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Abstract11

We present new lower and upper bounds on the number of communication rounds required for12

asynchronous Crusader Agreement (CA) and Binding Crusader Agreement (BCA), two primitives13

that are used for solving binary consensus. We show results for the information theoretic and14

authenticated settings. In doing so, we present a generic model for proving round complexity lower15

bounds in the asynchronous setting. In some settings, our attempts to prove lower bounds on round16

complexity fail. Instead, we show new, tight, rather surprising round complexity upper bounds for17

Byzantine fault tolerant BCA with and without a PKI setup.18
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1 Introduction22

Agreement problems are at the core of many distributed systems, finding applications in repli-23

cated and reliable systems, transactional systems, cryptocurrencies, and more. It is therefore24

not surprising that they have gained a lot of attention in the research community, with tens of25

papers written about agreement problems each year. A key metric of the performance of many26

distributed tasks, agreement problems included, is their round complexity, or, intuitively,27

the number of sequential network round trips required to solve the task. In practice, round28

complexity often translates directly to latency, since communication over distributed networks29

is slow and forms a major bottleneck in many systems [2, 3, 10, 18, 20, 25, 26, 27, 28].30

Arguably the most important and well-known agreement problem, called consensus,31

requires all non-faulty parties to unanimously agree on the same valid input value. Unfortu-32

nately, a seminal result of Fischer, Lynch and Paterson shows that no consensus algorithm can33

guarantee termination in an asynchronous failure-prone system [16]. Interestingly, however,34

weaker agreement problem variants can be solved in such systems, and can be sufficient for35

many applications.36

In one such problem, known as Crusader Agreement, all parties receive an input, and non-37

faulty parties must output either one of the input values or a special value ⊥. All non-faulty38

parties outputting a non-⊥ value must agree, and are only allowed to output ⊥ if there were at39

least two unique input values among the non-faulty parties [11]. This weakening of consensus40

can be quite powerful; intuitively, if a non-⊥ decision represents an action, it ensures that no41

conflicting actions will be taken by non-faulty parties. Furthermore, CA and its variants42

have been used as subroutines to solve consensus in randomized protocols [1, 5, 6, 8, 24].43
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Our contributions44

In this paper, we focus on the Crusader Agreement (CA) problem, and present an in-depth45

study of the achievable round-complexity of the problem and its variants. In particular,46

we consider classic CA, as well as two important variants: Binding Crusader Agreement47

(BCA) and Graded (Binding) Crusader Agreement (G(B)CA). In BCA, crusader agreement48

must be solved, but with the additional requirement that at the time at which the first49

non-faulty process decides its output, there exists a non-⊥ value v such that no non-faulty50

party can output a different non-⊥ value in any continuation of the execution. Intuitively,51

the adversary is bound to one non-⊥ output value and cannot adaptively affect outputs52

based on future knowledge. This property has recently been shown to be crucial for solving53

randomized consensus an an asynchronous setting [1]. In GBCA, in addition to binding,54

confidence levels or grades are introduced, so that parties outputting a non-⊥ value do so55

with a grade 1 or grade 2 label, with the guarantee that if any non-faulty party outputs v56

with grade 2, no non-faulty party outputs ⊥. This variant of CA is also useful in solving57

randomized consensus [1]. For all of these problems, we present lower and upper bounds on58

their round complexity in the asynchronous model, considering both crash and Byzantine59

failures. We consider networks with n parties and f faulty parties.60

The lower bounds for crash-resilient protocols specifically deal with protocols in which61

the adversary can adaptively choose the inputs of some of the parties when it schedules their62

first actions. While this notion of adaptive inputs might seem unnatural, when using binding63

crusader agreement protocols to construct consensus protocols, it is advantageous to use64

protocols that are also secure when the adversary is able to choose inputs adaptively, both65

in terms of efficiency and simplicity. For further discussion on this topic, we refer the reader66

to Appendix D.67

We first show that binding crusader agreement (BCA) requires 2 rounds if f parties can68

crash and 2f + 1 ≤ n ≤ 3f in the adaptive input setting.69

▶ Theorem 1. It is impossible to solve crash fault tolerant BCA in 1 round when 2f + 1 ≤70

n ≤ 3f , and the adversary can adaptively choose the inputs of the parties.71

We next turn to more complex lower bounds showing tasks where at least 3 rounds are72

required. First, we show that at least 3 rounds are required for crash-fault resilient graded73

binding crusader agreement (GBCA) if 2f + 1 ≤ n ≤ 3f in the adaptive input setting.74

▶ Theorem 2. It is impossible to solve crash fault tolerant GBCA in 2 rounds when 2f + 1 ≤75

n ≤ 3f , and the adversary can adaptively choose the inputs of the parties.76

Protocols solving crash-fault tolerant BCA in 2 rounds and crash-fault tolerant GBCA in77

3 rounds have been constructed in [1], showing that these lower bounds are tight.78

Next, we show that at least 3 rounds are required for solving Byzantine-fault tolerant79

crusader agreement (CA) if there is no PKI setup and 3f + 1 ≤ n ≤ 4f .80

▶ Theorem 3. It is impossible to solve Byzantine fault tolerant CA in 2 rounds when81

3f + 1 ≤ n ≤ 4f without PKI.82

We also show that this lower bound is tight in Theorem 15. Lastly, we show that the83

same bound holds for Byzantine-fault tolerant binding crusader agreement (BCA) if there is84

a PKI setup and f ≥ 2, 3f + 1 ≤ n ≤ 4f .85

▶ Theorem 4. It is impossible to solve Byzantine fault tolerant BCA in 2 rounds with PKI86

when 3f + 1 ≤ n ≤ 4f and f ≥ 2.87
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The lower bounds are first proven for one (or two) failures and then generalized to an88

arbitrary number of failures. Somewhat surprisingly, for our lower bounds that start with89

f = 2, the generalization to arbitrary f > 2 requires a non-trivial argument, requiring both90

a stronger lower bound for the f = 2 case and a more intricate method of generalization91

(see Appendix C).92

Our Contributions: Upper Bounds93

While thinking through the aforementioned lower bounds, some bounds seemed elusive and94

quite hard to achieve. This led us to the discovery of some surprising upper bounds. For95

example, the final lower bound described in the previous section looks suspiciously different96

from the other bounds: it only holds when f ≥ 2. It turns out that the reason a more general97

lower bound couldn’t be constructed is that there exists a protocol solving Byzantine-fault98

tolerant binding crusader agreement in 2 rounds if there is a PKI setup and n = 4, f = 1!99

Following this discovery, we constructed two more protocols that work for a small number of100

parties but don’t seem to obviously generalize to any n and f . More precisely, we construct101

protocols solving Byzantine-fault tolerant binding crusader agreement in 3 rounds without a102

PKI setup for n = 4, f = 1 and for n = 7, f = 2. The resulting protocol is also a 3-round103

Byzantine-fault tolerant crusader agreement protocol for any n, providing a matching upper104

bound to one of above lower bounds.105

A key insight to constructing these protocols is to design them to be as patient and106

conservative as possible. By conservative, we mean that parties output a non-⊥ value only107

if they have to. More concretely, they output the value v only if they see that their view108

could have been generated in a run in which all nonfaulty parties had the input v. In this109

case, parties must output v; otherwise, they may violate the validity of the protocol in some110

run. In all other cases, parties output ⊥. By patient, we mean that parties wait and output111

a value only when they absolutely have to. More precisely, we aim to have parties output112

a value only when their view could have been generated in a run of the protocol in which113

they may not receive any more messages. Clearly, if they do not output a value at that114

point, there is a run in which they never output a value. This allows us to gather as much115

information as possible before parties output some value.116

A somewhat surprising realization is that many protocols aren’t as patient as they are117

allowed to be. For example, many protocols simply wait to hear n − f messages in a given118

round before proceeding to the next. On the other hand, patient protocols could wait for119

even more information. For example, in the second round of the protocol, parties could120

wait to hear both round 1 and round 2 messages from the same n − f parties, and for each121

others’ reports to be consistent. From our upper bounds it seems like these conditions can be122

quite intricate and potentially very expensive to compute for large values of n. As such, we123

don’t suggest these protocols as realistic upper bounds, but rather almost as an impossibility124

result, showing that a lower bound cannot be constructed for these cases. In further work,125

we hope to either show that these upper bounds are general, or that a lower bound can be126

constructed for some f ≥ 3.127

Related Work128

It is well known that there are many impossibility results and lower bounds on distributed129

protocols [22]. Early results in the field show lower bounds on the round complexity in130

synchronous networks. For example, Fischer and Lynch show that f + 1 rounds are needed to131

reach Byzantine consensus in [15]. This lower bound was later generalized to authenticated132
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protocols in [9] and [13]. In addition, similar lower bounds have been shown for synchronous133

crash-resilient consensus [4, 14]. Bounds are also known on early-stopping consensus, showing134

that at if the number of actually faulty parties is smaller than the corruption threshold, the135

number of needed rounds is at least 2 more than the number of corrupted parties [12].136

On the other hand, fewer lower bounds are known on the round complexity of asynchronous137

protocols. The FLP result [16] shows that no deterministic consensus algorithm exists in an138

asynchronous system, even in the face of a single crash failure. More precisely, the proof139

shows that any consensus protocol in this setting has an infinite execution, essentially showing140

that the round complexity of such protocols is infinite. Similarly, the CAP theorem states141

that no distributed database can have consistency, availability and resilience to network142

partitioning [17, 23].143

2 Model & Definitions144

2.1 Model145

Network146

This work deals with a network of n parties connected via point-to-point communication147

channels. The network is asynchronous, meaning that there is no bound on message delay,148

but every message is eventually delivered in finite time. We assume that the point-to-point149

channels deliver messages in a FIFO order. The means that if a party sends a message m150

and then a message m′ to the same party, the messages are delivered in that order. This can151

be enforced by simply adding a counter to each message, signifying when it was sent.152

We model message delivery as being controlled by an adversary that can choose any153

delivery schedule as long as all messages are eventually delivered. We consider two types of154

faults in this work: crash and Byzantine faults. In networks with crash faults the adversary155

may cause up to f parties to crash, meaning that those parties do not take any further actions156

