
How to Garble Mixed Circuits that Combine
Boolean and Arithmetic Computations

Hanjun Li1 and Tianren Liu2

1 University of Washington, Seattle, USA
hanjul@cs.washington.edu

2 Peking University, Beijing, China
trl@pku.edu.cn

Abstract. The study of garbling arithmetic circuits is initiated by Ap-
plebaum, Ishai, and Kushilevitz [FOCS’11], which can be naturally ex-
tended to mixed circuits. The basis of mixed circuits includes Boolean
operations, arithmetic operations over a large ring and bit-decomposition
that converts an arithmetic value to its bit representation. We construct
efficient garbling schemes for mixed circuits.
In the random oracle model, we construct two garbling schemes:

– The first scheme targets mixed circuits modulo some N ≈ 2b. Ad-
dition gates are free. Each multiplication gate costs O(λ · b1.5) com-
munication. Each bit-decomposition costs O(λ · b2/ log b).

– The second scheme targets mixed circuit modulo some N ≈ 2b. Each
addition gate and multiplication gate costs O(λ · b · log b/ log log b).
Every bit-decomposition costs O(λ · b2/ log b).

Our schemes improve on the work of Ball, Malkin, and Rosulek [CCS’16]
in the same model.
Additionally relying on the DCR assumption, we construct in the pro-
grammable random oracle model a more efficient garbling scheme target-
ing mixed circuits over Z2b , where addition gates are free, and each mul-
tiplication or bit-decomposition gate costs O(λDCR · b) communication.
We improve on the recent work of Ball, Li, Lin, and Liu [Eurocrypt’23]
which also relies on the DCR assumption.

1 Introduction

Garbled circuit (GC) is introduced in the seminal work of Yao [Yao82], allowing
a garbler to efficiently transform any boolean circuit C : {0, 1}nin → {0, 1}nout

into a garbled circuit C̃, along with nin keys K1, . . . ,Knin
. Each key is a function

Ki : {0, 1} → {0, 1}λ, mapping the i-th input bit to a short string. The output
of Ki is referred to as the label of the i-th input wire. For any (unknown) input
x, the garbled circuit C̃ together with input labels K1(x1), . . . ,Knin

(xnin
) reveal

C(x) but nothing else about x.
GC was originally motivated by the 2-party secure computation problem.

Since then, GC has found applications to a large variety of problems, and is
recognized as one of the most successful and fundamental tools in cryptography.

For practical applications, people care about the efficiency of GC, especially
the communication complexity (i.e., bit length of C̃). A considerable amount of
work [BMR90,NPS99,KS08,PSSW09,KMR14,GLNP18,ZRE15,RR21] have been
dedicated to optimize the concrete efficiency of Yao’s GC construction. In the
most recent construction of Rosulek and Roy [RR21], XOR and NOT gates
involves no communication, every fan-in-2 AND gate requires 1.5λ + 5 bit of
communication. Despite making concrete analytic improvement, they still largely
follow Yao’s construction, binding tightly with boolean circuits. The class of
arithmetic operations is a featuring example of computations that are expensive
to express as boolean circuits.

The arithmetic setting. The beautiful work of Applebaum, Ishai, and Kushile-
vitz [AIK11] initiated the study of garbling arithmetic circuits.

Arithmetic GC over a ring R is an efficient algorithm that transforms an
arithmetic circuit C : Rnin → Rnout into a garbled circuit C̃, along with
nin keys AK1, . . . ,AKnin . Each key is an affine function AKi : R → Rℓ.
For any (unknown) input x, the garbled circuit C̃ together with input
labels AK1(x1), . . . ,AKnin

(xnin
) reveal C(x) but nothing else about x.

The construction of AIK is a natural generalization of Yao’s boolean GC. For
each wire, a key AK : R → Rℓ is sampled. The output of AK is a relatively short
vector and is referred to as the label of that wire. For any arithmetic gate g, say
AK1,AK2 are the keys of the two input wires and AK is the key of the output
wire, the garbler generates a table Tab of this gate, such that for any (unknown)
x, y ∈ R, the evaluator can compute AK(g(x, y)) from AK1(x),AK2(y),Tab, while
learning no other information.

As observed by [AIK11], to keep the table size for each gate constant, it
is sufficient to construct the so-called key-extension3 gadget. A key-extension
gadget consists of a garbling algorithm and an evaluation algorithm. The garbling
algorithm KE.Garb takes a key AK and a long key AKL as input, samples a key-
extension table Tab such that, AK(x),Tab reveal AKL(x) but nothing else about
x,AKL.

[AIK11] presents two constructions of key-extension gadgets. One relies on
Chinese remainder theorem, enables garbling of mod-p1p2 . . . pk (the product
of distinct small primes) computation. The other is based on LWE, supports
bounded integer computation (computation over the integer ring Z when all
intermediate values are guaranteed to be bounded).

Follow-up research has made improvements within this framework. Similar to
FreeXOR, [BMR16] allows free garbling of addition gates. In a different frontier,
[BLLL23] presents a highly efficient arithmetic GC for bounded integer compu-
tation based on Paillier encryption. [BLLL23] also presents arithmetic GC for
Zp based on LWE or Paillier. However, free addition is supported in [BLLL23].

3 This module is called “key shrinking” in [AIK11]. The name “key extension” comes
from [BLLL23].

2

The communication complexity of existing arithmetic GC constructions will be
discussed in more detail in Sec. 1.1.

Our research proceeds with this line of study within AIK’s framework of
arithmetic GC. Our starting point is to understand how to garble mod-2b arith-
metic circuits, which is not supported by previous works. In the search for mod-2b

GC, we realize that it is has a few advantage over GC for mod-p or bounded
integer computation.

Match popular architectures. In most modern architectures, if not all, the only
natively supported arithmetic operation is over Z2b . Most existing tools (pro-
graming languages, compilers, processors, etc) are optimized using/targeting the
mod-2b arithmetic operations. This is our initial motivation to construct the
mod-2b GC.

Mixing boolean and arithmetic computation. Mixed circuits combine boolean and
arithmetic computations. The basis include boolean gates, arithmetic operations,
together with special gates to convert between boolean and arithmetic values:
arithmetic-to-boolean conversion (bit-decomposition) and boolean-to-arithmetic
conversion (bit-composition). Previous work [BMR16,BLLL23] has considered
the garbling of mixed circuits. But in their constructions, the cost of garbling
bit-decomposition is expansive.

It turns out that our mod-2b GC naturally supports efficient garbling of
bit-decomposition and bit-composition. Actually, in our construction, the key-
extension gadget is the combination of bit-decomposition and bit-composition.
For example, to double the arithmetic key/label length, first use bit-decomposition
to convert it into boolean labels, then use bit-composition twice to obtain a
longer label.

Emulate arithmetic computation modulo any modulus N . For any constant N ,
mod-N computations can be efficiently emulated by mod-24b mixed circuits if
b = ⌈logN⌉. To prove such a statement, it suffices to show, given 0 ≤ x < N2,
how to compute x mod N using a mod-24b mixed circuit. One step further, it is
also sufficient to compute integer division ⌊x/N⌋ using a mod-24b mixed circuit.
By the rather standard multiply-and-shift trick,

⌊x · ⌈23b/N⌉/23b⌋ = ⌊x/N⌋

the quotient can be computed by first multiplying by constant ⌈23b/N⌉ then
integer division by 23b. Both operations are efficient in a mod-24b mixed circuit.

1.1 Our Results

Mix GC in the Random Oracle Model. Using only random oracle, the state-
of-the-art garbling scheme for arithmetic circuit is that of [BMR16]. They rely
on Chinese remainder theorem (CRT) to garble an arithmetic circuit modulo
N = p1, . . . ps ≈ 2b, by equivalently garble s copies of the circuit, each modulo

3

a small prime pi. They allow free addition and each multiplication gate costs
O(λb2/ log b) bit of communication. However, bit-decomposition operation of
this scheme is expensive and not explicitly considered in [BMR16].

Our work improves the state-of-the-art in several directions.

– Our first scheme (Theorem 1) garbles arithmetic gates modulo N = pk ≈ 2b,
for some prime p, with the same asymptotic efficiency as [BMR16]: addition
is free, each multiplication costs O(λb2/ log b) bit of communication. Addi-
tionally, our scheme supports efficient bit-decomposition gates at a cost of
O(λb2/ log b) communication, enabling the garbling of mixed circuits.

– Our second scheme (Theorem 2) applies CRT in a similar way to [BMR16].
When garbling computations modulo N = pk1

1 pk2
2 . . . pks

s ≈ 2b, our mix GC
supports free addition and relatively efficient bit-decomposition, and garbles
every multiplication gate using O(λb1.5) communication.

– Our third scheme (Theorem 3) further improves the multiplication gate cost
to O(λb log b/ log log b). However, as a trade-off, addition gates are no longer
free and have the same cost as multiplication gates.

Mixed GC Based on Computational Assumptions. If allowed to use public key
assumptions, the state-of-the-art garbling schemes for arithmetic circuits and
mixed circuits are those of [BLLL23]. Under the decisional composite residuosity
(DCR) assumption, they construct a garbling scheme for bounded integers where
each multiplication gate only costs O(λDCR + b). In their scheme, the addition
gates cost the same as multiplication, the bit-decomposition gates have a more
expensive cost of O(λ2

DCR · b).
Our work improves the state-of-the-art by supporting free addition gates and

more efficient bit-decomposition gates. However, as a trade-off, multiplication
gates are more expensive, of size O(λDCR · b).

– Our fourth scheme (Theorem 4) garbles mixed circuits modulo 2b and al-
lows free addition. Each multiplication gate and bit-decomposition gate costs
O(λDCR · b) communication.

2 Preliminaries

For any positive integer N , let [N] := {0, 1, . . . , N−1}, let ZN denote the ring of
integer moduloN . We require modulo operation has lower priority than addition.
That is, a+ b mod p should be interpreted as (a+ b) mod p.

Base-p Digit Representation and Bit Representation. For any x ∈ [2b], the bit
representation of x is the unique boolean vector (x0, . . . , xb−1) ∈ {0, 1}n such
that x =

∑
i 2

ixi.
For any x ∈ [pk], the base-p digit representation of x, is the unique vector

(x0, . . . , xk−1) ∈ [p]k such that x =
∑

i p
ixi.

For any x ∈ [pk], let (x0, . . . , xk−1) be its base-p digit decomposition, the base-
p bit representation of x is the unique vector (xi,j)i∈[k],j∈[log p] ∈ {0, 1}k·⌈log p⌉

4

ADD gate
table size

MULT gate
table size

bit decom-
position

ring
modulus

assumption
besides RO

b
o
o
le
a
n naive λb λb2 free 2b

Karatsuba λb λb1.58 * free 2b

FFT-based λb λb log b * free 2b

[BMR16] free λb2/ log b expensive † N = p1p2 . . . ps ≈ 2b

Ours (Thm. 1) free λb2/ log b λb2/ log b ‡ N = pk ≈ 2b

Ours (Lem. 6) λb2/ log b λb2/ log b λb2/ log b ‡ any N ≈ 2b

Ours (Thm. 2) free λb1.5 λb2/ log b ‡ N = pk1
1 pk2

2 . . . pks
s ≈ 2b

Ours (Thm. 3) λb log b
log log b

λb log b
log log b

λb2/ log b ‡ N = pk1
1 pk2

2 . . . pks
s ≈ 2b

[BLLL23] λLWEb λLWEb unknown any N ≈ 2b LWE

[BLLL23] λ(λDCR + b) λ(λDCR + b) unknown any N ≈ 2b strong DCR §
[BLLL23] λLWEb λLWEb λLWEb

2 bounded integer LWE
[BLLL23] λDCR + b λDCR + b λ(λDCR + b)2 bounded integer strong DCR §
Ours (Thm. 4) free λDCRb λDCRb 2b DCR

Ours (Cor. 1) λDCRb λDCRb λDCRb any N ≈ 2b DCR

Constant and log(λ) multiplicative factors are ignored. λLWE and λDCR denote the
LWE dimension and DCR key length respectively. *Due to large hidden constants,
the Karatsuba’s method outperforms the naive method only when b is at least a few
hundreds, the FFT-base method outperforms Karatsuba’s only when b is at least tens
of thousands. †The cost is not explicitly stated in [BMR16], but is no less the the cost
of comparison gate, which is stated to be O(λb3/ log b). ‡The cost is measured when
decomposing to base-p bit representation for some prime p (See Equation 1). The
cost increases to O(λb2) when decomposing to base-2 bit representation. §Under the
standard DCR assumption, “λ” should be replaced by “λDCR” in its cost expression.

