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Abstract

Time-Lock Puzzles (TLPs) are a powerful tool for concealing messages until a predetermined point in
time. When solving multiple puzzles, in many cases, it becomes crucial to have the ability to batch-solve
puzzles, i.e., simultaneously open multiple puzzles while working to solve a single one. Unfortunately,
all previously known TLP constructions that support batch solving rely on super-polynomially secure
indistinguishability obfuscation, making them impractical.

In light of this challenge, we present novel TLP constructions that offer batch-solving capabilities
without using heavy cryptographic hammers. Our proposed schemes are simple and concretely efficient,
and they can be constructed based on well-established cryptographic assumptions based on pairings
or learning with errors (LWE). Along the way, we introduce new constructions of puncturable key-
homomorphic PRFs both in the lattice and in the pairing setting, which may be of independent interest.
Our analysis leverages an interesting connection to Hall’s marriage theorem and incorporates an
optimized combinatorial approach, enhancing the practicality and feasibility of our TLP schemes.

Furthermore, we introduce the concept of "rogue-puzzle attacks", where maliciously crafted puzzle
instances may disrupt the batch-solving process of honest puzzles. We then propose constructions of
concrete and efficient TLPs designed to prevent such attacks.
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1 Introduction

ATime-Lock Puzzle (TLP) is a cryptographic primitive that allows one to hide amessage for a pre-determined
amount of time (denoted by 𝑇 ). TLPs possess two essential characteristics efficency and sequentiality. Ef-
ficiency requires that creating the puzzle is significantly faster, ideally in logarithmic time, relative to 𝑇 .
Sequentiality, on the other hand, demands that any potential adversary should not be able to solve the
puzzle in less time than the stipulated duration 𝑇 , even when employing parallel computational resources.
Rivest, Shamir, and Wagner [RSW96] constructed the first TLP based on the conjectured sequentiality of
repeated modular squaring in RSA groups. Ever since, TLPs have found a variety of applications, including
sealed-bid auctions [MT19], e-voting systems [MT19], fair contract signing [BN00], non-malleable commit-
ments [LPS17], cryptocurrency payment systems [TMSS22], distributed consensus algorithms [WXDS20],
and byzantine consensus protocols [SLM+23], or frontrunning prevention in cryptocurrencies [CDN20], to
name a few. Time-lock puzzles have transitioned from theoretical constructs to practical tools and have
been utilized in real-world protocols such as private blockchain voting 1.

Solve one, open many. The fundamental characteristic of time-lock puzzles (TLPs) is their reliance
on a significant amount of sequential computation to be solved. However, this property can introduce
challenges in protocols involving multiple puzzles. As the number of puzzles to be solved increases, the
computational overhead required to complete the protocol can quickly become impractical. Moreover, this
efficiency bottleneck can be exploited as an attack vector, potentially obstructing the successful termination
of a protocol. For example, adversaries might flood the network with unopened puzzles, particularly in
cases where an unfavourable outcome is expected.

This limitation has recently motivated new TLP constructions [MT19, BDGM19, SLM+23, BF21] that
offer a way around this problem. They design a cryptographic protocol that allows the solver to open many
puzzles at the cost of a single puzzle opening. The work by [SLM+23] is particularly interesting, which
proposed the first construction of TLPs with batched solving. In this approach, when faced with multiple
puzzles 𝑛, each with a time-lock duration of𝑇 , a solver can recover all 𝑛 puzzles without solving all of them
individually. Remarkably, the computational effort required remains the same as solving a single puzzle.
Notably, the parties generating and computing these puzzles need not coordinate or even be aware of each
other’s participation.

While [SLM+23] establishes the theoretical feasibility of batched solving, their scheme relies on the
existence of general-purpose indistinguishability obfuscation [BGI+01, GGH+13]. Therefore, given the state
of affairs of current obfuscation constructions [JLS21, GJLS21, WW21, GP21, BDGM22, JLS22], it is fair to
say that their scheme is far from practically efficient and considered a heavyweight cryptographic primitive
not ready for efficient deployment (there are certain restricted functionalities [LMA+16, CMR17] but there
are no general purpose implementations). This motivates the following question:

Can we build concretely efficient TLPs with batch solving?

1.1 Our Results

In this work, we propose a new approach to construct TLPs with batch solving. Our contributions are
summarized below.
1https://cointelegraph.com/news/a16z-releases-anonymous-voting-system-for-ethereum.
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(1) Generic transformation for batch solving. We present a generic method for constructing TLPs
that support batch solving. Our construction builds upon and simplifies the concepts introduced in a
prior work [SLM+23]. The construction is based on the combination of two key components: linearly
homomorphic TLPs [MT19] and puncturable Key-Homomorphic PseudoRandom Functions (KH-PRFs).
The resulting scheme is conceptually simple, based on well-understood computational assumptions, and
concretely efficient. Depending on the number of homomorphic key operations allowed by our KH-PRF
and the domain size, we consider two flexible settings. In the "unbounded" setting, the solver can batch an
unlimited number of time-lock puzzles. In contrast, in the "bounded" setting, the setup phase of the TLP
imposes an apriori limit on the size of the number of puzzles that can be batched. Notably, the runtime of
the puzzle generation and the size of the puzzle are independent of this bound. Our solving algorithm for
the bounded settings leverages a novel connection to Hall’s marriage theorem. This connection allows us
to enhance the concrete parameters of our scheme, contributing to its practical efficiency.

(2) New Puncturable Key-Homomorphic PRFs. We present two constructions of KH-PRFs.

• Lattice-based puncturable KH-PRFs: We propose a new construction of KH-PRF based on the
hardness of the standard learning with errors (LWE) problem, with superpolynomial modulus to
noise ratio. Compared with prior work [BV15], our scheme is conceptually simpler, practically more
efficient, and does not need to assume the hardness of the 1D-SIS problem, which was required
in [BV15]. The computational cost in evaluating the KH-PRF is dominated by 3𝜆matrixmultiplications.
Additionally, this puncturable key-homomorphic PRF incorporates a transparent setup.

In the bounded setting (where the number of homomorphic operations is apriori bounded), we devise
a puncturable PRF based on the LWE assumption with a polynomial modulus. Proving security
requires care in resampling keys.

• Pairing-based puncturable KH-PRFs: We also show how to build the first puncturable KH-PRF
from bilinear groups where the domain size is polynomially bounded. Prior to our work, group-
based PRFs were either key-homomorphic [NPR99] or puncturable [SW14] but did not satisfy both
properties. We present two constructions based on standard assumptions in bilinear groups featuring
quadratic and linear public parameters, respectively. Notably, the evaluation of these PRFs requires
just a single pairing operation.

We note that our pairing-based construction requires a trusted setup. However, the setup is structured
and more desirable than an "arbitrary" structured distribution. The structured reference string in
the linear-CRS construction can be jointly sampled by mutually distrustful parties in an efficient
manner [NRBB22]. Once the reference string has been sampled, we do not make additional trust
assumptions. The same reference string can also be reused across multiple independent protocol
instantiations. Furthermore, it can be updated if more parties wish to join the system using techniques
in [GKM+18]. Additionally, batched TLPs also have applications in the setting with a private-coin
setup. For instance, auctions and e-voting can also be realized using a TLP with batch solving and
trusted setup.

(3) Security against rogue-puzzle attacks. We initiate the study of batch-solving algorithms secure
against "rogue-puzzle attacks". In this scenario, we consider attackers capable of crafting malicious puzzles
with the intent of disrupting the batch-solving process of legitimately generated puzzles. This notion
is particularly relevant in large-scale scenarios, where one cannot trust users to generate their puzzles
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honestly, yet we want to guarantee correct termination for honest participants. Without this guarantee,
batch-solving provides little advantage compared to the trivial solution since an adversary may stall the
protocol by tampering with the output of the batch-solving procedure. Identifying and addressing this
notion represents a primary conceptual contribution to the deployment of a batchable time lock puzzle.

In this context, we provide formal definitions of security against rogue-puzzle attacks and demonstrate
how to enhance our TLP constructions to meet this security requirement. Along the way, we propose
efficient zero-knowledge protocols for verifying the integrity of a puzzle to ensure that it is well-formed.

(4) Implementation and performance evaluation. To substantiate our claims for practicality, we
present the first implementation of time-lock puzzles with batch solving. We consider two main parameters:
batch-solving time and communication size. We present our results in Section 7.1 and mention some key
takeaways below. For batching 500 puzzles where the hardness of the puzzle has to compute 500 million
exponentiations, our batch-solving algorithm runs in 22.5 minutes. In comparison, a single puzzle takes
18.5 minutes to solve. In terms of communication, for batching 7000 puzzles, we only transmit a total size
of 40 MB. We also discuss different tradeoffs between communication size and computational time to cater
to specific application requirements. Our code demonstrates that time-lock puzzles with batch solving
can be implemented with currently available hardware, and have the potential for substantial savingss in
large-scale protocols.

1.2 Technical Overview

In this section, we’ll provide a technical overview of our solutions and the techniques developed within
our work. This overview will encompass our main construction template, the efficient instantiation of
underlying building blocks, and the concept of security against rogue-puzzle attacks.

A strawman solution. Before we explain our construction, let us show how existing tools already give a
weak form of batch solving. If we start from a homomorphic time-lock puzzle [MT19] over Z𝑁 (for a large
enough 𝑁 ), one way to batch puzzles is to homomorphically evaluate the packing function. In more details,
given 𝑛 puzzles 𝑍1, . . . , 𝑍𝑛 (of some linearly homomorphic time-lock puzzle) where each puzzle contains
some 𝜆-bit message, we can evaluate homomorphicaly the following linear function:

𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁
𝑖=1

2(𝑖−1) ·𝜆 · 𝑥𝑖 .

We can then solve the resulting puzzle 𝑍 ∗ to obtain all the 𝑛 messages, encoded in different portions of the
bit-string. While syntactically correct, this solution suffers from two important limitations:

• Bounded batching: Since the plaintext space needs to be large enough to accommodate all of the
𝑛 messages, this means that at puzzle generation time one has to fix a bound on the number of
batchable puzzles 𝑛.

• Quadratic overhead: In settings where 𝑛 parties compute the puzzles separately, each puzzle must
be of size at least 𝑛 (for the reason specified above) and therefore the total communication of the
protocol grows with 𝑂 (𝑛2).

Given this baseline, our objective is to improve on either of these properties (ideally both), without sacrificing
the practical efficiency of the scheme.
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Our Construction. Our generic construction is inspired by the work of [SLM+23], and our main ob-
servation is to decouple the task of assigning a unique identifier to each user from the batch-solving
mechanism. We start by explaining our construction in the simplified settings where all parties computing
a puzzle are associated with a unique index 𝑖 ∈ [𝑛], and we assume that there are no collisions. Later in this
overview, we will show how to remove this assumption. We will also assume the existence of a puncturable
key-homomorphic PRF (KH-PRF) with domain at least 𝑛, where the adjective puncturable means that we
can create a punctured version of the PRF key k at some point 𝑖∗, in such a way that the punctured key
k∗ allows one to evaluate the PRF at all points, except for PRF(k, 𝑖∗). Furthermore, the PRF must be key
homomorphic in the sense that for any two keys k0 and k1 and all points 𝑖 it holds that

PRF(k0, 𝑖) + PRF(k1, 𝑖) ≈ PRF(k0 + k1, 𝑖).

We are now ready to describe how to augment a linearly homomorphic time-lock puzzle with the batch
solving algorithm. We outline the algorithms below.

• Puzzle Generation: On input a message𝑚𝑖 and a unique index 𝑖 , the puzzle generation algorithm
samples a random PRF key k𝑖 and computes the punctured key k∗𝑖 at point 𝑖 . Then it computes 𝑍𝑖 as
the time-lock puzzle containing the key k𝑖 and returns{

𝑍𝑖 , k∗𝑖 , 𝑖, 𝑐𝑖 = PRF(k𝑖 , 𝑖) +𝑚𝑖

}
.

• Batch Solving: To solve 𝑛 puzzles as defined above, one can sum the puzzles homomorphically to
obtain

(𝑍1, . . . , 𝑍𝑛)
Sum−−−→ 𝑍 ∗ ∈ Gen

(∑︁
𝑖

k𝑖

)
and solve 𝑍 ∗ to recover �̃� =

∑
𝑖 k𝑖 . The solver can recover each message𝑚𝑖 individually by computing

𝑐𝑖 +
∑︁
𝑗≠𝑖

PRF(k∗𝑗 , 𝑖) − PRF(�̃�, 𝑖) = PRF(k𝑖 , 𝑖) +𝑚𝑖 +
∑︁
𝑗≠𝑖

PRF(k∗𝑗 , 𝑖) − PRF(�̃�, 𝑖)

= PRF(k𝑖 , 𝑖) +𝑚𝑖 +
∑︁
𝑗≠𝑖

PRF(k𝑗 , 𝑖) − PRF
(∑︁

𝑖

k𝑖 , 𝑖

)
≈ PRF(k𝑖 , 𝑖) +𝑚𝑖 +

∑︁
𝑗≠𝑖

PRF(k𝑗 , 𝑖) −
∑︁
𝑖

PRF(k𝑖 , 𝑖)

=𝑚𝑖

Where the (approximate) equalities follow from the puncturable correctness and the approximate
key homomorphism of the PRF.

This should be contrasted with the scheme from [SLM+23], which is based on a similar principle, but instead
of sending the puzzles in the plain, it sends an obfuscated circuit that samples a different puzzle for a given
index 𝑖 . Additionally, our work introduces a novel mechanism for uniquely assigning indices to parties
(detailed below).
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Batchingwithout coordination. Weobserve that our batching algorithm requires the following property
- when any subset of users S ⊆ [𝑛] come together to batch a puzzle, each puzzle 𝑖 ∈ S should have a unique
identifier at which it is evaluated. If 𝑛 = 2𝜆 , i.e., our batching scheme and the underlying key homomorphic
PRF can support unbounded users, then simply sampling a random index of 𝜆 bits is enough. In such a
setting, if any polynomial number of parties S come together, then the probability for any two parties to
have a collision in their random sampling is ≤ |S|2/𝑛. Since 𝑛 is exponential, we only fail with negligible
probability. Unfortunately this trivial solution fails when our scheme can only support bounded users.
Specifically, we won’t be able to batch with a non-negligible loss.

Our main observation is a connection between the existence of a unique identifier for each party and
the problem of perfect matching in a bipartite graph. Let𝑈 and 𝑉 be the two parts of the bipartite graph
where 𝑈 is the set of parties in a system i.e. |𝑈 | = 𝑛 and 𝑉 is some expanded index set where |𝑉 | = 𝑛new.
Instead of sampling a single random index in the trivial solution, we assume that each party on the left
samples 𝑑 numbers randomly in [𝑛new]. Note that each party possessing a unique index is equivalent to the
existence of a perfect matching in the bipartite graph. We ask what’s the optimal setting for 𝑛new and 𝑑
where growing 𝑑 will increase the time to generate puzzles and the communication cost between parties,
while growing 𝑛new will grow the public parameters pp of our batching scheme. In our main technical
section, we apply Hall’s marriage theorem in our probabilistic analysis to show that we can set 𝑛new ≥ 3 · 𝑛
and 𝑑 = 𝜆/log(𝑛new). Hall’s marriage theorem states that for every subset X ⊆ S, there exists a perfect
matching if |Γ(X)| ≥ |X|, where Γ(X) denotes the set of neighbouring vertices to X.

KH-PRFs: Lattice-Based Constructions. Brakerski and Vaikuntanathan [BV15] showed how to con-
struct a constrained-key almost key-homomorphic PRF secure from lattice-based assumptions. However,
this construction is designed for general constraints and hence impractical for our specific use case for
puncturing. Their construction uses (1) a universal circuit for constraining general circuits, (2) makes
non-black-box use of a cryptographic hash function, and additionally, (3) their security relies on LWE and
1D-SIS, which limit parameter choices and introduce additional security features. In contrast, we simplify
their construction for the functionality and security we need. As a result, our construction is more efficient,
makes black-box use of cryptography and eliminates the reliance on 1D-SIS. Our main changes include (1)
replacing the universal circuit with a much simpler equality-check circuit, (2) removing the use of a hash
function, and (3) not requiring 1D-SIS for our security proof. At a high level, last two modifications are
possible because a puncturable PRF is a selective notion, whereas the construction of constrained-key PRF
in [BV15] achieves adaptive security.

To gain some context, we first give a brief overview of the techniques from [BV15]. Given matrices
{A𝑖}, they show how to compute a new matrix A𝐹 for some circuit 𝐹 . Additionally, given LWE samples{
s𝑇A𝑖 + 𝑥𝑖G + ei𝑇

}
𝑖∈[ℓ ] over the modulus 𝑞 for some 𝑥 = (𝑥1, . . . , 𝑥ℓ ), they give an algorithm to compute

s𝑇A𝐹 + 𝐹 (𝑥)G + e𝑇 for some small e and the gadget matrix G. In our construction, we focus on the equality-
check circuit 𝐸𝑄𝑦 (𝑥) with a hardcoded string 𝑦. The circuit outputs 1 if and only if 𝑥 = 𝑦. We compute our
PRF as,

PRF(s, 𝑥) = ⌊s𝑇A𝐸𝑄𝑥
𝐺−1(D)⌉𝑝 ,

for some uniformly random matrix D and the binary decomposition function𝐺−1. The notation ⌊·⌉𝑝 means
we multiply each component with 𝑝/𝑞 and round to the next integer where the choice of 𝑝 is elaborated
later in the overview. Puncturing the key s at point 𝑥∗ computes,

Puncture(s, 𝑥∗) =
{
s𝑇 (A𝑖 + 𝑥∗𝑖 G) + e𝑇𝑖

}
𝑖∈[ℓ ] .
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Given a punctured key k, we use the algorithm from [BV15] to compute s𝑇 (A𝐸𝑄𝑥
+ 𝐸𝑄𝑥 (𝑥∗)G + e𝑇 )𝐺−1(D).

Observe that if 𝑥 ≠ 𝑥∗ then, we can compute,

PuncturedEval(k∗, 𝑥) = ⌊(s𝑇 (A𝐸𝑄𝑥
+ 𝐸𝑄𝑥 (𝑥∗)G) + e𝑇 )𝐺−1(D)⌉𝑝

= ⌊s𝑇A𝐸𝑄𝑥
𝐺−1(D) + e𝑇𝐺−1(D)⌉𝑝

= ⌊s𝑇A𝐸𝑄𝑥
𝐺−1(D)⌉𝑝 + {−1, 0, 1}𝑚

where the last equality holds with if we set our parameters such that 𝑞/𝑝 is bigger than ∥e𝐺−1(D)∥∞.
Intuitively, security relies on the fact that when 𝑥 = 𝑥∗, an adversary can only compute ⌊s𝑇A𝐸𝑄𝑥

𝐺−1(D) +
s𝑇G 𝐺−1(D) + e𝑇𝐺−1(D)⌉𝑝 = ⌊s𝑇A𝐸𝑄𝑥

𝐺−1(D) + s𝑇D + e𝑇𝐺−1(D)⌉𝑝 . In our security proof, the intuition is
to add extra noise e′ to

s𝑇A𝐸𝑄𝑥
𝐺−1(D) + s𝑇D + e𝑇𝐺−1(D) (1)

while maintaining the rounded expression. If we can do this, then s𝑇D + e′𝑇 is a valid LWE sample , and we
can use LWE security to make the term pseudorandom and completing the proof. In the case where 𝑞/𝑝 is
superpolynomial, then adding error vector e′ is unlikely to change the rounded value through a standard
smudging argument.

Extending to a polynomial modulus-to-noise ratio. If we want the rely on LWE security that has a
modulus-to-noise ratio that is polynomial, two issues arise - (1) The key-homomorphic operation of the PRF
accumulates noise. Because our PRF is not perfectly key homomorphic but only almost key homomorphic
(i.e. PRF(s, 𝑥) + PRF(s′, 𝑥) = PRF(s + s′) + {−1, 0, 1}𝑚), summing these values accumulates noise. Our
solution is to choose a sufficiently large 𝑝 to minimize the impact of noise accumulation. In our application,
this translates into an upper bound on the number of parties in the batch-solving algorithm, so that we can
choose 𝑝 accordingly. (2) If 𝑞/𝑝 is polynomial, then adding extra noise to the term in Eq. (1) is likely to
change the rounded value. We resolve the second problem by resampling the key if adding noise to the
term in Eq. (1) might change the rounded value. We solve this by modifying the syntax of a PRF to sample
a key such that we know the point at which the PRF will be punctured and evaluated.

KH-PRFs: Pairing-Based Constructions. We also show a simple construction of key-homomorphic
puncturable PRFs from groups. Our starting point is the existing construction [NPR99, BLMR13] in the
random oracle model where

PRF(k, 𝑖) = H(𝑖)k and H(𝑖)k0 · H(𝑖)k1 = H(𝑖)k0+k1 .

Unfortunately it is not clear how to make this construction puncturable, without breaking the key ho-
momorphism. Our observation is that, if we restrict ourselves to a bounded domain 𝑛 = poly(𝜆), we can
precompute in the setup 𝑛 group elements

(𝑔𝑥1, . . . , 𝑔𝑥𝑛 ) and
{
𝑔𝑧𝑖/𝑥 𝑗

}
𝑗≠𝑖

where 𝑥𝑖 ← Z∗𝑝 and 𝑧𝑖 ← Z∗𝑝 . For a uniformly sampled key k, we will then define the PRF output to be

PRF(k, 𝑖) = 𝑒

(
𝑔𝑥 𝑗 , 𝑔𝑧𝑖/𝑥 𝑗

)k
= 𝑒 (𝑔,𝑔)𝑧𝑖 ·k

6



for some 𝑗 ≠ 𝑖 . Notably, this scheme preserves key homomorphism, satisfying:

𝑒 (𝑔,𝑔)𝑧𝑖 ·k0 · 𝑒 (𝑔,𝑔)𝑧𝑖 ·k1 = 𝑒 (𝑔,𝑔)𝑧𝑖 · (k0+k1 ) .

This construction is puncturable, and a punctured key, and a punctured key k∗
𝑖∗ can be computed as 𝑔𝑥𝑖∗ ·k.

Observe that we can compute the PRF value at all points (by pairing it with the appropriate group element),
except at point 𝑖∗, since the term 𝑔𝑧𝑖∗/𝑥𝑖∗ is missing from the common reference string. It can be shown that
this scheme is a secure (puncturable) PRF from standard assumptions in bilinear groups. One drawback
of this construction is that the size of the common reference string is quadratic in 𝑛. We show how to
overcome this efficiency limitation by adding some more structure to the common reference string, at the
cost of relying on a 𝑞-type assumption. We refer the curious reader to the technical sections for more
details.

