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Abstract

Over the past few years, homomorphic secret sharing (HSS) emerged as a compelling alter-
native to fully homomorphic encryption (FHE), due to its feasibility from an array of standard
assumptions and its potential efficiency benefits. However, all known HSS schemes, with the
exception of schemes built from FHE or indistinguishability obfuscation (iO), can only support
two or four parties.

In this work, we give the first construction of a multi-party HSS scheme for a non-trivial
function class, from an assumption not known to imply FHE. In particular, we construct an HSS
scheme for an arbitrary number of parties with an arbitrary corruption threshold, supporting
evaluations of multivariate polynomials of degree log / log log over arbitrary finite fields. As a
consequence, we obtain a secure multiparty computation (MPC) protocol for any number of
parties, with (slightly) sub-linear per-party communication of roughly O(S/ log logS) bits when
evaluating a layered Boolean circuit of size S.

Our HSS scheme relies on the Sparse Learning Parity with Noise assumption, a standard
variant of LPN with a sparse public matrix that has been studied and used in prior works.
Thanks to this assumption, our construction enjoys several unique benefits. In particular, it
can be built on top of any linear secret sharing scheme, producing noisy output shares that can
be error-corrected by the decoder. This yields HSS for low-degree polynomials with optimal
download rate. Unlike prior works, our scheme also has a low computation overhead in that
the per-party computation of a constant degree polynomial takes O(M) work, where M is the
number of monomials.
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1 Introduction

Homomorphic secret sharing (HSS) [BGI16] is the secret sharing analogue of homomorphic en-
cryption [RD78, Gen09], which supports local evaluation of functions on shares of secret inputs.
A standard N -party t-private secret sharing scheme randomly splits an input x into N shares,
(x1, . . . , xN ), such that any subset of t shares reveals nothing about the input. An HSS scheme
additionally supports computations on shared inputs by means of local computations on their
shares. More concretely, there is a local evaluation algorithm Eval and reconstruction algorithm
Rec satisfying the following homomorphism requirement. Given a description of a function f ,
the algorithm Eval(f, xj) maps an input share xj to a corresponding output share yj such that
Rec(y1, . . . , ym) = f(x). To avoid trivial solutions,1 the HSS output shares should be compact in
the sense that their length depends only on the output length of f and the security parameter, and
hence the reconstruction time does not grow in the function size. HSS enables private outsourcing
of computation to multiple non-colluding servers. It also has applications to secure multiparty
computation (MPC) with sublinear communication [BGI16, Cou19, CM21], multi-server private
information retrieval (PIR) and secure keywords search [GI14, BGI15, WYG+17], generating cor-
related pseudorandomness [BCGI18, BCG+19], and much more.

The work of Boyle, Gilboa and Ishai [BGI16] gave the first nontrivial example of a 2-party HSS
scheme without FHE. Their scheme supports the class of polynomial-size branching programs
(which contains NC1) and is based on the Decisional Diffie-Hellman (DDH) assumption. A se-
ries of followup works have extended their result, improving efficiency [BGI17, BCG+17, BKS19],
and diversifying the underlying assumptions to Decision Composite Residuosity (DCR) [FGJS17,
OSY21, RS21] or assumptions based on class groups of imaginary quadratic fields [ADOS22]. For
more limited function classes, which include constant-degree polynomials, 2-party HSS can be
based on different flavors of the Learning Parity with Noise (LPN) assumption [BCG+19, CM21].
However, when it comes to the general setting of HSS with N ≥ 3 parties, constructions have been
lacking, with the only known solutions relying on either FHE [AJL+12, CM15, MW16, DHRW16,
BGG+18, BGI+18] or Indistinguishability Obfuscation (iO) [BGI15].2

The same “multi-party barrier” exists when it comes to the construction of sublinear communi-
cation MPC protocols, where the goal is to achieve (per-party) communication cost that is sublin-
ear in the size of the circuit being computed. Until the DDH-based construction of HSS [BGI16],
this could only be achieved using FHE. It is easy to see that an N -party (N − 1)-private HSS for
a function class F directly implies an MPC protocol for functions in F with communication de-
pending only on the input and output lengths. Thus, all 2-party HSS schemes in previous works
immediately yield 2-party low-communication MPC for low-depth computations (log- or log log-
depth). Furthermore, these protocols can be extended to handle general layered circuits with a
communication cost sublinear in the circuit size (by a log or log log factor). Unfortunately, when it
comes to general multiparty settings, with up to N−1 corruption, the only known solutions again
rely on FHE or iO.

Motivated by the state-of-the-art, we ask:

Can we have general N -party t-private HSS for useful classes of functions, and sublinear
communication MPC for general number of parties, without FHE or iO?

1A trivial solution is letting the output shares be (f, xj) and Rec reconstruct x from the shares and then compute f .
However, this solution is uninteresting since it is not useful.

2The work of [BGI15] builds 2-party HSS for general polynomial-sized computation from subexponentially secure
iO and one-way functions. Their construction can be extended to the multiparty setting.
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1.1 Our Results

In this work, based on the sparse LPN assumption (described shortly), we construct general N -
party t-private HSS for log log-depth arithmetic circuits, and more generally, for the class of mul-
tivariate polynomials with log / log log degree and a polynomial number of monomials. Our HSS
natively supports arithmetic computation over arbitrary field Fq (assuming sparse LPN over Fq).
It also enjoys concrete efficiency. In particular, the server computation overhead can be made con-
stant (independent of the security parameter) when evaluating constant degree polynomials, and
shares of multiple outputs can be packed together to achieve optimal download rate [FIKW22].
As an application of our HSS, we obtain the first sublinear-communication MPC for general lay-
ered circuits and arbitrary number of parties without relying on FHE or iO. We now describe our
results in more detail.

Sparse LPN. Given two sparsity parameters k = ω(1) ∈ N and δ ∈ (0, 1), the (k, δ)-sparse
LPN assumption over a finite field Fq states that the following distributions are computationally
indistinguishable:

(A, sTA+ eT mod q) ≈c (A, r) , where A ∈ Fn×m
q , s← Fn

q , e ∈ Fm
q , r← Fm

q .

The public matrix A ∈ Fn×m
q is k-sparse, meaning that each column is sampled randomly subject

to having Hamming weight exactly k, while the error vector e is n−δ-sparse in the sense that
each coordinate ei is random non-zero with probability 1/nδ and 0 otherwise. This work relies
on the sparse LPN assumption that the above indistinguishability holds for every super-constant k,
every constant δ ∈ (0, 1), every prime modulus q (potentially exponentially large in λ), and any
polynomial number m of samples. See Assumption 4.1 for the precise formulation. In fact, in this
work it suffices to require the above indistinguishability to hold for some δ > 0 (though we believe
that the assumption should hold for any constant δ ∈ (0, 1)).

Variants of this assumption in the binary field F2 have been proposed and studied for at
least a couple of decades in average-case complexity (see works such as [Gol00, CM01, Fei02,
Ale03, MST03, AOW15, AL16, KMOW17]). The work of [ADI+17] generalized the assumption
to large fields Fq. Both of these variants have been used in a number of works (see for exam-
ple [Ale03, AIK06, IKOS08, ABW10]). The related assumption of local PRGs [Gol00] has also
been used in a number of works including the recent construction of program obfuscation scheme
[JLS21]. Comparing with previous variants, our assumption is relatively conservative in two as-
pects. First, we consider public matrices that are (k = ω(1))-sparse, instead of constant sparse
k = O(1). In fact, for our constructions of HSS and sublinear communication MPC, it suffices to
set k = poly(log λ). Second, the error-rate 1/nδ can be an arbitrary inverse polynomial, whereas
for some application such as PKE [ABW10] we require δ to be greater than some fixed constant.

The work of [ABW10] showed how to construct PKE from sparse LPN over F2 with constant
sparsity k = 3, sample complexity n1.4 and error probability o(n−0.2). Their scheme could be natu-
rally extended to work with the variant of the assumption for a fairly general choice of parameters.
In particular, they could work with any choice of constant k ≥ 3, assuming a sample complexity
of m = n1+(k/2−1)(1−δ) for δ > 0, where the noise probability should be o(n−δ). In our case, k is
set to be ω(1) (so nk is super-polynomial), and our sample complexity is only polynomial in n.
For these parameters the noise probability implying PKE through [ABW10] is smaller than any
inverse polynomial, while for us, the noise probability could be n−δ for any δ > 0. Therefore, to
the best of our knowledge, our parameters are not known to imply PKE. We survey cryptanalysis
of the sparse LPN problem, and give more details on the PKE scheme, in Appendix A.
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Assumptions (N, t) Function Class Error

DDH [BGI16, BGI17, BCG+17],
DCR [FGJS17]

(2, 1) Branching programs (NC1) 1/ poly

LWE [BKS19] (2, 1) Branching programs (NC1) negl

DCR [OSY21, RS21] (2, 1) Branching programs (NC1) negl

Class Groups [ADOS22] (2, 1) Branching programs (NC1) negl

LPN [BCG+19] (2, 1) Constant-degree polynomials none
Quasi-poly LPN [CM21] (2, 1) Loglog-depth circuits none

DCR [COS+22] (4, ⋆) Constant-degree polynomials negl

Degree-k Homomorphic
Encryption [LMS18, ILM21]

(
⌊ dt
k+2⌋, t

)
Degree-d polynomials none a

Unconditional (Shamir-based) [FIKW22] (dt+ 1, t) Degree-d polynomials none

iO and OWF [BGI15] (⋆, ⋆) Circuits (P/ poly) none
FHE [DHRW16, BGI+18] b (⋆, ⋆) Circuits (P/ poly) negl

Sparse LPN (Ours) (⋆, ⋆) Loglog-depth circuits 1/ poly

a reconstruction is non-linear
b relies on multi-key FHE schemes that can be based on “circular-secure” LWE

Figure 1: Comparison between existing N -party, t-private HSS schemes and ours. The reconstruc-
tion process is linear unless stated otherwise.

General N -party t-private HSS Scheme. Assuming sparse LPN, we present a construction of
HSS schemes for general number of parties N and privacy threshold t. Our schemes support
computing functions represented by multivariate polynomials with degree O(log λ/ log log λ) and
polynomial number of monomials; in particular, this class of functions contains O(log log)-depth
arithmetic circuits. However, similar to the DDH-based HSS construction of [BGI16], our schemes
have a noticeable correctness error, which can be made as small as any inverse polynomial, at the
cost of worse efficiency.

Theorem 1.1 (Multi-party HSS, informal). Assume sparse LPN. For any number of parties N ≥ 2,
privacy threshold t < N , modulus q, error probability ϵ = 1/ poly(λ), there is a N -party, t-private HSS
with correctness error ϵ for the following class of functions:

• Function Class P(Fq, D,M): multivariate polynomials over the finite field Fq with degree D =
O(log λ/ log log λ) and number of monomials M = poly(λ).

The reconstruction of the above HSS scheme is linear. Furthermore, the scheme can be modified to have
compact (but non-linear) reconstruction and negligible error rate.

Previously, sparse LPN with specific parameters was used to build public-key encryption
(PKE) through the classic work of [ABW10]. However, as remarked above, our parameters im-
plying HSS are not known to imply PKE. Therefore, we obtain the first multi-party HSS scheme
for useful classes of functions from a plausibly mini-crypt assumption. In contrast, previous
(2-party) HSS schemes were either based on LWE, on various number theoretic assumptions
(DDH/DCR/QR), or on standard LPN (with dense public matrix) that required the error rate
to be below n−0.5; all of these assumptions are known to imply PKE. See Figure 1 for details.

Besides accommodating general N and t, our construction enjoys several other desirable fea-
tures. First, thanks to the fact that the sparse LPN assumption “arithmetize” to arbitrary field Fq,
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our HSS schemes natively support evaluating these polynomials (and arithmetic circuits) over ar-
bitrary field Fq. Second, our construction can also accommodate general reconstruction threshold
t < t′ ≤ N , namely, how many output shares are needed in order to reconstruct the output. Hav-
ing a smaller reconstruction threshold are useful in certain applications, for instance, it implies
fault tolerance to server failures in the scenario of outsourcing computation to multiple servers
via HSS. Furthermore, our schemes have constant server-computation overhead when computing
low degree polynomials and optimal download rate, which we expand in detail later.

Sublinear Communication MPC for Any Number of Parties. Using our HSS construction, we
circumvent the “circuit-size barrier” for general MPC, for the first time, without restricting the
number of parties N or the function classes, nor using FHE or iO. We construct such protocols
where the communication cost of each party is sublinear in the size S of the Boolean layered circuit
being computed, roughly by a factor of log logS (plus other lower order terms).

Theorem 1.2 (Sublinear MPC, informal). Assume sparse LPN and the existence of an oblivious transfer
protocol. Then, for any κ(λ) ∈ ω(1) and any number of parties N , there exist N -party MPC protocols
tolerating up to (N − 1) semi-honest corruptions that can evaluate Boolean layered circuits of size S, depth
D, and width W , with per-party communication

O(κ · S/ log logS) +D · So(1) · poly(λ,N) +W · poly(logN, log λ)/N.

For a typical circuit that is neither “too deep” nor “too wide”, namely D,W = S1−O(1), our
MPC protocol is indeed sublinear in the circuit size S. In Remark 6.2, we discuss how the de-
pendence on the width W can be removed, assuming either a random oracle or an explicit public
matrix A for which Sparse LPN holds.

Besides sparse LPN, our sublinear-communication MPC also (inevitably) needs to rely on an
Oblivious Transfer (OT) protocol. The latter can be based on standard LPN with noise rate be-
low n−0.5 [Ale03, DDN14] or a specific sparse LPN-type assumption [ABW10].3 In summary,
sublinear-communication MPC can be obtained using only assumptions in the LPN family.

Finally, we note that by an existing compiler due to Naor and Nissim [NN01], we can upgrade
our MPC protocols to be maliciously secure while preserving per-party sublinear communication
cost, assuming the existence of Collision-Resistant Hash (CRH) functions. Again, CRH can be
constructed from standard LPN with low-noise rate log2(n)/n [BLVW19].

Low Server Computation Overhead. If assuming stronger variants of sparse LPN assumption
where the public matrix is constant-sparse,4 i.e., k = O(1), we can slightly adapt the evaluation
procedure of our HSS construction, so that, the computation overhead of each party/server for
computing constant-degree polynomials represented as a sum of monomials is only a constant.
More precisely, to compute a single degree d monomial over Fq, the local homomorphic evalua-
tion procedure can be represented by a degree d arithmetic circuit over Fq of size O((k+1)d). Next,
homomorphic addition of the outputs of t monomials involves only t addition over Fq. Therefore,
when both k and d are constants, the overhead is at most O((k + 1)d) (i.e., the ratio between the
server cost and the cost of computing a single monomial) , a constant. In comparison, almost all
previous HSS schemes (tolerating N − 1 corruption) have a server computation overhead pro-
portional to the security parameter poly(λ) [FGJS17, OSY21, RS21, ADOS22, CM21, BKS19]; the

3Namely, the PKE constructed in [ABW10] can be directly transformed into a semi-honest OT.
4In such a setting, we shall use public matrices from specific distributions instead of being uniform. See Remark 4.1

for a discussion.
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only exception is using FHE [GHS12] with polylogarithmic overhead, which implies HSS with
poly(log λ) overhead.

We remark that HSS for low-degree polynomials is well-motivated by a variety of applications,
for instance, multi-server private information retrieval, for computing inner product between two
integer-valued vectors (a degree-2 function) which is a measure of correlation, and for computing
intersection of d sets where each set is represented by a characteristic vector in Fℓ

2, and intersection
can be computed by ℓ instances of a degree-d monomial over F2. See [LMS18, ILM21, FIKW22] for
more examples.

Simple Reconstruction and Optimal Download Rate. In fact, our HSS is also “compatible” with
an arbitrary multi-secret sharing scheme LMSS. This allows us to achieve much better download
rate5 by packing many function evaluations into a single set of output shares. In particular, by
plugging in the multi-secret Shamir sharing [FY92], we achieve a rate of 1 − t/N , which matches
the best possible rate for information-theoretic HSS. In fact, this also applies to computational HSS
with linear reconstruction, or where the output share size is independent of the computational
security parameter.6

Theorem 1.3 (General Linear Output Shares, informal). For any field Fq, assume sparse LPN over Fq.
For any N ≥ 2, t < N , ϵ = 1/ poly(λ), and any N -party, t-private linear secret sharing scheme LSS,
there is an N -party, t-private HSS with correctness error ϵ for the same function class as in Theorem 1.1
satisfying the following properties:

• the output shares are LSS secret shares of the output y with probability 1 − ϵ (and LSS secret shares
of some wrong value with probability ϵ).