Table 1. Comparison between our GC and previous works

such that xi =
∑

j p
i2jxi,j for all i ∈ [k]. As a consequence, x =

∑
i,j p

i2jxi,j .
That is, base-p bit representation is the bit representation of the base-p digit
decomposition.

2.1 Computation Models

We consider arithmetic circuits and its generalization mixed circuits, where the
computation can switch between arithmetic and boolean. Each wire carries a
value x in either the boolean field F2 = {0, 1} or an arithmetic ring R. We
mainly consider R = Zpk the ring of integer modulo a prime power, and the
special case R = Z2b . More specifically, we mostly focus on the following class
of circuits.

Mixed Circuit. Let Cmix(R) denote the class of circuits that mixes boolean gates
and arithmetic operations over R. A circuit in this class computes a function
f : {0, 1}nin,bool ×Rnin,arith → {0, 1}nout,bool ×Rnout,arith using the gates as basis:

– Add,Mult : R×R → R compute addition and multiplication over R.

5

– Bit-decomposition BD : R → {0, 1}b computes the bit representation of an
arithmetic value.
When R = Z2b , we consider the most natural bit decomposition. That is,
BD(x) = (x0, x1, . . . , xb−1) such that x =

∑
i 2

ixi.
When R = Zpk , the gate first decomposes the number into digits in base p,
then decomposes each digit into bits. That is, b = k · ⌈log p⌉, and

BD(x) = (xi,j)i∈[k],j∈⌈log p⌉ s.t. x =
∑
i

pi
∑
j

2jxi,j . (1)

– Bit-composition BC : {0, 1}b → R computes the arithmetic value from its
bit representation.

– g : {0, 1} × {0, 1} → {0, 1} computes the boolean function g.

Arithmetic Circuit. Let Carith(R) denote the class of arithmetic circuits over R.
A circuit in this class computes a function f : Rnin → Rnout using the following
the gates as basis:

– Add,Mult : R×R → R compute addition and multiplication over R.

2.2 Garbled Circuits (GC)

The following definition of garbling mixed circuits has been implicitly considered
in the previous works. We will not separately define arithmetic GC since it can
be viewed as the special case of mixed GC.

Definition 1 (Garbling of Mixed Circuits). A garbling scheme for Cmix(R)
consists of three efficient algorithms.

– KeyGen(1λ, 1nin,bool , 1nin,arith) samples nin,bool boolean wire keys K1, . . . ,Knin,bool
,

nin,arith arithmetic wire keys AK1, . . . ,AKnin,arith
and status st. Each boolean

key Ki is a function from a bit to a bit string. Each arithmetic key AKi is
an affine function from a ring element to a vector.

– Garb(C, st) takes as input a mixed circuit C ∈ Cmix(R), outputs a garbled
circuit C̃.

– Eval(C̃, {li}i∈[nin,bool], {Li}i∈[nin,arith]) takes as inputs the garbled circuit C̃, and
boolean labels li and arithmetic labels Li. It outputs the evaluation results
{ybool,i}, {yarith,i}.

Correctness. The garbling scheme is correct, if for any circuit C ∈ Cmix(R)
and any input x, as long as C̃ and keys K1, . . . ,Knin,bool

,AK1, . . . ,AKnin,arith
are

properly generated,

Eval(C̃, l1, . . . , lnin,bool
,L1, . . . ,Lnin,arith

)

always outputs C(x), where li := Ki(xbool,i), Li := AKi(xarith,i) are input labels.

6

Security. The garbling scheme is secure if there exists an efficient simulator Sim
such that for any circuit C ∈ Cmix(R) and input x, the output of Sim(C,C(x))
is indistinguishable from

(C̃, l1, . . . , lnin,bool
,L1, . . . ,Lnin,arith

)

when C̃,K1, . . . ,Knin,bool
,AK1, . . . ,AKnin,arith

are properly generated from C, and
li := Ki(xbool,i), Li := AKi(xarith,i).

Gate Gadgets. The construction is mostly modular. For each gate in the basis,
there is a garbling gadget for all the tasks related to this gate. Consider a general
gate g : Rn

1 → Rm
2 where R1,R2 ∈ {Z2,R}. The garbling gadget for g consists

of three efficient algorithms g.Garb, g.Eval, g.Sim. The garbling algorithm g.Garb
takes input wire keys K1, . . . ,Kn (which are boolean keys if R1 = F2, arithmetic
keys if R1 = R) and output wire keys K′

1, . . . ,K
′
m, generates a table Tab, such

that:

– Correctness. For any x1, . . . , xn ∈ R1 and (y1, . . . , ym) = g(x1, . . . , xn),
the evaluation algorithm g.Eval(K1(x1), . . . ,Kn(xn),Tab) will always output
(K′

1(y1), . . . ,K
′
m(ym)).

– Handwavy Security. For any x1, . . . , xn ∈ R1, the distribution of Tab is
indistinguishable from g.Sim(K1(x1), . . . ,Kn(xn),K

′
1(y1), . . . ,K

′
m(ym)) when

K1(x1), . . . ,Kn(xn) are also given to the distinguisher.

As the name suggested, this security definition is imprecise. The issue is
mainly caused by the global key. It can be formalized by a global simulator. The
global simulator first samples a label for each wire, then samples the garbling
table of each gate using the simulation algorithm of the corresponding gadget.
In short, the simulation is modular, but the actual security definition is global.
For simplicity, we will work in the random oracle model.4

There is also a modular approach [AIK11,BLLL23] that allows the precise
security definition of each gate garbling gadget, but it is incompatible with the
existence of the global key. The modular approach requires the simulation al-
gorithm of the gate gadget to sample labels on the input wires. This causes
another issue that a label can not be reused by multiple gates. Thus extra work
is required when a gate has fan-out greater than 1.

3 Technical Overview

This section briefly discusses AIK’s framework of arithmetic GC (Sec. 3.1)
and a technically less interesting extension (Sec. 3.2) discussing the sufficiency
of bit-decomposition and bit-composition. The takeaway is: Mixed circuit can

4 In the boolean GC setting, [App16] shows how random oracle can be replaced with
symmetric encryption resisting a combined related-key and key-dependent message
attack. Their technique are likely to work in the arithmetic GC setting as well.

7

be efficiently garbled, as long as there are efficient garbling gadgets for bit-
decomposition and bit-composition.

In Sec. 3.3, we presents a naive construction of the two garbling gadgets. The
resulting GC does not have superior efficiency, but it is simple enough and will
be optimized in later sections.

3.1 Background: Key-Extension Implies Arithmetic GC

We recap the framework of AIK [AIK11] for arithmetic GC over some ring R,
with the modification that there is a global key ∆ for all arithmetic wires. As
observed by FreeXOR [KS08] and “FreeADD” [BMR16], the garbling of addition
gates will cost no communication if a global key is sampled.

In more detail, the an arithmetic key is sampled for each wire as follows
(where λ denotes the security parameter):

– A global key ∆ ∈ Rℓ is sampled for all arithmetic wires, where ℓ is the label
length. If R = Z2b , we will set ℓ = λ. If R = Zpk , we will set ℓ = ⌈λ/ log p⌉.
For each arithmetic wire, the key is an affine function AK : R → Rℓ+1. The
output AK(x) consists of ℓ-dimension label and a color number. That is, AK
can be represented by AK = (A ∈ Rℓ, α ∈ R) such that

AK(x) = (∆x+A, x+ α) (in R) .

α is called the mask number of this wire. Set α = 0 for every output wire.

The circuit is garbled gate-by-gate. The garbling gadget for arithmetic gate
g consists of a garbling algorithm g.Garb, an evaluation algorithm g.Eval and
a simulation algorithm g.Sim. The garbling algorithm g.Garb takes the keys of
input wires AK1,AK2 and a key of output wire AK, outputs a table Tab such
that:

– Correctness. For any x, y ∈ R, g.Eval(AK1(x),AK2(y),Tab) = AK(g(x, y)).
– Handwavy Security. For any x, y ∈ R, the distribution of Tab is indistinguish-

able from g.Sim(AK1(x),AK2(y),AK(g(x, y))) when AK1(x),AK2(y) are also
given to the distinguisher but the global arithmetic key ∆ is hidden.

If g is addition, note that

AK1(x) + AK2(y)− AK(x+ y)

= (∆x+A1, x+ α1) + (∆y +A2, y + α2)− (∆(x+ y) +A, x+ y + α)

= (A1 +A2 −A, α1 + α2 − α) (in Z2d)

is a constant that can always be computed from input/output labels. Setting it
as the table will not violate security and is sufficient for correctness. A smarter
solution, as suggested by [BMR16], is to set the table Tab to be empty, and to
change how the output wire key AK is generated. Instead of sampling AK at
random, set A = A1 +A2 and α = α1 + α2, thus AK1(x) + AK2(y) mod 2d =
AK(x+ y).

8

If g is multiplication, first use randomized encoding [IK00,AIK04] to sam-
ple two affine functions (long keys) AKL

1,AK
L
2 such that AKL

1(x),AK
L
2(y) reveals

AK(xy) but nothing else about x, y,AK. This is formalized as a so-called affiniza-
tion gadget in [AIK11] (called “arithmetic operation gadgets” in [BLLL23]).

The affinization gadget for multiplication can be formalized by a garbling
algorithm Aff×.Garb, an evaluation algorithm Aff×.Eval and a simulation
algorithm Aff×.Sim.

– Given an affine function, the garbling algorithm Aff×.Garb(AK,∆)
samples two affine functions AKL

1,AK
L
2 such that the output dimen-

sion of AKL
i is at most twice the output dimension of AK.

– Correctness. For any x, y in the ring, given “long labels”, the evalu-
ation algorithm Aff×.Eval(AK

L
1(x),AK

L
2(y)) always outputs AK(xy).

– Security. For any AK,∆, x, y, the distribution of (AKL
1(x),AK

L
2(y)) is

perfectly indistinguishable from Aff×.Sim(AK(xy)). The randomness
of the former comes from the randomness tape of Aff×.Garb.

The construction of GC is complete by the key-extension gadget, which allows
the evaluator to compute AKL

1(x),AK
L
2(y) from AK1(x),AK2(y).

The key-extension gadget can be formalized by a garbling algorithm
KE.Garb, an evaluation algorithm KE.Eval and a simulation algorithm
KE.Sim.

– Given a key AK and an affine function AKL, the garbling algorithm
KE.Garb(AK,∆,AKL) samples a table Tab.

– Correctness. For any x in the ring, the KE.Eval(AK(x),Tab) always
outputs AKL(x).

– Handwavy Security. For any x, the distribution of Tab is indistin-
guishable from KE.Sim(AK(x),AKL(x)) when AK(x) are also given
to the distinguisher but ∆ is hidden.

The garbling gadget for multiplication gate can be naturally constructed from
the affinization gadget and the key-extension gadget.

– Garbling algorithm Mult.Garb(AK1,AK2,AK):
Aff×.Garb(AK)→ (AKL

1,AK
L
2).

