
Lightweight but Not Easy: Side-channel Analysis
of the Ascon Authenticated Cipher on a 32-bit

Microcontroller
Léo Weissbart and Stjepan Picek

Radboud University, Nijmegen, The Netherlands
firstname.lastname@ru.nl

Abstract. Ascon is a recently standardized suite of symmetric cryptography for
authenticated encryption and hashing algorithms designed to be lightweight. The
Ascon scheme has been studied since it was introduced in 2015 for the CAESAR
competition, and many efforts have been made to transform this hardware-oriented
scheme to work with any embedded device architecture. Ascon is designed with
side-channel resistance in mind and can also be protected with countermeasures
against side-channel analysis. Up to now, the effort of side-channel analysis is mainly
put on hardware implementations, with only a few studies being published on the
real-world side-channel security of software implementations.
In this paper, we give a comprehensive view of the side-channel security of Ascon
implemented on a 32-bit microcontroller for both the reference and a protected
implementation. We show different potential leakage functions that can lead to
real-world leakages and demonstrate the most potent attacks that can be obtained
with the corresponding leakage functions. We present our results using correlation
power analysis (CPA) and deep learning-based side-channel analysis and provide a
practical estimation of the efforts needed for an attacker to recover the complete key
used for authenticated encryption.
Our results show that the reference implementation is not side-channel secure since
an attacker can recover the full key with 8 000 traces using CPA and around 1 000
traces with deep learning analysis. While second-order CPA cannot recover any part
of the secret, deep learning side-channel analysis can recover partial keys with 800
traces on the protected implementation. Unfortunately, the model used for multi-task
key recovery lacks the generalization to correctly recover all partial keys for the full
key attack.
Keywords: Side-channel analysis · Deep learning · Multi-task learning · Lightweight
cryptography · Authenticated encryption

1 Introduction
In the field of symmetric cryptography, the need for lightweight primitives is crucial
in the development of secure, fast, and low-consumption designs that can be used for
embedded devices in resource-constrained environments but also for high-bandwidth
applications. In this effort, the National Institute of Standards and Technology (NIST)
initiated a lightweight cryptography standardization process in 2018. The goal was set to
decide on a new standard for lightweight cryptography by comparing submitted designs
of block ciphers, hash functions, message authentication codes (MACs), authenticated
encryption with associated data (AEAD), and pseudorandom functions (PRFs). The
process ended on 7 February 2023, with the selection of the Ascon family for standardization.
Ascon [DEMS21b] has been designed with side-channel resistance in mind, and the designers

2 Side-channel Analysis of the Ascon Authenticated Cipher

have provided a protected implementation of the cipher. During the standardization process,
side-channel evaluation has been performed on every finalist [MBA+23], and protected
implementation of Ascon in hardware and software has been proved resistant against
side-channel analysis. However, this standard is still new, and the side-channel resistance
of Ascon implementations has yet to gain maturity.

The Ascon team provided implementations for numerous platforms. Additionally, a
masking implementation is also provided with Domain-Oriented Masking (DOM) [GMK16].
The number of shares can be configured up to five shares. The DOM implementation is
available for hardware and software platforms. The choice of DOM is motivated by the
flexibility and robustness of the masking scheme against higher-order attacks because of
the randomization of the shares. The choice of DOM is also attractive because of the low
overhead for increasing the number of shares and the reduced need for fresh randomness
compared to a threshold implementation masking scheme.

The side-channel analysis report obtained from the common effort of several evaluation
laboratories and researchers during the last round of the standardization process has
evaluated Ascon with classical side-channel analysis methods, namely Test vectors leakage
assessment (TVLA), χ2-test, and correlation power analysis. Those evaluations have
been performed on hardware and software implementations and confirmed side-channel
resistance even with second-order CPA, considering several millions of traces [MBA+23].

This paper focuses on showing that deep learning side-channel analysis (DLSCA) can
be applied to Ascon. Moreover, we aim to enlarge the possible attack surface of Ascon
in the context of profiling side-channel analysis. For this purpose, we consider different
leakage models that can expose information about the key during the initialization phase
of Ascon. We explore different leakage models to learn if DLSCA can be applied on an
unprotected implementation of Ascon and if the same leakage can also be applied on a
protected implementation.

The core challenge we try to address in this paper is to conduct a profiling side-channel
analysis on Ascon with deep learning and compare the results with the known CPA attack.
The contributions of this paper are as follows:

• We provide a dataset for profiling side-channel analysis on Ascon from a reference
software implementation and a first-order protected implementation with DOM 1.

• We show that DLSCA can successfully recover the key using fewer traces than CPA
for both unprotected and protected Ascon implementations. The CPA attack on
the unprotected dataset can recover the key in 8 000 traces against 1 000 traces for
DLSCA. On the protected dataset, a second-order CPA fails to recover any part of
the secret key, while DLSCA can recover certain partial keys in 800 traces.

• We show different leakage models that could be used to evaluate the leakage of the
Ascon S-box function to recover the key. Namely, the S-box output value and the
output state’s register value. While the first can be simplified to obtain better results
for CPA, the second can result in better results using DLSCA in the presence of
side-channel countermeasures.

• With a single task model, we can obtain the partial key under DLSCA with less than
20 traces, but the effort of the attacker to recover the full key can be underestimated
with this method. For this reason, we build a multi-task model that can analyze the
traces and simultaneously make decisions for every partial key separately.

The rest of the paper is organized as follows. Section 2 presents the background on
Ascon and deep learning techniques considered in this paper. Section 3 provides the related
work applying side-channel analysis as well as known attacks on Ascon. Section 4 discusses

1https://anonymous.4open.science/r/ascon_datasets-6B5F

https://anonymous.4open.science/r/ascon_datasets-6B5F

Léo Weissbart and Stjepan Picek 3

x0

x1

x2

x3

x4

1
1
1
1
1

1

x0

x1

x2

x3

x4

Figure 1: Ascon S-box.

x4
x3
x2
x1
x0

y4
y3
y2
y1
y0x0

x1
x2
x3
x4

1
1
1
1
1

1

y0

y1

y2

y3

y4

Figure 2: The Ascon S-box applied on the first column of the state.

the leakage models we considered. Section 5 presents the experimental results for DLSCA
and a comparison with CPA. In Section 6, we apply the multi-task learning methodology
for a deep learning attack to recover every partial key. Finally, Section 7 gives concluding
remarks and elaborates on possible future work.

