k∼[K]

( ∑
x∈{0,1}n

Rk(x)
)2

− 1 =
1

N
· E
k∼[K]

(∑
x ̸=y

Rk(x) ·Rk(y)
)
.

Thus, the variance is given by

E
R
[(XR −E

R
[XR])

2] = E
R

[( 1

N
· E
k∼[K]

(∑
x ̸=y

Rk(x) ·Rk(y)
))2]

=
1

N2
·E
R

E
k,k′∼[K]

[∑
x̸=y

∑
z ̸=w

Rk(x) ·Rk(y) ·Rk′(z) ·Rk′(w)
]

=
1

N2
·
∑
x ̸=y

∑
z ̸=w

E
k,k′∼[K]

E
R

[
Rk(x) ·Rk(y) ·Rk′(z) ·Rk′(w)

]
. (36)

The expectation over R is zero if k ̸= k′. On the other hand, if k = k′, then the expectation is 1
if {x, y} = {z, w} and 0 otherwise. As a result,

(36) =
1

N2
·
∑
x ̸=y

∑
z ̸=w

1

K
·1[{x, y} = {z, w}] = 1

N2
· 1
K

·
∑
x ̸=y

∑
z ̸=w

1[{x, y} = {z, w}] = 1

N2
· 1
K

·2N(N−1).

This completes the proof.

From Lemma C.5, we roughly expect that XR tends to be around the values 1±
√

2/K. If this
were true, then the expectation ER |XR − 1| we are trying to compute would be roughly

√
2/K,

and we would be done. However, it could be that the XR’s variance being roughly 2/K could be
due to some small probability events where XR is very far from 1, whereas with high probability
XR is much closer to 1 than

√
2/K. To rule this out, we prove the following concentration bound

for XR.

Lemma C.6. There exists a constant c > 0 such that the following is true. Let R : [K]×{0, 1}n →
{±1} be a uniformly random function family. Then for all t > 0,

Pr
R

[|XR − 1| ≥ t] ≤ 2 · exp
(
−c ·K ·min{t2, t}

)
.
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Proof. For each 1 ≤ k ≤ K, define

XR,k :=
1

N
·
( ∑
x∈{0,1}n

Rk(x)
)2

=
( ∑
x∈{0,1}n

1√
N

·Rk(x)
)2
,

Then Lemma 4.13 implies that there exists a constant γ ≥ 1 such that for each 1 ≤ k ≤ K,
the random variable |XR,k|2 − 1 is sub-exponential with parameter γ. Since XR = Ek∼[K][XR,k],
Bernstein’s inequality (Theorem 4.14) states that

Pr
R

[|XR − 1| ≥ t] ≤ 2 · exp
(
−c ·min

{ t2
γ2
,
t

γ

}
·K
)

≤ 2 · exp
(
−c ·min

{ t2
γ2
,
t

γ2

}
·K
)
,

because γ ≥ 1. This completes the proof, by setting the “c” in the lemma statement to c/γ2.

Now we prove our bound on the expected distinguishing advantage of the Hadamard tester.

Proof of Theorem C.2. By Lemma C.4, it suffices to show that ER |XR − 1| ≥ Ω(1/
√
K). We will

show this by deriving the following weak anti-concentration result: there exists a constant ε > 0
such that

Pr
R

[
|XR − 1| ≥ ε√

K

]
≥ ε. (37)

Assuming this is true, then our main result can be shown as follows:

E
R
|XR − 1| ≥ ε√

K
·Pr

[
|XR − 1| ≥ ε√

K

]
≥ ε2√

K
.

Now we prove Equation (37). The proof is by contradiction: for sake of contradiction, let us assume
that it is false. Then one can obtain an upper bound for the variance of XR as follows:

E
R

[
|XR − 1|2

]
=

∫ ∞

0
Pr
[
|XR − 1|2 ≥ t

]
dt

=

∫ ε2

K

0
Pr
[
|XR − 1|2 ≥ t

]
dt+

∫ 1
ε·K

ε2

K

Pr
[
|XR − 1|2 ≥ t

]
dt+

∫ ∞

1
ε·K

Pr
[
|XR − 1|2 ≥ t

]
dt. (38)

We can upper-bound the first term by ε2/K since probabilities are always at most one. As for the
second term, since we are assuming that Equation (37) is false, we have that∫ 1

ε·K

ε2

K

Pr
[
|XR − 1|2 ≥ t

]
dt ≤

∫ 1
ε·K

ε2

K

Pr
[
|XR − 1|2 ≥ ε2

K

]
dt <

∫ 1
ε·K

ε2

K

ε · dt < ε · 1

ε ·K
=

1

K
.

Finally, we can bound the third term using Lemma C.6. In total, we have that

(38) <
ε2

K
+

1

K
+

∫ ∞

1
ε·K

2 · exp
(
−c ·K ·min(t,

√
t)
)
dt

≤ ε2

K
+

1

K
+

∫ ∞

1
ε·K

2 · exp(−c ·K · t)dt+
∫ ∞

1
2 · exp(−c ·K · t) · 2t · dt

=
ε2

K
+

1

K
+

2

c ·K
· exp

(
−c
ε

)
+ 4 ·

( 1

c ·K
+

1

(c ·K)2

)
· exp(−c ·K).
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For ε a sufficiently small constant and K a sufficiently large constant, this is at most 3
2 · 1

K . But
we already calculated that the variance of XR is N−1

N · 2
K , in Lemma C.5. Hence, we have a

contradiction for sufficiently large N , completing the proof.
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