• using an appropriate LMSS, the output shares can be packed together to achieve download rate 1 −
t/N .

The above should be compared with the 1 − Dt/N rate of the (perfectly correct) information-
theoretic construction from [FIKW22], which is in fact optimal for HSS in which both the sharing
and the reconstruction are linear. To the best of our knowledge, the only other computationally
secure HSS scheme with (1− t/N) download rate uses FHE with certain properties. This scheme
is sketched in Appendix B.

1.2 Related Work

2-party sublinear MPC. The work of Boyle, Gilboa, and Ishai [BGI16] showed how to build sub-
linear 2PC for layered circuits of size S with communication complexity roughly O(S/ logS), un-
der the DDH assumption. Following this template, later works showed that we can replace DDH
with various other assumptions such as DCR [FGJS17, OSY21, RS21], poly-modulus LWE [BKS19],
or class group assumptions [ADOS22]. More recently, Couteau and Meyer [CM21] showed that
assuming the quasi-polynomial hardness of (dense) LPN, we can have 2PC with sublinear com-
munication complexity roughly O(S/ log logS). Finally, in the correlated randomness model with
polynomial storage, Couteau constructed information theoretically secure MPC protocols with
communication complexity O(S/log log S) [Cou19].

5The download rate is the ratio of the output size over the sum of all output share sizes (for details, see [FIKW22])
6The latter conditions rule out HSS schemes in which the output shares contain a homomorphic encryption of

the output. Such schemes can only achieve good rate when the output size is much bigger than the (computational)
security parameter.
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Beyond 2 parties. In a very recent and independent work, Boyle, Couteau and Meyer [BCM23]
constructed the first sublinear MPC protocols for N ≥ 3 parties from assumptions that are not
known to imply FHE. This includes a 3-party protocol from a combination of a variant of the
(dense) LPN assumption and either DDH or QRA, as well as a 5-party protocol additionally as-
suming DCR and a local PRG. In contrast, we obtain a sublinear MPC protocol for any number
of parties N , based entirely on variants of the LPN assumption (sparse LPN and OT, which is
implied from low-noise dense LPN).

Our technical approach is very different from that of [BCM23]. The results of [BCM23] are
based on a novel compiler that obtains a sublinear N -party MPC protocol from an (N − 1)-party
HSS scheme satisfying an extra “Las-Vegas”7 correctness property, along with a PIR scheme with
special properties. (See [BCM23] for details, and Proposition 1 in [BCM23] for a more general
framework.) We cannot use the compiler from [BCM23] to obtain our MPC result (Theorem 1.2),
for two reasons: our HSS scheme does not satisfy the extra Las-Vegas property, and (even stan-
dard) PIR is not known to follow from any variant of LPN.

Instead, our sublinear MPC protocol follows the blueprint of a similar (2-party) HSS-based
construction from [BGI16], adapting it to the lower complexity class supported by our HSS scheme
and extending it to cope with a big number of parties. This approach is more direct and simpler
than the compiler from [BCM23], thanks to the fact that we can use an N -party (rather than an
(N − 1)-party) HSS scheme to construct N -party sublinear MPC protocols.

Finally, we note that while our MPC protocol inherently has a negligible correctness error, the
construction in [BCM23] can leverage HSS schemes with Las-Vegas correctness to yield perfectly
correct (3-party or 5-party) MPC protocols [Cou23]. We leave open the possibility of obtaining a
Las-Vegas variant of our HSS scheme or a perfectly correct sublinear MPC from sparse LPN and
OT.

2 Technical Overview

Our results are facilitated mainly due to structural properties underlying our assumption of sparse
LPN.

Sparse LPN. We start by recalling the sparse LPN assumption. Our assumption states that the
following two distributions are computationally indistinguishable:

{ai, ⟨ai, s⟩+ ei}i∈[m] ≈c {ai, ui}i∈[m],

where ai are randomly chosen k-sparse vectors over Fn
q for a prime power q, and m is an arbitrarily

chosen polynomial in n. The error ei is chosen sparsely from a Bernoulli random variable over Fq

with probability of error being n−δ for a constant δ > 0. On the other hand, {ui} are chosen at
random from Fq. In this work, we can work with any δ > 0 and typically consider k = ω(1) as an
appropriately chosen super constant, however the assumption is plausible even when k is chosen
to be a constant integer greater than equal to 3 as long as m = o(nk/2). Such an assumption will
allow our homomorphic secret sharing scheme to support a slightly bigger function class. We
discuss the history and cryptanalysis of this assumption in Section A. Our function class consists
of multivariate polynomials over Fq, and the sparse LPN assumption we will use to build such
an HSS will also be over the same Fq. We now illustrate how this assumption gives rise to a
conceptually clean construction of a homomorphic secret sharing scheme.

7An HSS scheme has Las-Vegas correctness with error ϵ if each output share can be set to ⊥ with at most ϵ proba-
bility, and if no output share is set to ⊥ then the shares must always add up to the correct output.
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2.1 HSS Construction

We now describe the ideas behind our HSS construction. In this work, we consider the function
class P(Fq, D,M) which consists of polynomials evaluated on inputs that are vectors of arbitrary
polynomial length over Fq. These polynomials are of degree D, and are subject to an upper bound
of M on the number of monomials. Looking ahead, we will handle D = log λ

log log λ and M = poly(λ)
where λ is the security parameter. This already lets us evaluate Boolean circuits that are local
where the locality8 is bounded by D = log λ

log log λ - any circuit that has a locality bounded by D, can
be represented by such a polynomial. We refer to the definitions for a homomorphic-secret sharing
scheme HSS = (Share,Eval,Rec) in Section 3.2.

Template from Boyle et. al. Our scheme follows the same high-level template that was first sug-
gested by [BGI16] and has been later adopted in a number of follow-ups such as [BKS19, OSY21,
RS21, ADOS22], but introduces a number of important twists. Suppose we want to secret share a
vector x ∈ Fm

q = (x1, . . . , xm) amongst N parties. We work with a suitable linear secret sharing
scheme over Fq. In this overview, we will work with the additive secret sharing for N parties, but
it could be any linear secret sharing scheme over Fq (or its field extensions).

Each party can be handed over the shares of x: a party Pℓ for ℓ ∈ [N ] is given shares that are
denoted by JxiKℓ for i ∈ [m], respectively. This is already enough to build a homomorphic secret
sharing scheme supporting linear functions. Namely, parties can locally compute shares of linear
functions of x by applying appropriate linear functions over their shares JxiKℓ.

The main ingredient in prior HSS schemes is a method that lets one non-interactively compute
share of multiplication of an intermediate computation y with an input symbol xi. The idea is that
one publishes an encryption of the input {cts(xi)} and encryptions of the products {cts(xi · sj)},
where s = (s1, . . . , sn) is the secret key, using a suitably chosen linearly homomorphic encryp-
tion scheme (such schemes can typically be instantiated from any of the LWE/DDH/DCR/QR
assumptions). Since we are encrypting functions of the secret key inside the ciphertext, the en-
cryption scheme must also be KDM secure (or we must assume it is KDM secure).

These encryptions are given to all parties. Along with these encryptions and the shares of
the input JxiKℓ, each party Pℓ receives a share Jxi · sjKℓ of the product xisj . The key step is a
procedure that allows one to start with a share JyKℓ for an intermediate computation y and shares
Jy · sjKℓ of products y · sj and compute not only a share of Jy · xiKℓ for any input xi but also shares
of the form Jy · xi · sjKℓ. This step leverages structural properties of the linearly homomorphic
encryption scheme. Typically in such settings, one homomorphically computes on the ciphertext
by “multiplying” cts(xi) with JyKℓ. The resulting ciphertext is then “decrypted” in a distributed
fashion using the secret-shares of the form Jy · sjKℓ, assuming that the decryption is almost linear.
This produces shares of Jy · xiKℓ. The shares of Jy · xi · sjKℓ can be computed by starting with
cts(xisj) instead.

Which linearly homomorphic encryption one chooses can present different sets of challenges
for realizing the above step. [BGI16, OSY21] relied on DDH/Pallier based encryption. Since the
ambient space of shares is over some field, whereas the encryption consists of group elements, this
step include some operations done over the groups followed by a “distributed discrete-log” step
that works specifically for two parties. In LWE based schemes such as [BKS19], the ciphertexts
live in the same space as that of the shares. The issue is that while the ciphertexts are almost
linear in the secret, they have a low-norm error. The authors suggest a rounding based idea that
was inspired by earlier works on homomorphic encryption [BV11, BGV12] that for some (not so)

8The locality of any Boolean circuit is the number of input bits it depends on.
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coincidental reason works specifically for two parties. Our main approach consists of devising a
suitable linearly homomorphic encryption that sits naturally over the field Fq, and does not suffer
from the issues that prevented scaling of previous ideas beyond two parties.

Suitable Linearly Homomorphic Encryption. The main issue with prior linear homomorphic
encryption schemes that restricts constructions to two parties is that they don’t work naturally
with the linear secret sharing scheme. As a result, special share conversion methods have to
be devised (which seem to be stuck at two parties). It is instructive to ask what properties a
linear homomorphic encryption could satisfy so that it works more naturally with the linear secret
sharing scheme.

To this end, consider the following (broken) encryption scheme that encrypts input xi as
cts(xi) = (ai, bi = ⟨ai, s⟩ + xi) where s is a vector of Fn

q and ai ← Fn
q is randomly chosen. Simi-

larly, we have cts(xisj) = (ai,j , bi,j = ⟨ai,j , s⟩+ xisj). Such an encryption scheme is both linearly
homomorphic and has a linear decryption function over Fq. On the other hand, it is obviously not
secure: one could find the secret s by solving a properly constructed linear equation system.

But, for the time being assume that that the scheme was secure. If this were true, then this
will give rise to a homomorphic secret sharing scheme supporting corruption patterns governed
by any linear secret sharing scheme over Fq, thanks to it being linearly homomorphic over Fq and
having linear decryption over Fq. Indeed, observe that

bi JyKℓ − ⟨ai, (Jys1Kℓ , . . . , JysnKℓ)⟩ = Jxi · yKℓ (1)
bi,j JyKℓ − ⟨ai,j , (Jys1Kℓ , . . . , JysnKℓ)⟩ = Jxi · y · sjKℓ (2)

LPN-Based Linearly Homomorphic Encryption. While the above proposal would work, as de-
scribed before, it is obviously not secure. To fix the security issue, one could leverage an encryp-
tion scheme based on the standard LPN assumption. We could instead have cts(xi) = (ai, bi =
⟨ai, s⟩+xi+ ei) and cts(xisj) = (ai,j , bi,j = ⟨ai,j , s⟩+xisj + ei,j) where ei and ei,j are chosen from
the generalized Bernoulli random variables Ber(Fq, η) where η(n) is chosen to be a small inverse
polynomial n−δ. The resulting scheme is now secure by the LPN assumption, it is also linearly ho-
momorphic and has a linear decryption over Fq. Although, the decryption has a small probability
correctness error due to noise. The problem we now face is correctness of the output.

We can observe that if one is initially given JxiKℓ and Jxi · sjKℓ, as one computes shares for de-
gree two computations xi1 ·xi2 , Equation 1 instead yields noisy shares ⟨⟨xi1 · xi2⟩⟩ℓ and ⟨⟨xi1 · xi2 · sj⟩⟩ℓ.
Here by “noisy” we don’t mean that the shares of individual parties are corrupted, but rather that,
with some small probability the shares reconstruct to something else other than the desired com-
putation (but they are still consistent secret sharing of some “noisy” output). Each computed share
can be corrupted with probability η due to the LPN noise. Moreover, as one evaluates further to
compute degree three terms, the noise increases further. To compute degree three shares of the
form ⟨⟨xi1 · xi2 · xi3⟩⟩ℓ, the noise probability could already be overwhelming. This is because due
to Equation 1,

bi3 ⟨⟨xi1xi2⟩⟩ℓ − ⟨ai, (⟨⟨xi1xi2s1⟩⟩ℓ , . . . , ⟨⟨xi1xi2sn⟩⟩ℓ)⟩ = ⟨⟨xi1xi2xi3⟩⟩ℓ .

Thus, each conversion is a function of one LPN sample and n shares derived in the previous layer.
The probability of having no noise in the reconstructed output is roughly the probability that all
the shares derived in the previous layer are non-noisy and the LPN sample used in that layer has
no noise. This probability is roughly (1 − η)O(n) assuming that the errors are independent. As
η ≫ 1

n , this probability is already negligible.
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Sparse LPN for Error Control. We can observe that in Equation 1 above (now with noisy shares),

bi3 ⟨⟨xi1xi2⟩⟩ℓ − ⟨ai, (⟨⟨xi1xi2s1⟩⟩ℓ , . . . , ⟨⟨xi1xi2sn⟩⟩ℓ)⟩ = ⟨⟨xi1xi2xi3⟩⟩ℓ ,

if ai was only k-sparse, where k is a parameter that could be a constant or slightly super-constant,
the error build up will be manageable. The probability that the share is non-noisy is can now be
lower-bounded by 1 − (k + 1)η. This is because this equation now depends only on k + 1 noisy
shares derived in the previous layer and one LPN sample, both with noise rate η.

Going inductively, the shares at level D for computing a degree D monomial are non-noisy
with probability at least 1 − O((k + 1)Dη). If one further adds M such degree D monomials to
compute the polynomial of desired form the resulting shares are non-noisy with probability is at
least 1−O(M(k+1)Dη). We can make sure that this probability is 1−O( 1λ) if M(k+1)Dη is kept
smaller than 1

λ . If M is some polynomial in λ, D = log λ
log log λ , and η = n−δ for some constant δ > 0,

we can set k = logO(1) λ and n as some other polynomial in λ. More details of our HSS scheme can
be found in Section 5.1.

Summing up. To sum up, one would compute

cts(xi) = (ai, ⟨ai, s⟩+ ei + xi), (3)

where ai is chosen to be a random sparse vector as in the distribution specified by the sparse
LPN assumption, and ei is generated as a sparse noise. {cts(xisj)}i,j are generated analogously.
Since our assumption works naturally over the field Fq one could use any linear secret sharing
scheme over Fq. One can then evaluate any function in P(Fq, D,M). For any function f in the
function class, at the end of the evaluation each party gets a noisy share ⟨⟨f(x1, . . . , xm)⟩⟩ℓ. With all
but a small inverse polynomial probability, these shares reconstruct to f(x) using the same linear
reconstruction that is used for the base secret sharing scheme.

2.2 Arguing KDM Security

One issue that we have not discussed thus far is that in our HSS scheme, one gives out encryp-
tions that are dependent on the key s. Namely, all parties not only get encryptions of the input
cts(xi), but also encryptions cts(xisj) of the products xisj . Therefore, we need to argue that KDM
security follows from sparse LPN. Note that indeed if cts(xisj) were encrypted using the standard
LPN assumption, namely by setting cts(xisj) = (ai,j , ⟨ai,j , s⟩ + ei,j + xisj), where ai,j is chosen
randomly over Fn

q , then such KDM security holds directly from LPN. The idea is that one can
“simulate” such an encryption from an LPN sample (a′, b′ = ⟨a′, s⟩+e) as follows. We can simply
set ai,j = a′ − (0, . . . , 0, xi, 0, . . . 0)︸ ︷︷ ︸

xi at jth coordinate

= a′ − xi · vj for the jth unit vector vj , and bi,j = b′. Observe

that b′ = ⟨a′, s⟩ + e = ⟨ai,j , s⟩ + xisj + e. Since a′ is chosen at random, the distribution of ai,j is
also identically random even given xi.