2 Background

2.1 Ascon

Ascon is a family of authenticated encryption and hashing algorithms standardized by
NIST [DEMS21a]. It is a permutation-based block cipher with a 320-bit state divided into
five words of 64-bits (x0, x1, x2, x3, x4). The permutation is applied iteratively on the state
in an SPN-like fashion. The two parameters (a, b) of Ascon are the number of rounds and
the number of bits to be rotated in the permutation. The Ascon round transformation
consists of a 1-byte addition of a round constant, a 5-bit S-box applied bit-sliced, and a
linear diffusion layer.

The Ascon’s S-box (Figure 1) is designed in a bit-sliced fashion that operates on the 5
bits columns of the state, 64 times in parallel, as depicted in Figure 2.

The linear diffusion layer is applied on each register of the state as described in

4 Side-channel Analysis of the Ascon Authenticated Cipher

Eqs. (1)-(5).

x0 = x0 + (x0 >>> 19) + (x0 >>> 28) (1)
x1 = x1 + (x1 >>> 61) + (x1 >>> 39) (2)
x2 = x2 + (x2 >>> 01) + (x2 >>> 06) (3)
x3 = x3 + (x3 >>> 10) + (x3 >>> 17) (4)
x4 = x4 + (x4 >>> 07) + (x4 >>> 41) (5)

2.2 Convolutional Neural Network
In a neural network, the smallest computing units are called neurons. Each neuron in a
neural network is a mathematical function on its own. The output of several neurons acting
on the same inputs can be aggregated in a so-called layer, and layers can be assembled in
a graph-like structure to form a neural network. The first layer is the input layer, and the
last layer is the output layer. The layers in between are called hidden layers. When the
number of hidden layers is larger than one, the network is called a deep neural network. A
neuron is a mathematical function that takes an input and outputs a value. The input of
a neuron is the output of the previous layer, and the output of a neuron is the input of
the next layer. The output of a neuron is computed as follows:

y = f(
n∑

i=1
wixi + b), (6)

where xi is the input of the neuron, wi is the weight of the input, b is the bias of the
neuron, and f is the activation function.

The activation function is a non-linear function that is applied to the output of the
neuron. The activation function is used to introduce non-linearity to the network. The
most common activation functions are the sigmoid function, the hyperbolic tangent (Tanh)
function, the rectified linear unit (ReLU) function, the scaled exponential linear unit (SeLU)
function, and the Softmax function. The sigmoid function is commonly used after the
output layer to transform the output of the layer into a probability distribution as the
sum of the outputs sums to one, and is defined as follows2:

f(x) = 1
1 + e−x

. (7)

The hyperbolic tangent function is defined as follows:

f(x) = ex − e−x

ex + e−x
. (8)

The ReLU function is defined as follows:

f(x) = max(0, x). (9)

The SeLU function is defined as follows:

f(x) = λ

{
x if x > 0
αex − α if x ≤ 0,

(10)

where λ and α are specific constants of the function.
The Softmax function is defined as follows:

f(xi) = exi∑n
j=1 e

xj
. (11)

2The Softmax function is an extension on sigmoid function when there are more than two classes.

Léo Weissbart and Stjepan Picek 5

A neural network as described so far, represented as a collection of neurons, is commonly
denoted as multilayer perceptron (MLP) and is a simpler form of a deep neural network.

A neural network containing at least one convolutional layer is called a convolutional
neural network (CNN). A convolutional layer is a layer that applies a convolution operation
on the input. The convolution operation is a mathematical operation that is defined as
follows:

(f ∗ g)(t) =
∫ ∞
−∞

f(τ)g(t− τ)dτ, (12)

where f and g are two functions. The convolution operation is applied to the input with
multiple kernels. Each kernel is a matrix of weights smaller than the input size and is
sliding over the input, computing the convolution operation at each position. The output
of the convolution operation is called a feature map and represents a transformation of the
input that holds an abstract representation of information of the input.

In deep learning, CNNs have been proven to be useful in various applications from
image recognition to natural language processing [LJB+89, GMH13]. CNNs are also used
in side-channel analysis to recover the key of a cryptographic implementation [MPP16,
JXLW20, FYHF21, NTIY23].

2.3 Profiled SCA and Evaluation Metrics
Profiling SCAs map inputs (side-channel traces) to outputs (probability vector of key
hypotheses). Profiling SCA consists of two phases. In the first phase, commonly called the
profiling phase, the attacker builds a profiling model, which is based on the side-channel
measurements coming from a clone device. In the second phase, called the attack phase,
the attacker leverages the knowledge obtained from the clone device (in the form of a
profiling model) and uses that knowledge to break the target device. Commonly, the
output of the attack is a vector of probabilities representing the likelihood of a key guess
being the correct key. Examples of profiling attacks are the template attack (TA) [CRR02]
and machine (deep) learning-based attacks [HGM+11, MPP16, PWP22]. To evaluate the
performance of profiling SCAs, there are several commonly used metrics with the most
common ones being the success rate (SR) and the guessing entropy (GE).

Success Rate The success rate is the rate of successfully guessed bits of the key. When
considering an attack on a traceset with a fixed key, the success rate is the rate of
successfully guessed bits ki of the key k∗ = (k∗i)i∈K, with K the length of the key in bits.

SR = 1
K

K∑
i=1

δki,k∗
i

(13)

with δi,j being the Kronecker delta function equal to one if i = j and zero else.

Guessing Entropy The guessing entropy is the average number of guesses needed to find
the correct key. The partial guessing entropy is often used to evaluate the performance of
a side-channel attack on a subset of the key.

The output of a side-channel attack using Q attack traces on a key k in a key space
|K| is a key guessing vector g = [g1, g2, . . . , g|K|] given in decreasing order of probability,
where g1 is the most probable guess and g|K| is the least probable guess. The guessing
entropy is the average position of the correct key in this key guessing vector.

GE = E (rankk∗(g)) (14)

with rankk∗(g) being the position of the correct key k∗ in the key guessing vector g, and
E the expectation operator. The partial guessing entropy is the average position of the
correct key in the key guessing vector restricted to a subset of the key (e.g., one key byte).

6 Side-channel Analysis of the Ascon Authenticated Cipher

3 Related Work

Side-channel analysis is commonly considered when evaluating the security of symmetric
cryptographic primitives. Differential power analysis was first introduced by Kocher et
al. and was originally applied to DES [KJJ99]. The authors showed that the leakage
of the Hamming weight of the intermediate values of the S-box function can be used to
recover the key successfully, using the difference-of-means as a statistical analysis method
to compare the hypothetical power consumption values with the recorded traces. Another
way to determine the relationship between data is to use the Pearson correlation coefficient.
This method represents the pillar of the non-profiled SCA and is commonly referred to as
Correlation Power Analysis (CPA) [BCO04, CCD00].