KE.Garb(AKi,AK
L
i)→ Tabi for i ∈ {1, 2}.

Output Tab = (Tab1,Tab2).
– Evaluation algorithm Mult.Eval(L1,L2,Tab):

KE.Eval(Li,Tabi)→ LL
i for i ∈ {1, 2}.

Aff×.Eval(L
L
1,L

L
2)→ L.

Output L.
– Simulation algorithm Mult.Sim(L1,L2,L):

Aff×.Sim(L)→ LL
1,L

L
2.

KE.Sim(Li,L
L
i)→ Tabi for i ∈ {1, 2}.

Output Tab = (Tab1,Tab2).

9

This arithmetic GC framework [AIK11,BMR16] reduces the problem to con-
struct key-extension gadget. As long as there is a secure key-extension gadget
that doubles the key length (i.e., the output of AKL can be twice as long as AK),
the framework will yield an arithmetic GC of the same complexity.

Lemma 1 (informal). If there is a secure key-extension gadget that doubles the
key length whose table size is cKE, there is an arithmetic GC for the same ring
such that each addition gate costs no communication, and each multiplication
gate costs 2 · cKE communication.

3.2 Bit-Decomposition & Bit-Composition Imply Mixed GC

We extend the AIK framework to support mixed circuit, which consists of arith-
metic operation gates as described before, boolean gates such as AND, XOR,
and NOT, and two conversion gates, bit-decomposition and bit-compositions.

A wire in the circuit is either an arithmetic wires as described before, or a
boolean wire. The keys for arithmetic wires stay unchanged. The keys for boolean
wires are sampled as follows:

– A global key ∆ ∈ {0, 1}λ is sampled for all boolean wires.
For each boolean wire, the key is an affine function K : {0, 1} → {0, 1}λ+1.
The output K(x) consists of a λ-bit label and a color bit. That is, K can be
represented by K = (b ∈ {0, 1}λ, α ∈ {0, 1}) such that

K(x) = (∆x⊕ b, x⊕ α) .

α is called the mask bit of this wire. Set α = 0 for every output wire.

The arithmetic operation gates are garbled as before, and we skip the rather
standard boolean gate garbling gadgets. We describe gadgets for garbling bit-
decomposition and bit-composition gates in more detail below.

The bit-decomposition gadget consists of BD.Garb,BD.Eval,BD.Sim. The gar-
bling algorithm BD.Garb takes an arithmetic key AK and b boolean keys K0, . . . ,Kb−1

as inputs, outputs a table Tab, such that

– Correctness. For any x ∈ R, BD.Eval(AK(x),Tab) = (K0(x0), . . . ,Kb−1(xb−1)).
– Handwavy Security. For any x ∈ R, the distribution of AK(x),Tab is indis-

tinguishable from AK(x),BD.Sim(AK(x),K0(x0), . . . ,Kb−1(xb−1)) when the
global arithmetic key ∆ is hidden.

The bit-composition gadget consists of BC.Garb,BC.Eval,BC.Sim. The gar-
bling algorithm BC.Garb takes b boolean keys K0, . . . ,Kb−1 and an arithmetic
affine function AKL as inputs, outputs a table Tab, such that

– Correctness. For any x ∈ R, BC.Eval(K0(x0), . . . ,Kb−1(xb−1),Tab) = AKL(x).
– Handwavy Security. For any x ∈ R, the distribution of Tab is indistinguish-

able from BC.Sim(K0(x0), . . . ,Kb−1(xb−1),AK
L(x)) when K0(x0), . . . ,Kb−1(xb−1)

is also given to the adversary but the global key ∆ is hidden.

10

We stress that AKL can be an arbitrary affine function: its multiplicative factor
does not have to be the global key; and its output dimension can be larger.
Although for simplicity, we assume the output dimension of AKL equals the
dimension of a label. In case we need longer AKL, we can always divide it into a
few pieces and use the bit-composition gadget multiple times.

It is obvious that bit-decomposition gadget and bit-composition gadget im-
ply key-extension gadget, and thus imply mixed GC. Previous work did not con-
struct the key-extension gadget though this approach because bit-decomposition
is expensive in their constructions.

Lemma 2 (informal). If there are a secure bit-decomposition gadget whose ta-
ble size is cBD and a secure bit-decomposition gadget whose table size is cBC, then
there there is a mixed GC for the same ring such that each addition gate costs no
communication, and each multiplication/bit-decomposition/bit-composition gate
costs O(cBD + cBC) communication.

3.3 The Naive Construction

This section presents garbling gadgets for bit-decomposition and bit-composition
when the ring is Z2b . For each x ∈ Z2b , let xi denote the i-th lowest bit of x, so
that x =

∑
i 2

ixi. Let xa:b denote
∑

a≤i<b 2
i−axi, so that the bit representation

of xa:b is a substring of the bit representation of x.

BC. The bit-composition gadget is straight-forward. Given boolean input la-
bels K0(x0), . . . ,Kb−1(xb−1), the evaluator need to compute the output label
AKL(x) = Ax+B (recall that in bit-composition gadget, the output key can be
any affine function). The garbling algorithm BC.Garb samples additive sharing
B0, . . . ,Bb−1 such that

∑
i Bi = B, then generates table that allows the evalu-

ator to compute A2ixi +Bi from Ki(xi). The most direct solution is to let the
table contain ciphertexts

Enc(Ki(β),A2iβ +Bi) for all β ∈ {0, 1}.

The order of the two ciphertexts are permuted according to the mask bit in Ki,
so that the evaluator can pick the right ciphertext using the color bit.

BD. The bit decomposition gadget is inspired by the following two observations.

– Let L = AK(x) = ∆x+A denote the given arithmetic label. Then

L mod 2 = ∆x+A mod 2 = ∆x0 +A mod 2 .

If the table contains Enc(∆β+A mod 2,K0(β)) for β ∈ {0, 1}, the evaluator
can properly decrypt the boolean label K0(x0) of x0 with L mod 2.

– To continue, the evaluator should be able to compute a mod-2b−1 arithmetic
label for all but the least significant bit of x

L(1) = ∆x1:b +A(1) mod 2b−1 .

11

Garbling algorithm BD.Garb takes an arithmetic key AK = (A, α) and b boolean
keys K0, . . . ,Kb−1 as inputs.

– Let A(0) = A. For each 1 ≤ i < b, samples A(i) ← (Z2b−i)λ.
– Let α(0) = α. For each 1 ≤ i < b, samples α(i) ← Z2b−i .
– For each 0 ≤ i < b, for each β ∈ {0, 1}, compute

Ci,β+α(i) mod 2 ← H(∆β +A(i) mod 2, (id, i))⊕
(Ki(β),∆β +A(i) − 2A(i+1) mod 2b−i,

β + α(i) − 2α(i+1) mod 2b−i) if i < b− 1

Ki(β), if i = b− 1

– Output table Tab = (Ci,β)i∈[b],β∈{0,1}

Evaluation algorithm BD.Eval takes input label (L, x̄) and a table Tab as inputs.

– Let L(0) := L, x̄(0) = x̄.
– For i = 0, 1, 2, . . . , b− 1:

Compute (li,D
(i), d(i))← H(L(i) mod 2, (id, i))⊕ Ci,x̄(i) mod 2. If i < b− 1,

compute

L(i+1) = (L(i) −D(i) mod 2b−i)/2 , x̄(i+1) = (x̄(i) − d(i) mod 2b−i)/2 .

– Output boolean labels l0, l1, . . . , lb−1.

Simulation algorithm BD.Sim takes arithmetic label (L, x̄) and boolean labels
l0, l1, . . . , lb−1 as inputs.

– Let (L(0), x̄(0)) = (L, x̄).
– Sample random L(i) ← (Z2b−i)λ, x̄(i) ← Z2b−i for each 1 ≤ i < b.
– The active ciphertexts in the table Tab are set as

Ci,x̄(i) mod 2 = H(L(i) mod 2, (id, i))⊕{
(li,L

(i) − 2L(i+1) mod 2b−i, x̄(i) − 2x̄(i+1) mod 2b−i) if i < b− 1

li if i = b− 1

The rest are called inactive ciphertexts, and are simulated by random
strings.

Fig. 1. The Naive Bit-Decomposition Gadget

Then the evaluator can iteratively compute all the boolean labels. Note that,

L− 2L(1) mod 2b = ∆x0 +A− 2A(1) mod 2b . (2)

If the table also contains ciphertexts

Enc(∆β +A mod 2, ∆β +A− 2A(1) mod 2b) for β ∈ {0, 1} ,

12

the evaluator can decrypt the ciphertext to get (2) and compute L(1).

These observations lead us to the bit-decomposition gadget in Fig. 1. For sim-
plicity, the encryption is implemented by a secure function H which is modeled
as a random oracle

Enc(key,m) = H(key, aux)⊕m, Dec(key, c) = H(key, aux)⊕ c,

where aux contains auxiliary information such as the id of current gate. The H
queries under some auxiliary information is bounded: For each aux, the construc-
tion only queries H(key, aux) for up to two distinct key.

Lemma 3. There are statistically secure bit-decomposition gadget (Fig. 1) and
bit-composition gadget (a specialization of Fig. 2) for ring Z2b , whose table
size is O(b2λ). They yield statistically secure mixed GC for Z2b in the random
oracle model, such that each addition gate costs no communication, and each
multiplication/bit-decomposition/bit-composition gate costs O(b2λ) communica-
tion.

Proof. The correctness can be easily verified inductively. The induction hypoth-
esis is L(i) = ∆xi:b +A(i) mod 2b−i, x̄(i) = xi:b + α(i) mod 2b−i. The base case
i = 0 holds automatically. Assume the inductive hypothesis holds for i < b− 1,

(li,D
(i), d(i)) = H(L(i) mod 2, (id, i))⊕ Ci,x̄(i) mod 2

= H(∆xi +A(i) mod 2, (id, i))⊕ Ci,xi+α(i) mod 2

= (Ki(xi),∆xi +A(i) − 2A(i+1) mod 2b−i, xi + α(i) − 2α(i+1) mod 2b−i)

Then the hypothesis also holds for i+ 1 as

L(i+1) = (L(i) −D(i) mod 2b−i)/2

= ((∆xi:b +A(i))− (∆xi +A(i) − 2A(i+1)) mod 2b−i)/2

= (2∆xi+1:b + 2A(i+1) mod 2b−i)/2

= ∆xi+1:b +A(i+1) mod 2b−i−1,

similarly x̄(i+1) = xi+1:b + α(i+1) mod 2b−i−1.
For the (handwavy) security, the simulation output is indistinguishable from

the real-world distribution as

– In the real world, L(0), . . . ,L(b−1), x̄(0), . . . , x̄b−1 are padded byB(0), . . . , B(b−1),
α(0), . . . , α(b−1), their joint distribution is uniformly random. Thus it is cor-
rect to simulate them uniformly at random.

– In the real world, for each i ∈ [b], the active ciphertext Ci,x̄(i) mod 2 is uniquely

determined by li,L
(i),L(i+1), x̄(i), x̄(i+1) as stated in the simulator’s descrip-

tion. (Otherwise, correctness will be violated.)
– In the real world, for each i ∈ [b], the inactive ciphertext Ci,x̄(i)+1 mod 2 is

one-time padded by H(L(i) +∆ mod 2, (id, i)). As long as ∆ is hidden from
the distinguisher, the ciphertext can be simulated by a random string. ⊓⊔

13

Precise Security. As mentioned, the precise security proof is inherently global.
We provide a sketch of the proof. Consider the standard global simulator Sim:

– Sim takes circuit C and the circuit output as inputs.
– Sample a random label (including the color bit/number) for each wire. For

every output wire, the color bit/number is determined by the given circuit
output.

