
The Uber-Knowledge Assumption:
A Bridge to the AGM

Balthazar Bauer1, Pooya Farshim2,3,
Patrick Harasser4, and Markulf Kohlweiss2,5

1 Université de Versailles Saint-Quentin-en-Yvelines, France
balthazar.bauer@ens.fr

2 IOG, Singapore
{pooya.farshim, markulf.kohlweiss}@iohk.io

3 Durham University, UK
4 Technische Universität Darmstadt, Germany

patrick.harasser@tu-darmstadt.de
5 University of Edinburgh, UK

Abstract. The generic-group model (GGM) and the algebraic-group
model (AGM) have been immensely successful in proving the security
of many classical and modern cryptosystems. These models, however,
come coupled with standard-model uninstantiability results, raising the
question whether the schemes analyzed under them can be based on
firmer standard-model footing.

We formulate the uber-knowledge (UK) assumption, a standard-model
assumption that naturally extends the uber-assumption family to knowl-
edge assumptions. We justify the soundness of the UK in both the bilinear
GGM and bilinear AGM. Along the way we extend these models to in-
corporate hashing into groups, an adversarial capability that is available
in many concrete groups. (In contrast to standard assumptions, hashing
may affect the validity of knowledge assumptions.) These results, in turn,
enable a modular approach to security in GGM and AGM.

As example applications, we use the UK to prove knowledge-soundness
of Groth16 and KZG polynomial commitments in the standard model,
where for the former we reuse the existing AGM proof without hashing.

Keywords. Knowledge assumption · Standard model · Generic-group
model · Algebraic-group model · Groth16 · KZG commitment

1 Introduction

1.1 Background

Security proofs in idealized models of computation or with respect to restricted
classes of adversaries are a popular paradigm for studying the soundness of
cryptographic constructions. Starting with the works of Fiat and Shamir [34]
and Bellare and Rogaway [8], random oracles, which idealize cryptographic hash
functions, have been used to justify the security of a wide range of symmetric and
asymmetric systems. Subsequently, the random-permutation and the ideal-cipher

mailto:balthazar.bauer@ens.fr
mailto:pooya.farshim@gmail.com
mailto:markulf.kohlweiss@iohk.io
mailto:patrick.harasser@tu-darmstadt.de

models were used to study permutation-based cryptography (e.g., SHA3 [11])
and constructions using block ciphers [16,25,48]. This approach was adapted to
constructions involving cryptographic groups by Nachaev [58] and Shoup [66],
who showed the hardness of the discrete-logarithm problem in random groups
with oracle access to the group operation.

Our focus in this work is on cryptographic assumptions related to groups. We
start with a high-level overview of idealization of groups as initially introduced
by Nachaev and Shoup.

The generic-group model (GGM). The GGM “idealizes” the representation
of group elements and the group operation. There are at least two approaches
to formalizing idealized groups. One is Shoup’s GGM [66], aka. the random-
representation (RR) model [67], where group exponentiation is modeled as a
random injection τ , and group operation is defined via an oracle that is com-
patible with τ (i.e., elements are inverted under τ , summed, and fed back to τ).
Another is Maurer’s GGM [56], aka. the type-safe (TS) model [67], where group
elements are replaced by abstract “handles” that act as pointers to memory loca-
tions containing group elements. The group operation oracle works on handles,
by placing the sum of the elements under two given handles under a third han-
dle. Shoup’s model has been extended to bilinear groups [17], and has been used
to study a wide class of schemes, from standardized signature schemes [45] to
structure-preserving signatures [1] and SNARKs [43].

The algebraic-group model (AGM). A somewhat different approach has
emerged recently. Motivated by the fact that group operations are observable
in the GGM, it models that an adversary can always compute a representa-
tion of new group elements that it produces based on those that it has seen
so far. This model is known as the algebraic-group model (AGM) and was in-
troduced by Fuchsbauer, Kiltz, and Loss [36], though its roots trace back to
the work of Boneh and Venkatesan [19], who considered restricted adversaries
that implement straight-line programs. In a sense the underlying groups in the
AGM are not idealized; it is rather the adversary who is restricted/idealized.
Recently there has been significant interest in using the AGM to analyze cryp-
tosystems [37,40,50,55,61] and hardness assumptions [3, 62].

One drawback of idealized models of computation, however, is that they typ-
ically suffer from uninstantiability results. That is, one can construct schemes
that are secure in a given idealized model, but are insecure with respect to any
standard-model instantiation of the primitive that the model idealizes. Such
uninstantiable schemes were first introduced in the seminal work of Canetti,
Goldreich, and Halevi [22], and were later extended to the ideal-cipher [15] and
generic-group models [29]. Arguably these uninstantiable schemes are quite “con-
trived” in that they are designed to fail, and as such do not disprove the security
established in an idealized model of cryptosystems that follow “good crypto-

2

graphic practice”.6 Recently, Zhandry [67] has extended uninstantiability to the
AGM, thus separating the AGM from the standard model.

Given this state of affairs, one research theme in recent years has been to
identify new plausible assumptions that, although strong, facilitate proofs of
security in the standard model in a uniform way for a range of schemes that were
previously only shown to be secure in idealized models. Put differently, under
such assumptions these schemes are placed outside the class of uninstantiable or
contrived ones. Furthermore, if the said assumptions can be themselves justified
in an idealized model, one would establish a bridge from idealized models to the
standard model. Particularly successful examples of this “layered” approach to
security include universal computational extractors for hash functions [5], and
the uber-assumption family for cryptographic group schemes [2, 18,32].

1.2 Contributions

We continue the above lines of work. Our focus is on identifying appropriate
assumptions for lifting the security of group-based cryptosystems established in
idealized computational models to the standard model.

In more detail, we are interested in knowledge assumptions on computational
group schemes. In contrast to standard computational and decisional problems,
in knowledge assumptions one demands the existence of a successful extractor for
each adversary. Thus, these assumptions have a higher “logical complexity” and
in particular are not unconditionally falsifiable; see [41,57] for further discussions.

Bridging assumptions for knowledge-type properties, such as the knowledge
soundness of SNARKs, are an important and somewhat neglected area of in-
vestigation. Some schemes, e.g., Groth10 [42], Pinocchio [60], Groth–Maller [44],
and Marlin [24] are proven under dedicated knowledge assumption. However, the
most popular schemes are proven directly in the GGM and AGM [38, 43]. Be-
sides SNARKs, knowledge assumptions also underlie the security of many other
classical and modern cryptosystems, ranging from zero-knowledge proofs [6, 53]
to plaintext-aware encryption [30], extractable collision resistant-hash functions
(CRHFs) [13,14,52] and non-malleable codes [52].

The uber-knowledge family. To bridge this gap, we formulate the uber-
knowledge (UK) assumption, an umbrella term for a class of assumptions formu-
lated in both simple and bilinear groups. Roughly speaking, the UK assumption
states that whenever an adversary outputs group elements that satisfy a certain
polynomial relation with its inputs, it must necessarily produce these elements
as a known linear combination of the group elements that it receives.

Specific instances of the UK assumption have already appeared in the lit-
erature. Examples include the knowledge-of-exponent assumptions (KEA1 and
KEA3), which have been used to build efficient 3-round ZK protocols [6, 46]

6 In more detail, these results (ab)use the fact that concrete hash functions and com-
putational group schemes have compact representations, whereas exponentially large
random objects do not.

3

and plaintext-aware encryption [12], the d-KEA assumption used to build ex-
tractable CRHFs, the d-PKE assumption used in [42,60] to build SNARKs, and
our novel d-KZG assumption justifying the extractability of polynomial commit-
ments, and thus via the polynomial interactive oracle proofs (PIOPs) framework,
the knowledge-soundness of a number of practical and in-use SNARKs [21,38].

The UK assumption can be seen as an extension of the classical uber family
to knowledge assumptions, and also as a standard-model counterpart to the
“representation extractability” property that the AGM idealizes. We emphasize
that the UK assumption is a standard-model assumption7, and thus an adversary
may exploit hashing and other “oblivious sampling” procedures to break it.

GGM and AGM with hashing. In continuing with the aforementioned layered
approach to security, we set out to justify the soundness of the UK assumption
in idealized models. The (bilinear) GGM and (bilinear) AGM are natural choices
for such proofs. However, in their standard forms, the GGM and the AGM do
not faithfully model the adversarial capability to hash into groups. At first this
might not seem like a critical shortcoming, as hashing can be simulated by ex-
ponentiating to random exponents. This is indeed a valid approach for showing
equivalence for standard computational or decisional problems in models with
and without hashing. For knowledge assumptions, on the other hand, the story is
somewhat different. Indeed, an extractor algorithm in the UK assumption is run
with the adversary’s view to output the linear representation mentioned above.
This view, when run with a simulated hash oracle, includes the corresponding
discrete logarithms, information that is missing when run with a hashing oracle.
This, in turn, prevents an analogous equivalence to go through. Even more con-
cretely, consider the knowledge assumption that posits that “no adversary can
produce a valid group element without knowing its discrete logarithm.” This
assumption is trivially false when one can hash into a group, but holds in the
AGM (without hashing) and also in the GGM if group representations are from
a sufficiently large random set.

Accordingly, we extend the GGM and AGM with appropriate hashing oracles
and call the resulting models GGM-H and AGM-H. This extension is straightfor-
ward for GGM, though different variants arise in the bilinear setting according to
which groups one can hash to. Our choices here are driven by practical pairing-
friendly groups [23, Definitions 2–4], where in the type-1 and type-3 settings one
can hash to all groups, but in type-2 groups one can only hash to the first source
group and the target group.

For the AGM-H, we follow the recent algebraic compilation approach of
Zhandry [67], who identified a problem with the AGM related to leaking group
elements one bit at a time [69]. Using the machinery of type-safe groups, where
one can only operate on abstract group handles via oracles, we formalize the bi-
linear AGM for all three types with hashing. Besides continuing with the layered
approach, we use these formalizations to study the relation between AGM-H and
7 Note that a standard assumption, which roughly means falsifiable and non-

interactive, is not the same as a standard-model assumption, with which we mean
defined without idealization or setup.

4

GGM-H (Appendix F). Although AGM-H security implies GGM-H security for
standard games, this implication fails for extractor games. This is essentially
due to the fact that random representations cannot be converted into real group
representations, a conversion that is needed to build a GGM-H extractor by
running a given AGM-H extractor.

Layering: GGM and AGM feasibility. Given the observations above, we set
out to justify the soundness of the UK in both the GGM-H and the AGM-H.
We do this for the class of relation polynomials (the polynomials used in the
winning condition) that are linear in the variables corresponding to the group
elements returned by the adversary, and also have linearly independent coeffi-
cients. Linearity ensures that the winning condition can be efficiently verified in
non-bilinear groups. Linear independence, on the other hand, is both necessary
and sufficient for hardness.

Our GGM-H feasibility is in fact more general, and establishes hardness for
a wider class of relation polynomials that contain one quadratic term in ad-
versarial outputs. In particular these include the polynomial relation needed
to study the knowledge soundness of Groth16. Our proof follows the standard
Schwartz–Zippel lemma to transition to a setting where group operation ora-
cles are implemented with respect to formal polynomials. The technical core
of the analysis is identifying under which added conditions the coefficients of
monomials corresponding to hashed group elements vanish. To ensure that the
coefficients related to the quadratic term are zero we require that, after sub-
stituting the equalities originating from the degree-one part into the constant
term, the resulting polynomial is not zero. Afterwards, linear independence of
the linear terms ensures that all other coefficients are zero.

Our AGM-H proofs embed the q-power discrete logarithm (q-DL) problem
of Fuchsbauer, Kiltz, and Loss [36] in a UK problem instance so that a represen-
tation that is nontrivial in the group elements returned by the hash oracle can
be converted into a polynomial one of whose roots is the solution to the q-DL
problem. As mentioned, we establish hardness for linear relation polynomials
with linearly independent coefficients. For polynomials with quadratic terms,
however, we only prove a hardness result for the assumption that is needed for
the analysis of Groth16 in type-3 groups.

It may be that deciding UK hardness in general reduces to the ideal mem-
bership problem, and thus to Gröbner-basis computation, which has a double
exponential complexity in the number of input variables. Despite this, for specific
classes of polynomials, sufficient conditions for the hardness of the UK can be
established. Generalizing the UK to a larger class of quadratic polynomials (in
particular those containing multiple quadratic terms) remains an open problem.

Standard-model lifting: AGM proof reuse. The UK assumption postu-
lates that in certain contexts standard-model adversaries, which may use local
hashing or other means, are algebraic in the classical sense without hashing. This
observation, in turn, allows us to lift existing AGM security proofs to the stan-
dard model. For instance, any adversary against Groth16 can be coupled with
its extractor to always output representations that, under the UK assumptions,

5

are all-zero for hashed group elements. This means we can reuse the already
existing AGM reduction to q-DL for Groth16 without hashing to establish the
standard-model security of Groth16. Similar observations apply to the knowl-
edge soundness of, for example, KZG polynomial commitments.8 We note that
the lifting is from AGM without hashing, but our assumption is justified under
the “weaker” AGM with hashing.

The only other work that we are aware of that proves statements about
SNARKs similar to Groth16 in the AGM with hashing is Lipmaa [54]. However,
it reproves its schemes from scratch in the extended model with hashing, and
does not formalize a plausible knowledge assumption for lifting the security of
Groth16 to the standard model.

Future works. After its initial publication [18], the uber-assumption family
was extended in a series of works to hardness for rational functions [63], interac-
tive problems [3], matrix-type problems [32], and high-entropy sources [2]. A rich
set of relations between notions of hardness has also been established in these
works and others [3, 62]. Similar considerations and questions naturally arise
when investigating knowledge assumptions. For instance, interactive knowledge
assumptions are helpful in justifying the simulation soundness of certain zero-
knowledge protocols [44]. Can the reach of the UK be extended to these settings
while retaining soundness in the (bilinear) GGM-H and AGM-H?

Paper outline. In Section 2 we recall basic notation. The formal definitions of
the generic-group, type-safe and algebraic-group models are given in Section 3.
In this section, we also formally extend these models to those with hashing.
Section 4 contains the definition of the uber-knowledge assumption as well as
some specific knowledge assumptions that fall under it. In Sections 5 and 6 we
prove the hardness of UK in the GGM and the AGM with hashing. We conclude
in Section 7 with an example application of our assumption to Groth16.

2 Preliminaries

Basic notation. We denote by Z and N := Z≥1 the sets of integers and of
natural numbers, and by {0, 1}∗ the set of finite-length bit-strings. For n ∈ N,
we let Zn be the ring of integers modulo n; if n = p is prime, then Fp := Zp

is a field. The security parameter is denoted by λ, and its unary representation
is 1λ. Sampling from a random variable X is denoted x←← X ; when X is a finite
set, x ←← X means sampling from the uniform distribution over X. If A and B
are sets, we write Inj(A,B) for the set of injective functions from A to B. Vectors
are written in boldface and, unless otherwise specified or clear from the context,
their entries are numbered from 1. We use the bracket notation to represent
group elements: If γ = (·, g, p) is a group of order p with fixed generator g
and a ∈ Zp, then [a] := ga. Similarly, if γ is a bilinear group and a ∈ Zp,
8 Lifting is logically different to layering: the latter takes the form Model =⇒ As-

sumption =⇒ Application; the former, on the other hand, has the form (Model
=⇒R Application) =⇒ (Assumption =⇒R Application). Here, R is a reduction.

6

then [a]µ := gaµ (µ ∈ {1, 2, T}), where gµ is the generator of the µ-th group (we
omit subscripts 1 and 2 in type-1 groups, see [39]). We extend this notation to
vectors of exponents: If a ∈ Zℓ

p, then [a] := (gai)ℓi=1, and similarly for bilinear
groups with the appropriate subscripts. Note that this notation does not imply
that the algorithm producing the group element knows its discrete logarithm
wrt. the fixed generator. The trace (or the view) of an algorithm A, i.e., the
vector containing all its inputs, the random coins it is run on, and potential
oracle replies, is denoted trace(A).

Cryptographic games [9]. We use the code-based game-playing framework of
Bellare and Rogaway. A game G is an algorithm run by several parties, among
others a challenger C and an adversary A. The game starts with C generating a
challenge, which is then passed on to A, who is tasked with solving it. To model
potential leakage during the game’s execution, C may offer A a set of oracles
that help the adversary in finding a solution. The output of A is then handed
back to C, who verifies the purported solution and returns a decision bit. We say
that A wins game G if C’s final output is 1; we then write GA = 1, or simply GA.
Other parties may also feature in the game, according to G’s description.

Let G1 and G2 be two games whose code is identical except for the consequent
inside one if-branch, and let Bad be the event that the boolean condition in the
if-statement is triggered. Then |Pr[G1]− Pr[G2]| ≤ Pr[Bad].

Group schemes [26]. A group scheme is a randomized algorithm Γ which, on
input the security parameter 1λ, returns group parameters γ = (·, g, p) (also
called group), where · is an efficiently computable binary function, g is an ele-
ment, and 2λ−1 ≤ p < 2λ is prime. Implicit in γ is the description of a set G
such that (G, ·) is a cyclic group of order p with generator g ∈ G.

Bilinear group schemes [39, 49, 65]. A type-3 bilinear group scheme is a
randomized algorithm B which, on input the security parameter 1λ, returns
bilinear group parameters γ = (·1, g1, ·2, g2, ·T , p, e), where ·µ (µ ∈ {1, 2, T})
and e are efficiently computable binary functions, gν (ν ∈ {1, 2}) are elements,
and 2λ−1 ≤ p < 2λ is prime. Implicit in γ is the description of sets Gµ such
that (1) (Gµ, ·µ) is a cyclic group of order p, (2) (Gµ, ·µ) is generated by gµ,
and (3) e : G1 × G2 → GT satisfies e([a]1, [b]2) = e([1]1, [1]2)

ab for all a, b ∈ Zp,
and gT := e([1]1, [1]2) ̸= [0]T . Note that [0]T is the identity element 1GT

of GT .
A type-2 bilinear group scheme is a type-3 scheme where γ also contains an

efficiently computable group homomorphism ψ : G2 → G1 satisfying ψ(g2) = g1.
A type-1 bilinear group scheme is a type-3 scheme where G1 = G2, ·1 = ·2

and g1 = g2. Accordingly, we will drop subscripts and repeating entries from γ.
We will also often omit the index µ in ·µ when no confusion arises.

Schwartz–Zippel lemma [28, 64, 70]. Below we recall the Schwartz–Zippel
lemma, a simple yet powerful tool to bound the probability of finding a root of
a non-zero (multivariate) polynomial when evaluating it at a random point. We
present a game-based version of the lemma, similar to [2, Lemma 2]. Recall that
the degree of a multivariate monomial is the sum of the exponents of the variables

7

Game SZA
F,S,k,d:

(P1, . . . , Pℓ)←← A; s←← Sk

return
(
(∃1 ≤ i < j ≤ ℓ)

(Pi(s) = Pj(s)) ∧ (Pi ̸= Pj)
)

Game q-DLA
Γ (λ):

γ ←← Γ(1λ); x←← Zp

x← (x, x2, . . . , xq(λ)); x′ ←← A(γ, [x])
return (x = x′)

Game (q1, q2)-DLA
B (λ):

γ ←← B(1λ); x←← Zp; x1 ← (x, x2, . . . , xq1(λ)); x2 ← (x, x2, . . . , xq2(λ))
x′ ←← A(γ, [x1]1, [x2]2); return (x = x′)

Fig. 1. Top left: The Schwartz–Zippel game for a field F, a finite subset S ⊆ F,
and k, q ∈ N, d ∈ Nq. Top right: The q-DL game for a group scheme Γ. Bottom:
The (q1, q2)-DL game for a type-3 bilinear group scheme B.

appearing in the monomial, and the total degree of a multivariate polynomial is
the maximum degree of its monomials.

Lemma 1 (Schwartz–Zippel). Let k, q ∈ N, d ∈ Nq, F a field and S ⊆ F a
finite subset of F. Consider an adversary A returning at most q polynomials in
F[X1, . . . , Xk], where the i-th polynomial has total degree at most di. Then

AdvszF,S,k,d,A := Pr[SZAF,S,k,d] ≤
∑

1≤i<j≤q

max(di,dj)

|S|
≤ q2 max(d)

2|S|
,

where the game SZ is defined in Fig. 1 (top left).

Bauer–Fuchsbauer–Loss lemma [3]. We also recall a technical lemma due
to Bauer, Fuchsbauer, and Loss regarding the leading term of a polynomial after
variable substitutions.

Lemma 2 (Bauer–Fuchsbauer–Loss). Let m, d ∈ N, F be a finite field,
and P ∈ F[X1, . . . , Xm] a polynomial of total degree d. Define the polynomial
Q(Z) ∈ (F[Y1, . . . , Ym, V1, . . . , Vm])(Z) as Q(Z) := P (Y1Z + V1, . . . , YmZ + Vm).
Then the leading coefficient of Q is a polynomial in F[Y1, . . . , Ym] of degree d.

q-DL [36]. Let Γ be a group scheme and q : N→ N a polynomial. We define the
advantage of an adversary A in the q-DL game for Γ as

Advq-dlΓ,A(λ) := Pr[q-DLAΓ (λ)] ,

where the game q-DL is defined in Fig. 1 (top right). We say that q-DL holds
for Γ if for every PPT adversary A, Advq-dlΓ,A is negligible. When q is the constant
polynomial q = 1, we simply write DL := 1-DL.

(q1, q2)-DL [3]. Let B be a type-3 bilinear group scheme and q1, q2 : N → N
polynomials. We define the advantage of an adversary A in the (q1, q2)-DL game
for B as

Adv
(q1,q2)-dl
B,A (λ) := Pr[(q1, q2)-DLAB (λ)] ,

8

where the game (q1, q2)-DL is defined in Fig. 1 (bottom). We say that (q1, q2)-DL

holds for B if for every PPT A, Adv
(q1,q2)-dl
Γ,A is negligible. (q1, q2)-DL for type-2

and type-1 bilinear group schemes are defined similarly.