Deep learning side-channel analysis has been a promising technique for profiling
side-channel analysis since the work of Maghrebi et al. [MPP16]. Later, Benadjila et
al. [PSB+18] introduced a dataset for profiling side-channel analysis on AES protected
with Boolean masking and showed that a convolutional neural network (CNN) is an efficient
approach to recovering the AES key. Many other research works have also shown that deep
learning can be a powerful profiling attack against AES [MPP16, PSK+18, KFYF21, RK21].
More recently, a number of works consider the multi-task paradigm in DLSCA, showcasing
it can be more powerful than the single-task approach [Mag20, MO23b, MO23a, MS23].

Since Ascon was introduced in 2016 for the CAESAR competition, several works have
been published on the security of Ascon. The authors of [SD17] demonstrated a CPA
attack on a hardware implementation of Ascon. The authors showed that bits of the output
state of the round function can lead to a key recovery. In [RAD20], the authors attacked
the Ascon S-box operation of a hardware implementation that executes operations in a
sequential mode. They could separate the different bitwise S-box operations to apply
a horizontal attack, and they used reinforcement learning to recover the key from the
leakage of the S-box. The authors also employed an autoencoder to perform dimensionality
reduction given the sub-traces of every S-box operation. In [SS23], the authors used transfer
learning from a well-fitting model for AES on the ASCAD dataset to improve DLSCA on an
unprotected Ascon implementation for RISCV microcontroller. In general, the literature on
machine learning-based SCAs on ciphers different from AES is relatively sparse, especially
considering lightweight symmetric ciphers, see, e.g., [HPGM20, HPGM16, MWM21]. This
indicates more work is needed to understand how to mount powerful attacks and how
much of the knowledge is transferable from one target to another.

4 Leakage Models

The target of side-channel attacks against Ascon is the value of the key used in the
initialization phase (Figure 3). The attack at this point is possible because we know the
content of the state at initialization, except for the key.During the first permutation round,
the state is composed of a 64-bit initialization value, the 128-bit key, and a user-defined
128-bit nonce.

The non-linear properties of the Ascon S-box with the controllable nonce enable possible
leakage that can be exploited with SCA. One intuitive leakage model that can be applied
is the S-box output. The Ascon S-box is a 5-bit S-box that is applied to the columns
of the state. It is possible to consider this leakage differently depending on the cipher
implementation.

The output state registers x0, .., x5 from Figure 1 can be rewritten in the algebraic

Léo Weissbart and Stjepan Picek 7

IV‖K‖N

pa

Initialization

0∗‖K

A1
r

pb
c

As
r

pb
c

Associated Data

0∗‖1

P1C1
r

c
pb

Pt−1 Ct−1
r

c
pb

Plaintext

Pt Ct
r

c

K‖0∗

pa

Finalization

K

T

128

Figure 3: AEAD Encrypt.

normal form (ANF) as follows:

y0 = x1(x4 + x2 + x0 + 1) + x3 + x2 + x0 (15)
y1 = (x3 + 1)(x2 + x1) + x2x1 + x4 + x0 (16)
y2 = x4(x3 + 1) + x2 + x1 + 1 (17)
y3 = (x0 + 1)(x4 + x3) + x2 + x1 + x0 (18)
y4 = x1(x4 + x0 + 1) + x3 + x4. (19)

4.1 Leakage Models for Differential Attacks
DPA attacks use datasets of many power traces from a cryptographic device operating with
the same key to exploit the data dependency of the power consumption. As a consequence,
the activity of the computation that has a constant contribution to the power consumption
will be equal for each trace collected and will cancel out in the analysis. Thus, all the
variables contributing with a constant amount to the activity can be removed from the
previous notation, i.e., the terms with x0, x1, x2, or combinations of those.

y0 = x4x1 + x3 (20)
y1 = x3(x2 + x1 + 1) + x4 (21)
y2 = x4(x3 + 1) + 1 (22)
y3 = (x4 + x3)(x0 + 1) (23)
y4 = x4(x1 + 1) + x3 (24)

In Eqs. (22) and (23), y2 and y3 do not involve computation on the bits of the key, and
thus cannot be used as leakage functions. However, in Eqs. (20) and (24), it can be noticed
that both y0 and y4 have a relation with a bit of state x1, and can be used interchangeably
to recover the first half of the key. By attacking the register y1 in Eq. (21), the leakage
from the value of x1 + x2 can be learned. This term can be used in conjunction with the
information recovered from the previous leakage on x1 to get the second half of the key
related to x2, as also pointed out in [SD17].

The content of register x1 or x1 +x2 is the secret denoted k, and x3 and x4 are denoted
m and m′, respectively.

y0 = km′ +m

y1 = m(k + 1) +m′

y4 = m′(k + 1) +m.

The application of the linear diffusion layer on the output of the S-box function permits

8 Side-channel Analysis of the Ascon Authenticated Cipher

x4
x3
x2
x1
x0

y4
y3
y2
y1
y0x0

x1
x2
x3
x4

1
1
1
1
1

1

y0

y1

y2

y3

y4

Figure 4: Computation of the leakage value of a given output register.

to obtain the following expressions:

S0i(M,K∗) = k∗0m
′
i +mi + k∗1m

′
i+45 +mi+45 + k∗2m

′
i+36 +mi+36 (25)

S1i(M,K∗) = mi(k∗0 + 1) +m′i +mi+3(k∗1 + 1) +m′i+3 +m′i +mi+25(k∗2 + 1) +m′i+25
(26)

S4i(M,K∗) = m′i(k∗0 + 1) +mi +m′i+57(k∗1 + 1) +mi+57 +m′i+23(k∗2 + 1) +mi+23.
(27)

Eqs. (25), (26), and (27) show the leakage functions that can be used to recover the
key when targeting the output of the round function.

This leakage function directly aims to correlate the power consumption with the S-box
output value. Since the S-box operation works on a column of the state, the storage of
the output should be uncorrelated with the operation and is understandable from the
bit-sliced nature of the operation. The leakage is based on the value of only one bit of
the output state. Thus, using the Identity or Hamming weight power model makes no
difference for a software implementation. The Hamming distance power model can be used
when targeting a hardware implementation.

4.2 Leakage Models that Apply Better for Profiled Attacks
For profiled attacks, the profiling traceset is composed of traces collected from encryption
with random keys, and the attack traceset is collected with a fixed key for the attack phase.
From Eq. (19), it is possible to exploit the leakage that only depends on the input register
x1, which contains the first half of the key. It is then possible to obtain the second half of
the key from the leakage of any other register because y0, y1, y2 and y3 depend on x2. In
this paper, we focus on the leakage of y2 (see Eq. (17)).