(including receiving or sending messages). On the other hand, in networks with Byzantine157

faults the adversary can control up to f parties and cause them to deviate arbitrarily from158

the protocol.159

Finally, when we say that a network has a PKI setup, we mean that each party has a160

well-known public key and a private key that allow it to sign messages. Every party can use161

the public key to check that a message was indeed sent by a given party. In addition, parties162

can forward received messages with their signatures, proving that the message was indeed163

sent by the signing party.164

Asynchronous Rounds165

In the synchronous setting, rounds are very clearly defined using the bound ∆ on message166

delivery. Defining the notion of round complexity for asynchronous protocols is less straight-167

forward [7, 19, 21], and we follow [21]. We use the idea of “causal chains” in our definition of168

asynchronous round complexity. Intuitively, we can think of chains of messages, with each169

message being sent as a result of receiving previous messages. When a message is sent, it170

lengthens its chain by 1, and it is considered a round k message if its chain is of length k.171

When mapping this behaviour to synchronous systems, all of the messages that are sent172

without receiving any message will be sent in round 1. Round 2 messages will be sent after173

receiving round 1 messages, etc.174

More precisely, if a message is sent in the beginning of the protocol without receiving any175

other message, we consider it to be a round 1 message. If a message is sent by a nonfaulty176
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party as a result of receiving all messages in a set M , we consider it a round k + 1 message,177

where k is the maximal round number for nonfaulty messages in M (or k = 0 if there is no178

such message). We say that a party is in round k if it sent or received at least one round k179

message, and did not send or receive any higher-round message.180

Using this notion of round complexity, we can define a k-round protocol:181

▶ Definition 5 (k-Round Protocol). A protocol is a k-round protocol if all honest parties182

decide a value after at most k rounds.183

Note that it is possible that protocols never terminate or do not have a bound k on the184

number of rounds. If this happens, these protocols can be defined as having infinite round185

complexity, but we deal only with finite round complexity protocols in this work.186

Adaptive Inputs187

We say that an adversary can choose inputs adaptively if parties only have their inputs188

defined by the adversary at the moment they start participating in the protocol. When189

dealing with binding protocols, to be defined below, this means that the binding values can190

only depend on the state of the nonfaulty parties that started participating in the protocol191

at that time, and cannot depend on the inputs of parties that haven’t started participating192

in the protocol.193

2.2 Definitions194

We start by defining the different tasks for which we have constructed lower and upper195

bounds. In this work we only consider protocols in which parties decide on values but196

continue sending messages even after their decision. This is a very common technique in the197

design of asynchronous protocols, allowing parties to help each other even after they have all198

the information needed to complete the protocols.199

▶ Definition 6 (Crusader Agreement (CA)). In a Crusader Agreement protocol, each party200

has either 0 or 1 as an input, and parties decide either 0, 1 or ⊥. A Crusader Agreement201

protocol has the following properties:202

(Agreement) If two nonfaulty parties decide values x and y, then either x = y or one of203

the values is ⊥.204

(Validity) If all nonfaulty parties have the same input, then this is the only possible205

decision for nonfaulty parties.206

(Termination) All nonfaulty parties eventually decide.207

To be able to implement CA with an optimal tolerance to crash faults, we must weaken208

its validity property to the following:209

(Weak Validity) If all parties have the same input v, then all nonfaulty parties decide210

v.211

▶ Definition 7 (Graded Crusader Agreement (GCA)). In a Graded Crusader Agreement212

protocol, each party has either 0 or 1 as an input, and parties decide on pairs (v, g) such that213

v ∈ {0, 1, ⊥}, g ∈ {0, 1, 2} and v = ⊥ if and only if g = 0. A Graded Crusader Agreement214

protocol has the following properties:215

(Graded Agreement) If two nonfaulty parties decide on the pairs (v, g), (v′, g′), then216

|g − g′| ≤ 1 and if v ̸= v′, either v = ⊥ or v′ = ⊥.217

(Validity) If all nonfaulty parties have the same input v, then all nonfaulty parties218

decide (v, 2).219
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(Termination) All nonfaulty parties eventually decide.220

We define crash fault tolerant CA by weakening the validity property as with the non-221

graded version. We are also interested in the binding versions of both of these protocols.222

These protocols add an additional requirement that once the first nonfaulty party completes223

the protocol, the decision values are “bound”. In a BCA protocol this means that even if the224

first party decides ⊥, at that time we know which is the only possible non-⊥ decision value.225

▶ Definition 8 (Binding Crusader Agreement (BCA)). A Binding Crusader Agreement protocol226

has all of the properties of a Crusader Agreement protocol as well as the following property:227

(Binding) At the time at which the first nonfaulty party to decide decides on a value,228

there exists a value b ∈ {0, 1} such that no nonfaulty party decides 1 − b in any extension229

of this execution.230

Note that the binding property is only interesting in the case that the nonfaulty party231

referred to in the definition decided ⊥. Otherwise, it trivially follows from agreement. Like232

in the binding definition of crusader agreement, once the first nonfaulty party decides on a233

value in a graded binding crusader agreement protocol, there is only one non-⊥ value that234

can be output from the protocol (with some grade).235

▶ Definition 9 (Graded Binding Crusader Agreement (GBCA)). A Graded Binding Crusader236

Agreement protocol has all of the properties of a Graded Crusader Agreement protocol as well237

as the following property:238

(Graded Binding) At the time at which the first nonfaulty party to decide decides on a239

value, there exists a value b ∈ {0, 1} such that no nonfaulty party decides either (1 − b, 2)240

or (1 − b, 1) in any extension of the protocol.241

We define crash fault tolerant BCA and GBCA by weakening the validity property as242

with the non-graded version.243

3 Lower Bounds244

General Proof Approach.245

Each of the presented lower bounds is proven in two steps. We start by proving a lower246

bound for a small number of parties, setting f to be 1 or 2. We then generalize these proofs247

in Appendix C. We show that if a protocol exists for some larger values of n and f , then248

such a protocol exists for the n and f for which we proved the original lower bound with the249

same round complexity. This is done by assuming that more general protocols exist, and250

showing that parties can simulate these protocols in the original settings (with a smaller251

number of parties).252

For the proof of each lower bound, we construct a series of worlds. The worlds are253

constructed strategically to show that a party must take a certain action because their view254

is indistinguishable from another world where taking a different action would violate some255

property. In particular, we show indistinguishability with worlds where (1) all (nonfaulty)256

parties start with the same value, so deciding a different value would result in a violation of257

validity, and (2) all nonfaulty parties have sent all possible messages, so waiting for additional258

messages before deciding would result in a violation of termination. We put the descriptor259

“nonfaulty” in parenthesis where relevant due to the difference in the validity condition for260

crash and Byzantine fault tolerant protocols. To give the reader a hint as to the purpose of261

each world in our proofs, we add certain labels to the worlds.262
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We now describe the labels. In an x-validity world, all (nonfaulty) parties have input263

value x. In a false x-validity world, the view of some (nonfaulty) party is the same as in an264

x-validity world, causing them to decide a non-⊥ value (and grade 2, where relevant) even265

though all (nonfaulty) parties did not have the same input values. In a maximally patient266

world, a party receives all the messages that will be sent to them by nonfaulty parties, and267

therefore must decide without waiting for additional messages that depend on the actions268

of faulty parties. For the maximally patient label, we also indicate the party that crashes,269

meaning another party cannot wait for messages that depend on this party before deciding270

without violating termination. In a false maximally patient world, a nonfaulty party’s271

view is the same as in a maximally patient world, so they decide before receiving all of the272

messages sent by nonfaulty parties. As previously mentioned, our proofs generally proceed273

by constructing a chain of worlds, where there are “validity worlds” on opposite ends, and in274

the middle of the chain some property (binding or agreement) is violated. We indicate when275

a world is symmetric to another previously-described world on the opposite end of the276

chain. We use the labels binding violation and agreement violation to indicate worlds277

in which the properties of binding and agreement are violated, respectively.278

In addition to using labels, we separate the description of each world into two bullets.279

The first bullet indicates the messages sent by the parties and any message delays or specific280

orderings where needed. The second bullet indicates the view of one or more nonfaulty281

parties and the actions they take accordingly.282

3.1 Results283

For our first result, we start with a simple 1 round lower bound for crash fault tolerant BCA284

with adaptive inputs.285

▶ Theorem 1. It is impossible to solve crash fault tolerant BCA in 1 round when 2f + 1 ≤286

n ≤ 3f , and the adversary can adaptively choose the inputs of the parties.287

We show a proof for a network of three parties: p1, p2, and p3. Our ultimate goal is288

to build up to World 4, in which binding is violated. In World 4, a party decides while289

p3 lags behind; after this, the adversary adaptively chooses the input of p3 and forces p3290

to decide 1 or 0 after a party has already decided. In order to show why p3 decides 1 or291

0 in those executions, we show indistinguishability from World 1 or World 2, where all292

parties start with input 1 or 0, respectively. In those worlds, p3 must decide 1 or 0 in order293

to not violate validity. To show why the first-deciding party decides in World 4 without294

waiting for any messages from p3, we show indistinguishability from World 3, in which p3295

crashes without sending any messages. In World 3, parties cannot wait for messages that296

are dependent on p3 before deciding, as this would result in a violation of termination.297

298

3 party proof. World 1 (1−validity, maximally patient for p2 crash):299

p1 and p3 are nonfaulty. p2 crashes immediately. All parties have input 1.300

p1 and p3 must decide 1 after receiving each other’s messages without waiting for any301

additional messages by validity and termination.302

World 2 (0−validity, maximally patient for p1 crash):303

p2 and p3 are nonfaulty. p1 crashes immediately. All parties have input 0.304

p2 and p3 must decide 0 after recieving each other’s messages without waiting for any305

additional messages by validity and termination.306
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World 3 (maximally patient for p3 crash):307

p1 and p2 are nonfaulty. p3 crashes immediately. p1 and p3 start with inputs 1 and 0308

respectively.309

p1 and p2 must decide after receiving each other’s messages without waiting for any310

additional messages by termination.311

World 4 (false maximally patient, false validity, binding violation):312

p1, p2, and p3 are nonfaulty. p1 starts with input 1 and p2 starts with input 0; p3 lags313

behind, and its input will be adaptively chosen later. p1 and p2’s messages are delivered314

to each other, so they decide due to indistinguishability from World 3. The adversary315

now chooses one of the following extensions:316

1. p3 has input value 1. p1’s messages are delivered to p3, and p2’s messages are only317

delivered after p3 decides.318

2. p3 has input value 0. p2’s messages are delivered to p3, and p1’s messages are only319

delivered after p3 decides.320

In extension 1, p3 outputs 1 due to indistinguishability from World 1; or in extension 2,321

p3 outputs 0 due to indistiguishability from World 0. This constitutes a binding violation,322

as we show that both 1 or 0 are possible values that p3 decides after another party has323

already decided. Note that this does not imply a violation of agreement, as it is possible324

for the party (or parties) deciding before p3 to decide ⊥.325

◀326

We now present our second result in the crash case: a 2 round lower bound for GBCA.327