Security against rogue-puzzle attacks. We introduce a new concept called security against rogue-
puzzle attacks. This notion aims to ensure that the batch-solving algorithm correctly recovers the secret of
honestly generated puzzles, even when the batch contains puzzles generated adversarially. To achieve this,
we augment the syntax of the TLPs with an additional validity-check algorithm IsValid, that tests whether
the puzzle was well-formed. The adversary is then allowed to sample puzzles arbitrarily (even adaptively)
but contingent on passing this validity check. To build TLPs secure in this model, we have to worry about
two main attacks:

• Malformed homomorphic puzzles: An adversary may tamper with the batch-solving algorithm by
introducing malformed puzzles, leading to incorrect results upon homomorphic evaluation.

• Collision of indices: An adversary may attempt to force a collision of indices with an honest party,
thereby disrupting the batch-solving algorithm, as it only works when there are no collisions.

While the former class of attacks can be prevented by simply augmenting the puzzle with a non-interactive
zero-knowledge proof (NIZK). However, addressing the second type of attack is more intricate. Our solution
is to sample the index deterministically using a hash function applied to the index-independent part of the
puzzle. This approach reduces the collision of indices to a collision in the hash function, a computationally
challenging problem. However, this outline hides a crucial detail, namely that for the case of bounded
identities, the output domain of the hash function is of polynomial size. We carefully analyze the situation
in the random oracle model. Interestingly, our bipartitate matching algorithm turns out to be crucial to
derive a meaningful bound, whereas more crude approximations would yield trivial bounds on the success
probability of the adversary2.

As an additional contribution, we present efficient NIZK protocols tailored to our proposed constructions.
These protocols optimize efficiency, considering that general-purpose NIZKs may not be suitable for our
specific applications. In the pairing setting, the main idea is to use a variant of Schnorr protocol/Chaum
Pedersen protocol where the prover proves knowledge of an exponent 𝑘 in two different instances. In the
LWE setting, we utilize the (almost) key homomorphic property of our PRFs along with efficient range
proofs on time lock puzzles from [TBM+20].
2A trivial bound that handles malicious parties is by asking the degree to be equal to the number of puzzles batched. If every party
samples a puzzle for each index, we setup a complete bipartite graph and hence a perfect matching in the malicious setting. We
refer the interested reader to Appendix A for an alternate analysis.
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1.3 Related Work

Key-homomorphic PRFs. Beside the constrained-key key-homomorphic PRF of [BV15], that we men-
tioned earlier, there is another constrained-key key-homomorphic PRF of [BP14, BFP+15] that, with some
slight modifications, can be turned into puncturable key-homomorphic PRF. This construction accumulates
much more noise than our modification of [BV15], which translates into much worse parameters. There
are also multilinear map based constructions [BFP+15, CRV16]. Candidates of multilinear maps, however,
are far from practical.

Timed cryptography. In addition to constructions based on sequential squaring, several other approaches
have been proposed for creating time-lock puzzles, which we explore in this section. Bitansky et al. [BGJ+16]
proposed a scheme based on succinct randomized encodings [BGL+15] and the existence of non-parallelizable
languages. Recently, Burdges and De Feo [BF21] proposed the notion of delay encryption, which offers a
simliar "solve one, open many" functionality as batchable time-lock puzzles and can be seen as an identity-
based version of the standard time-lock puzzles. However, there are a few essential differences from our
approach. First, delay encryption necessitates all parties to encrypt the puzzle with respect to the same
identity, assuming some coordination among participants. Furthermore, the only known construction of
delay encryption is based on hard problems related to isogenies, which have garnered considerably less
attention than the sequential squaring problem.

Related to the notion of security against rogue puzzle attacks is the notion of non-malleable of time-lock
puzzle [FKPS21]. While conceptually related (both notions consider an adversary that generates possibly
corrupted puzzles), their objectives are quite different. Non-malleability aims to safeguard the confidentiality
of a legitimately sampled puzzle, even when a solving oracle is present. In contrast, security against rogue
puzzle attacks is concerned with ensuring the correctness of the batch-solving algorithm when maliciously
generated puzzles are introduced.

Beyond time-lock puzzles, the other paradigm of accounting for time is to have a trusted party that
regularly produces outputs and tie your cryptographic processes to that output [RSW96, CHSS02]. For
example, Liu et al. [LKW15] combine (extractable) witness encryption [GGSW13] and a public reference
clock, such as a blockchain. Given the heavy cryptographic machinery involved, we view these works as
mainly feasibility results. Following the same idea, Döttling et al. [DHMW22] construct witness encryption
for specific languages used in proof-of-stake blockchains, making it practically efficient. This work, however,
also has substantial limitations in that it only allows for encrypting to the near future.

1.4 Open Questions

In this work, we leave an interesting question unanswered: is it possible to batch puzzles of varying levels
of difficulty? Specifically, if two puzzles are generated such that one requires time 𝑇 to open and the other
requires time 𝑇 ′, is there a way to combine them such that only a single puzzle needs to be solved, which
will open the first puzzle at time 𝑇 and the second puzzle at time 𝑇 ′? Addressing this question would
necessitate a departure from the existing body of work, including homomorphic time-lock puzzles, as these
conventional methods do not readily apply to this scenario.

2 Preliminaries

Throughout this work, we write 𝜆 to denote the security parameter. We say a function 𝑓 is negligible in
the security parameter 𝜆 if 𝑓 = 𝑜 (𝜆−𝑐) for all 𝑐 ∈ N. We denote this by writing 𝑓 (𝜆) = negl(𝜆). We write
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poly(𝜆) to denote a function that is bounded by a fixed polynomial in 𝜆. We say an algorithm is efficient if
it runs in probabilistic polynomial time (PPT) in the length of its input. A runtime of a PPT algorithm A
on input 𝑥 is denoted by Time(A(𝑥)). Throughout this work, we consider security against non-uniform
adversaries (indexed by 𝜆) that are represented by the circuit model of computation where the circuit size
is polynomial in the length of their input.

For a positive integer 𝑛 ∈ N, we write [𝑛] to denote the set {1, . . . , 𝑛} and [0, 𝑛] to denote the set
{0, . . . , 𝑛}. For a distribution 𝐷 , we write 𝑥 ← 𝐷 to denote that 𝑥 is sampled from 𝐷 . When we use ∥a∥∞ on
some vector a ∈ Z𝑛𝑞 we mean lift a to Z𝑛 and then𝑚𝑎𝑥𝑖∈[𝑛] ( |𝑎𝑖 |). We now review the main cryptographic
primitives we use in this work.

2.1 Puncturable Pseudorandom Functions.

A puncturable pseudorandom function (PRF) [BW13, KPTZ13, BGI14, SW14] is a PRF [GGM84] that has an
additional puncturing algorithm, which produces a punctured version of the key. The punctured key can
evaluate the PRF at all points except for the punctured one. For security, it is required that the PRF value at
that specific point is pseudorandom, even given the punctured key.

Definition 2.1 (Puncturable PRFs). A puncturable pseudorandom function family on key space K =

{K𝜆}𝜆∈N, domain X =
{
X𝜆,𝑛

}
𝜆,𝑛∈N and range Y = {Y𝜆}𝜆∈N, consists of a tuple of PPT algorithms ΠPRF =

(Setup,KeyGen, Puncture, PRF, PuncturedEval) defined as follows.

• pp← Setup(1𝜆, 1𝑛) a probabilistic algorithm that takes as input the security parameter 𝜆, domain
index 𝑛 and outputs public parameters pp.

• k ← KeyGen(pp) a probabilistic algorithm that takes in the public parameters and outputs a key
k ∈ K𝜆 .

• k∗ ← Puncture(pp, k, 𝑖∗) a probabilistic algorithm that takes as input a key k ∈ K𝜆 and a position
𝑖∗ ∈ X𝜆,𝑛 and returns a punctured key k∗.

• 𝑦 ← PRF(pp, k, 𝑖) a deterministic algorithm that takes as input a key k ∈ K𝜆 and an index 𝑖 ∈ X𝜆,𝑛
and returns a string 𝑦.

• 𝑦 ← PuncturedEval(pp, k∗, 𝑖∗, 𝑖) a deterministic algorithm that takes as input a punctured key k∗, a
punctured index 𝑖∗ ∈ X𝜆,𝑛 , an index 𝑖 ∈ X𝜆,𝑛 and returns a string 𝑦.

In addition, ΠPRF must satisfy the following properties.

• Functionality Preserving: We say that ΠPRF satisfies functionality preserving if for all 𝜆, 𝑛 ∈ N, it
holds that,

Pr
[
∃𝑖∗ ≠ 𝑖 ∈ X𝜆,𝑛, PRF(pp, k, 𝑖) ≠ PuncturedEval(pp, Puncture(pp, k, 𝑖∗), 𝑖∗, 𝑖) : pp← Setup(1𝜆, 1𝑛)

k← KeyGen(pp)

]
is 0, where the probability is over the random coins of Setup, KeyGen and Puncture.
We say that a scheme is almost functionality preserving if for all 𝜆, 𝑛 ∈ N, it holds that,

Pr
[
∃𝑖∗ ≠ 𝑖 ∈ X𝜆,𝑛, ∥PRF(pp, k, 𝑖) − PuncturedEval(pp, Puncture(pp, k, 𝑖∗), 𝑖∗, 𝑖)∥∞ > 1 : pp← Setup(1𝜆, 1𝑛)

k← KeyGen(pp)

]
is 0, where the probability is over the random coins of Setup, KeyGen and Puncture.
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• Security: For a bit 𝑏 ∈ {0, 1}, security parameter 𝜆, we define the following security game between
an adversary A and a challenger as follows:

– Adversary A outputs the bound on the domain of the PRF 1𝑛 .
– Challenger outputs the public parameters pp← Setup(1𝜆, 1𝑛).
– Adversary A sees the public parameters and outputs an index 𝑖∗ ∈ [𝑛].
– Challenger samples a key k← KeyGen(pp), and punctures the key k∗ ← Puncture(pp, k, 𝑖∗).
– If 𝑏 = 0, the challenger computes 𝑦 ← Y𝜆 , else if 𝑏 = 1, it computes 𝑦 ← PRF(pp, k, 𝑖∗).
– Adversary receives the punctured key k∗, and the computed value 𝑦 and outputs a bit 𝑏′, which

is the output of the experiment.

We say that ΠPRF is secure if for any polynomially bounded adversaries A = {A𝜆}𝜆∈N, there exists a
negligible function negl(·), such that for all 𝜆 ∈ N, it holds that, |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤
negl(𝜆) in the game above.

(Almost) Key-Homomorphism [NPR99, BLMR13, BP14, BV15, BFP+15]. We also require that the
puncturable PRF satisfies a notion of key-homomorphism.

Definition 2.2 (Key-Homomorphism). Let K = {K𝜆}𝜆∈N be a family such that for every 𝜆 ∈ N, (K𝜆, +)
is a finite group. We say ΠPRF defined on key space K = {K𝜆}𝜆∈N, domain X =

{
X𝜆,𝑛

}
𝜆,𝑛∈N and range

Y = {Y𝜆}𝜆∈N, satisfies the key homomorphic property if for all 𝜆, 𝑛 ∈ N every k0, k1 ∈ K𝜆 , all indices
𝑖 ∈ X𝜆,𝑛 , it holds that,

Pr
[
PRF(pp, k0, 𝑖) + PRF(pp, k0, 𝑖) = PRF(pp, k0 + k1, 𝑖) : pp← Setup(1𝜆, 1𝑛)

]
= 1.

We can also relax this notion to almost key-homomorphism by requiring that the above equality almost
holds, for all 𝜆, 𝑛 ∈ N every k0, k1 ∈ K𝜆 , all indices 𝑖 ∈ X𝜆,𝑛 , it holds that,

Pr
[
∥PRF(pp, k0, 𝑖) + PRF(pp, k0, 𝑖) − PRF(pp, k0 + k1, 𝑖)∥∞ ≤ 1 : pp← Setup(1𝜆, 1𝑛)

]
= 1.

2.2 Time-Lock Puzzles

We follow the syntax from Srinivasan et al, [SLM+23] where we consider the standard notation for time-lock
puzzles except there is an additional setup phase that depends on the hardness parameter but not on the
secret.

Definition 2.3 (Time-Lock Puzzles [RSW96]). A time-lock puzzle (TLP) with message space {S𝜆}𝜆∈N is a
tuple of three algorithms ΠTLP = (Setup,Gen, Sol) defined as follows:

• pp← Setup(1𝜆,𝑇 ) a probabilistic algorithm that takes as input a security parameter 1𝜆 and a time
hardness parameter 𝑇 , and outputs public parameters pp.

• 𝑍 ← Gen(pp, 𝑠) a probabilistic algorithm that takes as input public parameters pp, and a message
𝑠 ∈ S𝜆 , and outputs a puzzle 𝑍 .

• 𝑠 ← Sol(pp, 𝑍 ) a deterministic algorithm that takes as input public parameters pp and a puzzle 𝑍
and outputs a message 𝑠 .
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In addition, ΠTLP should satisfy the following properties:

• Correctness: We say ΠTLP is correct if for all 𝜆,𝑇 ∈ N, all messages 𝑠 ∈ S𝜆 , pp← Setup(1𝜆,𝑇 ), it
holds that,

Sol(pp,Gen(pp, 𝑠)) = 𝑠 .

• Security: For a bit 𝑏 ∈ {0, 1}, security parameter 𝜆, polynomially bounded function 𝑇 (·), we define
the following security game between an adversary (A1,A2) and a challenger as follows:

– Challenger samples pp← Setup(1𝜆,𝑇 (𝜆)) and sends it to A1.
– A1 receives the public parameters and outputs state st, messages 𝑠0, 𝑠1 ∈ S𝜆 .
– Challenger computes 𝑍 ← Gen(pp, 𝑠𝑏) and sends it to A2.
– A2 receives pp, challenge 𝑍 and state st and outputs a bit 𝑏′, which is the output of the

experiment.

We say ΠTLP is secure with gap 𝜀 ∈ (0, 1), if there exists a polynomial 𝑇 (·) such that for all polyno-
mially bounded functions where 𝑇 (·) ≥ 𝑇 (·), any polynomially bounded adversaries, (A1,A2) =
(
{
A1,𝜆

}
𝜆∈N ,

{
A2,𝜆

}
𝜆∈N), where the depth of A2,𝜆 is atmost 𝑇 𝜀 (𝜆), there exists a negligible function

negl(·), such that
|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ negl(𝜆)

in the game above.

• Efficiency: We say ΠTLP satisfies efficiency if

(a) There exists a polynomial 𝑝1(·, ·, ·) such that for all 𝜆,𝑇 ∈ N, inputs 𝑠 ∈ S𝜆 , pp← Setup(1𝜆,𝑇 ),
it holds that,

Time (Gen(pp, 𝑠)) ≤ 𝑝1(𝜆, log |S𝜆 |, log𝑇 ).

(b) There exists a polynomial 𝑝2(·, ·, ·) such that for all 𝜆,𝑇 ∈ N, pp← Setup(1𝜆,𝑇 ), inputs 𝑠 ∈ S𝜆 ,
it holds that,

Pr
[
Time (Sol(pp, 𝑍 )) ≤ 𝑝2(𝜆, log |S𝜆 |,𝑇 ) : 𝑍 ← Gen(pp, 𝑠)

]
= 1,

where the probability is taken over the coins of Gen.

Homomorphic Time-Lock Puzzles. We also recall the definition of homomorphic time-lock puz-
zles [MT19], which allows one to compute functions on secrets homomorphically, without solving the
puzzles first.

Definition 2.4 (Homomorphic TLPs [MT19]). We say ΠhTLP = (Setup,Gen, Sol, Eval) is homomorphic
for the circuit family, C = {C𝜆,𝑛}𝜆,𝑛∈N and message space {S𝜆}𝜆∈N, if the syntax is augmented with the
following algorithm:

• 𝑍 ′ ← Eval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛) a probabilistic algorithm that takes as input a circuit 𝐶 ∈ C𝜆,𝑛 where
𝐶 : S𝑛

𝜆
→ S𝜆 , public parameters pp and a set of 𝑛 puzzles (𝑍1, . . . , 𝑍𝑛) and outputs a puzzle 𝑍 ′.

In addition, ΠhTLP should satisfy the following evaluation property:
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• Evaluation Correctness: We say ΠhTLP satisfies evaluation correctness if for all 𝜆, 𝑛,𝑇 ∈ N, for all
circuits 𝐶 ∈ C𝜆,𝑛 , inputs (𝑠1, . . . , 𝑠𝑛) ∈ S𝑛𝜆 , for all pp← Setup(1𝜆,𝑇 ), it holds that,

Pr
[
Sol(pp, Eval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛)) = 𝐶 (𝑠1, . . . , 𝑠𝑛) : ∀𝑖 ∈ [𝑛], 𝑍𝑖 ← Gen(pp, 𝑠𝑖)

]
= 1,

where the probability is taken over the coins of Gen.

• Evaluation Efficiency: We say ΠhTLP satisfies evaluation efficiency if there exists a polynomial
𝑝1(·, ·, ·) such that for all 𝜆, 𝑛,𝑇 ∈ N, circuits 𝐶 ∈ C𝜆,𝑛 , inputs (𝑠1, . . . , 𝑠𝑛) ∈ S𝑛𝜆 , pp← Setup(1𝜆,𝑇 ), it
holds that,

Pr
[
Time (Eval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛)) ≤ 𝑝1(𝜆, |𝐶 |, log𝑇 ) : ∀𝑖 ∈ [𝑛], 𝑍𝑖 ← Gen(pp, 𝑠𝑖)

]
= 1,

where the probability is over the coins of Gen.

We require homomorphic TLPs specifically that support homomorphic evaluations of linear functions
over the puzzles, that are secure against depth bounded adversaries. We have such constructions from RSA
groups [MT19] and class groups with imaginary quadratic order [TCLM21]. We also mention that both
works show how to extend the message space, and therefore the linear space, to Z𝑁 𝑐 (and Z𝑝𝑐 , respectively)
for any 𝑐 without changing the atomic operation in the sequential computation; which is still repeated
squaring over the base modulus.

Theorem 2.5 ([MT19]). Assuming that the strong sequential squaring assumption in RSA groups, the
DDH assumption, and the DCR assumption hold, there exists a time lock puzzle scheme that supports linear
homomorphic evaluations over Z𝑁 , where 𝑁 is an RSA modulus.

Theorem 2.6 ([TCLM21]). Assuming that the strong sequential squaring assumption in class groups and
the Hard Subgroup Membership (HSM) assumption hold, there exists a time lock puzzle scheme that supports
linear homomorphic evaluations over Z𝑝 , where 𝑝 is a prime.

Time-Lock Puzzles with Batch Solving. We present a modified notion of TLPs with batched solving
from [SLM+23] where Setup is allowed to take the maximum batch size as input.

Definition 2.7 (TLPs with batch solving). We say ΠbatchTLP = (Setup,Gen,BatchSol) supports batch solving
with message space {S𝜆}𝜆∈N, if the syntax is augmented with the following algorithm:

• pp ← Setup(1𝜆,𝑇 , 𝑛) a probabilistic algorithm that takes as input a security parameter 1𝜆 , a time
hardness parameter 𝑇 , bound on the maximum batch size 𝑛, and outputs public parameters pp.

• 𝑍 ← Gen(pp, 𝑠) a probabilistic algorithm that takes as input public parameters pp, and a message
𝑠 ∈ S𝜆 , and outputs a puzzle 𝑍 . 𝑍 and outputs a message 𝑠 .

• {(𝑠𝑖 , 𝑍𝑖)}𝑖∈S ← BatchSol(pp, {𝑍𝑖}𝑖∈S) a deterministic algorithm that takes as input the combined
public parameters pp, a set S ⊆ [𝑛] of puzzles 𝑍𝑖 and outputs for each puzzle a message 𝑠𝑖 ∈ S𝜆 .3

We require ΠbatchTLP to hold the same correctness, security and efficiency properties from Definition 2.3
with the modified syntax. In addition, ΠbatchTLP should satisfy the following property:
3Note that Sol is equivalent to running BatchSol on one index.
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• Batch solving correctness: We say ΠbatchTLP satisfies batch solving correctness if for all 𝑇, 𝑛 ∈ N,
any subset S ⊆ [𝑛], all messages 𝑠𝑖 ∈ S𝜆 , all pp← Setup(1𝜆,𝑇 , 𝑛), there exists a negligible function
negl(·), such that, for all 𝜆 ∈ N, it holds that,

Pr
[
BatchSol(pp, {𝑍𝑖}𝑖∈S) ≠ {(𝑠𝑖 , 𝑍𝑖)}𝑖∈S : ∀𝑖 ∈ S, 𝑍𝑖 ← Gen(pp, 𝑠𝑖)

]
≤ negl(𝜆)

where the probability is taken over the random coins of Gen.

• Batch solving efficiency: We say ΠbatchTLP satisfies batch solving efficiency if there exists poly-
nomials 𝑝1(·, ·, ·),𝑝2(·, ·, ·, ·), such that for all 𝜆,𝑇 , 𝑛 ∈ N, any subset S ⊆ [𝑛], for all messages
(𝑠1, . . . , 𝑠𝑛) ∈ S𝑛𝜆 , all pp← Setup(1𝜆,𝑇 , 𝑛), it holds that,

Pr
[

Time
(
BatchSol(pp, {𝑍𝑖}𝑖∈S)

)
≤ 𝑝1(𝜆, log |S𝜆 |,𝑇 ) + 𝑝2(𝜆, log |S𝜆 |, log𝑇, 𝑛)

: ∀𝑖 ∈ S, 𝑍𝑖 ← Gen(pp, 𝑠𝑖)
]
= 1.

Definition 2.8 (Batching TLPs with unbounded number of parties). We say that our batched time lock
puzzle scheme ΠcobatchTLP supports an arbitrary polynomial number of parties if the algorithms Gen, Sol in
Definition 2.7 run in time poly(𝜆, log |S𝜆 |, log𝑇, log𝑛). Similarly, our security property allows the adversary
to submit a larger bound on the number of parties 𝑛(·) i.e. now the function could be bounded by 2poly(𝜆)
instead of a polynomial in 𝜆.

Remark 2.9. The syntax for ΠbatchTLP can support public parameters that depend on 𝑛, thus the efficiency
ofGen, Sol can depend on 𝑛. Our schemes will be more efficient where we only need to access a small subset
of the public parameters. Thus, in the RAM model of computation, the efficiency of our algorithms Gen, Sol
will not depend on 𝑛. Additionally, the efficiency of BatchSol can depend on the size of the elements being
batched i.e. |S|, and thus, run in time 𝑝1(𝜆, log |S𝜆 |,𝑇 ) + 𝑝2(𝜆, log |S𝜆 |, log𝑇, |S|).

In our work, we define a notion of TLPs with coordination. This is a relaxation of the general definition
of TLPs with batch solving where each puzzle is associated with an index and you can batch puzzles of
different indices. The definitions are straightforward modifications to the original algorithms.