While the Ascon S-box is bit-sliced, the output leakage can be stronger for bytes of
the output state when considering a software implementation because of the architecture
of the microprocessor and leakage during the storing operation. Alternatively, slices of
the state can be considered to observe the concatenated leakage for a single byte slice, as
shown in Figure 4.

When considering this leakage function, the goal is to observe a correlation between
the power consumption and the storage of the output state. Because the architecture of
the studied microcontroller is 32-bit, the stored output is large, and it can be difficult
to get a correlation based on the full-length variable. With this leakage function, we
aim to obtain partial information of the value stored, and the size of the variable can be
determined smaller than 32-bit. The partial correlation on a large word can be used to
obtain information about the value stored in a register, as shown in [THM+07]. Repeating
this attack on successive parts of the register makes it possible to recover the secret value
using fewer traces and computing power than when using the full register correlation.

Léo Weissbart and Stjepan Picek 9

0 200 400 600 800
Samples

0.00

0.01

0.02

0.03
SN

R
va

lu
e

Random key
Fixed key

(a) Round function output register y4.

0 200 400 600 800
Samples

0.000

0.002

0.004

0.006

0.008

SN
R

va
lu

e

Random key
Fixed key

(b) Round function output register y1.

Figure 5: SNR for unprotected implementation round function leakage model.

5 Experimental Result
5.1 Implementation
In this paper, we consider a software implementation of Ascon. The C implementation
from the Ascon team can be found on their GitHub repository [Tea]. They provide
implementations for every Ascon mode and several platforms. In this work, only the
AEAD implementation of Ascon-128 v1.2 optimized for ARMv7m microcontrollers is
considered. The Ascon-128 v1.2 is the recommended implementation when using Ascon
for AEAD for a key of 128-bit. Instead of using the c-reference implementation, we use
the 32-bit optimized implementation they provide with our target device architecture to
ensure the closest results to a real scenario.

Traces are collected with a ChipWhisperer Lite board, an 8-bit precision oscilloscope,
coupled with the STM32F4 target.3 The target microcontroller is a 32-bit platform running
at a default clock frequency of 7.37MHz. Traces are collected in a manner to only contain
power samples during the first round of the initialization permutation for both reference
and protected implementations.

The unprotected implementation dataset contains 60 000 traces with 772 samples each.
In this dataset, 50 000 traces are collected with random keys, and 10 000 traces with a fixed
key. The protected implementation dataset contains 560 000 traces with 1 408 samples
each. The implementation uses bit-interleaved domain-oriented masking with two shares.
In this dataset, 500 000 traces are collected with random keys, and 60 000 traces with a
fixed key.

5.2 Signal-to-Noise (SNR) for Leakage Models
Figure 5 depicts the SNR of the round function leakage model with fixed key and random
key datasets. We can observe that for both registers’ leakage, only the dataset with a fixed
key shows an important leakage. This observation supports the leakage established in
Section 4 for non-profiled leakage models. We can also observe that leakage from register
y4 is stronger than the leakage from register y1 by a factor of almost 4. This difference
of leakage between y1 and y4 can result from the difference of the registers used inside
the ARM microcontroller. It is also interesting to notice the leakage position for the
two registers. While the leakage of the register y4 is around sample 700, the register y1
leaks mostly around sample 500, confirming that the two registers are treated in separate
instructions in the considered implementation.

Figure 6 assembles the SNRs for the register S-box output leakage models given different
numbers of input bits. We can also observe that the leakage patterns remain the same for

3https://www.newae.com/products/NAE-CWLITE-ARM

https://www.newae.com/products/NAE-CWLITE-ARM

10 Side-channel Analysis of the Ascon Authenticated Cipher

0 200 400 600 800
Samples

0.00

0.01

0.02

0.03

0.04

SN
R

va
lu

e

Random key
Fixed key

(a) 1-bit S-box output register y4.

0 200 400 600 800
Samples

0.00

0.02

0.04

0.06

SN
R

va
lu

e

Random key
Fixed key

(b) 1-bit S-box output register y2.

0 200 400 600 800
Samples

0.00

0.02

0.04

0.06

0.08

0.10

SN
R

va
lu

e

Random key
Fixed key

(c) 4-bit S-box output register y4.

0 200 400 600 800
Samples

0.00

0.05

0.10

0.15

SN
R

va
lu

e

Random key
Fixed key

(d) 4-bit S-box output register y2.

0 200 400 600 800
Samples

0.05

0.10

0.15

SN
R

va
lu

e

Random key
Fixed key

(e) 8-bit S-box output register y4.

0 200 400 600 800
Samples

0.0

0.2

0.4

0.6

0.8

SN
R

va
lu

e

Random key
Fixed key

(f) 8-bit S-box output register y2.

Figure 6: SNR for unprotected implementation S-box leakage models.

0 200 400 600 800
Samples

0.00

0.02

0.04

SN
R

va
lu

e

Random key
Fixed key

Figure 7: SNR for unprotected implementation S-box leakage on output state column.

Léo Weissbart and Stjepan Picek 11

Figure 8: Correlation power analysis targeting the first bit of the state output.

all SNRs when considering more bits in the leakage and confirm the leakage model chosen
in Section 4. From all SNRs, it can be noticed that the traceset with fixed key shows
higher leakages than for random keys. While the SNRs suggest a correlation between
these intermediate values and power consumption, it is not possible to argue whether the
leakage can be exploited by a profiling attack. It can also be noticed that the more bits
are considered, the stronger the SNR. Thus, it is easier only to consider the 8-bit output
register model later in the experiments, as it is the most promising leakage among the
three displayed. This choice is also justified because the implementation is byte-oriented.
Thus, we can assume better leakage for bytes.

Finally, the SNR obtained from the S-box output column shows higher overall leakage
across all samples, as shown in Figure 7. It can be noticed that leakages from a fixed key
dataset and random keys dataset overlap the most among all previously displayed SNRs.
This result could indicate that this leakage model can be the most present one from those
considered and can be used for the profiling attack because the samples involved in this
leakage are the same for the random and fixed key traces.

5.3 Correlation Power Analysis on Unprotected Implementation
For CPA, we use the output of the round function as the leakage function. This leakage was
used in previous works [SD17, RAD20, SS23], and is a baseline for non-profiled attacks.