▶ Theorem 2. It is impossible to solve crash fault tolerant GBCA in 2 rounds when 2f + 1 ≤328

n ≤ 3f , and the adversary can adaptively choose the inputs of the parties.329

We show a proof using a network of three parties: p1, p2, and p3. Our approach is to330

build up to a world, World 3, in which there is a violation of binding. The strategy of the331

adversary to violate binding is as follows. First, p1 is forced to output before p3’s input value332

is chosen. Then, the adversary chooses p3’s input and forces them to decide 1 or 0, thus333

breaking binding. To show how the adversary has p3 decide 1 or 0 in World 3, we present 2334

symmetric sets of 3 worlds. Each set consists of the following three types of worlds:335

1. A validity world showing why a party must decide a non-⊥ value with grade 2336

2. A world where one of the parties crashes337

3. A world that is both indistinguishable from the first type of world for some party other338

than p3 (meaning that it decides a non-⊥ value with grade 2) and indistinguishable from339

the second type of world for p3, showing why p3 decides the non-⊥ value that it does (so340

as not to violate graded agreement) in each extension of World 3 without waiting for341

more messages (so as not to violate termination).342

For ease of exposition, we include only the worlds described in point 3 above (World 1 and343

World 2) in the main proof of this theorem. We separate the indistinguishability arguments344

and the corresponding worlds into two lemmas: Lemma 10 and 12. Apart from the 2 sets of345

3 symmetric worlds described above, and World 3 in which binding is broken, we construct346

an additional world to show why p1 decides in World 3 while p3 lags behind. This world347

and the corresponding indistinguishability argument are proven separately in Lemma 13.348

We provide the proof of the first lemma after the proof of Theorem 2 and refer the reader349

to Appendix A for similar proofs of the next two lemmas.350
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3 party proof. In the description of the following worlds, we only describe the runs until a351

specific point, and have some arbitrary message scheduling following that.352

353

World 1 (false 1-validity, false maximally patient):354

p1, p2, and p3 are nonfaulty. p1 and p3 have input 1, while p2 has input 0. Initially, p1’s355

round 1 messages are delivered to p2 and p3, and then p3’s round 1 messages are delivered356

to p1 and p2. Following that, any round 2 messages that p1 sends are delivered to p2, and357

any of p3’s round 2 messages are delivered to p1 and p2. From this point on, p2 and p3’s358

messages are delivered to each other without delay.359

By Lemma 10, p3 decides without waiting for additional messages, and its output is of360

the form (1, g) such that g ∈ {1, 2}.361

World 2 (false 0-validity, false maximally patient, symmetric to World 1):362

p1, p2 and p3 are nonfaulty. p1 has input 1, and p2 and p3 have input 0. Initially, p2’s363

round 1 messages are delivered to p1 and p3, and then p3’s round 1 messages are delivered364

to p1 and p2. Following that, any round 2 messages that p2 sends are delivered to p1, and365

any of p3’s round 2 are delivered to p1 and p2. From this point on, p1 and p3’s messages366

are delivered to each other without delay.367

By Lemma 12, p3 must decide (0, g) for g ∈ {1, 2}.368

.369

World 3 (binding violation, false maximally patient):370

p1, p2 and p3 are nonfaulty. p1 has input 1, p2 has input 0, and p3’s input will be371

adaptively chosen by the adversary based on the value it wants p3 to output after the372

first party to output does so. At the start of the execution, p1 and p2’s round 1 messages373

are delivered to each other, and then any resulting round 2 messages are delivered to374

each other. By Lemma 13, p1 outputs without waiting for any messages that depend on375

p3 at this time. We will now show two extensions of this run, one in which p3 outputs376

(1, g) for some g ∈ {1, 2}, and one in which it outputs (0, g) for some g ∈ {1, 2}, showing377

that the protocol is not binding.378

1. The adversary adaptively chooses input 1 for p3. Following that, p3 receives p1’s round379

1 messages, and then continues communicating freely with p2 without any delays. At380

this point in time, p3’s view consists of round 1 messages from p1 and p2 and any381

round 2 messages from p2 sent as a result as receiving p1’s round 1 messages and then382

p3’s round 1 messages. This view is identical to the one it has in World 1, so p3383

decides (1, g) for some g ∈ {1, 2}.384

2. The adversary adaptively chooses input 0 for p3. Following that, p3 receives p2’s round385

1 messages, and then continues communicating freely with p1 without any delays.386

At this point in time, p3’s view consists of round 1 messages from p1 and p2 and any387

round 2 messages from p1 sent as a result as receiving p2’s round 1 messages and then388

p3’s round 1 messages. This view is identical to the one it has in World 2, so p3389

decides (0, g) for some g ∈ {1, 2}.390

◀391

▶ Lemma 10. In World 1 from the proof of Theorem 2, p3 must decide (1, g) for g ∈ {1, 2}392

without waiting for any round 2 messages from p1.393

Proof. World 1.a) (1-validity, maximally patient for p2 crash):394

p1 and p3 are nonfaulty. p2 crashes without sending any initial messages. All three parties395

start with input 1. p1 and p3 communicate without delay.396
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p1 and p3 must decide (1, 2) without waiting for any messages from p2 by validity and397

termination.398

World 1.b) (maximally patient for p1 crash):399

p1 and p3 have input 1, while p2 has input 0. p1 is faulty, sends round 1 messages,400

which are delivered to both p2 and p3, and then p1 crashes. Following that, p3’s round 1401

messages are delivered to p2. Finally, p2 and p3’s messages are delivered to each other402

without delay.403

Because p1 crashed, p2 and p3 must decide without waiting for any round 2 messages404

sent by p1, by termination.405

We now argue why in World 1 from the proof of Theorem 2, p3 must decide (1, g) such406

that g ∈ {1, 2} without waiting for any round 2 messages from p1. First, we show that p1407

decides (1, 2), in World 1. Observe that p1’s view in World 1 is indistinguishable from408

its view in World 1.a because p1 and p3 have input 1 and they start by exchanging both409

round 1 and round 2 messages. It follows that p1 decides (1, 2), and thus when p3 decides410

some value, it must decide (1, g) such that g ∈ {1, 2} by graded agreement. Next, we argue411

that p3 must decide in World 1 without waiting for any round 2 messages from p1. Observe412

that in World 1, since p1’s messages (apart from any round 1 messages) are delayed for p3,413

p3’s view is indistinguishable from its view in World 1.b. As a result, p3 must not wait for414

any round 2 messages from p1 before deciding so as not to violate termination. Note that p2415

cannot send any messages which rely on p1’s round 2 messages, because this is a 2-round416

protocol, so p3’s view is indeed indistinguishable in both worlds. ◀417

For our third result, we show a lower bound for Byzantine fault tolerant CA without PKI.418

With a Byzantine adversary and no PKI, the faulty parties are able to simulate receiving419

certain messages from nonfaulty parties.420

▶ Theorem 3. It is impossible to solve Byzantine fault tolerant CA in 2 rounds when421

3f + 1 ≤ n ≤ 4f without PKI.422

We present a proof for 4 parties: p1, p2, p3 and p4. In this proof, we build up to World 5423

in which agreement is violated because nonfaulty parties p1 and p4 decide 1 and 0, respectively.424

We start by showing two maximally patient worlds (World 1 and World 2), where one425

party has omission failures and sends its input value message only to one other party. By426

termination, the nonfaulty parties must not wait to hear more messages before deciding. We427

then show two symmetric validity worlds (World 3 and World 4) in which a Byzantine428

party simulates receiving a message from a non-faulty party that it didn’t send. Due to429

indistinguishability from the maximally patient worlds, honest parties must decide without430

waiting for additional messages, but they must decide non-⊥ values by validity. Finally, in431

World 5, the adversary uses a Byzantine p3 to have p1 and p4 decide different non-⊥ values432

using indistinguishability from the previously defined worlds.433

4 party proof. In the following discussion, when we say that parties p1, p2 and p3 have each434

other’s messages delivered, we mean that the party receives its own messages first, and then435

p1’s messages are delivered first, then p2’s and then p3’s (similarly for p2, p3 and p4).436

World 1 (maximally patient for p4 crash):437

All parties except p4 are nonfaulty. p4 crashes immediately without sending any messages.438

p1 and p2 have input 1; p3 and p4 have input 0. p1, p2 and p3 have their round 1 messages439

delivered to each other, and then any round 2 messages that they send as a result are440

delivered to each other.441
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All nonfaulty parties must decide without waiting for any messages dependent on p4.442

World 2 (maximally patient for p1 omission, symmetric to World 1):443

All parties other than p1 are nonfaulty; p1 has omission failures. p1 and p2 have input444

1, while p3 and p4 have input 0. p1 sends round 1 messages as an honest party would445

with input 1 only to party p2, and the messages are delivered first for p2. Following that,446

p2, p3 and p4 have their round 1 messages delivered to each other, and then any round 2447

messages that they send as a result are delivered to each other.448

All nonfaulty parties must decide without waiting for any more messages from p1 by449

termination.450

World 3 (0-validity, false maximally patient, simulation):451

All parties except for p2 are nonfaulty. p2 is Byzantine. p1, p3 and p4 start with 0. p2452

acts as if it started with input 1 and simulates p1 starting with input 1. All messages453

from p1 are delayed to p3 and p4, until they both decide. p2 acts as if it is a nonfaulty454

party with input 1 such that the first message it received was a round 1 message from455

an honest p1 with input 1. Following that, p2, p3 and p4 have their round 1 messages456

delivered to each other, and then any round 2 messages that they send as a result are457

delivered to each other.458

Due to indistinguishability from World 2, p4 decides without waiting for any additional459

messages. By validity, p4 decides 0.460

World 4 (1-validity, false maximally patient, simulation, symmetric to World 3):461

p3 is Byzantine, and the remaining parties are nonfaulty. p1, p2, and p4 start with input462

1; p3 acts as if it nonfaulty and has the input 0. All messages from p4 are delayed to p1463

and p2. p1, p2 and p3 have their round 1 messages delivered to each other, and then their464

round 2 messages delivered to each other.465

Due to indistinguishability from World 1, p1 decides before receiving any messages from466

p4. By validity, p1 decides 1.467

World 5 (agreement violation, false maximally patient, false validity):468

p3 is Byzantine, and the remaining parties are nonfaulty. p1 and p2 have input 1, while469

p3 and p4 have input 0. p3 starts by acting as a nonfaulty party would with input 0.470