The above simulation strategy fails to work when ai,j are exactly k-sparse for some k. This
is because the vector ai,j that is used to construct cts(xi · sj) might actually be distinguishable
from the distribution of a′ − xjvj . Not only there could be a difference in the number of non-zero
coordinates, this could also leak out xi (by observing the value at of ai,j formed this way at the jth

coordinate).
We modify slightly the distribution of the coefficient vectors ai,j used to generate cts(xi · sj)

so that one could prove KDM security under sparse LPN assumption. Below we sketch the main
ideas assuming q is a prime power greater than 2.
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Modified Distribution In the actual scheme in Section 5, we encrypt the vector x as cts(xi) =
(ai, ⟨ai, s⟩ + ei + xi) where ai are exactly k-sparse. However, to encrypt the products xisj , we
compute cts(xisj) = (ai,j , ⟨ai,j , s⟩+ ei,j + xi,j) where ai,j are chosen differently. They are chosen
to be 2k − 1 sparse with the constraint that the jth coordinate of ai,j is non-zero. This constraint
enables us to prove security from sparse LPN as long as q > 2.

Our main idea is that such a sample ai,j , bi,j can be simulated from sufficiently (polynomially)
many samples of sparse LPN with sparsity k. Say we have two samples of the form c1, d1 and
c2, d2 such that di = ⟨ci, s⟩ + ei for i ∈ {1, 2}. Additionally, c1 and c2 are non-zero at the jth

coordinate and that is the only coordinate at which both c1 and c2 are non-zero. Any pair of
samples will satisfy this property with an inverse polynomial probability provided k is reasonably
small. We sample a random non-zero field element r, and two non-zero elements µ1, µ2 ∈ Fq so
that µ1c1,j + µ2c2,j = r + xi. Computing such non-zero µ1 and µ2 requires that q > 2. Indeed if
q = 2, there is only one choice for µ1 and µ2 and then our condition µ1c1,j + µ2c2,j = r + xi may
not hold. Now let α = µ1c1 + µ2c2, and set ai,j = α − xivj . Our desired sample then becomes
cts(xisj) = (ai,j , bi,j = µ1d1 + µ2d2). Observe that bi,j = µ1⟨c1, s⟩ + µ2⟨c2, s⟩ + µ1e1 + µ2e2. As
ai,j = µ1c1 + µ2c2 − xivj , we have that bi,j = ⟨ai,j , s⟩+ (µ1e1 + µ2e2) + xisj .

Note that the error µ1e1 +µ2e2 is still sparse (with noise rate close to 2η); our remaining task is
to show that ai,j has the right distribution. This follows from the following argument. Since c1 and
c2 have disjoint support aside from the jth coordinate, the distribution of ai,j on coordinates not
equal to j is identical to a random (2k − 2)-sparse vector. On the other hand, at the jth coordinate
ai,j is set to be equal to r, which is random non-zero.

When q = 2, we are not able to prove KDM security of our distribution under (exactly) k-sparse
LPN. On the other hand, relying on a related assumption we can indeed show KDM security. In
this assumption, the samples will consist of two kinds of coefficient vectors ai: with half prob-
ability, ai will be k-sparse, otherwise it will be (k − 1)-sparse. We refer to Section 4.1 for more
details.

2.3 Sublinear MPC Construction

We can leverage our homomorphic secret sharing scheme to build a sublinear MPC protocol for
(Boolean) layered circuits. Here too, our result follows the main conceptual outline suggested
by [BGI16], with a number of low-level, yet important, differences in the implementation. The
differences in implementation come from three sources: handling arbitrary number of parties,
dealing with restricted function classes supported by the HSS, and dealing with correctness error.
In the following, recall that Boolean layered circuits of width W , depth D and size S are designed
so that every layer is computed by applying some gates on inputs only on the previous layer. Our
sublinear MPC will can compute such a circuit supporting N with a communication of O(ω(1) ·
S/ log logS + (D +W ) · So(1) · poly(N,λ)) for an arbitrarily small tunable ω(1).

Recipe for Sublinear MPC from HSS from Boyle et. al. The intuition why an HSS scheme could
be helpful for this task was first brought out by [BGI16] and can be described as follows. Suppose
that our HSS scheme supported arbitrary circuits and had no correctness error. Then parties can
then run any MPC protocol that distributes shares sh1, . . . , shN that correspond to a homomorphic
secret sharing of x of their combined input. The amount of communication per-party for this
would be polynomial in the security parameter λ, |x| and the number of parties N . Each party
Pℓ can then locally evaluate on their share shℓ to compute the desired layered circuit C to form
evaluation stℓ and output this value. For our purposes, let the length of the output be M , which
is the width of the last layer. Let stℓ = (stℓ,1, . . . , stℓ,M ). The jth output bit can be reconstructed by
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adding {stℓ,j}ℓ∈[N ]. This yields an additional communication of |stℓ| = O(M) bits per-party. Thus,
the total communication is poly(λ,N, |x|) +O(M) which is sublinear in the circuit size.

There are two typical challenges that arise in materializing the intuition above. First, the HSS
scheme typically could have an error in output reconstruction. For all currently known schemes
with erroneous outputs, leaking out which outputs don’t reconstruct correctly can jeopardize se-
curity (much as how leaking which LPN samples have error can break the assumption). The
second challenge is that typically HSS schemes don’t support circuits of arbitrary size; instead,
they may only handle circuits of depth logS or even log logS. Indeed, our HSS can only handle
circuits of depth c · log logS, for any constant c < 1.

To address the challenges of circuit depth, Boyle et. al. suggested the following. They sug-
gested dividing the circuit C into L = S/ logS special layers (or S/ log logS in our case depending
on the depth supported by the HSS scheme), such that HSS can be performed from one layer to
the next. Unfortunately, this won’t work as is because one cannot afford to run a general-purpose
MPC for every chunk to generate HSS sharings of the state of the circuit at that layer. This is
because the communication for this step could grow as O(W poly(λ,N)) where W is the width
of the circuit. Any savings by running HSS evaluation of circuits with depth logS (or log logS in
our case) could be drowned out by multiplicative poly(λ,N) term. To address this, Boyle et. al.
suggested that for every chunk i ∈ [L], the MPC is run to generate an HSS sharing of N secret
keys {ski,ℓ}i∈[L],ℓ∈[N ] for a rate-one encryption scheme. Since keys are smaller in size compared to
the state of the circuit, this could be done with significantly less communication. The keys ski,ℓ for
every chunk i ∈ [L] and party Pℓ is known only to party Pℓ. The evaluation will follow in encrypt-
then-evaluate cycles. Namely, (rate-one) encrypted HSS evaluated shares will be decrypted by
HSS, computed upon according the circuit chunk description, and then the resulting HSS evalu-
ations are encrypted by each party using their key for that chunk. This process could go on, but
at the end we must reconstruct the output. If our HSS is perfectly/statistically correct each party
could simply release the HSS share evaluations unencrypted corresponding to the output layer.

If the HSS evaluations do not satisfy correctness as described above, there could be multiple
additional issues. First, the output of computation for each chunk might not be correct. More
importantly, for the output layer, when parties reveal the HSS evaluations it could jeopardize
security. The fix for the first issue that was proposed was to evaluate the circuit in a fault tolerant
fashion using appropriate error correction. Each HSS evaluation will now not only correspond
to a decryption followed by evaluation, it will also have an error correction step. To address the
second issue, Boyle et. al. suggested using MPC at the final layer to reconstruct the final output
as opposed to clearly releasing the evaluations. This will introduce additional communication but
only about M · poly(N,λ).

Specific Issues in Our Context. We now discuss specific issues that we need to address in our
context.

• We can handle circuits of depth log logS, so we have to implement both error correction and
decryption within that depth.

• Each party Pℓ encrypt their HSS evaluation under their secret key ski,ℓ. Even if the decryp-
tion circuit of the encryption is very simple, decrypting O(N) encryptions, followed by HSS
reconstruction and evaluation corresponding to the chunk all under the hood of HSS could
be too complex for us as such a function has a locality of Ω(N).

To address error correction issue, we will do naive majority-based error correction. We will
have κ = ω(1) copies of HSS shares for the same set of encryption keys, where κ could be any
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super-constant. Each party will then release κ rate-one encryptions, one for each of the κ HSS eval-
uations. For the error correction, each HSS evaluation function will simply use majority decoding
and compute the majority of κ HSS reconstructions and then apply the circuit corresponding to
the chunk. If HSS reconstruction and the decryption are very local, then the whole circuit is very
local. This introduces a κ factor larger communication that the previous approach, but we can
choose κ = o(log logS) so that our communication is sublinear.

To implement the encryption with a very local decryption, we rely on sparse LPN yet again.
In particular, we revisit the encryption scheme described in Equation 3, whose decryption circuit
has locality equal to the sparsity parameter k. We can handle decryption errors via the same
majority-based fault tolerance approach, as described above.

To solve the third issue, we leverage the fact that our encryption scheme is key-homomorphic.
Instead of setting up HSS shares for keys {ski,ℓ}ℓ∈[N ], we set up HSS shares for the sum Σℓ∈[N ]ski,ℓ =
ski. The ciphertexts encrypting HSS shares under key ski,ℓ could be homomorphically added to
form a ciphertext under ski of the HSS reconstruction of the circuit state for the chunk, thanks to
the additive reconstruction of our HSS scheme and the additive homomorphism of the encryption
scheme. Now, the HSS evaluation could decrypt just the resulting ciphertext encrypted under ski
as opposed to decrypting N ciphertexts.

While these are the main ideas, there are a number of low-level details that we could not dive
into in this overview. The details of our sublinear MPC can be found in Section 6.

3 Preliminaries

Notation. Let N = {1, 2, . . . } be the natural numbers, and define [a, b] := {a, a + 1, . . . , b},
[n] := [1, n]. Our logarithms are in base 2. For a finite set S, we write x ← S to denote uni-
formly sampling x from S. We denote the security parameter by λ; our parameters depend on
λ, e.g. n = n(λ), and we often drop the explicit dependence. We abbreviate PPT for probabilis-
tic polynomial-time. Our adversaries are non-uniform PPT ensembles A = {Aλ}λ∈N. We write
negl(λ) to denote negligible functions in λ. Two ensembles of distributions {Dλ}λ∈N and {D′

λ}λ∈N
are computationally indistinguishable if for any non-uniform PPT adversary A there exists a neg-
ligible function negl such that A can distinguish between the two distributions with probability at
most negl(λ).

For q ∈ N that is a prime power, we write Fq to denote the finite field with q elements, and
F×
q to denote its non-zero elements. We write vector and matrices in boldcase, e.g. v ∈ Fm and

A ∈ Fn×m.

Arithmetic Circuits. Our description borrows from [Cou19]. Given a finite field F, an arithmetic
circuit C over F is a directed acyclic graph of fan-in two gates, where each gate is either addition
or multiplication in F. If there is a path between two nodes (v, v′) of C, we say that v is an ancestor
of v′, and conversely v′ is v’s child. The input nodes of C, denoted InpSpace(C), is the set of nodes
without any ancestors. Similarly, the output nodes of C are the nodes without any children. The
size size(C) of C is the number of nodes, and its depth depth(C) is the length of the longest path
from an input node to an output node.

Bernoulli Distribution. We denote the Bernoulli distribution over a finite field Fq with noise
rate ϵ ∈ (0, 1) by Ber(Fq, ϵ); this distribution gives 0 with probability 1 − ϵ, and a random non-
zero element of Fq with probability ϵ. We write e ∼ Ber(Fq, ϵ) to denote that e comes from the
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corresponding Bernoulli distribution. We will use the following lemma about the sum of Bernoulli
random variables.

Lemma 3.1. Let Fq be a finite field, ϵ1, ϵ2 ∈ (0, 1), and consider e1 ← Ber(Fq, ϵ1), e2 ← Ber(Fq, ϵ2). Then
for any µ1, µ2 ∈ F×

q , we have µ1e1 + µ2e2 ∼ Ber(Fq, ϵ
′), where ϵ′ = ϵ1 + ϵ2 − q

q−1ϵ1ϵ2.

In particular, when ϵ1 = ϵ2 = ϵ, we have ϵ′ = 2ϵ
(
1− q

2(q−1)ϵ
)

.

Proof. Since a non-zero multiple of a Bernoulli random variable is also Bernoulli (with the same
noise rate), we may assume µ1 = µ2 = 1. By a symmetry argument, we can see that e1 + e2 is
also Bernoulli, and thus it remains to show that Pr[e1 + e2 ̸= 0] = ϵ′. This is established by cases:
e1+e2 ̸= 0 when exactly one of e1, e2 is non-zero, which happens with probability ϵ1(1−ϵ2)+ϵ2(1−
ϵ1), or when e1, e2 are both non-zero but their sum is non-zero, which happens with probability
q−2
q−1ϵ1ϵ2.

3.1 Linear Secret Sharing Schemes

We describe linear (multi-)secret sharing schemes, denoted L(M)SS. Looking ahead, our HSS con-
struction will work with an arbitrary LMSS/LSS scheme. The reader can think of the Shamir LMSS
as a running example, described in Definition 3.2 below.

Definition 3.1 (Linear Multi-Secret Sharing Scheme). A N -party, t-private, s-secret linear multi-
secret sharing scheme (LMSS) over a finite field F is a tuple of PPT algorithms LMSS = (Share,Rec)
with the following syntax:

• Share(x1, . . . , xs; ρ) → (sh1, . . . , shN ). Given secrets x1, . . . , xs ∈ F, this algorithm samples ran-
domness ρ ∈ Fr and return shares shi ∈ Fbi for all i ∈ [N ]. Note that r, b1, . . . , bN ∈ N are also part
of the description of LMSS. We require Share : Fs × Fr → Fb1 × · · · × FbN to be a F-linear map.

• Rec(sh1, . . . , shN ) → (x1, . . . , xs). Given shares (sh1, . . . , shN ), return the secrets (x1, . . . , xs) or
⊥. We require Rec : Fb1 × · · · × FbN → Fs to be a F-linear map.

We require the following properties:

• Correctness. For any x1, . . . , xs ∈ F, we have

Pr
ρ∈Fr

[Rec(sh1, . . . , shN ) = (x1, . . . , xs) | (sh1, . . . , shN )← Share(x1, . . . , xs; ρ)] = 1.

• Privacy. For any tuples (x1, . . . , xs), (x′1, . . . , x
′
s) ∈ Fs and any subset T ⊂ [N ] of size at most t,

the following distributions are the same:{
(shi)i∈T | (shi)i∈[N ] ← Share(x1, . . . , xs)

}
≡
{
(sh′i)i∈T | (sh′i)i∈[N ] ← Share(x′

1, . . . , x
′
s)
}
.

We define the rate of LMSS to be r := s/(b1+ · · ·+ bN ). When s = 1, we denote the (single-)secret sharing
scheme by LSS.

Notation. We will denote by Jx1∥ . . . ∥xsK a LMSS of s secrets x1, . . . , xs, and Jx1∥ . . . ∥xsKℓ the
ℓ’th share for ℓ ∈ [N ]. When we have a LSS that encodes a single secret, i.e., s = 1, its shares
are denoted as JxK and JxKℓ, respectively. When sharing a vector x element-wise using a LSS, we
denote the ℓ’th share of x by JxKℓ.
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Remark 3.1 (LMSS to LSS). A LMSS instance for s secrets can be “split” into s LSS instances
LSS(1), . . . , LSS(s), where for all σ ∈ [s], LSS(σ) shares input x in the σth slot of LMSS as (0, . . . , x, . . . , 0) =
x · uσ, where uσ = (0, · · · , 0, 1, 0, · · · , 0) is the σ’th unit vector of dimension s and with a single 1
at coordinate σ.

These LSS instances can be “merged” back into a LMSS instance in the following sense: there
exists an operation Pack, such that for any ℓ ∈ [N ], given party Pℓ’s shares of the LSS instances
Jx1 · u1K

(1)
ℓ , . . . , Jxs · usK

(s)
ℓ , returns party Pℓ’s share of the LMSS instance:

Pack
(
Jx1 · u1K

(1)
ℓ , . . . , Jxs · usK

(s)
ℓ

)
:=
∑
σ∈[s]

Jxσ · uσK(σ)ℓ = Jx1∥ . . . ∥xsKℓ .

We recall the construction of the Shamir LMSS in e.g. [FY92]. Note that this LMSS achieves
the optimal tradeoff (see [FIKW22]) between the rate and the privacy threshold t, meaning that
r = 1− t/N .

