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Abstract. Σ-protocols, a class of interactive two-party protocols, which
are used as a framework to instantiate many other authentication schemes,
are automatically a proof of knowledge (PoK) given that they satisfy the
special-soundness property. This fact provides a convenient method to
compose Σ-protocols and PoKs for complex relations. However, compos-
ing in this manner can be error-prone. While they must satisfy special-
soundness, this is unfortunately not the case for many recently pro-
posed composed practical schemes. Here we explore two schemes: ZKAt-
test ’s [FLM22] and Agrawal et al.’s [AGM18], and show that their Σ-
protocol’s suffer from several security misdesigns which invalidate their
security proofs, and state a practical cheap attack on ZKAttest ’s im-
plementation. By exploring and resolving their misdesigns, we propose
CDLS, a sound and secure variant of their protocols.
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1 Introduction

Non-interactive zero knowledge proofs of knowledge (NIZKPoK) [BFM88] are
protocols which allow provers to convince verifiers, in a non-interactive setting,
that they possess knowledge of a secret witness for a decisional statement with-
out directly revealing such a witness. They are zero-knowledge, which means
a verifier cannot learn anything from interactions with an honest prover be-
yond the statement itself. They are often based on Sigma protocols, zk-SNARKs
or “MPC-in-the-head” techniques with the Fiat-Shamir transform applied. The
paradigm allows for the construction of secure identification protocols and sig-
nature schemes, and further gives way to more complex proving mechanisms. In
this work, we are interested in proofs of knowledge that attest to the possession
of an authentication statement; for example, a digital signature. In the Sigma
protocol setting, we focus on the properties that such schemes should provide,
and how some constructions fail to do so by design.
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In 1999, Nguyen at al. [NBMV99] proposed the first general construction of
zero-knowledge “proofs of possession” for digital signatures. In their proposal,
they construct a NIZKPoK which convinces a verifier that a prover possesses
a valid signature for a given message and public key. Their construction can
be realised in the committed discrete logarithm setting (by using a commitment
scheme), which means that, given a base element of a cyclic group g ∈ G, a
commitment to a secret exponent α and a commitment to the representation
of h = gα, one can prove, in zero-knowledge, that the first commitment is the
discrete logarithm of the other in regards to the same base g. This idea can be
generalised to the following problem: how to prove the equality of a commit-
ted value and the discrete logarithm of another committed value. The proof of
Nguyen et al., however, requires the representation of G to be integers modulo
a prime and, hence, it is not compatible with elliptic curve groups.

In CRYPTO’18, Agrawal et. al [AGM18] introduced a protocol (which we de-
scribe in Section 3.1) that works in the elliptic curve group setting, when looking
at NIZPoKs for composite statements (those that consist of ANDs, ORs or func-
tion composition, for example). In their protocol, given a public base point P , a
commitment to a secret coefficient α, and a commitment to the affine coordinates
of the elliptic curve point αP , one can prove, non-interactively, that the com-
mitted value of α is the discrete logarithm (to the base P ) of the commitments
to αP . In their schemes, they use Sigma protocols for polynomial relationships
among committed values [CM99] and range proofs [Bou00,CCs08,BBB+18]. In-
ternally, they also use an inner ‘Proof of Knowledge of the Sum’ (as seen in Sec-
tion 3.1). Following this work, [FLM22] proposed ZKAttest (which we describe
in Section 3.2), a protocol which modifies the previous underlying commitment
scheme to improve efficiency, and includes an additional verification check with
the aim of fixing the original proof of security. However, while these protocols are
of interest for their practical usability, their concrete designs suffer from security
misdesigns.

Note that the above NIZKPoKs are based on the common paradigm of Sigma
protocols, a public coin 3-move interactive protocol. A key property of Sigma
protocols is knowledge soundness, which loosely states that, with negligible prob-
ability, a verifier will not accept a statement (or instance) x unless the prover
knows a valid witness w for the statement. In order to prove a Sigma proto-
col is knowledge sound, or a Proof of Knowledge (PoK), one relies on proving
the 2-special-soundness (or n-special soundness) property. That is, given two
(or n) transcripts with identical first rounds and different challenges, one can
efficiently recover a witness for the instance. The knowledge error of a Sigma
protocol is dependent on the number of transcripts needed to extract a witness,
and the size of the challenge set, but can be boosted through parallel composition
of protocol instances, and is made non-interactive through a generic transform
by Fiat-Shamir [FS87]. While being Sigma-based, both ZKAttest and [AGM18]
suffer from inherent protocol misdesign, which violate their proofs of special-
soundness: a witness cannot be extracted given all transcripts. Futhermore, ad-
ditional security relaxations in their implementation yield a practical attack in
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the case of ZKAttest : the verification procedure is only applied in a random
subset of the Fiat-Shamir repetions. In this paper, we will explore this inherent
misdesign in Section 3 and propose alternative, provably secure constructions
in Section 4.

Contributions. We contribute the following results in our work:

• Attempting to resolve any ambiguity in the works of ZKAttest [FLM22]
and [AGM18], we show that, in an optimistic interpretation of their proto-
cols, aside from not satisfying perfect completeness, their proofs of special-
soundness have gaps in their logic. In particular, ZKAttest applies a non-
standard approach of protocol composition, which leads to an invalid ex-
tractor strategy.

• We show that ZKAttest ’s choice of only performing verification (from the
verifier view) on a random subset of 20 out of the 128 repetitions for the
security of their protocol leads to a practical, ‘cheap’ forgery attack.

• We propose an optimized and sound Sigma protocol for ‘Proof of Knowledge
of the Sum’, which proves an additive relation between the commitments to
the coordinates of three elliptic curve points. This protocol can be internally
used by any proof of committed discrete logarithm.

• We introduce a new Sigma protocol for proving knowledge of a committed
discrete logarithm, CDLS, which is provably perfectly complete, 2-special
sound and statistically honest-verifier zero-knowledge. By doing this, we re-
solve the soundness misdesign of prior works. Performing λ repetitions of
the protocol and applying the Fiat-Shamir transform, yields a NIZKPoK for
elliptic curve committed discrete logarithms with knowledge error 2−λ and
statistical zero-knowledge.

• Using CDLS, in Section 5, we show that one can construct a ring signature for
ECDSA key-pairs where the user has access to the signing functionality, but
not to their private key (the motivating application of ZKAttest). We further
show that if private keys are accessible to the user, an existing scheme [GK15]
is sufficient for this application, which removes additional work for the signer
and verifier.

• We provide an efficient, open-source Rust implementation for our scheme
and our interpretation of ZKAttest, with benchmarks comparing their per-
formance. Aside from resolving security issues, our implementation yields
an order of magnitude improvement to performance when compared to the
Typescript implementation of ZKAttest [FHLM21].
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2 Preliminaries

2.1 Notation and General Definitions

As a small note first, in this section, we refer to group operations multiplicatively,
but due to the concrete instantiation of groups as elliptic curves, we opt to refer
to group operations additively in the sections after this one.

We refer to the set {1, . . . , n} as [n]. We denote negligible functions in a
security parameter λ as negl(λ). We use the standard Landau notation O(·) for
asymptotics and we use Õ(n), which hides logarithmic factors in the parameter
n. For any q ∈ Z, Zq = Z/qZ denotes the ring of integers modulo q. We refer
to a prover as P and a verifier as V, which are probabilistic polynomial time
machines (PPTs); to a polynomial-time simulator as Sim and to polynomial-
time algorithm extractor as Ext. We say that two probability ensembles (Xn, Yn),
which are families of distributions over a finite set of size n, are:

– perfectly indistinguishable, written as Xn ≡ Yn, if they are identically dis-
tributed.

– statistically indistinguishable, with negligible advantage ϵ, if for any compu-
tationally unbounded distinguisher D,∣∣Pr[D(Xn) = 1]− Pr[D(Yn) = 1]

∣∣ ≤ ϵ(n)

which is written as Xn
s≡ Yn.

2.2 NP Relations and Proofs of Knowledge

The concept of proof of knowledge (PoK) was initially formalised by Feige, Fiat
and Shamir [FFS88,FS87]. The construction allows for P to convince V that they
know a witness, w, which is computationally related to a common input, x. That
is, given an NP language L, w allows a decision algorithm to determine if x ∈ L
in a polynomial number of steps. We define the relation of instance-witness pairs
for a given language as a set R. Loosely, a proof of knowledge with knowledge
error κ has probability κ(λ) of a cheating P successfully convincing V that x ∈ L
without knowing the corresponding w. The correlated language L(R) is the set
of all x such that there exists a w, where (x,w) ∈ R. Fiat and Shamir [FS87]
showed that one can transform a 3-round interactive PoK into a non-interactive
one, preserving knowledge soundness.

2.3 Sigma Protocols

A sigma protocol (Σ)4, in its inception, is a three-move protocol between two
parties: P and V. Σ-protocols are Arthur-Merlin protocols [Bab85], which means

4 The name is given as: the first part refers to “zig-zag” for its three moves and the
last part is an abbreviation of “Merlin-Arthur”.
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that V’s randomness is public. We give a brief description below of them, but
for more details, see [HL10,Dam10,KO21].

Given a common input, where both P and V have x, and P has a value w (the
witness) such that (x,w) ∈ R, a Σ-protocol for a relation R works as follows:

Round 1 (Commit): P sends a message Comm to V .
Round 2 (Challenge): On receiving Comm, V sends a random t-bit string Chall.
Round 3 (Response): P receives the challenge and sends a reply Resp to V.
Verification: At the end of the interaction, V receives Resp and decides to accept

or reject based solely on seen data: (Comm,Chall,Resp). V outputs 1 if it
accepts; otherwise, 0.

We assume that P’s only advantage over V is that they know the private
witness w. We stress that the parties use independent randomness for generat-
ing their messages in every execution. Given this, Σ-protocols must satisfy the
following properties:

Completeness If (x,w) ∈ R, and P and V follow the protocol honestly, on
common input x and P’s private input w, then V accepts with probability 1.

Special Honest Verifier Zero-Knowledge (HVZK). When given a statement x and
a challenge, Sim outputs a valid transcript (Comm,Chall,Resp) that is (perfectly)
indistinguishable from a real transcript (with the same probability distribution
as those between a honest P and a honest V on common input x). Note that
the challenge being randomly sampled implies that V behaves honestly. If Sim’s
output distribution is only statistically indistinguishable with advantage ϵ from
the real transcript distribution, the protocol is said to be statistically HVZK
with advantage ϵ.

Special Soundness. When given any x and any pair of accepting distinct tran-
scripts [(Comm,Chall,Resp), (Comm,Chall′,Resp′)] for x, where Chall ̸= Chall′,
Ext outputs w so that (x,w) ∈ R.

Special soundness [Cra97] is restricted to the case where two colliding transcripts
are necessary and sufficient for extracting w. However, this property can be re-
laxed to “n-special soundness” [GK14,BCC+15,Wik18,Wik21,AAB+21], where
Ext needs n > 2 colliding transcripts to extract w. We state this relaxed defini-
tion below.

n-Special Soundness [AFK22, Defn. 7]. When given a statement x and n valid
distinct transcripts [(Commi,Challi,Respi)i∈[n]] where Commi = Commj (with a
common first message), Challi ̸= Challj for all 1 ≤ i < j ≤ n, Ext outputs w such
that (x,w) ∈ R. An n-special sound Σ-protocol with a t-bit challenge space has
knowledge error n−1

2t [AFK22, Eqn. 1]. It is known that n-special-soundness for
Σ-protocols implies knowledge soundness and thus renders PoKs.

The stated properties of Σ-protocols hold under parallel repetition, where
the parties run the same protocol multiple times with the same input in parallel.
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Given a Σ-protocol with challenge length t, V samples a random challenge of
length rt where r is the number of repetitions. P replies to each repetition using
a different t-bit challenge. V accepts all iff it accepts in each repetition, and it can
be proven that all properties hold. Σ-protocols are also invariant under AND-
composition. Given two Σ-protocols for different relations, by running parallel
executions of the two protocols under the same challenge, one obtains a Σ-
protocol for product relation. Furthermore, given a Σ-protocol with challenge
length t, one can construct a Σ-protocol for the same relation, with challenge
length s for all s ≤ t, by restricting the challenge space to a subset of the original
challenge space of size 2s [Dam10, Lemma 2].

As briefly touched upon, the Fiat-Shamir transform [FS87] allows for con-
verting a interactive Σ-protocol into a non-interactive one by replacing V’s chal-
lenges with the output of a random oracle query on the protocol transcript.
In the random oracle model (ROM), the transformation preserves knowledge
soundness and the protocol is perfect (resp. statistical) Zero-Knowledge (ZK) if
the underlying Σ-protocol is perfect (resp. statistical) HVZK.

2.4 Commitment Schemes

We assume the reader is familiar with the definitions of commitment schemes,
Comm, but we remind them of two important properties:

Computationally Binding. Comm is computationally binding if for all PPT ad-
versary’s A, Pr[(x ̸= x′) ∧ (Comm(x, r) = Comm(x′, r′)) | (x, x′, r, r′) ← A] ≤
negl(λ), where λ is the security parameter of the commitment scheme.