Berlekamp’s algorithm [10]. Berlekamp’s algorithm is a well-known algo-
rithm for factoring polynomials (thus in particular for finding their roots) over fi-
nite fields. We denote by BerlekampRoot the algorithm which takes a prime p ∈ N
and a polynomial P ∈ Zp[X] as input, and returns the set S of roots of P in Zp.

3 Generic, Type-Safe, and Algebraic Groups

Proving the hardness of interesting computational problems for groups is cur-
rently out of reach. Instead, one attempts to obtain guarantees on the soundness
of hardness assumptions in restricted models of computation. Shoup’s generic-
group model, Maurer’s type-safe model, and the algebraic-group model are pop-
ular idealized/restricted models, which we recall in this section. We begin with
the formal definition of the GGM.

Generic-group model (GGM) [58, 66]. Consider a prime p and a finite set
G ⊆ {0, 1}∗ with |G| = p. Notice that every τ ∈ Inj(Zp,G) defines an associated
operation op : (Zp×G)2 → G via op(a, h, b, h′) := τ(aτ−1(h)+ bτ−1(h′)).9 Under
this operation, G becomes a cyclic group of order p with generator τ(1).

The generic-group model with parameters (p,G) is a model of computation
which idealizes interactions of algorithms with cyclic groups of order p: First, the
challenger samples a random encoding τ ∈ Inj(Zp,G). Then all parties, honest
or otherwise, are run on τ(1) and potentially other application-specific inputs,
and interact with the set G of labels in place of the real group. To perform group
operations, algorithms are given oracle access to the operation op defined by τ .

As mentioned in the introduction, certain types of group-based extractor
games can only be won given the ability to hash strings into the group, a property
that many real-world groups have. To mirror this capability, we extend the GGM
with an appropriate hashing oracle.

GGM with hashing (GGM-H) [4, 20]. We define the GGM-H with parame-
ters (p,G) as the GGM above, except that besides sampling τ , the challenger
also picks a random function H : {0, 1}∗ → Zp, and offers H(m) := τ(H(m)) as
an additional oracle to all parties.10

Following the approach taken for simple groups, we now recall the idealized
models pertaining bilinear groups. In essence, each group is idealized indepen-
dently as before, and the pairing (and potential homomorphism) is defined by the

9 As a mathematical shorthand, we call such a term that pulls back h and h′ using τ−1

to perform an operation and then push the result back forward using τ a pushforward.
10 An alternative definition of hashing would simply pick a random r and then return

τ(r). In contrast to the previous definition, this definition does not allow adversaries
to reproduce hash values.

9

sampled encodings via pushforward. Just as for the GGM, we then extend these
models to account for an adversary’s capability to hash into any of the groups.

Generic-bilinear-group model (GBM{1, 2, 3}) [17,68]. Consider a prime p
and finite sets Gµ (µ ∈ {1, 2, T}) with |Gµ| ≥ p. Given functions τµ ∈ Inj(Zp,Gµ),
one can define operations opµ as in the GGM. Additionally, encodings τµ define
a map e : G1 × G2 → GT given by e(h1, h2) := τT (τ

−1
1 (h1)τ

−1
2 (h2)).

Similarly to the case of simple groups, the type-3 generic-bilinear-group
model (GBM3) with parameters (p,G1,G2,GT) is a model of computation which
abstracts interactions of algorithms with type-3 schemes. Concretely, the chal-
lenger first samples random encodings τµ ∈ Inj(Zp,Gµ). Then all algorithms are
run on input (τ1(1), τ2(1)) and potentially encodings of other application-specific
elements. In place of the real operations ·µ and e, algorithms are given oracle
access to their ideal counterparts opµ and e to interact with labels in Gµ.

The GBM2 with parameters (p,G1,G2,GT) is defined analogously, except
that it also idealizes ψ. More precisely, in addition to opµ and e, in GBM2
the challenger also gives all parties oracle access to ψ : G2 → G1 defined as
ψ(h2) := τ1(τ

−1
2 (h2)).

Likewise, GBM1 with parameters (p,G,GT) is defined as GBM3, but target
sets G1 and G2 as well as encodings τ1 and τ2 are taken to coincide (i.e., G :=
G1 = G2 and τ := τ1 = τ2). To ease notation, we let G := (G1,G2,GT) in GBMk
(k ∈ {2, 3}), and G := (G,GT) in GBM1.

GBM with hashing [54]. The GBM3-H with parameters (p,G) is defined
as GBM3, but besides sampling τµ, µ ∈ {1, 2, T}, the challenger also picks in-
dependent Hµ : {0, 1}∗ → Rng(τµ) at random, and defines Hµ as in GGM-H,
using encoding τµ and function Hµ. It then gives Hµ as an additional oracle to
all parties.

The GBM2-H with parameters (p,G) is defined as GBM3-H above, starting
from GBM2, but the oracle H2 is withheld [23].

Finally, the GBM1-H with parameters (p,G) is defined as GBM3-H above,
starting from GBM1, except that the challenger samples only one random func-
tion H : {0, 1}∗ → Zp for both source groups, since these coincide.

An alternative generic model of computation for groups was introduced by
Maurer [56], which replaces group elements with abstract handles representing
memory locations where the elements are stored. This model has recently been
recast by Zhandry [67] as the type-safe model (TSM).11 We next recall the TSM,
but instead of using the language of circuits (as done in [67]), we provide an
oracle-based formalization. Similarly to Shoup’s GGM, we then extend the TSM
to allow any party to hash strings of their choice into the idealized group.

11 The main difference between the two models is that in the TSM, when querying
their oracles, parties cannot choose the memory location (handle) where the result
is stored, and they cannot access handles they are not explicitly given either at the
outset or as an oracle reply. This avoids certain unnatural problems that arise when
analyzing security games in Maurer’s model.

10

Type-safe model (TSM) [56, 67]. Let p be a prime. In the type-safe model
with parameter p, the challenger first initializes an empty table T and a global
counter C = 1, and sets T [C] := 1. Here C plays the role of an abstract handle
to a memory location where a group element is stored. Then all parties are run
on input memory location 1 and potentially other application-specific handles
prepared in advance. To interact with the group, the challenger offers an oracle op
implemented as follows. When a party queries op on (a, c, b, c′) ∈ (Zp ×N)2, the
challenger increments C, stores aT [c]+bT [c′] in T [C], and returns C. Note that in
contrast to Maurer’s model, and in line with Zhandry’s TSM, it is the challenger
rather than the adversary who picks new counter values, and these values are
always fresh. Additionally, all parties are given an equality oracle eq, which when
queried on (c, c′) ∈ N2, returns the bit (T [c] = T [c′]).

When calling their oracles, parties are restricted to querying only coun-
ters they have received as input or seen as response to a prior query to op.
In Zhandry’s circuit model, this corresponds to parties applying gates only to
wires they are given (see [67]). Note that in the TSM all computation related to
counters/handles is performed via oracle queries, and local computation on han-
dles is not allowed (i.e., it does not “type-check”). As for the query complexity
metrics, queries to op incur unit cost, while queries to eq are free.

TSM with hashing. We define the TSM-H with parameter p as the TSM above,
except that after initializing T and C, the challenger also samples a random
function H : {0, 1}∗ → Zp. In addition to oracles op and eq, the challenger then
also offers all parties an oracle H defined as follows. When a party queries H
on m ∈ {0, 1}∗, the challenger increments C, stores H(m) in T [C] and returns C.

We now extend the TSM to the bilinear setting, and then add hashing oracles
to allow an adversary to hash into the various groups. To do so, we proceed as
for the GBM, but start from the TSM rather than Shoup’s GGM.

Bilinear-type-safe model (BTM{1, 2, 3}). Let p be a prime. In the type-3
bilinear-type-safe model (BTM3) with parameter p, the challenger first initial-
izes tables T1, T2 and TT , as well as global counters C1 = C2 = CT = 1, and
sets T1[C1] := T2[C2] := TT [CT] := 1. Then all parties are run on input mem-
ory locations (1, 1, 1), and potentially other application-specific handles, and
are given oracles opµ, eqµ (µ ∈ {1, 2, T}) and e. Here, opµ and eqµ are imple-
mented as in the simple TSM, each using table Tµ and counter Cµ. On the other
hand, when a party queries e on (c1, c2) ∈ N2, the challenger increments CT ,
stores T1[c1]T2[c2] in TT [CT] and returns CT .

The BTM2 with parameter p is defined analogously, except that it also offers
all algorithms an oracle ψ for ψ defined as follows. When a party queries ψ
on c2 ∈ N, the challenger increments C1, stores T2[c2] in T1[C1], and returns C1.

Likewise, BTM1 with parameter p is defined as BTM3, but tables T1 and T2
as well as counters C1 and C2 are taken to coincide.

In each of the models above parties are restricted to querying, for every group,
only counters they got as input or seen as response to a prior query to opµ or e.

11

eq

H

op

C
C′

A

bits

cL← L : cc

c

v

Fig. 2. Representation of the algebraic compilation of a type-safe game G. Here, C
denotes the challenger of G, and C′ the challenger of AC(G). The unlabeled box inside C′
represents the compiler converting A into an adversary for G.

BTM with hashing. The BTM3-H with parameter p is defined as BTM3, but
besides initializing Tµ and Cµ, µ ∈ {1, 2, T}, the challenger also samples random
functions Hµ : {0, 1}∗ → Zp. It then additionally offers all parties an oracle Hµ

defined as in TSM-H using table Tµ and counter Cµ.
The BTM2-H with parameter p is defined as BTM3-H above, starting from

BTM2, but the oracle H2 is withheld [23].
Finally, the BTM1-H with parameter p is defined as BTM3-H above, start-

ing from BTM1, except that the challenger samples only one random func-
tion H : {0, 1}∗ → Zp and implements only one oracle H for both source groups.

The TSM and BTM provide an adequate setting to define the algebraic group
model (AGM), where adversaries are restricted to being algebraic but have full
access to the standard-model group considered in the game (rather than an
idealized version as in the previous models). Algebraic algorithms, first studied
in [19,59] and later revisited in [36], are required to “explain” any group element
they return in terms of elements they have received as input, either at the outset
or through oracles. We follow Zhandry [67] in defining the AGM as a compiler
for type-safe games, which allows to sidestep issues regarding the validity of the
model (see also [69]). As usual, we then extend the AGM with a hashing oracle.

Algebraic compilation. Given a game G in the TSM with parameter p, we
define the algebraic compilation of G as the game AC(G) in the same model
that operates as follows. Game AC(G) initializes a list L = [] and then runs G.
Whenever G outputs a counter to the adversary, AC(G) keeps track of it by
first appending it to L and then forwarding it to the adversary. Whenever G
expects a counter as input from the adversary, AC(G) instead takes a vector
v ∈ Zℓ

p, where ℓ = |L|. Game AC(G) then uses the current state of the list
L = (c1, . . . , cℓ), the vector v, and the group operation oracle op of G to compute
a counter value c such that T [c] =

∑ℓ
i=1 T [ci]vi, and then forwards c to G (see

Fig. 2). Any output from G that is not a counter is forwarded to the adversary,
and similarly any input from the adversary that is not a counter is forwarded
to G. We call a game G′ algebraic if G′ = AC(G) for some game G in the TSM.

12

Group compilation. Let G be a game in the TSM with parameter p, and
γ := (·, g, p) be a group. The group compilation of G with respect to γ is
the game GC(G, γ) that operates as G with the following modifications. For
every counter value c defined by G, GC(G, γ) instead considers the group ele-
ment [T [c]], and whenever G queries op(c, c′) or eq(c, c′), GC(G, γ) computes [T [c]]·
[T [c′]] and ([T [c]] = [T [c′]]), respectively. The adversary is initially provided
with γ and the group elements corresponding to the counters it is given in G,
and no longer receives oracles op and eq. Whenever G sends a counter value c
to the adversary, GC(G, γ) instead sends [T [c]]. (By type-safety c is an already
existing counter.) Vice versa, whenever G expects a counter from the adversary,
GC(G, γ) accepts a group element instead. This is equivalent to picking a new
counter value and forwarding to the type-safe game. Any other communication
between G and the adversary is relayed as before.

Algebraic-group model (AGM) [19, 36, 67]. The algebraic group model is
a framework to study type-safe games in the standard model. More precisely,
studying a type-safe game G′ in the AGM with respect to a group γ := (·, g, p)
is defined as analyzing the game GC(AC(G′), γ). Note that with this definition,
one can talk about a standard-model game G in the AGM only if G is first
identified as the group compilation GC(G′, γ) of a type-safe game G′.

We now similarly define the AGM with hashing, which was already infor-
mally introduced by Fuchsbauer, Kiltz and Loss [36] and further studied by
Lipmaa [54], in the type-safe game framework of [67].

AGM with hashing. Given a game G in the TSM-H with parameter p, its
algebraic compilation AC(G) is defined as before, except that for every query to
oracle H, the returned counter value c is also added to the list L. Accordingly,
an adversary can also use the counters obtained through the hashing oracle
to construct new group elements. The group compilation GC(G, γ) of G with
respect to a group γ is defined as before, except that oracle H is still offered
to all algorithms. Whenever any party queries H on a message m ∈ {0, 1}∗, the
game returns the group element [H(m)] in place of the corresponding counter.
Notice that GC(G, γ) is a game in the random-oracle model.

With the definitions above, studying a TSM-H game G′ in the AGM with
respect to a group γ is defined as analyzing the game GC(AC(G′), γ). Again,
one can talk about a random-oracle-model game G in the AGM only if G is first
identified as GC(G′, γ) for a TSM-H game G′.

We conclude our overview of idealized models by defining a bilinear version
of the AGM. We also add a hashing oracle for each group idealized in the model.

Bilinear algebraic compilations. Let p be a prime, and consider a game G
in the BTMk with parameter p. Bilinear algebraic compilation AC(G) is defined
similarly to standard algebraic compilation, with the following differences.

If k = 3, AC(G) now maintains three initially empty lists L1, L2 and LT to
keep track of the counters output by the game to the adversary. Whenever G
expects a value cν of counter Cν (ν ∈ {1, 2}) from the adversary, AC(G) instead
takes a vector v ∈ Zℓν

p , where ℓν = |Lν |. Game AC(G) then uses the current state

13

of the list Lν = (cν,1, . . . , cν,ℓν), v and oracle opν to compute a counter value cν so
that Tν [cν] =

∑ℓν
i=1 viTν [cν,i], and then forwards cν to G. Similarly, whenever G

expects a value cT of counter CT from the adversary, AC(G) instead takes a ma-
trix m ∈ Zℓ1×ℓ2

p and a vector v ∈ ZℓT
p . Game AC(G) then uses the current state

of the lists Lµ (µ ∈ {1, 2, T}), m, v, and oracles e and opT to compute a counter
value cT so that TT [cT] =

∑ℓ1
i=1

∑ℓ2
j=1 mijT1[c1,i]T2[c2,j] +

∑ℓT
t=1 vtTT [cT,t], and

then forwards cT to G. Other inputs and outputs are relayed.
If k = 2, AC(G) is defined similarly, but we must account for the additional

oracle ψ. Accordingly, whenever G expects a value c1 of counter C1 from the
adversary, AC(G) instead takes vectors v ∈ Zℓ1

p and w ∈ Zℓ2
p . Game AC(G)

then uses the current state of the lists Lν (ν ∈ {1, 2}), v, w, and the ora-
cles op1 and ψ to compute a counter value c1 so that T1[c1] =

∑ℓ1
i=1 viT1[c1,i] +∑ℓ2

j=1 wjT2[c2,j], and then forwards c1 to G. Similarly, whenever G expects
a value cT of counter CT from the adversary, AC(G) instead takes matrices
m ∈ Zℓ1×ℓ2

p and n ∈ Zℓ2×ℓ2
p , and a vector v ∈ ZℓT

p . Game AC(G) then uses the
current state of the lists Lµ (µ ∈ {1, 2, T}), m, n, v, and oracles e, ψ and opT
to compute a counter value cT so that TT [cT] =

∑ℓ1
i=1

∑ℓ2
j=1 mijT1[c1,i]T2[c2,j]+∑ℓ2

i,j=1 nijT2[c2,i]T2[c2,j] +
∑ℓT

t=1 vtTT [cT,t], and then forwards cT to G.
If k = 1, AC(G) is defined as for k = 3, but now lists L1 and L2 coincide.
If γ is a type-k bilinear group, we define GC(G, γ) as for simple groups: Each

group in G is instantiated with the corresponding parameters in γ as discussed
earlier, and whenever G queries e(c1, c2) (or ψ(c2), if k = 2) for some counter
values c1 and c2, GC(G, γ) computes e([T1[c1]]1, [T2[c2]]2) (resp., ψ([T2[c2]]2)).

Algebraic-bilinear-group model (ABM). Consider a game G′ in the BTMk
with parameter p and a type-k bilinear group γ. As before, studying G′ in
the ABM with respect to γ is defined as analyzing GC(AC(G′), γ).

ABM with hashing. For a game G in the BTMk-H with parameter p, its
algebraic compilation AC(G) is defined as for the BTMk, except that for every
query to oracle Hµ (if present), the returned counter value cµ is also added to
the list Lµ (µ ∈ {1, 2, T}). The bilinear group compilation GC(G, γ) of G with
respect to a type-k bilinear group γ is also defined as before, except that the
challenger still offers oracles Hµ to all parties. Whenever any party queries Hµ on
a message m ∈ {0, 1}∗, the game returns the group element [Hµ(m)]µ in place
of the corresponding counter.

With the definitions above, studying a BTMk-H game G′ in the ABM with
respect to a type-k bilinear group γ is defined as analyzing GC(AC(G′), γ).

In Appendix F we study the relations between different models for stan-
dard and extractor games. Our treatment follows that of Zhandry [67] with the
modifications that we consider the Turing machine model for structured type-
safe games, a fixed set of group representations and the presence of a hashing
oracle. There, we show that security with respect to type-safe and random-
representation groups are equivalent. We also formally prove folklore belief that

14

AGM security implies RR security for standard (non-extractor) games. We sum-
marize these results next.

Proposition 1 (Relations). Let GTS,p be a standard single-stage type-safe
game with hashing for a group of size p. Let G be a group, also viewed as a
representation set, be of size p. Let GAlg,p,G be the G-algebraic compilation of
GTS,p, and let GRR,p,G be its compilation with respect to random representations.
Then security in GAlg,p,G implies security in GRR,p,G, and furthermore the latter
is equivalent to security in GRR,p.

A natural way to extend Theorem 9 (AGM-H =⇒ GGM-H) in Appendix F
to extractor games is as follows. Given a GGM-H adversary, we first convert it
to an AGM-H adversary. We are now given a view in GGM-H and an AGM-H
extractor (by our assumption). We need to convert the GGM-H view to an
AGM-H view so as to be able to run the AGM-H extractor. This, however, does
not seem possible: random group representations need to be converted to the
same real group elements which the AGM-H adversary was run on.

A similar problem arises when attempting to extend Theorem 10 (GGM-H =⇒
TSM-H) in Appendix F to extractor games. We are given a TSM-H view and
need to convert it to a GGM-H view. However, in this conversion we do not have
access to the random representations that the GGM-H adversary was run on.

The intuitive reason for these failures is that AGM-H adversaries have a
“richer view” (the real group elements) compared to GGM-H adversaries (ran-
dom group elements), and the latter cannot be converted to the former. Simi-
larly GGM-H adversaries have a richer view compared to abstract counters that
TSM-H adversaries see.

4 The Uber-Knowledge Assumption

Knowledge adversaries, sources, and extractors. A knowledge adver-
sary is a two-stage algorithm A = (A0,A1), where (1) A0 takes group param-
eters γ = (·, g, p) as input and returns a DPT algorithm R and state informa-
tion st , and (2) A1 takes a vector of group elements [x], a vector a in Zp, and
the state of A0, and returns a vector of group elements [y] and a vector b in Zp.
A knowledge source is an algorithm S taking as input the state returned by A0,
and returning vectors x and a from Zp. A knowledge extractor (for A) is an
algorithm E which takes as input the trace of an execution of A, and returns a
vector (or matrix) w of elements from Zp.

If γ is a type-2 or type-3 bilinear group, S returns four vectors in Zp, one for
each group Gµ (µ ∈ {1, 2, T}) and one in the clear, and A1 returns three vectors
of group elements, one from each Gµ. The additional inputs of A are adjusted
accordingly. In type-1 groups, the vectors for G1 and G2 coincide.

Remark. The algorithm R returned by A0 is intended to implement the win-
ning condition of the knowledge assumption (KA) game (see below), taking the
outputs of S, A1 and E , and returning a decision bit. One could define R to take

15

Game KAA
Γ,S,E(λ):

γ ←← Γ(1λ)
(R, st)←← A0(γ; rA)
(x,a)←← S(st)
([y], b)←← A1([x],a, st ; rA)
trace(A)← (rA, γ, [x],a)
w ←← E(trace(A))
return R(x, [y],a, b,w)

Game UKA
Γ,S,E(λ):

γ ←← Γ(1λ); (Q,P)←← A0(γ; rA)
x←← S(γ,Q,P); x0 ← 1
([y], c)←← A1(γ,Q,P , [x]; rA)
trace(A)← (rA, γ, [x]); w ←← E(trace(A))
return (Q(X,Y , c) ̸= 0 mod p)
∧ ([Q(x,y, c)] = [0])
∧
(
(∃1 ≤ i ≤ n)([yi] ̸=

∏m
j=0[wijxj])

)
Game KAA

B,S,E(λ):

γ ←← B(1λ); (R, st)←← A0(γ; rA)
(xµ,a)←← S(st)
([yµ]µ, b)←← A1([xµ]µ,a, st ; rA)
trace(A)← (rA, γ, [xµ]µ,a)
w ←← E(trace(A))
return R(xµ, [yµ]µ,a, b,w)

Game UKA
B,S,E(λ):

γ ←← B(1λ); (Q,Pµ)←← A0(γ; rA)
xµ ←← S(γ,Q,Pµ); xµ,0 ← 1
([yµ]µ, c)←← A1(γ,Q,Pµ, [xµ]µ; rA)
trace(A)← (rA, γ, [xµ]µ); wµ ←← E(trace(A))
return (Q(Xµ,Yµ, c) ̸= 0 mod p)
∧ ([Q(xµ,yµ, c)]T = [0]T)
∧
(
(∃µ)(∃i)([yµ,i]µ ̸=

∏m
j=0[wµ,ijxµ,j]µ)

)
Fig. 3. Top left: The KA game for a group scheme Γ and source S. Top right: Game
defining the UK assumption for a group scheme Γ. Bottom left: The KA game for a
type-3 bilinear group scheme B and source S. Bottom right: Game defining the UK
assumption for a type-3 bilinear group scheme B. In all figures, µ ranges over {1, 2, T}.

the discrete logarithms of the group elements returned by A1, rather than the el-
ements themselves. Assuming that DL holds for Γ (resp., for some group scheme
defined by B), this would in general make the KA not efficiently falsifiable [57],
and one would have to distinguish between efficient and inefficient relations, and
in the former case whether they are publicly or privately verifiable (i.e., whether
public information is sufficient or private inputs are needed for R to be DPT).