In Figure 8, we see that CPA can successfully recover one partial key (i.e., 3 bits) with
less than 1 000 traces. In the top figure, we display the correlation of all trace samples for
every key candidate, with the correct key in red. We can see that the correct key candidate
has a significantly higher correlation around sample 690. In the bottom left figure, we
display the highest correlation value for all samples against the number of evaluated traces
for the CPA. We can observe that the correlation for the correct key candidate becomes
higher than other key candidates after 400 traces and stays higher the more traces are
evaluated. The bottom right figure shows the rank of the correct key against the number
of evaluated traces, and it shows more clearly the convergence of the correct key candidate
to zero within 400 traces. To confirm that this attack can be applied to recover every
partial key, we describe how to repeat the previous partial key recovery efficiently.

12 Side-channel Analysis of the Ascon Authenticated Cipher

Table 1: Best set of column indices to recover the key from output state CPA in registers
y4 and y1.

y4 0 1 2 7 8 9 14 15 16 20 21 22 28 29 30
35 36 37 42 43 44 45 49 50 51 52 56 57 58 63

y1 0 2 3 4 5 6 7 8 9 10 12 13 15 16 17
18 20 21 22 24 26 34 37 42 46 50 51 52 53 54
55 56 58

The attack described above targets a sequence of three bits to get halves of the key
given the two registers y4 and y1. When considering the register y4, the sequence of bits of
the key [i, i+ 57, i+ 23] is related to the index of column i of the output state. With one
CPA, the attacker can obtain one sequence of three bits of the first half of the key. One
can do as many CPAs as there are bits to guess and only consider the first guessed bit,
disregarding the rest of the found value. However, the least number of CPAs to perform
to guess each bit of the first half of the key is defined by the minimal set of sequences with
the least overlapping bits.

Given the distribution of all partial keys in register y4, the best search can be obtained
by walking through the indices in Table 1. This set of indices requires performing 30 CPA
attacks to recover the first half of the key. We can do a similar walk with the indices for
register y1 with a total of 33 CPA attacks to recover the second half of the key.

The indices are obtained with the following methodology. First, we build a list of
the bit sequences (i.e., the partial keys) and their index in the binary representation of
the key for all columns in the state. Then, we remove every second sequence that has
an overlapping bit index. From this reduced list, we iteratively append the partial keys
for which the sequence contain one bit of the key is missing from all the sequences in
the reduced list. The final list contains the minimum number of key indices for which an
attacker should repeat CPA attacks to recover the 128 bits of the key.

To recover the complete 128-bit key, we must repeat the same attack 63 times on
several bits of the output state.

The result of the full key recovery is described with the success rate metric. With this
metric, it is possible to evaluate the minimum number of traces needed to recover every
partial key, and a success rate of one translates to a successful attack. The success rate of
the full key recovery is shown in Figure 9. With the fixed key dataset, it is possible to
correctly guess all the bits of the 128-bit key using around 8 000 traces.

5.4 Correlation Power Analysis on Protected Implementation
We now consider the protected implementation against second-order CPA. The leakage
model remains the same as for the unprotected implementation. We apply window averaging
with a window size of 8 to reduce the number of samples to analyze, and then combine
samples with normalized multiplication for the second-order CPA attack. The number of
samples in the raw traces is 1 408. By applying the pre-processing for second-order CPA,
we reduce the number of samples of the traces to 15 400 samples. The window averaging is
essential to reduce the number of samples to a reasonable number for the second-order CPA,
as the number of samples is squared from the raw traces. The combination method uses
normalized multiplication, as it enables efficient combining leakages of shares contained in
two separate samples with normalization.

The output of the CPA targeting the first bit of the S-box output is shown in Figure 10.
We can see that even after 60 000 traces, the correlation of the first bit of the S-box output
is not significant enough to recover the key. The upper figure shows the correlation of
every key candidate for all time samples. From this figure, we can see that the correct key
candidate (in red) does not have a correlation value higher than any other key candidate

Léo Weissbart and Stjepan Picek 13

0 2000 4000 6000 8000 10000
Number of traces

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Figure 9: Success rate of the CPA.

Figure 10: CPA targeting the first bit of the state output for the protected implementation.

for any sample. The bottom left figure shows the highest correlation value from all key
candidates against the number of evaluated traces. We can observe from this figure that
the correlation of the correct key candidate does not increase with more traces considered
up to 60 000 traces. If the value to correlate would show a potential to end with a successful
attack, the correlation value for the correct key candidate (in red) should start to increase,
but instead, the correlation value stays indistinguishable from the other key candidates.
The bottom right figure shows the rank of the correct key candidate among all possibilities
for all the steps of evaluated traces. The rank never reaches zero and does not seem to
converge, either. The results clearly show that the attack is unsuccessful for the considered
number of traces.

Because the partial key attack on the protected implementation is not successful, we
do not consider the success rate of the full key recovery.

14 Side-channel Analysis of the Ascon Authenticated Cipher

5.5 Deep Learning Attack
For a deep learning attack to be successful, a well-fitting model should be trained. Finding
such a model can be challenging, depending on the leakage model and dataset consid-
ered. To find such a model, the state-of-the-art Bayesian optimization (BO) methods
for hyperparameter tuning [Moc77, RW06, Ngu19, WNS21] are commonly considered to
be the best approach for sequential model-based global optimization. Note that such
hyperparameter tuning approaches are already used in DLSCA and give good results,
see, e.g., [WPP20, RWPP21]. In this paper, we adopted the Tree-structured Parzen
Estimator (TPE) approach from [BBBK11]. This approach is based on the Gaussian
process for tree-structured configuration hyperparameter spaces and is well suited for a
high dimensional model like CNNs with the number of layers as a hyperparameter, where
the evaluation of the surrogate function is cheap. The principle of BO is to minimize an
objective function using a surrogate function, a probabilistic model of the score obtained
with the objective function given a set of hyperparameters. This method helps to efficiently
search the hyperparameter search space by deciding the next most promising step toward
the best set of hyperparameters based on the results of previously evaluated sets. This
method is also known to obtain better results compared to the grid search and random
search methods in fewer evaluations [TEM+21]. The BO search is faster to converge
toward a well-fitting model and can be used to make a better decision on when to stop
the search for a better-performing model. The TPE approach adds several parameters
in the algorithm to scale the exploration of the search space, taking into account the
tree-structure base of a deep neural network with a high number of hyperparameters. This
algorithm can also estimate the expected improvement direction to explore in the search
space.

To define the search space, we first design a hyper architecture (i.e., hypermodel),
which represents a guideline on which we can define the directions for our models to grow.

The Bayesian optimization method is applied for network architecture search with
guessing entropy in the validation set as a surrogate function. The expected behavior
of this search method is to explore the hyperparameter search space to maximize the
architecture that could lead to a model with the fastest convergence to an attack with a
guessing entropy of zero.