Perfectly Hiding. A commitment scheme Comm is perfectly hiding if for all dis-
tinct messages (x, x′), {Comm(x,R)} ≡ {Comm(x′, R)}, where R is the uniform
distribution on the randomness set sampled for the commitments.

Pedersen commitments (PC) [Ped92]. Let (g, h) be generators of some group
G of order q and let α be a secret value. We denote a Pedersen commitment
to α with randomness r as C = Comq(α, r) = gαhr. In settings where it is
convenient to ignore the random value r, we shall simply omit it and write C =
Comq(α). Pedersen commitments are perfectly hiding, additively homomorphic
and computationally binding assuming the hardness of the underlying group’s
discrete logarithm problem [Ped92], and that the discrete logarithm of h with
respect to g (and vice versa) is unknown.

2.5 Σ-protocols for proving arithmetic relations between Pedersen
commitments.

The heart of many PoK constructions rely on Σ-protocols proving arithmetic
relations between different PC. Related protocols (e.g Schnorr [Sch91], Chaum-
Pedersen [CP93] and Fujisaki-Okamoto [FO97]) can be used to construct the
schemes. In this paper, we use the proofs of [WTs+18, App. A] due to their
efficiency.

6



Construction 2.1: Opening Proof(C)

Public parameters: g, h ∈ G where ord(g) = ord(h) = q for a prime q.
Inputs: C such that C = gxhr, and P knows x, r ∈ Zq.

1. P samples α1, α2 ←$ [q] and sends t← gα1hα2 .

2. V sends challenge c←$ [q].

3. P sends s1 ← xc+ α1 and s2 ← rc+ α2.

4. V verifies that gs1hs2 = Cct.

Proving knowledge of an opening of a PC. Given commitment C to a message
x with randomness r, P may convince V that they possess knowledge of x and
r by engaging in the following Construction 2.1.

Theorem 1. Construction 2.1 is a Σ-protocol for the relation:

R = {((C, g, h, q), (x, r)) | C = gxhr}.

Proof. It follows from [Sch91].

Proving equality of PCs under the same base. The proof works to attest the
equality of PCs under the same base group elements. Given commitments (C1, C2)
to the same message x under different randomness (r1, r2), P may convince V of
this fact by engaging in Construction 2.2. We do not apply this construction in
our schemes, including it to account for existing works. Observe that if C1 and
C2 do not open to the same message, there is still a satisfying witness to the
relation in Theorem 2. Taking advantage of it, however, requires a malicious P
to solve a discrete logarithm of C1C

−1
2 to the base h, which is computationally

infeasible.

Construction 2.2: EqualityProof(C1, C2)

Public parameters: g, h ∈ G where ord(g) = ord(h) = q for a prime q.
Inputs: (C1, C2) such that C1 = gxhr1 , C2 = gxhr2 , and P knows z ∈ Zq

such that z = r1 − r2.

1. P samples α←$ [q] and sends t← hα.

2. V sends challenge c←$ [q].

3. P sends s← c(r1 − r2) + α.

4. V verifies that hs ?
= t(C1C

−1
2 )

c
.

Theorem 2 (Folklore). Construction 2.2 is a Σ-protocol for the relation:

R = {((C1, C2, g, h, q), (z)) | C1C
−1
2 = hz}.
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Construction 2.3: MulProof(C1, C2, C3)

Public parameters: g, h ∈ G where ord(g) = ord(h) = q for a prime q.
Inputs: C1 = gxhr1 , C2 = gyhr2 , C3 = gxyhr3 where P knows x, y, r1, r2, r3.

1. P samples α1, . . . , α5 ←$ [q] and sends

t1 ← gα1hα2 t2 ← gα3hα4 t3 ← Cα3
1 hα5

2. V sends challenge c←$ [q]

3. P sends response:

s1 ← α1 + cx s2 ← α2 + cr1 s3 ← α3 + cy

s4 ← α4 + cr2 s5 ← α5 + c(r3 − r1y)

4. V checks that

t1C
c
1

?
= gs1hs2 t2C

c
2

?
= gs3hs4 t3C

c
3

?
= Cs3

1 hs5

Proving multiplicative relationships between committed values. Given C1 =
Com(x) = gxhr1 , C2 = Com(y) = gyhr2 , C3 = Com(z) = gzhr3 , P may engage
in Construction 2.3 to convince V that z = xy.

Theorem 3. Construction 2.3 is a Σ-protocol for the relation:

R = {((C1, C2, C3, g, h, q), (x, y, r1, r2, r3)) | C1 = gxhr1 , C2 = gxhr2 , C3 = gxyhr3}.

Proof. It follows from [WTs+18, Thm. 10].

Proving commitment opens to a non-zero value. Given a commitment C =
Com(x) = gxhr, P may engage in Construction 2.4 to convince V that x ̸= 0.

Theorem 4. Construction 2.4 is a Σ protocol for the relation:

R = {
(
C, (x, r)

)
| C = Com(x, r), x ̸= 0}.

Proof. Completeness. Observe that x ̸= 0 =⇒ t1 ̸= 1 and the other verifica-
tion equations will hold, and hence the verifier accepts an honest prover with
probability 1.

Special Soundness. Suppose (Comm,Chall,Resp), (Comm′,Chall′,Resp′) are two
accepting transcripts where Comm = Comm′, and Chall ̸= Chall′. Denote Resp,Resp′

as (s1, s2, s3) and (s′1, s
′
2, s
′
3) respectively. We define the output of an extractor

to be (α′1, x
′, r′) where:

α′1 =
s1 − s′1
c− c′

x′ = α′−11

s3 − s′3
c− c′

r′ = α′−11

s′2 − s2
c− c′
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We argue x′, r′ is a valid witness to the relation in Theorem 4. First, given
the following equations:

tc1t3 = gs3 and tc
′

1 t3 = gs
′
3

we divide the first by the latter, obtaining

tc−c
′

1 = gs3−s
′
3

=⇒ t1 = g(s3−s
′
3)/(c−c

′) (1)

which implies that the discrete logarithm of t1 is (s3 − s′3)/(c− c′). Second, we
consider the equations:

tc1t2 = Cs1hs2 and tc
′

1 t2 = Cs′1hs′2 .

By dividing the two equations, we obtain

tc−c
′

1 = Cs1−s′1hs2−s′2

=⇒ t1 = Cα′
1h(s2−s′2)/(c−c

′). (2)

By Eqs. (1) and (2), we deduce that

Cα′
1h(s2−s′2)/(c−c

′) = g(s3−s
′
3)/(c−c

′)

=⇒ Cα′
1 = g(s3−s

′
3)/(c−c

′)h(s′2−s2)/(c−c
′)

=⇒ C = gα
′−1
1 (s3−s′3)/(c−c

′)hα′−1
1 (s′2−s2)/(c−c

′)

=⇒ C = gx
′
hr′ .

Lastly, we show that if x′ = 0, the first verification equation cannot be satisfied.
Observe that

t1 = g(s3−s
′
3)/(c−c

′) = gα
′
1x

′
= g0 = 1

Hence the extractor’s output is valid.
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Construction 2.4: NonZeroProof(C)

Public parameters: Generators g, h ∈ G of prime order q.
Inputs: C = gxhr, x ̸= 0, where P knows x, r.

1. P samples α1, . . . , α4 ←$ [q − 1] and sends

t1 ← gα1x t2 ← C1
α2hα3 t3 ← gα4

2. V sends challenge c←$ [q]

3. P sends response:

s1 ← α2 + cα1 s2 ← α3 − cα1r s3 ← α4 + cα1x

4. V checks that

t1 ̸= 1 tc1t3
?
= gs3 tc1t2

?
= Cs1hs2

Honest Verifier Zero-Knowledge. On input Chall, for a a given commitment C,
Sim does the following:

1. Samples uniformly random values s1, s2, s3, α←$ [q − 1], then computes:

t1 = gα t2 =
Cs1hs2

tc1
t3 =

gs3

tc1
.

2. Outputs the transcript ((t1, t2, t3), c, (s1, s2, s3)).

By the choice of t1, t2, t3, the transcript satisfies the verification equations
above. We show that over uniformly distributed challenges, Sim outputs tran-
scripts which are identically distributed with transcripts between an honest
prover and verifier. Fix an instance C and challenge c. Observe that a real
protocol execution is determined by the the prover’s random coins α1, . . . , α4,
while, on the other hand, a simulated transcript is uniquely determined by Sim’s
random coins s1, s2, s3, α. Since both are sampled from the same probability
space, and uniquely determine the resulting transcripts, we show that there ex-
ists bijection from the random coins of an honest prover to the random coins of
Sim that yields identical transcripts for a fixed instance challenge pair. Consider
the bijection:

(α1, α2, α3, α4) 7→ (α2 + cα1, α3 − cα1r, α4 + cα1x, α1x)

By inspection, this map is both injective and surjective (and, hence, bijective),
and when Sim picks random coins (α2 + cα1, α3 − cα1r, α4 + cα1x, α1x), it pro-
duces a transcript identical to that of an honest prover who uses random coins
(α1, α2, α3, α4). Both of these events occur with equal probability. Therefore,
over every possible transcript, the distributions between the transcripts of a
simulator and honest protocol executions are identical. ⊓⊔
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Constructing Sigma Protocols for arithmetic circuits. Given protocols to prove
equality and multiplication (as given in Construction 2.2 and Construction 2.3)
of Pedersen commitments, it is possible to construct Σ-protocols for proofs of
arbitrary arithmetic relations of committed values. These may be viewed as arith-
metic circuits or polynomial systems. Whilst in many cases, for larger circuits,
it is more practical to use succinct non-interactive proofs, in some applications,
such as performing a proof that an elliptic curve point addition has been honestly
computed, the approach presented here may be suitable.

Given an arbitrary polynomial system of n variables (x1, . . . , xn) over Fq,
one can translate the original system into one of M quadratic constraints where
each constraint j ∈M is an equation of the form:(∑

i∈N
ai,jxi,

)
◦

(∑
i∈N

bi,jxi

)
=
∑
i∈N

ci,jxi

,
where N = n + k, (xn+1, . . . , xn+k) are the intermediate variables needed

to expand the polynomial system5, and all variables and coefficients are defined
over Fq.

Observe that V can compute linear combinations of committed values by
applying the group operation to each comitted values by the linearity of Pedersen
commitments. So, given commitments (Ci = Comq(xi))i∈[N ] and the coefficients

(ai,j , bi,j , ci,j)i∈[N ],j∈[M ], P can convince V that the polynomial system holds by

performing the following:

1. V computes the commitments to the linear combinations:

Aj =
∏

i∈[N ]

ai,jxi, Bj =
∏

i∈[N ]

bi,jxi, Cj =
∏

i∈[N ]

ci,jxi for j ∈ [M ],

where taking the product correponds to the group operation on the commit-
ments.

2. P engages in multiplication proofs MulProof(Aj , Bj , Cj) for j ∈ [M ].
3. P engages in opening proofs6 OpeningProof(Ci) for i ∈ [N ].

There are several other solutions to this problem, many of which involve the
use of additional equality proofs [NBMV99,CM99,AGM18,FHLM21,CS97a,Bra97,Cam99].
However, our approach yields more optimisation, and is equivalent to Rank-1
Constraint Systems, the relation used in many zk-SNARKs, such as [Set20,BCR+19].
In the applications of the latter, this methodology of representing polynomial
systems is common as seen in, for instance, [Hou22,CLL23].

5 Or, equivalently, an arithmetic circuit with n inputs and k intermediate variables
with respect to multiplication gates.

6 Note that this step is sufficient, but not necessary. In many cases it is possible to
satisfy special soundness without running opening proofs on all inputs, such as the
protocol in Section 4.1.
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2.6 Ring Signatures

A ring signature provides a mechanism for an authorised set of users to sign
messages on behalf of a set. This user-set is called a ring.

A ring signature consists of the PPT algorithms (SetUp,KeyGen,Sign,Verify)
which behave in the following manner:

SetUp(1λ)→ pp: Generates parameters for a given security parameter λ that
are public to all users.

KeyGen(pp)→ (pk , sk): A non-deterministic algorithm that outputs a public-
private key pair for an individual user.

Sign(m,R; pp, sk)→ σ: Given a message m ∈ {0, 1}∗, ring R = (pk1, ..., pkN )
of N users, sign message with respect to R. We note that a valid signature
must have that pk, the corresponding public key to sk, is contained in R.

Verify(m,R, σ; pp)→ 0, 1 : Verification outputs 1 if σ is an accepted signature
for ring R, and 0 otherwise.

A crucial property of ring signatures is anonymity, which guarantees that no
information about the individual who signed the message is learned, beyond that
they are a member of the ring.

Definition 1 (Anonymity).A ring signature scheme (SetUp,KeyGen,Sign,Verify)
has perfect anonymity, if, for any computationally unbounded adversary A,

Pr
[
A(σ) = b

∣∣∣ pp← SetUp(1λ); (m, i0, i1, R)← AKeyGen(pp)
b←$ {0, 1}; σ ← Sign(m,R; pp, skib)

]
=

1

2

In loose terms, this means that it is (perfectly) impossible to distinguish two
signatures on the same message signed by different users in a ring.