Definition 2.10 (TLPs with coordination). We say ΠcobatchTLP = (Setup,Gen,BatchSol) supports batch
solving with message space {S𝜆}𝜆∈N, defined as follows:

• pp ← Setup(1𝜆,𝑇 , 𝑛) a probabilistic algorithm that takes as input a security parameter 1𝜆 , a time
hardness parameter 𝑇 , total number of parties 𝑛, and outputs public parameter pp.

• 𝑍 ← Gen(pp, 𝑖, 𝑠) a probabilistic algorithm that takes as input public parameters pp, party index
𝑖 ∈ [𝑛] and a message 𝑠 ∈ S𝜆 , and outputs a puzzle 𝑍 .

• {(𝑖, 𝑠𝑖)}𝑖∈S ← BatchSol(pp,S, {(𝑖, 𝑍𝑖)}𝑖∈S) a deterministic algorithm that takes as input the public
parameters pp, a set S ⊆ [𝑛], puzzles 𝑍𝑖 from each party 𝑖 ∈ S, and outputs for each party 𝑖 ∈ S,
messages 𝑠𝑖 ∈ S𝜆 .

Scheme ΠcobatchTLP satisfies correctness, batch solving correctness, efficiency and batch solving efficiency
similar to Definition 2.7 (with the appropriate syntax changes). We present the modified security definition.

• Security: For a bit 𝑏 ∈ {0, 1}, security parameter 𝜆, polynomially bounded function 𝑇 (·), we define
the following security game between an adversary (A1,A2) and a challenger as follows:
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– Adversary A1 outputs a bound on the number of puzzles to batch 𝑛(𝜆).
– Challenger samples pp← Setup(1𝜆,𝑇 (𝜆), 𝑛(𝜆)) and sends it to A1.
– A1 receives the public parameters and outputs state st, messages 𝑠0, 𝑠1 ∈ S𝜆 and index 𝑖 ∈ [𝑛].
– Challenger computes 𝑍 ← Gen(pp, 𝑖, 𝑠𝑏) and sends it to A2.
– A2 recieves pp, challenge 𝑍 and state st and outputs a bit 𝑏′, which is the output of the

experiment.

We say ΠcobatchTLP is secure with gap 𝜀 ∈ (0, 1), if there exists a polynomial 𝑇 (·) such that for
all polynomially bounded functions where 𝑇 (·) ≥ 𝑇 (·), any polynomially bounded adversaries,
(A1,A2) = (

{
A1,𝜆

}
𝜆∈N ,

{
A2,𝜆

}
𝜆∈N), where the depth of A2,𝜆 is atmost 𝑇 𝜀 (𝜆), there exists a negligi-

ble function negl(·), such that

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ negl(𝜆)

in the game above.

If we want to support unbounded parties our definition is modified similarly to Definition 2.8. Addi-
tionally, Remark 2.9 holds in this setting as well.

2.3 Cryptographic Groups

For a cryptographic group G of order 𝑞 we use multiplicative notation, meaning the group operation is ·.
Then we use exponentiation to indicate repeated multiplication i.e. we define 𝑔𝑥 =

∏
𝑖∈[𝑥 ] 𝑔 for 𝑔 ∈ G and

𝑥 ∈ Z𝑞 . To simplify notation when we do vector exponentiation with x ∈ Z𝑛𝑞 we write h = 𝑔x instead of
(ℎ𝑖 = 𝑔𝑥𝑖 )𝑖∈[𝑛] , similarly use the Hadamard product g ⊙ h to indicate the component-wise multiplication
between two vectors of group elements g, h ∈ G𝑛 .

Let G = (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆) be a generator of a (symmetric) bilinear group generated by
𝑔 of prime order 𝑝 , with an efficiently computable pairing 𝑒 : G × G→ G𝑇 . We recall a few well-known
assumptions in bilinear groups.

Assumption 2.11 (Decisional Bilinear Diffie-Hellman (with 𝑔1/𝑥 ) 4). Let GroupGen be a bilinear group
generator. The decisional bilinear Diffie-Hellman problem is hard forGroupGen if the following distributions
are computationally indistinguishable:(

𝑝,G,G𝑇 , 𝑔, 𝑒, 𝑔
𝑥 , 𝑔1/𝑥 , 𝑔𝑦, 𝑔𝑧, 𝑒 (𝑔,𝑔)𝑥𝑦𝑧

)
≈

(
𝑝,G,G𝑇 , 𝑔, 𝑒, 𝑔

𝑥 , 𝑔1/𝑥 , 𝑔𝑦, 𝑔𝑧, 𝑒 (𝑔,𝑔)𝑟
)

where (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆) and (𝑥,𝑦, 𝑧, 𝑟 ) ← Z∗𝑝 .
Assumption 2.12 (Decisional 𝑛-Power Diffie-Hellman [BGW05]). Let GroupGen be a bilinear group
generator. The 𝑛-power Diffie-Hellman problem is hard for GroupGen if the following distributions are
computationally indistinguishable:(

𝑝,G,G𝑇 , 𝑔, 𝑒,
{
𝑔𝑥

𝑖
}
𝑖∈[2𝑛]\{𝑛+1}

, 𝑔𝑦, 𝑒 (𝑔,𝑔)𝑥𝑛+1𝑦
)

≈
(
𝑝,G,G𝑇 , 𝑔, 𝑒,

{
𝑔𝑥

𝑖
}
𝑖∈[2𝑛]\{𝑛+1}

, 𝑔𝑦, 𝑒 (𝑔,𝑔)𝑟
)

where (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆) and (𝑥,𝑦, 𝑟 ) ← Z∗𝑝 .
4When compared with the standard Decisional Bilinear Diffie-Hellman assumption, we additionally need a 𝑔1/𝑥 group element for
our reduction. We do not introduce a new name as there is a lack of a naming convention for these assumptions.
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[BBG05] show that this assumption holds in the bilinear generic group model. In favor of a simpler
exposition, we only define and use symmetric pairings, however both our constructions can be easily
adapted to the asymmetric settings. Since we implement the asymmetric setting of Assumption 2.12, we
restate the precise assumption below for completeness.

Assumption 2.13 (Asymmetric Decisional 𝑛-Power Diffie-Hellman). Let GroupGen be an asymmetric
bilinear group generator. The asymmetric 𝑛-power Diffie-Hellman problem is hard for GroupGen if the
following distributions are computationally indistinguishable:(

𝑝,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒,
{
𝑔𝑥

𝑖

1

}
𝑖∈[𝑛]

,

{
𝑔𝑥

𝑖

2

}
𝑖∈[2𝑛]\{𝑛+1}

, 𝑔
𝑦

1 , 𝑒 (𝑔1, 𝑔2)
𝑥𝑛+1𝑦

)
≈

(
𝑝,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒,

{
𝑔𝑥

𝑖

1

}
𝑖∈[𝑛]

,

{
𝑔𝑥

𝑖

2

}
𝑖∈[2𝑛]\{𝑛+1}

, 𝑔
𝑦

1 , 𝑒 (𝑔,𝑔)
𝑟

)
where (𝑝,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆) and (𝑥,𝑦, 𝑟 ) ← Z∗𝑝 .

2.4 Lattice Preliminaries

Assumption 2.14 (Learning With Errors [Reg05]). Let 𝜆 be the security parameter and 𝑛 = 𝑛(𝜆),𝑚 =𝑚(𝜆),
𝑞 = 𝑞(𝜆) be integers. Then the decisional Learning With Errors (LWE) assummption states that if we
sample, A←$ Z

𝑛×𝑚
𝑞 , s←$ Z

𝑛
𝑞 , and r←$ Z

𝑚
𝑞 uniformly random and e← 𝜒𝑚

𝜎,𝐵
be component-wise sampled

from the discrete gaussian distribution with standard deviation 𝜎 and truncated at 𝐵 = 𝜎𝜔 (
√︁
log(𝜆)). The

assumption is hard if - (A, s𝑇A + e𝑇 ) ≈𝑐 (A, r).

Lemma 2.15 (Leftover hash lemma [Reg05]). Let 𝑛, 𝑞,𝑚 ∈ N be natural numbers such that 𝑚 > (𝑛 +
1) · log𝑞 + 𝜔 (log𝑛), then for any polynomial 𝑘 = 𝑘 (𝑛), the following two distributions are computationally
indistinguishable,

{
(A,AR) : A← Z𝑛×𝑚𝑞 ,R← {0, 1}𝑚×𝑘

}
≈

{
(A, S) : A← Z𝑛×𝑚𝑞 , S← Z𝑛×𝑘𝑞

}
.

Gadget Matrix We call g = (20, 21, . . . , 2⌈log(𝑞) ⌉) the gadget vector and G = g𝑇 ⊗ I𝑛 ∈ Z𝑛×⌈log(𝑞) ⌉𝑛𝑞 the
gadget matrix. And 𝐺−1 : Z𝑛×𝑚𝑞 → Z⌈log(𝑞) ⌉𝑛×𝑚𝑞 is the binary decomposition function, which is not a linear
operation but for any matrix A = G𝐺−1(A).

Rounding When we use ⌊a⌉𝑝 for some vector a ∈ Z𝑛𝑞 we lift a to Q𝑛 then component-wise round a𝑝/𝑞
to the closest element in Z𝑝 .

3 Time-Lock Puzzles with Batch Solving

In what follows we describe a generic construction of time-lock puzzle with batch solving. To make our
presentation modular, we will initially assume that each party in the protocol is indexed by a unique
identifier 𝑖 ∈ [𝑛] (see Definition 2.10 for a formal definition), where 𝑛 denotes a bound on the total number
of parties. Consequently, we will modify the syntax of time-lock puzzles to add 𝑖 to the puzzle generation
algorithmGen(pp, 𝑖,𝑚) and we will assume that such an index is known to the puzzle solver. This relaxation
will be removed through a generic transformation in Section 4.
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We proceed by presenting our construction. We set the parameters of the scheme below and then
instantiate it based on the required cryptographic building blocks.

• Bound on the maximum number of puzzles batched - denoted by 𝑛. Note that setting 𝑛 = 𝜆𝜔 (1) allows
our time-lock puzzle to support an unbounded number of parties.

• Integer 𝑝 such that, 𝑝 > 8𝑛 and integer 𝑁 such that, 𝑛 · 𝑝2ℓ < 𝑁 5.

We mention the required cryptographic primitives below.

• A time-lock puzzle (denoted by ΠTLP) that is linearly homomorphic over Z𝑁 . Let (LHP.Setup,
LHP.Gen, LHP.Eval, LHP.Sol) denote the algorithms of a linearly homomorphic puzzle. Algorithm
LHP.Eval supports linear homomorphism, i.e. there exists an efficient summation circuit Σ that takes
in inputs 𝑠1, . . . , 𝑠𝑛 ∈ Z𝑁 and computes 𝑠1 + . . . + 𝑠𝑛 ∈ Z𝑁 . Thus, when LHP.Eval takes input Σ, public
parameters pp and different puzzles 𝑍1, . . . , 𝑍𝑛 , it can homomorphically add 𝑍1, . . . , 𝑍𝑛 according to
definition Definition 2.4.

• A puncturable almost key-homomorphic PRF (denoted by ΠPRF) with domain [𝑛], additive key homo-
morphism over Zℓ𝑝 , where ℓ = poly(𝜆). The range of the PRF can be any additive group, for simplicity
herewe consider the range to be inZ𝑝 . Let (PRF.Setup, PRF.KeyGen, PRF, PRF.Puncture, PRF.PuncturedEval)
denote the algorithms of a key-homomorphic puncturable PRF.

For notational convenience, we define the integer encoding and decoding algorithms, Encode𝑝,ℓ : Zℓ𝑝 → Z𝑁
and Decode𝑝,ℓ : Z𝑁 → Zℓ𝑝 as,

• Encode outputs an integer by computing, Encode𝑝,ℓ (𝑥1, . . . , 𝑥ℓ ) =
∑ℓ

𝑖=1 𝑝
2(𝑖−1)𝑥𝑖 . Since the output of

encode is less than 𝑁 (due to how we set our parameters), the output of encode can be interpreted as
an integer Z𝑁 .

• The decoding algorithm Decode𝑝,ℓ (𝑦) is the reverse operation, i.e., vectorizing an integer by modular
reduction and rounding. We can compute it by running the following algorithm. Interpret 𝑦 ∈ Z. Set
𝑖 = 1. Loop till 𝑖 = ℓ .

– Compute 𝑥 ′𝑖 = 𝑦 mod 𝑝2 and set 𝑥𝑖 = 𝑥 ′𝑖 mod 𝑝 .
– Reset 𝑦 = (𝑦 − 𝑥 ′𝑖 )/𝑝2 and increase 𝑖 by 1.

Ourput (𝑥1, . . . , 𝑥ℓ ).

Construction 3.1 (Batchable Time-Lock Puzzle). We describe our algorithms below. For convenience we
only consider messages𝑚 ∈ {0, 1}, but the construction can be easily extended to larger domains.

• Setup(1𝜆,𝑇 , 𝑛):

– ppLHP ← LHP.Setup(1𝜆,𝑇 )
– ppPRF ← PRF.Setup(1𝜆, 𝑛)
– Return pp = (ppLHP, ppPRF)

• Gen(pp, 𝑖,𝑚):
5These parameters have some slack which can be optimized for deploying in real-world systems.
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– Sample a PRF key k← Zℓ𝑝
– Time-lock the key by computing 𝑍 ← LHP.Gen(ppLHP, Encode𝑝,ℓ (k))
– Compute the punctured key k∗ ← PRF.Puncture(ppPRF, k, 𝑖)
– Mask the message 𝑐 ← PRF(ppPRF, k, 𝑖) +𝑚 · ⌈𝑝/2⌉ mod 𝑝 .
– Return (𝑖, 𝑍, k∗, 𝑐)

• BatchSol
(
pp, 𝑆,

{
𝑖, 𝑍𝑖 , k∗𝑖 , 𝑐𝑖

}
𝑖∈𝑆

)
:

– Sum the puzzles 𝑍 ← LHP.Eval
(
Σ, ppLHP, {𝑍𝑖}𝑖∈𝑆

)
, where the evaluation algorithm computes

the sum of the puzzles homomorphically
– Solve the resulting puzzle k̃← LHP.Sol(ppLHP, 𝑍 )
– Compute k′ ← Decode𝑝,ℓ (k̃)
– For all 𝑖 ∈ 𝑆 , compute

𝜇𝑖 = 𝑐𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
PRF.PuncturedEval(ppPRF, k∗𝑗 , 𝑗, 𝑖) − PRF(ppPRF, k′, 𝑖) (mod 𝑝)

and set𝑚𝑖 as ⌊𝜇𝑖⌉ ⌈𝑝/2⌉ by doing the rounding operation.

Analysis. Before we proceed with the formal analysis, it is worth highlighting that each puzzle consists of
a tuple (𝑖, 𝑍𝑖 , k∗𝑖 , 𝑐𝑖) where the size of each element is at most logarithmic in 𝑛. Furthermore, the sequential
computation in the batch solving algorithm consists of solving a single puzzle, whereas all of the other
operations do not depend on the time parameter 𝑇 . Thus the scheme satisfies the desired efficiency
requirements. Also notice that if Setup of both PRF and LHP are transparent then so is the setup of the
batchable TLP.

Theorem 3.2 (Correctness). If ΠTLP satisfies correctness according to Definition 2.3, and ΠPRF satisfies
correctness, then, Construction 3.1 satisfies batch solving correctness according to Definition 2.7.

Proof. Observe that for all k ∈ Zℓ𝑝 , as

Encode𝑝,ℓ (k) =
ℓ∑︁

𝑖=1
𝑝 (𝑖−1)k𝑖 ≤

ℓ∑︁
𝑖=1

𝑝2𝑖−1 ≤ 𝑝2ℓ < 𝑁

where the last inequality holds by how we set our parameters, and hence Decode𝑝,ℓ (Encode𝑝,ℓ (k)) = k as
we’re simply representing each element as an integer on a bigger base. Correctness of Construction 3.1 is
straightforward from the correctness of ΠTLP. □

Theorem 3.3 (Batch Solving Correctness). If ΠTLP satisfies correctness according to Definition 2.3, and ΠPRF

satisfies correctness, and almost key-homomorphism, then, Construction 3.1 satisfies batch solving correctness
according to Definition 2.7.
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Proof. To show correctness, we first observe that, by the evaluation correctness of the time-lock puzzles,
we have

k̃ =
∑︁
𝑗∈𝑆

Encode𝑝,ℓ (k𝑗 ) =
∑︁
𝑗∈𝑆

ℓ∑︁
𝑖=1

𝑝2(𝑖−1)k𝑗,𝑖

=

ℓ∑︁
𝑖=1

𝑝2(𝑖−1)
∑︁
𝑗∈𝑆

k𝑗,𝑖 ≤
ℓ∑︁

𝑖=1
𝑝2𝑖−1 · 𝑛 ≤ 𝑛 · 𝑝2ℓ < 𝑁,

where the last inequality holds by how we set our parameters. In particular, this implies that the summation
happens without modular reduction. Additionally, observe that

k′ = Decode𝑝,ℓ (�̃�) = Decode𝑝,ℓ

(
ℓ∑︁

𝑖=1
𝑝2(𝑖−1)

∑︁
𝑗∈𝑆

k𝑗,𝑖

)
=

∑︁
𝑗∈𝑆

k𝑗

where the above sum is also over the integers, since each coordinate of the keys is at most 𝑝 and 𝑝𝑛 < 𝑝2,
by how we set our parameters (𝑝 is greater than 8𝑛).

Plugging this into the solving equation, we have that

𝜇𝑖 = 𝑐𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
PRF.PuncturedEval(ppPRF, k∗𝑗 , 𝑗, 𝑖) − PRF(ppPRF, k′, 𝑖)

= 𝑐𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
PRF.PuncturedEval(ppPRF, k∗𝑗 , 𝑗, 𝑖) − PRF

(
ppPRF,

∑︁
𝑗∈𝑆

k𝑗 , 𝑖

)
= 𝑐𝑖 +

∑︁
𝑗∈𝑆\{𝑖 }

PRF.PuncturedEval(ppPRF, k∗𝑗 , 𝑗, 𝑖) −
∑︁
𝑗∈𝑆

PRF
(
ppPRF, k𝑗 , 𝑖

)
+ 𝑒

= 𝑐𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
PRF.PuncturedEval(ppPRF, k𝑗 , 𝑖) −

∑︁
𝑗∈𝑆

PRF
(
ppPRF, k𝑗 , 𝑖

)
+ 𝑒

= 𝑐𝑖 − PRF
(
ppPRF, k𝑖 , 𝑖

)
+ 𝑒 + 𝑒′

= PRF(ppPRF, k, 𝑖) +𝑚𝑖 · ⌈𝑝/2⌉ − PRF
(
ppPRF, k𝑖 , 𝑖

)
+ 𝑒 + 𝑒′

=𝑚𝑖 · ⌈𝑝/2⌉ + 𝑒 + 𝑒′

where the third equality follows by the almost key-homomorphism of the PRF with some ∥𝑒 ∥∞ ≤ (𝑛 − 1),
and the fourth equality follows by almost functionality preservation of the PRF with some ∥𝑒′∥∞ ≤ (𝑛 − 1).
Thus 𝜇𝑖 is correctly rounded to𝑚𝑖 , since 4𝑛 < 𝑝/2. □

Remark 3.4. For correctness, we crucially rely on our setting of parameters. We later show a construction
of a key-homomorphic puncturable PRF that has a codomain with a (arbitrary but fixed) polynomial modulus
𝑝 . In that case the number of puzzles we can batch is upperbounded by ⌊𝑝/2⌋.

Theorem 3.5 (Informal). Let ΠLHP be linearly-homomorphic time-lock puzzle secure against depth T𝜀 (𝜆)-
bounded adversaries and ΠPRF be an almost key-homomorphic puncturable PRF, then construction 3.1 is a
batchable time-lock puzzle secure against T𝜀 (𝜆)-bounded adversaries.

Proof. We include an informal proof below. Please see Appendix C for the complete formal theorem
statement and reductions. We proceed by defining a series of hybrids.
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𝐻0 : In the first hybrid, we compute the time-lock puzzle according to the original distribution, i.e.,
(𝑖, 𝑍𝑖 , k∗𝑖 , 𝑐𝑖) ← Gen(pp, 𝑖,𝑚).

𝐻1 : In this hybrid, we modify the Gen algorithm encode 0 ∈ Z𝑁 in the time-lock puzzle, as opposed to the
key of the pseudorandom function. That is, we define

𝑍 ← LHP.Gen(0)

Since the attacker is guaranteed to run in parallel time less than 𝑇 , indistinguishability of the views
follows immediately from the security of the time-lock puzzles. Therefore,

��Adv𝐻1 (A) − Adv𝐻0 (A)
�� ≤

negl(𝜆).

𝐻2 : In the second hybrid, we we modify the Gen algorithm by sampling 𝑐 uniformly from the range of
the PRF. By the pseudorandomness of PRF we can establish that PRF(ppPRF, k, 𝑖) is computationally
indistinguishable from uniform, even given the punctured key k∗, and therefore so is PRF(ppPRF, k, 𝑖)+
𝑚. Thus,

��Adv𝐻2 (A) − Adv𝐻1 (A)
�� ≤ negl(𝜆).

The proof is concluded by observing that in 𝐻2 the adversary has probability 1/2 of winning because the
output of Gen(pp,𝑚, 𝑖) does not depend on 𝑏.

□

4 Removing Coordination among Parties

In this section, we show how to convert any batching scheme where parties possess a unique index to a
batching scheme where parties do not have any coordination. Our main observation is for each party to
sample a set of indices at random and ensure that the Hall’s marriage condition holds with overwhelming
probability. The perfect matching thus allows each party to hold a unique index on which we run our batch
solving algorithm. We start with a few graph theory preliminaries. Let 𝐺 be a bipartite graph with vertex
sets𝑈 and 𝑉 and edge set 𝐸. A complete matching𝑀 ⊆ 𝐸 from𝑈 to 𝑉 is a set of |𝑈 | independent edges in
𝐺 . In a complete matching, each vertex in 𝑈 is incident to a single edge in𝑀 . For a set 𝑆 ⊆ 𝑈 , we denote
by Γ(𝑆) ⊆ 𝑉 , the neighbourhood set of 𝑆 , i.e. Γ(𝑆) = {𝑣 ∈ 𝑉 : ∃(𝑢, 𝑣) ∈ 𝐸 ∧ 𝑢 ∈ 𝑈 }.

Theorem 4.1 (Hall’s marriage theorem [Hal35]). Given a bipartite graph𝐺 with vertex sets𝑈 and𝑉 and edge
set 𝐸. The graph admits a perfect matching from𝑈 to 𝑉 if and only if - for every subset 𝑆 ⊆ 𝑈 , |Γ(𝑆) | ≥ |𝑆 |.