Knowledge assumption (KA). Let Γ be a group scheme and S a knowledge
source. We define the advantage of an adversary A and an extractor E in the
knowledge assumption (KA) game for (Γ,S) as

AdvkaΓ,S,A,E(λ) := Pr[KAAΓ,S,E(λ)] ,

where the game KA is defined in Fig. 3 (top left). We say that the KA holds
for (Γ,S) if for every PPT adversary A, there exists a PPT extractor E such
that AdvkaΓ,S,A,E is negligible.

If B is a bilinear group scheme, the definition is adapted accordingly to
accommodate for the additional inputs and outputs of S and A. For example,
the case of type-3 bilinear group schemes is shown in Fig. 3 (bottom left).

Remark. The definition above is framed in the asymptotic setting, but it can
be readily adapted to the context of concrete security. Given a (bilinear) group
scheme γ, we would then say that KA is (t, t′, ϵ)-hard for (γ,S) if for every
adversaryA running in time at most t, there exists an extractor E running in time

16

at most t′ such that Advkaγ,S,A,E ≤ ϵ. This advantage is the winning probability
in the KA game with fixed group γ (without first sampling from Γ or B). We
also note that our extractors in idealized models do not receive any oracles.
This choice ensures, for example, that justification of a knowledge problem in a
model with richer oracles is stronger than one in a model with less oracles since
extractors can be run without any need for oracles.

Remark. Our AGM and GGM feasibility of the UK assumptions come with
universal extractors that only need black-box access to adversaries. In the stan-
dard model, such extractors do not always exist in cryptographically interesting
settings: for the KEA1 assumption, if the DL problem is hard, adversaries that
have a random exponent hard-coded in can win KEA1 while every extractor
would fail.12 However, universal extractors in other standard-model settings can
exist (e.g., for sigma protocols). Finally, our definition does not allow auxiliary
inputs as otherwise attacks may arise [35].

We next introduce a particular instance of the KA that will play a major
role in this work, which we call the uber-knowledge (UK) assumption.

Uber-knowledge (UK) assumption. Let Γ be a group scheme. We call a
knowledge adversary A low-degree if A0(γ) returns a pair (Q,P), where Q is
a polynomial in m + n + c + 1 variables over Zp (called relation polynomial),
and P is a vector of m polynomials in k variables over Zp, each of total degree
at most d, with m,n, c, k, d ∈ N.

Let S be a knowledge source returning x ∈ Zm
p . We define the advantage of

a low-degree adversary A and an extractor E in the UK game for (Γ,S) as

AdvukΓ,S,A,E(λ) := Pr[UKAΓ,S,E(λ)] ,

where the game UK is defined in Fig. 3 (top right). Here, A1 returns vectors
[y] ∈ Gn and c ∈ Zc

p, and E outputs a matrix w ∈ Zn×(m+1)
p . For a class of PPT

algorithms A we say that UK holds for (Γ,S,A) if for every low-degree PPT A
with A0 ∈ A there exists a PPT E such that AdvukΓ,S,A,E is negligible.

This is a special case of KA, where A0 returns the DPT algorithm R which
checks the condition in the return statement with the given polynomial Q. An
analogous definition can be formulated for bilinear group schemes, following the
same blueprint, but starting from the KA for bilinear groups (for the case of
type-3 bilinear group schemes, see Fig. 3 (bottom right)).

Remark. We note that whether the return condition in the UK game is effi-
ciently verifiable depends on the degree of Q. In the case of group schemes Γ, if Q
has degree at most 1 in Y , the condition (Q(x,y, c) = 0) translates into an equal-
ity involving the group elements returned by A. For bilinear group schemes B, Q
can have degree at most 2 in Yµ (µ ∈ {1, 2}) and at most 1 in YT , with the only
monomials of degree 2 being Y1,iY2,j (and Y2,iY2,j for type-2 group schemes).

12 Moreover, under the existence of sufficiently strong obfuscators, this negative would
extend to a setting where the adversary’s code is available.

17

Game KEA1AΓ,E(λ):

γ ←← Γ(1λ); a←← Zp

([b], [y])←← A(γ, [a])
b′ ←← E(trace(A))
return ([y] = [ab]) ∧ ([b] ̸= [b′])

Game KEA3AΓ,E(λ):

γ ←← Γ(1λ); a, b←← Zp

([c], [y])←← A(γ, [a], [b], [ab])
(c1, c2)←← E(trace(A))
return ([y] = [bc]) ∧ ([c] ̸= [c1] · [ac2])

Game d-PKEA
Γ,E(λ):

γ ←← Γ(1λ); s, a←← Zp; ([c], [y])←← A(γ, {[si]}d(λ)i=1 , {[as
i]}d(λ)i=0)

w ←← E(trace(A)); return ([y] = [ac]) ∧ ([c] ̸=
∏d(λ)

i=0 [wis
i])

Fig. 4. Games defining the KEA1, KEA3, and d-PKE assumptions. In all figures, Γ is
a group scheme and d : N→ N a polynomial.

We can then use the pairing e to efficiently verify the condition above in GT .
Therefore, we will restrict our attention to polynomials Q of this type. Note that
the degree in X and C can be arbitrary in both cases.

We now give a few examples of special cases of the UK assumption, and
begin with examples pertaining to simple groups. We first state the assumptions
individually, and then show in Proposition 2 that they are indeed implied by UK.

Example: KEAI, I ∈ {1, 3} [6, 27]. Let Γ be a group scheme. We define the
advantage of an adversary A and an extractor E in the KEAI game for Γ as

AdvkeaiΓ,A,E(λ) := Pr[KEAIAΓ,E(λ)] ,

where the games KEAI are defined in Fig. 4 (top left and top right). Here, E
returns an element b′ ∈ Zp (resp., c1, c2 ∈ Zp). We say that KEAI holds for Γ if
for every PPT A there exists a PPT E such that AdvkeaiΓ,A,E is negligible.

Remark. We note that the terminology around the KEA assumptions is not
well-established. For example, [7,31] refer to the notion we call KEA1 as the DHK
(or DHK0) assumption, while [6] reserves the name KEA1 for the non-uniform
version of the notion above. Another name for the latter version is DA-1 [47].

Example: d-PKE [42]. Let Γ be a group scheme and d : N → N a polynomial.
We define the advantage of an adversary A and an extractor E in the d-PKE
game for Γ as

Advd-pkeΓ,A,E(λ) := Pr[d-PKEAΓ,E(λ)] ,

where the game d-PKE is defined in Fig. 4 (bottom). Here, E returns a vector
w ∈ Zd(λ)+1

p . We say that d-PKE holds for Γ if for every PPT A there exists a
PPT E such that Advd-pkeΓ,A,E is negligible.

Remark. We note that the d-PKE assumption is false if we remove the condi-
tion ([y] = [ac]) from the game and allow parties to hash into γ (and DL holds
for Γ), even if we restrict the adversary to be algebraic.

18

Game d-KZGA
B,E(λ):

γ ←← B(1λ); s←← Zp; ([c]1, [q]1, x, y)←← A(γ, {[si]1}d(λ)−1
i=1 , [s]2); w ←← E(trace(A))

return (e([c]1 · [−y]1, [1]2) = e([q]1, [s]2 · [−x]2)) ∧ ([c]1 ̸=
∏d(λ)−1

i=0 [wis
i]1)

Game d-PKEA
B,E(λ):

γ ←← B(1λ); s, a←← Zp; ([c]1, [y]1)←← A(γ, {[si]1}d(λ)i=1 , {[as
i]1}d(λ)i=0 , [s]2, [a]2)

w ←← E(trace(A)); return ([y]1 = [ac]1) ∧ ([c]1 ̸=
∏d(λ)

i=0 [wis
i]1)

Game d-GROTH16AB,E(λ):

ϖ ←← B(1λ); R := (ℓ, (Ui, Vi,Wi)
m
i=0, T)←← A0(ϖ)

α, β, γ, δ, x←← Z∗
p; x1,0 ← 1; x2,0 ← 1; xT,0 ← 1

x1,1 ← αγδ; x1,2 ← βγδ; x1,3 ← γδ2; x2,1 ← βγδ; x2,2 ← γ2δ; x2,3 ← γδ2

for i = 0 to d(λ)− 1 do x1,4+i ← γδxi; for i = 0 to d(λ)− 2 do x1,d+4+i ← γxiT (x)
for i = 0 to ℓ do x1,2d+3+i ← βδUi(x) + αδVi(x) + δWi(x)
for i = ℓ+ 1 to m do x1,2d+3+i ← βγUi(x) + αγVi(x) + γWi(x)
for i = 0 to d(λ)− 1 do x2,4+i ← γδxi

((fi)
ℓ
i=1, [a]1, [c]1, [b]2)←← A1(ϖ,R, [x1]1, [x2]2); (wi)

3
i=1 ←← E(trace(A)); f0 ← 1

return
(
e([a]1, [b]2) = e([x1,1]1, [x2,1]2) ·

ℓ∏
i=0

e([fix1,2d+i]1, [x2,2]2) · e([c]1, [x2,3]2)

)
∧
((

[a]1 ̸=
2d(λ)+m+3∏

i=0

[w1,ix1,i]1
)
∨
(
[c]1 ̸=

2d(λ)+m+3∏
i=0

[w2,ix1,i]1
)
∨
(
[b]2 ̸=

d(λ)+3∏
i=0

[w3,ix2,i]2
))

Fig. 5. Games defining the d-KZG, d-PKE, and d-GROTH16 assumptions. Here, B is
a type-3 bilinear group scheme, and d : N→ N a polynomial.

The remaining examples that we consider concern bilinear groups. All as-
sumptions are defined for type-3 bilinear group schemes, but the definitions can
be readily adapted to the setting of type-2 or type-1 schemes.

Example: d-KZG [51]. Let B be a type-3 bilinear group scheme and d : N→ N
a polynomial. The advantage of an adversary A and an extractor E in the d-KZG
game for B is

Advd-kzgB,A,E(λ) := Pr[d-KZGAB,E(λ)] ,

where the game d-KZG is defined in Fig. 5 (top). Here, E returns a vector
w ∈ Zd(λ)

p . We say that d-KZG holds for B if for every PPT A there exists a
PPT E such that Advd-kzgB,A,E is negligible.

Remark. The idea behind d-KZG is to allow a party to commit to a poly-
nomial C ∈ Zp[X] of degree at most d, and then to prove that C(x) = y for
certain x, y ∈ Zp. Notice that the latter means C(X)−y = Q(X)(X−x) for some
polynomial Q ∈ Zp[X], which by Lemma 1 is equivalent to c− y = q(s−x) with
high probability, where s ∈ Zp is random and c = C(s), q = Q(s). This suggests
letting [c]1 be the commitment to C, and [q]1 the proof of the fact that C(x) = y.
Notice that the equality above can be efficiently checked in GT using a pairing,
as in the d-KZG game. The d-KZG assumption is meant to formalize that this

19

Source S(γ,Q,P):

x←← Zk
p; return P (x)

Source S(γ,Q,Pµ):

x←← Zk
p; return Pµ(x)

Adversary B0(γ):

Q((X1,i)
d(λ)−1
i=0 ,X2,0,X2,1, (Y1,i,Ci)

2
i=1)

← Y1,1 −C2 − Y1,2(X2,1 −C1)
for i = 1 to d(λ)− 1 do P1,i(S)← Si

P2(S)← S; return (Q,P1, P2)

Fig. 6. Left: Knowledge sources for which we require the UK assumption to hold
for (Γ,S,B) (resp., (B,S,B)) in Proposition 2. Here, k is an upper bound on the
number of variables appearing in any polynomial in P (resp., Pµ), and µ ∈ {1, 2, T}.
Right: First-stage UK adversary B0 from the proof that UK implies d-KZG.

proof is sound, meaning that no adversary can produce group elements as above
without knowing the coefficients of C.

Example: d-PKE [42]. Let B be a type-3 bilinear group scheme and d : N→ N
a polynomial. We define the advantage of an adversary A and an extractor E in
the d-PKE game for B as

Advd-pkeB,A,E(λ) := Pr[d-PKEAB,E(λ)] ,

where the game d-PKE is defined in Fig. 5 (center). Here, E returns a vector
w ∈ Zd(λ)+1

p . We say that d-PKE holds for B if for every PPT A there exists a
PPT E such that Advd-pkeB,A,E is negligible.

Example: d-GROTH16 [43]. Let B be a type-3 bilinear group scheme, and
d : N → N a polynomial. We define the advantage of an adversary A and an
extractor E in the d-GROTH16 game for B as

Advd-groth16B,A,E (λ) := Pr[d-GROTH16AB,E(λ)] ,

where the game d-GROTH16 is defined in Fig. 5 (bottom). Here, E returns a
vector w ∈ Zm−ℓ

p . We say that d-GROTH16 holds for B if for every PPT A
there exists a PPT E such that Advd-groth16B,A,E is negligible.

Remark. Notice that we define a slightly modified version of the security game
considered in [43], where all polynomials are multiplied by γδ, in order to clear
the denominators and let the assumption fit the UK-framework.

We now prove that all examples above follow from the UK assumption. Jump-
ing ahead, when we give a modular proof that these example assumptions hold
in the GGM-H (resp., GBM1-H, see Corollary 1) via our GGM-H hardness result
(resp., GBM1-H hardness, see Theorems 1 and 5) of UK, we will have to check
that the requirements of Proposition 2 are satisfied by these theorems.

Proposition 2. Let Γ be a group scheme, S the source given in Fig. 6 (top left),
B a class of PPT algorithms such that UK holds for (Γ,S,B), and d : N → N
a polynomial. (1a) If B0 ∈ B for B0 given in Fig. 7 (left) and DL holds for Γ,

20

then KEA1 holds for Γ. (1b) If B0 ∈ B for B0 given in Fig. 8 (left) and 2-DL
holds for Γ, then KEA3 holds for Γ. (1c) If B0 ∈ B for B0 given in Fig. 9 (left)
and (d+ 1)-DL holds for Γ, then d-PKE holds for Γ.

Let B be a type-3 bilinear group scheme, S the source given in Fig. 6 (bot-
tom left), and B a class of PPT algorithms such that UK holds for (B,S,B).
(2a) If B0 ∈ B for B0 given in Fig. 10 (left) and (d + 1, 1)-DL holds for B,
then d-PKE holds for B. (2b) If B0 ∈ B for B0 given in Fig. 6 (right), then d-KZG
holds for B. (2c) Let B0 be the algorithm that returns the polynomial Q defined
in the winning condition and the vector of polynomials P used to form x in
Fig. 5 (bottom). If B0 ∈ B, then d-GROTH16 hold for B.

Proof. We begin by giving a brief overview of our proof strategy. Given an ad-
versary A against any of the considered notions, we transform it into a UK
adversary B against (Γ,S) (resp., (B,S)), for which there must exist a UK ex-
tractor F by hardness of UK. We then turn F into an extractor E for A by
returning only some of the coefficients computed by F , since E has to represent
(some of) the outputs of A in terms of only a subset of its inputs. To ensure that
this representation is correct (i.e., that the coefficients omitted by E were equal
to zero in the first place), we carry out a reduction to power-DL. We show how
a reduction C can embed the power-DL-challenge x into the inputs of A, and
then obtain a non-trivial equation T (x) = 0 involving x if one of the omitted
coefficients is non-zero. Adversary C can then recover x by finding the roots of T .

For d-KZG and d-GROTH16 in type-3 bilinear group schemes, the last step
is not needed since extractor E is allowed to use all input elements to A, so that
we can directly set E := F . We now prove our claims separately.

(1a) KEA1. Given a KEA1 adversary A, let B = (B0,B1) be the UK adversary
where B0 is given in Fig. 7 (left), and B1 runs A and returns its output. Let F
be a UK extractor for B (as per hardness of UK for (Γ,S,B)) that outputs
w = (w11 w12

w21 w22
). Define a KEA1 extractor E for A that runs F and outputs w11.

We claim that Advkea1Γ,A,E is negligible, proving that KEA1 holds for Γ. To that
end, consider the following sequence of games:
G0: This is the original KEA1 game for Γ with respect to adversary A and

extractor E . We reformulate the winning condition by letting the game im-
mediately return 0 if [y] ̸= [ab], and then checking ([b] = [w11]).

G1: This game proceeds as G0, but additionally returns 0 if w is not a correct
representation of all outputs of A in terms of all its (group element) inputs.

G2: This game proceeds as G1, but additionally returns 0 if w is not of the
form

(
w11 0
0 w11

)
.

We now bound the difference between the success probabilities in subsequent
games.

G0 ⇝ G1. Notice that G0 and G1 are identical until Bad, where Bad is the
event in the KEA1 game for Γ played by (A, E) that [y] = [ab] and w is not
a correct representation of ([b], [y]) in terms of ([1], [a]). By definition of S, B
and F , this corresponds to the event that (B,F) win the UK game for (Γ,S).

21

Adversary B0(γ):
Q(X0,X1,Y1,Y2)
← Y2 −X1Y1

P (S)← S
return (Q,P)

Adversary C(γ, [x]):
([b], [y])←← A(γ, [x]); (w11 w12

w21 w22)←← F(trace(A)); S← ∅
T (X)← w12X

2 + (w11 −w22)X −w21

if (T (X) ̸= 0) then S← BerlekampRoot(T, p)
for x′ ∈ S do if ([x′] = [x]) then return x′

return 0

Fig. 7. Left: First-stage UK adversary B0 from the proof that UK implies KEA1.
Right: Adversary C against DL from the proof that UK implies KEA1.

By the fundamental lemma of game playing we therefore have

|Pr[G1]− Pr[G0]| ≤ Pr[Bad] = AdvukΓ,S,B,F (λ) .

G1 ⇝ G2. Observe that G1 and G2 are identical until Bad′, where Bad′ is the
event in the KEA1 game for Γ played by (A, E) that ([b], [y]) and w are correct,
but w is not of the form

(
w11 0
0 w11

)
. Again by the fundamental lemma of game

playing we have |Pr[G2]− Pr[G1]| ≤ Pr[Bad′].

Collecting all terms above, we obtain

Advkea1Γ,A,E(λ) = Pr[G0] ≤ Pr[G2] + AdvukΓ,S,B,F (λ) + Pr[Bad′]

= AdvukΓ,S,B,F (λ) + Pr[Bad′] ,

where the last equality holds because Pr[G2] = 0, since the return statement
introduced in G2 implies [b] = [w11], while the winning condition is [b] ̸= [w11].

We are now left with bounding Pr[Bad′]. To that end, consider the adversary C
against DL for Γ defined in Fig. 7 (right), who simulates the KEA1 game for Γ
by running A on its input. Then

Pr[DLCΓ(λ)] ≥ Pr[DLCΓ(λ) | Bad
′] Pr[Bad′] = Pr[Bad′] ,

where the last equality holds because C will always succeed when Bad′ holds.
Indeed, given that Bad′ happens, we have [y] = [xb] and [b] = [w11 + w12x],
[y] = [w21 +w22x], since the outputs of A and F are correct. Substituting for b
and y in the first equation we obtain T (x) = 0, where T (X) is the polynomial
defined by C. By definition of Bad′, T (X) ̸= 0, so that C can recover the discrete
logarithm x of [x] by finding the roots of T using Berlekamp’s algorithm.

(1b) KEA3. Given a KEA3 adversary A, let B = (B0,B1) be the UK adversary
where B0 is given in Fig. 8 (left), and B1 runs A and returns its output. Let F
be a UK extractor for B (as per hardness of UK for (Γ,S,B)) that outputs
w = (w11 w12 w13 w14

w21 w22 w23 w24
). Define a KEA3 extractor E for A that runs F and

outputs (w11,w12). We claim that Advkea3Γ,A,E is negligible, proving that KEA3
holds for Γ. To that end, consider the following sequence of games:
G0: This is the original KEA3 game for Γ with respect to adversary A and

extractor E . We reformulate the winning condition by letting the game im-
mediately return 0 if [y] ̸= [bc], and then checking ([c] = [w11 +w12a]).

22

Adversary B0(γ):
Q(X0, . . . ,X3,Y1,Y2)
← Y2 −X2Y1

P1(S1,S2)← S1

P2(S1,S2)← S2

P3(S1,S2)← S1S2

return (Q,P)

Adversary C(γ, [x], [x2]):
β1, β2 ←← Z∗

p; α1, α2 ←← Zp; (Q,P)←← B0(γ)
([c], [y])←← A(γ, [β1x+ α1], [β2x+ α2],

[(β1x+ α1)(β2x+ α2)])
(w11 w12 w13 w14
w21 w22 w23 w24)←← F(trace(A)); S← ∅; X0 ← 1

for j = 1 to 3 do Xj ← Pj(β1X + α1, β2X + α2)
for i = 1 to 2 do Yi ←

∑4
j=1 wijXj−1

T (X)← Q(X0, . . . ,X3,Y1,Y2)
if (T (X) ̸= 0) then S← BerlekampRoot(T, p)
for x′ ∈ S do if ([x′] = [x]) then return x′

return 0

Fig. 8. Left: First-stage UK adversary B0 from the proof that UK implies KEA3.
Right: Adversary C against 2-DL from the proof that UK implies KEA3.