Parties p1, p2 and p3’s round 1 messages are delivered to each other, and then any round471

2 message that they sent as a result of receiving the round 1 messages. Following that, p3472

acts as if it did not receive any round 1 messages from p1. Now, p4’s round 1 messages473

are delivered to p2 and p3, and their round 1 messages are delivered to p4. Finally, all474

round 2 messages sent by p2 and p3 are delivered to p4.475

This world is indistinguishable from World 4 for p1 since it exchanged round 1 and476

round 2 messages with parties p2 and p3 with the same inputs without hearing from p4.477

In addition, this world is indistinguishable from World 3 for p4 because p1 acts as if it478

first received round 1 messages from p1 with input 1, and then p2, p3 and p4 exchange479

round 1 and round 2 messages without receiving any further messages from p1. Therefore,480

p1 and p4 decide 1 and 0 respectively, violating the agreement property.481

◀482

For our second lower bound in the Byzantine case, we prove the impossibility of Byzantine483

fault tolerant BCA with PKI in 2 rounds when f ≥ 2. Since there is PKI, the faulty parties484

can no longer simulate receiving messages from nonfaulty parties. This necessitates a slightly485

more complex approach than that required for the previous lower bound.486



XX:12 On the Round Complexity of Asynchronous Crusader Agreement

▶ Theorem 4. It is impossible to solve Byzantine fault tolerant BCA in 2 rounds with PKI487

when 3f + 1 ≤ n ≤ 4f and f ≥ 2.488

In this proof, we build up to a World 6 where we show a binding violation by having an489

extension where a nonfaulty p1 decides 1 and an extension where a nonfaulty p7 decides 0490

after another nonfaulty party p5 decides. Unlike in the proof of the previous lower bound,491

we can no longer rely on simulation due to the presence of PKI. If we want a nonfaulty party492

to decide a non-⊥ value v ∈ {0, 1}, it can hear that at most f = 2 parties started with 1 − v.493

This is because, in order to argue that a party must decide a non-⊥ value in a given world,494

we show that this party’s view is indistinguishable from its view in another world in which495

all nonfaulty parties started with that value, enabling us to invoke validity. With PKI, if a496

party hears that more than f parties started with the value opposite its input value, then it497

knows that it is not in a validity world. As such, when attempting to understand this proof498

it is helpful to work backwards, starting from World 6 to see the views of p1 and p7 when499

they decide 1 and 0, respectively. The maximally patient worlds World 1, World 2, and500

World 5 show why p1, p5, and p7 decide without waiting for additional messages in World501

6. To show why the views of p1 and p7 are indistinguishable from validity worlds, forcing502

them to decide 1 and 0 respectively, we show World 3 and World 4 in which the honest503

parties all start with the same value.504

Proof. As in previous proofs, when we say a party receives messages from a list of parties,505

they receive the messages in the listed order. For example, if a party receives messages from506

p1, . . . , p4, it receives the messages from p1 first, then p2, and so on.507

World 1 (maximally patient for p2 and p1 crash):508

All parties except p1 and p2 are nonfaulty. p1 and p2 crash immediately without sending509

any messages. p3 and p4 start with input 1, while p5, p6 and p7 start with input 0.510

All nonfaulty parties must decide without waiting for any messages dependent on p1 or511

p2; otherwise, termination is violated.512

World 2 (maximally patient for p5 crash and p6 omission):513

All parties except p5 and p6 are nonfaulty. p1, p2, p3, and p4 start with input 1. p6514

and p7 start with input 0. p5 crashes immediately without sending any messages. p6 is515

omission failure; all messages except for any round 1 messages it sends to p2 are omitted,516

and these messages are delivered for p2 before any messages from any other parties.517

Nonfaulty parties must decide without waiting for any messages dependent on p5 or any518

messages dependent on p6 (other than any round 1 messages it sends to p2); otherwise,519

termination is violated.520

World 3 (0-validity, false maximally patient):521

p3 and p4 are Byzantine and have input 1. The rest of the parties are honest and start522

with input 0. All messages from p1 and p2 are delayed for the other parties. p3, p4, p5,523

p6 and p7 exchange the same messages as in World 1 and in the same order.524

This world is indistinguishable from World 1 for p7. Therefore, it decides without waiting525

for any additional messages. By validity, p7 decides 0.526

World 4 (1-validity, false maximally patient):527

p6 and p7 are Byzantine and start with input 0; the rest of the parties are honest and528

start with input 1. All messages from p5 are delayed for the other parties. p6 doesn’t529

send any messages except for any round 1 messages that it would have sent to p2 if it was530

honest, and as in World 2, this message is delivered for p2 before any messages from531



I. Abraham, N. Ben-David, G. Stern, S. Yandamuri XX:13

any other parties. p1, p2, p3, p4 and p7 send the same messages in the same order as in532

World 2.533

The world is indistinguishable from World 2 for p1, so it decides without waiting for534

any additional messages. By validity, p1 decides 1.535

World 5 (maximally patient for p7 and p1 omission):536

All parties except for p1 and p7 are nonfaulty. p1, . . . , p4 start with input 1 and p5, . . . , p7537

start with input 0. All honest parties start by sending their round 1 messages. p7 crashes538

immediately after sending its round 1 messages to all of the other parties. p1 is omission539

failure, and the only message it sends is its round 1 message to p2. p2 receives round 1540

messages from p6 first, then from p1, . . . , p4 and p7, and finally from p5. p2 sends round 2541

messages as a result of receiving the aforementioned round 1 messages. Parties p3, . . . , p6542

receive round 1 messages from p3, . . . , p7 and send any resulting round 2 messages. They543

receive any round 1 messages from p2 following that, and possibly send additional round544

2 messages. Finally, p5 receives all round 2 messages from parties p2, . . . , p6.545

Note that parties p2, . . . , p6 received all round 1 messages sent by each other, and p5546

received any round 2 message sent as a result from these parties as well. This means that547

p5 receives all messages from nonfaulty parties in this world, and thus by termination, p5548

decides without waiting for any additional messages.549

World 6 (binding violation, false maximally patient):550

p3 and p4 are Byzantine, and the remaining parties are nonfaulty. p1, . . . , p4 have the551

input 1 and p5, . . . , p7 have the input 1, like World 5. Initially, all messages from other552

parties are delayed for p7 and p1. In addition, messages from p1 are delayed for p3, . . . , p6.553

The beginning of the run is exactly the same the run in World 5 for p2, . . . , p6, with554

p3, p4 sending the required messages only to parties p2, . . . , p6 and not to p1, p7. Since555

p5’s view is identical to one which causes it to decide, it decides some value in this world556

as well. Next, we show the two executions in which the adversary can get p1 to decide 1557

or p7 to decide 0, which would mean the protocol isn’t binding.558

(Extension where p1 decides 1) p1 and p7 start by receiving round 1 messages559

from p1, . . . , p4, p7. p1 then receives any round 2 messages from p1, . . . , p4, p7 except560

for p2 final round 2 message sent by p2 as a result of receiving p5’s round 1 message561

(which it received last). In the above, p3 and p4 are Byzantine, and they only send562

p1 the round 2 messages they would have as a result of receiving round 1 messages563

from p1, . . . , p4, p7. Note that p1 receives round 1 messages from p1, . . . , p4, p7 and564

then round 2 messages from p1, . . . , p4, p7 corresponding to p2 receiving p6’s round 1565

messages first, and then all of the parties receiving round 1 messages from each other.566

p1’s view is identical to the view it would have in World 4, so it decides 1.567

(Extension where p7 decides 0) p7 sees round 1 messages from p3, . . . , p6, and then568

all round 2 messages that they sent as a result of receiving round 1 messages from569

p3, . . . , p7. Note that they received round 1 message from p1, p2 only after receiving570

those messages. At this point, p7’s view is identical to its view in World 3, so it571

decides 0.572

◀573

▶ Remark 11. It is possible to define S = {p2, p3, p5, p7} and T = {p1, p4, p6}. For these sets,574

S∪T = {p1, . . . , p7}, S∩T = ∅ and |S| = 4, |T | = 3. In the proof of Theorem 4, the adversary575

always corrupts at most one party in S and one party in T . From Theorem 20 we can conclude576

that no 2-round Byzantine fault tolerant protocol exists even for any 3f + 1 ≤ n ≤ 4f and577

f ≥ 2.578



XX:14 On the Round Complexity of Asynchronous Crusader Agreement

4 Upper Bounds579

Notation.580

The notation for a message from a party pi is i. The initial message from a party is a special581

case, as it also contains a subscript v ∈ {0, 1} indicating the party’s input value. The first582

message in a valid chain of messages is always an initial message of this form. Chains of583

messages are separated by the operator ·. As an example, ⟨i1 · j⟩ is a length two chain where584

pj is forwarding the initial message of pi, where pi has input value 1. We define the notion585

of a prefix of a chain recursively. Message chain C ′ is a prefix of chain C if C ′ = C or there586

exists a party pj such that ⟨C ′ · j⟩=⟨C⟩. We say that a message chain C depends on party587

pi if the first message in the chain is of the form ix such that x ∈ {0, 1} or there exists a588

prefix of chain C, P , such that ⟨P · i⟩ is also a prefix of chain C.589

4.1 Results590

The following upper bounds are designed such that parties forward any message they receive591

each other and wait for as long as they can (or nearly as much as they can). By this we592

mean that parties only decide on values if the messages they received could have been all593

messages nonfaulty parties ever send throughout an execution of the protocol. The protocols594

are also conservative in the sense that parties default to outputting ⊥ unless doing so might595

lead to a validity violation. A party is forced to output a value x ̸= ⊥ if its view could have596

been obtained in an execution in which all nonfaulty parties have the input x.597

The protocol described in Algorithm 1 is designed to work as described above. Parties598

start by sending their signed input to all parties, and then forwarding that input to all599

parties. Whenever a party receives a signed input message it forwards that message to all600

parties. Every party pi then waits until there are three parties (including itself) such that pi601

received all of these parties’ inputs, and the messages forwarding each other’s inputs. Once602

that happens, pi chooses whether to output the value x that it received as input, or the value603

⊥. If pi saw that more than one party reported its input as 1 − x (either by receiving its604

input directly, or by receiving a forwarded input), pi outputs ⊥. Otherwise, pi outputs x.605