As with standard signatures, ring signatures also possess a notion of unforge-
ability and correctness.

Definition 2 (Perfect Correctness).A ring signature scheme (SetUp,KeyGen,Sign,Verify)
has perfect correctness if, for any λ, pp obtained from SetUp(λ), {skj , pkj}Nj=1

output by KeyGen(pp), every i ∈ [N ], and message m,

Pr
[
Verify(m,R, σ; pp) = 1

∣∣∣ σ ← Sign(m,R; pp, ski)
]
= 1,

where R = (pk1, ..., pkN ).

Definition 3 (Unforgeability).A ring signature scheme (SetUp,KeyGen,Sign,Verify)
has unforgeability (with respect to insider corruption) if, for any PPT adversary
A,

Pr
[
Verify(m,R, σ; pp) = 1

∣∣∣ pp← SetUp(1λ);
(m,R, σ)← APKGen,OSign,Corrupt(pp)

]
≤ negl(λ),
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– PKGen on the ith query picks randomness ri and runs (pki, ski)← KeyGen(pp, ri)
and outputs pki.

– OSign(·, ·, ·) is a signing oracle where OSign(m,S, i) outputs σ ← Sign(m,S; pp, ski),
provided (pki, ski) has been generated by PKGen, otherwise outputs ⊥.

– Corrupt(·) is a corruption oracle where Corrupt(i) outputs ski.
– A outputs (m,R, σ) such that OSign has not been queried with (⋆,m,R)

and R only contains keys pki generated by PKGen where A has not queried
Corrupt with input i.

A protocol (SetUp,KeyGen,Sign,Verify) is a ring signature scheme with perfect
anonymity if it is correct, unforgeable and perfectly anonymous.

3 Proofs of Knowledge and Soundness Misdesign

ZKAttest (henceforth referred to as ZKA) is a protocol designed in [FLM22].
The authors introduce the scheme as a way to build both a privacy preserving
ECDSA PoK and ring signature, which require both pre-existing signatures and
their associated public key as input. The core primitive in ZKA is a NIZKPoK
for proving knowledge of a valid ECDSA signature under a committed public
key. Additional properties can be attested, such as proving that the commitment
to the public key is a value on a list of valid public keys, essentially obtaining a
ring signature.

Under the hood, ZKA builds on top of a Proof of Knowledge of Double Dis-
crete Logarithm (PKDLog) scheme given by [AGM18] (referred to as PKDL, see
Section 3.1), which aims to prove the equality of a committed value and the dis-
crete logarithm of another committed value when working in elliptic curve groups
(the known techniques for double discrete logarithm proofs do not work for this
case [CS97b,MGGR13], as a group element cannot be naturally interpreted as a
field element). For this, [AGM18] internally proves that the sum of two elliptic
curve points that are committed to is another public point on the curve. This
last proof, as seen in Section 3.1, is referred to as Proof of Knowledge of the Sum
—PKS–.

A visual representation of a PKDLog can be seen in Appendix B (instantiated
in the ZKA manner), where solid boxes represent the internal PKS.

In the subsections below, we explain the underlying PoKs that are used to
build the outer ECDSA PoK from ZKA [FLM22]. We first explore the schemes
given by [AGM18] and, then, how they are extended for ZKA. Note that inter-
nally all these protocols rely on Constructions 2.1 to 2.3 for opening, equality
and multiplication proofs, respectively. We introduce, and explain misdesigns
and attacks to the constructions designed by both papers.

3.1 Proofs of Knowledge in [AGM18]

Proof of Knowledge of the Sum (PKS) in [AGM18]: This PoK aims to prove
that the commitments to three elliptic curve points P,Q, T satisfy a valid point
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addition such that P + Q = T . We state the point addition formulae in Theo-
rem 3.1 given by [Sil09]. Given the family of curves E defined by y2 = x3+ax+b
(where a, b ∈ Ft), we have a point addition relation of the form shown in 3.1.

Theorem 3.1: Point addition

Let P = (ax, ay), Q = (bx, by), (P,Q) ∈ E(Ft) where E is in the family E .
For non-identity elements (P,Q) where P ̸= ±Q, (tx, ty) = P +Q is given
by:

tx =

(
by − ay
bx − ax

)2

− ax − bx (3)

ty =

(
by − ay
bx − ax

)
(ax − tx)− ay (4)

The above relations given for point addition can be proven by using Σ-
protocol techniques for arithmetic relationships; but, as the point addition for-
mulae is over Ft, the commitments to the coordinates have to be in a group
of order t, which is not necessarily the same as the order of the group E(Ft).
[AGM18] solve this problem by rearranging the point addition formulae so that
Σ-protocols for polynomial relationships among committed values [CM99] and
range proofs [Bou00,CCs08,BBB+18] can be used on the intermediate commit-
ments. The proof is expanded to handle all the cases for point addition by using
OR composition [CDS94], and it is referred to as PKS, which we will not describe
in detail but we refer to the reader to Section 3.1 of [AGM18].

Proof of DLog (PKDL) in [AGM18]: Internally using PKS, [AGM18] builds a
proof, called PKDL, of the equality of a committed value ω and the discrete
logarithm to the public base point P of another committed value ωP . For ease
of explanation, we describe in detail how the PKDL protocol works (with some
clarifications, which are highlighted, that are missing in the original text) in Ap-
pendix C.

This proof, however, has several issues. As pointed out by [FLM22], the proof
fails to verify C1 —which is ωP + r1Q—, the commitment to the secret value
ω. This validity check should be done after V receives Resp, and, without this
check, P fails to demonstrate knowledge of the opening of C1. [FLM22] presents
a corrected version of this proof which adds the verification of C1. But even
with this correction, the proof does not achieve the special-soundness that it
needs. First, [AGM18] does not specify the type of special-soundness that the
proof provides: stating informally that the soundness proof is over “two accept-
ing transcripts”. Second, it is unclear from the text what challenge is used for
the inner PKS (as seen in Section 3.1, which instantiation is referred to as π).
Without this, it is not clear as to what extractor strategies may yield an valid
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witness. Their intent may have been to include an additional challenge round,
which is not a Σ-protocol.

Construction 3.1: ZKAPointAddition

Given C1 = Comq(ax), C2 = Comq(ay), C3 = Comq(bx), C4 = Comq(by),
C5 = Comq(tx), C6 = Comq(ty), prove that T = A+B, where A = (ax, ay),
B = (bx, by), T = (tx, ty), (A,B, T ) ∈ E(Fq).

1. P computes:

C7 = C3 − C1 = Comq(bx − ax) C8 = Comq((bx − ax)
−1

),

C9 = C4 − C2 = Comq(by − ay) C10 = Comq

( by − ay
bx − ax

)
,

C11 = Comq

(( by − ay
bx − ax

)2)
C12 = Comq(ax − tx) ,

C13 = Comq

((
by−ay

bx−ax

)
(ax − tx)

)
.

2. P engages with V in the following Σ-protocols in parallel (note that V
can compute C7 and C9 from the public values of C1, C2, C3, C4):
⋆ Multiplication proofs via Construction 2.3:

MulProof(C7, C8,Comq(1)), MulProof(C8, C9, C10),

MulProof(C10, C10, C11), MulProof(C10, C12, C13).

⋆ Equality proofs via Construction 2.2:

EqualityProof(C5, C11−C1−C3), EqualityProof(C6, C13 − C2) .

3.2 Proofs of Knowledge in ZKA [FLM22]

Proof of Knowledge of the Sum (ZKAPointAddition) in ZKA: ZKA introduces
a different strategy to create a PKS. They resolve the need for range proofs by
proving relations among commitments which have a message space of matching
order. Note that the point addition computation is done over the base field,
so the commitments to the coordinates of each point can be done in Fq

∼= Zq,
which is not the same as the order p of E(Fq). The authors rely on the method
given by Bröker’s (see Appendix A) to find elliptic curve groups of prescribed
order q. Recall that the method takes Õ(logN)3 steps, and since it need only
be run once to fix the curve parameters, with this consideration in mind, it is
sufficiently practical.

With elliptic curves of prescribed order q, the authors prove the relations of
Theorem 3.1 (note that their paper incorrectly stated the addition formulae for
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elliptic curve points: we use the correct formulae here) and create the proof seen
in Construction 3.1.

We highlight some corrections we made to this proof:

– We fix several equations as highlighted in Construction 3.1. These mistakes
stem from either incorrectly copying the point addition formulae or from
arithmetic mistakes.

– We emphasise that all “internal” proofs have to be run in parallel, as is stan-
dard in the parallel composition ofΣ-protocols. The implementation [FLM22]
of ZKAPointAddition composes them sequentially, which does not preserve
special-soundness [FS90,GK90].

Note that this proof does not handle exceptional cases, where the public
input is commitment to points A,B, T such that A = ±B. It also does not
guarantee that the given coordinates correspond to valid curve points, but if A
and B are on the curve, so is T , as we note in Remark 1. If the points A,B
are randomly chosen, the probability that A = ±B is 2/|E(Fq)|. If this occurs
when ZKAPointAddition is invoked in ZKADlog (see Section 3.2), P can run
the entire protocol again, but this admits an issue with perfect completeness.
We stress that in ZKADlog, this issue can be resolved without the need for
extending the point addition proof. Nevertheless, the ZKA paper (but not in its
implementation) does propose an extension to handle exceptional cases at the
cost of efficiency. Note that the protocol guarantees that ((ax − bx) ̸= 0) by
verifying it has an inverse in the first inner multiplication proof. This can be
extended to the case when ((ax − bx) = 0), which corresponds to P = ±Q, and
is either a case of point doubling or addition to the point at infinity (observe
below, that the latter is still disregarded). Theoretically, the authors propose
handling of exceptional cases by using AND and OR composition of Σ protocols:
(ax − bx ̸= 0 ∧ t = a+ b) ∨ (ax = bx ∧ ay = by ∧ T = 2P ) if represented in affine
coordinates. This protocol, which would require a subroutine for proving the
satisfiability of the doubling formulae (which is unspecified), would be complete
provided A ̸= −B, but still does not account for when A = −B, since the points
are represented in affine coordinates.

The PKS from [AGM18] does take care of all cases by using AND and OR
composition. It gives: (P ̸= Q ∧ P ̸= −Q ∧ T = PointAddition(P,Q)) ∨ (P =
Q∧ T = PointDouble(P ))∨ (P ̸= −Q∧ T = 0) by creating a proof, PointDouble,
that proves the doubling formulae. It is not clear how they represent the point
T = 0.

Remark 1. Note that in ZKAPointAddition above, and later in Section 4.1, it is
assumed that at least two of P’s input point coordinates (A,B, T ) are indeed
valid points on a given curve E. If at least two points are valid, then following
the point formulae, it follows that the third must be as well. In its applications,
since V should be convinced of this fact in outer protocols, this seems to be
sufficient.
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Proof of DLog (ZKADlog) in ZKA: Following the same approach as PKDL,
the ZKADlog proof works by internally using the ZKAPointAddition proof. The
protocol can be seen in Construction 3.2, where solid boxes represent the values
sent by a party. Note that we highlight the steps that were omitted or missing
in the original publication, which we incorporate for clarity and completeness.

For a given instance (C1, C
′
2, C

′
3), the witness is the tuple (ω, r1, r2, r3) such

that (x, y) = ωP , C1 = Comp(ω, r1), C
′
2 = Comq(x, r2) and C ′3 = Comq(y, r3).

Below, we discuss the issues with the original proof’s security for this PoK.
We note that the PoK is indicated to be a Σ-protocol and it is specified (by
the number of repetitions) to have a knowledge error of 1

2 , and perfect HVZK.
We explore the failures and limitations of the properties that ZKADlog, as a
Σ-protocol, should provide.

Completeness. We remark that the protocol described in Construction 3.2 does
not satisfy perfect completeness. If α ∈ {0, ω, 2ω}, then the inner ZKAPointAddition
will fail, since it does not handle point doubling, inverse addition (without its
extension), and addition by the identity. This failure, in turn, means that the
outer protocol will fail, and we note that these exceptional cases occur with
probability 3

p . A solution to this completeness issue would be to have an honest

prover sample from Zp\{0, ω, 2ω}. As a trade-off, doing so leads to a protocol
that is honest verifier statistical zero-knowledge.

Special Honest Verifier Zero-Knowledge. In order to prove this property, the
authors of ZKA construct a simulator, ZKSim, such that its output is perfectly
indistinguishable from a honest transcript of the protocol. On input challenge
c = (c0, c1), the simulator does the following:

– If c0 = 0, ZKSim randomly samples z1, z2 ∈ Zp, z3, z4, u, v ∈ Zq, and sets
(t1, t2) = z1P (the x and y coordinate). ZKSim, then, computes a1 = z1P +
z2Q, a2 = t1P

′+z3Q
′ and a3 = t2P

′+z4Q
′, and sets C ′4, C

′
5 as commitments

to the random values u, v. Lastly, ZKSim invokes the commitment phase
Comm′ of the simulator for ZKAPointAddition, with no challenge or response
phase, and input (C ′2, C

′
3, C

′
4, C

′
5, a2, a3). ZKSim outputs the transcript:

((a2, a3, C
′
4, C

′
5,Comm′), (0, c1), (z1, z2, z3, z4)).