G1: This game proceeds as G0, but additionally returns 0 if w is not a correct
representation of all outputs of A in terms of all its (group element) inputs.

G2: This game proceeds as G1, but additionally returns 0 if w is not of the
form

(
w11 w12 0 0
0 0 w11 w12

)
.

We now bound the difference between the success probabilities in subsequent
games.

G0 ⇝ G1. Notice that G0 and G1 are identical until Bad, where Bad is the
event in the KEA3 game for Γ played by (A, E) that [y] = [bc] and w is not a
correct representation of ([b], [y]) in terms of ([1], [a], [b], [ab]). By definition of S,
B and F , this corresponds to the event that (B,F) win the UK game for (Γ,S).
By the fundamental lemma of game playing we therefore have

|Pr[G1]− Pr[G0]| ≤ Pr[Bad] = AdvukΓ,S,B,F (λ) .

G1 ⇝ G2. Observe that G1 and G2 are identical until Bad′, where Bad′ is the
event in the KEA3 game for Γ played by (A, E) that ([c], [y]) and w are correct,
but w is not of the form

(
w11 w12 0 0
0 0 w11 w12

)
. Again by the fundamental lemma of

game playing we have |Pr[G2]− Pr[G1]| ≤ Pr[Bad′].

Collecting all terms above, we obtain

Advkea3Γ,A,E(λ) = Pr[G0] ≤ Pr[G2] + AdvukΓ,S,B,F (λ) + Pr[Bad′]

= AdvukΓ,S,B,F (λ) + Pr[Bad′] ,

where the last equality holds because Pr[G2] = 0, since the return statement
introduced in G2 ensures that [c] = [w11 +w12a], while the winning condition
is [c] ̸= [w11 +w12a].

We are now left with bounding Pr[Bad′]. To that end, consider the adversary C
against 2-DL for Γ defined in Fig. 8 (right); we will bound Pr[Bad′] in terms of
the advantage of C. To do so, we show that if Bad′ occurs, then the polynomial T
constructed by C is non-zero with overwhelming probability. Whenever that is

23

the case, C will succeed in winning the 2-DL game for Γ, because it can recover x
by finding the correct root of T using Berlekamp’s algorithm.

Starting from 2-DLCΓ, we transition to a game G′ where A is given group
elements ([r1], [r2], [r1r2]) for r1, r2 ←← Zp and then, only after F is run, G′

samples x←← Zp, β1, β2 ←← Z∗p, and then sets α1 ← r1−β1x and α2 ← r2−β2x.
Then observe that Pr[2-DLCΓ] = Pr[G′], because the inputs of A are equally
distributed in both games. Now write Bad′ = Bad′3 ∨ · · · ∨ Bad′0, where

Bad′3 := Bad′ ∧ (w14 ̸= 0)

Bad′2 := Bad′ ∧ ¬Bad′3 ∧ ((w13 ̸= 0) ∨ (w12 ̸= w24))

Bad′1 := Bad′ ∧ ¬Bad′3 ∧ ¬Bad
′
2 ∧ ((w22 ̸= 0) ∨ (w11 ̸= w23))

Bad′0 := Bad′ ∧ ¬Bad′3 ∧ ¬Bad
′
2 ∧ ¬Bad

′
1 ∧ (w21 ̸= 0) .

Here, Bad′i is the event that the coefficient of degree i in T is non-zero as a
polynomial in β1 and β2, but every coefficient of higher degree is zero. (Note
that Pr[Bad′0] = 0, because if Bad′ occurs, then T (x) = 0, so it cannot be that
the constant coefficient is the only non-zero coefficient of T .) Then

Pr[2-DLCΓ(λ)] = Pr[G′] ≥ Pr[G′ ∧ Bad′] =

= Pr[G′ | Bad′3] Pr[Bad
′
3] + Pr[G′ | Bad′2] Pr[Bad

′
2] + Pr[G′ | Bad′1] Pr[Bad

′
1]

≥
(
1− 1

2λ−1 − 1

)
(Pr[Bad′3] + Pr[Bad′2] + Pr[Bad′1])

=

(
1− 1

2λ−1 − 1

)
Pr[Bad′] .

Here, the last inequality holds because of the Schwartz–Zippel lemma (Lemma 1).
Indeed, given that Bad′i occurs, the coefficient of degree i in T is a non-zero
polynomial of degree 1 in β1 and β2, which for β1, β2 ←← Z∗p will vanish with
probability at most 1/(2λ−1 − 1).

(1c) d-PKE (simple groups). Given a d-PKE adversary A, let B = (B0,B1) be
the UK adversary where B0 is given in Fig. 9 (left), and B1 runs A and returns
its output. Let F be a UK extractor for B (as per hardness of UK for (Γ,S,B))
that outputs w =

(w11 ··· w1,2d(λ)+2
w21 ··· w2,2d(λ)+2

)
. Define a d-PKE extractor E for A that

runs F and outputs (w11, . . . ,w1,d(λ)+1). We claim that Advd-pkeΓ,A,E is negligible,
proving that d-PKE holds for Γ. To that end, consider the following games:
G0: This is the original d-PKE game for Γ with respect to adversary A and

extractor E . We reformulate the winning condition by letting the game im-
mediately return 0 if [y] ̸= [ac], and then checking ([c] =

∏d(λ)+1
i=1 [w1is

i−1]).
G1: This game proceeds as G0, but additionally returns 0 if w is not a correct

representation of all outputs of A in terms of all its (group element) inputs.
G2: This game proceeds as G1, but additionally returns 0 if w is not of the

form
(

w11 ··· w1,d(λ)+1 0 ··· 0
0 ··· 0 w11 ··· w1,d(λ)+1

)
.

We now bound the difference between the success probabilities in subsequent
games.

24

Adversary B0(γ):

Q((Xi)
d(λ)
i=0 , (X

′
i)

d(λ)
i=0 ,Y1,Y2)

← Y2 −X ′
0Y1

for i = 1 to d(λ) do
Pi(S1,S2)← Si

1

for i = 0 to d(λ) do
P ′

i (S1,S2)← S2S
i
1

return (Q,P ,P ′)

Adversary C(γ, [x], . . . , [xd(λ)], [xd(λ)+1]):

β1, β2 ←← Z∗
p; α1, α2 ←← Zp; (Q,P ,P ′)←← B0(γ)

([c], [y])←← A(γ, {[(β1x+ α1)
i]}d(λ)i=1 ,

{[(β2x+ α2)(β1x+ α1)
i]}d(λ)i=0); S← ∅(

w11 ··· w1,2d(λ)+2
w21 ··· w2,2d(λ)+2

)
←← F(trace(A)); X0 ← 1

for j = 1 to d(λ) do
Xj ← Pj(β1X + α1, β2X + α2)

for j = 0 to d(λ) do
Xd(λ)+1+j ← P ′

j (β1X + α1, β2X + α2)

for i = 1 to 2 do Yi ←
∑2d(λ)+2

j=1 wijXj−1

T (X)← Q(X0, . . . ,X2d(λ)+1,Y1,Y2)
if (T (X) ̸= 0) then S← BerlekampRoot(T, p)
for x′ ∈ S do if ([x′] = [x]) then return x′

return 0

Fig. 9. Left: First-stage UK adversary B0 from the proof that UK implies d-PKE.
Right: Adversary C against (d+ 1)-DL from the proof that UK implies d-PKE.

G0 ⇝ G1. Notice that G0 and G1 are identical until Bad, where Bad is the
event in the d-PKE game for Γ played by (A, E) that [y] = [ac] and w is not a
correct representation of ([c], [y]) in terms of ([1], . . . , [sd(λ)], [a], . . . , [asd(λ)]). By
definition of S, B and F , this corresponds to the event that (B,F) win the UK
game for (Γ,S). By the fundamental lemma of game playing we therefore have

|Pr[G1]− Pr[G0]| ≤ Pr[Bad] = AdvukΓ,S,B,F (λ) .

G1 ⇝ G2. Observe that G1 and G2 are identical until Bad′, where Bad′ is
the event in the d-PKE game for Γ played by (A, E) that ([c], [y]) and w are
correct, but w is not of the form

(
w11 ··· w1,d(λ)+1 0 ··· 0
0 ··· 0 w11 ··· w1,d(λ)+1

)
. Again by the

fundamental lemma of game playing we have |Pr[G2]− Pr[G1]| ≤ Pr[Bad′].

Collecting all terms above, we obtain

Advd-pkeΓ,A,E(λ) = Pr[G0] ≤ Pr[G2] + AdvukΓ,S,B,F (λ) + Pr[Bad′]

= AdvukΓ,S,B,F (λ) + Pr[Bad′] ,

where the last equality holds because Pr[G2] = 0, since the return statement
introduced in G2 ensures that [c] = [w11+· · ·+w1,d(λ)+1s

d(λ)], while the winning
condition is [c] ̸= [w11 + · · ·+w1,d(λ)+1s

d(λ)].
We are now left with bounding Pr[Bad′]. To that end, consider the adver-

sary C against (d+1)-DL for Γ defined in Fig. 9 (right); we will bound Pr[Bad′]
in terms of the advantage of C. To do so, we show that if Bad′ occurs, then
the polynomial T constructed by C is non-zero with overwhelming probability.
Whenever that is the case, C will succeed in winning the (d+1)-DL game for Γ,
because it can recover x by finding the correct root of T using Berlekamp’s
algorithm.

25

Starting from (d + 1)-DLCΓ, we transition to a game G′ where A is given
group elements ([r1], . . . , [r

d(λ)
1], [r2], . . . , [r2r

d(λ)
1]) for r1, r2 ←← Zp and then, only

after F is run, G′ samples x ←← Zp, β1, β2 ←← Z∗p, and then sets α1 ← r1 − β1x
and α2 ← r2 − β2x. Then observe that Pr[(d + 1)-DLCΓ] = Pr[G′], because the
inputs of A are equally distributed in both games. Now write

Bad′ = Bad′d(λ)+2 ∨ · · · ∨ Bad′0 ,

where

Bad′d+2 := Bad′ ∧ (w1,2d+2 ̸= 0)

Bad′d+1 := Bad′ ∧ ¬Bad′d+2 ∧ ((w1,2d+1 ̸= 0) ∨ (w1,d+1 ̸= w2,2d+2))

Bad′d := Bad′ ∧ ¬Bad′d+2 ∧ ¬Bad
′
d+1

∧ ((w1,2d ̸= 0) ∨ (w2,d+1 ̸= 0) ∨ (w1,d+1 ̸= w2,2d+2))

...
Bad′2 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad

′
3

∧ ((w1,d+2 ̸= 0) ∨ (w22 ̸= 0) ∨ (w11 ̸= w2,d+2))

Bad′1 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad
′
2 ∧ ((w22 ̸= 0) ∨ (w11 ̸= w2,d+2))

Bad′0 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad
′
1 ∧ (w21 ̸= 0) .

Here, Bad′i is the event that the coefficient of degree i in T is non-zero as a
polynomial in β1 and β2, but every coefficient of higher degree is zero. (Note
that Pr[Bad′0] = 0, because if Bad′ occurs, then T (x) = 0, so it cannot be that
the constant coefficient is the only non-zero coefficient of T .) Then

Pr[(d+ 1)-DLCΓ(λ)] = Pr[G′] ≥ Pr[G′ ∧ Bad′] =

=

d(λ)+2∑
i=1

Pr[G′ | Bad′i] Pr[Bad
′
i] ≥

(
1− 2

2λ−1 − 1

)d(λ)+2∑
i=1

Pr[Bad′i]


=

(
1− 2

2λ−1 − 1

)
Pr[Bad′] .

Here, the last inequality holds because of the Schwartz–Zippel lemma (Lemma 1).
Indeed, given that Bad′i occurs, the coefficient of degree i in T is a non-zero
polynomial of degree 2 in β1 and β2, which for β1, β2 ←← Z∗p will vanish with
probability at most 2/(2λ−1 − 1).

(2a) d-PKE (type-3 groups). Given a d-PKE adversary A, let B = (B0,B1) be
the UK adversary where B0 is given in Fig. 10 (left), and B1 runs A and returns
its output. Let F be a UK extractor for B (as per hardness of UK for (B,S,B))
that outputs w =

(w11 ··· w1,2d(λ)+2
w21 ··· w2,2d(λ)+2

)
. Define a d-PKE extractor E for A that

runs F and outputs (w11, . . . ,w1,d(λ)+1). We claim that Advd-pkeB,A,E is negligible,
proving that d-PKE holds for B. To that end, consider the following games:

26

G0: This is the original d-PKE game for B with respect to adversary A and ex-
tractor E . We reformulate the winning condition by letting the game imme-
diately return 0 if [y]1 ̸= [ac]1, and then checking ([c]1 =

∏d(λ)+1
i=1 [w1is

i−1]1).
G1: This game proceeds as G0, but additionally returns 0 if w is not a correct

representation of all outputs of A in terms of all its (group element) inputs.
G2: This game proceeds as G1, but additionally returns 0 if w is not of the

form
(

w11 ··· w1,d(λ)+1 0 ··· 0
0 ··· 0 w11 ··· w1,d(λ)+1

)
.

We now bound the difference between the success probabilities in subsequent
games.

G0 ⇝ G1. Notice that G0 and G1 are identical until Bad, where Bad is the event
in the d-PKE game for B played by (A, E) that [y]1 = [ac]1 and w is not a correct
representation of ([c]1, [y]1) in terms of ([1]1, . . . , [sd(λ)]1, [a]1, . . . , [asd(λ)]1). By
definition of S, B and F , this corresponds to the event that (B,F) win the UK
game for (B,S). By the fundamental lemma of game playing we therefore have

|Pr[G1]− Pr[G0]| ≤ Pr[Bad] = AdvukB,S,B,F (λ) .

G1 ⇝ G2. Observe that G1 and G2 are identical until Bad′, where Bad′ is the
event in the d-PKE game for B played by (A, E) that ([c]1, [y]1) and w are
correct, but w is not of the form

(
w11 ··· w1,d(λ)+1 0 ··· 0
0 ··· 0 w11 ··· w1,d(λ)+1

)
. Again by the

fundamental lemma of game playing we have |Pr[G2]− Pr[G1]| ≤ Pr[Bad′].

Collecting all terms above, we obtain

Advd-pkeB,A,E(λ) = Pr[G0] ≤ Pr[G2] + AdvukB,S,B,F (λ) + Pr[Bad′]

= AdvukB,S,B,F (λ) + Pr[Bad′] ,

where the last equality holds because Pr[G2] = 0, since the return statement
introduced in G2 ensures that [c]1 = [w11 + · · · + w1,d(λ)+1s

d(λ)]1, while the
winning condition is exactly [c]1 ̸= [w11 + · · ·+w1,d(λ)+1s

d(λ)]1.
We are now left with bounding Pr[Bad′]. To that end, consider the adversary C

against (d + 1, 1)-DL for B defined in Fig. 10 (right); we will bound Pr[Bad′]
in terms of the advantage of C. To do so, we show that if Bad′ occurs, then
the polynomial T constructed by C is non-zero with overwhelming probability.
Whenever that is the case, C will succeed in winning the (d + 1, 1)-DL game
for B, because it can recover x by finding the correct root of T using Berlekamp’s
algorithm.

Starting from (d + 1, 1)-DLCB, we transition to a game G′ where A is given
group elements ([r1]1, . . . , [r

d(λ)
1]1, [r2]1, . . . , [r2r

d(λ)
1]1, [r1]2, [r2]2) for r1, r2 ←← Zp

and then, only after F is run, G′ samples x ←← Zp, β1, β2 ←← Z∗p, and then sets
α1 ← r1 − β1x and α2 ← r2 − β2x. Observe that Pr[(d + 1, 1)-DLCB] = Pr[G′],
because the inputs of A are equally distributed in both games. Now write

Bad′ = Bad′d(λ)+2 ∨ · · · ∨ Bad′0 ,

27

Adversary B0(γ):

Q((X1,i)
d(λ)
i=0 , (X

′
1,i)

d(λ)
i=0 ,

X2,0,X2,1,X2,2,
Y1,1,Y1,2)
← Y1,2 −X ′

1,0Y1,1

for i = 1 to d(λ) do
P1,i(S1,S2)← Si

1

for i = 0 to d(λ) do
P ′

1,i(S1,S2)← S2S
i
1

P2,1(S1,S2)← S1

P2,2(S1,S2)← S2

return (Q,P1,P
′
1,P2)

Adversary C(γ, [x]1, . . . , [xd(λ)]1, [x
d(λ)+1]1, [x]2):

β1, β2 ←← Z∗
p; α1, α2 ←← Zp; (Q,P1,P

′
1,P2)←← B0(γ)

([c]1, [y]1)←← A(γ, {[(β1x+ α1)
i]1}d(λ)i=1 ,

{[(β2x+α2)(β1x+α1)
i]1}d(λ)i=0 , [β1x+α1]2, [β2x+α2]2)(

w11 ··· w1,2d(λ)+2
w21 ··· w2,2d(λ)+2

)
←← F(trace(A))

S← ∅; X1,0 ←X2,0 ← 1
for j = 1 to d(λ) do X1,j ← P1,j(β1X + α1, β2X + α2)
for j = 0 to d(λ) do

X1,d(λ)+1+j ← P ′
1,j(β1X + α1, β2X + α2)

for j = 1 to 2 do X2,j ← P2,j(β1X + α1, β2X + α2)

for i = 1 to 2 do Y1,i ←
∑2d(λ)+2

j=1 wijX1,j−1

T (X)← Q(X1,0, . . . ,X1,2d(λ)+1,
X2,0,X2,1,X2,2,Y1,1,Y1,2)

if (T (X) ̸= 0) then S← BerlekampRoot(T, p)
for x′ ∈ S do if ([x′]1 = [x]1) then return x′

return 0

Fig. 10. Left: First-stage UK adversary B0 from the proof that UK implies d-PKE
for type-3 bilinear group schemes. Right: Adversary C against (d+ 1, 1)-DL from the
proof that UK implies d-PKE for type-3 bilinear group schemes.

where

Bad′d+2 := Bad′ ∧ (w1,2d+2 ̸= 0)

Bad′d+1 := Bad′ ∧ ¬Bad′d+2 ∧ ((w1,2d+1 ̸= 0) ∨ (w1,d+1 ̸= w2,2d+2))

Bad′d := Bad′ ∧ ¬Bad′d+2 ∧ ¬Bad
′
d+1

∧ ((w1,2d ̸= 0) ∨ (w2,d+1 ̸= 0) ∨ (w1,d+1 ̸= w2,2d+2))

...
Bad′2 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad

′
3

∧ ((w1,d+2 ̸= 0) ∨ (w22 ̸= 0) ∨ (w11 ̸= w2,d+2))

Bad′1 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad
′
2 ∧ ((w22 ̸= 0) ∨ (w11 ̸= w2,d+2))

Bad′0 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad
′
1 ∧ (w21 ̸= 0) .

Here, Bad′i is the event that the coefficient of degree i in T is non-zero as a
polynomial in β1 and β2, but every coefficient of higher degree is zero. (Note
that Pr[Bad′0] = 0, because if Bad′ occurs, then T (x) = 0, so it cannot be that
the constant coefficient is the only non-zero coefficient of T .) Then

Pr[(d+ 1, 1)-DLCB(λ)] = Pr[G′] ≥ Pr[G′ ∧ Bad′] =

=

d(λ)+2∑
i=1

Pr[G′ | Bad′i] Pr[Bad
′
i] ≥

(
1− 2

2λ−1 − 1

)d(λ)+2∑
i=1

Pr[Bad′i]


=

(
1− 2

2λ−1 − 1

)
Pr[Bad′] .

28

Here, the last inequality holds because of the Schwartz–Zippel lemma (Lemma 1).
Indeed, given that Bad′i occurs, the coefficient of degree i in T is a non-zero
polynomial of degree 1 in β1 and β2, which for β1, β2 ←← Z∗p will vanish with
probability at most 2/(2λ−1 − 1).

(2b) d-KZG. Given a d-KZG adversary A, let B = (B0,B1) be the UK adversary
where B0 is given in Fig. 6 (right), and B1 runs A and returns its output. Let F
be a UK extractor for B (as per hardness of UK for (B,S,B)). Define a d-KZG
extractor E that runs F and returns the representation of the first output of B1,
i.e., the first row of the output of F . Then clearly Advd-kzgB,A,E is negligible, proving
that d-KZG holds for B, since any extractor for A is permitted to use all the
inputs of A (from the first group) in its representation, just as F itself. In
particular, no reduction is needed to show that some inputs are not used.

(2c) d-GROTH16. Given a d-GROTH16 adversaryA, let B = (B0,B1) be the UK
adversary where B0 is as in the theorem statement, and B1 runs A and returns
its output. Let F be a UK extractor for B (as per hardness of UK for (B,S,B)).
Then clearly Advd-groth16B,A,E is negligible, proving that d-GROTH16 holds for B,
since any extractor for A is permitted to use all the inputs of A (separately in
each group) in its representation, just as F itself. In particular, no additional
reduction is required to show that some inputs are not used. ⊓⊔

5 Soundness of UK in GBM1-H

In this section we justify the soundness of the UK assumption in the GBM1-H.
Our result is for a class of adversaries A who return a relation polynomial Q of
degree at most two in the output variables, with at most one square term and
linearly independent coefficients for the linear terms. The latter condition serves
to avoid that A can satisfy the linear part of Q by hashing into the group, and
then crafting other elements via exponentiation to satisfy the linear relation.
The corresponding result for simple groups is included in Appendix A.