Definition 3.2 (Multi-secret Shamir sharing). Let F be a finite field, N be the number of parties, and t
the privacy threshold. Let d = ⌈log|F|(2N − t)⌉, and define E to be the unique extension field of F of degree
d. Let γ be a primitive element of E over F. For any s ≤ N − t, the N -party, t-private, (ds)-secret Shamir
LMSS is defined as follows. Pick arbitrary distinct field elements α1, . . . , αN , β1, . . . , βs ∈ E.

• Share(x1, . . . , xds) → (sh1, . . . , shN ). On input (x1, . . . , xds) ∈ Fds, we pack every d elements
(xdj , . . . , xdj+d−1) into a field element yj of E by setting yj =

∑d−1
i=0 xdj+iγ

i. We then choose a
random polynomial p(X) ∈ E[X] of degree at most s + t − 1 such that p(βj) = yj for all j ∈ [s].
Return shi = p(αi) for all i ∈ [N ].

• Rec(sh1, . . . , shN ) → (x1, . . . , xds). On input the shares (sh1, . . . , shN ), we interpolate the unique
polynomial p(X) ∈ E[X] of degree at most s + t − 1 such that p(αi) = shi for all i ∈ I . We then
compute yj = p(βj) for all j ∈ [s], and break yj down into d elements (xdj , . . . , xdj+d−1) of F (which
is a F-linear operation). Return (x1, . . . , xds).

3.2 Homomorphic Secret Sharing

We recall the definition of homomorphic secret sharing schemes from [BGI15, BGI+18], in the
setting with a single client, an arbitrary number N of servers, and security against t colluding
servers. The functions we consider are arithmetic circuits over a finite field.

Definition 3.3. Let N(λ), t(λ), q(λ), ϵcorr(λ) be polynomials in λ. A N -party, t-private homomorphic
secret sharing (HSS) scheme with correctness error ϵcorr, for a class of arithmetic circuits F = {Fλ}λ∈N
over the finite field Fq, is a tuple of PPT algorithms HSS = (Share,Eval,Rec) with the following syntax:

• Share(x)→ (sh1, . . . , shN ): given a vector x ∈ Fm
q of field elements, this algorithm returns a secret

sharing (sh1, . . . , shN ) of x.

• Eval(i, f, shi) → oshf,i: given party index i ∈ [N ], a function f ∈ Fλ and the share shi, this
algorithm returns an output share oshf,i.

• Rec({oshf,i}i∈[N ]) → yf : given the output shares {oshf,i}i∈[N ], this algorithm returns the final
output yf or ⊥.

We require HSS to satisfy the following properties:
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• Correctness. We say that the HSS scheme is ϵcorr-correct, if in an honest execution of HSS algorithms
with error bound ϵcorr, one can reconstruct the correct output given the output shares with probability
at least 1− ϵcorr. Formally, for all λ ∈ N, all functions f ∈ Fλ, and inputs x to f , we have

Pr

[
Rec({oshf,i}i∈[N ]) = f(x)

∣∣∣∣∣ (shi)i∈[N ] ← HSS.Share(x)

oshf,i ← HSS.Eval(i, f, shi) ∀ i ∈ [N ]

]
≥ 1− ϵcorr(λ).

• Security. We say that the HSS scheme is secure if any subset of no more than t shares of the input x
reveals no information about x. Formally, for any sequence of subsets {Tλ}λ, where T = Tλ ⊂ [N ]
has size t, and any PPT adversary A = (A1,A2), the advantage of A in the following experiment is
bounded by 1/2 + negl(λ) for a negligible function negl.

1. A picks challenge inputs ((x0,x1), st)← A1(1
λ, T ).

2. C(x0,x1) samples a random bit b ← {0, 1} and computes
(shb,1, . . . , shb,N )← HSS.Share(xb).

3. A outputs a guess b′ ← A2(st, (shb,i)i∈T ).

The advantage of A in the above experiment is the probability that b equals b′.

• Compactness. There exists a polynomial p such that for any λ ∈ N, any i ∈ [N ], any f ∈ Fλ,
any input x to f , given (shj)j∈[N ] ← Share(x), the output share oshf,i ← Eval(i, f, shi) satisfies
|oshf,i| ≤ p(λ). In particular, the output share sizes do not depend on the size of the function f .

Remark 3.2 (Linear Reconstruction). We say that an HSS scheme for a class of arithmetic circuits
F over a field Fq has linear reconstruction if for every f ∈ F , input x to f , shares (shj)j∈[N ], and
party i ∈ [N ], the operation Eval(i, f, shi)→ oshf,i produces output shares that are vectors of field
elements in Fq. Furthermore, the reconstruction Rec({oshf,i}i∈[N ]) → yf consists of applying a
Fq-linear map over the output shares oshf,i.

Definition 3.4 (Upload and download costs of HSS). Let Π be a N -party, t-private HSS scheme for a
function class F . We define the following:

• The upload cost of Π is

UploadCost(Π) = max
f∈F ,x∈InpSpace(f)

N∑
i=1

|shi| ,

where shi is generated as (sh1, . . . , shN ) ← Π.Share(x), and max maximizes over all f ∈ F , all
possible inputs x to f , and the randomness of the Π.Share algorithm.

• The download cost of Π is

DownloadCost(Π) = max
f∈F ,x∈InpSpace(f)

N∑
i=1

|oshf,i| ,

where is oshi produced as oshf,i ← Π.Eval(i, f, shi), and max maximizes over all possible f,x and
the randomness of the Π.Share and Π.Eval algorithms.
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• The (download) rate of Π is

Rate(Π) = min
f∈F ,x∈InpSpace(f)

|y|∑N
i=1|oshf,i|

,

where y is generated as y ← Π.Rec({oshf,i}i∈[N ]), and max maximizes over all possible f,x, and
the randomness of the Π.Share, Π.Eval and Π.Rec algorithms.9

4 Sparse LPN

In this section, we define our sparse learning parity with noise (sLPN) assumption. sLPN is a nat-
ural variant of the LPN assumption, where each column of the public matrix is now k-sparse
for a parameter k. First introduced by Alekhnovich [Ale03], who used it for obtaining hard-
ness of approximation results, variants of the sLPN assumption were subsequently used for con-
structing local pseudorandom generators [AIK08b], cryptography with constant computational
overhead [IKOS08], public-key encryption schemes [ABW10], pseudorandom correlation genera-
tors [BCGI18] and more. In Appendix A, we give an overview of known attacks against sLPN that
may help establish a plausible concrete tradeoff between the parameters.

Definition 4.1 (Sparse LPN distribution). Let λ ∈ N be the security parameter, n = n(λ) be the
dimension, m = m(λ) ∈ N the number of samples, k = k(λ) ≤ n the sparsity parameter, q = q(λ) ∈ N
the field size, and ϵ = ϵ(λ) ∈ (0, 1) the noise rate. We define the sparse LPN distribution DsLPN,n,m,k,ϵ,q to
be output distribution of the following process:

• Sample s← F1×n
q uniformly at random.

• Sample A randomly from Fn×m
q such that that every column of A has exactly k non-zero elements.

• Sample e ← (Ber(Fq, ϵ))
1×m, where Ber(Fq, ϵ) returns 0 with probability 1 − ϵ, and a uniformly

random non-zero element of Fq otherwise.

• Compute b = s ·A+ e. Output (A, b).

Similarly, we define Drand,n,m,k,ϵ,q to be identical to the distribution DsLPN,n,m,k,ϵ,q except that b is chosen
uniformly at random from F1×m

q .

We now state our Sparse LPN assumption. Note the following two parameter choices: k =
ω(1) is a super-constant, and the noise rate ϵ = O(n−δ) for some δ ∈ (0, 1).

Assumption 4.1 (The (δ, q)-sLPN Assumption). Let λ ∈ N be the security parameter, δ ∈ (0, 1) be
a constant, and q = q(λ) is a sequence of prime powers computable in poly(λ) time. We say that the
(δ, q)-sLPN holds if for all functions n = n(λ),m = m(λ), k = k(λ), ϵ = ϵ(λ) efficiently computable in
poly(λ) time, with k = ω(1) ≤ n and ϵ = O(n−δ), the following two distributions are computationally
indistinguishable:

{DsLPN,n,m,k,ϵ,q}λ∈N ≈c {Drand,n,m,k,ϵ,q}λ∈N .

We will also use sLPNn,m,k,ϵ,q to refer to the (decisional) sparse LPN problem with fixed parameters, where
an adversary needs to distinguish between the two distributions above.

9If Π.Rec returns ⊥, we treat |⊥| = ∞.
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Remark 4.1 (Choice of super-constant k). In our assumption, we choose k = ω(1) to be a super-
constant (in particular, polylogarithmic in our HSS construction) to avoid dealing with syntactical
issues arising when k is a constant. Formulations of sparse LPN are well-studied and believed
to be hard over F2 when k ≥ 3 is a constant (See for example [Fei02, Ale03, ABW10]). Such
formulations can support even up to m = nk/2−ϵ samples for arbitrary constant ϵ > 0. In such
cases, however, we require the m columns of A to not admit a sparse combination of columns
say (i1, . . . , iℓ) such that Aii + . . . + Aiℓ = 0 for some constant ℓ. This is achieved by requiring
the k-regular bipartite graph formed with the columns of A satisfies certain expansion conditions.
Unfortunately, this criterion fails to hold for a random graph/random A with inverse polynomial
probability 1

nO(1) .
It is possible to work with a stronger Sparse LPN assumption where k = O(1) is a constant.

In this setting, the matrix A must come from a special distribution of sparse matrices with neg-
ligible probability of a constant-sparse linear relation. Such a distribution, for which Sparse LPN
may plausibly hold, may be non-explicitly conjectured to exist [AIK08a], efficiently sampleable
over large fields [ADI+17], or over any field [AK19]. This stronger assumption would allow our
HSS scheme to achieve a more expressive function class and lower computation overhead; see
Remark 5.1 and Remark 5.4 for further discussion.

4.1 KDM Security

For the security proof of our HSS construction, we will also require the pseudorandomness of a
specific secret-dependent sLPN distribution. In this distribution, we essentially encrypt each input
xi and xi · sj for all i, j under sLPN. We note that the result proved in this section corresponds to
the notion of KDM security with function fx,j(s) = x · sj for a given index j ∈ [n] and for all
x ∈ Fq, defined in prior works [BHHO08, ACPS09, BKS19].

Definition 4.2 (Sparse LPN KDM distribution). Let λ ∈ N be the security parameter, δ ∈ (0, 1) be a
constant, and q = q(λ) is a sequence of prime powers computable in poly(λ) time. Let λ ∈ N be the security
parameter, and n(λ),m(λ), k(λ), ϵ(λ) ∈ N be efficiently computable functions of 1n such that q is a prime
power, k = ω(1) < n/2, and ϵ = O(n−δ). For any sequence of vectors x = {xλ}λ∈N where xλ ∈ Fm

q , we
define the distribution Dkdm

sLPN,n,m,k,ϵ,q(x) to be the output of the following process:

• Sample s← Fn
q .

• For all i ∈ [m], sample a random k-sparse vector ai ∈ Fn
q .

• For all i ∈ [m], j ∈ [n], sample a random (2k − 1)-sparse vector ai,j ∈ Fn
q conditioned on the jth

coordinate of ai,j being nonzero.

• For every i ∈ [m], compute bi = ⟨ai, s⟩+ xi + ei, where ei ← Ber(Fq, ϵ).

• For every i ∈ [m], j ∈ [n], compute bi,j = ⟨ai,j , s⟩+ xi · sj + ei,j , where ei,j ← Ber(Fq, ϵ).

• Output {(ai, bi)}i∈[m] and {(ai,j , bi,j)}i∈[m],j∈[n].

Similarly, we define Dkdm
rand,n,m,k,ϵ,q to be exactly the distribution above except that bi, bi,j are chosen uni-

formly at random from Fq for all i ∈ [m], j ∈ [n].

We now show that the above KDM distribution is also computationally indistinguishable from
random, assuming the sparse LPN assumption for the same parameters n, k, q, slightly lower noise
rate ϵ/2, and a polynomially larger m′. Note that the lemma requires q > 2 due to a technical detail,
and workarounds for the case q = 2 are discussed in Remark 4.2.
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Lemma 4.1 (KDM security of Sparse LPN). Let δ, q, n,m, k, ϵ and x be as specified in Definition 4.2.
For q > 2 and k ∈ ω(1) ∩ o(

√
n), assuming the (δ, q)-sLPN assumption holds (c.f. Assumption 4.1), the

following distributions are computationally indistinguishable:{
Dkdm

sLPN,n,m,k,ϵ,q(x)
}
n∈N
≈c

{
Dkdm

rand,n,m,k,ϵ,q

}
n∈N

.

We introduce some notation for the proof. The support of a vector a ∈ Fn
q , denoted Supp(a) ⊂

[n], is defined to be the set of non-zero coordinates of a. In particular, a k-sparse vector a will
have |Supp(a)| = k. For a sample (a, b) either from the sLPN or the uniform distribution, define its
support to be the same as Supp(a).

Proof. Given an adversary A distinguishing between the two KDM distributions, we construct
an adversary B distinguishing against the sparse LPN problem sLPNn,m′,k,ϵ∗,q with the same ad-

vantage. We will set ϵ∗ so that ϵ = 2ϵ∗
(
1− q

2(q−1)ϵ
∗
)

, and set m′ = m · (1 + 2n4), which is a
conservative estimate on the number of sparse LPN samples we need.

We start by describing how Bworks. B is assumed to have samples (cℓ, dℓ)ℓ∈[m′] either from the
distributionDsLPN,,n,m′,k,ϵ∗q, where dℓ = ⟨cℓ, s⟩+eℓ, or from the random distributionDrand,n,m′,k,ϵ∗,q

where dℓ is uniformly random. We will use these samples to create a distribution close to the KDM
distributions defined above, which will be supplied as input to A. If the underlying samples
(cℓ, dℓ)ℓ∈[m′] were generated as per DsLPN,n,m′,k,ϵ∗,q distribution then the resulting samples will be
statistically close to Dkdm

sLPN,n,m,k,ϵ,q(x) distribution, otherwise they will be close to Dkdm
rand,n,m,k,ϵ,q

distribution.
Let the resulting samples be {(ai, bi)}i∈[m] and {(ai,j , bi,j)}i∈[m],j∈[n], generated as follows.

1. For each i ∈ [m], we simply add the i-th input xi to the i-th sample (ci,di) and output
(ai, bi)← (ci, di + xi).

2. For each i ∈ [m], j ∈ [n], we output the sample (ai,j , bi,j) as a carefully chosen linear combi-
nation of two k-sparse samples.

• We examine n3 disjoint pairs of samples (cℓ, dℓ) one by one and continue until we find
a pair (cℓ1 , dℓ1) and (cℓ2 , dℓ2) so that the only common index in the support of the co-
efficient is j, namely, Supp(cℓ1) ∩ Supp(cℓ2) = {j}. This process will take at most 2n3

samples. If we don’t succeed in finding such a sample, we abort. Later on, we will
show that aborting only happens with negligible probability.

• Next, we sample a random r ← F×
q , and choose µ1, µ2 ∈ F×

q so that µ1cℓ1,j + µ2cℓ2,j =
r + xi. This can be done because one can pick µ1 so that r + xi − µ1cℓ1,j is non-zero,
and then solve for µ2. This step requires q > 2, since for q = 2 there is only one choice
µ1 = 1, which may make the above quantity equal to zero.

• Set ai,j to be equal to µ1cℓ1 + µ2cℓ2 for all coordinates not equal to j, and the jth co-
ordinate is set to r. Set bi,j to be µ1dℓ1 + µ2dℓ2 . In other words, we output (ai,j , bi,j) =
µ1 · (cℓ1 , dℓ1) + µ2 · (cℓ2 , dℓ2)− xi · ej , where ej is the unit vector at the jth coordinate.

To finish our proof, we have to show two statements. The first is that the above sampling
process aborts only with negligible probability. Second, conditioned on non-aborting, the samples
generated by the above process are statistically close to the samples in the analogous KDM security
distribution. We now argue the first claim.