– For each gate, use the corresponding garbling gadget to simulate the table
of the gate.

The standard global simulator Sim defines the ideal world. We want to show the
indistinguishability between the real world and the ideal world.

Define a hybrid world as follows, the only difference between the hybrid and
the ideal world is how the inactive ciphertexts are sampled. (In the proof sketch,
we only states the modification of BD.Sim. Similar modifications of simulation
algorithm are need in the gadgets for bit-composition and boolean gates.) In the
hybrid world, an inactive ciphertext Ci,x̄(i)+1 mod 2 is not simulated by a random
string, instead, its value is set as

Ci,x̄(i)+1 mod 2 = H(L(i) +∆ mod 2, (id, i))⊕
(Ki(xi ⊕ 1),∆(xi ⊕ 1) +A(i) − 2A(i+1) mod 2b−i,

(xi ⊕ 1) + α(i) − 2α(i+1) mod 2b−i) if i < b− 1

Ki(xi ⊕ 1) if i = b− 1

This assignment requires knowing keys, etc., which do not exist in the ideal
world. In the hybrid world, however, the actual value x is known. The hybrid
world also samples global keys ∆, δ, and determines the keys K,AK in reverse
from the labels, the actual values and global keys.

It is easy to check that the hybrid world is perfectly indistinguishable from
the real world. The indistinguishability between the hybrid world and the ideal
world can be shown using the randomness mapping technique from [HKT11].
First, we can safely assume the distinguisher to be (non-uniform) deterministic.
With overwhelming probability, the distinguisher in the ideal world never queries
H(L(i) + ∆ mod 2, (id, i)). (Technically speaking, this statement is wrong be-
cause ∆ does not exist in the ideal world. To fix it, let the ideal world internally
sample global keys.) The randomness mapping π is an injective partial function
from the randomness space of the ideal world to the randomness space of the
hybrid world, satisfying:

i) π is defined on an overwhelming-probability subset of the randomness space.
In our case, π is defined over all samples r in the randomness space, such
that the distinguisher never queries H(L(i) +∆ mod 2, (id, i)) when r is the
randomness of the ideal world.

ii) For all samples r in the support of π, the probability of r in the ideal world
is the same as the probability of π(r) in the hybrid world.

iii) For all samples r in the support of π, the view of the distinguisher in the ideal
world when the randomness is r is identical to the view of the distinguisher
in the hybrid world when the randomness is π(r).

14

The way we define the hybrid world hints how to construct the randomness
mapping π, though we will not explicitly states the randomness mapping in the
paper. The randomness mapping shows that the hybrid world and the ideal world
are statistically indistinguishable if the distinguisher makes a bounded number
of queries to the random oracle.

4 Mixed GC for Zpk

This section presents a mix GC for Zpk . Recall how the arithmetic key, label,
color number are defined for each arithmetic wire (where λ is the security pa-
rameter):

– A global key∆ ∈ Zℓ
pk is sampled for all arithmetic wires, where ℓ = ⌈λ/ log p⌉

is the label length.
For each arithmetic wire, the key is an affine function AK : Zpk → Zℓ+1

pk . The

output AK(x) consists of ℓ-dimension label and a color number. That is, AK
can be represented by AK = (A ∈ Zℓ

pk , α ∈ Zpk) such that

AK(x) = (∆x+A, x+ α) mod pk .

α is called the mask number of this wire. Set α = 0 for every output wire.

As discussed in Sec. 3.2, it suffices to construct efficient garbling gadgets for
bit-decomposition and bit-composition over ring Zpk . The construction of the
two gadgets for Zpk generalizes the constructions for Z2b in Sec. 3.3.

For each x ∈ Zpk , let xi denote the i-th lowest digit of x, so that x =
∑

i p
ixi.

Let xa:b denote
∑

a≤i<b p
i−axi, so that the base-p digit representation of xa:b

is a substring of the base-p digit representation of x. Let xi,j denote the j-th
lowest bit of xi, so that xi =

∑
j 2

jxi,j .

For each β ∈ Zp, let βi denote the i-th lowest bit of β, so that β =
∑

i 2
iβi. Let

βa:b denote
∑

a≤i<b 2
i−aβi, so that the bit representation of βa:b is a substring

of the bit representation of β.

BC. The bit-composition gadget is straight-forward. Given boolean input labels
Ki,j(xi,j) for i ∈ [k], j ∈ [log p], the evaluator needs to compute the output label

AKL(x) = Ax + B (recall that in the bit-composition gadget, the output key
can be any affine function). The garbling algorithm BC.Garb samples additive
sharing Bi,j such that

∑
i,j Bi,j = B, then generates a table that allows the

evaluator to compute Api2jxi,j +Bi,j from Ki,j(xi,j). The most direct solution
is to let the table contain ciphertexts

Enc(Ki,j(β),Api2jβ +Bi,j) for all β ∈ {0, 1}.

The order of the two ciphertexts are permuted according to the mask bit in Ki,j ,
so that the evaluator can pick the right ciphertext according to the color bit.

The construction is formalized in Fig. 2. The table consists of O(k log p)
ciphertexts, each ciphertext is kλ-bit long, thus the table size is O(λk2 log p) bit.

15

Garbling algorithm BC.Garb takes boolean keys Ki,j for i ∈ [k], j ∈ [log p], and
an arithmetic key AKL = (A,B) as inputs. Let αi,j denote the mask bit of Ki,j .

– Sample randomBi,j for i ∈ [k], j ∈ [log p], satisfying
∑

i,j Bi,j mod pk = B.
– For each i ∈ [k], j ∈ [log p], for each β ∈ {0, 1}, compute

Ci,j,β+αi,j mod 2 ← H(Ki,j(β), (id, i, j))⊕ (Api2jβ +Bi,j mod pk)

– Output table Tab = (Ci,j,β)i∈[k],j∈[log p],β∈{0,1}

Evaluation algorithm BC.Eval takes input labels (li,j , x̄i,j) for i ∈ [k], j ∈ [log p]
and a table Tab as inputs.

– For i ∈ [k], j ∈ [log p], compute Li,j ← H(li,j , (id, i, j))⊕ Ci,j,x̄i,j .

– Output arithmetic label L =
∑

i,j Li,j mod pk.

Simulation algorithm BC.Sim takes input labels (li,j , x̄i,j) for i ∈ [k], j ∈ [log p]
and arithmetic label L as inputs.

– Sample random Li,j for i ∈ [k], j ∈ [log p], satisfying
∑

i,j Li,j mod pk = L.
– The active ciphertexts in the table Tab are set as

Ci,j,x̄i,j = H(li,j , (id, i, j))⊕ Li,j

The rest are inactive ciphertexts, and are simulated by random strings.

Fig. 2. The Naive Bit-Composition Gadget

BD. The bit-decomposition gadget starts with the same observations as the one
in Sec. 3.3. Let L = AK(x) = ∆x+A mod pk denote the given arithmetic label.
Define

L(i) = ∆xi:k +A(i) mod pk−i .

where A(0) := A and A(i) are randomly sampled. Thus, L(0) = L. Note that,

L(i) mod p = ∆xi:k +A(i) mod p = ∆xi +A(i) mod p .

If the table contains ciphertext

Enc(∆xi +A(i) mod p, (boolean labels of xi,∆xi +A(i) − pA(i+1) mod pk−i))

the evaluator can, given L(i), computes all the boolean labels of xi and the next
label L(i+1). This observation can be formalized as a secure bit-decomposition
gadget, who has poor efficiency. The table consists of pk ciphertexts, each ci-
phertext is (λ log p + λk)-bit long, the total length is no less than λpk2. Under
constraint pk ≈ 2b, the table size is minimized when p = O(1), which is asymp-
totically equivalent to the naive construction in Sec. 3.3.

The bottleneck is the encryption of ∆xi +A(i) − pA(i+1) mod pk−i. To op-
timize the efficiency, we replace the long ciphertexts by shorter ciphertexts

Enc(∆xi +A(i) mod p, boolean labels of xi)

16

that only encrypts the boolean labels. Since the evaluator can computes the
boolean labels of xi, it uses a mini bit-composition gadget (Fig. 3) to compute
∆xi +A(i) − pA(i+1) mod pk−i.

The optimized construction is formalized in Fig. 4. After optimization, the
table consists of O(kp) ciphertexts, each of which is O(λ log p) bit long, and k
mini-table for the mini bit-composition, each of which is O(λk log p) bit long.
The total table size is O(λk(k + p) log p).

Garbling algorithm miniBCk.Garb takes boolean keys Kj for j ∈ [log p], and an
arithmetic key AKL = (A,B) as inputs. Let αj denote the mask bit of Kj .

– Sample random Bj for j ∈ [log p], satisfying
∑

j Bj mod pk = B.
– For each j ∈ [log p], for each β ∈ {0, 1}, compute

Cj,β+αj mod 2 ← H(Kj(β), (id, j))⊕ (A2jβ +Bj mod pk)

– Output table Tab = (Cj,β)j∈[log p],β∈{0,1}

Evaluation algorithm miniBCk.Eval takes input labels (lj , x̄j) for j ∈ [log p] and
a table Tab as inputs.

– For j ∈ [log p], compute Lj ← H(lj , (id, j))⊕ Cj,x̄j .

– Output arithmetic label L =
∑

j Lj mod pk.

Simulation algorithm miniBCk.Sim takes input labels (lj , x̄j) for j ∈ [log p] and
arithmetic label L as inputs.

– Sample random Lj for j ∈ [log p], satisfying
∑

j Lj mod pk = L.
– The active ciphertexts in the table Tab are set as

Cj,x̄j = H(lj , (id, j))⊕ Lj

The rest are simulated by random strings.

Fig. 3. The Mini Bit-Composition Gadget

Theorem 1. There are statistically secure bit-composition gadget (Fig. 2) for
ring Zpk whose table size is O(λk2 log p) and bit-decomposition gadget (Fig. 4) for
ring Zpk , whose table size is O(λk(k+ p) log p). They yield a statistically secure
mixed GC for Zpk in the random oracle model, such that each addition gate costs
no communication, and each multiplication/bit-decomposition/bit-composition
gate costs O(λk(k + p) log p) communication.

The bit-composition gadget (Fig. 2) and the mini bit-composition gadget (Fig. 3)
are special cases of the linear bit-composition gadget (Fig. 5), whose correctness
and security will be analyzed in Sec. 4.1. The proof of the bit-decomposition
gadget is similar to that of Lem. 3 in Sec. 3.3.

17

Garbling algorithm BD.Garb takes an arithmetic key AK = (A, α) and k ·⌈log p⌉
boolean keys Ki,j for i ∈ [p], j ∈ [log p] as inputs.

– Let A(0) = A. For each 1 ≤ i < k, samples A(i) ← (Zpk−i)λ.

– Let α(0) = α. For each 1 ≤ i < k, samples α(i) ← Zpk−i .
– For each i ∈ [k], j ∈ [log p], for each β ∈ [p], compute

Ci,β+α(i) mod p ← H(∆β +A(i) mod p, (id, i))⊕ (Ki,j(βj) for j ∈ [log p])

– For each 0 ≤ i < k − 1, define affine function DK(i)

DK(i)(β) = (∆β +A(i) − pA(i+1), β + α(i) − pα(i+1)) mod pk−i,

compute table tbi ← miniBCk−i.Garb(Ki,j for j ∈ [log p],DK(i)).
– Output table Tab consisting of (Ci,β)i∈[k],β∈[p] and (tbi)i∈[k−1]

Evaluation algorithm BD.Eval takes input label (L, x̄) and a table Tab as inputs.

– Let L(0) := L, x̄(0) = x̄.
– For i = 0, 1, 2, . . . , k − 1:

Compute (li,j for j ∈ [log p])← H(L(i) mod p, (id, i))⊕ Ci,x̄(i) mod p.