Theorem 1 (UK holds in GBM1-H). Let d, p ∈ N with p prime, and fix G,
GT ⊆ {0, 1}∗ with |G| = |GT | = p. Consider the class of algorithms A and the
source S defined as follows:
1. For every A0 ∈ A, the relation polynomial Q returned by A0 is of the form

Q(X,XT ,Y ,C) = Qi1i2(X,XT ,C)Yi1Yi2 +

n∑
i=1

Qi(X,XT ,C)Yi

+Q0(X,XT ,C) ,

where m := |X| − 1, mT := |XT |, n := |Y |, c := |C|, and 1 ≤ i1, i2 ≤ n;
2. For every A0 ∈ A, every Q and P , PT returned by A0, and every c ∈ Zc

p,
either Qi1i2 ̸= 0 and polynomials Qi (for i > 0 and i ̸= i1, i2) are linearly
independent, or polynomials Qi (for i > 0) are linearly independent;

29

3. For every A0 ∈ A, every Q and P , PT returned by A0 such that Qi1i2 ̸= 0,
every w ∈ Zn×(m+1)

p , every c ∈ Zc
p, and every (α, β) ∈ {(i1, i2), (i2, i1)}, we

have(m∑
j=0

wαjPj

)(
Qi1i2

(m∑
j=0

wβjPj

)
+Qα

)
+

n∑
i=1
i̸=α

m∑
j=0

wijQiPj +Q0 ̸= 0 ;

4. For every A0 ∈ A and every P , PT returned by A0, S samples s ∈ Zk
p at

random and returns (P (s),PT (s)).
Then the UK assumption holds in the GBM1-H with parameters (p,G) with
respect to the class of adversaries above. More precisely, for every low-degree
adversary A with A0 ∈ A and S as above, there exists an extractor E such that

Advukp,G,S,A,E ≤
(
(m+ 3qop + qH + 2qe + 1)2 + (m+ 3qopT + qHT

+ qe)
2
)
· d
2p

.

Here qop, qopT , qH, qHT
, and qe are upper bounds on the number of queries made

by A to the respective oracles, P0(S) := 1, Qi1i2(S) := Qi1i2(P (S),PT (S), c),
and similarly for Qi and Q0.

Proof. Fix an adversary A in the UK game as in the statement of the theorem,
and define an extractor E as in Fig. 11. This extractor essentially re-runs A1

and observes its oracle queries, keeping track of the discrete logarithms of the
elements queried byA1. Whenever E is unable to “explain” an element in G (resp.,
GT), it stores a fresh variable Rv (resp., RT,vT

) in its table for G (resp., GT).

We claim that this extractor allows us to prove the bound in the theorem
statement. To that end, consider the following sequence of games:
G0: This is the original UK game with respect to source S, adversary A and

extractor E .
G1: This game proceeds as G0, but the encodings τ and τT are implemented via

lazy sampling. More precisely, instead of sampling τ and τT , the challenger
of G1 initializes tables T ← TT ← []. Oracles op and H (resp., opT and HT)
are then implemented via lazy sampling using table T (resp., using table TT).
The same is done for oracle e.

G2: This game proceeds as G1, but the challenger replaces the values xi and xT,i

generated by S with the corresponding polynomials Pi(S) and PT,i(S) eval-
uated at formal variables S. Likewise, whenever it lazily samples a domain
point in T (resp., TT), it instead saves a fresh variable Rv (resp., RT,vT

).
Notice that in this game, tables T and TT are populated exactly as tables U
and UT in E .

We now argue that the difference between the success probabilities in subse-
quent games is small.

G0 ⇝ G1. Notice that G0 and G1 have the same distribution, because the
oracles given to A in the two games are distributed identically. In particular,
this means Pr[G1] = Pr[G0].

30

Extractor E(trace(A)):
parse trace(A) = (rA, γ,x,xT , h1, . . . , hq)
(Q,P ,PT)←← A0(γ; rA); U,UT ← []; o, v, vT ← 0; U [g]← 1
for j = 1 to m do U [xj]← Pj(S); for j = 1 to mT do UT [xT,j]← PT,j(S)

(y, c)←← Aop,opT ,H,HT ,e
1 (x,xT ; rA); if

(
(∃i)(yi /∈ Dom(U))

)
then return 0

for i = 1 to n do parse U [yi] =
∑m

j=1 wijPj(S) +
∑

k bikRk

return w

Proc. op(a, h1, b, h2):
o← o+ 1
if (h1 /∈ Dom(U)) then

v ← v + 1; U [h1]← Rv

if (h2 /∈ Dom(U)) then
v ← v + 1; U [h2]← Rv

if (ho /∈ Dom(U)) then
U [ho]← aU [h1] + bU [h2]

return ho

Proc. H(m):
o← o+ 1
if (ho /∈ Dom(U))
then

v ← v + 1
U [ho]← Rv

return ho

Proc. e(h1, h2):
o← o+ 1
if (h1 /∈ Dom(U)) then

v ← v + 1; U [h1]← Rv

if (h2 /∈ Dom(U)) then
v ← v + 1; U [h2]← Rv

if (ho /∈ Dom(UT)) then
vT ← vT + 1; UT [ho]← RT,vT

return ho

Fig. 11. Definition of the extractor E from the proof of Theorem 1. Oracles opT and HT

proceed exactly as op and H, but use table UT and counter vT in place of U and v,
and save variables RT,vT instead of Rv. The counter o is shared between all oracles.

G1 ⇝ G2. Let Bad (resp., BadT) be the event in G2 that there are two different
polynomials in the domain of T (resp., TT) which result in the same value when
evaluating S, R and RT at random s, r and rT . Notice that G1 and G2 are
identical until Bad or BadT , and by the fundamental lemma of game playing we
therefore have that |Pr[G2]− Pr[G1]| ≤ Pr[Bad] + Pr[BadT].

We bound the latter two probabilities via Lemma 1. Consider an adversary B
in the Schwartz–Zippel game which simulates G2 to A and then returns all
polynomials in the domain of T . Notice that if Bad occurs, then B wins the SZ-
game, and that T contains at most m + 3qop + qH + 2qe + 1 polynomials of
degree at most d. By Lemma 1, Pr[Bad] ≤ (m+ 3qop + qH + 2qe + 1) · d/2p. We
similarly bound Pr[BadT], noting that TT contains at most mT +3qopT +qHT

+qe
polynomials of degree at most d. Therefore,

|Pr[G2]− Pr[G1]| ≤ Pr[Bad] + Pr[BadT]

≤
(
(m+ 3qop + qH + 2qe + 1)2 + (m+ 3qopT + qHT

+ qe)
2
)
· d
2p

.

We conclude the proof by studying the winning probability of A in G2. Notice
that if the output of A is such that the polynomial Q is not satisfied, then A has
trivially lost the game. So suppose that Q is satisfied. Comparing entries stored

31

in TT (recall that TT implements a partial random injection), we obtain

Qi1i2

(m∑
j=0

wi1jPj +
∑
k

bi1kRk

)(m∑
j=0

wi2jPj +
∑
k

bi2kRk

)

+

n∑
i=1

Qi

(m∑
j=0

wijPj +
∑
k

bikRk

)
+Q0 = 0 ,

(1)

as a polynomial in S and R. We want to show that this implies bik = 0 for
all 1 ≤ i ≤ n and all k. Assume for the moment that Qi1i2 ̸= 0. From the term
of degree two in R we obtain

Qi1i2bi1rbi2s = 0

for every r and s, which means that either bi1r = 0 or bi2s = 0 for every r and s.
We claim that, in fact, bi1r = bi2s = 0 for every r and s. Indeed, suppose this
was not the case, and let r̄ be an index such that bi1r̄ ̸= 0. Then bi2s = 0 for
every s. The linear term in Rr̄ now becomes

Qi1i2bi1r̄

m∑
j=0

wi2jPj +

n∑
i=1

Qibir̄ = 0 .

Plugging this equality into the constant term in R, we obtain(m∑
j=0

wi2jPj

)(
Qi1i2

(m∑
j=0

wi1jPj

)
+Qi2

)
+

n∑
i=1,i̸=i2

m∑
j=0

wijQiPj +Q0 = 0 .

This, however, contradicts our assumption, from which we conclude that bi1r = 0
for every r. As a consequence, Equation (1) now becomes

Qi1i2

(m∑
j=0

wi1jPj

)(m∑
j=0

wi2jPj +
∑
k

bi2kRk

)

+

n∑
i=1

Qi

(m∑
j=0

wijPj +
∑
k

bikRk

)
+Q0 = 0 .

We can similarly show that bi2s = 0 for every s. Indeed, assume for the sake
of contradiction that bi2s̄ ̸= 0 for some s̄. The linear term in Rs̄ then is

Qi1i2bi2s̄

m∑
j=0

wi1jPj +

n∑
i=1

Qibis̄ = 0 .

Plugging this equality into the constant term in R, we obtain(m∑
j=0

wi1jPj

)(
Qi1i2

(m∑
j=0

wi2jPj

)
+Qi1

)
+

n∑
i=1,i̸=i1

m∑
j=0

wijQiPj +Q0 = 0 ,

32

which again contradicts our assumption, and thus bi2s = 0 for every s. Conse-
quently, Equation (1) simplifies to

Qi1i2

(m∑
j=0

wi1jPj

)(m∑
j=0

wi2jPj

)
+

n∑
i=1

Qi

(m∑
j=0

wijPj +
∑
k

bikRk

)
+Q0 = 0 .

Now, looking at the linear terms in R, we obtain that for every k,
n∑

i=1

Qibik = 0 . (2)

Recall that, by assumption, polynomials Qi with i > 0 and i ̸= i1, i2 are linearly
independent, which means that bik = 0 for all 1 ≤ i ≤ n and all k.

If on the other hand Qi1i2 = 0, then there are no terms of degree two in R in
Equation (1). This means that we can jump directly to Equation (2) and conclude
that bik = 0 for all 1 ≤ i ≤ n and all k, since Qi are linearly independent.

This in turn shows that E returns an accurate representation of y in terms
of x, which concludes the proof. ⊓⊔

We now show that the specific knowledge assumptions considered in the
previous section all satisfy the condition stated in the theorem above (and its
analogous theorem for simple groups proved under Theorem 7 in Appendix A).

Corollary 1. Let d, p ∈ N with p prime, and fix G,GT ⊆ {0, 1}∗ with |G| =
|GT | = p. (1) KEA1, KEA3, and d-PKE hold in GGM-H with parameters (p,G).
(2) d-KZG, d-PKE, and d-GROTH16 hold in GBM1-H with parameters (p,G).

Proof. The proof is straightforward for all assumptions except d-GROTH16;
we cover d-KZG as an example. Clearly, the relation polynomial Q in d-KZG
is of the form considered in Theorem 1, and the polynomials Q1(S) = 1 and
Q2(S) = −S + c are linearly independent for every c ∈ Zp. The third condition
doesn’t have to be checked because Q has no degree-two term in Y , and the
requirement on the source is satisfied by definition.

For d-GROTH16, the relation polynomial in the case of type-1 groups is

Q(X,Y1, . . . ,Y3,C) = Y1Y3 − Y2X4 −X1X2 −
ℓ∑

i=0

CiXn+5+iX3 .

Again, polynomial Q is of the form covered by Theorem 1, and Q2(S) = −S3S
2
4 is

non-zero and thus linearly independent. For the third condition of the theorem,
we show that the constant term in S5 is not zero, thereby proving that the
whole expression does not vanish for any choice of w and c. To do so, observe
that the terms in S1S2S

2
3S

2
4 and S3

3S
2
4 have coefficients w1,1w3,2+w1,2w3,1−1

and w1,3w3,5+w1,5w3,3−1, respectively. We show that both coefficients cannot
be zero at the same time, without another monomial being non-zero. Indeed if,
say, w1,1 ̸= 0 ̸= w3,2 and w1,3 ̸= 0 ̸= w3,5, then it must be w3,3 = 0 (because
the coefficient of S4

3S
2
4 is w1,3w3,3, which must be zero if the whole expression

vanishes). But then the coefficient of the term S2S
3
3S

2
4 is w1,3w3,2 ̸= 0. The

other three cases are addressed similarly. ⊓⊔

33

In Appendix E, we prove the theorem below which reduces the hardness of
the UK assumption in type-2 and type-3 groups to a compiled UK game in
type-1 groups. This confirms that the UK assumption, in an intuitive sense,
is the easiest in type-1 groups (as the adversary has more power over group
elements and can, for example, compute the pairing of all group elements that it
is given). The compiled game simply provides all group elements in the second
source group in the first source group and makes appropriate modifications to
the winning conditions.

Theorem 2 (For UK: GBM1-H =⇒ GBM3-H). For any A3 against a UK3
game in GBM3-H for any second source group (of the same size as the first),
there is an adversary A1 against UK1, the type-1 compilation of UK3 in GBM1-H,
such that for all extractors E1 for A1 there is an extractor E3 for A3 such that

Advuk3p,G,S,A3,E3 ≤ Advuk1p,G,S,A1,E1 +
q0q1
p

,

where p is the size of the groups, q1 is an upper bound on the number of G1

elements in the game and q0 is an upper bound on the number of locally sampled
group elements in G2. Furthermore, the extractor E3 makes at most q1 queries
to its first source group oracles.

As corollaries, we obtain the hardness of the UK assumption in type-2 and
type-3 groups. In particular Groth16 is also hard in type-2 and type-3 groups.
One caveat to these generic results is that the type-2 and type-3 extractors
that we build need oracle access to the group operation and hashing oracles.
Despite this, it is conceivable that direct proofs of security can lead to standard
oracle-free extractors.

We note that a straightforward reduction also holds for simple groups as in
simple groups the adversary has less power than those in type-1 groups, and
furthermore our type-1 extractor makes no oracle calls.

6 Soundness of UK in ABM3-H

In this section, we justify the soundness of the UK assumption in the ABM3-H.
This result complements the GBM1-H hardness of this assumption as the two
models are formally incomparable for knowledge assumptions.

If we consider the classical definition of algebraic adversary [36], we can
trivially build an extractor: output the scalar representation returned by the
adversary in the AGM as the linear relation between the outputs and the inputs.
As mentioned, this justification does not consider the effect of hashing, and thus
we consider algebraic adversaries in the ABM3-H. Here the trivial extractor is
no longer valid as it may output nonzero coefficients for hash outputs.

Our result here is for a class of adversaries who return a relation polynomialQ
of degree one in the output variables, with linearly independent coefficients for
the linear terms. In Appendix C, we include a proof of the hardness of linear UK
in the AGM-H (i.e., for simple groups).

34

In Appendix B we prove that a simple knowledge by Bellare, Fuchsbauer,
and Scafuro [4] is secure in the AGM-H. The proof there serves as a “warm-up”
to the more technical proof that we present below (as well as that in Appendix D
for d-GROTH16).

Theorem 3 (Linear UK holds in ABM3-H). Let B be a type-3 bilinear group
scheme. Consider the class of PPT algorithms A and the source S defined as
follows:
1. For every A0 ∈ A, the relation polynomial Q returned by A0 is of the form

Q(X1,X2,Y1,Y2,C) = Q0(X1,X2,C) +

2∑
ν=1

nν∑
i=1

Qν,i(X1,X2,C)Yν,i ,

where mν := |Xν | − 1, nν := |Yν |, and c := |C|.
2. For every A0 ∈ A, every Q, P returned by A0, and every c ∈ Zc

p, the
polynomials Q1,i(P1(S),P2(S), c) and Q2,i(P1(S),P2(S), c) are separately
linearly independent, where we set P1,0(S) := P2,0(S) := 1;

3. For every A0 ∈ A and every Pν returned by A0, S samples s ←← Zk
p and

returns Pν(s).
Let q, d : N → N be polynomial upper bounds on the total degrees of the Pν,i

and Q, respectively. If (q, q)-DL holds for B, then UK holds for (B,S,A) in the
ABM3-H. More precisely, for every low-degree PPT adversary A with A0 ∈ A,
there exist an extractor E and an adversary B against (q, q)-DL, both with ap-
proximately the same running times as A, such that

AdvukB,A,E(λ) ≤
(
1− d(λ)q(λ)

2λ−1 − 1

)−1
·Adv

(q,q)-dl
B,B (λ) . (3)

Proof. Fix a source S and an algebraic adversary A in the UK game as in the
statement of the theorem, and define an extractor E as in Fig. 12 (top). This ex-
tractor essentially re-runs A on its view to obtain A’s output (wν ,vν , c). By this
we mean that A encodes elements as [yν,i]ν =

∏mν

j=0[wν,ijxν,j]ν ·
∏uν

j=1[vijhν,j]ν ,
where [xν]ν and [hν]ν are the vector of input group elements and of hash replies.

The extractor then simply ignores the coefficients vν pertaining to the hash
values and returns (w1,w2). Extractor E is intended to work correctly if v1 =
v2 = 0 in the representation returned by A. We now show that if A wins the UK
game, this will likely be the case.

To that end, consider the adversary B playing the (q, q)-DL game for B
defined in Fig. 12 (center and bottom). In essence, B runs A and simulates
the UK game. When preparing the group element inputs and answering hash
queries, B embeds the (q, q)-DL instance it is tasked with solving, carefully hiding
it with random offsets ρ and α to ensure a correct distribution. By construction,
t is a root of the polynomial Q′(T) that B defines, which means that B will be
successful in finding t by inspecting the roots of Q′ whenever Q′(T) ̸= 0.

We now show how to use adversary B to prove the bound (3) for A and E .
To that end, consider the following sequence of games:

35

Extractor E(trace(A)):
parse trace(A) = (rA, γ, [xν]ν , [hµ]µ)
m1 ← |[x1]1|; m2 ← |[x2]2|; u1 ← u2 ← uT ← 0
(Q,Pν)←← AH1,H2,HT

0 (γ; rA)
(wν ,vν , c)←← AH1,H2,HT

1 (γ,Q,Pν , [xν]ν ; rA)
// A encodes group elements
// [yν,i]ν =

∏mν
j=0[wν,ijxν,j]ν ·

∏uν
j=1[vν,ijhν,j]ν

return (w1,w2)

Oracle Hµ(m):
uµ ← uµ + 1
return hµ,uµ

Adversary B(γ, [t]1, [t2]1, . . . , [tq(λ)]1, [t]2, [t2]2, . . . , [tq(λ)]2):
parse γ = (·1, g1, ·2, g2, p, e); u1 ← u2 ← uT ← 0; U1 ← U2 ← UT ← []
ρ←← Zk

p; σ ←← Z∗k
p ; (Q,Pν)←← AH1,H2,HT

0 (γ)
for ν = 1 to 2 do for i = 1 to mν do

P ′
ν,i(T)← Pν,i (ρ+ σT); parse P ′

ν,i(T) =
∑q(λ)

j=0 p′ν,ijT
j ; [xν,i]ν ←

∏q(λ)
j=0 [p

′
ν,ijt

j]ν

(wν ,vν , c)←← AH1,H2,HT
1 (γ,Q,Pν , [xν]ν); P ′

1,0(T)← P ′
2,0(T)← 1

// A encodes group elements [yν,i]ν =
∏mν

j=0[wν,ijxj]ν ·
∏uν

j=1[vν,ijhν,j]ν
for ν = 1 to 2 do for i = 1 to nν do

Y ′
ν,i(T)←

∑mν
j=0 wν,ijP

′
ν,j(T) +

∑u
j=1 vν,ijHν,j(T)

Q′(T)← Q(P ′
1(T),P

′
1(T),Y

′
1 (T),Y

′
2 (T), c)

if (Q′(T) ̸= 0) then S← BerlekampRoot(Q′, p) else return 0
for t′ ∈ S do if ([t′]1 = [t]1) then return t′

return 0

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

uν ← uν + 1; αν,uν ←← Zp; βν,uν ←← Z∗
p

Hν,uν (T)← αν,uν + βν,uνT
Uν [m]← [αν,uν + βν,uν t]ν

return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT)) then

α←← Zp

UT [m]← [α]T
return UT [m]

Fig. 12. Top: Extractor E for the algebraic adversary A in the UK game. Center and
bottom: Adversary B against (q, q)-DL. In all figures, µ and ν range over {1, 2, T}
and {1, 2}, respectively.

G0: This is the original (q, q)-DL game for B played by adversary B.
G1: This game proceeds as G0, but when answering queries to Hν (ν ∈ {1, 2}),

tables Uν are populated in a different way. Specifically, upon a querym to Hν ,
the game samples α′ν,u ←← Zp and βν,u ←← Z∗p, and defines Uν [m] ← [α′ν,u].
Consequently, it then sets Hν,u(T)← α′ν,u+βν,u(T−t). Similarly, polynomi-
als P ′ν,i(T) are now defined as P ′ν,i(T)← Pν,i(ρ

′ + σ(T − t)) for a ρ′ ←← Zk
p

sampled instead of ρ.
G2: This game proceeds as G1, but we set P ′ν,i(T)← Pν,i(ρ

′+Σ(T−t)), where Σ
are new vectors of variables. Similarly, the polynomials Hν,u are now defined
as Hν,u(T,Bν)← α′ν,u+Bν,u(T − t), where Bν,u is a fresh variable for every
oracle call. Accordingly, the polynomial Q′′ constructed after running A is
now in variables T , Σ, B1 and B2. After defining Q′′, game G2 progresses

36

with sampling σ ←← Z∗kp and βν ←← Z∗uν
p , setting Q′(T)← Q′′(T,σ,β1,β2),

and checking if Q′(T) = 0. From here on, G2 proceeds as G1.

We now argue that subsequent games have identical success probabilities.

G0 ⇝ G1. Notice that the distribution of the entries Uν [m] is the same in G0

and G1 (in both games they are uniformly random group elements). The same
holds for the vector xν , which in both games are obtained by evaluating Pν on
random inputs. Therefore, Pr[G0] = Pr[G1]. Observe that, in G1, P ′ν(t) = Pν(ρ

′)
and Hν(m) = [α′ν,u], which means that the vector of inputs and the hash replies
are computed exactly as in the UK game.

G1 ⇝ G2. Notice that A is completely oblivious to the polynomials Hν,u while
being run, so the simulation of A is identical in both games. Afterwards, G2

derives the polynomial Q′ computed in G1 by substituting a random σ and β
into Q′′. As for the change to P ′ν , observe that in both games the vectors xν are
computed in the same way. Therefore, Pr[G1] = Pr[G2].