Claim 4.1. Let j ∈ [n]. Given 2n3 independent random k-sparse vectors grouped into n3 pairs, with
probability 1− negl(n) there exists a pair cℓ1 and cℓ2 such that Supp(cℓ1) ∩ Supp(cℓ2) = {j}.
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Proof. Let p be the probability that a pair of randomly sampled k-sparse vectors (cℓ1 , cℓ2) satisfies
Supp(cℓ1) ∩ Supp(cℓ2) = {j}. Then the probability that among n3 independently sampled such
pairs, none of them satisfies the property, is (1 − p)n

3
. We want to show that this probability is

negl(n), which is satisfied if p = Ω(k2/n2) since then (1− p)n
3 ≤ e−p·n3 ≤ e−O(k2n) = negl(n).

Since cℓ1 , cℓ2 are sampled independently at random, we can think of sampling cℓ1 first so that
j ∈ Supp(cℓ1), then sampling cℓ2 so that Supp(cℓ2)∩ Supp(cℓ1) = {j}. The first event happens with
probability

(
n−1
k−1

)
/
(
n
k

)
= k

n , and the second happens with probability
(
n−k
k−1

)
/
(
n
k

)
. Thus, we have

p =
k

n
·
(
n−k
k−1

)(
n
k

) =
k2

n2

(
1− k − 1

n− 1

)
. . .

(
1− k − 1

n− k + 1

)
≥ k2

n2

(
1− (k − 1)2

n− k + 1

)
≥ k2

2n2
. (since k = o(

√
n))

It remains to show that conditioned on non-abort, B simulates the right distribution for sam-
ples (ai,j , bi,j). The jth coordinate of ai,j is non-zero and chosen randomly by construction. Oth-
erwise, ai,j have exactly 2k − 2 non-zero coordinates, coming from (k − 1) disjoint coorindates
for each of µ1cℓ1 and µ2cℓ2 . The position of these non-zero coordinates, along with their values,
are both randomly distributed. This is because (cℓ1 , cℓ2), and hence their arbitrary non-zero mul-
tiples (µ1cℓ1 , µ2cℓ2), are chosen to be random (k − 1)-sparse at disjoint positions (aside from the
jth coordinate). We now consider the distribution of bi,j , which is equal to µ1dℓ1 + µ2dℓ2 . When
dℓ1 , dℓ2 are chosen randomly, so is bi,j . When dℓ1 , dℓ2 are chosen from the sLPN distribution, so that
dℓ1 = ⟨cℓ1 , s⟩+ eℓ1 and dℓ2 = ⟨cℓ2 , s⟩+ eℓ2 for eℓ1 , eℓ2 ← Ber(Fq, ϵ

′), we have that

bi,j = µ1dℓ1 + µ2dℓ2 = ⟨µ1cℓ1 + µ2cℓ2 , s⟩+ (µ1eℓ1 + µ2eℓ2)

= ⟨ai,j , s⟩+ xi · sj + (µ1eℓ1 + µ2eℓ2).

This finishes the proof since by Lemma 3.1, the sum of two Bernoulli random variables µ1eℓ1 ,
µ2eℓ2 with noise rate ϵ∗ is equal to a Bernoulli random variable with noise rate ϵ.

Remark 4.2. As mentioned in the technical overview and the proof above, our approach fails in
the case F2. Looking ahead, this also affects our HSS construction which can be proved secure
under Sparse LPN only for q > 2. We see three ways to adapt our result to the case of Boolean
circuits:

1. We can embed Boolean computations into computations over F4, then use our HSS scheme
over F4. This doubles the communication and computation of HSS.

2. We may conjecture that Lemma 4.1 holds even for F2; in other words, there is a way around
the technical obstacle mentioned above. This leads to an unchanged HSS construction over
F2.

3. We may assume the security of a different sLPN assumption over F2, where the columns of the
matrix A may have either k − 1 or k entries, each with 50% probability. This change would
sidestep the issue in the proof of Lemma 4.1.10 We also believe that such an assumption,

10Essentially, such an assumption allows us to combine either two k-sparse samples whose supports only intersect
in the i-th coordinate when xi = 0, or a k-sparse and (k − 1)-sparse sample with disjoint supports when xi = 1.
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which essentially can be viewed as assuming sLPN for sparsity parameters k−1 and k at the
same time, would have the same security as sLPN.

5 HSS Construction

In this section, we describe our main HSS construction from Sparse LPN (c.f. Assumption 4.1).
Our scheme can handle log / log log-degree polynomials containing a polynomial number of mono-
mials, and achieve ϵ-correctness for an arbitrary inverse polynomial ϵ. We will begin by describing
our main HSS scheme in Section 5.1, analyze its security and correctness in Section 5.2, and finally
discuss a packed version of our HSS with optimal download rate in Section 5.3.

Function Class. Our HSS supports the function class P(Fq, D,M) consists of multivariate poly-
nomials over field Fq with degree D and number of monomials M . We do not put any constraint
on the number of variables m of the polynomial, as long as it is poly(λ). In particular, every func-
tion f ∈ P(D,M) can be represented as a sum of monomials:

f(x1, · · · , xm) =
∑

γ∈[M ]

cγ ·Mγ(x1, · · · , xm) ,

where cγ ∈ Fq is a coefficient and Mγ is a monomial of degree at most D over x. Our HSS construc-
tion will require polynomials to be represented this way, which is without loss of generality since
one can efficiently pre-process any polynomial to be of this form. Looking ahead, our scheme will
achieve D = O

(
log λ

log log λ

)
and M = poly(λ).

In particular, this function class allows us to evaluate arbitrary arithmetic circuits (with fan-in
2) of depth d = c · log log λ, for any c < 1. This is because every output of such a circuit can be
computed by a degree-2d polynomial in 2d number of variables. Since the degree is D = 2d =

logc λ = O
(

log λ
log log λ

)
, and the number of monomials is M ≤ (2d)2

d
< (logc λ)log λ/ log log λ = λc, we

can see that this circuit can be supported by our HSS.

5.1 Scheme Description

Parameters for Sparse LPN. We will use below the Sparse LPN assumption over Fq with noise
rate n−δ for an arbitrary constant δ ∈ (0, 1), chosen such that the assumption holds, and dimension
n which is a polynomial in the security parameter λ depending on D and M .

Ingredient: A Linear Secret Sharing Scheme. In our scheme, we require an arbitrary N -party,
t-private LSSS scheme LSS = (Share,Rec) supported over the field Fq of computation. For con-
venience, the reader may think of the Shamir secret sharing scheme (c.f. Definition 3.2). When
N > q, note that the shares in the Shamir LSSS live in a suitable extension field E of Fq such that
|E| > N .

Scheme Overview. We now give a high-level overview of our multi-party HSS scheme, expand-
ing on some points made in the technical overview. The full construction is presented in Figure 2.
In our scheme, HSS.Setup will choose a suitable LSS scheme with reconstruction over Fq and suit-
ably set sLPN parameters n and k. To share an input x ∈ Fm

q , HSS.Share will generate encryptions
cts(x), cts(x⊗s) drawn from the distributionDkdm

sLPN,n,m,k,ϵ,q(x) in Definition 4.2, along with secret
sharings of x and x⊗ s. Namely:
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• We sample a random k sparse coefficient vector ai ∈ Fn
q for every i ∈ [m]. Similarly, for every

i ∈ [m], j ∈ [n], we sample a random 2k − 1 sparse vector ai,j ∈ Fn
q so that it is non-zero at

the jth coordinate.

• To encrypt xi for i ∈ [m], we sample a random secret vector s ← Fn
q and compute bi =

⟨ai, s⟩+ xi + ei for all i ∈ [m], where ei ← Ber(Fq, ϵ) is Bernoulli with noise rate ϵ = n−δ.

• We also encrypt xi · sj for every i ∈ [m], j ∈ [n] as follows. We compute bi,j = ⟨ai,j , s⟩+ xi ·
sj + ei,j , where ei,j ← Ber(Fq, ϵ) is Bernoulli with noise rate ϵ = n−δ. Notice that together
cts(x) :=

{
(ai, bi), {(ai,j , bi,j)}j∈[n]

}
i∈[m]

is exactly from the Dkdm
sLPN,n,m,k,ϵ,q distribution.

• We secret share each xi, for i ∈ [m], and products xi · sj , for i ∈ [m], j ∈ [n], using our
LSSS scheme. Let us denote the shares of each party Pℓ with ℓ ∈ [N ] by JxiKℓ and Jxi · sjKℓ,
respectively.

• Each party Pℓ’s share shℓ(x) consists of
(
cts(x),

{
JxiKℓ ,

{
Jxi · sjKℓ

}
j∈[n]

}
i∈[m]

)
.

Homomorphic Evaluation. To execute HSS.Eval, each party Pℓ (for ℓ ∈ [N ]) will perform ho-
momorphic operations on its local shares. Intitially, the parties start with sharings of the form
JxiKℓ ,

{
Jxi · sjKℓ

}
j∈[n]. Relying additionally on the sparse LPN encodings, we will maintain the

invariant that for every intermediate value of computation y, each party Pℓ stores shares of y
and y · sj for j ∈ [n]. However, as a result of the computation each share can be corrupted by a
low-probablity noise over Fq. We will denote these shares using a special notation ⟨⟨α⟩⟩ℓ for the
intermediate variable α. To be precise ⟨⟨α⟩⟩ℓ = Jα+ eαKℓ where eα is a low-probability noise.

The Eval operations will involve both the linear shares and the noisy ciphertext ctx(s), leading
to a build-up of noise as each party continue its local computation. The homomorphic operations
are performed as follows:

• To add together two intermediate values y and z, each party Pℓ can just add its local noisy
shares:

⟨⟨y + z⟩⟩ℓ := ⟨⟨y⟩⟩ℓ + ⟨⟨z⟩⟩ℓ , ⟨⟨(y + z) · sj⟩⟩ℓ := ⟨⟨y · sj⟩⟩ℓ + ⟨⟨z · sj⟩⟩ℓ ∀ j ∈ [n].

This operation increases the noise rate only by a factor of 2. Therefore, this extends straight-
forwardly to handle arbitrary linear combinations of a polynomial number of intermediate
values assuming that the initial noise rate is small enough.

• To multiply an intermediate value y with an input xi, each party Pℓ will utilize its encryp-
tions (ai, bi), {(ai,j , bi,j)}j∈[n] along with its noisy shares of y to compute:

⟨⟨xi · y⟩⟩ℓ := bi · ⟨⟨y⟩⟩ℓ −
∑

σ∈Supp(ai)

ai,σ · ⟨⟨y · sσ⟩⟩ℓ ,

⟨⟨(xi · y) · sj⟩⟩ℓ := bi,j · ⟨⟨y · sj⟩⟩ℓ −
∑

σ∈Supp(ai,j)

ai,j,σ · ⟨⟨y · sσ⟩⟩ℓ ∀ j ∈ [n].
(4)

The reason why the above holds is the following. Recall that Supp(a) denotes the non-zero
coordinates of a. Without any noise, the above computation gives the right result, since the
equation

bi ≈ ⟨ai, s⟩+ xi =
∑

σ∈Supp(ai)

ai,σ · sσ + xi,
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together with the linearity of the shares, imply that

bi · ⟨⟨y⟩⟩ℓ −
∑
σ

ai,σ · ⟨⟨y · sσ⟩⟩ℓ ≈ ⟨⟨xi · y⟩⟩ℓ .

In other words, as long as the potentially noisy shares ⟨⟨y⟩⟩ℓ , {⟨⟨y · sj⟩⟩ℓ}j∈Supp(ai) were noise-
free and the sample bi was also noise free, then the share produced by ⟨⟨(xi · y)⟩⟩ℓ in Equation
4 will be noise free. A similar argument applies for correctness of computing ⟨⟨(xi · y) · sj⟩⟩ℓ.
The presence of noise affects the correctness as follows. Because both ai and ai,j have spar-
sity at most 2k − 1, at every multiplication step the error probability grows by a factor at
most O(k). On careful analysis, this growth at each level is just right to set parameters so
that we can handle the desired function class.

Using the homomorphic operations described above, we can evaluate any multivariate poly-
nomial f ∈ P(D,M), written as f(x1, . . . , xm) =

∑
S∈Λ cS · xS , by first locally evaluating each

monomial xS , then locally taking a linear combination of the results. Finally, we describe the re-
construction algorithm HSS.Rec. At the end of the local computations, each party Pℓ will hold a
noisy share ⟨⟨y⟩⟩ℓ of the output y = f(x). Since these are LSS shares, we may reconstruct a noisy
version of y by applying the reconstruction algorithm of LSS.

5.2 Security Analysis

Noise growth analysis. We now analyze the noise growth of our homomorphic operations.
Here, we will write explicit noise terms (colored in red) for our noisy shares:

⟨⟨y⟩⟩ℓ = Jy + eyKℓ , ⟨⟨y · sj⟩⟩ℓ = Jy · sj + ey,jKℓ ∀ j ∈ [n],

We start by considering party ℓ’s homomorphic multiplication of an input xi, shared as shℓ(xi),
with an intermediate value y, shared as ⟨⟨y⟩⟩ℓ , {⟨⟨y · sj⟩⟩ℓ}ℓ∈[N ]. Recalling that

bi = ⟨ai, s⟩+ xi + ei =
∑

σ∈Supp(ai)

ai,σ · sσ + xi + ei,

where we denote the noise term in blue (which has a fixed noise rate O(n−δ)), we can compute the
following:

bi · Jy + eyKℓ −
∑

σ∈Supp(ai)

ai,σ · Jy · sσ + ey,σKℓ

=

u

v

 ∑
ai,σ ̸=0

ai,σ · sσ + xi + ei

 · y + bi · ey −

 ∑
ai,σ ̸=0

ai,σ · sσ

 · y − ∑
ai,σ ̸=0

ai,σ · ey,σ

}

~

ℓ

= Jxi · y + exi·yKℓ , where exi·y = y · ei + bi · ey −
∑

ai,σ ̸=0

ai,σ · ey,σ.
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HSS from Sparse LPN

Parameters. Number of parties N , threshold t, field Fq, a N -party, (t, t′)-private LSSS scheme
LSS over Fq, the function class P(D,M), sLPN parameters (k, n, δ) chosen according to Re-
mark 5.1.

• Share(x)→ {shℓ(x)}ℓ∈[N ]. On input x ∈ Fm
q , sample from the KDM sparse LPN distribution

(with secret vector s ∈ Fn
q )

{cts(x), cts(x⊗ s)} :=
{
(ai, bi), {(ai,j , bi,j)}j∈[n]

}
i∈[m]

← Dkdm
sLPN,n,m,k,δ,q(x).

Next, compute secret sharings (for all i ∈ [m], j ∈ [n]):

LSS.Share(xi)→ {JxiKℓ}ℓ∈[N ] , LSS.Share(xi · sj)→
{
Jxi · sjKℓ

}
ℓ∈[N ]

.

Return shℓ(x) :=

(
cts(x), cts(x⊗ s),

{
JxiKℓ ,

{
Jxi · sjKℓ

}
j∈[n]

}
i∈[m]

)
.

• Eval(ℓ, P, shℓ(x)) → oshP,ℓ. Given a party index ℓ ∈ [N ], a m-variate polynomial P ∈
P(D,M), and the corresponding share shℓ(x), we first evaluate each monomial of P , then
add these monomials together. The party Pℓ stores, for each intermediate value z during the
computation, a noisy share {{z}}ℓ :=

(
⟨⟨z⟩⟩ℓ ,

{
⟨⟨z · sj⟩⟩ℓ

}
j∈[n]

)
defined as follows:

– If z = xi for some i ∈ [m], set ⟨⟨z⟩⟩ℓ := JxiKℓ, ⟨⟨z · sj⟩⟩ℓ = Jxi · sjKℓ for all j ∈ [n].

– If z = y · xi, where y is an intermediate value and xi is an input, parse {{y}}ℓ as above,
then compute

⟨⟨z⟩⟩ℓ := bi · ⟨⟨y⟩⟩ℓ −
∑

σ∈Supp(ai)

ai,σ · ⟨⟨y · sσ⟩⟩ℓ ,

⟨⟨z · sj⟩⟩ℓ := bi,j · ⟨⟨y⟩⟩ℓ −
∑

σ∈Supp(ai,j)

ai,j,σ · ⟨⟨y · sσ⟩⟩ℓ for all j ∈ [n].