We prove this protocol is a binding crusader agreement protocol in Theorem 17, provided606

in Appendix B.607

Similarly to the previous protocol, in the protocol described in Algorithm 2, parties start608

by sending each other their inputs. They then forward any received input and any message609

forwarding an input, also indicating the messages’ senders. Every party pi then waits until610

there are three parties (including himself) that report consistent information about each611

other’s messages. More specifically, they forward the same messages about each other as the612

messages the pi received and forwarded. Then, pi outputs its input x if it forwarded at most613

one input message with the value 1 − x and at most one of the three aforementioned parties614

forwarded more than one input message with the value 1 − x. Otherwise, pi outputs ⊥.615

In Appendix B, we show that the protocol is a CA protocol for any number of parties616

n such that n ≥ 3f + 1 in Theorem 15. We then proceed to show that the protocol is also617

binding for n = 4, f = 1 and n = 7, f ≥ 2 in Theorems 17 and 18 respectively, meaning that618

in these cases it is also a BCA protocol.619
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Algorithm 1 4-party authenticated Asynchronous BCA for Byzantine faults for party pi

Input: x

1: fwdV als1 = fwdV als2 = fwdV als3 = fwdV als4 = {}, initV als = {}
2: send ⟨ix⟩ and ⟨ix · i⟩ to all, fwdV alsi = fwdV alsi ∪ {ix}
3: upon receiving ⟨kv⟩ from pk and not having forwarded a message from pk:
4: send ⟨kv · i⟩ to all
5: fwdV alsi = fwdV alsi ∪ {kv}
6: initV als = initV als ∪ {kv}
7: upon receiving ⟨jv · k⟩ from pk

8: initV als = initV als ∪ {jv}
9: if j1−v hasn’t been added to fwdV alsk: fwdV alsk = fwdV alsk ∪ {jv}

10: upon ∃pj , pk ̸= pi s.t. ix, kv, and jv′ are in fwdV alsi ∩ fwdV alsk ∩ fwdV alsj s.t.
v, v′ ∈ {0, 1}:

11: let S be the set {s|s1−x ∈ initV als}
12: if |S| ≤ 1 then decide x

13: else, decide ⊥

Algorithm 2 7-party unauthenticated Asynchronous BCA for Byzantine faults for party
pi

Input: x

1: coreSeti = {}
2: for j ∈ 1 . . . n:
3: initV alsj = {}
4: for k ∈ 1 . . . n:
5: fwdedMsgsj,k =[]
6: send ⟨ix⟩ to all
7: upon receiving ⟨jv⟩ from pj and fwdedMsgsi,j = []:
8: send ⟨jv · i⟩ to all
9: initV alsi = initV alsi ∪{jv}

10: fwdedMsgsi,j = fwdedMsgsi,j .append(jv)
11: upon receiving ⟨kv · j⟩ from pj and k∗ · j /∈ fwdedMsgsi,j :
12: send ⟨kv · j · i⟩ to all
13: initV alsj = initV alsj ∪{kv}
14: fwdedMsgsi,j = fwdedMsgsi,j .append(kv · j)
15: fwdedMsgsj,k = fwdedMsgsj,k.append(kv)
16: upon receiving ⟨kv · l · j⟩ from pj and having received kv · l from pl:
17: fwdedMsgsj,l = fwdedMsgsj,l.append(kv · l)
18: upon ∃ a set of n − f distinct parties coreSeti s.t. the following 3 conditions hold:

1. pi ∈ coreSeti

2. ∀(j, k, l) ∈ coreSeti, fwdedMsgsj,k = fwdedMsgsl,k

3. ∀j ∈ coreSeti, ∃v ∈ {0, 1} s.t. fwdedMsgsi,j [1] = vj and ∀k ∈ coreSeti,
vj ∈ initV alsk

19: ∀j ∈ {1 . . . n} let Sj = {s|s1−x ∈ initV alsj}
20: if |Si| ≤ f and |{j ∈ {1 . . . n} s.t. |Sj | > f}| ≤ f :
21: decide x

22: else decide ⊥

620
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A Proofs of Lower Bounds694

▶ Lemma 12. In World 2 from the proof of Theorem 2, p3 must decide (0, g) for g ∈ {1, 2}695

without waiting for any round 2 messages from p2.696

Proof. World 2.a) (0-validity, maximally patient for p1 crash, symmetric to World697

1.a):698

All three parties have the input 0. p2 and p3 are nonfaulty, and p1 crashes prior to sending699

any messages.700

p2 and p3 must decide (0, 2) without waiting for any messages dependent on p1 by validity701

and termination.702

World 2.b) (maximally patient for p2 crash, symmetric to World 1.b):703

p1 has input 1, while p2 and p3 start with input 0. p2 sends round 1 messages, which are704

delivered to both p1 and p3, and then p2 crashes. Following that, p3’s round 1 messages705

are delivered to p1. Finally, p1 and p3’s messages are delivered to each other without706

delay.707

Because p2 crashed, p1 and p3 must decide without waiting for any additional messages708

from p2, by termination.709

We now argue why p3 must decide (0, g) for g ∈ {1, 2} in World 2 without waiting for710

any of p2’s round 2 messages. First, we show that p2 decides (0, 2). Since p1’s messages711

are initially delayed, p2 decides (0, 2) due to indistinguishability from World 2.a, in which712

p1 crashes. As a result, if p3 decides, it must decide (0, g) such that g ∈ {1, 2} so as not to713

violate graded agreement. Next, we show why p3 decides without waiting for any round 2714

messages from p2. This follows an indistinguishability argument with World 2.b for p3,715

since any messages from p2 apart from its round 1 messages are delayed for p3 in World716

2. ◀717

▶ Lemma 13. In World 3 from the proof of Theorem 2, p1 must output without waiting for718

any messages that depend on p3.719

Proof. World 3.a) (maximally patient for p3 crash):720

p1 and p2 are nonfaulty, while p3 crashes immediately before sending any messages. p1721

has input 1 and p2 has input 0.722

p1 and p2 must decide without waiting for any messages dependent on p3 by termination.723

The lemma follows from a straightforward indistinguishability argument from World724

3.a), as any messages from p3 and dependent on p3 are delayed for p1 in World 3. ◀725

B Proofs of Upper Bounds726

▶ Theorem 14. Algorithm 1 solves Byzantine fault tolerant BCA in 2 rounds with a PKI727

setup when there are 4 parties, n = 3f + 1.728

Proof. Termination. Termination follows from the fact that there are at least 3 honest729

parties, and they all will eventually receive and forward each others’ initial messages.730

Validity. Assume all nonfaulty parties have the same input x ∈ {0, 1}. Parties only add731

values jy to initV als after receiving a message jy, which contains j’s signature on the value732

y. Nonfaulty parties only sign such messages with their input x, so nonfaulty parties can733

receive one signature on 1 − x by the single faulty party. Therefore, if some nonfaulty party734

decide on some value, it will see that |S| ≤ 1 in line 12 and decide x.735
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Agreement. Assume by way of contradiction that two parties pi and pj output 1 and736

0 respectively. Before deciding, each of those parties waited to hear at least 3 forwarded737

messages from at least 3 parties. Since there are 4 parties, and at most 1 Byzantine party,738

they have at least one such nonfaulty party in common. Let that party be pk. At the time pi739

terminated, it heard at most one forwarded input of 0, meaning that in pk’s first 3 forwarded740

messages, it sent at least two messages with the value 1. Therefore, before terminating pj741

heard at least two forwarded 1 inputs, and thus it could not have output 0.742

Binding. Assume without loss of generality that party p1 is the first nonfaulty party743

to output some value. If it outputs a value b ̸= ⊥, then we can define b to be the binding744

value, and the binding property trivially holds because of the agreement property. Otherwise,745

let I be the indices of the parties that caused p1 to terminate, and let G be the nonfaulty746

parties among them. Without loss of generality, assume that I = {1, 2, 3} and that p2 is747

nonfaulty (and possibly also p3). For each i ∈ G, define m1,i, m2,i, m3,i to be the first three748

values echoed by pi, and define mi to be the most common value among m1,i, m2,i, m3,i.749

Now, define b to be the most common value in the multiset {mi|i ∈ G}, if such a value is750

uniquely defined. If there is no single most common value, define b to be p4’s input, which751

we will show is defined by this point in time.752

If b is the most common value in the multiset {mi|i ∈ G}, then at least two nonfaulty753

parties in G sent at least two echoes with the value b in their first three echoes. Any nonfaulty754

party that terminates must hear at least three echoes from at least one of those parties, and755

thus will not output 1 − b. Otherwise, the most common value in {mi|i ∈ G} is not uniquely756

defined. This must mean p3 is faulty and thus G = {p1, p2}. In addition, since the most757

common value is not defined, m1 ≠ m2. Note that p1 and p2 agree on the value sent by758

p3, so it cannot be the case that their first three echoed values are echoes of messages sent759

by the same three parties. In other words, at least one of them heard from p4, and thus760

p4’s input is already defined to be some value x4. We defined b = x4 as above, and all that761

is left to show is that no party outputs 1 − b. We already know that p1 output ⊥, and by762

construction, p4 cannot output 1 − b = 1 − x4. Therefore, only p2 might output 1 − b if that763

was its input. If p2’s first three echoes contain the value b twice, it would not output 1 − b.764

Otherwise, m2 = 1 − b and thus m1 = b. This means that if p2 hears three echoes from p1765

before terminating, it will hear at least two echoes with the value m1 = b and will output ⊥.766

Otherwise, before terminating it hears an input message from p3 and p4, as well as echoes of767

each others’ values. In addition, it hears p1’s input before terminating, because p1 is the768

first party to terminate and it heard p2 echo its value at that time. In other words, p2 hears769

all parties’ input messages before terminating. As shown above, p1 echoes three messages,770

with the input value m1 appearing twice. Similarly, p2 echoes three messages with the input771

value m2 appearing twice. Finally, both forward the same message from p3, and thus in772

total p2 receives two messages with the value m1 and two messages with the value m2 before773

terminating. Since m1 ̸= m2, in that case it outputs ⊥. In other words, in all cases p2 either774

outputs ⊥ or b.775

Round Complexity. We now prove that the protocol requires only 2 rounds. This776

follows from the fact that the only messages sent by honest parties are their initial messages777

with their input values (which don’t depend on any other messages), and messages forwarding778

the initial messages of other parties. ◀779

▶ Theorem 15. Algorithm 2 solves Byzantine fault tolerant CA for n ≥ 3f + 1 parties in 3780

communication rounds without a PKI setup.781

Proof. Validity. Assume all nonfaulty parties have the input b, and that some nonfaulty782
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party pi outputs some value. At that time, it received the message ⟨j1−b⟩ from at most f783

parties, and thus |Si| ≤ f . In addition, every nonfaulty pj only sends ⟨kx · j⟩ messages after784

receiving a ⟨kx⟩ message from pk. This means that each pj sends at most f such messages785

with x = 1 − b, and thus for every nonfaulty pj , |Sj | ≤ f . Therefore, both conditions of line786