We conclude the proof by studying the winning probability in G2. Assume
that, while being run in G2, adversary A wins the UK game, i.e., it returns
polynomials (Q,Pν) and an output (wν ,vν , c) for which the winning condition
in UK is satisfied and extractor E fails to compute an appropriate represen-
tation of the outputs. The latter means that v1 ̸= 0 ̸= v2, i.e., there exist
1 ≤ ν∗ ≤ 2, 1 ≤ i∗ ≤ mν and j∗ such that vν∗,i∗j∗ ̸= 0.

We now claim that the polynomial Q′′ constructed in G2 after running A is
not identically zero. Indeed, consider the polynomial

R(S,H1,H2) := Q

(
Pν(S),

mν∑
j=0

wν,ijPν,j(S) +

uν∑
j=1

vν,ijHν,j , c

)

=

2∑
ν=1

nν∑
i=1

Qν,i(Pν(S), c)

(mν∑
j=0

wν,ijPν,j(S) +

uν∑
j=1

vν,ijHν,j

)
+Q0(Pν(S), c) .

The coefficient of Hν∗,j∗ is
∑nν∗

i=1 Qν∗,i(P1(S),P2(S), c)vν∗,ij∗ , which is not zero
because the polynomials Qν∗,i(P (S), c) are linearly independent by assumption
and vν∗,i∗j∗ ̸= 0; therefore, R ̸= 0. Now notice that

Q′′(T,Σ,B1,B2) = R(ρ′ +Σ(T − t),α′1 +B1(T − t),α′2 +B2(T − t)) ,

which is non-zero by Lemma 2 and of degree in T at most d(λ)q(λ). Again by
Lemma 2, the leading coefficient in T of Q′′(T,Σ,B1,B2) is of total degree at
most d(λ)q(λ), which means that for random σ ←← Z∗kp and βν ←← Z∗uν

p , this
leading coefficient will be zero with probability at most d(λ)q(λ)/(2λ−1 − 1) by
Lemma 1. Thus, with probability at least 1 − d(λ)q(λ)/(2λ−1 − 1), Q′(T) ̸= 0.
We conclude by observing that whenever this happens, game G2 will return 1,
which means

Adv
(q,q)-dl
B,B (λ) = Pr[G0(λ)] = Pr[G2(λ)] ≥

(
1− d(λ)q(λ)

2λ−1 − 1

)
·AdvukB,A,E(λ) .

37

This concludes the proof. ⊓⊔

Our requirements from the polynomials in the above theorem are identical
to those needed for the linear case of Theorem 1 (and those needed in simple
groups in Theorem 7 in Appendix A). Hence we obtain the hardness of KEA1,
KEA3, d-KZG, and d-PKE assumption in the AGM-H and ABM3-H settings.

Corollary 2. Let Γ be a group scheme, and d : N → N a polynomial. (1a) If
DL holds in Γ, then KEA1 holds in Γ in the AGM-H. (1b) If 2-DL holds in Γ,
then KEA3 holds in Γ in the AGM-H. (1c) If (d+1)-DL holds in Γ, then d-PKE
holds in Γ in the AGM-H.

Let B be a type-3 bilinear group scheme. (2a) If (d− 1, d− 1)-DL holds in B,
then d-KZG holds in B in the ABM3-H. (2b) If (d + 1, d + 1)-DL holds in B,
then d-PKE holds in B in the ABM3-H.

In Appendix D we prove the following theorem, which establishes the hard-
ness of d-GROTH16 in the ABM3-H.

Theorem 4 (d-GROTH16 holds in ABM3-H). Let B be a type-3 bilinear group
scheme, and d : N → N a polynomial. Then for every PPT algebraic adver-
sary A against d-GROTH16, there exist an extractor E and an adversary B
against (q, q)-DL, both with approximately the same running time as A, such
that

Advd-groth16B,A,E (λ) ≤
(
1− 2q(λ)

2λ−1 − 1

)−1
·Adv

(q,q)-dl
B,B (λ) ,

where q(λ) := max(3, d(λ) + 1, 2d(λ)− 2).

7 Conclusion and Relevance to Applications

We established in Theorem 1 that the UK assumption holds in bilinear generic
groups for adversaries A0 that return flexible Q and P polynomials. The d-PKE,
d-KZG, and d-GROTH16 assumptions are instances of UK, where A0 returns
specific Q and P polynomials. We then prove that the UK assumption for linear
Q also holds in ABM3-H. This implies that the d-PKE and d-KZG assump-
tions are also sound with respect to algebraic groups. We proved separately that
d-GROTH16 holds in ABM3-H.

We may now base the knowledge soundness of the modified Groth16 SNARK
on the d-GROTH16 assumption as follows. For any adversary against the scheme
that outputs an accepting proof, there is also an adversary that outputs the
coefficient representation of the proof based only on its input elements: simply
run the d-GROTH16 extractor after running the adversary. Moreover, for any
such adversary, there is a reduction to q-DL in the standard model: run the
existing AGM reduction [36, Theorem 7.2], utilizing the coefficient representation
output by the extractor as the coefficient representation needed by the AGM
reduction. We obtain the following corollary.

38

Corollary 3. Groth16 for degree-d QAPs defined over a bilinear group γ with
random generators of order p with d2 ≤ (p − 1)/8 is knowledge sound in the
standard model based on the d-GROTH16 and (2d− 1)-DL assumptions.13

The knowledge soundness of KZG polynomial commitments in the standard
model directly follows from the d-KZG assumption.

However, when applying the d-KZG assumption to lift the AGM proof of,
e.g., PLONK, to the standard model, the following subtlety arises. The reduction
to the soundness of PLONK’s PIOP requires the extraction of the committed
polynomial at the time the commitment is sent—which corresponds to hashing in
the Fiat–Shamir transformed SNARK. However, our extractor is only guaranteed
to succeed when provided with the full view of an adversary that also outputs a
verifying polynomial evaluation proof. To address this issue one would have to
truncate the view of the adversary handed to the extractor to be only up to the
point in which the adversary produces the commitment.14

A fascinating direction is to extend the UK to interactive settings possibly
with “online” extractors to enable the layered approach for complex security
notions such as simulation extractability.

Acknowledgments

Pooya Farshim was supported in part by EPSRC grant EP/V034065/1. Patrick
Harasser was funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB
1119 – 236615297.

References

1. M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Optimal structure-preserving
signatures in asymmetric bilinear groups. In CRYPTO 2011.

2. B. Bauer, P. Farshim, P. Harasser, and A. O’Neill. Beyond uber: Instantiating
generic groups via PGGs. In TCC 2022, Part III.

3. B. Bauer, G. Fuchsbauer, and J. Loss. A classification of computational assump-
tions in the algebraic group model. In CRYPTO 2020, Part II.

4. M. Bellare, G. Fuchsbauer, and A. Scafuro. NIZKs with an untrusted CRS: Security
in the face of parameter subversion. In ASIACRYPT 2016, Part II.

5. M. Bellare, V. T. Hoang, and S. Keelveedhi. Cryptography from compression
functions: The UCE bridge to the ROM. In CRYPTO 2014, Part I.

6. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In CRYPTO 2004.

7. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. In ASIACRYPT 2004.

13 Note that we multiply by γδ, thus [xd−2t(x)/δ]1 becomes [γxd−2t(x)]1 of degree
2d− 1, hence q = 2d− 1.

14 We informed the authors of [33] that the same issue might arise in their simulation-
extractability result for KZG polynomial commitments, at least when considering it
in the standard model.

39

8. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In EUROCRYPT’94.
9. M. Bellare and P. Rogaway. The security of triple encryption and a framework for

code-based game-playing proofs. In EUROCRYPT 2006.
10. E. R. Berlekamp. Factoring polynomials over finite fields. Bell Labs Tech. J., 46(8),

1967.
11. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability

of the sponge construction. In EUROCRYPT 2008.
12. J. Birkett and A. W. Dent. Security models and proof strategies for plaintext-aware

encryption. Journal of Cryptology, 27(1), 2014.
13. N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and

E. Tromer. The hunting of the SNARK. Journal of Cryptology, 30(4), 2017.
14. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision

resistance to succinct non-interactive arguments of knowledge, and back again. In
ITCS 2012.

15. J. Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In FSE 2006.

16. J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In CRYPTO 2002.

17. D. Boneh and X. Boyen. Short signatures without random oracles. In EURO-
CRYPT 2004.

18. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT 2005.

19. D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring.
In EUROCRYPT’98.

20. D. R. L. Brown. The exact security of ECDSA. Contributions to IEEE P1363a,
2001.

21. M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodríguez. Lunar: A
toolbox for more efficient universal and updatable zkSNARKs and commit-and-
prove extensions. In ASIACRYPT 2021, Part III.

22. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC.

23. L. Chen, Z. Cheng, and N. P. Smart. Identity-based key agreement protocols from
pairings. Int. J. Inf. Sec., 6(4), 2007.

24. A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P. Ward. Marlin: Pre-
processing zkSNARKs with universal and updatable SRS. In EUROCRYPT 2020,
Part I.

25. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård revisited:
How to construct a hash function. In CRYPTO 2005.

26. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO’98.

27. I. Damgård. Towards practical public key systems secure against chosen ciphertext
attacks. In CRYPTO’91.

28. R. A. Demillo and R. J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4), 1978.

29. A. W. Dent. Adapting the weaknesses of the random oracle model to the generic
group model. In ASIACRYPT 2002.

30. A. W. Dent. The Cramer-Shoup encryption scheme is plaintext aware in the
standard model. In EUROCRYPT 2006.

31. A. W. Dent. The hardness of the DHK problem in the generic group model.
Cryptology ePrint Archive, Report 2006/156, 2006.

40

32. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework
for Diffie-Hellman assumptions. In CRYPTO 2013, Part II.

33. A. Faonio, D. Fiore, M. Kohlweiss, L. Russo, and M. Zajac. From polynomial iop
and commitments to non-malleable zksnarks. In TCC 2023.

34. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO’86.

35. N. Fleischhacker, V. Goyal, and A. Jain. On the existence of three round zero-
knowledge proofs. In EUROCRYPT 2018, Part III.

36. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applica-
tions. In CRYPTO 2018, Part II.

37. G. Fuchsbauer, A. Plouviez, and Y. Seurin. Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In EUROCRYPT 2020, Part II.

38. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953, 2019.

39. S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Cryptology
ePrint Archive, Report 2006/165, 2006.

40. A. Ghoshal and S. Tessaro. Tight state-restoration soundness in the algebraic
group model. In CRYPTO 2021, Part III.

41. S. Goldwasser and Y. T. Kalai. Cryptographic assumptions: A position paper. In
TCC 2016-A, Part I.

42. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT 2010.

43. J. Groth. On the size of pairing-based non-interactive arguments. In EURO-
CRYPT 2016, Part II.

44. J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. In CRYPTO 2017, Part II.

45. J. Groth and V. Shoup. On the security of ECDSA with additive key derivation
and presignatures. In EUROCRYPT 2022, Part I.

46. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. In
CRYPTO’98.

47. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols.
Cryptology ePrint Archive, Report 1999/009, 1999.

48. T. Holenstein, R. Künzler, and S. Tessaro. The equivalence of the random oracle
model and the ideal cipher model, revisited. In 43rd ACM STOC.

49. A. Joux. A one round protocol for tripartite Diffie–Hellman. Journal of Cryptology,
17(4), 2004.

50. J. Kastner, J. Loss, and J. Xu. On pairing-free blind signature schemes in the
algebraic group model. In PKC 2022, Part II.

51. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to poly-
nomials and their applications. In ASIACRYPT 2010.

52. A. Kiayias, F.-H. Liu, and Y. Tselekounis. Practical non-malleable codes from
l-more extractable hash functions. In ACM CCS 2016.

53. M. Lepinski. On the Existence of 3-Round Zero-Knowledge Proofs. PhD thesis,
Massachusetts Institute of Technology, 2002.

54. H. Lipmaa. A unified framework for non-universal SNARKs. In PKC 2022, Part I.
55. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge

SNARKs from linear-size universal and updatable structured reference strings. In
ACM CCS 2019.

56. U. M. Maurer. Abstract models of computation in cryptography (invited paper).
In 10th IMA International Conference on Cryptography and Coding.

41

57. M. Naor. On cryptographic assumptions and challenges (invited talk). In
CRYPTO 2003.

58. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2), 1994.

59. P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent
to discrete log. In ASIACRYPT 2005.

60. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy.

61. C. Ràfols and A. Zapico. An algebraic framework for universal and updatable
SNARKs. In CRYPTO 2021, Part I.

62. L. Rotem and G. Segev. Algebraic distinguishers: From discrete logarithms to
decisional uber assumptions. In TCC 2020, Part III.

63. A. Rupp, G. Leander, E. Bangerter, A. W. Dent, and A.-R. Sadeghi. Sufficient
conditions for intractability over black-box groups: Generic lower bounds for gen-
eralized DL and DH problems. In ASIACRYPT 2008.

64. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. J. Assoc. Comput. Mach., 27(4), 1980.

65. H. Shacham. New Paradigms in Signature Schemes. PhD thesis, Stanford Univer-
sity, 2005.

66. V. Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT’97.

67. M. Zhandry. To label, or not to label (in generic groups). In CRYPTO 2022,
Part III.

68. M. Zhandry and C. Zhang. The relationship between idealized models under com-
putationally bounded adversaries. Cryptology ePrint Archive, Report 2021/240,
2021.

69. C. Zhang, H.-S. Zhou, and J. Katz. An analysis of the algebraic group model. In
ASIACRYPT 2022, Part IV.

70. R. Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and alge-
braic computation EUROSAM. Springer, Berlin-New York, 1979.

42

A Soundness of Linear UK in GGM-H

Here, we give a self-contained proof of the hardness of the UK in the GGM-H
for the case of linear relation polynomials.

Theorem 5 (Linear UK holds in GGM-H). Let d, p ∈ N with p prime, and
fix G ⊆ {0, 1}∗ with |G| = p. Consider the class of algorithms A and the source S
defined as follows:
1. For every A0 ∈ A, the relation polynomial Q returned by A0 is of the form

Q(X,Y ,C) =

n∑
i=1

Qi(X,C)Yi +Q0(X,C) ,

where m := |X| − 1, n := |Y |, and c := |C|;
2. For every A0 ∈ A, every Q and P returned by A0, and every c ∈ Zc

p, the
polynomials Qi, 1 ≤ i ≤ n, are linearly independent;

3. For every A0 ∈ A, and every P returned by A0, S samples s ∈ Zk
p at random

and returns P (s).
Then the UK assumption holds in the GGM-H with parameters (p,G) with respect
to the class of adversaries above. More precisely, for every adversary A with
A0 ∈ A and S as above, there exists an extractor E such that

Advukp,G,S,A,E ≤ (m+ 3qop + qH + 1)2 · d
2p

.

Here qop and qH are upper bounds on the number of queries made by A to the
respective oracles, P0(S) := 1, and Qi(S) := Qi(P (S), c).

Proof. Fix an adversary A in the UK game as in the statement of the theorem,
and define an extractor E as in Fig. 13. This extractor essentially re-runs A1 on
its view and observes its oracle queries, keeping track of the discrete logarithms
of the elements queried by A1. Whenever E is unable to “explain” an element
in G, it instead stores a fresh variable Rv in its table.

We claim that this extractor allows us to prove the bound in the theorem
statement. To that end, consider the following sequence of games:
G0: This is the original UK game with respect to source S, adversary A and

extractor E .
G1: This game proceeds as G0, but the encoding τ is implemented via lazy sam-

pling: Instead of sampling τ , the challenger of G1 initializes a table T ← [].
Oracles op and H are then implemented via lazy sampling using table T .

G2: This game proceeds as G1, but the challenger replaces the values xi gen-
erated by S with the corresponding polynomials Pi(S) evaluated at formal
variables S. Likewise, whenever it lazily samples a domain point in T , it in-
stead saves a fresh variable Rv. Notice that in this game, table T is populated
exactly as table U in E .

We now argue that the difference between the success probabilities in subse-
quent games is small.

43

Extractor E(trace(A)):
parse trace(A) = (rA, γ,x, h1, . . . , hq)
(Q,P)←← A0(γ; rA); U ← []; U [g]← 1; o, v ← 0
for j = 1 to m do U [xj]← Pj(S)

(y, c)←← Aop,H(x; rA); if
(
(∃i)(yi /∈ Dom(U))

)
then return 0

for i = 1 to n do parse U [yi] =
∑m

j=1 wijPj(S) +
∑

k bikRk

return w

Proc. op(a, h1, b, h2):
o← o+ 1
if (h1 /∈ Dom(U)) then v ← v + 1; U [h1]← Rv

if (h2 /∈ Dom(U)) then v ← v + 1; U [h2]← Rv

if (ho /∈ Dom(U)) then U [ho]← aU [h1] + bU [h2]
return ho

Proc. H(m):
o← o+ 1
if (ho /∈ Dom(U)) then

v ← v + 1; U [ho]← Rv

return ho

Fig. 13. Definition of the extractor E from the proof of Theorem 5.

G0 ⇝ G1. Notice that G0 and G1 have the same distribution, because the
oracles given to A in the two games are distributed identically. In particular,
this means Pr[G1] = Pr[G0].

G1 ⇝ G2. Let Bad be the event in G2 that there are two different polynomials
in the domain of T which result in the same value when evaluating S and R at
random s and r. Then G1 and G2 are identical until Bad, and by the fundamental
lemma of game playing we therefore have |Pr[G2]− Pr[G1]| ≤ Pr[Bad].

We bound the latter probability via Lemma 1. Consider an adversary B in the
Schwartz–Zippel game which simulates G2 to A and then returns all polynomials
in the domain of T . Notice that if Bad occurs, then B wins the SZ-game, and
that T contains at most m+ 3qop + qH + 1 polynomials of degree at most d. By
Lemma 1, Pr[Bad] ≤ (m+ 3qop + qH + 1) · d/2p.

We conclude the proof by studying the winning probability of A in G2. Notice
that if the output of A is such that the polynomial Q is not satisfied, then A has
trivially lost the game. So suppose that Q is satisfied. Comparing entries stored
in T (recall that T implements a partial random injection), we obtain

n∑
i=1

Qi

(m∑
j=0

wijPj +
∑
k

bikRk

)
+Q0 = 0 ,

as a polynomial in S and R. We want to show that this implies bik = 0 for
all 1 ≤ i ≤ n and all k. Looking at the linear terms in R, we obtain that for
every k,

n∑
i=1

Qibik = 0 .

Recall that, by assumption, polynomials Qi are linearly independent, which
means that bik = 0 for all 1 ≤ i ≤ n and all k. This shows that E returns
an accurate representation of y in terms of x, which concludes the proof. ⊓⊔

44

Game DH-KEA
B,E(λ):

γ ←← B(1λ); ([a]1, [b]2, [c]1)←← A(γ); w ←← E(trace(A))
return (e([a]1, [b]2) = e([c]1, [1]2)) ∧ ([w]1 ̸= [a]1) ∧ ([w]2 ̸= [b]2)

Fig. 14. Game defining the DH-KE assumption. Here, B is a type-3 bilinear group
scheme.

B Soundness of DH-KE in ABM3-H

In this section we prove that DH-KE, a knowledge game introduced by Bellare,
Fuchsbauer, and Scafuro [4] is secure in the AGM-H. The proof here serves
as a “warm-up” to the more complex reductions for the UK and d-GROTH16
assumptions presented in Section 6 and Appendix D. We first recall the definition
of DH-KE.

DH-KE [4]. Let B be a type-3 bilinear group scheme. We define the advantage
of an adversary A and an extractor E in the DH-KE game for B as

Advdh-keB,A,E(λ) := Pr[DH-KEAB,E(λ)] ,

where the game DH-KE is defined in Fig. 14. Here, E returns an element w ∈ Zp.
We say that DH-KE holds for B if for every PPT A there exists a PPT E such
that Advdh-keB,A,E is negligible. DH-KE for type-2 and type-1 bilinear group schemes
is defined analogously.

Remark. A similar formulation of DH-KE where A returns [c]2 instead of [c]1
(and the winning condition becomes (e([a]1, [b]2) = e([1]1, [c]2))) is also possible.
On the other hand, note that the version where A returns [c]T and the game
checks if (e([a]1, [b]2) = [c]T) is clearly false if hashing into both source groups
is allowed: A could hash any message to get h1 ∈ G1 and h2 ∈ G2, set hT :=
e(h1, h2), and return (h1, h2, hT), without knowing any discrete logarithms.

Theorem 6 (DH-KE holds in ABM3-H). Let B be a type-3 bilinear group
scheme, such that (1, 1)-DL holds for B. Then DH-KE holds for B in the ABM3-H.
More precisely, for every PPT algebraic adversary A against DH-KE, there exist
an extractor E and an adversary B against (1, 1)-DL, both with approximately
the same running times as A, such that

Advdh-keB,A,E(λ) ≤
(
1− 2

2λ−1 − 1

)−1
·Adv

(1,1)-dl
B,B (λ) . (4)

Proof. Fix an algebraic adversary A in the DH-KE game, and define an extrac-
tor E as in Fig. 15 (top). This extractor essentially re-runs A on its view to
obtain A’s output (u,v,w). If all coordinates of u except the first one are zero
(i.e., the first element encoded by A is [u0]1), E returns u0, otherwise v0. Ex-
tractor E is intended to work if all entries but possibly the first one in either u

45

Extractor E(trace(A)):
parse trace(A) = (rA, γ,h1,h2,hT); q1 ← q2 ← qT ← 0
(u,v,w)←← AH1,H2,HT (γ; rA); parse u = (u0,u1, . . . ,uq1)
if (u1 = · · · = uq1 = 0) then return u0 else return v0

Oracle Hµ(m):
qµ ← qµ + 1
return hµ,qµ

Adversary B(γ, [x]1, [x]2):
parse γ = (·1, g1, ·2, g2, ·T , p, e); q1 ← q2 ← 0; T1 ← T2 ← TT ← []
(u,v,w)←← AH1,H2,HT (γ)
P (X)←

(
u0 +

∑q1
i=1 uiH1,i(X)

)(
v0 +

∑q2
i=1 viH2,i(X)

)
−
(
w0 +

∑q1
i=1 wiH1,i(X)

)
if (P (X) ̸= 0) then S← BerlekampRoot(P, p) else return 0
for x′ ∈ S do if ([x′]1 = [x]1) then return x′

return 0

Oracle Hν(m):
if (m /∈ Dom(Tν)) then

qν ← qν + 1; αν,qν ←← Zp; βν,qν ←← Z∗
p

Hν,qν (X)← αν,qν +βν,qνX; Tν [m]← [αν,qν +βν,qνx]ν
return Tν [m]

Oracle HT (m):
if (m /∈ Dom(TT)) then

α←← Zp

TT [m]← [α]T
return TT [m]

Fig. 15. Top: Extractor E for the algebraic adversary A in the DH-KE game. Center
and bottom: Adversary B against (1, 1)-DL. In all figures, µ and ν range over the
sets {1, 2, T} and {1, 2}, respectively.

or v are zero. We now show that if A returns an output satisfying the winning
condition, this will likely be the case.