– If c0 = 1, ZKSim randomly samples z1, z2 ∈ Zp and z3, z4, γ1, γ2 ∈ Zq, and
sets (t1, t2) = z1P . ZKSim, then, computes a1 = z1P+z2Q+C1, C

′
4 = t1P

′+
z3Q

′, C ′5 = t2P
′+ z4Q

′ and a2, a3 as the commitments to the random values
γ1, γ2. Lastly, ZKSim invokes the full simulator for ZKAPointAddition with in-
put (C ′2, C

′
3, C

′
4, C

′
5, a2, a3) and with challenge c1 which outputs (Comm′, c1,Resp

′).
ZKSim outputs the transcript:

((a2, a3, C
′
4, C

′
5,Comm′), (0, c1), (z1, z2, z3, z4,Resp

′)).
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Construction 3.2: ZKADlog

Given C1 = Comp(ω) = ωP + r1Q, C ′2 = Comq(x) = xP ′ + r2Q
′, C ′3 =

Comq(y) = yP ′ + r3Q
′, for q equal to the modulus of the base field of E,

prove that S = (x, y) is equal to ωP , where P,Q ∈ E are public elements
of prime order p, and (P ′, Q′) are points in E′ of prime order q.

1. The prover::
⋆ chooses a random α, β1 ∈ Zp, and β2, β3, β4, β5 ∈ Zq,

⋆ sets (γ1, γ2) = αP , and

⋆ sets (u, v) = (α− ω)P

They, then, compute the following values:

a1 = Comp(α) = αP + β1Q,

a2 = Comq(γ1) = γ1P
′ + β2Q

′, a3 = Comq(γ2) = γ2P
′ + β3Q

′,

C ′4 = Comq(u) = uP ′ + β4Q
′, C ′5 = Comq(v) = vP ′ + β5Q

′.

sending a1, a2, a3, C
′
4, C

′
5 ,Comm′ to V as Comm,

where Comm′ is for ZKAPointAddition on (C ′2, C
′
3, C

′
4, C

′
5, a2, a3).

2. The verifier:
– chooses a challenge string c = (c0, c1), where c0 is a single random

bit ∈ {0, 1} and c1 ∈ Zq is a challenge for the ZKAPointAddition.
They send c as Chall.

3. The prover receives c:
⋆ If c0 = 0, computes z1 = α, z2 = β1, z3 = β2, z4 = β3.

Sends the tuple (z1, z2, z3, z4) as Resp.

⋆ If c0 = 1, computes z1 = α − ω, z2 = β1 − r1, z3 = β4 , z4 = β5 .
Then, they compute the response for ZKAPointAddition:
• Given T = z1P = (u, v),
• Compute Resp′ with Chall′ = c1. which verifies that T = (γ1, γ2)−
(x, y) (T = αP − S).

Sends the tuple (z1, z2, z3, z4 ,Resp′ ) as Resp.

4. Upon receiving Resp, the verifier performs the following:

⋆ If c0 = 0, computes (t1, t2) = z1P . Then, verifies that a1
?
= z1P +

z2Q, a2
?
= Comq(t1, z3) and a3

?
= Comq(t2, z4).

⋆ If c0 = 1, computes (t1, t2) = z1P . Then, verifies that a1
?
= z1P +

z2Q + C1, that C ′4
?
= Comq(t1, z3) and C ′5

?
= Comq(t2, z4) , and

sequentially verifies the point addition proof π = (Comm′, c1,Resp
′).

Due to the perfect hiding property of PCs [Ped92], simulated transcripts are
perfectly indistinguishable from real transcripts. However, resolving the issues
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described with the completeness of the construction in the manner described
would result in statistical indistinguishability between simulated and real tran-
scripts, similar to the proof described in Section 4.2.

Special-Soundness. The proof of special-soundness in [FLM22] is flawed due to
inherent misdesign. First note that in the original protocol specification and im-
plementation, P does not construct the commitment phase for the point addition
protocol until after the challenge has been received7, and their implementation
computes challenges for the subroutines of the point addition proof on the fly.
Sending a challenge before the commitment phase leads to a trivial attack where
one can forge a valid point addition proof in the same way the HVZK simula-
tor for ZKAPointAddition behaves. For the purpose of our argument, we assume
that their intent was to send the commitment phase for ZKAPointAddition in the
first round, and, hence, we can compute the challenges for the point addition
correctly. Our diagram (Construction 3.2) provides the corrected version.

The authors of ZKA claim the protocol is 3-special-sound, and construct
an extractor which takes as input three transcripts, (Commi,Challi,Respi)i∈[3],
where Chall1 = (0, a), Chall2 = (1, b), Chall3 = (1, c) with b ̸= c and a, b, c ∈ Zq.
Such an accepting transcript would indeed allow for the extraction of the witness
since:

– Given that ZKAPointAddition is 2-special sound, the extractor can invoke the
extractor for this internal proof with transcripts for the challenges b, c. This
would yield x, y, r2, r3 as output.

– The extractor may take Resp1 = (z1, z2, z3, z4) and Resp2 = (z′1, z
′
2, z
′
3, z
′
4, π),

and deduce ω = z1 − z′1 and r1 = z2 − z′2.

We note that for this specific input (the stated three transcripts), the witness
extracted above is valid. For further justification, see the proof of the fixed
protocol in Section 4.2. However, this extractor is still flawed. In particular, there
is no way to extract the witness given the following cases with these transcript
triples (with a, b, c ∈ Zq):

1. (Commi,Challi,Respi)i∈[3] where Chall1 = (0, a), Chall2 = (0, b), Chall3 =
(1, c) for a ̸= b. We explain this extractor fault first since it is the easiest
to correct. In this case, the extractor may recover the values ω, x, y, r1, but
not the randomness r2, r3. In particular, if we modify the protocol to run
ZKAPointAddition independently of c0, such that P engages in it for both
c0 ∈ {0, 1}, then, this case can yield a valid witness extraction.

2. (Commi,Challi,Respi)i∈[3] where Chall1 = (1, a), Chall2 = (1, b), Chall3 =
(1, c) for a ̸= b ̸= c. In this case, the extractor may recover part of the
witness by invoking the extractor of ZKAPointAddition, but the extractor
cannot recover ω, only the openings of C ′2, C

′
3. There is no clear solution

that allows the extractor to recover ω in this setting.

7 This is likely also the case in [AGM18], however the specification of the protocol is
not sufficiently detailed.
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3. (Commi,Challi,Respi)i∈[3] where Chall1 = (0, a), Chall2 = (0, b), Chall3 =
(0, c) for a ̸= b ̸= c. In this case, it follows that the extractor can learn
nothing about the witness, since Resp1 = Resp2 = Resp3. If we perform the
same modification to the proof as in the first case, we still remain with the
same issue as in the second case, where it is not possible to extract ω.

Note that the definition of 3-special soundness requires an extractor to suc-
ceed in extracting the witness for any 3 accepting transcripts. Therefore, the
scheme is not 3-special sound. Furthermore, the claim that the protocol above
has soundness error 1

2 is left unjustified. Recall that an n-special sound protocol
of challenge space C has knowledge error n−1

|C| . If the scheme was in fact 3-special

sound, it would have knowledge error 2
2q (since C = Z2×Zq), which is unrealistic

for this construction.

3.3 A practical attack on ZKA’s Implementation

In addition to the above concerns, the authors of ZKA implemented the non-
interactive protocol with the Fiat-Shamir transform applied on 128 repetitions.
However, as an efficiency measure (as stated in Section 8 of their paper), the
verification is only performed on a random subset of 20 of the repetitions. This
ad-hoc choice reduces the probability of a forged proof being accepted to at least
2−20 (we note this bound is not tight due to the soundness issues above), but
may also allow for a further reduction to security. We sketch out a possible attack
strategy below.

A malicious P may construct the commitment phase for c0 = 0 in the same
fashion as the HVZK simulator, ZKSim, for the 128 repetitions, and compute
the resultant challenge, which is a hash of the concatenation of these commit-
ments. Then, they arbitrarily select the transcript of a single repetition. They
will replace the commitment to C ′4 in this repetition in order to change the out-
put of the resulting challenge hash. This can be done as this commitment is
never opened for the verifier and should be uniformly distributed in the point-
set of E′(Fq′). For i steps, the malicious prover sets C ′4 to a random point8 in
E′(Fq′) until the resultant hash yields a challenge string which contains at least
m challenges which have c0 = 0. Call these the ‘good’ challenges. For the ‘good’
challenges, they complete their proofs as in the ZKSim, and for ‘bad’ challenges
they output uniformly random values as response.

For m = 115, the probability that a verifier chooses repetitions which have
‘good’ challenges, and accepts the forged proof, is roughly 2%. We make some
heuristic assumptions as to the practicality of this attack. The expected number
of attempts to find a hash which has at least 115 zeroes is i ≈ 270. This takes
270 hash computations. Now, assuming each increment’s hash only requires a
single SHA-256 execution and basing the cost of SHA-256 computations on the

8 Using the common compressed representation for elliptic curve points, which is the
x-coordinate along with a parity bit, one does not need to evaluate the curve equation
each time.
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revenue of Bitcoin mining9, the approximate cost of the attack is 1500 USD.
10 Even with the added counter-measure of rate-limiting, this “cheap” attack
is likely sufficiently practical to be successful if launched in a distributed fash-
ion. Alongside the other issues, the authors of ZKA have been made aware and
acknowledged this attack.

4 Sound Protocols for ZK Verification of ECDSA Signatures
under a Committed Public Key: CDLS

In this section, we consider several solutions to the issues faced with the flawed
security proof of ZKA’s ZKADlog for proving knowledge of an elliptic curve dis-
crete logarithm. Recall that in our context, we are interested in protocols which
operate in the elliptic curve setting, where [NBMV99] does not apply.

In Section 4.1, we propose an optimized Σ-protocol for proving that the
coordinates of a committed elliptic curve point is the sum of two others, which
we call CDLSS. In Section 4.2, we propose a Σ-protocol with knowledge error 1

2 ,
for a proof of committed DLog, which we call CDLSD. This can be used instead
of ZKA to construct a secure NIZKPoK of a valid ECDSA signature verification
under a committed public key. Further, in the same fashion as ZKADlog, the
NIZKPoK can be composed with a Σ-protocol for proving set membership of a
committed key in order to construct a ring signature, described in Section 5.1.

4.1 Proof of Knowledge of the Sum: CDLSS

A key insight that yields optimisation beyond [CM99,FLM22,AGM18], as dis-
cussed in Section 2.5,is that only multiplication and a small number of opening
proofs are necessary in the process of proving a polynomial relation. In particu-
lar, linear combinations of commitments can be obtained without any interaction
from P. As an example, consider a P who wishes to convince V that taking the
product of the opening of two commitments X = Com(x), Y = Com(y) is a
linear combination of n other committed values, such that for Zi = Com(zi),
i ∈ [n],

xy =
∑
i∈[n]

aizi

In this example, P may verify the relationship holds by having V compute T =∏
i∈[n] Z

ai
i , and engaging them with MulProof(X,Y, T ). This holds since T is a

valid commitment for the linear combination. The opening proofs are needed to
allow an extractor to recover the openings for the individual commitments given
an opening for the linear combination.

9 See https://charts.woobull.com/bitcoin-hash-price/, which places the value of
1012 SHA-256 hashes at approximately 10−6 USD, assuming modern ASICs can be
set up to handle arbitrary fixed length input.

10 For the calculations of these estimates, see the attached Sage script as seen in Ap-
pendix E.
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Proving knowledge of the sum. Given C1 = Comq(ax), C2 = Comq(ay), C3 =
Comq(bx), C4 = Comq(by), C5 = Comq(tx), C6 = Comq(ty), prove that T =
A+B, where A = (ax, ay), B = (bx, by), T = (tx, ty), (A,B, T ) ∈ E(Fq).

Recall the elliptic curve addition formulae (stated in Theorem 3.1). We may
rearrange this formula into a system of equations, by adding an additional vari-
able τ (note that τ =

by−ay

bx−ax
):

(bx − ax)τ = by − ay (5)

τ2 = ax + bx + tx (6)

τ(ax − tx) = ay + ty (7)

With this rearrangement, P will send the commitment C7 = Comq(τ) along
with the previously defined commitments (C1, . . . , C6) in the commitment phase
of CDLSS. P engages V on the instance (C1, . . . , C6). Note that V can compute
the commitment to any linear combination of known commitments (including
C7) due to the linearity of Pedersen commitments. They perform the following
proof interactions in parallel:

– MulProof(C3 − C1, C7, C4 − C2) which verifies that Eq. (5) holds,

– MulProof(C7, C7, C1 + C3 + C5) which verifies that Eq. (6) holds,

– MulProof(C7, C1 − C5, C2 + C6), which verifies that Eq. (7) holds.