Additionally, there are many algorithms to compute the perfect matching. One such algorithm is [HK73],
(denoted in this document by FindMatch) that takes in𝐺 = (𝑈 ,𝑉 , 𝐸) and outputs a perfect matching in time
𝑂 ( |𝐸 |

√︁
|𝑉 |) where 𝐸 denotes the number of edges. More formally, it outputs {(𝑢, 𝑣𝑢)}𝑢∈𝑈 where 𝑣𝑢 ∈ Γ(𝑢)

and | {𝑣𝑢}𝑢∈𝑈 | = |𝑈 |. If a perfect matching does not exist, the algorithm outputs ⊥.

Construction 4.2 (Transformation to remove coordination). We describe our algorithms to construct
ΠbatchTLP below. Our transformation relies on the existence of a ΠcobatchTLP scheme.

• pp ← Setup(1𝜆,𝑇 , 𝑛). Let 𝑛new and 𝑑 be set according to parameters in Lemma 4.4. Sample pp ←
cobatchTLP.Setup(1𝜆,𝑇 , 𝑛new). Output public parameters pp.

• 𝑍 ← Gen(pp,𝑚). For every 𝑗 ∈ [𝑑], sample 𝑑 choices randomly, i.e. 𝑣 𝑗 ← [𝑛new] (without
replacement6). Let 𝑉 =

{
𝑣 𝑗

}
𝑗∈[𝑑 ] , and we generate a puzzle, i.e. 𝑍𝑣𝑗 ← cobatchTLP.Gen(pp, 𝑣 𝑗 ,𝑚).

6This means that we always sample a distinct set.
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Output 𝑍 =

(
𝑉 ,

{
(𝑣 𝑗 , 𝑍𝑣𝑗 )

}
𝑣𝑗 ∈𝑉

)
.

• {𝑠𝑖 , 𝑍𝑖}𝑖∈S ← BatchSol(pp, {𝑍𝑖}𝑖∈S).

– For each 𝑖 ∈ S, parse each 𝑍𝑖 =

(
𝑉𝑖 ,

{
(𝑣𝑖, 𝑗 , 𝑍𝑖,𝑣𝑗 )

}
𝑗∈𝑉𝑖

)
.

– Let 𝐺 = (S, [𝑛new], E) be a bipartite graph where

E =
{
(𝑖, 𝑣 𝑗 ) : 𝑖 ∈ S, 𝑣 𝑗 ∈ [𝑛new], and 𝑣 𝑗 ∈ 𝑉𝑖

}
.

– Compute the maximal matchingmap← FindMatch(𝐺) where the matched vertices are denoted
by the set S′ and the mapping map =

{
(𝑖, 𝑣∗𝑖 )

}
𝑖∈S′ . Set Snew =

{
𝑣∗𝑖

}
𝑖∈S′ .

– Let
{
(𝑣∗𝑖 , 𝑠𝑖)

}
𝑣∗
𝑖
∈Snew ← cobatchTLP.BatchSol(pp,Snew, {(𝑣∗𝑖 , 𝑍𝑖,𝑣∗

𝑖
)}𝑣∗

𝑖
∈Snew).

– For the unmatched vertices i.e. 𝑖 ∈ S \ S′, set 𝑠𝑖 = ⊥. Output {(𝑠𝑖 , 𝑍𝑖)}𝑖∈S .

Analysis. The correctness, efficiency of our scheme are straightforward from the correctness, efficiency
of the underlying ΠcobatchTLP.

Theorem 4.3. If ΠcobatchTLP satisfies batch solving correctness according to Definition 2.10, then, Construc-
tion 4.2 satisfies batch solving correctness according to Definition 2.7 where 𝑛new = 3𝑛 and 𝑑 =

𝜔 (log𝜆)
log(𝑛new ) .

Proof. In order to argue about the batch solving correctness, batch solving efficiency, we prove the following
claim about FindMatch algorithm. Informally, we prove that, when running BatchSol, our graph 𝐺 =

(S, [𝑛new], E) computes a perfect matching with overwhelming probability.

Lemma 4.4. Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a random left regular bipartite graph where |𝑈 | = 𝑛, |𝑉 | = 𝑛′. Let the left
regular degree be denoted by 𝑑 . If 𝑛′ = 3𝑛, 𝑑 = 𝑂 (1) + 𝜔 (log𝜆)

log(𝑛′ ) , then, the probability that there exists a perfect
matching for𝐺 is ≥ 1 − negl(𝜆) where the probability is taken over the random coins of sampling the bipartite
graph.

Proof. Let 𝑆 ⊆ 𝑈 be some subset of size ℓ . Let 𝑇 be the neighbourhood set of 𝑆 , i.e. 𝑇 = Γ(𝑆). Hall’s
condition is violated if |𝑇 | ≤ ℓ − 1. For fixed sets 𝑆,𝑇 , the probability that the hall’s condition is violated

is given by,
( (

ℓ−1
𝑑

)
/
(
𝑛′

𝑑

) ) ℓ
, where the probability is taken over the random coins of sampling 𝐺 - because

the probability that the particular subset is chosen on a single vertex on the left is (
ℓ−1
𝑑 )
(𝑛′𝑑 )

, and the condition
holds for all vertices on the left.

Since the sets 𝑆 can be sampled in
(
𝑛
ℓ

)
ways, and the set 𝑇 can be sampled in

(
𝑛′

ℓ−1
)
ways, the probability

of failure through a union bound is given by,

𝑛∑︁
ℓ=𝑑

(
𝑛

ℓ

) (
𝑛′

ℓ − 1

) ( (
ℓ−1
𝑑

)(
𝑛′

𝑑

) ) ℓ
. (2)

By using the inequalities, (
𝑥
𝑑)
(𝑦𝑑)
≤ 𝑥 · (𝑥−1) ...(𝑥−𝑑+1)

𝑦 · (𝑦−1) ...(𝑦−𝑑+1) ≤
(
𝑥
𝑦

)𝑑
, and using the inequality that

(
𝑥
𝑦

)
≤

(
𝑒 ·𝑥
𝑦

)𝑦
,

the failure probability can be simplified to,
∑𝑛

ℓ=𝑑

(
𝑒 ·𝑛
ℓ

) ℓ (
𝑒 ·𝑛′
ℓ−1

) ℓ−1 (
ℓ−1
𝑛′

) ℓ ·𝑑 . Observe that the dominating
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expression here is the ℓ−1
𝑛′

ℓ ·𝑑 expression. The expression can be succinctly written as 𝑓 (ℓ) =
(
𝑎
ℓ2
·
(
ℓ
𝑛′

)𝑑 ) ℓ ,
where 𝑎 is some constant. Taking a derivative, 𝑑

𝑑ℓ
(𝑓 (ℓ)) = 𝑓 (ℓ) · ((𝑑 − 2) (1 + ln ℓ) − 𝑑 ln𝑛′ + ln𝑎). On

setting 𝑛′ ≥ 3𝑛, and 𝑑 ≥ 4 and since ℓ ≤ 𝑛, the term
(
ℓ
𝑛′

)𝑑 ·ℓ will dominate and we can observe that
𝑑
𝑑 ·ℓ (𝑓 (ℓ)) < 0 and the function is decreasing. Thus we can upper bound our probability of failure by
(𝑛 − 𝑑 + 1) · 𝑓 (4). Plugging in the values for 𝑛′ = 3𝑛, and bounding loosely, we get the expression that
the probability is upper bounded by 𝑒𝑎−𝑏 ·𝑑 , where 𝑎 = ln( 𝑛3𝑒 ) + 4 ln(𝑒

2𝑛2), 𝑏 = 4 ln(𝑛′4 ) are some constants.
Loosely setting 𝑑 ≥ (𝑎 + 𝜔 (log 𝜆)) /𝑏, gives us that the probability of failure is ≤ negl(𝜆), hence completing
the lemma proof. □

Since FindMatch outputs a perfect matching, the batch correctness and batch efficiency of our transfor-
mation holds from the batch correctness and batch efficiency of ΠcobatchTLP. Note that from the analysis
in [HK73], it takes 𝑂 (𝑛 · 𝑑

√
𝑛) time to find the perfect matching. In Appendix A, we sketch an alternate

analysis which can find a matching solution in time 𝑂 (𝑛 · 𝑑) in the worst case, but requires a larger degree
for the matching to exist with non-negligible probability. The alternate analysis is simpler, but leads
to a larger degree bound, hence more communication, and slower puzzle generation. Additionally, the
matching algorithm is blazingly efficient and will not be the bottleneck when compared to the cryptographic
operations in the system. □

Remark 4.5. Notice that in the RAM model, the efficiency of our algorithms mirrors the efficiency of the
underlying ΠcobatchTLP.

• If cobatchTLP.Gen does not depend on𝑛, ourGen then runs𝑑 (which is ≤ 𝜆) copies of cobatchTLP.Gen
and hence will also not depend on 𝑛.

• Efficiency of Sol is exactly same to the efficiency of cobatchTLP.Sol.

• If the efficiency of cobatchTLP.BatchSol does not depend on 𝑛 i.e. equal to 𝑝1(𝜆, log |S𝜆 |,𝑇 ) +
𝑝2(𝜆, log |S𝜆 |, log𝑇, |S|). Efficiency of BatchSol will depend on finding a perfect matching where the
number of edges are |S| · 𝑑 and thus will have the same efficiency.

Theorem 4.6 (Security). If ΠcobatchTLP satisfies security according to Definition 2.10, then, Construction 4.2
satisfies security according to Definition 2.7.

Proof. The security of our construction follows from a standard hybrid argument where the reduction
B given a puzzle 𝑍 =

(
𝑉 ,

{
(𝑣 𝑗 , 𝑍𝑣𝑗 )

}
𝑣𝑗 ∈𝑉

)
guesses an index 𝑣 𝑗 ∈ 𝑉 , breaks the underlying security of

ΠcobatchTLP with a probability loss of 1/𝑑 . □

Remark 4.7 (Special Case: Superpolynomial Indices). The analysis becomes very simple as soon as 𝑛 is
superpolynomial. To remove coordination, we can sample one random index and produce the puzzle with
respect to that index. The probability that two parties sample the same index is negligible. This also works
if the amount of puzzles one can batch is bounded 3.4) but 𝑛 is superpolynomial.

5 Puncturable Key-Homomorphic PRFs

5.1 Bounded Domain Puncturable Key-Homomorphic PRFs from Pairings

In the following we present two constructions of puncturable key-homomorphic PRFs from pairings, with
different tradeoffs in terms of assumptions and parameter size. Importantly, both of these constructions
only support of domain of size 𝑛 = poly(𝜆).
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Construction 5.1 (Quadratic Setup). We specify the algorithmsΠPRF = (Setup, PRF, Puncture, PuncturedEval)
below.

• Setup(1𝜆, 1𝑛):

– G = (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆)
– Sample 𝑥𝑖 uniformly at random for Z∗𝑝 for 𝑖 ∈ [𝑛]
– Sample 𝑧𝑖 uniformly at random for Z∗𝑝 for 𝑖 ∈ [𝑛]
– Return pp = (G, {𝑔𝑥𝑖 }𝑖∈[𝑛], {𝑔𝑧𝑖/𝑥 𝑗 }𝑖≠𝑗 )

• KeyGen(pp) : Sample k ∈ Z∗𝑝 .

• PRF(pp, k, 𝑖):

– Return 𝑒 (𝑔𝑧𝑖/𝑥 𝑗 , 𝑔𝑥 𝑗 )k = (𝑒 (𝑔,𝑔)𝑧𝑖 )k for some 𝑗 ≠ 𝑖

• Puncture(pp, k, 𝑖∗):

– Return 𝑔𝑥𝑖∗k = (𝑔𝑥𝑖∗ )k

• PuncturedEval(pp, k∗, 𝑖∗, 𝑖):

– Return ⊥ if 𝑖 = 𝑖∗

– Return 𝑒 (𝑔,𝑔)𝑧𝑖k = 𝑒 (𝑔𝑥𝑖∗k, 𝑔𝑧𝑖/𝑥𝑖∗ )

Analysis. To show that the scheme is indeed correct, it suffices to observe that for all 𝑖 ≠ 𝑖∗:

PuncturedEval(pp, k∗, 𝑖∗, 𝑖) = 𝑒 (𝑔𝑥𝑖∗k, 𝑔𝑧𝑖/𝑥𝑖∗ ) = 𝑒 (𝑔,𝑔)𝑧𝑖k = PRF(pp, k, 𝑖) .

It is similarly easy to show that the scheme is (perfect) key homomorphic over Z∗𝑝 since for all ∈ [𝑛] we
have, ∏

𝑗

PRF(pp, k𝑗 , 𝑖) =
∏
𝑗

𝑒 (𝑔,𝑔)𝑧𝑖k𝑗 = 𝑒 (𝑔,𝑔)𝑧𝑖
∑

𝑗 k𝑗 = PRF

(
pp,

∑︁
𝑗

k𝑗 , 𝑖

)
.

We now show that the scheme is secure against the decisional bilinear diffie-hellman assumption (with
𝑔1/𝑥 , see Assumption 2.11).

Remark 5.2. When implementing this scheme, we can also post {𝑒 (𝑔,𝑔)𝑧𝑖 }𝑖∈[𝑛] values as they are publicly
computable from the public parameters. This makes the evaluation step faster at the cost of maintaining a
bigger list of public parameters. Note that it doesn’t change the security assumption under which we will
prove our security below.

Theorem 5.3. If Assumption 2.11 holds, then Construction 5.1 satisfies security from Definition 2.1.

Proof. Let A be an adversary where A breaks the security of the underlying puncturable PRF with some
non-negligible 𝜀′. We construct an adversary B that breaks Assumption 2.11 as follows.

• Algorithm B receives
(
𝑈 = 𝑔𝑥 ,𝑉 = 𝑔1/𝑥 ,𝑊 = 𝑔𝑦, 𝑍 = 𝑔𝑧,𝑇

)
where 𝑇 is either 𝑒 (𝑔,𝑔)𝑥𝑦𝑧 or 𝑒 (𝑔,𝑔)𝑟 .

• Adversary A outputs a bound on the domain of the PRF 1𝑛 .
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• Algorithm B samples a random index 𝑖∗ ← [𝑛] and (implicitly) sets 𝑥𝑖∗ = 1/𝑥 and 𝑧𝑖∗ = 𝑧. More
explicitly, it computes the public parameters as follows,

– For every 𝑖 ∈ [𝑛], such that 𝑖 ≠ 𝑖∗, sample 𝑥𝑖 , 𝑧𝑖 ∈ Z𝑝 . Thus we can compute 𝑔𝑥𝑖 and 𝑔𝑧𝑖

respectively. For every 𝑗 ∈ [𝑛], such that 𝑗 ≠ 𝑖 , we divide the analysis into two cases, where
𝑗 = 𝑖∗ and when 𝑗 ≠ 𝑖∗.
∗ When 𝑗 = 𝑖∗, compute 𝑔𝑧𝑖/𝑥 𝑗 as𝑈 𝑧𝑖 .
∗ When 𝑗 ≠ 𝑖∗, compute 𝑔𝑧𝑖/𝑥 𝑗 as we know both exponents.

– For 𝑖 = 𝑖∗, set 𝑔𝑥𝑖∗ = 𝑉 . For every 𝑗 ∈ [𝑛], such that 𝑗 ≠ 𝑖 , compute 𝑔𝑧𝑖/𝑥 𝑗 as 𝑍 1/𝑥 𝑗 . Note that
since 𝑗 ≠ 𝑖∗, we know the required exponents 1/𝑥 𝑗 .

Output pp = (G, {𝑔𝑥𝑖 }𝑖∈[𝑛], {𝑔𝑧𝑖/𝑥 𝑗 }𝑖≠𝑗 ) to the adversary A.

• AdversaryA sees the public parameters and outputs an index 𝑖∗ ∈ [𝑛]. If this index 𝑖∗ does not match
the 𝑖∗ algorithm B sampled, then algorithm B simply aborts. Else, we continue with the execution.

• Algorithm B implicitly sets k = 𝑦 · 𝑥 and sets the punctured key k∗ as𝑊 . The computed value of the
PRF point is set as the target 𝑇 . It sends (k∗,𝑇 ) to the adversary A.

• Algorithm A outputs a bit 𝑏′ which is output by B.

Note that the punctured key is 𝑔𝑥𝑖∗ ·k = 𝑔1/𝑥 · (𝑦 ·𝑥 ) = 𝑔𝑦 . And the computation at the punctured point is
𝑒 (𝑔,𝑔)𝑧𝑖∗ ·k = 𝑒 (𝑔,𝑔)𝑧 ·𝑦 ·𝑥 . Thus when the target value is 𝑒 (𝑔,𝑔)𝑥𝑦𝑧 , we evaluate at the punctured point and
when the target value is 𝑒 (𝑔,𝑔)𝑟 , we choose a random point in the range of the PRF evaluation. Since
adversary B chooses 𝑖∗ randomly, it doesn’t abort with probability 1/𝑛 and thus B’s advantage in breaking
the security of Assumption 2.11 is 𝜀′/𝑛 which is non-negligible and we have a contradiction.

□

Construction 5.4 (Linear Setup). We specify the algorithmsΠPRF = (Setup, PRF, Puncture, PuncturedEval)
below.

• Setup(1𝜆, 1𝑛):

– G = (𝑝,G,G𝑇 , 𝑔, 𝑒) ← GroupGen(1𝜆)
– Sample 𝑥 uniformly at random for Z∗𝑝
– Return pp = (G, {𝑔𝑥𝑖 }𝑖∈[2𝑛]\{𝑛+1})

• PRF(pp, k, 𝑖):

– Return 𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖k = (𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖 )k

• Puncture(pp, k, 𝑖∗):

– Return 𝑔𝑥𝑖
∗
k = (𝑔𝑥𝑖

∗
)k

• PuncturedEval(pp, k∗, 𝑖∗, 𝑖):

– Return ⊥ if 𝑖 = 𝑖∗

– Return 𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖k = 𝑒 (𝑔𝑥𝑖
∗
k, 𝑔𝑥

𝑛+1+𝑖−𝑖∗ )
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Analysis. It is immediate to see that the scheme satisfies correctness since for all 𝑖∗ ≠ 𝑖:

PuncturedEval(pp, k∗, 𝑖∗, 𝑖) = 𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖k = (𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖 )k = PRF(pp, k, 𝑖) .

It is equally easy to see that the scheme is (perfect) linearly key-homomorphic over Z∗𝑝 :∏
𝑗

PRF(pp, k𝑗 , 𝑖) =
∏
𝑗

𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖k𝑗 = 𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖
∑

𝑗 k𝑗 = PRF

(
pp,

∑︁
𝑗

k𝑗 , 𝑖

)
.

Similar to Remark 5.2, here we can post
{
𝑒 (𝑔,𝑔)𝑛+1+𝑖

}
𝑖∈[𝑛] in the public parameters. We now show that the

scheme is secure against the decisional 𝑛-Power Diffie-Hellman assumption (see Assumption 2.12).

Theorem 5.5. If Assumption 2.12 holds, then construction Construction 5.4 satisfies security from Definition 2.1.

Proof. Let A be an adversary where A breaks the security of the underlying puncturable PRF with some
non-negligible 𝜀′. We construct an adversary B that breaks Assumption 2.12 as follows.

• Algorithm B receives
(
𝑔,

{
𝑋𝑖 = 𝑔𝑥

𝑖
}
𝑖∈[2𝑛]\{𝑛+1}

, ℎ,𝑇

)
where 𝑇 is either 𝑒 (𝑔, ℎ)𝑥𝑛+1 or 𝑒 (𝑔,𝑔)𝑟 .

• Adversary A outputs a bound on the domain of the PRF 1𝑛 .

• Algorithm B computes the public parameters as follows pp = (G, {𝑋𝑖}𝑖∈[2𝑛]\{𝑛+1}) and outputs pp to
adversary A.

• Adversary A sees the public parameters and outputs an index 𝑖∗ ∈ [𝑛].

• Algorithm B implicitly sets k = DLog(ℎ)/𝑥𝑖∗ and sets the punctured key k∗ as ℎ. The computed value
of the PRF point is set as the target 𝑇 . It sends (k∗,𝑇 ) to the adversary A.

• Algorithm A outputs a bit 𝑏′ which is output by B.

Note that the punctured key is 𝑔𝑥𝑖
∗ ·k = 𝑔DLog(ℎ) = ℎ. And the computation at the punctured point is

𝑒 (𝑔,𝑔)𝑥𝑛+1+𝑖
∗ ·k = 𝑒 (𝑔,𝑔)𝑥𝑛+1 ·DLog(ℎ) = 𝑒 (𝑔, ℎ)𝑥𝑛+1 . Thus when the target value is 𝑒 (𝑔, ℎ)𝑥𝑛+1 , we evaluate at

the punctured point and when the target value is 𝑒 (𝑔,𝑔)𝑟 , we choose a random point in the range of the PRF
evaluation. Thus B’s advantage in breaking the security of Assumption 2.11 is 𝜀′ which is non-negligible
and we have a contradiction. □

Remark 5.6. Observe that in both of our constructions, ppPRF depend polynomially in 𝑛, but our algorithms
PRF, Puncture, PuncturedEval only look at a constant number of group elements, hence run very efficiently
in the RAM model of computation. When these PRF’s are plugged into Construction 3.1, they give us
efficient batching algorithms according to Remark 2.9.

5.2 (Almost) Key-Homomorphic Puncturable PRF from LWE

The constrained-key (almost) key-homomorphic PRF by [BV15] is already a (almost) key-homomorphic
puncturable PRF. However, it provides more functionality and stronger security than we need. In the
following sections, we show how to simplify the construction drastically for our security and functionality
notions.

We use the following two algorithms from [BV15] (ComputeA,ComputeC) to embed circuits into
matrices and LWE samples.
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ComputeA(𝐹,A0, . . . ,A𝑘 ) : Takes as input a circuit 𝐹 : {0, 1}𝑘 → {0, 1} and 𝑘 matrices A0, . . . ,A𝑘 and
outputs a matrix A𝐹 .

ComputeC(𝐹, 𝑥1, . . . , 𝑥𝑘 ,A0, . . . ,A𝑘 , a0, . . . , a𝑘 ) : Takes as input a circuit 𝐹 : {0, 1}𝑘 → {0, 1}, 𝑘 + 1matrices
A0, . . . ,A𝑘 , a string of 𝑘 bits 𝑥1, . . . , 𝑥𝑘 , and 𝑘 + 1 vectors a0, . . . , a𝑘 where a𝑖 = s𝑇 (A + 𝑥𝑖G) + e𝑖 and
a0 = s𝑇 (A0 + G) + e0. It outputs a vector a𝐹,𝑥 such that a𝐹,𝑥 = s𝑇 (A𝐹 + 𝐹 (𝑥)G) + e𝐹 associated with
the output matrix A𝐹 and the output bit 𝐹 (𝑥).

The runtime of both these algorithms is dominated by the matrix multiplication per AND gate and a matrix
addition per NOT gate. We mention the formal lemma from [BV15].