– If z =
∑

γ cγ · yγ where cγ are coefficients and yγ are intermediate values, parse {{yγ}}ℓ as
above, then compute

⟨⟨z⟩⟩ℓ :=
∑
γ

cγ · ⟨⟨yγ⟩⟩ℓ , ⟨⟨z · sj⟩⟩ℓ :=
∑
γ

cγ · ⟨⟨yγ · sj⟩⟩ℓ for all j ∈ [n].

Once party Pℓ has computed the noisy share {{z}}ℓ for the output P (x), return oshP,ℓ := ⟨⟨z⟩⟩ℓ.

• Rec(I, {oshℓ}ℓ∈I) → z. Given a subset of parties I ⊂ [N ] and corresponding output shares
{oshℓ}ℓ∈I , return z ← LSS.Rec (I, {oshℓ}ℓ∈I).

Figure 2: HSS from Sparse LPN
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Similarly, we can compute the noise growth for the noisy shares ⟨⟨xi · y · sj⟩⟩ℓ for all j ∈ [n],
keeping in mind that bi,j =

∑
σ∈Supp(ai,j)

ai,j,σ · sσ + xi · sj + ei,j :

bi,j · Jy + eyKℓ −
∑

σ∈Supp(ai,j)

ai,j,σ · Jy · sj + ey,σKℓ

=

u

v

 ∑
ai,j,σ ̸=0

ai,j,σ · sσ + xi · sj + ei,j

 · y + bi,j · ey −

 ∑
ai,j,σ ̸=0

ai,j,σ · sσ

 · y − ∑
ai,j,σ ̸=0

ai,j,σ · ey,σ

}

~

ℓ

= Jxi · y · sj + exi·y,jKℓ , where exi·y,j = y · ei,j + bi,j · ey −
∑

ai,j,σ ̸=0

ai,j,σ · ey,σ.

We observe that after multiplication, the noisy shares ⟨⟨xi · y⟩⟩ and ⟨⟨xi · y · sj⟩⟩ both contain one
new noise term, and due to the k-sparsity of ai and (2k − 1)-sparsity of ai,j , aggregate at most
2k prior noises. Therefore, the rate of noise increase by a factor of at most 2k + 1. As we started
out with noise level n−δ for some arbitrary δ ∈ (0, 1), after D steps the noise level is at most
(2k + 1)Dn−δ.

Next, we consider the noise growth for homomorphic linear combination. Here, the error
growth is much less, allowing us to aggregate M error terms for arbitrary M = poly(λ). Namely,
for any coefficients cγ ∈ Fq and any intermediate noisy shares {{yγ}}ℓ with γ ∈ [M ], we have:

M∑
γ=1

cγ ·
q
yγ + eyγ

y
ℓ
=

u

v
M∑
γ=1

cγ · yγ +
M∑
γ=1

cγ · eyγ

}

~

ℓ

M∑
γ=1

cγ ·
q
yγ · sj + eyγ ,j

y
ℓ
=

u

v
M∑
γ=1

cγ · yγ · sj +
M∑
γ=1

cγ · eyγ ,j

}

~

ℓ

∀ j ∈ [n].

The noise level for the final share grows by a factor of M .

Remark 5.1 (Parameter Selection for HSS). For a given program class P(Fq, D,M), given any
constant δ ∈ (0, 1) for which the Sparse LPN assumption holds, and given desired correctness
error ϵ ∈ (0, 1), we need to choose k and n so that

k = ω(1) and (2k + 1)D ·M · n−δ < ϵ . (5)

When D = O(log λ/ log log λ), M = poly(λ), and ϵ = 1/ poly(λ), we may choose k = logc λ for a
sufficiently small constant c > 0, and n = λc′ for a sufficiently large constant c′ > 0 for the above
conditions to hold.

Alternatively, we may choose k = O(1) (relying on a special matrix distribution as in Re-
mark 4.1), in which case we can further achieve D = O(log λ).

Remark 5.2 (Efficiency). Our HSS input share size |shℓ(x)|, for x ∈ Fm
q , is equal to m(n + 1) +

mn(n + 1) + (m + mn)|LSS| = m(n + 1)((n + 1) + |LSS|), where |LSS| is the share size of the
linear secret sharing scheme. In particular, by Remark 5.1 this share size depends on program
class P(D,M) supported (since n depends on D and M ). In contrast, our HSS output share is just
an LSS share. We also note that when LSS is the Shamir secret sharing scheme, the share size |LSS|
is e field elements, where e ∈ N is the smallest integer such that t < qe.

For computation, our HSS evaluation only has an overhead of O(nk|LSS|), since we need to
compute on n + 1 shares ⟨⟨y⟩⟩, {⟨⟨y · sj⟩⟩}j∈[n], and during multiplication we suffer another O(k)
overhead in computing a linear combination of (k + 1) terms.
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Remark 5.3 (On concrete parameter settings). While Sparse LPN has been extensively studied in
the asymptotic setting (see our discussion in Section 1.1), there have been little work on deter-
mining concrete parameters for the assumption. Prior works such as [ADI+17, Zic17] proposed
parameters for Sparse LPN in the constant noise regime, while our noise rate is smaller, namely
1/nδ for an arbitrary 0 < δ < 1. Thus, we leave as interesting open questions the task of figuring
out concrete parameters for Sparse LPN in our noise regime, and optimizing our HSS to be more
efficient.

Remark 5.4 (Constant overhead for constant-degree polynomials). In fact, our HSS construction
can be made even more efficient than Remark 5.2 for polynomials of constant degree D, where
we may achieve O(kD · M) computation overhead for polynomials with M monomials. If we
were to set k = O(1), then the overhead is constant in M . This follows from a more conservative
computation of only the necessary values required to evaluate the polynomial. Namely, each
homomorphic multiplication of an intermediate value y with an input xi requires only (k + 1)
secret shares {JysσK}σ∈Supp(a). As a consequence, each degree D monomial computation will touch
at most O(kD) sparse LPN samples and secret shares and involve roughly these many binary
additions and multiplications.

From our noise growth analysis above and the subsequent Remark 5.1 on parameter selection,
we can conclude the correctness of our HSS construction.

Lemma 5.1 (Correctness of HSS). Assume the Sparse LPN assumption holds with constant δ ∈ (0, 1).
For any ϵ = 1/ poly(λ), any D = O(log λ/ log log λ), and any M = poly(λ), for parameters n and k cho-
sen according to Remark 5.1, the resulting HSS construction in Figure 2 is correct except with probability
ϵ.

Remark 5.5 (Decreasing the correctness error). We note that our correctness error can be decreased
to negl(λ), at the cost of larger share sizes, more computation, and making reconstruction non-
additive. This is done by giving out some κ = ω(1) copies of the same HSS sharings, each with
fresh randomness, doing HSS evaluations of the same function for each of these sharings, then
taking majority.

We will now show that our HSS scheme is secure. Again, most of the heavy lifting is done in
Lemma 4.1, from which our proof follows almost immediately.

Lemma 5.2 (Security of HSS). Assume the (δ, q)-Sparse LPN assumption holds for any constant δ ∈
(0, 1) and any finite field Fq. Then for any number of parties N ≥ 2, any threshold t < N , any D =
O(log λ/ log log λ), and any M = poly(λ), with parameters chosen as in Remark 5.1, the N -party HSS
construction in Figure 2 for the class P(Fq, D,M) satisfies HSS security with threshold t.

Proof. Recall that for security of HSS, we need to show that for any subset I ⊂ [N ] of size |I| ≤ t
and any vectors x,x′ ∈ Fm

q , the shares {shℓ(x)}ℓ∈I and {shℓ(x′)}ℓ∈I are computationally indistin-
guishable. By construction of HSS.Share, these shares consist of two parts, the KDM ciphertexts
{cts(x), cts(x⊗ s)} versus {cts(x′), cts(x

′ ⊗ s)}, along with the LSS shares {JxKℓ , Jx⊗ sK}ℓ∈I ver-
sus {Jx′Kℓ , Jx

′ ⊗ sK}ℓ∈I . The former is indistinguishable due to Lemma 4.1 (for q = 2, we may
take any of the approaches, detailed in Remark 4.2, to conclude Lemma 4.1), and the latter is
indistinguishable due to t-privacy of LSS.

Putting everything together, we get our HSS with desired functionality.
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Packed HSS from Sparse LPN

Ingredients. A N -party, t-private, s-secret LMSS. Let LSS(1), . . . , LSS(s) be the schemes ob-
tained from LMSS as in Remark 3.1. Let HSS(1), . . . ,HSS(s) be the corresponding N -party,
t-private, ϵcorr-correct HSS for P(Fq, D,M) from LSS(1), . . . , LSS(s) respectively, described in
Figure 2.

Function class. We support the function class (P(Fq, D,M))s for any D = O(log / log log),
M = poly(λ), and correctness error parameter ϵcorr = 1/ poly(λ).

• Share(x(1), . . . ,x(s)) → (sh1, . . . , shN ). Compute (sh
(σ)
1 , . . . , sh

(σ)
N ) ← HSS(σ).Share(x(σ)) for

all σ ∈ [s]. Return shℓ = (sh
(1)
ℓ , . . . , sh

(s)
ℓ ) for all ℓ ∈ [N ].

• Eval(ℓ, f, shℓ) → oshℓ. Parse f = (f (1), . . . , f (s)). For each σ ∈ [s], compute
HSS.Eval(ℓ, f (σ), sh

(σ)
ℓ )→ osh

(σ)
ℓ . Return oshℓ = Pack(osh

(1)
ℓ , . . . , osh

(s)
ℓ ).

• Rec(I, {oshℓ}ℓ∈I)→ (y(1), . . . , y(s)). Return LMSS.Rec({oshℓ}ℓ∈[N ])→ (y(1), . . . , y(s)).

Figure 3: Packed HSS variant

Theorem 5.1 (Multi-party HSS). Assume the Sparse LPN assumption (c.f. Assumption 4.1) holds. For
any number of parties N ≥ 2, privacy threshold t < N , finite field Fq, and error probability ϵ = 1/ poly(λ),
there is a N -party, t-private HSS with correctness error ϵ for the function class P(Fq, D,M) with degree
D = O(log λ/ log log λ) and number of monomials M = poly(λ).

5.3 Packed HSS with improved download rate

We now describe a “packed” version of our HSS construction (given in Figure 3), which allows
for lower download cost, and thus higher download rate, by replacing the use of LSS with an
arbitrary LMSS. Namely, when we share inputs, we may be able to pack it using e.g. multi-secret
Shamir sharing. In particular, assuming LMSS can support s secrets; we can s instances of HSS
f1, . . . , fs on inputs x(1), . . . ,x(s) as follows. First, we will share each input x(σ) in the ith slot,
i.e. consider the ith LSS obtained from LMSS as in Remark 3.1. We then apply HSS.Eval as before,
creating outputs shares of f1(x(1)), . . . , fs(x(s)). Finally, each party will first pack all output shares
back into a single LMSS share, then reconstruct with LMSS.

Remark 5.6 (Parameter Selection for Packed HSS). In order for our packed HSS construction in
Figure 3 to achieve correctness error ϵcorr, we need to set parameters for each HSS(σ), as in Re-
mark 5.1, to give error ϵcorr/s (this is to account for Pack adding up s number of output shares).

Theorem 5.2 (Packed HSS). Let Fq be an arbitrary finite field, N be the number of parties, and t < N be
the corruption threshold. For s ∈ N large enough so that there exists a N -party, t-private, s-secret LMSS
with rate 1− t

N
11, Figure 3 gives a N -party, t-private HSS for the function class (P(Fq, D,M))s with the

same download rate 1− t
N .

We will show that this download rate is optimal for any HSS scheme satisfying one of two
conditions, mentioned below.

11Such an s exists from Definition 3.2.
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Lemma 5.3 (Download rate upper bound). Let Π be an N -party, t-private, 1/ poly(λ)-correct HSS for a
function class F over F that contains the identity function f(x1, . . . , xs) = x1, . . . , xs for all x1, . . . , xs ∈
F , where s ∈ N. Assume that Π satisfies one of the following two properties:

• Π.Rec is linear.

• The output shares of Π has size independent of the security parameter.

Then the download rate of Π is bounded above by 1− t/N .

Proof. Let the output share sizes for the identity function be b1, . . . , bN ∈ N, respectively. This
means that the domain and range of Π.Rec is given by Rec : Fb1 × · · · × FbN → Fs.

We first assume that Π.Rec is linear. In other words, we can represent Rec as a matrix M ∈
Fs×B , with B = b1 + · · · + bN , such that Rec(osh1, . . . , oshN ) = M · (osh1, . . . , oshN )T . We will
show that M has relative distance at least t/N ; this implies, together with the singleton bound,
that the rate of Π (which is also the rate of M ) is at most 1 − t/N . This relative distance comes
from the fact that HSS is t-private. In particular, for any corrupted set T ⊂ [n] with |T | = t,
the parties in T may not learn anything about any of the reconstructed secrets. This implies that
the columns of M corresponding to T (there are

∑
ℓ∈T bℓ of them) must be linearly independent,

which implies that no vector in the span of M has non-zero coordinates totally contained in the
columns corresponding to T . Hence, the relative distance of M is at most max|T |=t

(∑
ℓ∈T bℓ

)
/B ≤

t/N .
We now assume that the latter condition holds. This implies that the output shares must

information-theoretically hides the output; we can then invoke the information-theoretic upper
bound on the rate of an LMSS in [FIKW22].

6 Sublinear MPC

In this section, we leverage our HSS in Section 5 to build a sublinear MPC, with per-party commu-
nication dominated by the term O(S/ log logS), for layered Boolean circuits of size S.12 Our MPC
construction can support an arbitrary N = poly(λ) parties with up to (N−1)-out-of-N corruptions.

6.1 Protocol Description

Layered Boolean Circuits. Our MPC construction achieves sublinear communication for the
class of layered Boolean circuits. A Boolean circuit C : {0, 1}n → {0, 1}m is layered if its nodes
can be partitioned into D = depth(C) layers (L1, . . . , LD) such that any edge (u, v) of C satisfies
u ∈ Li and v ∈ Li+1 for some i ≤ D − 1. The width width(C) of a layered circuit C is defined to be
the maximum number of non-output gates contained in any single layer. In our MPC, we assume
that the parties input are x1, . . . ,xN , concatenated into x := x1∥x2∥ . . . ∥xN . Then x is the overall
input to the circuit C, and at the end of the MPC, each party should get C(x).

Remark 6.1 (Circuit Decomposition). From an existing result in [BGI16], for any d ∈ N, we have a
decomposition of C into L = ⌈D/d⌉ special layers (L⋆1, . . . , L

⋆
L) such that: (1) two consecutive layers

are of distance at most 2d from each other, and (2) letting wi be the width of layer Li for all i ∈ [L],
we have

∑L
i=1wi ≤ S/d. We denote by Ci,j the circuit computing the jth output of layer Li+1 from

the inputs of layer Li, for all i ∈ [L− 1], j ∈ [wi+1].

12More generally, our construction can generalize to any constant-size field. For simplicity, we only cover the
Boolean case.
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For simplicity, in our MPC construction we will assume that all the inputs to C are in the first
layer, and all outputs are in the last layer. This is without loss of generality, as all intermediate
values in our construction are represented in the same form; thus, we can “delay” an input until
it is needed in an intermediate layer, and similarly delay an output till the end.

Protocol Description. Following the main ideas discussed in Section 2.3, we now give our MPC
construction in Figure 4 and 5. In our construction, we assume that each party has access to a
broadcast channel. This is simply for ease of presentation, since in the semi-honest model we can
simulate such a broadcast channel by letting parties pass messages in a cyclic or star-like fashion.

Remark 6.2 (Removing dependence on width). We note that our MPC incurs a communication
cost proportional to the circuit width W , due to the use of the public vectors {ai2,i3}i2∈[W ],i3∈[κ].
We suggest two main approaches to reduce/eliminate the additive term proportional to the width.

• If the number of parties are large, since this is a semi-honest protocol, each party can be
required to output W ·κ

N such vectors, as opposed to running the MPC for computing W · κ
such vectors. In this case this additive term can be replaced by a term that grows like W ·
poly(logN, log λ)/N . This per party communication becomes sublinear for big enough N .

• Since these vectors are chosen randomly (among all kEnc-sparse vectors), this term can be
removed altogether if we are willing to assume any of the following: 1) a uniform random
string, 2) a random oracle, or 3) an explicit family of kEnc-sparse matrices for which the sparse
LPN assumption holds. Any of these assumptions allow the parties to have the description
of ai2,i3 without any further communication.