If i < k − 1, compute (D(i), d(i))← miniBCk−i.Eval(li,j for j ∈ [log p], tbi)

L(i+1) = (L(i) −D(i) mod pk−i)/p , x̄(i+1) = (x̄(i) − d(i) mod pk−i)/p .

– Output boolean labels li,j for i ∈ [p], j ∈ [log p].

Simulation algorithm BD.Sim takes arithmetic label (L, x̄) and boolean labels
li,j for i ∈ [p], j ∈ [log p] as inputs.

– Let (L(0), x̄(0)) = (L, x̄).
– Sample random L(i) ← (Zpk−i)λ, x̄(i) ← Zpk−i for each 1 ≤ i < k.
– The active ciphertexts in the table Tab are set as

Ci,x̄(i) mod p = H(L(i) mod p, (id, i))⊕ (li,j for j ∈ [log p])

The rest are inactive ciphertexts, and are simulated by random strings.
– For each 0 ≤ i < k − 1, compute

(D(i), d(i))← (L(i) − pL(i+1), x̄(i) − px̄(i+1)) mod pk−i

and simulate tbi by tbi ← miniBCk−i.Sim(li,j for j ∈ [log p], (D(i), d(i))).

Fig. 4. The Bit-Decomposition Gadget in Ring Zpk

Under the constraint that pk ≈ 2b, the asymptotic cost per gate is minimized
when p ≈ b/ logc b for any constant c ≥ 1. The minimal cost is O(λb2/ log b).

18

Further Optimization. The bit-decomposition gadget in Fig. 4 can be further
optimized. Currently, for each i ∈ [k] the table contains ciphertexts

Ci,β+α(i) mod p ← H(∆β +A(i) mod p, (id, i))⊕ (Ki,j(βj) for j ∈ [log p])

for each j ∈ [log p], β ∈ [p]. Notice that, every potential boolean label, such as
Ki,j(0), is encrypted in O(p) ciphertexts. This is rather wasteful.

For better efficiency, Ci,β+α(i) mod p only encrypts a key K0,β

Ci,β+α(i) mod p ← H(∆β +A(i) mod p, (id, i))⊕K0,β .

The key K0,β is sampled by the garbler, and can decrypt the ciphertext

Enc(K0,β , (Ki,0(β0),K1,β1:log p
)) ,

which reveals the next boolean label and the next key K1,β1:log p
. That is, the

garbler samples keys Kj,βj:log p
for every j ∈ [log p], β ∈ [p], and the table addi-

tionally includes ciphertexts

Enc(Kj,βj:log p
, (Ki,j(βj),Kj+1,βj+1:log p

))

for every j ∈ [log p], β ∈ [p]. The ciphertexts should be properly shuffled, and
some color bits/digits should be introduced to help the evaluation.

After optimization, the table consists of O(kp) ciphertexts, each of which is
O(λ) bit long, and k mini-table for the mini bit-composition, each of which is
O(λk log p) bit long. The total table size is O(λk(k log p + p)). It produces a
statistically secure mixed GC in the random oracle model that has a marginal
efficiency improvement compared to Thm. 1. But we will not explicitly state
the further optimized gadget construction. The improvement is not significant
enough to change the results in Tab. 1.

4.1 Extension: Linear BC and General BD

Our mixed GC for Zpk (Thm. 1) allows conversion between an arithmetic label
and boolean labels of its base-p bit representation using bit-decomposition and
bit-composition gadgets.

The base-p bit representation is quite useful, for example, it allows compari-
son between arithmetic numbers. But in many cases, we may need or may want
to use the base-p′ bit representation for a different base p′. The most naive so-
lution is to use an expansive boolean circuit for base conversion. In this section,
we presents an alternative solution.

BC. Let x be an arithmetic value. Given boolean labels of the base-p′ bit rep-
resentation of x, how to compute the Zpk -arithmetic label of x? We ask a more
general question:

Given boolean labels of (z0, . . . , zm−1), how to compute the Zpk -
arithmetic label of

∑
i cizm, where c0, . . . , cm−1 are fixed constants?

19

The gadget is parameterized by coefficients c0, . . . , cm−1 ∈ Zpk .

Garbling algorithm linBC.Garb takes boolean keys K0, . . . ,Km−1, and an arith-
metic key AKL = (A,B) as inputs. Let αi denote the mask bit of Ki.

– Sample random Bi for i ∈ [m], satisfying
∑

i Bi mod pk = B.
– For each i ∈ [m], for each β ∈ {0, 1}, compute

Ci,β+αi mod 2 ← H(Ki(β), (id, i))⊕ (Aciβ +Bi mod pk)

– Output table Tab = (Ci,β)i∈[m],β∈{0,1}.

Evaluation algorithm linBC.Eval takes input labels (li, x̄i) for i ∈ [m] and a
table Tab as inputs.

– For i ∈ [m], compute Li ← H(li, (id, i))⊕ Ci,x̄i .
– Output arithmetic label L =

∑
i Li mod pk.

Simulation algorithm linBC.Sim takes input labels (li, x̄i) for i ∈ [m] and arith-
metic label L as inputs.

– Sample random Li for i ∈ [m], satisfying
∑

i Li mod pk = L.
– The active ciphertexts in the table Tab are set as

Ci,x̄i = H(li, (id, i))⊕ Li

The rest are inactive ciphertexts, and are simulated by random strings.

Fig. 5. The Linear Bit-Composition Gadget over Ring Zpk

Essentially, we are asking how to garble gate f : {0, 1}m → Zpk , which is defined
as f(z0, . . . , zm−1) =

∑
i cizm mod pk.

The construction is rather straightforward. Let K0, . . . ,Km−1 be the in-
put wire keys, let AKL(x) = Ax + B mod pk be the output wire key. Let
B0, . . . ,Bm−1 be an additive sharing of B that are sampled by the garbler.
Given Ki(zi), the evaluator can compute Li = Acizi + Bi mod pk because the
table contains

Enc(Ki(β),Aciβ +Bi)

for all i ∈ [m], β ∈ {0, 1}. The evaluator outputs

L :=
∑
i

Li mod pk =
∑
i

(Acizi +Bi) mod pk

= Af(z0, . . . , zm−1) +B mod pk .

(3)

This is formalized in Fig. 5.

Lemma 4. For any f(z0, . . . , zm−1) =
∑

i cizm mod pk, there is secure garbling
gadget for general linear bit-composition function f (Fig. 5), called linear bit-

20

composition gadget, in the random oracle model. The table size is O(λmk),
assume the output label dimension is λ/ log p.

Proof. For any input z0, . . . , zm−1, the evaluator computes Li ← H(li, (id, i))⊕
Ci,zi⊕αi

, then Li = Aciβ+Bi mod pk. The correctness of the output is guaran-
teed by (3).

To prove security, is suffices to notice that B0, . . . ,Bm−1 is an additive
sharing implies L0, . . . ,Lm−1 is an additive sharing. In other words, we know
L0, . . . ,Lm−2 is i.i.d. uniform in the real world because they are one-time padded
by i.i.d. uniform B0, . . . ,Bm−2. And Lm−1 is determined by L0, . . . ,Lm−2 and
L from L :=

∑
i Li mod pk. ⊓⊔

BD. Given the Zpk -arithmetic label of x, if we want to compute the boolean
labels of the base-p′ bit representation of x:

– First compute the boolean labels of the base-p bit representation of x, using
bit-decomposition gadget.

– Compute the Zp′k′ -arithmetic label of x, using linear bit-composition gadget.
– Compute the boolean labels of the base-p′ bit representation of x, using

bit-decomposition gadget.

In particular, the cost of conversion from base-p bit representation to base-2
representation is O(λb2) where 2b ≈ pk. This is much cheaper than using the
boolean circuit for base conversion.

4.2 Extension: Emulating Computations for ZN

Our mixed GC for Zpk can emulate arithmetic mod-N operations if pk > N2

and there is an efficient garbling gadget for the modulo gate modN : Zpk → Zpk ,
which is defined as modN (x) = x mod N . The emulation is rather straightfor-
ward:

– Every number in ZN is emulated by the same number in Zpk

– Every mod-N arithmetic operation (ADD or MULT) is emulated the by the
same operation over Zpk , followed by modN .
The cost of emulating ADD gates can be dramatically optimized. Instead
of appending modN after every ADD gate, append modN only if the accu-
mulated magnitude is close to pk/2 or when the fan-out includes a MULT
gate.

Garbling the the modulo gate modN is mostly equivalent to garbling the
integer division gate divN : Zpk → Zpk , which is defined as divN (x) = ⌊x/N⌋,
since modN (x) = x−N · divN (x).

Unfortunately, the garbling gadget for divN is hard to construct.5 We will
define a similar gate div∗N whose garbling gadget is efficient and also suffices

5 An efficient garbling gadget of divN can be constructed based on the garbling gadget
of div∗N .

21

for emulating mod-N computations. The definition of div∗N (x) is inspired by a
well-known optimization that reduce division by constant to multiplication and
shifting.

Lemma 5 (Generalization of [GM94]). For any positive integers N, p, kI, kE,m
satisfying pkI+kE ≤ mN < pkI+kE + pkE ,⌊ x

N

⌋
=

⌊ mx

pkI+kE

⌋
for all 0 ≤ x < pkI .

Proof. pkI+kE ≤ mN < pkI+kE + pkE implies, by multiplying x
pkI+kEN

,

x

N
≤ mx

pkI+kE
<

x

N
+

x

NpkI
<

x+ 1

N
. ⊓⊔

Now we are ready to define the gate div∗N : Zp2k+1 → Zp2k+1 . Let kE :=

⌈logp(N)⌉ be the minimum integer satisfying pkE ≥ N . Let m = ⌈p
kI+kE

N ⌉, thus
pkI+kE ≤ mN < pkI+kE +N ≤ pkI+kE + pkE . By Lem. 5,⌊ x

N

⌋
=

⌊ mx

pk+kE

⌋
for any 0 ≤ x < pk. Therefore we define div∗N : Zp2k+1 → Zp2k+1 as

div∗N (x) =
⌊mx mod p2k+1

pk+kE

⌋
.

It satisfies div∗N (x) = ⌊x/N⌋ for all x < pk. Since div∗N is the composition of
multiplication in Zp2k+1 and digit shifting, it can be efficiently garbled by our
mixed GC for Zp2k+1 .

Define gate mod∗N : Zp2k+1 → Zp2k+1 as mod∗N (x) = x − N · div∗N (x). Then
mod∗N can be efficiently garbled by our mixed GC for Zp2k+1 , and mod∗N (x) =
x mod N for all x < pk.

Lemma 6. For any N ≤ 2b, there is a statistically secure mixed GC for ZN in
the random oracle model, such that each addition/multiplication/bit-decomposition/
bit-composition gate costs O(λb2/ log b) communication. The bit-decomposition
is over a prime base p = Θ(b/ log b).

Proof. Mod-N computations can be emulated in a Zp2k+1-mixed circuits. Comb-
ing with Thm. 1, the cost per gate is O(λk(k + p) log p). The cost is minimized
by letting p = Θ(b/ log b). ⊓⊔

Remarks. Although Lem. 6 does not claim free addition, we observe from its
construction that addition is free up to a certain extent.

In this mixed GC for ZN , the bit decomposition gate outputs base-p bit rep-
resentations. In case a (base-2) bit representation is needed, it can be computed
from the base-p bit representation by a cost of O(λb2), using the trick stated in
Sec. 4.1.

22

5 Mixed GC based on Chinese Remainder Theorem

Chinese remainder theorem (CRT) is used in [BMR16] to solve the following
natural task: Given b, find an efficient arithmetic GC over ring ZN for some
N ≈ 2b.