Lemma 5.7 (Lemma 4.1 of [BV15]). Let 𝐹 be a Boolean circuit (of AND and NOT gates) on k input bits, and
𝑥 ∈ {0, 1}𝑘 be an input to the circuit.

Let A0,A1, . . . ,A𝑘 ∈ Z𝑛×𝑚𝑞 and a0, a1, . . . , a𝑘 be such that ∥a𝑖 − s𝑇A𝑖 + 𝑥𝑖G∥∞ ≤ 𝛾 for 𝑖 ∈ [𝑘] and
∥a0 − s𝑇A0 + G∥∞ ≤ 𝛾 for some s ∈ Z𝑛𝑞 and 𝛾 = 𝛾 (𝜆).

Let A𝐹 ← ComputeA(𝐹,A0, . . . ,A𝑘 ) and a𝐹,𝑥 ← ComputeC(𝐹, 𝑥,A0,A1, . . . ,A𝑘 , a0, a1, . . . , a𝑘 ). Then,
we have that,

∥a𝐹,𝑥 − s𝑇A𝐹 + 𝐹 (𝑥)G∥∞ ≤ 𝐸 (𝐹 ) · 𝛾

where 𝐸 (𝐹 ) is the noise growth estimation of the circuit 𝐹 .
Formally, the noise growth estimation is computed as follows, 𝐸 (𝐹 ) = 𝐸𝐹 (𝑤𝑜 ) with 𝑤𝑜 being the output

wire of 𝐹 and 𝐸𝐹 is a recursive function defined as follows.

𝐸𝐹 (𝑤) =


1 if𝑤 is input wire
1 + 𝐸𝐹 (𝑤 ′) if𝑤 is the output wire of NOT gate with input𝑤 ′

𝑚 · 𝐸𝐹 (𝑤𝑙 ) + 𝐸𝐹 (𝑤𝑟 ) if𝑤 is the output wire of AND gate with left input𝑤𝑙

and right input𝑤𝑟

Furthermore, a𝐹,𝑥 is a "low-norm" linear function of a0, . . . , a𝑘 . That is, there are matrices Z0, . . . ,Z𝑘 (which
depend on the circuit 𝐹 , the input 𝑥 , and the input matrices A0, . . . ,A𝑘 ) such that a𝐹,𝑥 =

∑𝑘
𝑖=0 a𝑖Z𝑖 and

∥Z𝑖 ∥∞ ≤ 𝐸 (𝐹 ).

Remark 5.8. Our lemma differs in two places from the lemma presented by Brakerski and Vaikuntanathan.
They estimate the noise that accumulates with𝑚𝑑𝑒𝑝𝑡ℎ (𝐹 ) , while we bound it by the recursive function 𝐸 (𝐹 ).
Secondly, they upper bound ∥Z𝑖 ∥∞ by𝑚𝑑𝑒𝑝𝑡ℎ (𝐹 ) · 𝛾 , while we upper bound by 𝐸 (𝐹 ). Both of these changes
are derived exactly by following their proof.

In the following we describe a PRF that largely follows the blueprint of the constrained-key key-
homomorphic PRF of [BV15]. Our constructions differ from the construction in [BV15] in the following
ways.

• The construction for a constrained PRF in Brakerski and Vaikuntanathan [BV15] (Theorem 5.1)
assumes the hardness of decision LWE, 1D-SIS and the existence of an admissable hash function
[BB04, CHKP12, BV15].

One-dimensional short integer solutions (1D-SIS) for parameters 𝑞,𝑚, 𝑡 states that given a vector
v ← Z𝑚𝑞 , it’s hard to find a vector z ∈ Z𝑚 such that ∥z∥ ≤ 𝑡 and ⟨v, z⟩ ∈ [−𝑡, 𝑡] + 𝑞Z. Admissible
hash functions were introduced in [BB04] to convert selective secure IBE schemes into fully secure
schemes. They can be constructed from any collusion resistant hash function.
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Our specific application for (almost) key homomorphic PRF’s does not need to satisfy the strong
adaptive security guarantees provided by the construction of Brakerski and Vaikuntanathan and we
only need to rely on LWE security.

• We only need to constrain the key so that it can puncture at a single point. This allows us to consider
specialized constraining circuits and replace the universal circuit in the construction of [BV15] by a
simpler equality check circuit. We define it below.

𝐸𝑄 (𝑥, 𝑥∗) =
∧
𝑖∈[𝜆]
(𝑥𝑖

?
= 𝑥∗𝑖 ) =

∧
𝑖∈[𝜆]
(¬(𝑥𝑖 ∧ 𝑥∗𝑖 ) ∧ ¬(¬𝑥𝑖 ∧ ¬𝑥∗𝑖 ))

Observe that the circuit is a big AND of 2𝜆 many clauses (𝑐 𝑗 ) 𝑗∈[2𝜆] . The noise growth estimation of
each clause, i.e. 𝐸 (𝑐𝑖) is less than equal to (2𝑚 + 3). From the definition of the noise growth circuit,
we can observe that the noise grows slowly if the heavy part of the computation is in the right spline.
Thus, we can state our equality check circuit as, 𝐸𝑄 = (𝑐1 ∧ (𝑐2 ∧ (𝑐3 ∧ . . . (𝑐2𝜆−1 ∧ 𝑐2𝜆) . . . ))) where
𝑐1, . . . , 𝑐2𝜆 are the clauses mentioned above and we can get 𝐸 (𝐸𝑄) ≤ (2𝜆 − 1)𝑚(2𝑚 + 3) ≤ 𝑂 (𝜆𝑚2).

• In our applications, we know the point at which we puncture before generating the corresponding
key. Thus we can modify the key generation algorithm and allow it to depend on a punctured point.
We mention the modifications to Definition 2.1 below (without repeating the entire definition for
brevity).

– Our key generation algorithm, KeyGen(pp, 𝑥∗) takes in public parameters pp and a punctured
point 𝑥∗ ∈ X𝜆,𝑛 and outputs a key k ∈ K𝜆 .

– Functionality preserving only holds when considering the key k to be punctured at point 𝑖∗.
Similarly for almost functionality preserving.

– For the security definition, the challenger knows the punctured point when generating the key
and computes it by running the KeyGen operation. Thus, the interaction with the adversary in
the security game stays the same.

– (Almost) key-homomorphism requires that homomorphism for any 𝑥∗ ∈ X𝜆,𝑛 , and keys k0, k1
computed under the support of the key generation operation, the key homomorphism guarantee
holds.

Even though our security requirements are similar, we point out that this restricts the applications of
our primitive as a generic pseudo-random function. Specifically, we cannot puncture at multiple points in a
given set and our construction can only guarantee pseudorandomness at a pre-determined point. Thus
our security requirement no longer implies a pseudo-random function where the adversary can make
oracle queries to the PRF and a random function at multiple points. This simplification is enough for our
application and helps in concrete efficiency and simplifying the assumptions from which we can build our
primitive.

We proceed by presenting our construction. We set the parameters of the scheme below and then
instantiate it based on the required cryptographic building blocks.

• Let 𝑛 = 𝑛(𝜆), 𝑚 = 𝑚(𝜆), 𝑞 = 𝑞(𝜆) be the LWE parameters. We additionally define parameters
𝑝 = 𝑝 (𝜆), 𝛾 = 𝛾 (𝜆). Let 𝛾 ′ = 𝛾 ′(𝜆) be an upper bound on the noise that accumulates in our
construction. Additionally, we set𝑚 = ⌈log𝑞⌉ · 𝑛 and 𝛾 ′ = (𝐸 (𝐸𝑄) + 1) ·𝑚𝛾 where 𝐸𝑄 is the equality
check circuit.
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• Let 𝜒𝑚𝜎,𝛾 be the discrete gaussian distribution with parameter 𝜎 that is truncated at 𝛾 . We write 𝜒𝜎 to
denote that the discrete gaussian has not been truncated.

• We construct a puncturable PRF with domain {0, 1}𝜆 , key generation Z𝑛𝑞 and output space Z𝑚𝑝 .

Construction 5.9 (Almost key-homomorphic PRF from LWE). We describe our algorithms below.

Setup(1𝜆):

• Sample A0,A1, {B𝑖}𝑖∈[𝜆] ,C,D←$ Z
𝑛×𝑚
𝑞 uniformly at random

• Return pp =
(
{A𝛽 }𝛽∈{0,1}, {B𝑖}𝑖∈[𝜆],C,D

)
KeyGen(pp, 𝑥∗):

• Sample s← Z𝑛𝑞 uniformly at random. Compute y = s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D). Keep resampling s
until y has no entry in [−𝛾 ′, 𝛾 ′] + (𝑞/𝑝)Z.

PRF(pp, k = s ∈ Z𝑛𝑞 , 𝑥):

• Let B𝐸𝑄,𝑥 ← ComputeA(𝐸𝑄,A1,B1, . . . ,B𝜆,A𝑥1, . . . ,A𝑥𝜆 )
• Return

⌊
s𝑇 (B𝐸𝑄,𝑥 + C)𝐺−1(D)

⌉
𝑝

Puncture(pp, k = s ∈ Z𝑛𝑞 , 𝑥∗):

• For each 𝛽 ∈ {0, 1}:
– Sample e1,𝛽 ← 𝜒𝑚𝜎,𝛾 according to error distribution
– Let a𝛽 = s𝑇 (A𝛽 + 𝛽G) + e1,𝛽

• For each 𝑖 ∈ [𝜆]:
– Sample e2,𝑖 ← 𝜒𝑚𝜎,𝛾 according to error distribution
– Let b𝑖 = s𝑇 (B𝑖 + 𝑥∗𝑖 G) + e2,𝑖

• Sample e3 ← 𝜒𝑚𝜎,𝛾 according to error distribution

• Let c = s𝑇C + e3
• Return k∗ =

(
{a𝛽 }𝛽∈{0,1}, {b𝑖}𝑖∈[𝜆], c

)
PuncturedEval(pp, k∗, 𝑥∗, 𝑥):

• Compute

b𝐸𝑄,𝑥,𝑥∗ ← ComputeC(𝐸𝑄, 𝑥∗, 𝑥,A1,B1, . . . ,B𝜆,A𝑥1, . . . ,A𝑥𝜆 ,

a1, b1, . . . , b𝜆, a𝑥1, . . . , a𝑥𝜆 )

• Return
⌊
(b𝐸𝑄,𝑥,𝑥∗ + c)𝑇𝐺−1(D)

⌉
𝑝

Claim 5.10. On setting 𝑞 ≥ 2𝑚 · (2𝛾 ′ + 1) · 𝑝 , and𝑚 = 𝑛 · ⌈log𝑞⌉, the algorithm KeyGen runs in polynomial
time with probability 1 − negl(𝜆).
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Proof. Observe that s𝑇 · C is a uniform vector in Z1×𝑚𝑞 because both s and C are sampled randomly. Since
D is a random matrix in Z𝑛×𝑚𝑞 , 𝐺−1(D) is a uniform matrix in {0, 1}𝑚×𝑚 , and by leftover hash lemma, if
𝑚 > 2 · log𝑞 +𝜔 (log 𝜆), then s𝑇 · C ·𝐺−1(D) is a uniform vector over 1 ×𝑚. As we set𝑚 appropriately, the
total computation, s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D) is statistically close to uniform. We resample with probability
1− (1− (2𝛾 ′ + 1)𝑝/𝑞)𝑚 ≤ 𝑚(2𝛾 ′ + 1)𝑝/𝑞. Inputting our value of 𝑞, we get that we resample with probability
≤ 1/2. Thus, after atmost sampling 𝜆 times, the probability that we resample again is 2−𝜆 , which is
negligible. □

Observe that if 𝑞 is superpolynomial, then the probability of sampling is negligible and we do not need
to resample. Thus when choosing LWE with super-polynomial modulus, our key generation algorithm
need not depend on the punctured point 𝑥∗.

Theorem 5.11 (Almost Functionality Preserving). If, 𝑞/𝑝 > 𝛾 ′ = (𝐸 (𝐸𝑄) + 1) · 𝑚𝛾 , our construction
is almost functionality preserving, i.e. for all 𝜆, for all pp, and inputs 𝑥, 𝑥∗ ∈ {0, 1}𝜆 , such that 𝑥 ≠ 𝑥∗,
k← KeyGen(pp, 𝑥∗), and setting k∗ ← Puncture(pp, k, 𝑥∗), we have that,

∥PuncturedEval(pp, k, 𝑥∗, 𝑥) − PRF(pp, k, 𝑥)∥∞ ≤ 1

Proof. Let B𝐸𝑄,𝑥 ← ComputeA(𝐸𝑄,A1,B1, . . . ,B𝜆,A𝑥1, . . . ,A𝑥𝜆 )

PRF(pp, k, 𝑥) =
⌊
s𝑇 (B𝐸𝑄,𝑥 + C)𝐺−1(D)

⌉
𝑝

=
⌊
(b𝐸𝑄,𝑥,𝑥∗ + c)𝑇𝐺−1(D) + e𝑇

⌉
𝑝

for some e with |e| ≤ 𝐸 (𝐸𝑄) ·𝑚𝛾

=
⌊
(b𝐸𝑄,𝑥,𝑥∗ + c)𝑇𝐺−1(D)

⌉
𝑝
+ {−1, 0, 1}𝑚 (3)

= PuncturedEval(pp, k∗, 𝑥∗, 𝑥) + {−1, 0, 1}𝑚

The first equality due to Lemma 5.7, and the second Eq. (3) holds because |e| ≤ (𝐸 (𝐸𝑄) + 1) ·𝑚𝛾 and we
choose 𝑞/𝑝 > (𝐸 (𝐸𝑄) + 1) ·𝑚𝛾 . □

Claim 5.12 (Almost Key Homomorphism). For all 𝜆, keys s1, s2 ∈ K𝜆 , all inputs 𝑥 ∈ {0, 1}𝜆 , it holds that,

PRFpp (s1 + s2, 𝑥) − (PRF(pp, s1, 𝑥) + PRF(pp, s2, 𝑥))) ∥∞ ≤ 1

Proof. This just follow from the fact that rounding is almost homomorphic. i.e., For any a, b ∈ Z𝑚𝑞 we have
⌊a⌉𝑝 + ⌊b⌉𝑝 ≤ ⌊a + b⌉𝑝 + e where e ∈ {−1, 0, 1}𝑚 . □

Remark 5.13. Notice that almost functionality preservation and almost key homomorphism hold for any
s ∈ Z𝑛𝑞 not only the ones sampled by KeyGen. This follows directly from the fact that the proofs of both
these properties do not use the fact that s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D) has no entry in [−𝛾 ′, 𝛾 ′] + (𝑞/𝑝)Z.

Theorem 5.14 (Pseudorandom at Punctured Point). Our construction above is a secure puncturable prf i.e.
for all polynomially bounded adversaries A = {A𝜆}𝜆∈N, there exists a negligible function negl(·), such that
for all 𝜆 ∈ N, it holds that, |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ negl(𝜆) in the security game defined in
Definition 2.1.

Proof. We begin by defining the original security game from Definition 2.1 (our construction can support
any polynomial domain PRF and we do not preset the domain bound). For a bit𝑏 ∈ {0, 1}, security parameter
𝜆, we play the following game between a challenger and an adversary.
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• Challenger outputs the public parameters pp← Setup(1𝜆) where pp =
(
{A𝛽 }𝛽∈{0,1}, {B𝑖}𝑖∈[𝜆],C,D

)
and all matrices are sampled randomly.

• Adversary A sees the public parameters and outputs an index 𝑥∗ ∈ {0, 1}𝜆 .

• Challenger samples a key k← KeyGen(pp, 𝑥∗).

– Sample s← Z𝑛𝑞 uniformly at random. Compute y = s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D). Keep resampling s
until y has no entry in [−𝛾 ′, 𝛾 ′] + (𝑞/𝑝)Z.

Compute the punctured key k∗ ← Puncture(pp, k, 𝑥∗).

– For each 𝛽 ∈ {0, 1}:
∗ Sample e1,𝛽 ← 𝜒𝑚𝜎,𝛾 according to error distribution
∗ Let a𝛽 = s𝑇 (A𝛽 + 𝛽G) + e1,𝛽

– For each 𝑖 ∈ [𝜆]:
∗ Sample e2,𝑖 ← 𝜒𝑚𝜎,𝛾 according to error distribution
∗ Let b𝑖 = s𝑇 (B𝑖 + 𝑥∗𝑖 G) + e2,𝑖

– Sample e3 ← 𝜒𝑚𝜎,𝛾 according to error distribution

– Let c = s𝑇C + e3
– Set k∗ =

(
{a𝛽 }𝛽∈{0,1}, {b𝑖}𝑖∈[𝜆], c

)
.

• If 𝑏 = 0, the challenger computes 𝑦 ← Z𝑚𝑝 , else if 𝑏 = 1, it computes 𝑦 ← PRF(pp, k, 𝑥∗).

– Let B𝐸𝑄,𝑥∗ ← ComputeA(𝐸𝑄,A1,B1, . . . ,B𝜆,A𝑥∗1
, . . . ,A𝑥∗

𝜆
)

– Return
⌊
s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D)

⌉
𝑝

• Adversary receives the punctured key k∗, and the computed value 𝑦 and outputs a bit 𝑏′, which is the
output of the experiment.

We proceed by providing a security proof through a hybrid argument.

𝐻0 : This is the original hybrid, where pp, k, k∗, and 𝑦 are sampled as shown above.

𝐻1 : In the first hybrid we change how we sample matrices A𝛽 for 𝛽 ∈ {0, 1} and B𝑖 for 𝑖 ∈ [𝜆]. We now
sample Â𝛽 and B̂𝑖 uniformly at random and then set A𝛽 = Â𝛽 − 𝛽G and B𝑖 = B̂𝑖 − 𝑥∗G.

𝐻2 : We change how we compute the PRF evaluation 𝑦. If 𝑏 = 1, we instead sample 𝑦 in the following
manner,

• Sample e← 𝜒𝑚𝜎,𝛾 according to error distribution and let d = s𝑇D + e.
• Compute

b𝐸𝑄,𝑥∗,𝑥∗ ← ComputeC(𝐸𝑄, 𝑥∗, 𝑥∗,A1,B1, . . . ,B𝜆,A𝑥∗1
, . . . ,A𝑥∗

𝜆
,

a1, b1, . . . , b𝜆, a𝑥∗1 , . . . , a𝑥∗𝜆 )

, and set 𝑦 ←
⌊
(b𝐸𝑄,𝑥∗,𝑥∗ + c)𝑇𝐺−1(D) − d𝑇

⌉
𝑝
.
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𝐻3 : Finally, we replace the vectors a0, a1, b1, . . . , b𝜆, d by uniformly random vectors.

Lemma 5.15. For all padversaries A, for all 𝜆 ∈ N, Pr[𝐻1(A) = 1] = Pr[𝐻0(A) = 1].

Proof. Distributions A0,A1, {B𝑖}𝑖∈[𝜆] are both uniform. Therefore, Adv𝐻1 (A) = Adv𝐻0 (A). □

Lemma 5.16. For all padversaries A, for all 𝜆 ∈ N, Pr[𝐻2(A) = 1] = Pr[𝐻1(A) = 1].

Proof. We rewrite y in the following way:

y =
⌊
s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D)

⌉
𝑝

=
⌊
s𝑇 (B𝐸𝑄,𝑥∗ + C + G)𝐺−1(D) − s𝑇D

⌉
𝑝

=
⌊
(b𝐸𝑄,𝑥∗,𝑥∗ + c)𝑇𝐺−1(D) − d𝑇 + e′′𝑇

⌉
𝑝

(4)

where in the second equality, e′′ = (e3 + e′)𝐺−1(D) − e. By lemma 5.7 we know that ∥e′′∥∞ ≤ 𝛾 ′ and thus
the values in the two hybrids differ if the vector s𝑇 (B𝐸𝑄,𝑥∗ + C)𝐺−1(D) has an entry in [−𝛾 ′, 𝛾 ′] + (𝑞/𝑝)Z.
Because s has been sampled using KeyGen(pp, 𝑥∗) to avoid this condition, the two hybrids are identical. □

Lemma 5.17. For all polynomially bounded adversariesA, there exists a negligible function negl(·) such that
for all 𝜆 ∈ N, |Pr[𝐻3(A) = 1] − Pr[𝐻2(A) = 1] | = negl(𝜆).

Proof. We can do this by decisional LWE because in 𝐻2

a𝛽 = s𝑇 Â𝛽 + e1,𝛽 for all 𝛽 ∈ {0, 1}
b𝑖 = s𝑇 B̂𝑖 + e2,𝑖 for all 𝑖 ∈ [𝜆]
c = s𝑇C + e3
d = s𝑇D + e

where all the matrices are independent and uniform, while in 𝐻3 each of these vectors is replaced with
uniform. This means the |Adv𝐻3 (A) − Adv𝐻4 (A)| ≤ negl(𝜆). □

Lemma 5.18. For all padversaries A, for all 𝜆 ∈ N, Pr[𝐻3(A) = 1] = 1/2.

Proof. Because of d’s uniformity we know that
⌊
(b𝐸𝑄,𝑥∗,𝑥∗ + c)𝑇𝐺−1(D) − d𝑇

⌉
𝑝
is uniform if 𝑝 divides 𝑞. □

Combining all the proofs above and by a hybrid argument, we have the formal proof our claim above. □

Choice of Parameters. Collecting the formal lemmas and claims, we have the following two construc-
tions, one where modulus-to-noise ration is super-polynomial and one where the ratio is polynomial.

Theorem 5.19. Setting 𝑚 = ⌈log𝑞⌉ · 𝑛, and 𝑞 = 𝜆𝜔 (1) and 𝑝 = 𝜆𝜔 (1) (both super-polynomial), such
that 𝑞 ≥ 2𝑚(2𝛾 ′ + 1)𝑝 , the modulus-to-noise ratio 𝛼 is super polynomial, and LWE holds with parameters
𝑛, 𝑞,𝑚, 𝛼 , then KeyGen does not depend on the punctured point 𝑥∗ and the construction above is an almost-key
homomorphic puncturable PRF.

Theorem 5.20. Setting 𝑚 = ⌈log𝑞⌉ · 𝑛, and 𝑞 = poly(𝜆) and 𝑝 = poly(𝜆) (both polynomial), such that
𝑞 ≥ 2𝑚(2𝛾 ′ + 1)𝑝 and 𝑝 divides 𝑞, 𝛾 = 𝛼𝑞 · 𝜔 (

√︁
log(𝜆)) where 𝛼 is the modulus-to-noise ratio, and LWE holds

with parameters 𝑛, 𝑞,𝑚, 𝛼 , then the construction above is an almost-key homomorphic puncturable PRF.