– OpeningProof(C2), which allows the extractor to fully recover a witness.

– NonZeroProof(C3 − C1), which verifies that the bx − ax ̸= 0 (i.e. A = ±B).

We note that without the final non-zero check, the prover may maliciously
choose points A,B such that A = −B. This unconstrains the value of τ , and
thus the prover can choose any tx, ty and τ such that Eqs. (6) and (7) hold.

As an abuse of notation, we write the elliptic curve group operations above
additively, instead of multiplicatively as in Constructions 2.1 and 2.3. V accepts
if all of the above protocols are accepting.

Theorem 5. The protocol described above is a Σ-protocol for the relation R =
C1, C2,

C3, C4,
C5, C6

 ,

ax, ay, bx, by,
cx, cy, r1, r2,
r3, r4, r5, r6

 ∣∣∣∣∣
A+B = T where A ̸= ±B,A,B ̸= O
A = (ax, ay), B = (bx, by), T = (tx, ty)

Each commitment Ci is valid
with randomness ri


assuming the coordinates of at least two of the points correspond to valid points
on an elliptic curve.

Proof. We show the protocol satisfies completeness, honest verifier zero-knowledge
and special-soundness.
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Completeness. Due to the correctness of the point addition formulae, the multi-
plication proofs will be accepted, since the coordinates of the points must satisfy
Eqs. (5) to (7), given that A ̸= ±B, and neither points correspond to the identity
element. It is worth highlighting the following two cases: i) If A or B are mali-
ciously chosen such that A = ±B, the verifier will reject the final non-zero check.
ii) if A, T are chosen such that A = ±T , then Eq. (7) implies that ay = −ty and
hence that A = −T , which is a valid case (in particular, B = −2A). Since the
system of equations is symmetric in the choice of A and B, the same holds for
B = ±T .

Honest Verifier Zero-Knowledge. On input (C1, . . . , C6), and challenge c, the
simulator samples random (a, b) ←$ [q], and sets C ′7 = Comq(a, b), adding it
to the commitment phase of the transcript. The simulator then invokes the
simulators for the three inner multiplication proofs and opening proof where C ′7
is used as input in lieu of C7. The scheme is perfect honest verifier zero-knowledge
due to the perfect hiding property of the commitment C ′7, and the perfect HVZK
of the underlying inner multiplication and opening proofs.

2-Special Soundness. Given two accepting transcripts for the protocol, the ex-
tractor invokes the sub-extractor for the three multiplication proofs, respectively.
In particular, the extractor learns the quantities bx−ax, ax+bx+ tx and ax− tx.
Note that the extractor also recovers by − ay, ay + ty, r4 − r2 and r2 + r6 from
the extractors of the multiplication proofs.

To recover the x-coordinates and associated randomness, the extractor solves
a system of 3 linear equations in three unknowns and recovers ax, bx, and tx. The
randomness r1, r3, r5, which satisfies the same system of equations, is extracted
similarly.

To recover the y-coordinates and associated randomness, the extractor in-
vokes the sub-extractor for the opening proof of C2, learning ay and r2. Having
the y coordinate and the associated randomness, the extractor can recover by, ty
and r4, r6 by substituting the known values for ay and r2.

11

Note that the committed values satisfy the affine point coordinate equations,
since A ̸= ±B by the non-zero check. Further, neither A nor B can correspond to
the identity since they are represented in affine coordinates. Hence, the extractor
recovers a valid witness. ⊓⊔

4.2 Fixing ZKA: Σ-Protocol for Committed Discrete Logarithms: CDLSD

Due to the flawed extractor in ZKADlog, we propose reducing the challenge
space of the inner point addition protocol. The intuition behind this choice, is

11 Note that while it is possible to recover the y-coordinates given only the extracted
witnesses for the multiplication proofs: it requires evaluating the x-coordinates
through the curve equation and deducing the correct choices of sign by the known
quantities. This does not allow for the recovery of associated randomness, which is
why we include the opening proof for C2.
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that the outer ZKADlog has knowledge error of at least 1
2 , and thus the inner

ZKAPointAddition (which has knowledge error of ≈ 1
q ) cannot be utilised prop-

erly. Moreover, instead of running the point addition proof conditionally on the
response of the verifier, we choose to run it in parallel. Lastly, we also differen-
tiate between the base of the discrete logarithm, R, and the parameter P used
as a parameter in the Pedersen commitments, as these need not necessarily be
equal.

CDLSD: Sigma Protocol with Binary Challenges. We show CDLSD in Construc-
tion 4.1.

Theorem 6. CDLSD (Construction 4.1) is a Σ-protocol for the relation R ={
((C1, C

′
2, C

′
3), (ω, r1, r2, r3))

∣∣∣∣∣ (x, y) = ωR, C1 = Comp(ω, r1),
C ′2 = Comq(x, r2), C ′3 = Comq(y, r3)

}

assuming ω ̸= 0 and the instantiations of Pedersen commitments Comp, Comq

are perfectly hiding and computationally binding.

Proof. We aim to prove completeness, HVZP and Special-Soundness.

Completeness. If P knows the witness w, and samples an α such that

α− ω /∈ {0, ω,−ω},

then the inner CDLSS will accept with probability 1, the equalities in Step 4 of
Construction 4.1 will hold, and V will always accept.

Honest Verifier Zero-Knowledge. We construct a simulator for an accepting tran-
script which is statistically indistinguishable from a real accepting transcript. On
input challenge c, P does the following:

– If c0 = 0, the simulator randomly samples z1 ∈ Zp\{0}, z2 ∈ Zp, z3, z4, u, v ∈
Zq, and sets (s, t) = z1R. The simulator computes C4 = z1P + z2Q, C ′5 =
sP ′ + z3Q

′ and C ′6 = tP ′ + z4Q
′, and sets C ′7, C

′
8 as commitments to the

random values (u, v).
– If c0 = 1, the simulator randomly samples z1 ∈ Zp\{0}, z2 ∈ Zp and
z3, z4, s, t ∈ Zq, and sets (u, v) = z1R. The simulator computes C4 =
z1P + z2Q + C1, C

′
7 = uP ′ + z3Q

′, C ′8 = vP ′ + z4Q
′ and C ′5, C

′
6 as the

commitments to the random values (s, t).

In both cases, the simulator then invokes the inner simulator for CDLSS with
input (C ′2, C

′
3, C

′
7, C

′
8, C

′
5, C

′
6) and the binary challenge c.

We show that real and simulated transcripts are statistically indistinguish-
able given that the simulator of CDLSS outputs a transcript that is perfectly
indistinguishable from a real transcript and taking into consideration the outer
messages sent by P. First, observe that if c = 0 (resp. c = 1), z1 in the real

24



transcript is a uniformly random value in Zp\{0, ω, 2ω} (resp. Zp\{0,−ω, ω})
and z1 in the simulated transcript is a uniformly random value in Zp\{0}. Call
the real sampling distribution Xq and the simulated sampling distribution Yq

(resp. Y ′q ). Note that the statistical distance:

∆(Xq, Yq) =
1

2

∑
x∈Zq\{0}

|Pr[Xq = x]− Pr[Yq = x]|

=
1

2

(
2
∣∣0− 1

q − 1

∣∣+ ∑
x∈Zq\{0,ω,2ω}

∣∣ 1

q − 3
− 1

q − 1

∣∣)

=
1

q − 1
+

1

q − 1

=
2

q − 1
(= ∆(Xq, Y

′
q ) by a similar argument)

is statistically indistinguishable, since we require that q = exp(ω), which is
negligible in ω.

Furthermore, both in the real and simulated proofs, z2, z3, z4 is uniformly
random in their respective domains (z2 ∈ Zp and z3, z4 ∈ Zq). If c = 0 (resp
c = 1), the verification equations uniquely determine C4, C

′
5, C

′
6 (resp. C4, C

′
7, C

′
8)

conditioned on (z1, z2, z3, z4, C1) and that the remaining commitments are to
uniformly random inputs in Zq. Since the commitment scheme is perfectly hid-
ing, the commitments in the real and simulated transcripts are perfectly indis-
tinguishable. Hence, the distribution of the real and simulated transcripts are
statistically indistinguishable, where an unbounded distinguisher has at most
negligible advantage.

2-Special Soundness. Given two accepting transcripts for the protocol for chal-
lenges c = 0 and c′ = 1, the extractor invokes the extractor for the inner CDLSS,
which renders r2, r3 as openings to the commitments C ′2, C

′
3.

Let (z1, z2, z3, z4), (z
′
1, z
′
2, z
′
3, z
′
4) be the responses for c and c′, respectively.

By the verification equations, we know that C ′5, C
′
6 and C ′7, C

′
8 are valid commit-

ments to the coordinates of points z1P and z′1P , respectively. Furthermore, since
both the transcripts are accepting, CDLSS must correspond to a valid instance,
and thus we know that the commitments to the coordinates of ωR, z1R and z′1R
must satisfy the equation ωR + z′1R = z1R. Lastly, we know by the verification
equations, that C4 − C1 = Comp(z

′
1, z
′
2) and C4 = Comp(z1, z2), and hence we

can recover the opening to C1 as ω = z1−z′1, and r1 = z2−z′2. Hence, the extrac-
tor recovers ω, r1, r2, r3. By the point addition proof, and the consistency of the
commitments of z1 = α, z′1 = α− ω, we must have that for (x, y) = (z1 − z′1)P ,
C ′2 = Comq(x, r2) and C ′3 = Comq(y, r3). ⊓⊔
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Construction 4.1: CDLSD

Given C1 = Comp(ω) = ωP + r1Q, C ′2 = Comq(x) = xP ′ + r2Q
′, C ′3 =

Comq(y) = yP ′ + r3Q
′, for q equal to the modulus of the base field of E,

prove that S = (x, y) is equal to ωR, where R,P,Q ∈ E(Fq) are public
points of prime order p; P ′, Q′ ∈ E′(Fq′) are public points of prime order q
and (P,Q), (P ′, Q′) instantiate Comp and Comq respectively.

1. The prover:
(a) chooses a random α, β1 ∈ Zp, and β2, β3, β4, β5 ∈ Zq, such that

α /∈ {0, ω, 2ω}.
(b) sets (s, t) = αR (the x and y coordinates of αP ),
(c) sets (u, v) = (α− ω)R (the x and y coordinates of ((α− ω)R)),
Then, they compute commitments to α, and to the coordinates of αR
and ((α− ω)R) ((s, t), (u, v), respectively) in the following way:

C4 = Comp(α) = αP + β1Q,

C ′5 = Comq(s) = sP ′ + β2Q
′, C ′6 = Comq(t) = tP ′ + β3Q

′,

C ′7 = Comq(u) = uP ′ + β4Q
′, C ′8 = Comq(v) = vP ′ + β5Q

′.

Then, they send C4, C
′
5, C

′
6, C

′
7, C

′
8 to V. In parallel, they send the com-

mitments for the inner CDLSS (as in Section 4.1), with binary challenge
space, and input (C ′2, C

′
3, C

′
7, C

′
8, C

′
5, C

′
6) that will be used to verify that

αR = ωR+ ((α− ω)R).
2. The verifier chooses a random challenge c ∈ {0, 1} and sends it to P.
3. The prover receives c and performs the following:

(a) If c = 0, sends (z1, z2, z3, z4) = (α, β1, β2, β3).
(b) If c = 1, sends (z1, z2, z3, z4) = (α− ω, β1 − r1, β4, β5).
(c) They send the response to the inner CDLSS with challenge c.

4. Upon response, the verifier performs the following:

(a) If c = 0, computes (s′, t′) = z1R and check that C4
?
= Comp(z1, z2),

C ′5
?
= Comq(s

′, z3) and C ′6
?
= Comq(t

′, z4).

(b) If c = 1, computes (u′, v′) = z1R and check that C4 − C1
?
=

Comp(z1, z2), C
′
7

?
= Comq(u

′, z3) and C ′8
?
= Comq(v

′, z4).
(c) In parallel, verifies the response for the point addition proof with

binary challenge c.

Remark 2. Constructing a 5-round protocol was considered, where in the first
round, P would open one of the points and verify the consistency of the point
multiplication commitments. In the second, P would run the point addition pro-
tocol (conditional on the first challenge being 1). We believe such an interactive
protocol would be secure, with the techniques described in [AFK22]. However,
in the analysis of [AFK22], the authors claim knowledge error loss when Fiat-
Shamir transform is applied to parallel repetitions of a multi-round protocol. In
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this case, the security loss would be quadratic in the number of random oracle
queries of an attacker. Since the 5 round protocol would offer very few benefits
if provably secure as a (2, q)-special-sound protocol, with expected proof lengths
roughly 1

3 shorter than the protocol above in the best case, we opt to remain in
the more secure setting of 3-round protocols.