Since there is no more specific constraints onN , [BMR16] setsN = p1p2 . . . ps
being the product of the first s primes. Then s = Θ(b/ log b) and ps = Θ(b).
Consider an arithmetic circuit over Zpi

, denoted by “C mod pi”, that is identical
to C except the ring is replaced by Zpi . Then

C(x) mod pi = (C mod pi)(x mod pi) .

Therefore, by CRT, the task of evaluating C(x) is reduced to evaluating mod-pi
arithmetic circuit (C mod pi)(x mod pi) for all 1 ≤ i ≤ s. In [BMR16], the re-
duction is combined with mixed GC for every ring Zpi , resulting in an arithmetic
GC for ZN where each MULT gate costs about O(λb2/ log b) bits.

In this section, we will strength the result in two dimensions.

Based on Mod-pk Mixed GC. [BMR16] sets N = p1p2 . . . ps because their basic
GC only supports computation modulo a prime number. In Sec. 4, we have
already construct relatively efficient mix GC for prime power rings. Therefore,
we will set

N = pk1
1 pk2

2 . . . pks
s ≈ 2b

and reduce the problem of garbling mod-N computation to garbling mod-pki
i

computations for each 1 ≤ i ≤ s.

Efficient BD. In the CRT framework, if the actual value of a ZN -wise is x, it
is not hard to get the boolean labels of the bit representation of x mod pki

i , for
each 1 ≤ i ≤ s. To compute the bit representation of x, the naive idea is garble
the CRT algorithm.

For more efficient bit-decomposition, we make the following observation.
There are constants c1, . . . , cs ∈ ZN such that, for any x ∈ ZN

x =
∑
i

cix
(i) mod N ,

where x(i) := x mod pki
i denotes the mod-pki

i component of x. (x(1), . . . , x(s)) is
usually called the CRT representation of x. The fact that x is a linear function
(moduloN) on its CRT representation suggests a more efficient bit-decomposition
construction in the “CRT framework”.

Our new bit-decomposition construction is essentially a mixed circuit over
the ring Zp2k+1 , where p, k satisfy pk > N2 >

∑
i cix

(i). The input of the mixed

circuits consists of the bit representation of x(i) for all 1 ≤ i ≤ s. All the
input wires can be merged into

∑
i cix

(i) through the generalized linear BC gate
(Fig. 5). Then next step is mod∗N , whose output

∑
i cix

(i) mod N always equals

23

x. The last gate is the standard bit-decomposition of Cmix(Zpk), producing the
base-p bit representation of x.

The linear BC costs λmk bits, where m =
∑

i ki log pi = O(b). The modulo
gate mod∗N and bit-decomposition gate cost O(λb(k + p)). The overall cost is
O(λb(k+p)), which can be minimized as O(λb2/ log b) by setting p = Θ(b/ log b).

If (base-2) bit representation of x is required, the overall cost of BD is O(λb2).

By combining the “CRT framework” with Thm. 1 and Lem. 6 respectively,
we have two more efficient mixed GC for ZN .

Theorem 2. For any b, there exist N > 2b and a statistically secure mixed
GC for ZN in the random oracle model, such that each addition gate costs no
communication, and each multiplication gate costs O(λb1.5) communication, and
each bit-decomposition/bit-composition gate costs O(λb2/ log b) communication.

Proof. Set N = pk1
1 pk2

2 . . . pks
s ≈ 2b. The task of garbling mod-N mixed circuits

is reduced to garbling mod-pki
i mixed circuits for all 1 ≤ i ≤ s. Each mod-pki

i

mixed circuit will be garbled the mixed GC in Thm. 1.
Thus each mod-N ADD gate will cost nothing.
Each mod-N MULT gate costs∑

i

O(λki(ki + pi) log pi) .

We want to minimize the cost, under the constraint that pk1
1 pk2

2 . . . pks
s ≈ 2b.

For any i, if ki increases by 1, then logN will increase by log pi, the total
cost will increase by O(λ(ki + pi) log pi). The “marginal cost increase per bit of
N by changing ki” is

∂cost(k1, . . . , ks)

∂ki

/
∂ logN(k1, . . . , ks)

∂ki
= O(λ(ki + pi)) .

To minimize the cost, this ratio should be roughly the same for all i.
Following this intuitive argument, we choose a constant c and let pi + ki = c

for all i. The value of c is determined by the constraint N = pk1
1 pk2

2 . . . pks
s ≈ 2b.

b ≤ log
∏
i≤s

pki
i =

∑
i≤s

ki log pi =
∑
i≤s

(c− pi) log pi ≈
c∑

p=2

(c− p) = Θ(c2) .

Thus we set c = Θ(
√
b).

The cost per MULT gate is

∑
i

λki(ki+pi) log pi =
∑
i

λ(c−pi)c log pi ≈
c∑

p=2

λ(c−p)c = O(λc3) = O(λb1.5).

The total cost of having one BD gate in the mod-pki
i part for all 1 ≤ i ≤ s is

also O(λb1.5). But these parallel BD gates only compute (the bit representation

24

of) the CRT representation. To compute the bit representation, an additional
cost of O(λb2) (or O(λb2/ log b), if the representation can use any base) is needed.

For BC, say the boolean representation of the number has at most O(b) bits.
Applying linear BC (Fig. 5) for all 1 ≤ i ≤ s will cost O(

∑
i λbki) bits.∑

i

λbki = λb
∑
i

(c− pi) ≤ λbcs = O(λb2/ log b) ⊓⊔

Theorem 3. For any b, there exist N > 2b and a statistically secure mixed
GC for ZN in the random oracle model, such that each addition/multiplica-
tion gate costs O(λb log b/ log log b) communication, each bit-decomposition costs
O(λb2/ log b) communication, each bit-composition gate costs O(λb2/ log log b)
communication.

Proof. Set N = pk1
1 pk2

2 . . . pks
s ≈ 2b. The task of garbling mod-N mixed circuits

is reduced to garbling mod-pki
i mixed circuits for all 1 ≤ i ≤ s. Each mod-pki

i

mixed circuit will be garbled the mixed GC in Lem. 6.
Each mod-N ADD/MULT gate costs∑

i

O(λd2i / log di), where 2di > pki
i .

We want to minimize the cost, under the constraint that pk1
1 pk2

2 . . . pks
s ≈ 2b.

We choose a constant d such that d = d1 = d2 = · · · = ds, and let ki =
⌊di/ log pi⌋. So all primes are smaller than 2d and s = Θ(2d/d). The value of d
is determined by the constraint N = pk1

1 pk2
2 . . . pks

s ≈ 2b.

b ≤ log
∏
i≤s

pki
i =

∑
i≤s

ki log pi ≤
1

2

∑
i≤s

d = Θ(sd) = Θ(2d).

Thus we set d = log b+O(1). Then s = O(b/ log b).
The cost of each mod-N ADD/MULT gate is∑

i

O
(λd2i
log di

)
= O

(sλd2
log d

)
= O

(bλ log b

log log b

)
.

The cost of BD, by the same analysis as in the proof of Thm. 2, is O(λb2) if
the outcome is base-2 bit representation, O(λb2/ log b) if the representation can
use any base.

The cost of BC is trickier to trace. For each i, the mod-pki
i computations are

emulated, according to the construction of Lem. 6, by a mod-pk mixed circuit.
Such that k = O(d/ log d) = O(log b/ log log b). For each i, using linear BC to
compute the arithmetic value costs λbk. The total cost is sλbk = λb2/ log log b.
But linear BC computes a linear function modulo pk, rather than the desired
modulus pki

i . This issue is resolve by slightly enlarge pk to some poly(pki
i , b) =

bΘ(1) so that linear BC computes the linear function over Z. This modification
over enlarge k by a constant factor, thus will not asymptotically increase the
cost of any operations. ⊓⊔

25

6 Mixed GC based on DCR

In this section, we show how to improve the efficiency of our mixed GC con-
struction by relying computational assumption. The new construction is most
similar to the naive mixed construction (Lem. 3 in Sec. 3.3) over ring Z2b .

The construction will be based on the computational assumption of decisional
composite residuosity (DCR). We quickly recap the background, which can be
found in [DJ01,BDGM20]. Let p = 2p′ + 1, q = 2q′ + 1 be two safe primes (i.e.,
p′, q′ are also primes). Let M = pq, and let ζ be a small constant. Consider the
ring of integer modulus Mζ+1. The multiplicative group Z∗

Mζ+1 equals a direct
product GMζ+1 × HMζ+1 , where

GMζ+1 = {(M+1)t mod Mζ+1|t ∈ N}, HMζ+1 = {aM
ζ

mod Mζ+1|a ∈ Z∗
Mζ+1}.

The “easy subgroup” GMζ+1 is a cyclic group of order Mζ generated by M + 1,
where discrete logarithm base M + 1 is easy. The “hard subgroup” HMζ+1 is
isomorphic to Z∗

M , the isomorphism πMζ+1 : Z∗
M → HMζ+1 is

πMζ+1(a) = aM
ζ

mod Mζ+1 .

Denote the subgroups of quadratic residues of Z∗
Mζ+1 ,HMζ+1 by

QRMζ+1 := {a2 mod Mζ+1|a ∈ Z∗
Mζ+1}, HCMζ+1 = {aM

2ζ

mod Mζ+1|a ∈ Z∗
Mζ+1}.

Then QRMζ+1 equals the direct product of GMζ+1 × HCMζ+1 . The “hardcore
subgroup” HCMζ+1 is isomorphic to QR∗

M under the same isomorphism πMζ+1 ,
thus HCMζ+1 is a cyclic group of order p′q′.

The decisional composite residuosity (DCR) assumption says, if p, q are sam-
pled from large safe primes, then a random element from HCMζ+1 is computa-
tional indistinguishable from a random quadratic residue from QRMζ+1 .

Definition 2 (DCR assumption [Pai99,DJ01]). Let λDCR = λDCR(λ) be the
DCR key length. Let ζ = ζ(λ) be a polynomial. The assumption DCRζ states that
the following (computational) indistinguishability

(M,u) ≈c (M,v)

when M = pq is product of two random λDCR-bit safe primes, u and v are sampled
from QRNζ+1 and HCNζ+1 respectively.

As a consequence of the DCR assumption, a random element from HMζ+1 is
computational indistinguishable from a random element from ZMζ+1 .

We consider two encryption schemes [Pai99,DJ01] based on the DCR assump-
tion. Both are probabilistic public-key encryption schemes, but we presented
them as deterministic private-key encryption schemes, under the mapping in
Fig. 6

Construction 1 (Paillier Encryption6 [Pai99,DJ01]).

6 The original Paillier encryption uses ZM2 as the ciphertext space, which is extended
to ZMζ+1 in [DJ01].

26

Standard Public-Key Notation Private-Key Notation

public key public parameter pp
secret key trapdoor tp

encryption randomness secret key sk
decryption using encryption randomness decryption Dec

decryption inversion using trapdoor Inv

Fig. 6. Notation Mapping

– Paillier.Setup(1λ, 1ζ) Sample two safe primes p = 2p′ + 1, q = 2q′ + 1 of
λDCR(λ)-bit long each. Compute M = pq, sample a random generator g ∈
HCMζ+1 . Output public parameter pp = (M, ζ, g) and trapdoor tp = p′q′.

– Paillier.Gen(pp) Samples a key sk← [M/4].
– Paillier.Enc(sk,m) takes a key sk ∈ Z and a message m ∈ [Mζ]. Output

Paillier.Enc(sk,m) := gsk(M + 1)m mod Mζ+1 .

– Paillier.Dec(sk, c) takes a key sk ∈ Z and a ciphertext c ∈ ZMζ+1 . Output

Paillier.Dec(sk, c) := DLogM+1(c/g
sk) (over ZMζ+1) .

Construction 2 (Damg̊ard-Jurik Encryption [DJ01]).