Observe that when using this construction in Construction 3.1, our polynomial 𝑝 needs to be set bigger
than 8× the number of puzzles to be batched. Thus when combining the multiple theorems, we need ensure
our chosen parameters satisfy all the constraints.
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6 Rogue Puzzle Attacks

In the following we formally consider the security of time-lock puzzles against rogue-puzzle attacks. First,
we augment the syntax of our primitive with an additional algorithm that allows one to check that a puzzle
is well-formed. Next, we formalize the security property as a cryptographic game. Informally, in the game
an adversary wins if an honest puzzle is incorrectly evaluated when batch solving together with potentially
maliciously generated puzzles. Finally, we provide a construction that satisfies this property in various
settings.

Definition 6.1 (Rogue Puzzle Attacks). We say ΠbatchTLP = (Setup,Gen,BatchSol, IsValid) is secure against
rogue puzzle attacks, if the syntax is augmented with the following algorithm:

• {0, 1} ← IsValid(pp, 𝑍 ) a probabilistic algorithm that takes as input the public parameters, a puzzle
𝑍 and returns a bit {0, 1}.

In addition, ΠbatchTLP should satisfy the properties:

• Validity Check: We say ΠbatchTLP satisfies validity check if for all 𝜆, 𝑛,𝑇 ∈ N, for all inputs 𝑠 ∈ S𝜆 it
holds that

IsValid(pp,Gen(pp, 𝑠)) = 1

where pp← Setup(1𝜆,𝑇 ).

• Rogue Puzzle Security: For a security parameter 𝜆, we define the following security game between
an adversary A and a challenger as follows:

– AdversaryA outputs the time for locking puzzle 𝑇 and a bound on the number of puzzles to be
batched 𝑛.

– Challenger outputs the public parameters pp← Setup(1𝜆,𝑇 , 𝑛).
– Adversary A sees the public parameters and outputs a message𝑚.
– Challenger honestly generates a puzzle 𝑍 ← Gen(pp,𝑚) and outputs the puzzle 𝑍 .

– Adversary receives the puzzle 𝑍 and outputs a set of puzzle
{
𝑍 ∗𝑗

}
𝑗∈S∗

such that |S∗ | ≤ 𝑛.

– Challenger receives the set of puzzles and runs
{
(𝑠∗𝑗 , 𝑍 ∗𝑗 )

}
𝑗∈S∗
← BatchSol(pp,

{
𝑍 ∗𝑗

}
𝑗∈S∗
).

– Adversary wins the game and the output of the experiment is 𝑏 = 1, if ∀𝑗 ∈ S∗, IsValid(pp, 𝑍 ∗𝑗 ) =
1 and for some 𝑗 ∈ S∗, 𝑍 ∗𝑗 = 𝑍 , 𝑠∗𝑗 ≠𝑚. Else the experiment outputs 0.

We say that ΠbatchTLP is secure if for any polynomially bounded adversaryA = {A𝜆}𝜆∈N, there exists
a negligible function negl(·), such that for all 𝜆 ∈ N, it holds that, Pr[𝑏 = 1] ≤ negl(𝜆) in the game
above.

Remark 6.2. Even if the algorithm BatchSol doesn’t run or use the procedure IsValid, a scheme can be
secure against rogue puzzle attacks. The IsValid procedure is simply separated out for ease of exposition. In
practice before running BatchSol, our algorithm would run the procedure IsValid on all puzzles and only
batch puzzles that pass the validity check.
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6.1 Constructions

We present separate constructions in the settings where the public parameters are bounded and unbounded.
We assume that the construction Construction 4.2 consists of the following structure.

• We assume that the coordinated scheme in Construction 4.2 consists of two parts, one that’s dependent
on the coordinated index, and the other that is independent of the index. In our concrete construction
in Construction 3.1, this corresponds to 𝑍 computed as 𝑍 ← LHP.Gen(ppLHP, Encode𝑝,ℓ (k)). The
index dependent part consists of 𝑖, 𝑘∗, 𝑐 , the index, the punctured key and the punctured point
computation.

We use 𝑍indep below to clearly indicate the puzzle independent part.

Construction (Unbounded Setting). We can achieve the above definition by modifying Construction 4.2
in the following manner. Let Hash be a collision-resistant hash function with output space {0, 1}𝜆 . We
assume that the underlying coordinated space can handle unbounded indices in space {0, 1}𝜆 .

For the puzzle generation algorithm we:

• We sample the puzzle independent instance𝑍indep
7 and compute the index 𝑖 ∈ {0, 1}𝜆 ← Hash(𝑍indep),

where Hash and 𝑍indep are defined above.

• Add a non-interactive zero-knowledge (NIZK) proof that certifies that the punctured key is consistent
with the index attached to the puzzle, as well as the key encoded in 𝑍indep.

The IsValid algorithm simply checks that the two conditions above are met. The batch-solving algorithm is
unchanged, except that it ignores puzzles with duplicate indices, i.e., it treats them as if they were the same
puzzle 𝑍 and solve one of them (chosen arbitrarily). It is easy to see that the construction is still correct and
secure, with a straightforward reduction to the zero-knowledge property of the NIZK.

Next, we argue that the construction satisfies security against rogue puzzle attacks, for the case of
unbounded batching. We consider two cases: (i) If all indices are pairwise distinct, then the property follows
from the soundness of the NIZK and, consequently, from the correctness of the puzzle. (ii) If there is a
collision, then we argue that the puzzle of the colliding indices must be the same and therefore it suffices to
solve one of them (otherwise, we have a contradiction to the collision-resistance property of Hash). The
fully formal construction and proof is proved in Appendix D.

Construction (Bounded Setting, Lattices). When we want to use a polynomial modulus for the lattice
based PRF, our PRF key k depends on the punctured point, and we can no longer sample the PRF key k and
the 𝑍 independent of 𝑖 . This leads us to a circularity. 𝑍 needs to depend on 𝑖 and 𝑖 is computed from the 𝑍
in the unbounded setting above. We resolve this issue by sampling them together.

We briefly sketch how the key k depends on 𝑖 in Construction 5.9. It is rejection sampled according
to some condition 𝐶𝑖 that depends on 𝑖 and holds with probability 1/2 over a uniformly random key. Our
construction repeats until 𝐶𝑖 (k) = 1 and keeps sampling k’s uniformly randomly until this holds. We
modify the generation in the following way:

• Repeat until𝐶𝑖 (k) = 1: Sample k uniformly at random. Generate the linearly-homomorphic time-lock
puzzle containing 𝑘 as such 𝑍 ← TLP.Gen(k). Compute the index 𝑖 ∈ {0, 1}𝜆 ← Hash(𝑍 ).

7In the unbounded setting, the degree is 1 and the right side of the bipartite graph is the same as the left side.
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• Add a non-interactive zero-knowledge (NIZK) proof 𝜋 that certifies that the punctured key k∗ is
consistent with the index 𝑖 , as well as the key encoded in 𝑍 .

The proof of this argument is the same as in the unbounded setting. That is because the condition𝐶𝑖 is only
necessary to guarantee security while almost correctness (key homomorphism and functionality preserving)
holds even if 𝐶𝑖 does not hold (see Remark 5.13). In the rogue puzzle security game, the adversaries are of
any polynomial depth, and can already break the security of the underlying puzzle. Thus, sampling a key k
such that 𝐶𝑖 (k) = 0 does not effect the security proofs for rogue attackers.

Construction (Bounded Setting, Pairings). We can achieve the above definition by modifying Con-
struction 4.2 in the following manner. We model Hash as a random oracle that has output space [𝑛new]𝑑 .

For the puzzle generation algorithm we:

• We sample the puzzle indepedent indices 𝑍indep,1, . . . , 𝑍indep,𝑑 and then compute the set

𝑉 ← Hash(𝑍indep,1, . . . , 𝑍indep,𝑑 ),

where Hash and 𝑍indep are defined above.

• Sample the remaining puzzle dependent instances, and for all 𝑖 ∈ [𝑑], add a non-interactive zero-
knowledge (NIZK) proof 𝜋𝑖 that certifies that the punctured key 𝑘∗𝑖 (corresponding to 𝑍𝑖 ) is consistent
with the index attached to the puzzle, as well as the key encoded in 𝑍indep,𝑖 .

The IsValid algorithm simply checks that the two conditions above are met and is same as before. It
is easy to see that the construction is still correct and secure, with a straightforward reduction to the
zero-knowledge property of the NIZK.

The only difference is that in the security game against rogue puzzle attacks, the adversary can query
the random oracle mulitple times and possibly either find a duplicate set or might influence the algorithm in
a malicious way to cause the correctly setup puzzle to be incorrect. To argue this is not possible, we tweak
the parameters of 𝑛new and 𝑑 and augment aur analysis to depend on 𝑞 = 𝑞(𝜆), the number of random
oracle queries an adversary A2 makes in Definition 6.1. As before, we consider two cases: (i) If a perfect
matching is computed, then the property follows from the soundness of the NIZK and, consequently, from
the correctness of the puzzle. (ii) If a perfect matching doesn’t exist, it can happen due to two reasons.
(ii)(a) If the exact same puzzle and set are chosen. In this case, it suffices to solve one of them. (ii)(b) The
adversary has found a list of queries that violate a perfect matching by arbitarily querying the random
oracle and still having IsValid hold. We show below that this is not possible.

Observe that in Eq. (2), the probability of choosing a set 𝑆 ⊆ 𝑈 is now
(
𝑞
ℓ

)
because the adversary A2

might sample multiple different index independent puzzles and can choose to group any subset S∗ of them.
Thus the expression to be analyzed changes to the following analysis,

𝑛∑︁
ℓ=𝑑

(
𝑞

ℓ

) (
𝑛′

ℓ − 1

) ( (
ℓ−1
𝑑

)(
𝑛′

𝑑

) ) ℓ
. (5)

A similar malicious expression was analyzed in [GLWW23] and built on top of our honest analysis.
Our theorem statement gives better parameters than [GLWW23] and we mention the modified theorem
statement below. The proof is very similar to the proof above.
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Lemma 6.3. Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a random left regular bipartite graph where |𝑈 | = 𝑛, |𝑉 | = 𝑛′. Let the left
regular degree be denoted by 𝑑 . If 𝑛′ = 3𝑛, 𝑑 =

𝑂 (log𝑞)
log(𝑛) +

𝜔 (log𝜆)
log(𝑛′ ) , then, the probability that there exists a perfect

matching for 𝐺 is ≥ 1 − negl(𝜆).

The proof repeats along the lines of the proof of Lemma 4.4. Observe that our analysis depends on
𝑂 (log𝑞)
log(𝑛) , i.e. we only depend on logarithmic factors in 𝑞.

6.2 An Efficient NIZK Protocol

While a general purpose NIZK suffices for our construction. We demonstrate how to efficiently instantiate
a NIZK for our pairing based key homomomorphic PRF and LWE based key homomorphic PRF.

Pairing-based key homomorphic PRF The main idea is to use a variant of Schnorr protocol/Chaum
Pedersen protocol where the prover proves knowledge of an exponent 𝑘 in two different groups of the same
order 𝑁 . Since 𝜙 (𝑁 ) is not known, we need to be careful in arguing zero knowledge for the randomness
and apply a smudging argument, and the randomness is hidden. If the groups are coprime to each other,
we need to additionally constrain the TLP to argue soundness (please see Appendix B).

Construction 6.4 (Sigma protocol for pairing based KH-PRF and RSA based TLP). Our construction relies
on the following primitives:

• A linearly homomorphic TLP scheme, where the TLP is homomorphic in the message and the random
coins. We describe this property in the TLP scheme from [MT19] below, for completeness8.

Algorithm TLP.Gen(pp, 𝑠; 𝑟 ), samples 𝑟 ← Z𝑁 2 . Computes 𝑢 = 𝑔𝑟 ∈ Z𝑁 and 𝑣 = ℎ𝑟 ·𝑁 · (1 + 𝑁 )𝑠
mod 𝑁 2. Output, (𝑢, 𝑣). Note that if (𝑢1, 𝑣1) ← TLP.Gen(pp, 𝑠1; 𝑟1), (𝑢2, 𝑣2) ← TLP.Gen(pp, 𝑠2; 𝑟2),
and (𝑢3, 𝑣3) ← TLP.Gen(pp, 𝑠1 + 𝑠2 ; 𝑟1 + 𝑟2), then, we have that 𝑢3 = 𝑢1 · 𝑢2 mod 𝑁 and 𝑣3 = 𝑣1 · 𝑣2
mod 𝑁 2.

• A group G with composite order 𝑁 and generator 𝑔1. Boneh, Go and Nissim [BGN05] formalized
how to generate a bilinear group of composite order 𝑁 (their construction requires 𝑁 is square free
and not divisible by 3. As 𝑁 is a product of two large primes, we satisfy these constraints).

We rely on Assumption 2.12, holding in a group where the order is 𝑁 and integers 𝑥,𝑦, 𝑟 are sampled
randomly from Z𝑁 .

We define a interactive 3-round sigma protocol argument and then collapse rounds using a Fiat-Shamir
transform for sigma protocols. LetΠ = (Prove,Verify) be a protocol for an instance 𝜒 =

(
pp, 𝑍, 𝑔𝑥

𝑖∗

1 ∈ G, 𝑦 ∈ G
)

and witness 𝜔 = (𝑘 ∈ Z𝑁 , 𝑟 ∈ Z𝑁 2) such that, 𝑍 = TLP.Gen(pp, 𝑘 ; 𝑟 ) and 𝑦 =

(
𝑔𝑥

𝑖∗

1

)𝑘
∈ G.

• Prove(𝜒,𝜔):

– Sample randomly, 𝑘 ′ ← Z𝑁 and 𝑟 ′ ← [𝑁 4].

– Compute 𝑍 ′ ← TLP.Gen(pp, 𝑘 ′; 𝑟 ′), 𝑦′ ←
(
𝑔𝑥

𝑖∗

1

)𝑘 ′
∈ G. The prover sends (𝑍 ′, 𝑦′) to the verifier.

– Receive 𝑐 ∈ Z𝑁 from the verifier.
8For brevity, we only show the puzzle generation algorithm.
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– Compute 𝑘 = 𝑘 ′ + 𝑐 · 𝑘 ∈ Z𝑁 , and 𝑟 = 𝑟 ′ + 𝑐 · 𝑟 ∈ Z.9

– Send
(
𝑘 ∈ Z𝑁 , 𝑟 ∈ Z

)
to the verifier.

– Output 𝜋 =

(
𝑍 ′, 𝑦′ ∈ G, 𝑘 ∈ Z𝑁 , 𝑟 ∈ Z

)
as the proof.

• Verify(𝜒):

– The verifier recieves information from the prover and sends a random value 𝑐 ∈ Z𝑁 .
– Recieve (𝑘 ∈ Z𝑁 , 𝑟 ∈ Z) from the prover, and perform the checks below.

– Check if TLP.Gen(pp, 𝑘 ; 𝑟 ) ?
= 𝑍 ′ · 𝑍𝑐 .

– Check if
(
𝑔𝑥

𝑖∗

1

)𝑘 ?
= 𝑦′ · 𝑦𝑐 .

– If all checks pass, accept, else reject.

Completeness The scheme is complete, because TLP.Gen(pp, 𝑘 ; 𝑟 ) = TLP.Gen(pp, 𝑘 ′; 𝑟 ′)·TLP.Gen(pp, 𝑘 ; 𝑟 )𝑐 =
𝑍 ′ · 𝑍𝑐 as our time lock puzzle is linearly homomorphic in the puzzle and the random coins. Similarly, it’s

easy to check that the second condition holds true i.e.
(
𝑔𝑥

𝑖∗

1

)𝑘
=

(
𝑔𝑥

𝑖∗

1

)𝑘 ′
·
(
𝑔𝑥

𝑖∗ ·𝑘
1

)𝑐
= 𝑦′ · 𝑦𝑐 .

Soundness We argue statistical soundness of our scheme, i.e. if a verifier accepts a proof, then the
statement is in the language, i.e. there exists some witnesses 𝑘 ∈ Z𝑁 , 𝑟 ∈ [𝑁 2] that agree with the
statement. Let’s assume that Verify accepts statement 𝜒 =

(
pp, 𝑍, 𝑔𝑥

𝑖∗

1 ∈ G, 𝑦 ∈ G
)
and outputs a proof

𝜋 =

(
𝑍 ′, 𝑦′ ∈ G, 𝑘 ∈ Z𝑁 , 𝑟 ∈ Z

)
such that the verifier accepts on a random input 𝑐 ∈ Z𝑁 . Without

loss of generality, we can assume that 𝑦′ = 𝑔𝑘
′
1 ∈ G, 𝑦 = 𝑔𝑘1 ∈ G for some 𝑘 ′1, 𝑘1 ∈ Z𝑁 . Simi-

larly, we can expand the time lock puzzle, and assume 𝑍 ′ =
(
𝑔𝑟
′
0 mod 𝑁,ℎ𝑟

′
1 ·𝑁 · (1 + 𝑁 )𝑘 ′0 mod 𝑁 2

)
,

𝑍 =
(
𝑔𝑟0 mod 𝑁,ℎ𝑟1 ·𝑁 · (1 + 𝑁 )𝑘0 mod 𝑁 2) where 𝑘 ′0, 𝑘0 ∈ Z𝑁 , and 𝑟 ′1, 𝑟1, 𝑟 ′0, 𝑟0 ∈ Z𝜙 (𝑁 ) . Since the proof

is adverserial, it is possible that these values are all different and maliciously generated.
Since Verify accepts, we have,

•
(
𝑔𝑥

𝑖∗

1

)𝑘
= 𝑦′ · 𝑦𝑐 . Thus, 𝑘 = 𝑘 ′1 + 𝑐 · 𝑘1 mod 𝑁 .

• TLP.Gen(pp, 𝑘 ; 𝑟 ) = 𝑍 ′ · 𝑍𝑐 .
We have, 𝑔𝑟 = 𝑔𝑟

′
0+𝑐 ·𝑟0 mod 𝑁 , thus, 𝑟 = 𝑟 ′0 + 𝑐 · 𝑟0 mod 𝜙 (𝑁 ).

Finally, ℎ𝑟 ·𝑁 · (1 + 𝑁 )𝑘 = ℎ𝑟
′
1+𝑐 ·𝑟1 · (1 + 𝑁 )𝑘 ′0+𝑐 ·𝑘0 mod 𝑁 2. Plugging in our expression for 𝑟 from the

previous evaluation, and analyzing the expression modulo 𝑁 , ℎ( (𝑟 ′0−𝑟 ′1 )+𝑐 (𝑟0−𝑟1 )) ·𝑁 = 1 mod 𝑁 . Since
𝑟0, 𝑟1, 𝑟

′
0, 𝑟
′
1 are all output by the prover in the first message, and 𝑁,𝜙 (𝑁 ) are coprime to each other.

The expression holds true if 𝑐 = (𝑟 ′1 − 𝑟 ′0) · (𝑟0 − 𝑟1)−1 mod 𝜙 (𝑁 ). This happens with probability
≤ ⌈𝑁 /𝜙 (𝑁 ) ⌉

𝑁
< 2/𝜙 (𝑁 ), which is negligible. Thus 𝑟 ′1 = 𝑟 ′0 mod 𝜙 (𝑁 ) and 𝑟0 = 𝑟1 mod 𝜙 (𝑁 ).

Simplifying, we have 𝑁 · 𝑘 = 𝑁 · (𝑘 ′0 + 𝑐 · 𝑘0) mod 𝑁 2. Plugging in our expression for 𝑘 , (𝑘 ′1 − 𝑘 ′0) +
𝑐 · (𝑘1 − 𝑘0) = 0 mod 𝑁 . The expression holds if 𝑐 = (𝑘 ′1 − 𝑘 ′0) · (𝑘0 − 𝑘1)−1 mod 𝑁 . This happens
with probability ≤ 1/𝑁 . Thus, 𝑘0 = 𝑘1 mod 𝑁 and we have 𝑘0 = 𝑘1 mod 𝑁 .

9For value 𝑐 in Z𝑁 for some q, the prover considers it as a positive integer by setting the output in 1, . . . , 𝑁 .
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Combining the equalities, we have proved that there exists 𝑟 ∈ Z𝜙 (𝑁 ) ∈ [𝑁 2] such that 𝑟 = 𝑟0 = 𝑟1

mod 𝜙 (𝑁 ), and there exists 𝑘 ∈ Z𝑁 where 𝑍 = TLP.Gen(pp, 𝑘 ; 𝑟 ) and 𝑦 =

(
𝑔𝑥

𝑖∗

1

)𝑘
.

Zero Knowledge We prove the honest verifier zero knowledge of the interactive protocol. The simulator
given instance 𝜒 computes the transcript in the following order.

• Sample �̃� ← Z𝑁 and 𝑟 ← [𝑁 4]. Sample 𝑐 ← Z𝑁 .

• Compute 𝑦 =

(
𝑔𝑥

𝑖∗
1

)�̃�
𝑦𝑐
∈ G and compute 𝑍 ← TLP.Gen(pp, �̃�, 𝑟 ) and 𝑍 ′ ← �̃�

𝑍𝑐 .

• The simulator outputs the transcript
(
𝑍 ′, 𝑦′, 𝑐, �̃�, 𝑟

)
.

Observe that (1) �̃� is distributed identical to 𝑘 ′ + 𝑐 · 𝑘 because 𝑘 ′ is sampled randomly from Z𝑁 . (2) 𝑟 is
distributed statistically close to 𝑟 ′ + 𝑐 · 𝑟 because 𝑟 and 𝑟 ′ are both sampled uniformly from [𝑁 4]. Since 𝑐 · 𝑟
is small, i.e. ≤ 𝑁 3, the distributions are apart with a distance ≤ 𝑁 3

𝑁 4 = negl.

Remark 6.5 (Collapsing rounds). We can collapse rounds to generate a NIZK scheme by computing
the challenge 𝑐 ∈ Z𝑁 ← 𝐻 (𝑍 ′, 𝑦′) where 𝐻 is a random oracle and using the standard Fiat-Shamir
transformation for sigma protocols.[FS86].

LWE-based key homomorphic PRF The main idea is to exploit the (almost) key homomorphic property
of our PRF and the linearly homomorphic property of our TLP. Since our PRF is almost key homomorphic,
we use the NIZK range proofs from [TBM+20] to prove that the error in our homomorphic operation is
small. Informally sketching, assume that the TLP encodes key 𝑘 , and the punctured key outputs 𝑘𝐴 + 𝑒 ,
where 𝐴 is a public matrix. Using the homomorphic property, we can compute the TLP encoding on error 𝑒
attach a NIZK range proof proving that the value encoded is small.

Construction 6.6 (NIZK protocol for LWE based KH-PRF and RSA based TLP). Our construction relies on
the following primitives:

• A linearly homomorphic TLP scheme for messages s ∈ Z𝑛
𝑁
where we can perform linear operations

over the message space. We describe this property in parallel version of the TLP from [MT19] below,
for completeness10.