We set a few rules to shape the network architecture of a CNN to reduce the hy-
perparameter search space and match known well-performing designs for the analysis of
1-dimensional signals. The main principle is to use stacked convolutional layers followed
by several fully-connected layers. The number of channels of the convolution layers starts
from a small number and increases by a factor of 8 for every new convolution block. The
architecture of the CNN hypermodel is described in Figure 11. First, the input data goes
through a batch normalization layer, followed by n_conv_blocks convolutional blocks
constituted by one convolution layer, an activation function layer, a batch normalization
layer present every two convolutional blocks, and an average pooling layer. After the
convolutional blocks, there is a flatten layer to reshape the data and, finally, n_fc_layers
of linear and activation layers. The last linear layer outputs the decision of the neural
network.

The training process follows the same procedure for all models. The training is done
with a batch size of 128, and the ‘Adam’ optimizer [KB15]. The loss function is the cross-
entropy loss, and the number of epochs is set to 200. These hyperparameters are selected
manually to reduce the workload of the BO and we note we achieve good performance
with such a model. During every evaluation step of the model, the validation set is used
to compute guessing entropy, together with accuracy and loss. These three metrics are
tracked during the training process to assess the model’s performance. In a particular
case when the number of convolutional blocks is zero, the network consists only of fully
connected layers, and we call it a multilayer perceptron (MLP).

Léo Weissbart and Stjepan Picek 15

B
at

ch
N

or
m

Conv

A
ct

iv
at

io
n

B
at

ch
N

or
m

P
oo

lin
g

×n_conv_layers

F
la

tt
en

Li
ne

ar

A
ct

iv
at

io
n

×n_fc_layers

Li
ne

ar

Figure 11: Hypermodel of a Convolutional Neural Network.

The hyperparameter search space is described according to the network architecture
rules in Table 2.

Table 2: Hyperparameter space explored in the optimization process
Hyperparameter Range Step
learning_rate [1e− 5, . . . , 1e− 3] Log
activation_function [relu, selu, tanh] None
n_conv_layers [0, . . . , 3] 1
kernel_size [3, . . . , 80] (for each conv layer) 1
n_fc_layers [1, . . . , 5] 1
size_fc_layers [10, . . . , 500] (for each fc layer) 10

We train models on our unprotected Ascon dataset for the S-box output leakage model,
as discussed in Section 4, for which the leakage function should be more adapted to the use
of a random key traceset during the training phase.From the model search, the best-found
model has two convolution blocks with a kernel size of 16 and 11, respectively, and two
fully connected layers of 100 and 50 neurons, respectively. The number of epochs to reach
the fastest guessing entropy of zero is 50 epochs with a learning rate of 1e− 5, and the
attack using this model reaches a guessing entropy of zero after 20 attack traces. In the
results shown in Figure 12, we can see the guessing entropy with an increasing number
of traces on top and the accuracy and loss of the model during training for the training
and validation sets at the bottom. While the accuracy and loss are sometimes misleading
to understand the performance of a model for side-channel analysis [PPM+23], we can
observe that the training loss does decrease together with the validation loss, indicating a
generalization of the model on validation data.

The same training is applied to the first-order masking Ascon dataset using the same
S-box output leakage model. The best model found has two convolution blocks with kernel
sizes 27 and 18, and five fully connected layers of sizes 110, 230, 20, 140, and 500. The
number of epochs to reach the fastest guessing entropy of zero is 20 with a learning rate of
1e− 5, and it reaches a guessing entropy of zero after 15 traces. The results of the model
are shown in Figure 13.

When using the 8-bit register S-box output leakage model, we can find a good model
for the unprotected dataset. With this leakage model, the partial key that is targeted is
8-bit long, thus the guessing entropy we obtain ranges in 28. The convergence to GE zero
is reached after 200 traces. In Figure 14, we show the results of the best-found model. The
model is composed of two convolution blocks with kernel sizes 30 and 5, and four fully
connected layers of sizes 500, 470, 10, and 480. The number of epochs to reach the fastest
guessing entropy of zero is 160, with a learning rate of 1e− 5. The accuracy and loss of
the model indicate that the model learns the leakage and stabilizes at the latest stage.

However, the same leakage model cannot lead to a satisfying model when training with
the protected dataset. In Figure 15, it can be seen that the attack does not lead to a

16 Side-channel Analysis of the Ascon Authenticated Cipher

Figure 12: Results with an MLP model on S-box output leakage.

Figure 13: Results of the best-found CNN model on first-order masking S-box output
leakage.

Léo Weissbart and Stjepan Picek 17

Figure 14: Results of the best-found CNN model on unprotected 8-bit S-box register
output leakage model.

model capable of reducing the guessing entropy of the key. The rank value for the correct
key-byte guess stays around the value 128, attesting to a random output prediction from
the model. The accuracy and loss of the model show that the model does not learn from
leakage at all, as the values remain stable from the first epochs until the last trained epoch.
It can be concluded that the masking scheme is effective in protecting this specific leakage,
even for DLSCA.

Still, the best-found model for the S-box output leakage model on the unprotected
dataset is better than the CPA. The CPA can recover the key after 800 traces, while the
best-found model can recover the key after 20 traces when exploiting leakage of the S-box
output state. On the protected implementation, the best-found model for the S-box output
leakage model can do partial key recovery with 20 traces, while CPA cannot recover the
key, even after 60 000 traces. Our proposed DLSCA is better than CPA for the unprotected
dataset, as it can recover the partial keys with 40 times fewer traces and can also do partial
key recovery on the protected dataset with the same effort, while CPA is unsuccessful.
Still, there the question remains whether this result can be improved.

6 Multi-task Results
The previous models all considered only a partial key. It is possible to build a model with
multiple outputs, where each would estimate a different partial key and thus obtain the
full key of the attacked dataset with a single model evaluation. This problem is called
multi-task learning. The idea resides in the fact that a CNN can extract features from
the learning set and use the different feature maps independently to output probabilities
for different tasks with separated MLPs. Some works have successfully applied multi-task
models to the well-known masked AES dataset like ASCAD [MO23b, MO23a, MS23] as
discussed in Section 3.

To construct a multi-task model, we follow the same architecture as in Figure 11, but
the output of the flatten layer is connected to multiple independent fully connected models
in parallel. Each fully connected model will output the probability for a partial key (as in
the previous section) and form an oracle for the full key guess. The training process of a
multi-task model is similar to a single-task model. For each output of the fully connected
models, we construct labels corresponding to traces in the dataset for the given partial

18 Side-channel Analysis of the Ascon Authenticated Cipher

Figure 15: Results of the best-found CNN model on first-order masking 8-bit S-box register
output leakage model.

key, and the loss function is computed as the sum of the categorical cross-entropy of every
branch. The backward loop during the training phase will update the weights of each fully
connected model and the convolution layers to fit the leakage function for every output
simultaneously.