6.2 Security Proofs for Sublinear MPC

In this section, we prove the security and sub-linear communication requirement of our MPC
construction, described in Figure 4 and Figure 5. The proof proceeds in three main steps. First,
we show that under an honest protocol execution, with suitably chosen parameters, the MPC
returns the correct output with probability 1 − negl(λ). Second, we will show that under the
same chosen parameters, our MPC achieve sub-linear per-party communication. Finally, we will
establish semi-honest security of our MPC against any coalition of up to N −1 corrupt parties. We
assume familiarity with definitions of semi-honest security and simulation proofs; for details, see
e.g. [Gol04].

We begin by showing that the HSS scheme as required by our MPC construction can indeed
compute the circuit ComputeLayeri1,i2 for all i1, i2.

Lemma 6.1 (HSS supports MPC computation). For large enough S, the function ComputeLayeri1,i2 as
described in Figure 5 is computable in depth 0.9 log logS for any i1 ∈ [L], i2 ∈ [wi1 ].

Proof. Let d = 0.1 log logS. We note that the depth of ComputeLayeri1,i2 consists of the following.
The first is the depth of decryption, which is 1. Next, we have the depth of the majority function,
which is known to be implementable in at most 5d + O(1) depth [PPZ92]. Finally, the depth
of Ci1,i′2

is at most 2d by our choice of circuit decomposition. Adding everything together gives
7d+O(1) < 0.9 log logS.

Remark 6.3 (Parameter Selection for MPC). We detail our choice of parameters here. Looking
ahead, these parameters will allow our MPC construction to have negl(λ) correctness error, and
also sub-linear per-party communication.
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Sublinear MPC construction, part 1

Local Inputs. Each party Pℓ, for ℓ ∈ [N ], has input xℓ, concatenated into x = x1∥ . . . ∥xℓ.
Circuit. A layered Boolean circuit C : {0, 1}n → {0, 1}m of size S, depth D and width W ,
decomposed as in Remark 6.1. In particular, we choose depth parameter d = 0.1 · log logS.
This gives special layers (L⋆1, . . . , L

⋆
L), where L = D/d, of widths w1, . . . , wL respectively.

Output. The evaluation y = C(x), delivered to each party.
Ingredients.

• Number of repetitions κ, set to be an arbitrary super-constant ω(1).

• Our encryption scheme (Enc,Dec) from Sparse LPN, described in Equation 3, with noise
rate ϵEnc = 1/(2Nλ). We denote the encryption parameters as follows: the dimension is
nEnc and the sparsity is kEnc.

• Our N -party, (N − 1)-secure HSS in Figure 2, with correctness error ϵHSS = 1/(2λ), for
the class of Boolean circuits of depth d′ = (0.9 · log logS) and using the additive secret
sharing scheme AdSS. We denote the HSS parameters as follows: the dimension is nHSS

and the sparsity is kHSS.

• A general semi-honest MPC protocol, secure against (N − 1)-out-of-N corruptions, that
can evaluate a Boolean circuit C of size S with communication O(N · S) per party. Such
a protocol can be based on the existence of oblivious transfer [GMW87].

Protocol Execution:

1. Perform a MPC for the circuit GenVec→ {ai2,i3}i2∈[W ],i3∈[κ], described as follows:

For all i2 ∈ [W ], i3 ∈ [κ], sample a random kEnc-sparse vector ai2,i3 ← FnEnc
2 . Return

{ai2,i3}i2∈[W ],i3∈[κ] to all parties.

Figure 4: Semi-honest sublinear MPC from OTs and Sparse LPN

• We can pick an arbitrary κ = ω(1).

• We need to pick the encryption parameters nEnc, kEnc to have noise rate ϵEnc = 1/(2Nλ).
Assuming Sparse LPN (c.f. Assumption 4.1) holds with constant δ ∈ (0, 1), we need to pick
nEnc so that n−δ

Enc = ϵEnc. This translates to nEnc = poly(N,λ). We can pick kEnc to be arbitrary
ω(1).

• We need to pick the HSS parameters nHSS, kHSS to have correctness error ϵHSS = 1/(2λ), and
to support all Boolean circuits of depth d′ = 0.9 log logS. This depth corresponds to degree
at most 2d

′
= log0.9 S, and number of monomials at most 22

d′
= S1/ log0.1 S = So(1). We need

to make sure that Equation (5) holds, which in our case is

(2kHSS + 1)log
0.9 S · S1/ log0.1 S · n−δ

HSS <
1

2λ
.

Here δ ∈ (0, 1) is a constant that makes Assumption 4.1 holds. This is equivalent to

nHSS >
(
2λ · (2kHSS + 1)log

0.9 S · S1/ log0.1 S
)δ

.
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Sublinear MPC construction, part 2

2. Perform a MPC for the circuit GenKeyShares →
{

Jki1Kℓ,i3 , shi1,i3,ℓ
}
i1∈[L],i3∈[κ],ℓ∈[N ]

, de-

scribed as follows:

For all i1 ∈ [0, L− 1]:

• Sample a random key ki1 ← FnEnc
2 .

• For each i3 ∈ [κ], compute {Jki1Kℓ,i3}ℓ∈[N ] ← AdSS.Share(ki1), each time with
fresh randomness.

• For each i3 ∈ [κ], compute {shi1,i3,ℓ}ℓ∈[N ] ← HSS.Share(ki1) for all i3 ∈ [κ], each
time with fresh randomness.

For each ℓ ∈ [N ], return {Jki1Kℓ,i3 , shi1,i3,ℓ}i1∈[L],i3∈[κ] to party Pℓ.

3. For each ℓ ∈ [N ], party Pℓ secret-shares its input xℓ for κ times
{Jst1,i2,ℓKℓ′,i3}ℓ′∈[N ],i2∈[n],i3∈[κ] ← AdSS.Share(xℓ), and sends {Jst1,i2,ℓKℓ′,i3}i2∈[n],i3∈[κ] to
each party Pℓ′ . Then Pℓ concatenate input shares coming from all other parties to get
{Jst1,i2Kℓ,i3}i2∈[n],i3∈[κ].

4. For each layer i1 ∈ [L− 1] and party index ℓ ∈ [N ]:

(a) For each i2 ∈ [wi1 ], i3 ∈ [κ], party Pℓ samples ei1,i2,i3,ℓ ← Ber(F2, ϵEnc) and broadcasts its
partial ciphertext cti1,i2,i3,ℓ = ⟨ai2,i3 , Jki1Kℓ,i3⟩+ Jsti1,i2Kℓ,i3 + ei1,i2,i3,ℓ.

(b) Party Pℓ receives partial ciphertexts cti1,i2,i3,ℓ′ from all other parties Pℓ′ and reconstructs
cti1,i2,i3 ← AdSS.Rec({cti1,i2,i3,ℓ}ℓ∈[N ]).

(c) For each i′2 ∈ [wi1+1], i3 ∈ [κ], Pℓ computes HSS.Eval(ℓ,ComputeLayeri1,i′2 , shi1,i3,ℓ) where
ComputeLayeri1,i′2 is the following function:

• Use input ki1 to decrypt sti1,i2,i′3 ← Dec(ki1 , cti1,i2,i′3) for all i′3 ∈ [κ].
• Compute majority sti1,i2 ← Majority({sti1,i2,i′3}i′3∈[κ]).
• Then compute sti1+1,i′2

← Ci1,i′2
({sti1,i2}i2∈[wi1

]), where Ci1,i′2
is the circuit

computing the (i′2)
th output of the (i1 + 1)th layer.

(d) At this point, each party Pℓ has shares for the next layer {Jsti1+1,i2Kℓ,i3}i2∈[wi1+1],i3∈[κ].

5. Perform a final MPC for the following circuit FinalRec→ y:

• For each i2 ∈ [m], i3 ∈ [κ], compute yi2,i3 ← AdSS.Rec({JstL,i2Kℓ,i3}ℓ∈[N ]).
• For each i2 ∈ [m], compute majority yi2 ← Majority({oshi2,i3}i3∈[κ]).
• Return {yi2}i2∈[m] to each party.

Figure 5: Sublinear MPC construction, continued
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We can thus set 2kHSS + 1 = logS, so that (2kHSS + 1)log
0.9 S = Slog logS/ log0.1 S = So(1), and

thus nHSS = poly(λ) · So(1).

Next, we establish the correctness of our MPC. Before doing so, we will prove the following
lemma about the correctness of majority decoding on independent noisy data.

Lemma 6.2 (Majority Decoding). Let λ be the security parameter, and x ∈ {0, 1}. Consider independent
random variables X1, . . . , Xκ ∈ {0, 1} such that for all i ∈ [κ], Xi = x independently with probability at
least 1− 1/λ. Let E be the event that at least 2κ/3 of the Xi’s are equal to x. Then for any κ = ω(1), there
exists a negligible function negl such that E happens with probability 1− negl(λ).

Proof. For each i ∈ [κ], let Yi ∈ {0, 1} be a random variable such that Yi = 1 if and only if Xi ̸= x.
It follows that Y1, . . . , Yκ are independent and Pr[Yi] = 1/λ for all i ∈ [κ]. By tail bounds for
the binomial distribution [AG89], the probability that at most κ/3 of the Xi’s are different from x
(which is the complement of the event E) is at most exp (−κ ·D(1/3∥1/λ)), where

D(a∥p) := a log(a/p) + (1− a) log((1− a)/(1− p))

is the relative entropy of a with respect to p. We can then calculate D(1/3∥1/λ) := 1/3 log(λ/3) +
2/3 log(2/(3(1 − 1/λ))) > 1/3 log(λ/3) − O(1), which implies Pr[E] ≥ 1 − exp(−κ(1/3 log(λ/3) −
O(1))) ≥ 1−O(1/λO(κ)) = 1− negl(λ), whenever κ = ω(1).

Lemma 6.3 (Correctness of MPC). Assuming all parties faithfully execute the MPC protocol in Figure 4
and 5, for parameters chosen as in Remark 6.3, the protocol returns the correct output with probability
1− negl(λ) over the randomness of all parties.

Proof. For a layered Boolean circuit C and input x, we denote the intermediate values of the circuit
at each special layer L⋆i1 by {xi1,i2}i1∈[L],i2∈[wi1

]. In other words, we have x1,i2 = xi2 for all i2 ∈ [w1],
and Ci1,i2(xi1,1, . . . , xi1,wi1

) = xi1+1,i2 for all i1 ∈ [L− 1], i2 ∈ [wi1 ].
Parties in our MPC will hold noisy secret shares of these intermediate values. We denote these

noisy intermediate states, each replicated κ times, by {st⋆i1,i2,i3}i1∈[L],i2∈[wi1
],i3∈[κ], and their secret

share for party Pℓ by
r
st⋆i1,i2

z

ℓ,i3
. We consider these shares at their noisiest moment in the protocol,

namely right before computing majority during each HSS evaluation, or during the final MPC.
The intuition for the correctness of our MPC is as follows: in each layer, we will have an error

build-up coming from both the noisy encryption and the noisy HSS evaluation. However, if these
errors total to at most 1/λ, then by Lemma 6.2, majority decoding will recover the correct value
with probability 1 − negl(λ). To formalize this intuition, we define the following events for each
layer i1 ∈ [L]:

• For each i2 ∈ [wi1 ], i3 ∈ [κ], let Diffi1,i2,i3 be the event that st⋆i1,i2,i3 ̸= xi1,i2 .

• For each i2 ∈ [wi1 ], let Ei1,i2 be the event that st⋆i1,i2,i3 = xi1,i2 for at least 2κ/3 values of i3.
Let Ei1 =

∧
i2∈[wi1

]Ei1,i2 .

Note that if Ei1 happens for some i1 ∈ [L], then majority decoding in layer i1 will successfully
recover xi1,i2 for all i2 ∈ [wi1 ]. We will show that the events Ei1 happen with overwhelming
probability.

Claim 6.1. The events Ei1 ’s satisfy

Pr[E1] ≥ 1− negl(λ), Pr[Ei1 | Ei1−1 ∧ · · · ∧ E1] ≥ 1− negl(λ) ∀ i1 ∈ [2, L].
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Proof. We will prove that Pr[Ei1,i2 | Ei1−1 ∧ · · · ∧E1] ≥ 1− negl(λ) for any i1 ∈ [L], i2 ∈ [wi1 ]. By a
union bound, this gives Pr[Ei1 | Ei1−1 ∧ · · · ∧ E1] ≥ 1− wi1 · negl(λ) = 1− negl(λ). By Lemma 6.2
and the fact that the events {Diffi1,i2,i3}i3∈[κ] are independent (since the HSS evaluation for each
i3 ∈ [κ] uses different HSS shares with fresh randomness), it suffices to show that

Pr[Diffi1,i2,i3 | Ei1−1 ∧ · · · ∧ E1] ≤
1

λ
∀ i1 ∈ [L], i2 ∈ [wi1 ], i3 ∈ [κ]. (6)

At the first layer, we start with noise-less secret shares from step 3, and add N independent
Bernoulli noise from the partial ciphertexts. This gives a noise rate of at most N · ϵEnc = 1/(2λ) <
1/λ, which establishes Equation (6) for i1 = 1. For each layer i1 = 2, . . . , L − 1, assuming
Ei1−1, . . . , E1 all happen, we have by induction that the values sti1,i2 after majority decoding are
correct for all i2 ∈ [wi1 ]. Thus, this gives the correct share in step 4(d), except for the error proba-
bility ϵHSS = 1/(2λ) of HSS evaluation. In step 4(a-b) of the next layer, more noise is added as part
of the partial ciphertexts; similar to the above, this noise rate is at most N · ϵEnc = 1/(2λ). Adding
the two errors together establishes Equation (6) for i1 = 2, . . . , L− 1. For i1 = L, we only have the
error of the HSS evaluation added before taking majority in the final MPC, which is less than 1/λ.
Hence Equation (6) is also valid for i1 = L, finishing the proof.

From the claim, we have

Pr

[
L∧

i1=1

Ei1

]
=

2∏
i1=L

Pr[Ei1 | Ei1−1 ∧ · · · ∧ E1] · Pr[E1]

≥ 1− L · negl(λ) = 1− negl(λ).

In other words, with probability 1− negl(λ), the majority decoding is correct at all layers i1 ∈ [L],
which implies that the output of the MPC is correct.

We now analyze the per-party communication of our MPC construction and show that, up to
lower-order terms, it is indeed sublinear in the circuit size.

Lemma 6.4 (Communication of MPC). For any κ = ω(1), when parameters are chosen as in Remark 6.3,
the N -party MPC protocol in Figure 4 and 5 has per-party communication O(κ ·S/ log logS)+D ·So(1) ·
poly(N,λ) +W · poly(logN, log λ)/N when evaluating a layered circuit C of size S, depth D and width
W .

Additionally, assuming any of the assumptions in Remark 6.2, our MPC can be minimally modified to
remove the last communication term (depending on W ).

Proof. We consider the communication per party of each step in our MPC construction:

• Step 1. The communication cost is proportional to the circuit size of GenVec. Moreover,
adopting the optimization in Remark 6.2, where each party sends out W · κ/N of the sparse
vectors ai2,i3 , we may get communication only W · poly(logN, log λ)/N .

• Step 2. The circuit GenKeyShares in step 2 has size O(nHSS · nEnc · κ), which gives per-party
communication of at most D · So(1) · poly(N,λ).

• Step 3. The per-party communication consists of the party’s additive secret sharings, which
has total size at most κ ·N · n.
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• Step 4. For each layer i1 ∈ [L − 1] and each i2 ∈ [wi1 ], i3 ∈ [κ], each party sends a 1-bit
ciphertext. Thus the per-party communication is

∑L−1
i1=1wi1 · κ ≤ 0.1 · κ · S/ log logS, by the

properties of circuit decomposition (in Remark 6.1).

• Step 5. The circuit FinalRec in this step has size O(κ ·m), hence the per-party communication
is at most N ·m · poly(λ).

Adding together these costs finishes our proof. Note that our per-party communication is truly
sub-linear for large enough S, and for D = S1−O(1) (the layered circuit is not too “tall-and-skinny”),
since the polynomial poly(N,λ) can be seen to be independent of S.

Finally, we will prove that our MPC is secure.