Algorithm TLP.Gen(pp, s ∈ Z𝑛
𝑁
), samples r← Z𝑛

𝑁 2 . Computes u = 𝑔r ∈ Z𝑛
𝑁
and v = ℎr·𝑁 ⊙ (1 + 𝑁 )s

mod 𝑁 2. Output, (u, v).
Let 𝑓 (s) be a linear map Z𝑛

𝑁
→ Z𝑚

𝑁
, let this be denoted by the operation s𝑇A + b ∈ Z𝑚

𝑁
, then we can

compute TLP.Gen(pp, 𝑓 (s); r), by computing 𝑢′𝑖 =
∏

𝑗∈[𝑛] 𝑢
𝐴 𝑗,𝑖

𝑗
and 𝑣 ′𝑖 =

∏
𝑗∈[𝑛] 𝑣

𝐴𝑗,𝑖

𝑗
· (1 + 𝑁 )𝑏𝑖 for

𝑖 ∈ [𝑚] and outputting (u′, v′).

• Our lattice-based key-homomorphic puncturable PRF.

As we want computation over the same ring for our puncturable PRF and our time lock puzzle, we
rely on LWE holding in a ring where the modulus is a composite number 𝑁 (same as the modulus of
the time-lock puzzle).

10For brevity, we only show the puzzle generation algorithm.
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The important detail about the PPRF is that a key punctured at 𝑥 has the form k𝑇A𝑥 + e, for some
𝑛,𝑚, 𝐵 ∈ Z11, 𝐵 < 𝑁 , k ∈ Z𝑛

𝑁
, A𝑥 ∈ Z𝑛×𝑚𝑁

, and e ∈ [−𝐵, 𝐵]𝑚 . A𝑥 is public and depends on 𝑥 .

• A special-case NIZK (called range proof) Πrange = (Setup, Prove,Verify) that proves the plaintext of a
time-lock puzzle 𝑍 is in range [−𝐵, 𝐵]. A construction of such a range proof was given by [TBM+20].

We define a NIZK scheme Π = (Setup, Prove,Verify) is an argument for the statement, 𝜒 = (pp, 𝑍,A𝑥 , b)
and witness 𝜔 = (r ∈ Z𝑛

𝑁 2, k ∈ Z𝑛𝑁 , e ∈ [−𝐵, 𝐵]
𝑚), where the NP verifier checks if, TLP.Gen(pp, k; 𝑟 ) ?

= 𝑍 ,

and, k𝑇A𝑥 + e
?
= b.

• Setup(1𝜆): Let crs← range.Setup(1𝜆).

• Prove(crs, 𝜒, 𝜔):

– Homomorphically evaluate 𝑓 : s ↦→ s𝑡A𝑥 − b on 𝑍 to get a new puzzle 𝑍 ′.
– We output a NIZK range proof 𝜋 ← range.Prove

(
crs, (pp, 𝑍 ′),

(
e ∈ Z𝑚

𝑁
, r𝑇A𝑥 ∈ Z𝑚

) )
where 𝑍 ′

is the puzzle and the witness is
(
e ∈ [−𝐵, 𝐵]𝑚, r𝑇A𝑥 ∈ Z𝑚

)
.

• Verify(crs, 𝜒, 𝜋):

– Homomorphically evaluate 𝑓 : s ↦→ s𝑡A𝑥 − b on 𝑍 to get a new puzzle 𝑍 ′.
– Output the result of range.Verify(crs, (pp, 𝑍 ′) , 𝜋).

Completeness By definition we have 𝑁 and b ≡ k𝑇A𝑥 +e𝑚𝑜𝑑 𝑁 with e ∈ [−𝐵, 𝐵]𝑚 . Therefore, ∃r′ ∈ Z𝑚
s. t. TLP.Gen(pp,−e; r′) = 𝑍 ′. Also, the order of 𝑔 ∈ Z𝑁 and ℎ𝑁 ∈ Z𝑁 2 is 𝜙 (𝑁 ). Thus, if the equation
r′ = r𝑇A𝑥 holds over the integers, it also holds modulo 𝜙 (𝑁 ). Therefore, TLP.Gen(pp, e′; r′) = 𝑍 ′.

Soundness If the statement characterized by (pp, 𝑍,A𝑥 , b) is not in the language, then evaluating 𝑓 :
s ↦→ s𝑡A𝑥 − b on 𝑍 will not yield a puzzle 𝑍 ′ that is in the range [−𝐵, 𝐵]𝑚 . Therefore, the range proof will
fail.

Zero Knowledge Zero knowledge straightforwardly follows from the zero knowledge of the range
proof.

7 Implementation and Evaluation

In this section, we describe the implementation and evaluation of our efficiently batchable time lock scheme.
The goal of our evaluation is to compare our solution with alternative solutions that solve the same problem.
In our experiments, we consider the following alternative approaches.

• Trivial Solution: Batch solving a time lock puzzle involves solving each of these puzzles individually.
We initialize our time lock puzzle using the linearly homomorphic time lock puzzle scheme by
Malavolta and Thyagarajan [MT19]12.

11We’re overloading the notation𝑚 from previous sections. It does not match the𝑚 in the PPRF construction.
12It is possible to use a time lock puzzle that is not linearly homomorpic for this evaluation. We chose the TLP from [MT19] for a
more direct comparison with the other two solutions.
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• Strawman Solution: Given 𝑛 puzzles 𝑍1, . . . , 𝑍𝑛 (of some linearly homomorphic time-lock puzzle)
where each puzzle contains some 𝜆-bit message, evaluate homomorphically the following linear
function:

𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁
𝑖=1

2(𝑖−1) ·𝜆 · 𝑥𝑖 ,

to compute puzzle 𝑍 ∗. Solve the resulting puzzle 𝑍 ∗ to obtain 𝑥∗, and recover all the 𝑛 messages
encoded in different blocks of the string (where each block is of length security parameter). We
initialize the time lock puzzle using the linearly homomorphic time lock puzzle by Malavolta and
Thyagarajan [MT19]. For messages longer than 𝜆 bits, we can use hybrid encryption.

• Our Solution: We initialize our time lock puzzle using the linearly homomorphic time lock puzzle by
Malavolta and Thyagarajan [MT19]. We implement a pairing based key homomorphic PRF and use
an assymetric group in Construction 5.4 for better concrete efficiency. Security of this construction is
based on the asymmetric 𝑛-Power Diffie-Hellman assumption Assumption 2.13. Finally, we combine
all the primitives using the transformations mentioned in Construction 3.1 and Construction 4.2.

We do not consider alternative constructions based on general purpose indistinguishability obfuscation
iO [SLM+23]. As iO is a heavyweight cryptographic primitive that is not ready for efficient deployment
(iO has been implemented for some restricted functionalities [LMA+16, CMR17], but there are no general
purpose implementations).

Semi-honest setting The construction we implement is useful in a semi-honest security model and
does not consider rogue puzzle attacks discussed in Section 6. For example, in an e-voting scenario where
the attacker’s power is limited to stalling the election by putting the honest users offline (e.g., by cutting
the wires of their connection). The semi-honest attacker model is also motivated in settings such as
permissioned blockchains, where parties are accountable for their actions.

We leave open the implementation based on our LWE based key homomorphic PRF Construction 5.9
and an implementation that is robust against rogue attackers for future work.

7.1 Implementation and Experimental Setup

We instantiate the cryptographic building blocks that offer 128 bits of security, as follows:

• Pairing group: We instantiate the pairing-based key-homomorphic schemes over the BLS-381
pairing group [BLS02, BGM17, SKSW20] and use the implementation from the herumi mcl library
[Mit] (written in C++ language). The BLS-381 pairing group is asymmetric, and the (serialized)
representations of an element of the base groups G1, G2, and the target group G𝑇 are 48 bytes,
96 bytes, and 576 bytes, respectively.

• RSA group: We use the RSA assumption where the modulus is 3072 bits. We used the imple-
mentation present in the paper [TBM+20] (the implementation is available at https://github.
com/verifiable-timed-signatures/liblhtlp), which uses GNUMulti-Precision library [GMP]
(version 6.2.1) and is implemented in C.

The bipartite matching algorithm in Construction 4.2 is implemented by a textbook Hopcroft Karp
algorithm in C++.
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Parameter selection for Construction 4.2. In order to compile our transformations, we need to set the
correct values of the bipartite graph so that a matching exists with overwhelming probability. Recall from
Theorem 4.3, for 𝑛 denoting a maximum bound on the number of puzzles to be batched, we require setting
the right side of the bipartite graph, 𝑛′ ≥ 3𝑛 and the degree as, 𝑑 = 𝑂 (1) + 𝜔 (log𝜆)

log𝑛′ .
In our experimentation, we choose the parameters so that Eq. (2) satisfies 40 bits of statistical security i.e.

the probability of a matching not existing is 2−40. Combining this with our pairing and RSA implementation,
we satisfy 40 bits of statistical security and 128 bits of computational security. We wish to choose the
parameters so that the comminication size and the number of puzzles sent over is minimized. Thus, our
main goal is to choose the parameters 𝑛′, 𝑑 that minimize the degree 𝑑 .

We employ the following algorithm for choosing our parameters that guarantee 40 bits of statistical
security for batching atmost 𝑛 ≤ 10, 000 puzzles.

• Set an initial size of 𝑛′ = 100, 000.

• Binary search for the minimum degree 𝑑 between 1 and 128 that satisfies Eq. (2) with 40 bits of
security. Lets call this degree 𝑑opt.

• Perform a binary search for 𝑛′ between 𝑛 and 100, 000 that satisfies Eq. (2) with 40 bits of security.
We denote this by 𝑛′opt.

• Output the right side of the bipartite graph to be of size 𝑛′ = 𝑛′opt, and degree 𝑑 = 𝑑opt.

In our prototype implementation, we do not focus on the malicious setting. For the malicious setting,
we would instead optimize on the expression in Eq. (5) for an appropriate choice of a bound on the number
of queries 𝑞.

Time Complexity. We analyze the time complexity of our batch solving algorithm for different ap-
proaches.

• Trivial Solution: The total compute time grows with 𝑂 (𝑛 ·𝑇 ) where 𝑇 is the number of repeated
squaring exponentiations performed.

• Strawman Solution: The strawman solution performs best and takes 𝑂 (𝑇 ) time to compute the
result of all the opeinngs (though it leads to higher communication complexity).

• Our Solution: We take 𝑂 (𝑇 ) + 𝑂 (𝑛2) where the latter takes quadratic time because each puzzle
takes 𝑂 (𝑛) operations in Construction 3.1.

While the Hopcroft-Karp algorithm would yield a worst-case performance of �̃� (𝑛1.5), we note that when
the underlying graph is random (as in our setting), the running time is quasilinear in the size of the
graph [Mot94, BMST06] in expectation (where the expectation is taken over the randomness for sampling
the graph).

Parallel Computation. We use a single-threaded execution environment for all measurements. For our
running time measurements, the "trivial solution" and "our solution" are easily parallelizable operations.
We focus on the total CPU computation performed by the two schemes and do not exploit parallelization.
Throughout this text we refer to the running time in seconds, but this can be interpreted as linearly related
to total CPU cycles needed to perform the complete experiment. When reporting parameter sizes (e.g.,
setup size and puzzle size), we compute them analytically based on the number of group elements and the
measured size of each group element.
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Remark 7.1 (Parallelizing the different solutions). Parallelizing 𝑛 time lock puzzles in the "trivial solution"
involves runnning 𝑛 threads where each thread has to perform 𝑇 sequential computations. In contrast, in
"our solution" we can profit from parallelism by computing the PRF operations in a new thread and then
recovering the messages only involves 𝑂 (𝑛) operations. Thus, in total, we arrive at a sequential running
time of 𝑂 (𝑇 ) + �̃� (𝑛) (where the �̃� (𝑛) is due to the matching algorithm).

Experimental setup. The implementation of our scheme consists of 2400 lines of code.13 We collect our
benchmarks on a client side MacBook Pro (13-inch, M1, 2020) running macOS Big Sur Version 11.5.2. The
machine has a 8-core CPU @ 2.90GHz and 16 GB of RAM.

7.2 Benchmarks

In this section, we describe the main benchmarks (in terms of running time and communication size) for
our batchable time lock puzzle.

Computational cost. We measure the computational cost of solving 𝑛 puzzles. For the "trivial solution",
we compute the average time to solve per puzzle by solving 10 puzzles and measure the total compute
time by multiplying 𝑛 to the average. We vary 𝑛 between 1 and 500 and the exponent 𝑇 between 107,
5 · 107 and 108, roughly corresponding to 10 seconds, 50 seconds, and 100 seconds respectively on the test
machine Fig. 1. In practice, the wall clock time will change between machine implementations. We mainly
compare between the "trivial solution" and "our solution" for algorithms BatchSol, Sol,Gen, Setup below.
The computational cost for batch solving the "strawman solution" are similar to solving a single time lock
puzzle in the "trivial solution" and we do not add it into the graphs to prevent over crowding).

Our experiments show that for even such small values of 𝑇 , the trivial solution takes a longer compute
time, while puzzle generation and setup become slightly worse. The dotted line indicates the plot for "our
trivial" solution while the solid line plots "our solution". We quote some concrete numbers below.

• Batch solve - For 𝑇 = 50 million, and 𝑛 = 500, batching trivially takes 160× worse than our solution
and would take about 15 hours of compute time.

• Solve - Since the only difference when solving a single puzzle is a single pairing operation, the time
to solve a single puzzle is the same.

• Puzzle generation - The puzzle generation for "our solution" is worse, where for 𝑇 = 50 million, per
puzzle generation takes 3× time (as the degree of the graph is 3). Nevertheless, we generate the
puzzle extremely efficiently and within 0.2 seconds.

• Puzzle setup - Setup for "our solution" now involves sampling the CRS and involves some extra
computation along with sampling a RSA integer. But even for 𝑛 = 100, 000, the pairing based
puncturable PRF can be sampled within 50 seconds while sampling a RSA integer that is a product of
two strong primes takes about 2 minutes. Since 𝑛 is at most 500, the setup time for both schemes are
the same.

13The complete implementation is available here: https://github.com/RachitG54/batchtlpmcl .
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Communication size. In Fig. 2, we compare the setup size and the total communication size (in bytes)
as a function of the number of puzzles batched. We compare the three solutions, the "trivial solution", the
"strawman solution" and "our solution". We computed the numbers analytically, where we vary 𝑛 between
100 and 7000. We mention some concrete statistics below.

• Puzzle setup - "Our solution" is strictly worse in terms of setup size where the setup grows with the
number of puzzles. For 𝑛 = 7, 000, the right side of the bipartite graph, 𝑛′ = 11, 000 and the setup size
is 2200× worse, but still takes only 2.6MB size.

• Batch solve - For𝑛 = 7, 000, the "trivial solution" is the most efficient and takes 8MB of communication,
and is approximately 5× better than "our solution" that takes 37MB. The strawman solution becomes
quadratically inefficient with increasing values of 𝑛 where the communication takes 790MB.

Microbenchmarks. In Fig. 3, we compare the distribution of the computation time for "our solution"
between the pairing operations and the graph operations for 𝑇 = 5 × 108. The pairing operations grow
linearly with 𝑛, but are extremely efficient and only take 0.4 seconds for 𝑛 = 500. Puzzle generation involves
an extra pairing operation that computes the punctured key in 4 milliseconds. For our batch solving
algorithm, most of the time is dominated by the puzzle solving. Our pairing operations grow quadratically
in the number of puzzles, while the graph algorithm is blazingly efficient and runs in a few micro seconds.
For 𝑛 = 500, the time to batch solve takes 1.2× slower than solving a single puzzle. It takes 22 minutes
to batch solve, 18.5 minutes to solve a single puzzle and 3.5 minutes to compute the quadratic pairing
operations.

Rebalancing parameters. We presented two primary solutions for solving the problem of batch solving.
The trivial solution is computation efficient, but requires𝑂 (𝑛2) communication, while the solution presented
by us needs to compute𝑂 (𝑛2) quadratic operations, and is communication efficient. We can instead combine
both solutions and combine both approaches. Specifically, we can imagine batching 𝐵 puzzles together,
where each of the puzzle encodes 𝐴 puzzles using the "strawman solution". Using such parameters, we
have that 𝑛 = 𝐴 × 𝐵, communication cost is 𝑂 (𝑛 · 𝐴) and computation cost is 𝑂 (𝐵2).

We do not explore rebalancing parameters in our prototype implementation, but it can already give
us concretely better improvements. Note that in our experiments, the RSA modulus is 3072 bits, and
the security parameter for symmetric key crypto is 128 bits. If we allow room for performing addition
operations over each 128 bit block and consider a block size of 256 bits. We can set 𝐴 = 3072/256 = 12, to
save on our computation, while keeping the communication size of the puzzle exactly same. We leave open
the problem of exploring these tradeoffs for a future work.
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Figure 1: Setup, puzzle generation, puzzle solving and batch solving times for the trivial
solution (indicated by dotted line) and our proposed solution (indicated by solid line). We vary
the number of puzzle betwen 100 and 500 for different hardness of sequential computation,
ranging from 𝑇 = 107 to 108. The y-axis is over a log scale.
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A Analyzing alternative algorithms for matching

Let 𝑛 be the size of the left bipartite set, 𝑛′(𝑛, 𝜆) be the size of the right bipartite set (as functions of 𝑛
and the security parameter14) and 𝑑 (𝑛, 𝜆) be the degree of the bipartite graph. We analyze the different
14Observe that this is the statistical security parameter and can hence be set as 40 or 60 in practice.
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algorithms that ensure that a perfect matching is found below.

• Trivial Algorithm: In order to compute a perfect matching always, we can set the graph to be a
complete bipartite graph. The parameters are 𝑛′ = 𝑛, 𝑑 = 𝑛. Note that this also means that even if a
malicious party tries to sample puzzles, we will guarantee existence of a perfect matching.

• Greedy Algorithm: Algorithm FindMatch performs a greedy analysis as follows, for each vertex
on the left (on a lexicographic ordering of the vertices), it goes through each edge on the right, if it
finds an unmatched vertex, it adds it to the matching. If for some vertex, all vertices on the right
are matched, it outputs ⊥. We present the analysis of the algorithm below where we can set 𝑛′ = 2𝑛,
𝑑 = 𝑂 (log𝑛) + 𝜔 (log 𝜆). Note that our matching analysis through hall’s theorem in Lemma 4.4 gives
a better theoretical bound by a factor of log𝑛 and in general a more optimal expression to analyze.
Interestingly, we also show that when analyzing malicious parties, our greedy algorithm does not
help us.

The main takeaway is that running a bipartite matching algorithm leads to more concretely efficient
parameters for our transformation both in the honest and the rogue setting.

Lemma A.1. Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a random left regular bipartite graph where |𝑈 | = 𝑛, |𝑉 | = 𝑛′. Let the
left regular degree be denoted by 𝑑 . If 𝑛′ = 2𝑛, 𝑑 = 𝑂 (log𝑛) + 𝜔 (log 𝜆), then, the probability that the greedy
algorithm outputs a perfect matching for 𝐺 is ≥ 1 − negl(𝜆) where the probability is taken over the random
coins of sampling the bipartite graph.

Proof. Algorithm FindMatch goes through each vertex on the left and tries to match them greedily. Let
FindMatch output⊥ on the 𝑘th iteration, i.e. we’re trying to match the 𝑘th vertex on the left. The probability
that FindMatch outputs ⊥ in this iteration, if all the vertices already matched are on the 𝑘th vertices edge
set. This is given by, (

𝑘 − 1
𝑛′

)𝑑
, (6)

where the probability is taken over the random coins of sampling the edges of the 𝑘th vertex. The probability

that we output ⊥ on any iteration, through a union bound is given by,
∑𝑛

𝑘=1

(
𝑘−1
𝑛′

)𝑑
. Since 𝑘−1

𝑛′ ≤ 1/2, we
have the expression is bounded by 𝑛 · 2−𝑑 , thus setting 𝑑 = log𝑛 +𝜔 (log 𝜆) gives us the required bound. □

In the rogue setting in Section 6, the expression to analyze in this scenario depends on the number of
queries made by the adversary. Let this be denoted by 𝑞 = 𝑞(𝜆). Observe that in Eq. (6), the probability of
choosing an element on the left can be decided by the adversary, and hence, the probability that FindMatch
outputs ⊥ by a union bound is now ≤

(
𝑞
𝑛

)
· 𝑛 · 2−𝑑 . Since 𝑞 can grow with any arbitrarily polyonimal in 𝜆,

the degree will have to grow linearly with 𝑛, thus worse than the trivial bound.

B Alternative NIZK protocol for pairings

In this section, we show an alternate protocol how to construct a NIZK for showing consistency between
our pairing based key homomorphic prf and the key embedded inside a time lock puzzle. The main idea
is to use a variant of Schnorr protocol/Chaum Pedersen protocol where the prover proves knowledge of
an exponent 𝑘 in two different groups. One is the pairing group G of order 𝑝 on which punctured key
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computations are performed, and the other is the group Z𝑁 where 𝜙 (𝑁 ) is the order of the group. Since
𝑝, 𝑁 are coprime, the construction in Construction 6.4 does not work. Specifically, because of the chinese
remainder theorem, if 𝑥 = 𝑔

𝑘1
1 ∈ G and 𝑦 = 𝑘2 ∈ Z𝑁 where 𝑘1 ∈ Z𝑝 , then there exists an integer 𝑘 ∈ Z𝑝 ·𝑁

such that 𝑥 = 𝑔𝑘1 and 𝑦 = (𝑘 mod 𝑁 ) ∈ Z𝑁 . In order to ensure that the statement is sound, we restrict the
value inside the time locked puzzle to a 𝑘 ∈ Z𝑝 by using the range proof in [TBM+20].

Construction B.1 (Sigma protocol for pairing based KH-PRF and RSA based TLP). Our construction relies
on the following primitives:

• A linearly homomorphic TLP scheme, where the TLP is homomorphic in the message and the random
coins. Similar to Construction 6.4.

• A group G with prime order 𝑝 and generator 𝑔1.
Additionally for ease of analysis, we assume that 𝑝 < 𝜙 (𝑁 ) and 3𝑝2 < 𝑁 where 𝑁 is the RSA prime
in the TLP scheme from [MT19].

• A special-case NIZK Πrange = (Setup, Prove,Verify) that proves the plaintext of a time-lock puzzle 𝑍
is in range [−𝐵, 𝐵]. A construction of such a range proof was given by [TBM+20].

We define our interactive 3-round sigma protocol argument Π = (Prove,Verify) for an instance 𝜒 =(
pp, 𝑍, 𝑔𝑥

𝑖∗

1 ∈ G, 𝑦 ∈ G
)
and witness 𝜔 =

(
𝑘 ∈ Z𝑝 , 𝑟 ∈ Z𝑁 2

)
such that, 𝑍 = TLP.Gen(pp, 𝑘 (0) ; 𝑟 ) and 𝑦 =(

𝑔𝑥
𝑖∗

1

)𝑘 (1)
∈ G and 𝑘 = 𝑘 (0) = 𝑘 (1) mod 𝑝 .