4.3 Transforming to Non-Interactive Zero-Knowledge Proof of Knowledge

To boost the soundness of CDLSD, we run λ parallel repetitions, and apply12

the Fiat-Shamir transform [FS87] to obtain a NIZKPoK with knowledge error of
2−λ. There is still a healthy margin for the statistical zero-knowledge parameter.
Given λ repetitions of the protocol, a real and simulated transcript can be dis-
tinguished by an unbounded distinguisher with advantage at most 2λ

22λ−1 ≤ 2−λ

(for λ ≥ 3).
Let the commitments for Zq (resp. Zp) correspond to points on an elliptic

curve E′ (resp E) defined over a field of q′ (resp. q) elements. Assume13 log2 p ≈
log2 q ≈ log2 q

′ ≈ 2λ. Then, concretely for λ = 128, and operating over fields
and elliptic curves of order 2λ, this protocol incurs 4096 point multiplications
for P and 2816 point multiplications for V, with proof size of roughly 151 kB.

Remark 3. As a side note, the implementation of ZKA’s protocols misses several
important considerations in the application of the Fiat-Shamir transform. In
particular, public parameters should be included as input to the challenge com-
putation, and challenges should be derived from all information which would be
available to the verifier at the time of computation. Without these considera-
tions, one can stage various attacks (described in [DMWG23]) which render the
scheme insecure.

5 Constructions on top of our CDLS protocols

We can use the protocols designed in Section 4 to build others “on top”. We ex-
plore how to instantiate ring signatures (which properties are introduced in Sec-
tion 2.6) “on top” of the previous protocols and compare our approach to that
of ZKA.

5.1 Ring Signatures in ZKA

ZKA proposes a ring signature over ECDSA that is comprised of two parts: a
Zero-Knowledge Proof of Knowledge (ZKPoK) and a Groth-Kohlweiss proof of
membership (PoM). We describe both below.

12 The Fiat-Shamir transformation should be implemented in the standard manner,
such as including all public parameters in the challenge oracle query, in order to
prevent any weak Fiat-Shamir attacks [DMWG23].

13 This is a reasonable assumption, since common parameters, such as the ones for
secp256k1, implement fields of bit length equal to the elliptic curve group order,
and Bröker’s algorithm heuristically returns an elliptic curve whose order and base
field are the same bit length.
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Zero-Knowledge Proof of Knowledge (ZKPoK) of an ECDSA signature: Let
t = h(m) be a hash of a message, m, to be signed, C ′Sx

= Comq(Sx), C
′
Sy

=

Comq(Sy) be commitments to a public ECDSA key S = (Sx, Sy), and (r, s) be a
valid signature of m under S. Recall the ECDSA verification equation involves
computing:

R = ts−1P + rs−1S (8)

and checking that the x-coordinate of R matches r. In ZKA’s construction,
P defines R as above, sets z = sr−1 and computes zR = (u, v). Then, they send
the values m and R along with commitments C1 = Comp(z), C

′
2 = Comq(u),

C ′3 = Comq(v) to V. Then, they perform:

– ZKADlog on input (C1, C
′
2, C

′
3) to verify that the commitments to the coor-

dinates of zR are valid.

– ZKAPointAddition with input (C ′4, C
′
5, C

′
Sx
, C ′Sy

, C ′2, C3), which verifies that

Eq. (8), multiplied by z on both sides, holds:

zR
?
= tr−1P + S, (9)

where C ′4, C
′
5 are commitments to coordinates of tr−1P (with zero random-

ness). Note that V can compute these commitments offline since t and r can
be determined from m and R.

Groth-Kohlweiss Proof of Membership [GK15] (GKPoM): P sends the GKPoM,
which is used to prove that P’s Pedersen commitment is a valid commitment to
an ECDSA public key contained in a given (public) signing ring. This can be
achieved with a slight modification to the protocol discussed in the next section.
See [GK15] for details.

We can instantiate both the NIZKPoK with our protocols CDLSD and CDLSS,
and via straightforward deduction, the ring signature is provably secure. Intu-
itively, besides perfectly hiding commitments and two zero-knowledge proofs, P
sends only a clear value to a random point R, which is independent of the ECDSA
key-pair. This prevents any of the misdesigns previously noted. We stress that
the construction’s (instantiated in either the ZKA or our manner) anonymity is
nullified if the used signature, (r, s), is seen by an adversary. A system must have
the precaution of discarding the signature after use.

Remark 4. There is a substantial divergence between the NIZKPoK for an ECDSA
signature described in ZKA’s paper and in their implementation. Their imple-
mentation attempts to consolidate the proof of the sum of Eq. (9) with the
internal proof in the call of ZKADlog on zR. For the sake of brevity, and since
these modifications are not specified in the security proof, we avoid this ap-
proach in our analysis and recommend avoiding it until further consideration of
the security implications.
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Recall that ZKA’s primary motivation for this construction is the ability to
create ring signatures for pre-existing signing keys, which can be locked behind
dedicated hardware or software interfaces. In these cases, the signer only has
access to the signing functionality and not directly to the private key. ZKA’s ideas
can also be used in privacy-preserving authentication mechanisms in order to
maintain backwards compatibility with, for example, web standards [WMK+22].
However, there are more practical ways to achieve this functionality if we relax
the restriction of using pre-existing signing keys with access to only the signing
functionality.

In the scenario where a user has access to the private key, depending on the
application, one can perform the following simpler protocols instead:

1. If one wishes to implement a PoK of an ECDSA signature under a committed
public key, it is sufficient to construct an identification protocol which proves
knowledge of a discrete logarithm of the committed public key. Using stan-
dard techniques, the message is tied into the randomness of the Fiat-Shamir
transform (the message is included in the challenge hash computation). This
avoids the complications which require modification to a pre-existing signa-
ture and an additional proof of the sum.

2. Given the results described in [GK15, Sec. 4], it is possible to construct
ring signatures directly from Groth-Kohlweiss proofs of membership whose
rings correspond to sets of ECDSA public keys. We remark this is achieved
without the need for any novel techniques. Rather than running both a PoM
and an ECDSA PoK for a committed public key, the signer only needs to
run one PoM. We discuss this idea in the next section.

5.2 Groth-Kohlweiss Ring Signatures for Existing ECDSA Keys

Recall that an ECDSA private-public key pair is the tuple (sk, skP ) for some
public point P on an elliptic curve E(Fq). We discuss how to construct a ring
signature scheme via [GK15] using a ring R, which is a set of existing ECDSA
public keys. In order to construct this ring signature, we introduce a protocol,
PMZ, to prove knowledge of the randomness to a commitment to 0 in an ordered
list of N commitments (C1, . . . , CN ).

In PMZ, Construction 5.1, P possesses the tuple (ℓ, r) such that Cℓ = Comp(0, r).
P first commits to the n-bit decomposition of k, written as (k1, . . . kn), where,
without loss of generality14, N = 2n. P engages in n-parallel compositions of a
protocol to prove that these commitments lie in the set {0, 1}, where, in the re-
sponse, P reveals evaluations of polynomials f1, . . . fn of the form fj(c) = ℓjc+aj
(where c is the challenge and the aj ’s are randomly sampled elements in the com-
mitment phase). For each i ∈ [N ], P computes the binary decomposition of i as
(i1, . . . in). Then, they define the following polynomials (to be used by both P
and V):

14 If N < 2n, one can simply duplicate some of the commitments in the list.
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Construction 5.1: PMZ(S)

Public Parameters: Public parameters for commitment scheme over Zp.
Inputs: Ordered list S = (Ci)i∈[N ] where P knows a pair (k, ℓ) such that

ℓ ∈ [N ], r ∈ Zp and Cℓ = Comp(0, r). Write (ℓ1, . . . ℓn) and (r1, . . . , rn) as
the binary expansion of k and r, where n = log2(N).

1. For j ∈ [n], P computes the following:

rj , aj , sj , tj , ρj−1 ←$ Zp

Cℓj ← Comp(ℓj , rj), Caj
← Comp(aj , sj)

Cbj ← Comp(ℓjaj , tj), Cdj−1
←

N∏
i=1

C
pi,(j−1)

i Comp(0, ρj−1)

(where pi,j is computed as in Eq. (11))
P sends Cℓ1 , Ca1

, Cb1 , Cd0
, . . . , Cℓn , Can

, Cbn , Cdn−1
.

2. V sends challenge c←$ Zp

3. P computes:
zd ← rcn −Σn−1

k=0 ρkc
k

and for j ∈ [n] computes:

fj ← ℓjc+ aj , zaj
← rjc+ sj , zbj ← rj(c− fj) + tj

P sends response zd, f1, za1 , zb0 , . . . , fn, zan , zbn .

4. V checks that:

N∏
i=1

C
∏n

j=1 fj,ij
i ·

n−1∏
k=0

C−c
k

dk

?
= Comp(0, zd)

(where fj,ij is computed as in Eq. (10))
and for j ∈ [n]:

CajC
c
ℓj

?
= Comp(fj , zaj )

CbjC
c−fj
ℓj

?
= Comp(0; zbj )

fj,ij (c) =

{
fj(c) if ij = 1

c− fj(c) if ij = 0
(10)
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Given Eq. (10) and since ℓj , ij ∈ {0, 1}, it follows that fj,1(c) = δℓj ,1c + aj
and fj,0 = δℓj ,0 − aj . Notice that δa,b is the Kronecker delta function, which
determines that the function is 1 when a = b and 0 otherwise.

For each i, P computes the polynomial pi(x) =
∏n

j=1 fj,ij . Observe that:

pi(c) =

n∏
j=1

fj,ij = δi,ℓc
n +

n−1∑
k=0

pi,kc
k. (11)

which means that pi is a degree n polynomial if i = ℓ and a degree n − 1
otherwise. Upon computing pi’s, P records the lower degree term coefficients
pi,k, and uses them to compute the commitments (Cd0

, . . . , Cdn
). The intuition

for the construction is that these commitments will cancel out the lower degree
terms during the verification step. We refer the reader to [GK15, Sec. 3] for
further details.

Theorem 7. PMZ( Construction 5.1) is a (⌈log2(N)⌉+1)-special sound Σ-protocol
for the relation:

R =

{
((C1, . . . , CN ), (ℓ, r))

∣∣∣ Cℓ = Comp(0, r), r ∈ Zp, ℓ ∈ [N ],
C1, . . . CN are valid outputs of Comp(·, ·)

}
where Comp(·, ·) is a fixed instantiation of Pedersen commitments over a group
of prime order p.

Proof. Follows from [GK15, Thm. 3]

Ring Signature with Existing ECDSA Public Keys. Observe that, given an ECDSA
key, we may interpret it as a Pedersen commitment to zero. Consider the public
parameters for ECDSA, (p, q, E,Q), where P ∈ E(Fq) is a point of prime or-
der p. Let (sk, pk := skQ) be a key-pair of this parameter set. By computing
an additional generator P on E(Fq), we can define a Pedersen commitment pa-
rameter set (p, q, E, P,Q) where P,Q ∈ E(Fq) and ord(P ) = ord(Q) = p. Let
Comp(m, r) = mP +rQ. Note that now the ECDSA key-pair above is equivalent
to a commitment to zero (with randomness sk): (sk,Comp(0, sk)).

We instantiate the ring signature described in [GK15, Fig. 3] with the above
paradigm in Construction 5.1. P takes first an instance witness relation pair
as Comm, and Chall as second input (which is made non-interactive via Fiat-
Shamir). V is a non-interactive verifier which, when given the Comm, Chall and
Resp phases of the protocol as input, performs the verification phase (Step 4.) and
outputs 1 if all the equalities hold or 0, otherwise. We define this ring signature
scheme as follows:

pp← SetUp(1λ): Outputs public parameters pp = (p, q, E,Q, P,H) for Comp,
the commitment scheme, which is defined as Comp(m, r) = mP + rQ, where
p is a prime chosen in the interval [22λ−1, 22λ], E is an elliptic curve of prime
order p over Fp, (P,Q) ∈ E(Fq), and H is a random oracle which outputs
elements in Zp.
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(sk, pk)← KeyGen(pp): Samples sk ←$ Zp and computes pk ← Comp(0, sk).
σ ← Sign(m,R; pp, sk): Parses R as (C1, . . . , CN ) and determines ℓ such that

Cℓ = Comp(0, sk). Computes Comm ← P(R, (ℓ, sk)) and response Resp ←
P(H(m,R,Comm)). Outputs σ = (Comm,Resp).

b←Verify(m,R, σ; pp): Parses R = (C1, . . . , CN ) and σ = (Comm,Resp).
Computes Chall← H(m, r,Comm) and outputs b← V(R,Comm,Chall,Resp).

Theorem 8. The above scheme (SetUp,KeyGen,Sign,Verify) is a ring signature
scheme with perfect correctness, perfect anonymity and unforgeability (with re-
spect to insider corruption) given that the instantiation of Pedersen commitments
with parameters (p, q, E, P,Q) is perfectly hiding and computationally binding
(assuming the hardness of the discrete logarithm problem). Moreover, these prop-
erties are preserved for signing and verification when using a ring R which con-
sists of ECDSA public keys for parties who possess the corresponding private
keys over compatible ECDSA public parameters (p, q, E,Q).