20 hold, and thus pi outputs b, as required.787

Agreement. Assume by way of contradiction that two nonfaulty parties p and q output788

0 and 1 respectively. Define coreSet0 and coreSet1 to be the sets coreSet they have at the789

time they output their respective values. Define coreSet0,1 = coreSet0 ∩ coreSet1, and note790

that |coreSet0,1| ≥ f + 1 because |coreSet0| = |coreSet1| = n − f . There are at most f791

Byzantine parties, so let pi be a nonfaulty party in coreSet0,1. Both p and q completed the792

protocol with pi in their respective core sets, so it saw that it forwarded the initial value793

messages sent by all parties in their respective cores. Assume without loss of generality that794

pi sent messages of the form ⟨kv · j · i⟩ for each pair of parties pj , pk ∈ coreSet0 before it795

did so for all such pairs of parties in coreSet1. From condition 2 of line 18, p received the796

messages ⟨kv · j⟩ from each such pj as well as kv from pk. From the first condition of line 20,797

pi saw that at most f of those kv messages had v = 1, because otherwise |Si| > f would have798

been true, and pi would have output ⊥ instead. On the other hand, pi forwarded the same799

messages in the same order to q. This means that for every pj ∈ coreSet0,1, pi forwarded at800

least f + 1 messages of the form ⟨k0 · j · i⟩ before forwarding the final message required for q801

to terminate. From the second condition of line 18, q waits to hear the messages ⟨k0 · j⟩ from802

the parties pj ∈ coreSet0,1, and thus when it terminates, it sees that at least f + 1 parties803

in coreSet1 have forwarded at least f + 1 initial 0 values, causing it not to output 1 and804

reaching a contradiction.805

Termination. All nonfaulty parties eventually send their input messages. After receiving806

those messages, every pi sends a ⟨jx · i⟩ for every ⟨jx⟩ message it received. Similarly, every807

pi sends a ⟨kx · j · i⟩ for every ⟨kx · j⟩ message it received. After receiving the all of these808

messages from each nonfaulty party, every nonfaulty party has the conditions of line 18 hold809

with respect to the n − f nonfaulty parties, and thus every nonfaulty party decides some810

value if it hadn’t done so previously.811

Round Complexity. Parties send at most chains of length 3, and thus the protocol is a812

3-round protocol. ◀813

We now turn to show that the protocol is also binding in the case of n = 4, f = 1 and814

n = 7, f ≤ 2.815

▶ Lemma 16. Let pi and pj be two nonfaulty parties. If pk ∈ coreSeti ∩ coreSetj,816

then ∀pl ∈ coreSeti and ∀pm ∈ coreSetj, either pi’s fwdedMsgsl,k is a prefix of pj’s817

fwdedMsgsm,k or pj’s fwdedMsgsm,k is a prefix of pi’s fwdedMsgsl,k.818

Proof. By quorum intersection, |coreSeti ∩ coreSetj | ≥ f + 1 and at least one of the parties819

in the intersection must be nonfaulty. The lemma follows from condition 2 on line 18. ◀820

▶ Theorem 17. Algorithm 2 solves Byzantine fault tolerant BCA for n = 4 parties and f = 1821

in 3 communication rounds without a PKI setup.822

Proof. As shown in Theorem 15, the protocol is a 3-round CA protocol for any n ≥ 3f + 1,823

and thus it has the Validity, Agreement and Termination properties. All that is left to show824

is that the protocol is also binding.825

Binding. Assume that the first nonfaulty party to output outputs ⊥ (otherwise binding826

follows from agreement). W.l.o.g. assume p2 is the first nonfaulty party to output, that it827

started with input value 1, and consider the set coreSet2 at the time that p2 decides. For828
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binding not to hold, there must be an extension of this execution where some nonfaulty829

party decides 1 and one in which a nonfaulty party decides 0. W.l.o.g. assume that p1 is the830

nonfaulty party who can decide 1 and p4 is the nonfaulty party who can decide 0. Note that831

parties only decide a non-⊥ value if that was their input value. As such, p1 must have started832

with 1 and p4 must have started with 0. If p1, p2 and p4 are in coreSet2, then p4 cannot833

later output 0 by the condition on line 20. Since |coreSet2| ≥ 3, there are two possible cases:834

1. p1, p2 and p3 are in coreSet2. Then p1 and p2 both forward the messages ⟨11 · 3⟩ and835

⟨21 · 3⟩. Since only one of p1 and p2 can be in coreSet4 for p4 to output 0, p3 must be836

in coreSet4. Assume first that p2 is the other party in coreSet4. For p4 to be able to837

decide 0, it must not hear the messages ⟨11 · 3 · 2⟩ and ⟨21 · 3 · 2⟩ from p2, or coreSet4838

will not satisfy the condition on line 20 for p4 to output 0 (since p4 will wait to hear that839

p3 forwarded the initial values of p1 and p2 or it will hear messages from p1). So p2 must840

send all the messages necessary for p4 to output 0 before it sends the messages ⟨11 · 3 · 2⟩841

and ⟨21 · 3 · 2⟩. This necessarily includes the messages ⟨40 · 3 · 2⟩ and ⟨30 · 3 · 2⟩, as well as842

⟨40 · 2 · 2⟩ and ⟨30 · 2 · 2⟩, and ⟨40 · 4 · 2⟩ and ⟨30 · 4 · 2⟩. If this happens, it cannot be the843

case that coreSet1 satisfies the conditions for p1 to output 1, and we have arrived at a844

contradiction. If p1 is in P4, a similar argument follows.845

2. p2, p3, and p4 are in coreSet2. Assume that an extension in which p4 later outputs 0846

exists. Then it must be the case that p3 starts with input value 0. Since p1 can’t hear847

from both p3 and p4 before later outputting 1, it must hear from p2. If it hears from848

p2 the messages of the form ⟨40 · 4 · 2⟩ and ⟨30 · 4 · 2⟩, and ⟨40 · 3 · 2⟩ and ⟨30 · 3 · 2⟩,849

it cannot later output 1 (since necessarily p2 and another party in coreSet4 must have850

forwarded more than one initial value message with value 0). So then p2 must send851

to p1 the messages necessary for p1 to output 1 before it sends those messages. But if852

it does that, p4 would hear all of those messages and eventually have more than one853

party in its set coreSet4 that forward more than one initial value message containing 1,854

a contradiction.855

◀856

▶ Theorem 18. Algorithm 2 solves Byzantine fault tolerant BCA for n = 7 parties and857

f ≤ 2 in 3 communication rounds without a PKI setup.858

Proof. As in the previous theorem, all that is left to show is that the protocol is binding.859

Binding. We use a proof by contradiction. Consider the first nonfaulty party to output,860

p∗. Once p∗ outputs, there must be an extension in which a nonfaulty party p1 outputs 1861

and an extension in which a nonfaulty party p0 outputs 0. We refer to the extensions as862

ext-1 and ext-0, respectively. Assume w.l.o.g. that a majority of the parties in coreSet∗863

(≥ 3) sent input value messages containing 1. Then p0 cannot be in coreSet∗. This follows864

from two points: the fact that p∗ outputs before p0 does and the condition on line 20 by865

which a party decides a non-⊥ value. Let supportl for l ∈ {0, 1} be a set of 3 distinct parties866

from coreSetl at the time at which pl decides such that ∀pj ∈ coreSetl, |Sj | ≤ 2, where867

Sj = {s|s1−l ∈ initV alsj} (note that coreSetl must contain at least 3 parties satisfying this868

condition for pl to decide l). coreSet0 ∩ coreSet∗ contains at least 3 parties, at least one of869

which must be in support0. We consider 3 possible cases:870

1. There is a single party in support0 ∩ coreset∗, and it is honest. Refer to this party as871

pH . It must send all of its messages to p0 that are necessary for p0 to output 0 before872

it forwards the initial messages of all parties in coreSet1 (otherwise it cannot be in873

support0). Therefore, it must receive the messages where all parties in coreSet0 forward874

the initial messages of all of the parties in coreSet0. At least 3 parties in coreSet0 must875
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also be in coreSet∗. Note that then p1 cannot be in coreSet0, and p1 must be in coreSet∗.876

p∗ expects all parties in coreSet∗ to forward all of the 2-chain messages sent by parties877

in coreSet∗, contradicting that p1 could output 1 after p∗ outputs by the condition on878

line 20.879

2. There is a single party in support0 ∩ coreset∗, and it is Byzantine. Refer to this party as880

pB. In ext-0, p0 must not hear all of the messages where pB forwarded the input value881

of all parties in coreSet∗, since f + 1 = 3 of those parties have input value 1 and in882

that case, pB can’t be in support0. In order not to contradict Lemma 16 in ext-0, pB883

must forward all of the input value messages of parties in coreSet0 prior to forwarding884

all of the input value messages of parties in coreSet∗. In addition, all honest parties885

in coreSet0∩coreset∗ (there must be at least 1) must forward all messages that they886

need to send p0 in ext-0 prior to forwarding the messages where pB forwards the input887

value messages of all parties in coreSet∗ (otherwise p0 hears that pB forwarded 3 initial888

value messages with value 1, and it waits to receive the corresponding 2-chain messages889

from pB prior to outputting in ext-0, a contradiction). Refer to such an honest party in890

coreSet0∩coreset∗ as ph0∗. To forward all messages that they need to send p0 in ext-0891

prior to forwarding the messages where pB forwards the input value messages of all parties892

in coreSet∗, ph0∗ must receive messages from all parties in coreSet0 forwarding the initial893

value message of all parties in coreSet0. This implies that p1 cannot be in coreSet0, and894

by quorum intersection it must be in coreSet∗. The rest of the proof follows the same as895

that of case 1.896

3. Both parties in support0 \ p0 are honest and in coreSet∗. Note that the parties must send897

all messages that they need to send to p0 in ext-0 prior to forwarding the initial messages898

of all parties in coreSet∗ (as they cannot be in support0 if p0 hears them forward the899

initial value messages of three parties with value 1). To do so, they need to forward900

the initial messages of all parties in coreSet0, as well as the messages in which every901

party in coreSet0 forwards the initial message of every party in coreSet0. This means902

that they must receive those 1-chain and 2-chain messages from each party in coreSet0903