In Figure 16a, we can see the guessing entropy of individual partial keys from the
multi-task model trained on the unprotected dataset. Each line in the figure represents
the guessing entropy of a partial key. We can observe that all partial keys converge to a
guessing entropy of zero but at different speeds. Note that to obtain a successful multi-task
attack, all partial keys should reach a guessing entropy of zero.

In Figure 16b, we present the success rate of the attack. A success rate of one is reached
when the model correctly evaluates every partial key correctly for a given test traceset. We
can observe that the success rate reaches values above 0.98 after only 20 epochs, and the
more epochs, the closer to one goes the success rate. For the best number of epochs, the
success rate reaches one after an average of 1 000 traces. Compared to the results obtained
from the CPA attack on the same dataset, the multi-task model can obtain the key with
8× fewer traces.

For the protected dataset, we use a multi-task model with the same hyperparameters
obtained for the best single-task model. In Figure 17, we see the guessing entropy of
every partial key of the multi-task model. While some partial keys converge to a guessing
entropy of zero, others converge to a fixed position with consistent errors. The errors stem
from the prediction of the model that does not output random ranking for every trace
(as a poorly trained model would) but ranks the correct key candidate at a fixed position
for every trace. This position seems to be different for all tasks and ranges between all
values of the ranking vector. The value of the error for different partial keys is evenly
distributed and leads to a random success rate when aggregating all partial keys results.
The multi-task model trained on the protected dataset can recover some partial keys, but
cannot generalize the knowledge for all partial keys.

Compared to DLSCA on AES, the number of output classes is reduced due to the
fact that our S-box output leakage function is a value between 0 and 23, instead of 28

as for the AES S-box. The ranking of partial keys in the guessing vector makes a bigger
difference when the difference between the probabilities is smaller (i.e., when the prediction
is difficult).

Léo Weissbart and Stjepan Picek 19

(a) Guessing entropy of the multi-task CNN
model for every partial key at the end of
model training.

(b) Success rate of the full key recovery using
the multi-task model for increasing number
of epochs.

Figure 16: Multi-task results on unprotected dataset.

Figure 17: Guessing entropy of the multi-task CNN model for every partial key on the
masked implementation at the end of model training.

20 Side-channel Analysis of the Ascon Authenticated Cipher

7 Conclusions and Future Work
In this paper, we have evaluated the side-channel resistance of Ascon implementations
against CPA and DLSCA. We have shown two different leakages that can be exploited:
the S-box output and the register of the state after the S-box operation. Our results show
it is possible to obtain successful deep learning attacks for both leakage models on the
unprotected Ascon dataset. The best-found model for the S-box output leakage model can
recover the key after 20 traces, and the best-found model for the register leakage model
can recover the key after 200 traces. Both leakage models are better than the results
obtained from the CPA attack. On the protected implementation of Ascon, our results
show that the masking scheme is effective for the register output leakage model, as we
cannot obtain a fitting model for the attack on this leakage. However, the masking does
not prevent the S-box output leakage model.The best-found model for the S-box output
leakage model can recover a partial key after only 20 traces.

This work gives the first example of a side-channel attack on a protected software
implementation of Ascon. The exploited leakages we present are not specific to software
and could be, depending on the implementation, applied to hardware. What is more,
since domain-oriented masking was mostly designed to protect hardware with side-channel
analysis in mind, DLSCA should be more challenging. In future work, we plan to explore
protected hardware implementation of Ascon with the presented leakage models and
model optimization methods. It could also be interesting to apply non-profiled DLSCA to
Ascon.

References
[BBBK11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms

for hyper-parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 24. Curran Associates, Inc., 2011.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th Inter-
national Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer,
2004.

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential
power analysis in the presence of hardware countermeasures. In Çetin Kaya
Koç and Christof Paar, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2000, Second International Workshop, Worcester, MA, USA,
August 17-18, 2000, Proceedings, volume 1965 of Lecture Notes in Computer
Science, pages 252–263. Springer, 2000.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Bur-
ton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

[DEMS21a] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon PRF, MAC, and short-input MAC. Cryptology ePrint Archive, Report
2021/1574, 2021. https://eprint.iacr.org/2021/1574.

https://eprint.iacr.org/2021/1574

Léo Weissbart and Stjepan Picek 21

[DEMS21b] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

[FYHF21] Yuta Fukuda, Kota Yoshida, Hisashi Hashimoto, and Takeshi Fujino. Deep
learning side-channel attacks against lightweight SCA countermeasure RSM-
AES. In Asian Hardware Oriented Security and Trust Symposium, AsianHOST
2021, Shanghai, China, December 16-18, 2021, pages 1–6. IEEE, 2021.

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recog-
nition with deep recurrent neural networks. In IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC,
Canada, May 26-31, 2013, pages 6645–6649. IEEE, 2013.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Proceedings of
the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016
Vienna, Austria, October, 2016, page 3. ACM, 2016.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng., 1(4):293–302, 2011.

[HPGM16] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens. Side-
channel analysis of lightweight ciphers: Does lightweight equal easy? In
Gerhard P. Hancke and Konstantinos Markantonakis, editors, Radio Frequency
Identification and IoT Security - 12th International Workshop, RFIDSec 2016,
Hong Kong, China, November 30 - December 2, 2016, Revised Selected Papers,
volume 10155 of Lecture Notes in Computer Science, pages 91–104. Springer,
2016.

[HPGM20] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens. Lightweight
ciphers and their side-channel resilience. IEEE Transactions on Computers,
69(10):1434–1448, 2020.

[JXLW20] Xin Jin, Yong Xiao, Shiqi Li, and Suying Wang. Deep learning-based side
channel attack on HMAC SM3. Int. J. Interact. Multim. Artif. Intell., 6(4):113–
120, 2020.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[KFYF21] Kunihiro Kuroda, Yuta Fukuda, Kota Yoshida, and Takeshi Fujino. Practical
aspects on non-profiled deep-learning side-channel attacks against AES soft-
ware implementation with two types of masking countermeasures including
RSM. In Chip-Hong Chang, Ulrich Rührmair, Stefan Katzenbeisser, and
Debdeep Mukhopadhyay, editors, ASHES@CCS 2021: Proceedings of the
5th Workshop on Attacks and Solutions in Hardware Security, Virtual Event,
Republic of Korea, 19 November 2021, pages 29–40. ACM, 2021.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,

22 Side-channel Analysis of the Ascon Authenticated Cipher

August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[LJB+89] Yann LeCun, Lawrence D. Jackel, Bernhard E. Boser, John S. Denker, Hans Pe-
ter Graf, Isabelle Guyon, Don Henderson, Richard E. Howard, and Wayne E.
Hubbard. Handwritten digit recognition: applications of neural network chips
and automatic learning. IEEE Commun. Mag., 27(11):41–46, 1989.