Proof. See [GK15, Thm. 4]. For compatibility with ECDSA key-pairs, see Sec-
tion 5.2

P’s cost for the Σ-protocol in Construction 5.1 is dominated by the n multi-
exponentiations of N group elements when computing (Cd0

, . . . , Cdn−1
). This

computation is claimed to be reduced to roughly 2N single exponentiations using
optimized multi-exponentiation techniques. Similarly, V’s computations should
roughly take 2N

log(N) exponentiations. Note these group exponentiations are re-

alised as point multiplications in the curve used in the Pedersen commitment
scheme.

We now give a precise size for the signatures. P’s messages in the membership
proof are 4⌈log2(N)⌉ curve points and 3⌈log2(N)⌉ field elements. Assuming the
elliptic curve is defined over a field of the same bit length as the curve’s order,
2λ, the signature scheme will yield messages of length 22λ · ⌈log2(N)⌉ bits.

6 Implementation and Benchmarks

In this section, we discuss the implementation details and evaluation of the
CDLS protocols. All timings and results in this section were produced using our
prototype Rust implementation 15 on a Macbook M1 with 8GB of memory. The
timings presented in this section were produced as the average of 100 iterations.

We implemented both the PoKs of CDLS and the ones in ZKA in around
4700 lines of Rust code. We note that our re-implementation of ZKA, which
still suffers from soundness issues, is primarily for the sake of fair comparison:
ZKA’s original implementation is written in Typescript, which suffers from a
lack of direct hardware access making it less efficient than Rust. We additionally
stress that there are some differences between the protocols used in the ZKA
implementation and the ZKA paper: the implementation of ZKAPointAddition,

15 https://github.com/brave-experiments/CDLS
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for example, does not appear to perform the OR composition specified in the
paper. In order to resolve these ambiguities, we based our re-implementation on
the original implementation, and not on the paper. We note that we did not re-
implement the subset checking algorithm used in ZKA due to security concerns:
the verifier in our implementation checks all repetitions.

In terms of complexity, the cost of the ZKADlog is dominated by the inner
ZKAPointAddition proof, which, in turn, is dominated by the number of field
multiplications and field inversions. Since the prover only provides the response
to the point addition protocol with probability 1

2 , the expected cost for a single
execution of ZKADlog is 46 point multiplications for P, 24 point multiplications
for V, and a proof size of length 24 elliptic curve points and 15 field elements.
Note that the scheme uses two curves of different order over different fields which
have approximately the same bit-lengths

Our point addition protocol,CDLSS, in terms of its complexity, incurs 26
point multiplications for P, 34 point multiplications for V, and proofs contain
14 elliptic curve points and 20 field elements. Our committed discrete log proof,
CDLSD, incurs 37 point multiplications for P, 30 point multiplications for V,
and a proof length of 19 elliptic curve points and 24 field elements. Note that
V’s complexity is reduced in CDLSS as binary challenges reduce the number of
point multiplications required in their checks.

Table 1: P and V timings (average of 100) for the PoK of the Sum, DLog and
repeated DLog for 256-bit curves.

ZKA CDLS

Protocol Prover (ms) Verifier (ms) Prover (ms) Verifier (ms)

Sum PoK. 4.20 3.07 3.32 2.70

DLog PoK. 5.75 3.79 4.80 3.41

DLog PoK. (128 rep.) 737 298 616 456

Table 1 and Table 2 summarise P and V’s time for PoK of the Sum, PoK
of DLog and repeated PoK of DLog for 256-bit and 384-bit curves, respectively.
Notably, both Table 1 and Table 2 show that CDLS performs favourably com-
pared to ZKA, achieving a speed-up for P’s times and with similar times for
verification. These timings also show that the subset checking technique used
in ZKA is entirely unnecessary, as, even when checking all commitments, our
verification timings are comparable to those originally given by ZKA. Note that
our P times are around a factor of ten faster than those reported in ZKA.

We report on the sizes of the proofs in Table 3. Our PoK of the Sum (CDLSS)
is around two-thirds the size of those produced by ZKA due to the use of fewer
inner proofs. However, we note that the difference is less pronounced for the
repeated PoK of the DLog (CDLSD). Intuitively, this difference is due to the
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Table 2: P and V timings for the PoK of the Sum, DLog and repeated DLog for
384-bit curves.

ZKA CDLS

Protocol Prover (ms) Verifier (ms) Prover (ms) Verifier (ms)

Sum PoK. 10.24 7.68 8.12 6.71

DLog PoK. 14.31 7.90 11.94 8.72

DLog PoK. (192 rep.) 2756 1124 2295 1689

fact that ZKA only conditionally generates the inner PoK of the Sum, whereas
ours always contains the inner proof. Nevertheless, our proof sizes are always
approximately the same size as those produced by ZKA. We give additional
sizes that showcase the difference between the ammount of inner PoK of the
Sum for both ZKA and CDLS in Appendix D.

Table 3: Size of the proof for ZKA and CDLS on 256-bit and 384-bit curves,
where the security parameter λ is 128 and 192 respectively.

256-bit curve 384-bit curve

Protocol ZKA(kB) CDLS(kB) ZKA(kB) CDLS(kB)

Sum PoK. 1.50 1.30 2.23 1.94

DLog PoK. 1.62 1.50 2.52 2.23

DLog PoK. (λ rep.) 164.8 178.7 364.0 400

7 Conclusion

In this work, we have highlighted and resolved various security misdesigns in
the Σ-protocols presented in ZKA [FLM22] and, to an extent, in Agrawal et
al. [AGM18]. These issues stem from implementations which are not faithful to
their source paper, and security proofs which miss cases, both of which can be
prevented when a protocol description is sufficiently detailed.

It is worth noting that these protocols can be reformulated into multi-round
protocols, where P and V interact over multiple challenge-response rounds. But
these are no longer Σ-protocols, and will require more care with respect to
their security proofs and loss factor when Fiat-Shamir is applied. Several 5-
round identification protocols, such as [CHR+16,BFK+19], have suffered from
attacks due to improper design [KZ20]. However, recent works have published
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results bounding the knowledge error of NIZKPoKs obtained from the Fiat-
Shamir transformation of multi-round interactive proofs [AFK22], and such an
approach may be viable.

Future Work. Whilst in this work we focus on the construction of NIZKPoKs
from Σ-protocols, modern zkSNARK protocols, such as Spartan [Set20] offer
promising performance benefits. These platforms are succinct, meaning that
proof sizes and verification times scale sub-linearly with the size of the wit-
ness. They allow P to prove generic statements which correspond to proving
knowledge of arithmetic circuit satisfiability. The trade-off with zkSNARKs is
that they often come at the cost of slower prover times, which may be undesir-
able in the context of privacy-preserving credentials. There is some work towards
an ECDSA-PoK-based ring signature via Spartan with Spartan-ecdsa [TSB23],
with some promising results. However, there remains work to be done towards
proving security of such constructions.

We further note that there might be more optimizations for the PoKs that we
presented. For CDLSD, for example, the OpeningProof(C2) in the inner CDLSS
is unnecessary, as the y-coordinate of the commitments can be extracted already.
We leave this and other optimizations as the subject of future work.
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Appendix

A Elliptic Curves of Prescribed Order: Bröker’s method

This work considers proving statements about points on elliptic curves E/Fq.
In order to prove these statements efficiently, it is convenient to operate using
a group that has prime order q, which mitigates the need for range-proofs and
provides additional algebraic structure. Concretely, we require a method that
accepts an elliptic curve E/Fq and produces a new elliptic curve E/Fp with
order q, where for the sake of efficiency, p ≈ q. We stress that this method only
needs to be carried out once per curve, and thus a highly efficient method is not
mandatory. Nevertheless, we briefly describe how to arrive at efficient methods
for computing such curves. We claim no novelty here but rather present a sketch
of the techniques that exist in the literature.

We first recall Hasse’s theorem. Hasse’s theorem on elliptic curves [Has36]
states that the order of an elliptic curve E/Fq is an integer in the Hasse in-
terval Hq =

[
q + 1− 2

√
q, q + 1 + 2

√
q
]
(a lower and upper bound: the bounds

depend only on the finite field and not on the curve) around q + 1. Notably,
the relation N ∈ Hq is actually symmetric in N (an integer) and q (i.e N ∈
Hq ⇐⇒ q ∈ HN ), and thus if q is a prime in HN , then an elliptic curve
E/Fq with order N always exists. Whilst Hasse’s theorem only gives a range
for the order of the elliptic curve, we can check #E(Fq) in Weierstrass form
by using Schoof’s algorithm [Sch84] (that is, to count the number of points in
an elliptic curve). Schoof’s algorithm is a deterministic polynomial time algo-
rithm to compute #E(Fq) from a standard representation of E. The problem of
finding elliptic curves of prescribed order N , which is of our interest, is an “in-
verse” problem to the counting problem of Schoof. However, Schoof’s algorithm
is polynomially bounded in the input size log q, making its immediate use in our
problem impractical.

The most basic form of this problem is stated as: if given a finite field Fq

and an integer N ∈ Hq, find an elliptic curve E/Fq for which E(Fq) has order
N . There is no known algorithm to solve this problem that is faster than a
run-time of Õ(N1/2) (disregarding logarithmic factors): the known algorithm is
referred to as “the näıve algorithm”. But, we can relax this problem by giving
the following correction: given an integer N ∈ Z≥1, find a finite field Fq and
an elliptic curve E/Fq for which E(Fq) has order N . The “relaxed” problem can
work for applications in cryptography as it is often not needed which finite field
the curve E is defined, but rather that the order is prime.

A simple algorithm to find a curve that can work for cryptography is to select
a prime p and try random elliptic curves over Fp until we find a curve of prime
order N . This simple algorithm resembles the näıve algorithm for constructing a
curve with N points. Using this algorithm, however, is heuristically polynomial
time as point counting is polynomial time. The prime number theorem tells us
that one out of every log p integers of size p is prime. If we treat the group orders
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of the random curves as random integers of size log p, we will have to try about
log p curves until we find the curve of prime order we seek.

Algorithm 1: Näıve algorithm

Data: A integer N > 4
Result: A prime p ∈ [N + 1−

√
N,N + 1 +

√
N ]

1 Set a←
⌈
N + 1−

√
N
⌉

// Step 1

2 if a > (N + 1 +
√
N) then

3 Return and abort
4 end
5 if N is odd then
6 p← a, t← p+ 1−N and go to line 10.
7 end
8 a← a+ 1, and go to to line 2.
9

10 Pick a random b ∈ F ∗p \{−274 } // Step 2

11 Define Eb : Y
2 = X3 + bX − b and P = (1, 1) ∈ Eb(Fp)

12 if (p+ 1− t)P = OEb
then

13 Compute the trace of Frobenius tr for Eb.
14 If tr = t, return Eb.

15 end
16 if t ̸= 0 and (p+ 1 + t)P = OEb

then
17 Compute the trace of Frobenius tr for Eb.
18 If tr = −t, return the quadratic twist of Eb.

19 end
20 Go to line 10.

Given Schoof’s algorithm and Hasse’s theorem we can construct a naïıve al-
gorithm to compute elliptic curves of the desired order. First, choose a prime
p ∈ HN (for N > 4 as a restriction, so we ensure that p ≥ 5) and construct ran-
dom curves over Fp until a curve of the desired order is found. Recall that Hasse’s
theorem can be rewritten as #E(Fq) = q + 1 − t, for |t| ≤ 2

√
q, which is called

the“trace of Frobenius”16. Schoof’s basic strategy is simple: compute the trace of
Frobenius t modulo many small primes l and use the Chinese remainder theorem
to uniquely determine t, which then determines #E(Fq) = q+1− t. Given that
computing the trace of Frobenius of an elliptic curve E/Fp takes time polynomial
in log p (given Schoof’s algorithm), a following idea is to choose a prime p ∈ HN

and construct random curves over Fp until we have found a correct one. The
high level idea of the algorithm is described in Algorithm 1 as given by [Bro06,
Alg. 2.3].

16 The trace of α ∈ End(E) is the integer Trα = α+ α̃. Recall here that the Frobenius
endomorphism (πE) is inseparable, but πE + 1 is separable.

40



Algorithm 2: CM algorithm

Data: A integer N > 6 and a prime p ∈ HN

Result: An elliptic curve EFp with |E(Fp) = N |
1 Compute the Hilbert class polynomial P∆ ∈ Z[X] for

∆ = (p+ 1−N)2 − 4p.
2 Compute a root j ∈ Fp of P̃∆ ∈ Fp[X].
3 Set a← 27j/(4(1728− j)) and E : Y 2 = X3 + aX − a for j ̸= (0, 1728).
4 if j = 0 then
5 Set E : Y 2 = X3 + 1.
6 end
7 if j = 1728 then
8 Set E : Y 2 = X3 +X.
9 end

10 Return a twist of E with N points.

The algorithm works as follows: if we find a prime p in Step 1, we know there
exists an elliptic curve E/Fp with |E(Fp)| = N (as stated in [Bro06, Theo. 2.5]
with the caveat of [Sch87]). Notice that we look for primes in an interval smaller
than the entire Hasse’s interval so that the associated discriminant ∆ = t2 − 4p
is not small in absolute value, which gives us a “bigger range” in which to find
a curve in Step 2. In Step 2, we assume that there exists a curve E/Fp with N
points and with a j-invariant j(E) ̸= (0, 1728). For b ranging over F ∗p \{−274 },
the j-invariant reaches every value of F ∗p \ {1728}. For j ̸= (0, 1728), there are
two non-isomorphic curves E,E′ with the consideration that if E has p+ 1− t
points, then E′ has p + 1 + t points. Said possibilities are tested in lines 12
and 16, respectively. In this case, N satisfies p + 1 − t where t denotes the
trace of the Frobenius morphism Fp : E ← E. The quadratic ring Z[Fp] has
discriminant ∆ = t2− 4p < 0, and the endomorphism ring EndFp

(E) contains a
subring isomorphic to the imaginary quadratic order O∆. Let E′/Fp be a curve
with Z[F′p] ∼= O∆, where F′p is the Frobenius morphism of E′. Following this,
we know that one of the twists of E′ has trace t and, hence, N points. This
argument, then, shows that finding an elliptic curve E with EndFp

(E) ⊆ O∆ is
equivalent to finding a twist of a curve that has N = p + 1 + t points, where
∆ = t2 − 4p. Said curve can be lifted from a curve in characteristic 0 via the
Deuring lifting.