(implying that p1 cannot be in coreSet0). By quorum intersection, it must be the case904

that there is at least one party in support1 ∩ coreSet0. Let this party be ps1c0. Note905

that p1 cannot be in coreSet∗ since there are at least 3 parties in coreSet0∩coreSet∗,906

p∗ hears from the parties in support0\p0 that they forwarded all of the initial messages907

of parties in coreSet0, and p∗ expects all parties in coreSet∗ to forward all 1-chain and908

2-chain messages sent by these parties. Since neither p1 nor p0 are in coreSet∗, it must909

be the case that ps1c0 ∈ coreSet∗. In order to output, p∗, by the conditions on line 18,910

requires all parties in coreSet∗ to also forward the messages where ps1c0 forwards the911

initial messages of all parties in coreSet0, and it has to hear these corresponding 2-chain912

messages from ps1c0. Unless all nonfaulty parties in coreSet∗ ∩ coreSet1 send all of the913

messages they need to send to p1 for it to output 1 before forwarding these messages,914

ext-1 cannot exist. There must be at least one honest party in coreSet∗ ∩ coreSet1 and915

it must receive from all parties in coreSet1 the forwarded initial messages of all parties916

in coreSet1 to do so. Clearly then, p0 can’t be in coreSet1, so one of the parties in917

support0 \ p0 must be in coreSet1. This party cannot forward all of the input value918

messages of all parties in coreSet1 prior to sending to p0 all of the messages it needs to919

send for it to output 0 (as then p0 would hear that a party in support0 forwarded > f920

initial value messages with value 1). Due to FIFO channels p1 inevitably hears from this921

party that ps1c0 forwarded the initial messages of all parties in coreSet0, a contradiction.922

923
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4. There is one honest party and one Byzantine party in support0 \ p0, and both of them are924

in coreSet∗. Refer to the Byzantine party in this set as pB and the honest party in this925

set as pH . Note that by quorum intersection, one of the parties in the set {p0, pH , pB}926

must be in coreSet1. Using similar reasoning to that of case 3, we first show that it927

cannot be the case that p0 or pH is in coreSet1. p0 cannot hear the 2-chain messages928

in which pH forwards the initial value messages of all parties in coreSet∗, but pH must929

send these messages prior to p∗ outputting. So pH must send to p0 all of the messages930

it needs to send to p0 in ext-0 for p0 to output 0 prior to forwarding the initial value931

messages of all parties in coreSet∗. For this to happen, pH must receive from all parties932

in coreSet0 the 2-chain messages in which they forward the input value messages of all933

parties in coreSet0. By quorum intersection, there must be at least one party, ps1c0 in934

support1∩coreSet0. If pH is in coreSet1, it notifies p1 that a party in support1 forwarded935

3 input value messages with value 0, a contradiction. By the fact that at least 3 parties936

in coreSet0 must also be in coreSet∗, using similar logic to that used in case 3, p1 can’t937

be in coreSet∗ or coreSet0, so ps1c0 must be in coreSet∗. Due to FIFO channels, p∗938

expects all parties in coreSet∗ to forward the 2-chain messages where ps1c0 forwards all939

of the input value messages of parties in coreSet0. This implies that all honest parties940

in coreSet1 ∩ coreSet∗ must send to p1 all of the messages they need to send to p1 in941

ext-1 prior to forwarding all 2-chain messages of ps1c0, and prior to p∗ outputting. This942

implies that p0 cannot be in coreSet1.943

We now show that binding cannot be broken if pB is in coreSet1. As argued above, the944

honest party in coreSet∗∩coreSet1 requires all parties in coreSet1 to send it the forwarded945

initial messages of all parties in coreSet1 before it forwards all messages necessary for946

p∗ to output. So it requires a message from pB forwarding all initial messages of all947

parties in coreSet1. Since pB is in support0, p0 should not hear this message. Since we948

have shown that p1 and p0 cannot be in each others’ coreSet or in coreSet∗, there are949

at least 3 parties in coreSet0 ∩ coreSet∗ ∩ coreSet1 and at least one of them must be950

honest. This honest party must send all the messages it needs to send to p0 and p1 prior951

to sending p∗ all the messages it needs to send p∗ to output (otherwise it will notify p0952

that pB forwarded the initial messages of 3 parties with input 1 or it will inform p1 that953

a party in support1 forwarded the initial messages of 3 parties with input 0). If it sends954

all messages for ext-0 first, it will notify p1 that a party in support1 forwarded 3 initial955

value messages containing 0 due to FIFO channels. If it sends all of the messages for956

ext-1 first, it will notify p0 that a party in support0 forwarded 3 initial value messages957

containing 1. Either way, we have arrived at a contradiction.958

5. There are two Byzantine parties (pB1 and pB2) in support0 \ p0, and both of them959

are in coreSet∗. By quorum intersection, there must be some honest party, ph in960

coreSet0∩coreSet∗ that has to send everything for ext-0 to p0 before it sends all of its961

messages for p∗ to output, because otherwise it will reveal to p0 that a party in support0962

forwarded 3 input value messages with value 1, a contradiction. Note that this implies963

that p∗ hears that 3 parties in coreSet∗ forwarded 3 input value messages with value964

0 prior to outputting, and it must hear all parties in coreSet∗ forward these messages.965

Hence, p1 cannot be in coreSet∗. p1 also can’t be in coreSet0 since ph expects to hear966

from all parties in coreSet0 that they forward the input value messages of all parties in967

coreSet0. Since pB1 and pB2 are in coreSet∗, and p0 forwards the initial value messages968

of all parties in coreSet0 and cannot hear 3 input value messages with value 1 before969

p∗ outputs for ext-0 to exist, Lemma 16 implies that support1∩support0 = ∅. Thus, the970

two parties in support1 /∈ p1 must be honest and in coreSet∗. By quorum intersection,971
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some party in support1 must be in coreSet0, some party in support0 must be in coreSet1,972

and there must be an honest party ph,int ∈ coreSet1 ∩ coreSet∗ ∩ coreSet0. As already973

noted, all honest parties in coreSet0∩coreSet∗, including ph,int, must send all messages974

they need to send in ext-0 prior to sending all messages for p∗ (and thus revealing that975

a party in support0 forwarded 3 1s). To do so, ph,int will send messages that a party976

in support1∩coreSet0 (there must be at least 1) forwarded 3 0s; but this should not be977

revealed to p1 before it outputs. This means that ph,int should send all messages for978

ext-1 before sending all messages for ext-0, but then it would reveal to p0 that a party in979

support0 forwarded 3 1s. Either way, ext-1 and ext-0 cannot both be possible when p∗980

outputs, and binding cannot be broken.981

◀982

C Generalizing the Lower Bounds983

In this section, we generalize the lower bounds from lower bounds specifically for n = 3, n = 4984

or n = 7 to lower bounds for n ≥ 3, n ≥ 4 or n ≥ 7. The techniques for generalizing the lower985

bound in the case that n ≥ 3, n ≥ 4 are standard and provided for completeness. On the986

other hand, generalizing the lower bound for n ≥ 7 is slightly more intricate. In the following987

we simply show how to generalize two of the lower bounds presented above, but generalizing988

the other ones (with different corruption models or numbers of rounds) is done in the same989

manner.990

We start by showing how to generalize the lower bound for n = 4 and f = 1 to any n, f991

such that 4f ≥ n ≥ 3f + 1. Identical arguments can be made to generalize the lower bounds992

for n = 3 and f = 1 to any n, f such that 3f ≥ n ≥ 2f + 1.993

▶ Theorem 19. Assume that it is impossible to solve Byzantine fault tolerant crusader994

agreement in two rounds with n = 4 parties and f = 1 faults. Then it is impossible to995

construct such a protocol for any f ∈ N and 4f ≥ n ≥ 3f + 1.996

Proof. Assume by way of contradiction, that for some f, n such that 4f ≥ n > 3f there exists997

a Byzantine fault tolerant crusader agreement protocol for n parties resilient to f corruptions998

in which all parties decide on a value after at most two rounds without a PKI setup. We999

will use this protocol to construct a Byzantine fault tolerant crusader agreement protocol1000

for 4 parties with 1 corruption that requires the same number of rounds, contradicting the1001

theorem statement.1002

The protocol is designed for 4 parties p′
1, . . . , p′

4 which simulate a full run of the n-party1003

protocol running with parties p1, . . . , p4. Start by partitioning the parties p1, . . . , pn into 41004

roughly-equal groups: P1, . . . , P4. Since n is not necessarily a multiple of 4, it is possible1005

that some of the groups will contain one more party than the other groups. More precisely,1006

set ℓ = (n mod 4), and let P1, . . . , Pℓ be of size ⌈ n
4 ⌉ and Pℓ+1, . . . P4 be of size ⌊ n

4 ⌋. In case1007

that ℓ = 0, this means that all set are exactly of size n
4 . Note that in all other cases, this1008

means that the sets do indeed contain a total of n parties, since their combined sizes are1009

ℓ · ⌈ n
4 ⌉ + (4 − ℓ)⌊ n

4 ⌋ = ℓ · (⌊ n
4 ⌋ + 1) + (4 − ℓ)⌊ n

4 ⌋ = 4 · ⌊ n
4 ⌋ + (n mod 4) = n.1010

Now, in the 4-party protocol each party p′
i simulates the full n-party protocol for the1011

parties in Pi. Every party p′
i receives an input xi and simulates the actions of all parties in1012

Pi after starting with the input xi. This is done by running the code of each of those parties1013

after receiving that input, and sending messages if required as described below. Whenever p′
i1014

sees that party p ∈ Pi sends a message m to some party q ∈ Pj it does the following: if j = i,1015

it simulates q receiving m by running the code that q would have run upon receiving the1016
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message from p. Otherwise, p′
i sends the message m to p′

j , along with the information that1017

p sent the message to q. Similarly, when a party p′
j receives a message m from p′

i with the1018

information that p ∈ Pi sent that message to q ∈ Pj , p′
j simulates q receiving that message1019

by running the code that q would have run upon receiving that message from p. Once p′
i1020

sees that all of the simulated parties in Pi output values, it does the following: if at least one1021

party in Pi output ⊥, it outputs ⊥. Otherwise, it outputs some non-⊥ value that a party in1022