[Mag20] Houssem Maghrebi. Deep learning based side-channel attack: a new profiling
methodology based on multi-label classification. Cryptology ePrint Archive,
Report 2020/436, 2020. https://eprint.iacr.org/2020/436.

[MBA+23] Kamyar Mohajerani, Luke Beckwith, Abubakr Abdulgadir, Eduardo Ferrufino,
Jens-Peter Kaps, and Kris Gaj. SCA evaluation and benchmarking of finalists
in the NIST lightweight cryptography standardization process. IACR Cryptol.
ePrint Arch., page 484, 2023.

[MO23a] Thomas Marquet and Elisabeth Oswald. A comparison of multi-task learning
and single-task learning approaches. IACR Cryptol. ePrint Arch., page 611,
2023.

[MO23b] Thomas Marquet and Elisabeth Oswald. Exploring multi-task learning in the
context of two masked AES implementations. IACR Cryptol. ePrint Arch.,
page 6, 2023.

[Moc77] Jonas Mockus. On bayesian methods for seeking the extremum and their
application. In Bruce Gilchrist, editor, Information Processing, Proceedings
of the 7th IFIP Congress 1977, Toronto, Canada, August 8-12, 1977, pages
195–200. North-Holland, 1977.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineering,
pages 3–26. Springer, 2016.

[MS23] Loïc Masure and Rémi Strullu. Side-channel analysis against anssi’s protected
AES implementation on ARM: end-to-end attacks with multi-task learning.
J. Cryptogr. Eng., 13(2):129–147, 2023.

[MWM21] Thorben Moos, Felix Wegener, and Amir Moradi. Dl-la: Deep learning leakage
assessment: A modern roadmap for sca evaluations. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(3):552–598, Jul. 2021.

[Ngu19] Vu Nguyen. Bayesian optimization for accelerating hyper-parameter tuning. In
2nd IEEE International Conference on Artificial Intelligence and Knowledge
Engineering, AIKE 2019, Sardinia, Italy, June 3-5, 2019, pages 302–305.
IEEE, 2019.

[NTIY23] Yusuke Nozaki, Shu Takemoto, Yoshiya Ikezaki, and Masaya Yoshikawa. Deep
learning based side-channel analysis for lightweight cipher PRESENT. In 15th
International Conference on Computer and Automation Engineering, ICCAE
2023, Sydney, Australia, March 3-5, 2023, pages 570–574. IEEE, 2023.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
Sok: Deep learning-based physical side-channel analysis. ACM Comput. Surv.,
55(11):227:1–227:35, 2023.

https://eprint.iacr.org/2020/436

Léo Weissbart and Stjepan Picek 23

[PSB+18] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cecile
Dumas. Study of deep learning techniques for side-channel analysis and intro-
duction to ASCAD database. Cryptology ePrint Archive, Report 2018/053,
2018. https://eprint.iacr.org/2018/053.

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In Anupam Chattopadhyay, Chester Rebeiro, and
Yuval Yarom, editors, Security, Privacy, and Applied Cryptography Engineer-
ing - 8th International Conference, SPACE 2018, Kanpur, India, December
15-19, 2018, Proceedings, volume 11348 of Lecture Notes in Computer Science,
pages 157–176. Springer, 2018.

[PWP22] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2022(4):828–861, Aug.
2022.

[RAD20] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. SCARL: side-
channel analysis with reinforcement learning on the ascon authenticated
cipher. CoRR, abs/2006.03995, 2020.

[RK21] Tanu Shree Rastogi and Elif Bilge Kavun. Deep learning techniques for
side-channel analysis on AES datasets collected from hardware and software
platforms. In Alex Orailoglu, Matthias Jung, and Marc Reichenbach, editors,
Embedded Computer Systems: Architectures, Modeling, and Simulation -
21st International Conference, SAMOS 2021, Virtual Event, July 4-8, 2021,
Proceedings, volume 13227 of Lecture Notes in Computer Science, pages
300–316. Springer, 2021.

[RW06] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes
for machine learning. Adaptive computation and machine learning. MIT
Press, 2006.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforcement
learning for hyperparameter tuning in deep learning-based side-channel analy-
sis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):677–707, Jul. 2021.

[SD17] Niels Samwel and Joan Daemen. DPA on hardware implementations of ascon
and keyak. In Proceedings of the Computing Frontiers Conference, CF’17,
Siena, Italy, May 15-17, 2017, pages 415–424. ACM, 2017.

[SS23] Dillibabu Shanmugam and Patrick Schaumont. Improving side-channel leakage
assessment using pre-silicon leakage models. In Elif Bilge Kavun and Michael
Pehl, editors, Constructive Side-Channel Analysis and Secure Design - 14th
International Workshop, COSADE 2023, Munich, Germany, April 3-4, 2023,
Proceedings, volume 13979 of Lecture Notes in Computer Science, pages
105–124. Springer, 2023.

[Tea] ASCON Team. Ascon C repository.

[TEM+21] Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen,
Zhen Xu, and Isabelle Guyon. Bayesian optimization is superior to random
search for machine learning hyperparameter tuning: Analysis of the black-box
optimization challenge 2020. CoRR, abs/2104.10201, 2021.

https://eprint.iacr.org/2018/053

24 Side-channel Analysis of the Ascon Authenticated Cipher

[THM+07] Michael Tunstall, Neil Hanley, Robert McEvoy, Claire Whelan, Colin Murphy,
and William Marnane. Correlation power analysis of large word sizes. 09
2007.

[WNS21] Colin White, Willie Neiswanger, and Yash Savani. BANANAS: bayesian
optimization with neural architectures for neural architecture search. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pages 10293–10301. AAAI
Press, 2021.

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis. IACR
Cryptol. ePrint Arch., page 1293, 2020.

	Introduction
	Background
	Ascon
	Convolutional Neural Network
	Profiled SCA and Evaluation Metrics

	Related Work
	Leakage Models
	Leakage Models for Differential Attacks
	Leakage Models that Apply Better for Profiled Attacks

	Experimental Result
	Implementation
	Signal-to-Noise (SNR) for Leakage Models
	Correlation Power Analysis on Unprotected Implementation
	Correlation Power Analysis on Protected Implementation
	Deep Learning Attack

	Multi-task Results
	Conclusions and Future Work