Whilst this algorithm will work, the running time of it is exponential in logN ,
and thus it is unlikely to be practical. This can be explained as follows. Primality
testing is polynomial in time [AKS04], so the total running time will be Õ(N)1/2

(heuristically, polynomial in logN). This primality testing is needed in order

to find a prime p that satisfies the Hq interval (
⌈
N + 1−

√
N,N + 1 +

√
N
⌉
).

Then, in Step 2, we compute the twist of an elliptic curve (which boils down
to finding a representative for F∗p/F∗2p ), which can be done in time polynomial
in log p. Once we have the twists, we have to compute their group orders: using
Schoof’s algorithm [Sch84], this takes time Õ(log q).
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We could also solve our original problem by solving the related problem of
constructing a curve with N = p + 1 − t (where t is the trace of the Frobenius
morphism) points in characteristic zero with a prescribed endomorphism ring, as
previously explained. It is known [Tat74], that elliptic curves in characteristic 0
have endomorphism rings of rank at most 2 over Z. If the rank equals 2, the curve
is said to be a CM-curve, where CM is an abbreviation for “complex multiplica-
tion”. The deterministic algorithm that we will see is referred to as the “complex
multiplication” (CM) method, as the theory of complex multiplication allows us
to construct a curve in characteristic zero with prescribed endomorphism ring.
The algorithm can be seen in Algorithm 2 as given by [Bro06, Theo. 3.6]. How-
ever, the running time of this algorithm is determined by the time needed to
compute the Hilbert class polynomial P∆, in line 1, with ∆ = t2 − 4q < 0 which
is O(|∆|1+o(1)). Since ∆ = O(N), we have the run time of O(N1+ϵ)) for every
ϵ > 0, which is far worse than a probabilistic version of the näıve algorithm. This
time can be improved with a multi-evaluation approach in a complex analytic
algorithm (a run time of O(|∆|(3/2+ϵ)).

A better approach is to use the algorithm proposed by Bröker and Steven-
hagen [BS07,Bro06], which uses the “traditional CM-algorithm” but replaces
∆ with the fundamental discriminant D = disc(Q(

√
∆)). Note that the poly-

nomial PD is much smaller than P∆. In our problem we usually have many
primes p ∈ HN to choose from, and every prime p leads to a field discriminant
D(p) = disc(Q

√
∆) with ∆ = ∆(p,N) = t2 − 4p = (p+ 1−N)2 − 4p. We need

to find the ‘minimal’ imaginary quadratic fundamental discriminant D, which
comes down to solving the following equation: x2−Df2 = 4N in integers x and
f in such a way that the number p = N + 1 − x is prime. A heuristic analysis
can be given to show that it is reasonable to expect a solution to this problem of
size ((logN)2), and we can use the 1908 algorithm of Cornacchia [Sch95] if the
factorization of N is given (which allows us to find D in Õ((logN)4+ϵ): this can
be improved as we will see).

The algorithm itself consists of multiple“search rounds”for a suitable discrim-
inant with a heuristic running time of Õ((logN)

3
). In more practical terms, the

algorithm is able to construct a curve having a large prime number N of points
in all cases where the curve, as described in [Mor05], can prove primality of a
number of the same size. The starting point of the algorithm is searching through
(negative) discriminantsD for one that allows an integral solution to the equation
x2−Dy2 = 4N (which determines the“minimal” imaginary quadratic fundamen-
tal discriminantD —where the imaginary quadratic field isK— containing an el-
ement α of norm N —with the property that NK/Q = (1−α) = N+1−TrK/Q(α)
is twice a probable prime number N ′— which can be used to construct an elliptic
curve of order N) with q = N +1−x. If α ∈ K is found, N becomes the order of
the finite field F and 2N ′ the number of points of an elliptic curve over F. Solving
for the “smallest” D (for which we can use the 1908 algorithm of Cornacchia,
with time Õ((logN)4+ϵ), which can be lowered to Õ((logN3)) via [Mor05]) that
admits to a solution, we have that q = N + 1− x or q = N + 1 + 1 are possible
base fields if they are prime. Notice that the first n digits of both q and N will

42



Prover (P)

PKDLog.Comm(P,Q,C1, C
′
2, C

′
3, (P

′, Q′))

(α, β1)←$ Zp ; (β2, β3)← Zq

(γ1, γ2) = αP

α1 = Comp(α), α2 = Comq(γ1), α3 =

Comq(γ2)

Return Comm = (α1, α2, α3)

PKDLog.Resp(α, β1, β2, β3, ω, r1, x, y, γ1, γ2)

If c = 0 :

Then: z1 = α, z2 = β1, z3 = β2, z4 = β3

Return Resp = (z1, z2, z3, z4)

If c = 1 :

Then: z1 = α− ω, z2 = β1 − r1
π = ZKAPointAddition(x, y, γ1, γ2) : T = (γ1, γ2)− (x, y)

Return Resp = (z1, z2, π)

Comm−−−−−−−−→
Chall←−−−−−−−−

Resp
−−−−−−−−→

Verifier (V)

PKDLog.Chall

c←$ {0, 1}
Return Chall = c

PKDLog.Vf(P,Q)

(t1, t2) = z1P

If c = 0 :

Then:

Verify a1 = z1P + z2Q,

a2 = Comq(t1, z3),

a3 = Comq = (t2, z4)

If c = 1 :

Then:

Verify a1 = z1P + z2Q + C1

Verify π

Fig. 1: Visual representation for the PKDLog construction. Solid box represent
the PKS that is run as a inner procedure. The figure omits the fixes and clarifi-
cations we introduce in Section 3.2, and serves only for visual purposes.

be the same, which follows from Hasse’s theorem: it differs at most 2
√
q from the

size q of the finite field. Once the base field is found, creating the curve requires
both computing the Hilbert class polynomial of D (which will split completely)
and a root modulo q. The complexity of this algorithm is, hence, Õ((logN)3),
given a prime input N . Note that the finite field F will be of prime order p for
some p that is close to N , but if the input N is a prime, E will be over a prime
field Fp with exactly N points over Fp.

We provide a minimal open-source Sagemath script 17 that uses the method
of [BS07,Bro06] to compute curves of a prescribed order. This script is only
for visualization and testing purposes: we leave the full implementation of the
algorithm and improvements as the subject of future work. For 256-bit curves,
this script produces a valid curve in a few seconds, with larger (and far less
typical) curves being found in around a few minutes.

17 https://github.com/brave-experiments/CDLS/tree/main/sage
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B PKDLog from [FLM22] in a visual representation

The visual representation of PKDLog can be seen in Fig. 1. The figure omits the
fixes and clarifications we introduce in Section 3.2, and serves only for visual
purposes.

Construction 2.1: PKDL from [AGM18]

Given C1 = Comp(ω) = ωP + r1Q, C ′2 = Comq(x) = xP ′ + r2Q
′, C ′3 =

Comq(y) = yP ′ + r3Q
′, for q > 2t3, prove that S = (x, y) is equal to ωP ,

where P ∈ E are public elements of prime order p, and (P ′, Q′) are points
in E′ of prime order q.

1. The prover:
⋆ chooses a random α, β1 ∈ Zp, and β2, β3 ∈ Zq,
⋆ sets (γ1, γ2) = αP

They then compute the following values:

a1 = Comp(α) = αP + β1Q,

a2 = Comq(γ1) = γ1P
′ + β2Q

′, a3 = Comq(γ2) = γ2P
′ + β3Q

′.

sending a1, a2, a3 to V as Comm.

2. The verifier:
– chooses a challenge string c ∈ {0, 1}.

They send c as Chall.
3. The prover receives c:

⋆ If c = 0, computes z1 = α, z2 = β1, z3 = β2, z4 = β3.

Sends the tuple (z1, z2, z3, z4) as Resp.

⋆ If c = 1, computes z1 = α − ω, z2 = β1 − r1 . Then, in parallel,

constructs a proof of addition (as in Section 3.1) of the form π =
PKS{(x, y, γ1, γ2) : T = (γ1, γ2)− (x, y)}:
• Given T = z1P = (t1, t2),
• Calculates the proof of addition of T = (γ1, γ2) − (x, y) (T =

ωP − S) with some other challenge bit and calls it π.

Sends the tuple (z1, z2, π) as Resp.

4. Upon receiving Resp, the verifier performs the following:

– If c = 0, computes (t1, t2) = z1P . Then, verifies that a1
?
= z1P +

z2Q, a2
?
= Comq(t1, z3) and a3

?
= Comq(t2, z4).

– If c = 1, computes (t1, t2) = z1P . Then, verifies that

a1
?
= z1P + z2Q+ C1 , and, in parallel,

verifies π with the proof of addition challenge bit .
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C PKDL from [AGM18] in detail

We render now our interpretation of the proof given by [AGM18] informally in
Construction 2.1, adding fixes and clarifications. The solid boxes represents the
values that are sent by a party.

D DLog PoK sizes and times depending on number of inner
PoKs of the Sum in ZKA
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Fig. 2: DLog PoK sizes (in kB) for ZKA depending on the number of included
PoKs of the Sum.
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Fig. 3: DLog PoK verification times (in ms) for ZKA depending on the number
of included PoKs of the Sum.

E Code to compute the estimates of ZKA’s practical attack
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#Binomial d i s t r i b u t i o n func t i on
#Probab i l i t y that you get m heads out o f n co in f l i p s
de f f (n ,m) :

re turn binomial (n ,m)∗ (1/2)ˆn

#Probab i l i t y that you get at l e a s t m heads out o f n co in f l i p s
de f g (n ,m) :

pr = 0
f o r i in range (m, n+1):

pr += f (n , i )
r e turn pr

#Probab i l i t y that you s e l e c t k heads out o f a s e t o f n f l i p p ed
# co in s o f which m are heads .
de f h(n ,m, k ) :

pr = 1
f o r i in range (k ) :

pr ∗= (m−i )/n
re turn pr

#Input : p r obab i l i t y o f a v e r i f i e r accept ing i f they only check
#m out o f n r e p e t i t i o n s
#Output : Expected number o f t imes a Prover needs to send a V e r i f i e r
#the proo f be f o r e a V e r i f i e r accept s at l e a s t once with
#probab i l i t y 0 .99
de f numberofrequests ( pr ) :

r e turn c e i l ( l og ( 0 . 0 1 , 1−pr ) )

#Cost to compute 2ˆn SHA−256 hashes ,
#see https : // char t s . woobull . com/ b i t co in−hash−p r i c e /
#(approx 1 microUSD per terahash )
#Note t h i s i s a h e u r i s t i c and ov e r s imp l i f i e d
de f cos t tohash (n ) :

r e turn (2ˆn) ∗ (10ˆ(−18))

#Parameters
n = 128
m = 115
k = 20

#Expected number o f hashes to get at l e a s t m good cha l l eng e b i t s
p r i n t ( ”Expected number o f hashes to get at l e a s t {} good
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cha l l eng e b i t s :\ n2ˆ{}\n ”. format (m, − f l o a t ( l og ( g (n ,m) , 2 ) ) ) )

#The co s t
p r i n t ( ”Cost to compute the number o f hashes above ( assuming you

only need to run 1 sha−256 which i s a very r e l axed
h e u r i s t i c ) : \nUSD${}\n ”. format ( f l o a t ( cos t tohash (− l og ( g (n ,m) , 2 ) ) ) ) )

#Probab i l i t y that a v e r i f i e r s e l e c t s the good r e p e t i t i o n s
p r i n t ( ”Probab i l i t y that a v e r i f i e r s e l e c t s the ’ good ’ {} r

e p e t i t i o n s :\n{}\n ”. format (m, f l o a t (h(n ,m, k ) ) ) )

p r i n t ( ”Number o f t imes a ma l i c i ou s prover needs to send a proo f ( or
r ing s i gna tu r e ) to the v e r i f i e r be f o r e they accept with
p r obab i l i t y >0.99:\n{}\n ”. format ( numberofrequests (h(n ,m, k ) ) ) )
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