Pi output1. In this setting, the adversary can only corrupt a single party p′
i, which simulates1023

the parties in Pi. The number of parties in Pi is at most ⌈ n
4 ⌉. By assumption, n ≤ 4f ,1024

so ⌈ n
4 ⌉ ≤ ⌈ 4f

4 ⌉ = f . All other simulated parties act exactly the same as they would when1025

receiving messages in the original protocol, since they are instructed to send and receive1026

messages exactly as they would in the original protocol. In other words, the simulated run1027

perfectly corresponds to a run in which the adversary corrupts at most f parties, in which1028

messages between parties in the same set Pi are delivered immediately and the rest of the1029

messages are delivered according to the scheduling dictated by the adversary. The protocol1030

is secure under these conditions, and thus Validity, Agreement and Termination hold in the1031

simulated run.1032

In order to complete the proof, all that is left to show is that the resulting 4-party protocol1033

is a two-round Byzantine fault tolerant crusader agreement protocol with n = 4 and f = 1,1034

reaching a contradiction to the theorem statement.1035

Validity. If all parties have the same input b, then each nonfaulty p′
i simulates all of the1036

parties in Pi with the input b. This means that the run corresponds to a run in which all1037

parties simulated by nonfaulty parties have the input b. From the Validity property of the1038

original protocol, all simulated nonfaulty parties output b as well, and thus every nonfaulty1039

p′
i output b after seeing that all of the parties in Pi output that value.1040

Agreement. Assume that two nonfaulty parties p′
i and p′

j output the non-⊥ value bi1041

and bj respectively. Before doing so, each one saw that all of the parties simulated by it1042

completed the protocol and that at least one of the parties simulated by p′
i and p′

j output bi1043

and bj respectively. Those parties are simulated as nonfaulty parties, so bi = bj from the1044

Agreement property of the original protocol.1045

Termination. If each nonfaulty p′
i starts the protocol, it simulates all of the parties in1046

Pi correctly throughout the whole protocol. This means that all of the parties in the Pi sets1047

simulated by nonfaulty parties act as nonfaulty parties would in the original protocol, and1048

thus eventually decide. After seeing that all of the parties in Pi output some value, every1049

nonfaulty p′
i outputs a value as well.1050

Round Complexity. In the original n-party protocol, all parties output a value after1051

two rounds. More precisely, all nonfaulty parties send only round 1 or round 2 messages.1052

Observe a given run of the 4-party protocol. In the simulated n-party protocol, all simulated1053

parties output a value after at most 2 rounds without sending any message from round 3 or1054

higher. Therefore, in the 4-party protocol, no party sends a message from round 3 message or1055

higher, and after every nonfaulty simulated party decides a value, every nonfautly p′
i outputs1056

a value as well. ◀1057

▶ Theorem 20. Assume there is a network of 7 parties p1, . . . , p7, and let S, T be a partitioning1058

of the parties such that |S| = 4, |T | = 3, S ∪ T = {p1, . . . , p7} and S ∩ T = ∅. Assume that1059

it is impossible to solve Byzantine fault tolerant binding crusader agreement in two rounds1060

1 An alternative choice is to output ⊥ only if all simulated parties did, and otherwise output some non-⊥
value.
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with n = 7 parties and f = 2 faults, even if the adversary can corrupt at most one party in S1061

and one party in T . Then it is impossible to construct such a protocol for any f ≥ 2 and1062

4f > n > 3f .1063

Proof. Assume by way of contradiction that such a protocol exists for some n, f such1064

that f ≥ 2 and 4f > n > 3f . The proof follows a similar outline to the previous proof,1065

simulating the n party protocol in the 7 party setting. Without loss of generality, assume1066

that S = {p1, . . . , p4} and that T = {p5, . . . , p7}. Since 4f > n > 3f , there exists some1067

k ∈ [f − 1] such that n = 3f + k.1068

We will now construct a protocol for 7 parties p′
1, . . . , p′

7. Start by partitioning the1069

parties {p1, . . . , pn} into 7 sets P1, . . . , P7. Each set in P1, . . . , P4 contains k parties for the k1070

defined above, and each party in P5, . . . , P7 contains f − k parties such that for every i ̸= j,1071

Pi ∩ Pj = ∅. First, note that by definition f > k > 0 and thus also f > f − k > 0. This1072

means that each of these sets has a positive number of parties, smaller than f . In addition,1073

the total number of parties is 4 · k + 3 · (f − k) = 3f − 3k + 4k = 3f + k = n. In other words,1074

it is possible to partition the n parties into non-intersecting sets of these exact sizes.1075

From this point on, the simulation is exactly the same as in Theorem 19. Each party p′
i is1076

in charge of simulating the parties in Pi. It starts the protocol by receiving its input xi and1077

simulating all of the parties in Pi starting the protocol with the same input xi. Following that,1078

if some simulated party p ∈ Pi sends a message m to q ∈ Pj it either delivers it immediately1079

if i = j or sends m to p′
j and signifies that p sent the message to q. Upon p′

j receiving a1080

message m from p′
i saying that p sent that message to q, p′

j checks that p ∈ Pi and q ∈ Pj . If1081

that is the case, p′
j simulates q receiving that message from p. In all of the above discussion,1082

by “simulating receiving the message” we mean that the simulating party runs the code1083

that the simulated party would have run, and sends any messages according to the above1084

description.1085

Once p′
i sees that all of the parties in Pi output some value, it outputs if at least one of1086

the parties in Pi output ⊥, p′
i outputs ⊥ as well. Otherwise, it outputs some non-⊥ value1087

that a party in Pi output. All that is left to do, is to show that the protocol is a 2-round1088

protocol, resilient against a Byzantine adversary that controls at most one party in S and1089

one party in T , reaching a contradiction. An adversary controlling at most one party in S1090

and one party in T is in charge of simulating at most f − k + k = f parties. This means1091

that any run of the 7-party protocol corresponds to a run of the n-party protocol in which1092

the adversary controls at most f parties, and the scheduling is the same as the one described1093

in Theorem 19. Therefore, the simulated run terminates in two rounds and has the Validity,1094

Agreement, Termination and Binding properties.1095

The proof that the 7-party protocol requires two rounds and that it has the Validity,1096

Agreement and Termination properties is identical to the proof in Theorem 19 and is thus1097

omitted. For the final property, Binding, assume some nonfaulty party p′
i outputs some value.1098

At that point in time, it saw that all of the parties in Pi output values. All of those parties1099

are nonfaulty, and thus from the Binding property of the n-party protocol, at that time1100

there exists some value b ∈ {0, 1} such that all nonfaulty parties output either b or ⊥ in the1101

n-party protocol. We will show that all nonfaulty parties output either b or ⊥ in the 7-party1102

protocol. Observe some nonfaulty party p′
j in the 7-party protocol. If it outputs the value ⊥1103

from the protocol, the property holds. Otherwise, it output some value b′ after seeing that at1104

least one party p ∈ Pj output b′, and no party in Pj output ⊥. From the Binding property1105

of the n-party protocol, b′ = b, and thus p′
j outputs b as well. ◀1106
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D Crash Fault Tolerant Binding Crusader Agreement for Adaptive1107

Inputs1108

In this section, we discuss our interest in crash fault tolerant protocols for binding crusader1109

agreement that are secure even with adaptive inputs. By this, we mean that the binding1110

property holds even if the adversary may adaptively choose the inputs of parties at any1111

point in the execution of the protocol prior to scheduling their first actions. There are two1112

advantages of using binding crusader agreement for adaptive inputs as a building block for1113

crash fault tolerant asynchronous agreement protocols: efficiency and simplicity.1114

In [1], Abraham, Ben-David and Yandamuri show a simple framework for asynchronous1115

agreement that uses a strong common coin (such that all parties see value v ∈ {0, 1} with1116

probability 1
2 ) and binding crusader agreement. Although the authors don’t explicitly state it,1117

the crash fault tolerant BCA protocol from [1] withstands an adversary that can adaptively1118

choose the inputs of parties when they start the protocol. In fact, when this requirement is1119

removed, we obtain the simpler 1 round protocol of Algorithm 3 for crash fault tolerant BCA.1120

When the inputs of all parties are fixed prior to the start of the protocol, binding trivially1121

follows from the fact that there is at most one value v ∈ {0, 1} such that n − t parties start1122

the protocol with value v. In fact, binding is only guaranteed in this protocol if the inputs of1123

all parties are fixed prior to the start of the protocol.1124

To see why this matters, first we review how the asynchronous agreement protocol1125

terminates with the original BCA protocol for adaptive inputs. With the original BCA1126

protocol for adaptive inputs, the asynchronous agreement protocol takes at most 7 rounds1127

of broadcast in expectation for all parties to terminate the protocol. This follows from a1128

simple invariant: in any given round of the AA protocol, with probability 1
2 , the value of the1129

common coin is equal to the value to which the adversary is bound in that round’s BCA. In1130

that case, all parties adopt the same value est, and they all decide that value in the next1131

round in which the coin is again equal to that value. In other words, the original protocol1132

requires a single good event to occur, which happens with constant probability in each round.1133

Now, consider what happens when we plug the BCA protocol from Algorithm 3 into1134

the asynchronous agreement protocol of [1]. Since the BCA protocol is not binding when1135

the adversary can adaptively choose the inputs of parties, we can no longer apply the same1136

invariant to ensure termination. This is because the adversary can lag a party behind in the1137

previous round of the AA protocol and choose its input to the next round’s BCA. In this1138

case, to argue termination it is necessary that two independent good events occur in two1139

consecutive rounds, resulting in an AA protocol that requires more rounds of broadcast till1140

termination and a more complex proof than the one presented in [1].1141

Algorithm 3 Asynchronous Binding Crusader Agreement for Crash Faults with Static
Inputs

Input: x

1: send ⟨val, x⟩ to all
2: upon receiving ⟨val, ∗⟩ messages from n − f parties:
3: if all the messages contain the same value x, decide x

4: else, decide ⊥

1142


	1 Introduction
	2 Model & Definitions
	2.1 Model
	2.2 Definitions

	3 Lower Bounds
	3.1 Results

	4 Upper Bounds
	4.1 Results

	A Proofs of Lower Bounds
	B Proofs of Upper Bounds
	C Generalizing the Lower Bounds
	D Crash Fault Tolerant Binding Crusader Agreement for Adaptive Inputs