– DamJur.Setup(1λ, 1ζ) Sample two safe primes p = 2p′ + 1, q = 2q′ + 1 of
λDCR(λ)-bit long each. Compute M = pq. Output public parameter pp =
(M, ζ) and trapdoor tp = p′q′.

– DamJur.Gen(pp) Samples a key g ← Z∗
M .

– DamJur.Enc(g,m) takes a key g ∈ Z∗
M and a message m ∈ [Mζ]. Output

ct = DamJur.Enc(g,m) := πMζ+1(g) · (M + 1)m mod Mζ+1 .

– DamJur.Dec(sk, c) takes a key g ← Z∗
M and a ciphertext c ∈ ZMζ+1 . Output

DamJur.Dec(sk, c) := DLogM+1(c/πMζ+1(g)) (over ZMζ+1) .

– DamJur.Inv(tp, c) takes a ciphertext c ∈ ZMζ+1 , output the unique g ∈ Z∗
M ,

m ∈ [Mζ] such that c = πMζ+1(g) · (M + 1)m mod Mζ+1:

g = (c mod M)(M
ζ)−1

mod M, m = DamJur.Dec(g, c).

Note that computing the inverse of Mζ modulo φ(M) requires knowledge
of the trapdoor. See [BDGM20] for more detail on the correctness of the
inversion algorithm.

Both constructions have some kind of homomorphism. For any message
M1,M2 and keys sk1, sk2, g1, g2.

Paillier.Enc(sk1,m1) · Paillier.Enc(sk2,m2) mod Nζ+1

= Paillier.Enc(sk1 + sk2 mod p′q′, m1 +m2 mod Nζ)

DamJur.Enc(g1,m1) · DamJur.Enc(g2,m2) mod Nζ+1

= DamJur.Enc(g1g2 mod N, m1 +m2 mod Nζ)

27

6.1 Bit-Composition based on Paillier Encryption

As observed in Sec. 4.1, the more general bit-composition function (x0, . . . , xm−1)→∑
i cixi mod 2b is not harder to garble. Thus we will directly construct this more

general bit-composition.
Let K0, . . . ,Km−1 be the boolean keys. Let AKL = (A ∈ Zℓ

2b ,B ∈ Zℓ
2b) be the

arithmetic key. In the analysis of the complexity, we will assume m = O(b) and
ℓ = O(λ). For any x0, . . . , xm−1 ∈ {0, 1}, given K0(x0), . . . ,Km−1(xm−1) and the
table, the evaluator of the bit-composition gadget should output the arithmetic
label L = AKL(x) = xA+B mod 2b where x =

∑
i cixi mod 2b.

The construction is based on the following intuition (informally): Allow the
evaluator to decrypts x+ r and (x+ r)skA + skB . Let the table contain

ctA = Enc(skA,A), ctB = Enc(−rskB ,−rA+B)

using some homomorphic encryption. Then the evaluator can compute

(ctA)x+rctB = Enc((x+ r)skA + skB , xA+B)

which can be decrypted into xA+B.
To formalize the intuition: i) We will add large random noise R, and let the

evaluator get xA + B + 2bR instead. ii) We need to construct an encryption
scheme that has the required homomorphism.

As the section name suggested, the encryption scheme is (almost) Paillier.
Except that we want the scheme to encrypt a vector rather than a number. We
consider the following natural encoding encode : Zℓ → Z, parameterized by ℓ
and B,

encode(v0, . . . , vℓ−1) =
∑
i∈[ℓ]

Bivi ,

together with an efficient decoder decode : [Bℓ]→ [B]ℓ, satisfying

– For any A,B ∈ Zℓ, encode(A+B) = encode(A) + encode(B).
– For any A ∈ [B]ℓ, encode(A) ∈ [Bℓ] and decode(encode(A)) = A.

Set the parameter of the encoder by B = 22b+2λ+1. Define the following
encryption scheme vPai,

– vPai.Setup(1λ) is Paillier.Setup(1λ, 1ζ), by choosing smallest ζ s.t. Mζ ≥ Bℓ.
– vPai.Gen is Paillier.Gen.
– vPai.Enc(sk,V) = Paillier.Enc(sk, encode(V)).
– vPai.Dec(sk, c) = decode(Paillier.Dec(sk, c)).

Using vPai, our intuition can be formalized as a bit-composition gadget.

Lemma 7. For any linear bit-composition function f(z0, . . . , zm−1) =
∑

i cizm mod
2b satisfying

∑
i ci ≤ 2b (otherwise the construction should be slightly modified),

there is secure garbling gadget for f (Fig. 7), under DCR assumption in the ran-
dom oracle model. The table size is O(mλDCR+ℓ(b+λ)), which is O(λDCRb+λ2)
when ℓ = O(λ) and m = O(b).

28

The gadget is parameterized by coefficients c0, . . . , cm−1 ∈ Z2b .

Garbling algorithm BC.Garb takes boolean keys K0, . . . ,Km−1, and an arith-
metic key AKL = (A,B) as inputs. Let αi denote the mask bit of Ki.

– (global step) Generate M, ζ, g, p′q′ using vPai.Setup, while setting ζ such
that Mζ ≥ 2ℓ(2b+λ+1). Add (M, ζ, g) to the beginning of the garbled circuit.

– Sample keys skA, skB0 , . . . , sk
B
m−1 ← [p′q′]. Let skB :=

∑
i sk

B
i .

Sample masks r0, . . . , rm−1 ← [2λ], R ← [2b+2λ]ℓ. Let r =
∑

i ciri. Com-
pute

ctA = vPai.Enc(skA,A), ctB = vPai.Enc(skB , (22b+λ − rA) +B+ 2bR).

– For each i ∈ [m], for each β ∈ {0, 1}, compute

Ci,β+αi mod 2 ← H(Ki(β), (id, i))⊕ (xi + ri, ci(xi + ri)sk
A + skBi mod p′q′)

– Output table Tab = ((Ci,β)i∈[m],β∈{0,1}, ct
A, ctB).

Evaluation algorithm BC.Eval takes input labels (li, x̄i) for i ∈ [m] and a table
Tab as inputs.

– For i ∈ [m], compute (x̂i, ski)← H(li, (id, i))⊕ Ci,x̄i .
– Compute sk =

∑
i ski, x̂ =

∑
i cix̂i.

– Output label L = L̂ mod 2b, where L̂ = vPai.Dec(sk, (ctA)x̂ctB).

Simulation algorithm BC.Sim takes input labels (li, x̄i) for i ∈ [m] and arith-
metic label L as inputs.

– (global step) Sample (M, ζ, g) using the vPai.Setup.
– Sample random x̂0, . . . , x̂m−1 ← [2λ]. Let x̂ =

∑
i cix̂i.

Sample random sk0, . . . , skm−1 ← [M/4]. Let sk =
∑

i ski.

– Sample masks R← [2b+λ]ℓ, let L̂ = L+ 2bR.
Simulate ctA by randomly sample ctA ← QRMζ+1 . Simulate ctB as

ctB = vPai.Enc(sk, L̂)/(ctA)x̂ (over Z∗
Mζ+1).

– The active ciphertexts in the table Tab are set as

Ci,x̄i = H(li, (id, i))⊕ (x̂i, ski)

The rest are inactive ciphertexts, and are simulated by random strings.

The modifications with respect to Fig. 5 are highlighted.

Fig. 7. The Bit-Composition Gadget based on Paillier

Proof. Verify the correctness in the real world: For each i, x̂i = xi + ri. Thus
x̂ =

∑
i cixi = x+ r. For each i, ski = ci(xi + ri)sk

A + skBi mod p′q′, thus

sk =
∑
i

(
ci(xi + ri)sk

A + skBi mod p′q′
)
= (x+ r)skA + skB + p′q′t

29

for some t ∈ Z. By the homomorphism of encryption,

(ctA)x̂ctB = (vPai.Enc(skA,A))x̂(vPai.Enc(skB , (22b+λ − rA) +B+ 2bR))

= vPai.Enc(x̂skA + skB , x̂A+ 22b+λ − rA+B+ 2bR)

= vPai.Enc(sk, xA+B+ 22b+λ + 2bR)

which can be decrypted by sk.

L̂ = vPai.Dec(sk, (ctA)x̂ctB) = xA+B+ 22b+λ + 2bR (4)

Finally, L = L̂ mod 2b = xA+B mod 2b.

Security follows from the following arguments:

– skA is uniformly sampled in the real world.

– Since x̂i = xi + ri is smudged by random ri ∈ [2λ] in the real world. Simu-
lating it as x̂← [2λ] only introduces 2−λ statistical error.

– ski is uniformly distributed among [p′q′], because it is one-time padded by
skBi in the real world. Simulating ski by ski ← [M/4] introduces a statistical
error of O(2−λDCR).

– In the real world L̂ = (xA+B) + 22b+λ + 2bR. Note that

(xA+B) + 22b+λ = (xA+B mod 2b) + 2bT = L+ 2bT

for some T ∈ [2b+λ+1]ℓ. The randomly sampled R who has magnitude 2b+2λ

smudges T. Simulating L̂ by L+ 2bR introduces a statistical error of mag-
nitude 2−λ.

– Combine the arguments so far, in the real world, the joint distribution of

skA, (x̂i)i∈[m], (ski)i∈[m], R =
L̂− L

2b

is O(poly
2λ

)-close to a uniform distribution over [p′q′] × [2λ]m × [M/4]m ×
[2b+2λ]. That is, in the real world, the distribution of skA is close to uniform
even conditioning all the values simulated so far. Thus ctA can be simulated
by a random ciphertext in QRMζ+1 , by the DCR assumption.

– ctB is uniquely determined by the correctness guarantee, (determined by
Eq. (4), in particular).

The table consists ofO(m) one-time pad ciphertexts, each of which isO(λDCR)
bit long, and two vPai ciphertexts, each of which is of length

ζ logM ≤ λLWE + ℓ(2b+ 2λ) .

So the total table size is O(mλDCR + ℓ(b+ λ)).

30

6.2 Bit-Decomposition based on Damg̊ard-Jurik Encryption

In the bit-decomposition gadget, the evaluator is given an arithmetic label
L = AK(x) = x∆ + A mod 2b its color number x̄ = x + α mod 2b together
with a table generated by the garbler from AK,K0, . . . ,Kb−1, and should output
K0(x0), . . . ,Kb−1(xb).

Recall our intuition behind the naive BD (Fig. 1): In each inductive step, the
evaluator gets L(i) = xi:b∆+A(i) and computes

L(i) mod 2 = xi∆+A(i) mod 2.

Using L(i) mod 2 as the key, the evaluator decrypts a ciphertext

H(xi∆+A(i) mod 2)⊕ (K(xi), xi∆+ S)

in the table, gets K(xi) and xi∆+S. The later allows the evaluator to compute
L(i+1) and proceed to the next step.

The bottleneck is the ciphertext size. Let us replace the ciphertext by

H(xi∆+A(i) mod 2)⊕ (K(xi), xi + r, (xi + r)sk∆ + skS) .

And let the table additionally contains two ciphertexts

ct∆ = Enc(sk∆,∆) , ctS = Enc(skS ,−r∆+ S+ 2bR) ,

using a homomorphic encryption scheme. Then the evaluator can instead com-
pute xi∆+ S+ 2bR from

Dec((xi + r)sk∆ + skS , (ct∆)xi+r/ctS) .

Such modification does not improves the complexity yet, because ct∆, ctS become
the new dominating part. Notice that, all tables may share a global ct∆ as it
only depends on the global key.

For the last bottleneck ctS , we require its distribution to be “dense”, in the
sense that, the distribution of ctS is statistically close to the uniform distribution
over a samplable domain. This requires i) a “dense” encryption scheme, and ii)
the distribution of the message −r∆+ S+ 2bR is statistically close to uniform
over the message space.