To that end, consider the adversary B playing the (1, 1)-DL game for B
defined in Fig. 15 (center and bottom). In essence, B runs A and stimulates
the DH-KE game. When answering hash queries, B embeds the discrete loga-
rithm instances it is tasked with solving into the replies, carefully hiding them
with random offsets αν,qν to ensure a correct distribution. By construction, x
is a root of the polynomial P (X) that B defines, which means that B will be
successful in finding x by inspecting the roots of P whenever P (X) ̸= 0.

We now show how to use adversary B to prove the bound (4) for A and E .
To that end, consider the following sequence of games:
G0: This is the original (1, 1)-DL game for B played by adversary B.
G1: This game proceeds as G0, but when answering queries to Hν , table Tν

is populated in a different way. Specifically, upon a query m to Hν , the
game samples α′ν,qν ←← Zp and βν,qν ←← Z∗p, and defines Tν [m] ← [α′ν,qν].
Consequently, it then sets Hν,qν (X)← α′ν,qν + βν,qν (X − x).

G2: This game proceeds as G1, but the polynomials Hν,qν are now defined as
Hν,qν (X,Sν) ← α′ν,qν + Sν,qν (X − x), where Sν,qν is a fresh variable for
every oracle call. Accordingly, the polynomial P ′ constructed after running A
is now in variables X, S1 and S2. After defining P ′, game G2 progresses
with sampling sν ←← Z∗qνp , setting P (X) ← P ′(X, s1, s2), and checking
if P (X) = 0. From here on, G2 proceeds as G1. Observe that, both in G1

and G2, the game simulated to A is exactly the DH-KE game.

46

We now argue that subsequent games have identical success probabilities.

G0 ⇝ G1. Notice that the distribution of the entries Tν [m] is the same in G0

and G1 (in both games they are uniformly random group elements). This means
that moving from G0 to G1 amounts to renaming αν,qν + βν,qνx as α′ν,qν , and
changing Hν,qν (X) accordingly. Therefore, Pr[G0] = Pr[G1].

G1 ⇝ G2. Notice that A is completely oblivious to the polynomials Hν,qν while
being run in either game, so the simulation of A is identical in both games. After-
wards, G2 derives the polynomial P computed in G1 by substituting random s1
and s1 into P ′. Therefore, Pr[G1] = Pr[G2].

We conclude the proof by studying the winning probability in G2. Assume
that, while running in G2, adversary A wins the DH-KE game, i.e., it returns
an output (u,v,w) for which the winning condition in DH-KE is satisfied and
extractor E fails to compute an appropriate witness. The latter means that nei-
ther u1 = · · · = uq1 = 0, nor v1 = · · · = vq2 = 0, where q1 and q2 are the
number of queries made by A to H1 and H2, respectively. Therefore, the polyno-
mial P ′(X,S1,S2) defined in G2 has degree two in X, whose leading coefficient
is a polynomial Q(S1,S2) of degree two by Lemma 2. Now notice that, by con-
struction, the discrete logarithm x is always a root of P (X), which means that G2

will return 1 provided that P (X) ̸= 0. We bound the probability of this event.
By Lemma 1, Q(s1, s2) = 0 for random s1 and s2 with probability at

most 2/(2λ−1− 1), which means that with probability at least 1− 2/(2λ−1− 1),
Q(s1, s2) ̸= 0, and thus in particular P (X) ̸= 0. Therefore,

Adv
(1,1)-dl
B,B (λ) = Pr[G0(λ)] = Pr[G2(λ)] ≥

(
1− 2

2λ−1 − 1

)
·Advdh-keB,A,E(λ) ,

which concludes the proof. ⊓⊔

C Soundness of UK in AGM-H

In this appendix, we give a self-contained proof of the hardness of the UK in
the AGM-H for the case of linear relation polynomials.

Theorem 7 (Linear UK holds in AGM-H). Let Γ be a group scheme. Con-
sider the class of PPT algorithms A and the source S defined as follows:
1. For every A ∈ A, the relation polynomial Q returned by A0 is of the form

Q(X,Y ,C) =

n∑
i=1

Qi(X,C)Yi +Q0(X,C) ,

where m := |X| − 1, n := |Y |, and c := |C|.
2. For every A ∈ A, every Q and P returned by A0, and every c ∈ Zc

p, the
polynomials Qi(P (S), c), 1 ≤ i ≤ n, are linearly independent, where we
set P0(S) := 1;

47

Extractor E(trace(A)):
parse trace(A) = (rA, γ, [x], [h]); m← |x|; u← 0
(Q,P)←← AH

0 (γ; rA); (w,v, c)←← AH
1 (γ,Q,P , [x]; rA)

// A encodes group elements [yi] =
∏m

j=0[wijxj] ·
∏u

j=1[vijhj]
return w

Oracle H(m):
u← u+ 1
return [hu]

Adversary B(γ, [t], [t2], . . . , [tq(λ)]):
parse γ = (·, g, p); u← 0; U ← []; ρ←← Zk

p; σ ←← Z∗k
p ; (Q,P)←← AH

0 (γ)
for i = 1 to m do

P ′
i (T)← Pi(ρ+ σT); parse P ′

i (T) =
∑q(λ)

j=0 p′ijT
j ; [xi]←

∏q(λ)
j=0 [p

′
ijt

j]

(w,v, c)←← AH
1 (γ,Q,P , [x]); P ′

0(T)← 1
// A encodes group elements [yi] =

∏m
j=0[wijxj] ·

∏u
j=1[vijhj]

for i = 1 to n do Y ′
i (T)←

∑m
j=0 wijP

′
j (T) +

∑u
j=1 vijHj(T)

Q′(T)← Q(P ′(T),Y ′(T), c)
if (Q′(T) ̸= 0) then S← BerlekampRoot(Q′, p) else return 0
for t′ ∈ S do if ([t′] = [t]) then return t′

return 0

Oracle H(m):
if (m /∈ Dom(U)) then

u← u+ 1; αu ←← Zp; βu ←← Z∗
p; Hu(T)← αu + βuT ; U [m]← [αu + βut]

return U [m]

Fig. 16. Top: Extractor E for the algebraic adversary A in the UK game. Center and
bottom: Adversary B against q-DL.

3. For every A ∈ A and every P returned by A0, S samples s ∈ Zk
p at random

and outputs P (s).
Let q, d : N→ N be polynomial upper bounds on the total degrees of the Pi and Q,
respectively. If q-DL holds for Γ, then UK holds for (Γ,S,A) in the AGM-H.
More precisely, for every low-degree PPT adversary A with A0 ∈ A, there exist
an extractor E and an adversary B against q-DL, both with approximately the
same running times as A, such that

AdvukΓ,A,E(λ) ≤
(
1− d(λ)q(λ)

2λ−1 − 1

)−1
·Advq-dlΓ,B (λ) . (5)

Proof. Fix a source S and an algebraic adversary A in the UK game as in the
statement of the theorem, and define an extractor E as in Fig. 16 (top). This
extractor essentially re-runs A on its view to obtain A’s output (w,v, c). By this
we mean that A encodes elements as [yi] =

∏m
j=0[wijxj] ·

∏u
j=1[vijhj], where [x]

and [h] are the vector of input group elements and of hash replies.
The extractor then simply ignores the coefficients v pertaining to the hash

values and returns w. Extractor E is intended to work correctly if v = 0 anyway
in the representation returned by A. We now show that if A returns an output
satisfying the winning condition for the UK game, this will likely be the case.

48

To that end, consider the adversary B playing the q-DL game for Γ defined
in Fig. 16 (center and bottom). In essence, B runs A and simulates the UK
game. When preparing the group element inputs and answering hash queries,
B embeds the q-DL instance it is tasked with solving, carefully hiding it with
random offsets ρ and α to ensure a correct distribution. By construction, t is
a root of the polynomial Q′(T) that B defines, which means that B will be
successful in finding t by inspecting the roots of Q′ whenever Q′(T) ̸= 0.

We now show how to use adversary B to prove the bound (5) for A and E .
To that end, consider the following sequence of games:
G0: This is the original q-DL game for Γ played by adversary B.
G1: This game proceeds as G0, but when answering queries to H, table U is

populated in a different way. Specifically, upon a query m to H, the game
samples α′u ←← Zp and βu ←← Z∗p, and defines Uν [m] ← [α′u]. Consequently,
it then sets Hu(T)← α′u + βu(T − t). Similarly, polynomials P ′i (T) are now
defined as P ′i (T)← Pi(ρ

′ + σ(T − t)) for a ρ′ ←← Zk
p sampled instead of ρ.

G2: This game proceeds as G1, but we set P ′i (T)← Pi(ρ
′+Σ(T − t)), where Σ

is a new vector of variables. Similarly, the polynomials Hu are now defined
as Hu(T,B) ← α′u + Bu(T − t), where Bu is a fresh variable for every
oracle call. Accordingly, the polynomial Q′′ constructed after running A
is now in variables T , Σ and B. After defining Q′′, game G2 progresses
with sampling σ ←← Z∗kp and β ←← Z∗up , setting Q′(T) ← Q′′(T,σ,β), and
checking if Q′(T) = 0. From here on, G2 proceeds as G1.

We now argue that subsequent games have identical success probabilities.

G0 ⇝ G1. Notice that the distribution of the entries U [m] is the same in G0

and G1 (in both games they are uniformly random group elements). The same
holds for the vector x, which in both games is obtained by evaluating P on
random inputs. Therefore, Pr[G0] = Pr[G1]. Observe that, in G1, P ′(t) = P (ρ′)
and H(m) = [α′u], which means that the vector of inputs and the hash replies
are computed exactly as in the UK game.

G1 ⇝ G2. Notice that A is completely oblivious to the polynomials Hu while
being run, so the simulation of A is identical in both games. Afterwards, G2

derives the polynomial Q′ computed in G1 by substituting a random σ and β
into Q′′. As for the change to P ′, observe that in both games x is computed in
the same way. Therefore, Pr[G1] = Pr[G2].

We conclude the proof by studying the winning probability in G2. Assume
that, while being run in G2, adversary A wins the UK game, i.e., it returns
polynomials (Q,P) and an output (w,v, c) for which the winning condition
in UK is satisfied and extractor E fails to compute an appropriate representation
of the outputs. The latter means that v ̸= 0, i.e., there exist 1 ≤ i∗ ≤ m and j∗
such that vi∗j∗ ̸= 0.

49

We now claim that the polynomial Q′′ constructed in G2 after running A is
not identically zero. Indeed, consider the polynomial

R(S,H) := Q

(
P (S),

m∑
j=0

wijPj(S) +

u∑
j=1

vijHj , c

)

=

n∑
i=1

Qi(P (S), c)

(m∑
j=0

wijPj(S) +

u∑
j=1

vijHj

)
+Q0(P (S), c) .

The coefficient of Hj∗ is
∑n

i=1Qi(P (S), c)vij∗ , which is not zero because the
polynomials Qi(P (S), c) are linearly independent by assumption and vi∗j∗ ̸= 0;
therefore, R ̸= 0. Now notice that

Q′′(T,Σ,B) = R(ρ′ +Σ(T − t),α′ +B(T − t)) ,

which is non-zero by Lemma 2 and of degree in T at most d(λ)q(λ). Again
by Lemma 2, the leading coefficient in T of Q′′(T,Σ,B) is of total degree at
most d(λ)q(λ), which means that for random σ ←← Z∗kp and β ←← Z∗up , this
leading coefficient will be zero with probability at most d(λ)q(λ)/(2λ−1 − 1) by
Lemma 1. Thus, with probability at least 1 − d(λ)q(λ)/(2λ−1 − 1), Q′(T) ̸= 0.
We conclude by observing that whenever this happens, game G2 will return 1,
which means

Advq-dlΓ,B (λ) = Pr[G0(λ)] = Pr[G2(λ)] ≥
(
1− d(λ)q(λ)

2λ−1 − 1

)
·AdvukΓ,A,E(λ) .

This concludes the proof. ⊓⊔

D Proof of Theorem 4

Consider the sets P1 and P2 of polynomials defined by adversary B in Fig. 18,
and define the polynomial

P ′ = −

(∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t

)
·

(∑
t∈P2

w
(b)
t t+

q2∑
t=1

v
(b)
t h

(2)
t

)

+ αβγ2δ2 +

(
ℓ∑

i=0

fi(βδUi(x) + αδVi(x) + δWi(x))

)
· γ2δ

+

(∑
t∈P1

w
(c)
t t+

q1∑
t=1

v
(c)
t h

(1)
t

)
· γδ2 ,

(6)

where q1 and q2 denote the number of queries made by A1 to H1 and H2, re-
spectively. Suppose that

P ′(α, β, γ, δ, x, (h
(1)
t)t∈P1

, (h
(2)
t)t∈P2

) = 0 . (7)

50

Extractor E(trace(A)):
parse trace(A) = (rA, ϖ, [x1]1, [x2]2, [h1]1, [h2]2, [hT]T)
u1 ← u2 ← uT ← 0; R←← AH1,H2,HT

0 (γ; rA)
(f ,w(a),v(a),w(c),v(c),w(b),v(b))←←
←← AH1,H2,HT

1 (γ,R, [x1]1, [x2]2; rA)
return (w(a),w(c),w(b))

Oracle Hµ(m):
uµ ← uµ + 1
return [hµ,uµ]µ

Fig. 17. Extractor E for the algebraic adversary A in the d-GROTH16 game. Here, µ
ranges in the set {1, 2, T}.

Observe that there must be K ∈ {a, b, c} such that at least one of the hash
elements has a nonzero coefficient, since otherwise adversary A is not successful
against the extractor E . Let h(bK)

nK be such a hash element with nonzero coeffi-
cient v(bK)

nK , with bK = 2 if K = c, and bK = 1 otherwise. Our proof proceeds by
case distinction, depending on the value of K.

First case: K = b. By considering the coefficient of the monomial h(2)nb , we
deduce from (6) and (7) that

−

(∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t

)
v(b)
nb

= 0 , (8)

and since v
(b)
nb ̸= 0 by assumption, we obtain

∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t = 0 .

Equality (7) then becomes(
ℓ∑

i=0

fi(βδUi(x) + αδVi(x) + δWi(x))

)
· γ2δ

+

(∑
t∈P1

w
(c)
t t+

q1∑
t=1

v
(c)
t h

(1)
t

)
· γδ2 + αβγ2δ2 = 0 .

Then we can divide by γδ2 and consider the constant term in ht:(
ℓ∑

i=0

fi (βUi(x) + αVi(x) +Wi(x))

)
· γ +

(∑
t∈P1

w
(c)
t t

)
+ αβγ = 0 .

Now notice that the constant term in δ has coefficient

ℓ∑
i=0

fi (βUi(x) + αVi(x) +Wi(x)) · γ

51

Adversary B(ϖ, [t]1, . . . , [t
q(λ)]1, [t]2, . . . , [t

q(λ)]2):
parse ϖ = (·1, g1, ·2, g2, ·T , p, e); ; q1 ← q2 ← 0; T1 ← T2 ← TT ← []; f0 ← 1
P← {γδ, αγδ, βγδ, γ2δ, γδ2, xγδ}
P1 ← P ∪ {x(i)γδ}d−1

i=0 ∪ {x
(i)T (x)γ}d−2

i=0

∪ {(βUi(x) + αVi(x) +Wi(x))δ}ℓi=0 ∪ {(βUi(x) + αVi(x) +Wi(x))γ}mi=ℓ+1

P2 ← {βγδ, γ2δ, δ2γ} ∪ {x(i)δγ}d−1
i=0

// Elements of P,P1,P2, are considered symbols, not numbers
(µt)t∈P ←← Z5

p; (λt)t∈P ←← Z∗5
p ; (ℓ, (Ui, Vi,Wi)

m
i=0, T)←← AH1,H2,HT

0 (ϖ)
Qαγδ(R)← (µα + λαR)(µδ + λδR)(µγ + λγR)
Qβγδ(R)← (µβ + λβR)(µδ + λδR)(µγ + λγR)
Qδγ2(R)← (µδ + λδR)(µγ + λγR)2; Qδ2γ(R)← (µδ + λδR)2(µγ + λγR)
for i = 1 to d(λ)− 1 do Qxiδγ(R)← (µx + λxR)i(µδ + λδR)(µγ + λγR)
for i = 1 to d(λ)− 2 do QxiT (x)γ(R)← (µx + λxR)i(µγ + λγR) · T (µx + λxR)
for i = 0 to ℓ do

Q(βUi+αVi+Wi)δ(R)← (µδ + λδR)
(
(µβ + λβR) · Ui(µx + λxR)

+ (µα + λαR) · Vi(µx + λxR) +Wi(µx + λxR)
)

for i = ℓ+ 1 to m do
Q(βUi+αVi+Wi)γ(R)← (µγ + λγR)

(
(µβ + λβR) · Ui(µx + λxR)

+ (µα + λαR) · Vi(µx + λxR) +Wi(µx + λxR)
)

for t ∈ P1 do parse Qt(R) =
∑q(λ)

i=0 λ
(t)
i Ri; [xt]1 ←

∏q(λ)
i=0 [λ

(j)
i x(i)]1

for t ∈ P2 do parse Qt(R) =
∑q(λ)

i=0 λ
(t)
i Ri; [xt]2 ←

∏q
i=0[λ

(j)
i x(i)]2

((fi)
ℓ
i=1,w

(a),v(a),w(c),v(c),w(b),v(b))←← AH1,H2,HT
1 (([xt]1)t∈P1 , ([xt]2)t∈P2)

Qa(R)←
∑

t∈P1
w

(a)
t Qt(R) +

∑q1
t=1 v

(a)
t (µ′

1,j + λ′
1,jR)

Qc(R)←
∑

t∈P1
w

(c)
t Qt(R) +

∑q1
t=1 v

(c)
t (µ′

1,j + λ′
1,jR)

Qb(R)←
∑

t∈P2
w

(b)
t Qt(R) +

∑q2
t=1 v

(b)
t (µ′

2,j + λ′
2,jR)

Q′(R)← −QaQb +QαQβ +
ℓ∑

i=0

fiQ(βUi(x)+αVi(x)+Wi(x))δ ·Qγ +QcQδ

if (Q′(R) ̸= 0) then S← BerlekampRoot(Q′, p) else return 0
for t′ ∈ S do if ([t′]1 = [t]1) then return t′

return 0

Oracle Hν(m):
if (m /∈ Dom(Tν)) then

qν ← qν + 1; µ′
ν,qν ←← Zp; λ′

ν,qν ←← Z∗
p

Tν [m]← [µ′
ν,qν + λ′

ν,qνx]ν
return Tν [m]

Oracle HT (m):
if (m /∈ Dom(TT)) then

µ′ ←← Zp

TT [m]← [µ′]T
return TT [m]

Fig. 18. Adversary B against (q, q)-DL. Here, ν ranges in the set {1, 2}.

52

+

(
m∑

i=ℓ+1

w
(c)
(βUi(x)+αVi(x)+Wi(x))γ

(βUi(x) + αVi(x) +Wi(x)) γ

)
+ αβγ = 0 .

This is a contradiction, because there is only one monomial in αβγ, which has
coefficient 1 ̸= 0.

Second case: K = a. By considering the coefficient of the monomial h(1)na , we
deduce from (6) and (7) that

−

(∑
t∈P2

w
(b)
t t+

q2∑
t=1

v
(b)
t h

(2)
t

)
v(a)
na

+ v(c)
na
γδ2 = 0 . (9)

Recall that v
(a)
na ̸= 0, which means that by looking at the coefficient of h(2)t , we

obtain
(∀1 ≤ t ≤ q2)(v(b)

t = 0) , (10)

and equation (9) then becomes

−

(∑
t∈P2

w
(b)
t t

)
v(a)
na

+ v(c)
na
γδ2 = 0 .

Again, looking at polynomials t for t ∈ P2 \ {γδ2}, we obtain

(∀t ∈ P2 \ {γδ2})(w(b)
t = 0) . (11)

Combining equations (6), (7), (10) and (11), we get

−

(∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t

)
·w(b)

γδ2γδ
2 + αβγ2δ2

+

(
ℓ∑

i=0

fi (βδUi(x) + αδVi(x) + δWi(x))

)
· γ2δ

+

(∑
t∈P1

w
(c)
t t+

q1∑
t=1

v
(c)
t h

(1)
t

)
· γδ2 = 0 .

We can again divide the expression above by γδ2 and obtain

−

(∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t

)
· w(b)

γδ2 + αβγ

+

(
ℓ∑

i=0

fi (βUi(x) + αVi(x) +Wi(x))

)
γ

53

+

(∑
t∈P1

w
(c)
t t+

q1∑
t=1

v
(c)
t h

(1)
t

)
= 0 .

This is again a contradiction, because there is only one monomial in αβγ, which
has coefficient 1 ̸= 0.