Theorem 6.1 (Security of MPC). Assume the Sparse LPN assumption and the existence of oblivious
transfer. Then our MPC construction in Figure 4 and 5 is secure against any corruption pattern in the
semi-honest model.

Proof. Let C ⊊ [N ] be the set of corrupted parties. We describe a simulator Sim in Figure 6 that
outputs a simulated view of the corrupted parties. The proof that this simulated view is indistin-
guishable from the real view goes through the following sequence of hybrids:

• Hyb1: this is the view of corrupted parties in the real protocol execution. Aside from their
inputs and randomness, the view consists of the following:

– The MPC messages those parties received in steps 1 and 2 of Figure 4, and in step 5 of
Figure 5.

– The vectors {ai2,i3}i2∈[W ],i3∈[κ] from the first step.
– The key shares {Jki1Kℓ,i3 , shi1,i3,ℓ}i1∈[L],i3∈[κ],ℓ∈C from the second step.
– The secret shared inputs {Jst0,i2Kℓ,i3}i2∈[n],i3∈[κ],ℓ∈C .
– For each layer i1 ∈ [L], the partial ciphertexts {cti1,i2,i3,ℓ}i2∈[wi1

],i3∈[κ],ℓ∈[N ].

• Hyb2: In this hybrid, we use SMPC to simulate the MPC messages in steps 1, 2, and 5. In
particular, we have the following hybrid simulator Sim2 that differs from the real protocol
execution in the following ways:

– Similar to the real world, Sim2 is allowed to see the inputs of all parties.
– In step 1 of MPC, Sim2 first generate random kEnc-sparse vectors {ai2,i3}i2,i3 , then run
SMPC for GenVec with these vectors as outputs.

– In step 2 of MPC, Sim2 first execute GenKeyShares on its own to get the key shares of
{ki1}i1 as outputs, then run SMPC for GenKeyShares with these outputs.

– In step 5 of MPC, Sim2 will compute the final shares {JstL,i2Kℓ,i3}i2,i3,ℓ as in the real
world, then run SMPC for FinalRec with these shares as inputs and the circuit evaluation
C(x) as output.

Hyb1 ≈c Hyb2: There are two differences compared to Hyb1. The first is that we swapped out
the real messages in steps 1,2,5 of the protocol execution for simulated messages, generated
by SMPC. This change is indistinguishable due to the guarantee of SMPC. The second is that
in step 5, we invoke SMPC for simulating FinalRec with the evaluation C(x) as output. By
Lemma 6.3, this will be the correct output of FinalRec with probability 1− negl(λ); hence the
second change is also indistinguishable.
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Simulator Sim for sublinear MPC

Primitives. Simulator SMPC for the generic MPC protocol required in Figure 4.
Inputs. Layered Boolean circuit C, circuit input x := x1∥ . . . ∥xN , and circuit evaluation C(x).
Output. The simulated view of the corrupted parties C ⊊ [N ] which consists of their inputs
{xi}i∈C and randomness {ri}i∈C , the evaluation C(x), and simulated messages received from
the honest parties.

1. Initialize the simulated view. Set SimView = ⊥.

2. Simulate MPC for coefficient vectors. Sample {ai2,i3}i2∈[W ],i3∈[κ] from the prescribed
distribution generated by GenVec. Then, run simulator SMPC for GenVec, which takes no
input and returns output {ai2,i3}i2∈[W ],i3∈[κ]. We concatenate SMPC’s output to SimView.

3. Simulate MPC for generating key shares. For each i1 ∈ [L], i3 ∈ [κ],
run AdSS.Share(0nHSS) → {J0Kℓ,i3}ℓ∈[N ] and HSS.Share(0nHSS) → {sh0i1,i3,ℓ}ℓ∈[N ].
Then, run simulator SMPC for GenKeyShares with the output for corrupted parties
{J0Kℓ,i3 , sh

0
i1,i3,ℓ}i1∈[L],i3∈[κ],ℓ∈C . We concatenate SMPC’s output to SimView.

4. Simulate sharings of inputs. For each honest party ℓ ̸∈ C, run AdSS.Share(0|xℓ|) →
{Jst1,i2,ℓKℓ′,i3}i2∈[n],i3∈[κ],ℓ′∈[N ]. Concatenate the shares coming from the honest parties to
the corrupted parties {Jst1,i2,ℓKℓ′,i3}i2∈[n],i3∈[κ],ℓ/∈C,ℓ′∈C to SimView.

5. Simulate encryptions in each layer. For each honest party ℓ /∈ C, each layer i1 ∈ [L− 1],
and each i2 ∈ [wi1 ], i3 ∈ [κ], we simulate cti1,i2,i3,ℓ by sampling it uniformly from {0, 1}.
We concatenate these simulated ciphertexts to SimView.

6. Simulate final MPC. Perform computation for the corrupted parties to produce the final
shares {JstL,i2Kℓ,i3}ℓ∈C,i3∈[κ]. Run simulator SMPC for FinalRec, which takes these shares
as inputs and returns output C(x). We concatenate SMPC’s output to SimView.

7. Output SimView.

Figure 6: Simulator for sublinear MPC
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• {Hyb2i+1,Hyb2i+2}i∈[L]: In these sequences of hybrids, we will switch out the shares of the
key kL+1−i and the partial ciphertexts ctL+1−i,i2,i3,ℓ one by one, starting from the bottom
layer. In particular, in Hyb2i+1, we have a hybrid simulator Sim2i+1 that differs from the
previous simulator Sim2i as follows:

– Instead of sampling the (L + 1 − i)th key kL+1−i at random, then generate additive
and HSS shares of kL+1−i, Sim2i+1 will generate additive and HSS shares of the all-zero
vector 0nEnc . The shares for corrupted parties {J0Kℓ,i3 , sh

0
L+1−i,i3,ℓ}i3∈[κ],ℓ∈C will be used

for the rest of the MPC computation.

Hyb2i ≈c Hyb2i+1: this follows from the security of HSS and the privacy of additive secret
sharing. Namely, the following distributions are computationally indistinguishable:

{JkL+1−iKℓ,i3 , shL+1−i,i3,ℓ}i3∈[κ],ℓ∈C ≈c {J0Kℓ,i3 , sh
0
L+1−i,i3,ℓ}i3∈[κ],ℓ∈C .

This implies that any other MPC computation relying on these shares will give indistin-
guishable outputs as well.

Similarly, in Hyb2i+2, we have a hybrid simulator Sim2i+2 that is the same as Sim2i+1, except
that the partial ciphertexts {ctL+1−i,i2,i3,ℓ}i2∈[wL+1−i],i3∈[κ],ℓ/∈C coming from honest parties for
the (L+ 1− i)th layer are chosen uniformly from {0, 1}.
Hyb2i+1 ≈c Hyb2i+2: this follows from two observations. First, in the previous hybrid we
have replaced the key shares for the (L + 1 − i)th layer, so we can consider the partial ci-
phertexts as being encrypted under a random key. We then observe that ciphertexts of our
sLPN-based encryption scheme under random keys are uniformly random element of {0, 1}.

• Hyb2L+3: In this hybrid, we switch out the sharings of inputs from honest parties to be
sharings of the all-zero strings. Namely, the hybrid simulator Sim2L+3 in this step follows
step 4 of the simulator Sim.

Hyb2L+2 ≈c Hyb2L+3: this follows from the privacy of additive secret sharing.

Finally, note that the hybrid simulator Sim2L+3 is exactly the same as the simulator Sim. This
finishes the proof.
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A A brief Survey of the Sparse LPN assumption

A.1 Cryptanalysis against Linear Tests

In this section, we provide cryptanalysis of the sparse LPN assumption based on the state-of-the-
art attacks, which was beautifully summarized in [CRR21]. In particular, all known attacks on
sparse LPN (over an arbitrary finite field F) fall into the linear test framework, wherein an adver-
sary distinguishes sparse LPN samples from random by measuring the bias of an (adversarially
chosen) linear combination of the samples.13 Under this framework, it can be shown that the best
currently known distinguishing attacks for sparse LPN take time at least min(2Õ(d), 2Õ(η·n)) where
d is the dual distance of the coefficient matrix A (see Definition A.1), n is the dimension of the
secret and η is the noise probability.

Thus, when m = n1+(k/2−1)(1−δ) for some δ ∈ (0, 1), then the dual distance of the matrix A
with high probability can be shown to be at least Ω̃(nδ) with high probability. See Lemma A.1 for
the precise statement.

Definition A.1 (Dual Distance). Let F be a finite field and n < m be natural numbers. The dual distance
of a matrix A ∈ Fn×m, denoted dd(A), is defined to be the distance of the dual code H ∈ F(m−n)×m (such
that AT ·H = 0).

In the following, we denote by SpMat(n,m, k) the set of n×m matrices where each column is
exactly k-sparse (over some finite field F which is implied by the context).

Lemma A.1 (Most sparse matrices have large dual distance). For a fixed finite field F, given any
k = k(n) ≥ 3,m = m(n) ≥ n, there exist a constant α > 0,14 such that for large enough n, letting

t =
(
m
n

) 1
k/2−1 , we have

Pr

[
dd(A) ≤ 1

e
· n
kt

∣∣∣∣A← SpMat(n,m, k)

]
< α

(
2kt

n

)k−2

.

Note that Lemma A.1 is a generalization of [CRR21, Theorem 7], handling the case of arbitrary
m instead of m = c · n for some constant c > 0. From this lemma, we can deduce that sparse
LPN is secure in our parameter regime of k ∈ (ω(1), O(log n)), m = poly(n), and η = 1/nδ for
any constant δ ∈ (0, 1), since the right-hand side of the above inequality becomes negl(n), and
conditioned on this negligible probability not happening, any linear test takes time at least 2Õ(η·n)

which is sub-exponential in n.
We now provide a proof of Lemma A.1 similar to the proof in [CRR21].

Proof. We begin with some definitions. Given a matrix A ∈ Fn×m and a subset S ⊆ [m] of the
columns of A, we define NA(S) = {j ∈ [n] | ∃ i ∈ S such that Ai,j ̸= 0} to be the set of row

13For a precise statement, see [CRR21, Definition 5].
14A crude upper bound from our proof gives α < 335.

40



neighbors of S in A. We say that A is (d, α)-expanding if for every subset S ⊆ [m] of the rows of
A with |S| ≤ d, it holds that |NA(S)| > α · |S|. By an existing argument in [CRR21], we know
that dd(A) ≤ d implies A is not (d, k/2)-expanding. Thus, it suffices to upper bound the latter
probability for a random column k-sparse matrix A.

Consider a random column k-sparse matrix A ∈ Fn×m, where m = C ·nc for constants C, c > 0.
Given a s-size subset S ⊂ [m] and a ks/2-size subset T ⊂ [n], the probability that the neighbors of
S in A are contained inside T is at most

(
ks
2n

)ks. Applying a union bound over all sets S and T ,
with |S| = s ∈ [2, d], we have:

Pr[A is not (d, k/2)-expanding] ≤
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< 167 ·
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In the above, the second inequality is due to the fact that
(
a
b

)
≤
(
ea
b

)b, and the last inequality is due
to the calculation

e
k/2+1
k/2−1 ·

(
k

2

) k/2
k/2−1

≤ e5 ·
(
3

2

) 1
3/2−1

· k
2
< 167 · k for all k ≥ 3.

Let N = n
kt , and consider the function f(s) = (s/N)s(k/2−1). We have that f ′(s) = (k/2 −

1)f(s)(log(s/N) + 1) < 0 for all s < N/e, hence f(s) is decreasing for all s < N/e. We can
now bound the sum (ignoring the constant factor), by splitting it into three types of summands:

• For s = 2, we have the term (2/N)k−2.

• For s = 3, 4, . . . , log2N − 1, we have the upper bound

log2 N−1∑
s=3

(s/N)s(k/2−1) < (3/N)3(k/2−1) · log2N

= (2/N)k−2 ·
[
(3/2)k−2 · (3/N)k/2−1 · log2N

]
< (2/N)k−2 (for N large enough).
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• For s = log2N, . . . , N/e, we have the upper bound

N/e∑
s=log2 N

(s/N)s(k/2−1) <

(
log2N

N

) log2 N
N

(k/2−1)

·N/e

<

(
1

N logN

)k/2−1

·N/e = negl(N).

Putting together the bounds, we get the desired result.

A.2 PKE from Sparse LPN

The celebrated work of Applebaum, Barak and Wigderson (ABW) [ABW10] showed how to con-
struct a public-key encryption scheme from k- sparse LPN for a constant k ≥ 3 (their scheme
worked with a constant k = 3, but it could be generalized to any constant k). A unique feature
of this scheme is that the noise probability could be higher that o(n−0.5), which is the feature of
Alekhnovich’s scheme from the dense variant of LPN [Ale03].

The main idea of the ABW scheme is that the public key is simply a matrix A ∈ Fn×m
2 where

the columns are chosen at random to be distinct exactly k sparse vectors over Fn
2 . The number of

samples m is chosen to be a polynomial in n so that m = n1+(k/2−1)(1−δ) for a tunable constant
δ > 0 that is going to affect the noise probabiltiy we choose. The encryption of the message 1 can
be set to be a random vector over Fm

2 , while to encrypt 0, we simply publish a sparse LPN sample
b = sA + e mod 2. The error here is chosen to be sparse, where each coordinate is chosen to be
non-zero with probability n−δ′ for some δ′ barely bigger than δ. To decrypt, the main observation
is that with m = n1+(k/2−1)(1−δ), there exist lots of short vectors v of Hamming weight bounded
by Õ(nδ) so that Av = 0. Therefore, such a v can be used to decrypt the ciphertext as b = sA+ e
when multiplied with v is ⟨e,v⟩. When e is chosen sparsely with noise probability n−δ′ for δ′ > δ,
for these parameters, this inner product with high probability will be 0. For an encryption of 1,
this will be random. ABW then argue that such “secret keys” can be sampled along with A.

The beauty of this is that one can choose δ > 0 arbitrarily and work with an arbitrary error
rate n−δ, that could be much higher than Alekhnovich’s error probability. In a (not so) surprising
coincidence, [FKO06] showed that under the same parameter for which the ABW scheme works,
we can construct non-deterministic polynomial time refutations for sparse LPN. In this setting,
we want to give a short polynomial sized certificate for a ciphertext b being random, and being far
from the LPN distribution sA + e. For our HSS constructions, we can work with an error proba-
bility n−δ for arbitrary δ > 0 and at the same time our sample complexity could be set to be much
smaller than n1+(k/2−1)(1−δ) assuming k is a large enough constant (or an arbitrary polynomial in n
if k = ω(1)). These parameters are neither known to imply PKE nor non-deterministic polynomial
time refutations.

B HSS construction from FHE

We give a simple construction of an HSS scheme with (1− t/N) download rate, assuming an FHE
scheme with certain properties. In particular, let FHE be a FHE scheme satisfying:

• ct and s are vectors in some finite field Fq,

• the decryption Dec(ct, s) is linear in s and outputs y∆+ e, where e is noise of at most poly-
nomial norm, and ∆ is a scaling factor larger than the noise,
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• the output y may contain up to (log q − log∆) bits.

Using such an FHE scheme, we get the following simple HSS construction:

1. An input x ∈ Fq is split into shares {(ct(x), sj)}j∈[N ] where ct(x) is an FHE ciphertext of x
and (s1, · · · , sN ) is a secret sharing of the secret key s using an arbitrary linear secret sharing
scheme LSS over Fq.

2. To compute a function f , each server homomorphically evaluate f on ct(x) to obtain a ci-
phertext of the output ct(y), followed by yj = Dec(ct(y), sj).

3. Upon collecting all output shares {yj}j , one obtains the noisy output y∆+e using the recon-
struction procedure Rec of LSS as follows:

Rec(y1, · · · , yN ) = Rec(Dec(ct(y), s1), · · · ,Dec(ct(y), sN ))

= Dec(ct(y),Rec(s1, · · · sN )) = Dec(ct(y), s) = y∆+ e

Since this scheme is compatible with any LSS and LMSS, when instantiated with the multi-secret
Shamir sharing [FY92], it achieves a rate of 1− t/N . The only caveat, like our HSS scheme, is that
the output of this scheme is also noisy. Nevertheless, the ratio between the bit length of y and log q
approaches 1 if log q is sufficiently larger than log e = O(log λ).
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