If our requirement is satisfied, the garbler can instead sample a random seed,
and let ctS = H(seed). The ciphertext ctS in the table can be replaced by seed.
For correctness, the garbler need to reversely compute the key and message
behind the ciphertext ctS .

As discussed in [BDGM20], all of our requirements are satisfied by Damg̊ard-
Jurik encryption [DJ01].

– Density: For random g ← Z∗
M and random m ← [Nζ], the distribution of

ciphertext DamJur.Enc(g,m) is uniform in Z∗
Mζ+1 .

– Invertibility: There is an efficient algorithm Inv, which takes a ciphertext ct ∈
Z∗
Mζ+1 and the trapdoor tp, computes g,m such that DamJur.Enc(g,m) = ct.

31

Damg̊ard-Jurik encrypts a number rather a vector. Similar to Sec. 6.1, we
need a encoder-decoder pair between vectors and numbers. The encoder has to
be dense in the sense that almost all encodings in the codomain are valid. Again,
consider the natural encoding encode : Zλ+1 → Z, parameterized by B,

encode(v0, . . . , vλ) =
∑

i∈[λ+1]

Bivi ,

together with an efficient decoder decode : [Bλ]→ [B]λ.

– For security, set B ≥ 2b+2λ.

– For density, ensure Mζ ≥ Bλ+1 ≥Mζ(1− 2−λ).7

Define the following encryption scheme vDJ,

– vDJ.Setup(1λ) is DamJur.Setup(1λ, 1ζ), by choosing smallest ζ s.t. Mζ ≥
(22b+λ+1)λ+1. Also let B be the largest multiple of 2b satisfying Mζ ≥ Bλ+1.
Then all the three requirements on B can be satisfied.

– vDJ.Gen is DamJur.Gen.

– vDJ.Enc(sk,V) = DamJur.Enc(sk, encode(V)).

– vDJ.Dec(sk, c) = decode(vDJ.Dec(sk, c)).

– vDJ.Inv(tp, c) = (g, decode(v)) for (g, v) = DamJur.Inv(tp, c).

Now we are ready to present the bit-decomposition gadget in Fig. 8.

Lemma 8. There is secure bit-decomposition gadget (Fig. 8) over ring Z2b , un-
der DCR assumption in the programable random oracle model. The table size is
O(bλDCR).

Proof. First verify correctness in the real world. Inductively, the evaluator gets
(L(i), x̄(i)) = (xi:b∆ +A(i), xi:b + α(i)). The least significant bits of L(i) allows
the evaluator to decrypt Ci,x̄(i) , and gets

li = K(xi), x̂i = xi + ri, h(i) = (g∆)xi+rig(i), .

(ct∆)x̂ict(i)

=
(
vDJ.Enc(g∆, (∆, 1))

)xi+ri
· vDJ.Enc(g(i), 2b+λ − ri(∆, 1) + (S(i), s(i)))

= vDJ.Enc((g∆)xi+rig(i), xi(∆, 1) + (S(i), s(i)) + 2b+λ)

From the decryption of Damg̊ard-Jurik ciphertext, the evaluator gets

(D(i), d(i)) = (xi∆+ S(i), xi + s(i)) + 2b+λ

7 The density requirement can be relaxed to Mζ ≥ Bb ≥Mζ/ poly(λ).

32

Garbling algorithm BD.Garb takes an arithmetic key AK = (A, α) and b boolean
keys K0, . . . ,Kb−1 as inputs.

– (global step) Generate M, ζ, p′q′ using vDJ.Setup, while setting ζ, B prop-
erly. Sample key g∆ ← Z∗

M and compute ct∆ = vDJ.Enc(g∆, (∆, 1)).
Add M, ζ, ct∆ to the beginning of the garbled circuit.

– Let A(0) = A, α(0) = α.
– For each 0 ≤ i < b, sample ri ← [2λ], seed(i) ← {0, 1}λ.

Compute ct(i) = H(seed(i), (id, i)) ∈ ZMζ+1 . Find g(i),S(i), s(i) satisfying

(g(i), (2b+λ − ri(∆, 1)) + (S(i), s(i)) = vDJ.Inv(tp, ct(i)) .

Resample seed(i) if (S(i), s(i)) /∈ [B − 2b+λ]λ+1 to prevent overflow. Set

A(i+1) = ⌊A
(i) − S(i)

2
⌋ mod 2b−i−1 α(i+1) = ⌊α

(i) − s(i)

2
⌋ mod 2b−i−1 .

– For each 0 ≤ i < b, for each β ∈ {0, 1}, compute

Ci,β+α(i) mod 2 ← H(∆β +A(i) mod 2, (id, i))⊕ (Ki(β), β + ri, (g
∆)β+rig(i))

– Output table Tab = ((Ci,β)i∈[b],β∈{0,1}, (seed
(i))i∈[b−1])

Evaluation algorithm BD.Eval takes input label (L, x̄) and a table Tab as inputs.

– Let L(0) := L, x̄(0) = x̄.
– For i = 0, 1, 2, . . . , b− 1:

Compute (li, x̂i, h
(i)) ← H(L(i) mod 2, (id, i)) ⊕ Ci,x̄(i) mod 2. If i < b − 1,

compute ct(i) = H(seed(i), id, i), (D(i), d(i))← vDJ.Dec(h(i), (ct∆)x̂ict(i))

(L(i+1), x̄(i+1)) = ⌊((L(i), x̄(i))− (D(i), d(i)) mod 2b−i)/2⌋ ,

– Output boolean labels l0, l1, . . . , lb−1.

Simulation algorithm BD.Sim takes arithmetic label (L, x̄) and boolean labels
l0, l1, . . . , lb−1 as inputs.

– (global step) Generate M, ζ, p′q′ using vDJ.Setup, while setting ζ, B prop-
erly. Simulate ct∆ as a random ciphertext.

– Let (L(0), x̄(0)) = (L, x̄).
– Sample random x̂i ← [2λ], seed(i) ← {0, 1}λ, D(i) ← [B]λ, d(i) ← [B] for

each i ∈ [b− 1]. Program H so that

vDJ.Enc(h(i), (D(i), d(i))) = (ct∆)x̂i H(seed(i), id, i) (in ZMζ+1)

– The active ciphertexts in the table Tab are set as

Ci,x̄(i) mod 2 = H(L(i) mod 2, (id, i))⊕ (li, x̂i, h
(i))

The rest are inactive ciphertexts, and are simulated by random strings.

The modifications with respect to Fig. 1 are highlighted.

Fig. 8. The Bit-Decomposition Gadget based on Damg̊ard-Jurik

33

The label of the next inductive step is correctly computed as

(L(i+1), x̄(i+1)) = ⌊ (L
(i), x̄(i))− (D(i), d(i)) mod 2b−i

2
⌋

= ⌊ (2xi+1:b∆+A(i) − S(i), 2xi+1:b + α(i) − s(i)) mod 2b−i

2
⌋

=
(
xi+1:b∆+ ⌊A

(i) − S(i)

2
⌋, xi+1:b + ⌊

α(i) − s(i)

2
⌋
)
mod 2b−i−1

= (xi+1:b∆+A(i+1), xi+1:b + α(i+1)) mod 2b−i−1 .

The security follows from the following arguments:

– x̂i = xi + ri is smudged by ri ← [2λ] in the real world. Simulating it as
x̂← [2λ] only introduces 2−λ statistical error.

– In the real world, (g(i),S(i), s(i)) is statistically close to uniform, the ran-

domness comes from the outcome of H(seed(i), id, i). Thus h(i),D(i), d(i) can
be simulated at random, because h(i) is one-time padded g(i) and (D(i), d(i))
is smudged by (S(i), s(i)).

– seed(i) can be simulated at random, because it is a fresh uniform sample in
the real world.

– The programing of H is on the random point seed(i), which has not been
queried by the distinguisher with overwhelming probability. The programmed
value is determined from the correctness guarantee.

The table consists of O(b) ciphertexts, each of which is O(λDCR) bit long, and
O(b) seeds, each of which is O(λ) bit long. The total table size is O(λDCRb). ⊓⊔

Combining the bit-composition gadget in Lem. 7 and the bit-decomposition
gadget in Lem. 8 produces a mix GC scheme, as stated by the following theorem.

Theorem 4. There is a secure mixed GC for Z2b under DCR assumption in
the programmable random oracle model, such that each addition gate costs no
communication, each multiplication/bit-decomposition gate costs O(λDCRb) com-
munication, and each bit-composition gate costs O(λDCRb+ λ2) communication.

Our mixed GC for Z2b implies a mixed GC for any ZN for any N ≈ 2b, using
the emulation technique discussed in Sec. 4.2.

Corollary 1. For any N ≤ 2b, there is a secure mixed GC for ZN under
DCR assumption in the programmable random oracle model, such that each
addition/multiplication/bit-decomposition gate costs O(λDCRb) communication,
and each bit-composition gate costs O(λDCRb+ λ2) communication.

References

AIK04. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
NC0. In 45th FOCS, pages 166–175. IEEE Computer Society Press, October
2004.

34

AIK11. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arith-
metic circuits. In Rafail Ostrovsky, editor, 52nd FOCS, pages 120–129.
IEEE Computer Society Press, October 2011.

App16. Benny Applebaum. Garbling XOR gates “for free” in the standard model.
Journal of Cryptology, 29(3):552–576, July 2016.

BDGM20. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Can-
didate iO from homomorphic encryption schemes. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 79–109. Springer, Heidelberg, May 2020.

BLLL23. Marshall Ball, Hanjun Li, Huijia Lin, and Tianren Liu. New ways to gar-
ble arithmetic circuits. In Carmit Hazay and Martijn Stam, editors, EU-
ROCRYPT 2023, Part II, volume 14005 of LNCS, pages 3–34. Springer,
Heidelberg, April 2023.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd ACM STOC, pages 503–
513. ACM Press, May 1990.

BMR16. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for Boolean
and arithmetic circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 565–577. ACM Press, October 2016.

DJ01. Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In Kwangjo Kim,
editor, PKC 2001, volume 1992 of LNCS, pages 119–136. Springer, Heidel-
berg, February 2001.

GLNP18. Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of
circuits under standard assumptions. Journal of Cryptology, 31(3):798–844,
July 2018.

GM94. Torbjörn Granlund and Peter L. Montgomery. Division by invariant integers
using multiplication. In Vivek Sarkar, Barbara G. Ryder, and Mary Lou
Soffa, editors, Proceedings of the ACM SIGPLAN’94 Conference on Pro-
gramming Language Design and Implementation (PLDI), Orlando, Florida,
USA, June 20-24, 1994, pages 61–72. ACM, 1994.

HKT11. Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence
of the random oracle model and the ideal cipher model, revisited. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 89–98. ACM
Press, June 2011.

IK00. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In 41st
FOCS, pages 294–304. IEEE Computer Society Press, November 2000.

KMR14. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flex-
ible garbling for XOR gates that beats free-XOR. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 440–457. Springer, Heidelberg, August 2014.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages
486–498. Springer, Heidelberg, July 2008.

NPS99. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auc-
tions and mechanism design. In Stuart I. Feldman and Michael P. Wellman,

35

editors, Proceedings of the First ACM Conference on Electronic Commerce
(EC-99), Denver, CO, USA, November 3-5, 1999, pages 129–139. ACM,
1999.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 223–238. Springer, Heidelberg, May 1999.

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
Secure two-party computation is practical. In Mitsuru Matsui, editor, ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer, Heidelberg,
December 2009.

RR21. Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating
the half-gates lower bound for garbled circuits. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 94–
124, Virtual Event, August 2021. Springer, Heidelberg.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 220–250. Springer, Heidelberg, April 2015.

36

	How to Garble Mixed Circuits that Combine Boolean and Arithmetic Computations