Third case: K = c. By considering the coefficient of the monomial h(1)nc , we
deduce from (6) and (7) that

−

(∑
t∈P2

w
(b)
t t+

q2∑
t=1

v
(b)
t h

(2)
t

)
v(a)
nc

+ v(c)
nc
γδ2 = 0 . (12)

Recall that v
(c)
nc ̸= 0, which means that by looking at the coefficient of h(2)t , we

obtain
(∀1 ≤ t ≤ q2)(v(b)

t = 0) , (13)
and equation (12) becomes

−

(∑
t∈P2

w
(b)
t t

)
v(a)
nc

+ v(c)
nc
γδ2 = 0 .

Again, looking at polynomials t for t ∈ P2 \ {γδ2}, we obtain

(∀t ∈ P2 \ {γδ2})(w(b)
t = 0) . (14)

Combining equations (6), (7), (13) and (14), we get

−

(∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t

)
·w(b)

γδ2δ
2γ + αβγ2δ2

+

(
ℓ∑

i=0

fi (βδUi(x) + αδVi(x) + δWi(x))

)
· γ2δ

+

(∑
t∈P1

w
(c)
t t+

q1∑
t=1

v
(c)
t h

(1)
t

)
· γδ2 = 0 .

By dividing this expression by γδ2, we obtain

−

(∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t

)
·w(b)

δ2γ + αβγ

+

(
ℓ∑

i=0

fi (βUi(x) + αVi(x) +Wi(x))

)
· γ

+

(∑
t∈P1

w
(c)
t t+

q1∑
t=1

v
(c)
t h

(1)
t

)
= 0 .

This is again a contradiction, because there is only one monomial in αβγ, which
has coefficient 1 ̸= 0.

54

Conclusion. We can therefore use Lemma 2 to deduce that the leading coeffi-
cient of

Q′(R) = P ′
(
(µi + λiR)i∈{α,β,γ,δ,x},

(
(µ′τ,j + λ′τ,jR)

qτ
j=1

)
τ∈{1,2}

)
is a polynomial of degree upper bounded by q · deg(Q) with indeterminates
(λi)1≤i≤k and

(
(λ′j)1≤j≤qτ

)
τ∈{1,2}. Because the lambda’s are completely hidden

from A’s point of view, we can choose them a posteriori, and then we can use
the Schwartz–Zippel lemma, and deduce that with probability lower bounded
by 1 − deg(P ′)

p−1 this polynomial is nonzero, then the whole polynomial Q′(R) is
neither nonzero. In this case, the discrete logarithm t of [t]1 is by construction a
root of this polynomial, and the search procedure will be successful.

To conclude the proof, we upper-bound the total degree d′ of P ′:

d′ = deg

((∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t

)
·

(∑
t∈P2

w
(b)
t t+

q2∑
t=1

v
(b)
t h

(2)
t

)

+ αβγ2δ2 +

(
ℓ∑

i=0

fi(βδUi(x) + αδVi(x) + δWi(x))

)
· γ2δ

+

(∑
t∈P1

w
(c)
t t+

q1∑
t=1

v
(c)
t h

(1)
t

)
· γδ2

)

≤ max

(
deg

((∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t

)
·

(∑
t∈P2

w
(b)
t t+

q2∑
t=1

v
(b)
t h

(2)
t

))
,

deg(αβγ2δ2),deg

((
ℓ∑

i=0

fi(βδUi(x) + αδVi(x) + δWi(x))

)
· γ2δ

)
,

deg

((∑
t∈P1

w
(c)
t t+

q1∑
t=1

v
(c)
t h

(1)
t

)
· γδ2

))

= max

(
deg

(∑
t∈P1

w
(a)
t t+

q1∑
t=1

v
(a)
t h

(1)
t

)
+ deg

(∑
t∈P2

w
(b)
t t+

q2∑
t=1

v
(b)
t h

(2)
t

)
, 6,

deg

(
ℓ∑

i=0

fi(βδUi(x) + αδVi(x) + δWi(x))

)
+ deg

(
γ2δ
)
,

deg

(∑
t∈P1

t+

q1∑
t=1

v
(c)
t h

(1)
t

)
+ deg

(
γδ2
))

≤ max
(
max

(
max
t∈P1

deg(t),
q1

max
t=1

deg(h
(1)
t)

)
+ max

(
max
t∈P2

deg(t),
q2

max
t=1

deg(h
(2)
t)

)
, 6,

55

3 +
ℓ

max
i=0

deg
(
βδUi(x) + αδVi(x) + δWi(x)

)
,

max
(
max
t∈P1

deg(t),
q1

max
t=1

deg(h
(1)
t)
)
+ 3
)

≤ max
(
max (q, 1) + max (q, 1) , 6,

3 +
ℓ

max
i=0

deg
(
βδUi(x) + αδVi(x) + δWi(x)

)
,max (q, 1) + 3

)
≤ max(2q, d+ 3, q + 3) = 2q .

E GBM1-H =⇒ GBM3-H for UK

Type-1 compilation. Given a type-3 UK assumption in GBM3-H, define its
type-1 compilation as a UK assumption in GBM1-H that operates as follows.
It runs A0 and S as before. As input to S1 it now provides all group elements
in the second source group in the first source group (and no group elements
in the second source group are provided). In place of elements in the second
source group, adversary A1 now outputs group elements in the first source group.
Accordingly, the winning condition is changed so that second source group checks
are now done in the first source group. Type-1 compilation is defined analogously
for type-2 UK assumptions.

Theorem 8 (For UK: GBM1-H =⇒ GBM3-H). For any A3 against a UK3
game in GBM3-H, there is an adversary A1 against UK1, the type-1 compilation
of UK3 in GBM1-H, such that for all extractors E1 for A1 there is an extractor
E3 for A3 such that

Advuk3p,G,S,A3,E3 ≤ Advuk1p,G,S,A1,E1 +
q0q1
p

,

where p is the size of the groups, q1 is an upper bound on the number of G1

elements in the game and q0 is an upper bound on the number of locally sampled
group elements in G2. Furthermore, the extractor E3 makes at most q1 queries
to its first source group oracles.

Proof. Given an adversary A3 in GBM3-H, consider an adversary A1 in GMB1-
H as follows.

– Set GBM3.G1 := GBM1.G1 =: G1 and GBM3.GT := GBM1.GT =: GT .
– Simulate GBM3.G2 =: G2 via random injection ϕ : G1 → G2.
– Fix an encoding map encode : G2 → G1.15
– Receive group elements in G1 as input. It computes the G2 input elements

via ϕ.
15 Looking ahead, ideally we would like set encode to the inverse of ϕ. This choice would

work for standard assumptions. For extractor assumptions, however, we will need to
convert a view containing G2 elements to one with G1 elements. Without access to
ϕ this is not possible, whereas with a fixed (deterministic) encoding we can do so.

56

– Forward G1 hash on m to G1 hash as (1,m).
– Relay all other G1 and GT queries.
– Forward G2 hash on m to G1 hash as (2,m), apply ϕ and return.
– Convert locally sampled elements outside those obtained from group opera-

tion oracles via encode. The injection is programmed to be compatible with
encode. Let Bad be the event that the output of encode for a new G2 ele-
ment is an element that was queried to ϕ. Since G1 elements are random,
Pr[Bad] ≤ q1q0/|G1|, where q1 is an upper bound on the number of G1 el-
ements in the game and q0 is an upper bound on the number of locally
sampled group elements.

– Simulate G2 operations as follows. Extracts coefficient representations of the
queries based on the G2 group elements seen so far. There are the initial G2

input elements, any G2 elements received from hash elements, any sampled
G2 elements. Use G1 operation and the corresponding input/hash/encoded
G1 group elements to compute a G1 element and then apply ϕ and return it.

– Simulate the GBM3 pairing operation on G1×G2 by extracting the coefficient
representation for the queried G2 element, forming the corresponding G1

element using the coefficient representation, and then using GBM1 pairing
and returning the output.

– When A3 outputs G1, G2, GT group elements, leave the G1 and GT elements
untouched. Convert the G2 elements to G1 elements using their coefficient
representation or encode.

Adversary A1 simulates the environment that A3 expects. Suppose that A3’s
inputs and outputs satisfy Q with some probability. Then A1’s inputs and out-
puts satisfy Q with the same probability as 1) the distribution of exponents of
inputs is the same, and 2) the distribution of DLs of hashes and locally sampled
elements is uniform in both cases.

Let E1 be an extractor for the above A1. Algorithm E1 expects a view con-
taining: 1) A1’s query-answer pairs for G1 and GT , including all extra queries
made by A1 (as a result of running A3). 2) A1’s query-answer pairs for the
pairing operation. 3) The random coins of A1, i.e., (parts of) ϕ used to map G1

elements to G2 elements.
We are given trace[A3], which contains: 1) The inputs, which consist of group

elements in G1 and G2 and also possibly GT . 2) A3’s query-answer pairs for G1,
GT , and G2 oracles. 3) A3’s query-answer pairs for the pairing operation. Note
that this view does not include the extra G1 query-answer pairs of A1.

We build an extractor EG1
3 for A3 as follows. E3 first converts trace[A3] to

trace[A1] as follows.

– Remove G2 query-answer pairs from trace[A3].
– Since the messages m that are G2 hashed are part of the view, with access

to G1 hash, E3 can recompute their G1 hash outputs by sending (2,m).
– G1 hash view inputs are changed from m to (1,m).
– Convert locally sampled G2 elements using the encoding.
– Extracts the coefficient representations for G2 elements and then uses G1

operation oracles to recompute the extra G1 operation outputs.

57

– Sample randomness for ϕ that maps all G1 elements to their corresponding
G2 elements.

Extractor E3 now runs E1(trace[A1]) and outputs whatever it outputs. When-
ever E1 is successful, so will be E3: The compiled game checks the same relation
as the original game does. Moreover, algorithm A1 converts all output G2 ele-
ments to G1 elements using the same coefficient representation. ⊓⊔

Analogous reductions and conversion of views hold in the GBM2-H setting
with differences that 1) we need to simulate an isomorphism from G2 to G1. This
can be done using coefficient representations and the encoding from G2 to G1.
2) Extractor views can also be converted using these representations and oracle
access.

We also note that the hardness of the UK in GBM1-H also implies the hard-
ness of an appropriately compiled assumption in simple groups GGM-H. This
is due to the fact that in simple groups the adversary has less power than in
type-1 groups and furthermore our GBM1-H extractors do not use any oracles.

F Relations between Models

We start by defining compilations from type-safe games to those in other models.

RR-compilation. Let GTS,p be a type-safe game with hashing for a group of
size p. Let G be a set of representations of size p. Following Zhandry’s canonical
translation [67], we define the random-representation (RR) compilation GRR,p,G

of GTS,p as follows. A counter is set to 0 and a random injection with image G
is picked. A table T is initialized.

– Whenever GTS,p accepts counters, GRR,p,G instead accepts representations.
– On output a representation h from any oracle, the counter c is incremented,
T [c] is set to h, and c is returned to GTS,p.

– Queries to the labeling and hashing oracles in GTS,p are forwarded to the
corresponding oracles with respect to the injection.

– The counters in queries to group operation are converted to group elements
via look-ups in T and then forwarded to group operation oracle with respect
to the injection.

– The equality oracle on counters c1 and c2 is replaced by bit-string comparison
for T [c1] and T [c2].

– When GTS,p outputs a counter to the adversary, this counter must have
been previously seen (due to type-safety). In this case the corresponding
representation in T is found and forwarded to the RR adversary.

– On an incoming representation h:
• If there is some c such that T [c] = h, any such c is picked and forwarded

to GTS,p. There is no difference in which c is picked: by type-safety the
only way to operate on counter values is through the oracles, where the
corresponding h will be recovered irrespective of which c is chosen.

58

• If h does not appear in T , then counter value is increased, T [c] is set to
h, and c is returned to GTS,p.

Suppose TS advantage is defined as some function applied to the probability
of winning a TS game. We define RR advantage as the same function applied to
the probability of winning the compiled RR game.

We start by proving that AGM-H security implies GGM-H security for stan-
dard (non-extractor) games. We state and prove our theorem for simple groups,
but note that they easily extend to bilinear groups using analogous simulations
of the available extra oracles.

Theorem 9 (AGM-H =⇒ GGM-H). Let GTS,p be a single-stage type-safe game
with hashing for a group of size p, and let G be a group, also viewed as a repre-
sentation set of size at least p. We assume G is decidable. Let GRR,p,G be the RR-
compilation of GTS,p with respect to G, and let GAlg,p,G be the G-algebraic compi-
lation of GTS,p. Then AGM-H security with respect to GAlg,p,G implies GGM-H
security with respect to GRR,p,G. More precisely, for any adversary ARR against
GRR,p,G there is an adversary AAlg against GAlg,p,G such that

AdvGRR,p,G(ARR) ≤ AdvGAlg,p,G(AAlg) +
(q + q0)

2

p
,

where q is an upper bound on the combined number of queries that GRR,p,G and
ARR make to any of the group operation or hashing oracles, and q0 is an upper
bound on the number of group elements that ARR generates. Furthermore, AAlg

places at most q queries to its oracles (and its run-time increases by that needed
for q0 local group exponentiations).

Proof. Given an adversary ARR as in the statement of the theorem, we build
the required adversary AAlg based on ARR as follows. Throughout, AAlg lazily
samples a two-sided random injection σ± : G → G. (See the end of this section,
where we describe a general procedure for lazy sampling of random injections
with arbitrary domains and ranges.) The table for this injection needs to be
kept in the memory and hence the following reduction only applies to single-
stage games.

– AAlg forwards bit values from GAlg,p,G to ARR. Conversely, it forwards bit
values from ARR to GAlg,p,G.

– Group elements from GAlg,p,G are converted to random representations via
the injection. Observe that when the injection is composed with the group
exponentiation map, the resulting map is a random injection from Zp to G.

– A group element h from ARR is processed as follows.
• If h was computed in terms of the elements seen so far,AAlg computes and

forwards this representation to GAlg,p,G, as needed in the algebraically
compiled game. Note that this computation can be performed by AAlg

since AAlg sees the oracle queries of ARR.

59

• If h is a new group element in G, adversary AAlg picks a random value r,
and using the real group exponentiation procedure for G computes gr,
where g is a group generator which we assume is always made available.16
ARR then programs the injection at gr to h. Element gr is explained using
r and g to GAlg,p,G.

In the above simulation, an inconsistency may arise if gr was already queried
to the injection, or h was already output by it. These events, however, happen
with probability at most (q + q0)

2/p, where q, q0, and p are as in the statement
of the theorem.

We claim that running ARR within AAlg against the G-algebraic compilation
of GTS,p is equivalent to running ARR against the RR-compilation of GTS,p wrt.
G. This is due to the fact that algorithm AAlg applies the same conversions
to counters that the RR-compiler does to GTS,p, and furthermore it faithfully
converts random representations to group elements. Thus, AAlg wins GAlg,p,G iff
ARR wins GRR,p,G. ⊓⊔

In the next two theorems, we show that the relationship between AGM and
GGM as initially established by Zhandry [67] extends to models with hashing
for standard games.

Theorem 10 (GGM-H =⇒ TSM-H). Let GTS,p be a standard single-stage type-
safe game with hashing and let GRR,p,G be its RR-compilation with respect to some
G. Then GGM-H security with respect to GRR,p,G implies TSM-H security with
respect to GTS,p. More precisely, for any adversary ATS against GTS,p there is
an adversary ARR against GRR,p,G such that

AdvGTS,p(ATS) ≤ AdvGRR,p,G(ARR) .

Here ARR places the same number of queries to its oracles that ATS does.

Proof. The proof follows that of Zhandry [67, Theorem 3.4]. Given an adversary
ATS as in the statement of the theorem we build an adversary ARR that runs
ATS as follows.

– ARR forwards bit values from GRR,p,G to ATS. Conversely, it forwards bit
values from ATS to GRR,p,G.

– ARR converts representations h from GRR,p,G to counters as follows. It main-
tains a counter c, which starts at 1 and is always incremented. It also main-
tains a table T and sets T [c] to h.

– ARR processes the counters output by ATS as follows. Any output counter
must have been previously seen as a type-safe adversary cannot generate
new counters on its own. Hence ARR can look up the corresponding repre-
sentations in T and output it to GRR,p,G. In contrast to Zhandry, who used
the circuit model, here we need the game to be single-stage.

16 Here, we do not assume that there are other local sampling/hashing procedures
available.

60

– ARR answers equality queries on two counters by looking up their corre-
sponding representations in T and then using bit-string comparison.

We claim that running ATS within ARR against the RR-compilation of GTS,p

wrt. G is equivalent to running ATS directly against GTS,p. This is due to the fact
that algorithm ATS undoes the RR-compilation of GTS,p modulo the values used
for counters. However, the actual values of counters are irrelevant to a type-safe
adversary as the counters are processed via the oracles and only their underlying
DL are used. The reduction above however only changes the counter value but
maintains the underlying DLs (corresponding to group representations). Thus,
ARR wins the RR-compilation of GTS,p wrt. G iff ATS wins GTS,p. ⊓⊔

A similar implication also holds in the reverse direction. The proof follows
that of Zhandry [67, Theorem 3.5]. It differs from it in that we use the Turing
machine model of type-safe games and the set of group representations G is fixed.

Theorem 11 (TSM-H =⇒ GGM-H). Let GTS,p be a single-stage type-safe
game with hashing and let GRR,p,G be its RR-compilation for some decidable G.
Then TSM-H security with respect to GTS,p implies GGM-H security with respect
to GRR,p,G. More precisely, for any ARR against GRR,p,G there is an adversary
ATS against GTS,p such that

AdvGRR,p,G(ARR) ≤ AdvGTS,p(ATS) +
(q + q0)

2

p
,

where q is an upper bound on the combined number of queries that GRR,p,G and
ARR make to any of the group operations or hashing oracles, and q0 is an upper
bound on the number of group elements that ARR generates. Furthermore, ATS

places at most q + q0 queries to its oracles.

Proof. Given an adversary ARR as in the statement of the theorem we build an
adversary ATS that runs ARR as follows.

– ATS forwards bit values from GTS,p to ARR. Conversely, it forwards bit values
from ARR to GTS,p.

– ATS converts counters c from GTS,p to random representations via lazy sam-
pling of an injection (as described in at the end of this section). Here the
injection’s range is G and its domain is lazily updated to the set of counters
up to the largest c so far. ATS uses the same representation for counters
that carry equal exponents. The latter property is decided using the equal-
ity oracle and applying the injection, for example, to the first element in a
counter’s equivalence class. Algorithm ATS stores the mapping from counters
to random representations in a table T for the injection as T [c]← h.

– ATS handles a representation h received from ARR as follows.
• If there is some c such that T [c] = h, counter c is forwarded to GTS,p.

Note that storing and look-ups in T restricts the reduction to single-stage
games.

61

σ(x):

x′ ← encD(x)
y′ ← π(x′)
y ← encR(y

′)
return y

σ−(y):

y′ ← decR(y)
if (y′ = ⊥) then return ⊥
x′ ← π−(y′)
x← decD(x′)
return x

op(y1, y2):

x1 ← σ−(y1); x2 ← σ−(y2)
if (x1 = ⊥ ∨ x2 = ⊥) then

return ⊥
y ← σ(x1 + x2)
return y

Fig. 19. Lazy sampling of a random injection using a two-sided random permutation
π±. We assume π± returns ⊥ when queried on ⊥.

• If the representation h is not in T , but is in G, algorithm ATS needs to
increment the counter. It can only do this via its oracle. To this end,
ATS queries its hash oracle on a deterministically increasing sequence of
messages to get c. Entry T [c] is set to h and c is forwarded to GTS,p. (If
h is not in G, ⊥ is used.) We note that this step increases the number of
queries to the label oracle by at most the number of elements that ARR

outputs.

We let Bad be the event that the underlying exponent for c coincides with
any other so far. The probability of Bad is at most (q + q0)

2/p, with q, q0 and
p as in the statement of the theorem,

We claim that outside event Bad, running ARR within ATS against GTS,p is
equivalent to running ARR against the RR-compilation of GTS,p wrt. G. This is
due to the fact that algorithm ATS applies the same conversions to counters that
the RR-compiler does to GTS,p. In other words, the reduction can be seen as a
conversion that is either applied to ARR or to GTS,p. Thus, ARR wins GTS,p,G

exactly when algorithm ATS wins GTS,p. ⊓⊔

Lazy sampling of injections. Recall that the lazy sampling of an injection
σ : D → R for decidable sets D,R ⊆ {0, 1}n and |R| ≥ |D| is sufficient to lazily
sample a generic group with exponent space D and image R: the operation oracle
can be instantiated using σ±.

To lazily sample an injection σ : D → R, we first embed D into {0, 1}n via
any uniquely decodable encoding scheme. Similarly we embed {0, 1}n into R.

encD : D → {0, 1}n , encR : {0, 1}n → R ,
decD : {0, 1}n → D , decR : R→ {0, 1}n .

This, in particular, means that log(|D|) ≤ n ≤ log(|R|). When D = Zp, a simple
candidate for such an encoding is attaching sufficiently many redundant bits to
the usual binary encoding of integers modulo p.

Let π± be a two-sided permutation on {0, 1}n. We implement σ± based on
π± and encoding schemes above as shown in Figure 19. It is not hard to see
that when π± is sampled uniformly at random, σ± is also a uniform two-sided
injection from D to R. Furthermore, using a standard lazy sampling procedure
for π±, the injection σ± can be also lazily sampled.

62

	The Uber-Knowledge Assumption: A Bridge to the AGM
	Introduction
	Background
	Contributions

	Preliminaries
	Generic, Type-Safe, and Algebraic Groups
	The Uber-Knowledge Assumption
	Soundness of UK in GBM1-H
	Soundness of UK in ABM3-H
	Conclusion and Relevance to Applications
	Soundness of Linear UK in GGM-H
	Soundness of DH-KE in ABM3-H
	Soundness of UK in AGM-H
	Proof of Theorem 4
	GBM1-H Implies GMB3-H for UK
	Relations between Models