• Prove(𝜒,𝜔):

– Sample randomly, 𝑘 ′ ← [𝑝2 · 𝑁 ] and 𝑟 ′ ← [𝑁 2𝑝2].

– Compute 𝑍 ′ ← TLP.Gen(pp, 𝑘 ′; 𝑟 ′), 𝑦′ ←
(
𝑔𝑥

𝑖∗

1

)𝑘 ′
∈ G.

– Compute
(
𝜋range, 𝜋

′
range

)
by running range.Prove on 𝑍 and 𝑍 ′ respectively with the bound 𝑝 .

The prover sends (𝑍 ′, 𝑦′, 𝜋range, 𝜋 ′range) to the verifier.
– Receive 𝑐 ∈ Z𝑝 from the verifier.
– Compute 𝑘 = 𝑘 ′ + 𝑐 · 𝑘 ∈ Z, and 𝑟 = 𝑟 ′ + 𝑐 · 𝑟 ∈ Z.15

– Send
(
𝑘 ∈ Z, 𝑟 ∈ Z

)
to the verifier.

– Output 𝜋 =

(
𝑍 ′, 𝑦′ ∈ G, 𝜋range, 𝜋 ′range, 𝑘 ∈ Z, 𝑟 ∈ Z

)
as the proof.

• Verify(𝜒):

– The verifier recieves information from the prover, verifies the range proof
(
𝜋range, 𝜋range

)
and

sends a random value 𝑐 ∈ Z𝑝 . If range.Verify rejects, then reject.
– Recieve (𝑘 ∈ Z, 𝑟 ∈ Z) from the prover, and perform the checks below.

– Check if TLP.Gen(pp, 𝑘 ; 𝑟 ) ?
= 𝑍 ′ · 𝑍𝑐 .

– Check if
(
𝑔𝑥

𝑖∗

1

)𝑘 ?
= 𝑦′ · 𝑦𝑐 .

– If all checks pass, accept, else reject.
15For each value (𝑐, 𝑟, 𝑟 ′) in Z𝑞 for some q, the prover considers them as positive integers by setting the output in 1, . . . , 𝑞 and
treating them as integers.
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Completeness The scheme is complete, because TLP.Gen(pp, 𝑘 ; 𝑟 ) = TLP.Gen(pp, 𝑘 ′; 𝑟 ′)·TLP.Gen(pp, 𝑘 ; 𝑟 )𝑐 =
𝑍 ′ · 𝑍𝑐 as our time lock puzzle is linearly homomorphic in the puzzle and the random coins. Similarly, it’s

easy to check that the second condition holds true i.e.
(
𝑔𝑥

𝑖∗

1

)𝑘
=

(
𝑔𝑥

𝑖∗

1

)𝑘 ′
·
(
𝑔𝑥

𝑖∗ ·𝑘
1

)𝑐
= 𝑦′ · 𝑦𝑐 . Additionally,

we rely on the completeness of our range proof.

Soundness We argue statistical soundness of our scheme, i.e. if a verifier accepts a proof, then the
statement is in the language, i.e. there exists some witnesses 𝑘 ∈ Z𝑝 , 𝑟 ∈ Z𝑁 2 that agree with the
statement. Let’s assume that Verify accepts statement 𝜒 =

(
pp, 𝑍, 𝑔𝑥

𝑖∗

1 ∈ G, 𝑦 ∈ G
)
and outputs a proof

𝜋 =

(
𝑍 ′, 𝑦′ ∈ G, 𝜋range, 𝜋 ′range, 𝑘 ∈ Z, 𝑟 ∈ Z

)
such that the verifier accepts on a random input 𝑐 ∈ Z𝑝 . With-

out loss of generality, we can assume that 𝑦′ = 𝑔𝑘
′
1 ∈ G, 𝑦 = 𝑔𝑘1 ∈ G for some 𝑘 ′1, 𝑘1 ∈ Z𝑝 . Simi-

larly, we can expand the time lock puzzle, and assume 𝑍 ′ =
(
𝑔𝑟
′
0 mod 𝑁,ℎ𝑟

′
1 ·𝑁 · (1 + 𝑁 )𝑘 ′0 mod 𝑁 2

)
,

𝑍 =
(
𝑔𝑟0 mod 𝑁,ℎ𝑟1 ·𝑁 · (1 + 𝑁 )𝑘0 mod 𝑁 2) where 𝑘 ′0, 𝑘0 ∈ Z𝑁 , and 𝑟 ′1, 𝑟1, 𝑟 ′0, 𝑟0 ∈ Z𝜙 (𝑁 ) . Since the proof

is maliciously generated, it is possible that these values are all different and maliciously generated.
Since the range proof is sound, we can conclude that 𝑘 ′0, 𝑘0 ∈ [−𝑝, 𝑝]. Since Verify accepts, we have,

•
(
𝑔𝑥

𝑖∗

1

)𝑘
= 𝑦′ · 𝑦𝑐 . Thus, 𝑘 = 𝑘 ′1 + 𝑐 · 𝑘1 mod 𝑝 . Let 𝛼 be some integer, we have, 𝑘 = 𝑘 ′1 + 𝑐 · 𝑘1 + 𝛼 · 𝑝 .

Since 𝑘, 𝑘 ′1 are between [−𝑝, 𝑝], we have that 𝛼 ∈ [−𝑝 − 1, 𝑝 + 1].

• TLP.Gen(pp, 𝑘 ; 𝑟 ) = 𝑍 ′ · 𝑍𝑐 .

We have, 𝑔𝑟 = 𝑔𝑟
′
0+𝑐 ·𝑟0 mod 𝑁 , thus, 𝑟 = 𝑟 ′0 + 𝑐 · 𝑟0 mod 𝜙 (𝑁 ).

Finally, ℎ𝑟 ·𝑁 · (1 + 𝑁 )𝑘 = ℎ𝑟
′
1+𝑐 ·𝑟1 · (1 + 𝑁 )𝑘 ′0+𝑐 ·𝑘0 mod 𝑁 2. Plugging in our expression for 𝑟 from the

previous evaluation, and analyzing the expression modulo 𝑁 , ℎ( (𝑟 ′0−𝑟 ′1 )+𝑐 (𝑟0−𝑟1 )) ·𝑁 = 1 mod 𝑁 . Since
𝑟0, 𝑟1, 𝑟

′
0, 𝑟
′
1 are all output by the prover in the first message, and 𝑁,𝜙 (𝑁 ) are coprime to each other.

The expression holds true if 𝑐 = (𝑟 ′1 − 𝑟 ′0) · (𝑟0 − 𝑟1)−1 mod 𝜙 (𝑁 ). Since 𝑝 < 𝜙 (𝑁 ), this happens only
with probability ≤ 1/𝑝 , which is negligible. Thus 𝑟 ′1 = 𝑟 ′0 mod 𝜙 (𝑁 ) and 𝑟0 = 𝑟1 mod 𝜙 (𝑁 ).

Simplifying, we have 𝑁 · 𝑘 = 𝑁 · (𝑘 ′0 + 𝑐 · 𝑘0) mod 𝑁 2. Plugging in our expression for 𝑘 , (𝑘 ′1 − 𝑘 ′0) +
𝑐 · (𝑘1 − 𝑘0) + 𝛼 · 𝑝 = 0 mod 𝑁 . Note that 𝑘0, 𝑘1, 𝑘 ′0, 𝑘1 are all small and between [−𝑝, 𝑝]. Thus if
𝑁 > 3𝑝2, then, (𝑘 ′1 − 𝑘 ′0) + 𝑐 · (𝑘1 − 𝑘0) + 𝛼 · 𝑝 = 0 ∈ Z. Thus (𝑘 ′1 − 𝑘 ′0) + 𝑐 · (𝑘1 − 𝑘0) = 0 mod Z𝑝 ,
and we have that 𝑘 ′1 = 𝑘 ′0 mod 𝑝 and 𝑘0 = 𝑘1 mod 𝑝 with probability 1 − 1/𝑝 .

Combining the equalities, we have proved that there exists 𝑟 ∈ Z𝜙 (𝑁 ) ∈ Z𝑁 2 such that 𝑟 = 𝑟0 = 𝑟1
mod 𝜙 (𝑁 ), and there exists 𝑘 ∈ Z𝑝 such that 𝑘 = 𝑘1 = 𝑘0 mod 𝑝 where 𝑍 = TLP.Gen(pp, 𝑘0; 𝑟 ) and

𝑦 =

(
𝑔𝑥

𝑖∗

1

)𝑘1
.

Zero Knowledge We prove the honest verifier zero knowledge of the interactive protocol. The simulator
given instance 𝜒 computes the transcript in the following order.

• Sample �̃� ← [𝑝2 · 𝑁 ] and 𝑟 ← [𝑁 2𝑝2]. Sample 𝑐 ← Z𝑝 .

• Compute 𝑦 =

(
𝑔𝑥

𝑖∗
1

)�̃�
𝑦𝑐
∈ G and compute 𝑍 ← TLP.Gen(pp, �̃�, 𝑟 ) and 𝑍 ′ ← �̃�

𝑍𝑐 .
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• The simulator outputs the transcript
(
𝑍 ′, 𝑦′, 𝑐, �̃�, 𝑟

)
.

Observe that (1) �̃� is statistically close to 𝑘 ′ + 𝑐 · 𝑘 because �̃�, 𝑘 ′ are sampled randomly from [𝑝2 · 𝑁 ].
Since 𝑐 ·𝑘 is small, i.e less than equal to 𝑝 ·𝑁 , the distributions are apart with a distance 1

𝑝
. (2) 𝑟 is distributed

statistically close to 𝑟 ′ + 𝑐 · 𝑟 because 𝑟 and 𝑟 ′ are both sampled uniformly from [𝑁 2𝑝2]. Since 𝑐 · 𝑟 is small,
i.e. ≤ 𝑁 2𝑝 , the distributions are apart with a distance ≤ 𝑁 2𝑝

𝑁 2𝑝2
= negl.

Remark B.2 (Collapsing rounds). We can collapse rounds to generate a NIZK schene by computing the
challenge 𝑐 using a random oracle and using the standard Fiat-Shamir transformation for sigma protocols,
[FS86]. Since the first round message is already non-interactive, we need not collapse with our sigma
protocol, and can just attach it separately.

C Formal proof for Construction 3.1

Theorem C.1. Suppose ΠLHP be a secure time-lock puzzle for gap 𝜀 ∈ (0, 1) and polynomial 𝑇 (·) defined
according to Definition 2.3, ΠPRF be a secure puncturable PRF according to Definition 2.1, then for construction
3.1, for all polynomially bounded functions where 𝑇 (·) ≥ 𝑇 (·), any polynomially bounded adversaries,
(A1,A2) = (

{
A1,𝜆

}
𝜆∈N ,

{
A2,𝜆

}
𝜆∈N), where the depth of A2,𝜆 is atmost 𝑇 𝜀 (𝜆), there exists a negligible

function negl(·) such that, (A1,A2) wins the security game in Definition 2.10 with negligible advantage.

Proof. Let ΠLHP be a secure time-lock puzzle according to Definition 2.3, then, there exists some gap
𝜀 ∈ (0, 1), and polynomial𝑇 (·). We define the sequence of hybrids similar to the main body where 𝐻0 is the
original hybrid where we play the following game between a challenger C and adversaries (A1,A2). For
any 𝑇 (·) ≥ 𝑇 (·),

• Adversary A1 outputs a bound on the number of puzzles to batch 𝑛 = 𝑛(𝜆).

• Challenger C samples pp← Setup(1𝜆,𝑇 , 𝑛) and sends it to A1.

• Adversary A1 receives the pp and outputs st, messages 𝑠0, 𝑠1 ∈ S𝜆 and index 𝑖 ∈ [𝑛].

• Challenger C samples a bit 𝑏 ∈ {0, 1} and outputs puzzle 𝑍 ← Gen(pp, 𝑖, 𝑠𝑏).
Sample a PRF key k← Zℓ𝑝 . Time-lock the key by computing 𝑍 ′ ← LHP.Gen(ppLHP, Encode𝑝,ℓ (k)).
Compute the punctured key k∗ ← PRF.Puncture(ppPRF, k, 𝑖). Mask themessage 𝑐 ← PRF(ppPRF, k, 𝑖)+
𝑠𝑏 · ⌈𝑝/2⌉. Output 𝑍 = (𝑖, 𝑍 ′, k∗, 𝑐).

• Adversary A2 receives (pp, 𝑍, st) and outputs a bit 𝑏′.

In 𝐻1, the challenger instead samples 𝑍 ′ ← LHP.Gen(ppLHP, 0). We argue that the change goes unnoticed
to an adversary.

Lemma C.2. For all polynomially bounded functions where 𝑇 (·) ≥ 𝑇 (·), any polynomially bounded adver-
saries, (A1,A2) = (

{
A1,𝜆

}
𝜆∈N ,

{
A2,𝜆

}
𝜆∈N), where the depth ofA2,𝜆 is atmost𝑇 𝜀 (𝜆), there exists a negligible

function negl(·) such that for all 𝜆 ∈ N, |Pr[𝐻1(A1,A2) = 1] − Pr[𝐻0(A1,A2) = 1] | = negl(𝜆).

Proof. Let (A1,A2) be an adversary where

|Pr[𝐻1(A1,A2) = 1] − Pr[𝐻0(A1,A2) = 1] | ≥ 𝜀′

for some non-negligible 𝜀′. We construct an adversary (B1,B2) that breaks the security of ΠLHP as follows.
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• Adversary A1 outputs a bound on the number of puzzles to batch 𝑛 = 𝑛(𝜆).

• Challenger C for ΠLHP outputs ppLHP ← Setup(1𝜆,𝑇 ).

• Algorithm B1 samples ppPRF ← PRF.Setup(1𝜆, 𝑛) and outputs (ppLHP, ppPRF) to A1. Algorithm A1
outputs state st, messages 𝑠0, 𝑠1 and index 𝑖 ∈ [𝑛] to algorithm B1.
Algorithm B1 samples a PRF key k← Zℓ𝑝 , samples a bit 𝑏 ∈ {0, 1}. It computes the punctured key k∗,
mask 𝑐 ← PRF(ppPRF, k, 𝑖)+𝑠𝑏 · ⌈𝑝/2⌉. It sets state st′ = (pp, st, 𝑖, k∗, 𝑐) and messages (Encode𝑝,ℓ (k), 0)
to the challenger.

• Challenger C computes the puzzle 𝑍 ′ and returns (ppLHP, 𝑍 ′, st′ = (pp, st, 𝑖, k∗, 𝑐)) to B2.

• Algorithm B2 sends (pp, (𝑖, 𝑍 ′, k∗, 𝑐), st) to A2 and receives a bit 𝑏′. Algorithm B2 outputs 𝑏′.
If the challenger for ΠLHP chose Encode𝑝,ℓ (k) then we are in 𝐻0, and instead if it chose 0, then we are in 𝐻1.
Thus (B1,B2)’s advantage in breaking the security of ΠLHP is non-negligible. □

In 𝐻2, the challenger instead samples 𝑐 ← Y𝜆 (where Y𝜆 is the PRF range). We argue that the change goes
unnoticed to an adversary.

Lemma C.3. For all polynomially bounded functions where 𝑇 (·) ≥ 𝑇 (·), any polynomially bounded adver-
saries, (A1,A2) = (

{
A1,𝜆

}
𝜆∈N ,

{
A2,𝜆

}
𝜆∈N), where the depth ofA2,𝜆 is atmost𝑇 𝜀 (𝜆), there exists a negligible

function negl(·) such that for all 𝜆 ∈ N, |Pr[𝐻2(A1,A2) = 1] − Pr[𝐻1(A1,A2) = 1] | = negl(𝜆).

Proof. Let (A1,A2) be an adversary where

|Pr[𝐻2(A1,A2) = 1] − Pr[𝐻1(A1,A2) = 1] | ≥ 𝜀′

for some non-negligible 𝜀′. We construct an adversary B that breaks the security of ΠPRF as follows.

• Algorithm A1 outputs a bound on the number of puzzles to batch 𝑛 = 𝑛(𝜆).

• Algorithm B outputs a bound on the domain of the PRF 1𝑛 .

• Challenger C for ΠPRF computes ppPRF ← PRF.Setup(1𝜆, 1𝑛).

• Algorithm B computes ppLHP ← LHP.Setup(1𝜆,𝑇 ) and outputs pp = (ppLHP, ppPRF) to the algorithm
A1.

• Algorithm A1 outputs state st, messages 𝑠0, 𝑠1 ∈ S𝜆 , index 𝑖 ∈ [𝑛].

• Algorithm B outputs the index 𝑖∗ = 𝑖 ∈ [𝑛].

• ChallengerC forΠPRF computes key k← PRF.KeyGen(pp), punctures the key k∗ ← PRF.Puncture(ppPRF, k, 𝑖∗)
and computes 𝑦 ∈ Y𝜆 . It returns k∗, 𝑦 to algorithm B.

• Algorithm B samples a bit 𝑏 ∈ {0, 1}, it computes the mask 𝑐 ← 𝑦 + 𝑠𝑏 · ⌈𝑝/2⌉, and 𝑍 ′ ←
LHP.Gen(ppLHP, 0) and outputs 𝑍 = (𝑖, 𝑍 ′, k∗, 𝑐).

• Algorithm A2 receives (pp, 𝑍, st) and outputs a bit 𝑏′. Algorithm B outputs the bit 𝑏′.

If the challenger for ΠPRF chose to evaluate using the PRF key, then we are in 𝐻1, else we are in 𝐻2. □

In𝐻2, the advantage of adversaries (A1,A2) in the security game is zero, |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | =
0. This is because, the output to the adversary A2 does not depend on 𝑏.

□
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D Formal construction and proof for rogue security

Construction (Unbounded Setting). We give the complete construction and proof below. Let Hash
be a collision-resistant hash function with output space {0, 1}𝜆 and NIZK be a secure non-interactive zero
knowledge proof. Since this is the unbounded setting, we assume that the underlying PRF can support
unbounded indices in space {0, 1}𝜆 .

pp← Setup(1𝜆,𝑇 , 𝑛):

• Sample ppLHP ← LHP.Setup(1𝜆,𝑇 ).
• Sample ppPRF ← PRF.Setup(1𝜆).
• Sample ppHash ← Hash.Setup(1𝜆).
• Sample ppNIZK ← NIZK.Setup(1𝜆).
• Output pp = (ppLHP, ppPRF, ppHash, ppNIZK).

Gen(pp,𝑚):

• Sample the index independent values, i.e. sample a PRF key k ← Zℓ𝑝 . Compute the puzzle
𝑍 ′ ← LHP.Gen(ppLHP, Encode𝑝,ℓ (k)).

• Calculate the index 𝑖 ← Hash(ppHash, 𝑍 ′).
• Compute the punctured key k∗ ← PRF.Puncture(ppPRF, k, 𝑖).
• Mask the message 𝑐 ← PRF(ppPRF, k, 𝑖) +𝑚 · ⌈𝑝/2⌉.
• Compute a NIZK proof 𝜋 that certifies for (𝑍 ′, k∗, 𝑖) that there exists a k ∈ Zℓ𝑝 such that
𝑍 ′ = LHP.Gen(ppLHP, Encode𝑝,ℓ (k)) and k∗ = PRF.Puncture(ppPRF, k, 𝑖).

• Return (𝑖, 𝑍 ′, k∗, 𝑐, 𝜋).

IsValid(pp, 𝑍 ):

• Parse pp and 𝑍 appropriately. If parsing fails, output 0.
• If Hash(ppHash, 𝑍 ′) ≠ 𝑖 , output 0.
• If 𝜋 does not verify for (𝑍 ′, k∗, 𝑖), output 0.
• If all checks pass, output 1.

BatchSol
(
pp,

{
𝑖 𝑗 , 𝑍

′
𝑗 , k
∗
𝑗 , 𝑐 𝑗 , 𝜋 𝑗

}
𝑗∈S

)
:

• Find the maximal set S′ such that the resulting puzzles contain only unique indices
{
𝑖 𝑗
}
𝑗∈S′ (we

can break ties arbitrarily) and the resulting puzzle set is denoted by
{
𝑍 𝑗

}
𝑗∈S′ i.e.

{
𝑖 𝑗 , 𝑍

′
𝑗 , k
∗
𝑗 , 𝑐 𝑗 , 𝜋 𝑗

}
𝑗∈S′

.

• Compute the sum of puzzles, 𝑍 ← LHP.Eval
(∑

, ppLHP, {𝑍 ′𝑗 } 𝑗∈S′
)
where

∑
indicates that a sum

of puzzles is computed homomorphically.
• Solve the resulting puzzle k̃← LHP.Sol(ppLHP, 𝑍 ).
• Compute k′ ← Decode𝑝,ℓ (k̃).
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• For all 𝑗 ∈ S′, compute

𝜇 𝑗 = 𝑐 𝑗 +
∑︁

𝑖∈S′\{ 𝑗 }
PRF.PuncturedEval(ppPRF, k∗𝑖 , 𝑖, 𝑗) − PRF(ppPRF, k′, 𝑗) (mod 𝑝)

and set𝑚 𝑗 as ⌊𝜇 𝑗 ⌉ ⌈𝑝/2⌉ .
• For all remaining puzzles 𝑗 ∈ S, there exists some puzzle 𝑗 ′ ∈ S′ such that 𝑖 𝑗 = 𝑖 𝑗 ′ , thus compute
𝑚 𝑗 = ⌊𝜇 𝑗 ′ − 𝑐 𝑗 ′ + 𝑐 𝑗 ⌉ ⌈𝑝/2⌉ .

Theorem D.1. If Hash is a collision resistant hash function, NIZK is a sound non-interactive zero-knowledge
proof, then the construction above satisfies security against rogue puzzle attacks according to Definition 6.1.

Proof. We start by defining a sequence of hybrid experiments:

• Hyb0 : This is the original rogue puzzle security game.

– AdversaryA outputs the time for locking puzzle 𝑇 and a bound on the number of puzzles to be
batched 𝑛.

– Challenger outputs the public parameters pp← Setup(1𝜆,𝑇 , 𝑛).
– Adversary A sees the public parameters and outputs a message𝑚.
– Challenger honestly generates a puzzle 𝑍 ← Gen(pp,𝑚) and outputs the puzzle 𝑍 .

∗ Sample the index independent values, i.e. sample a PRF key k← Zℓ𝑝 . Compute the puzzle
𝑍 ′ ← LHP.Gen(ppLHP, Encode𝑝,ℓ (k)).

∗ Calculate the index 𝑖∗ ← Hash(ppHash, 𝑍 ′).
∗ Compute the punctured key k∗, mask 𝑐 , NIZK proof 𝜋 and set 𝑍 = (𝑖∗, 𝑍 ′, k∗, 𝑐, 𝜋).

– Adversary receives the puzzle 𝑍 and outputs a set of puzzle
{
𝑍 ∗𝑗

}
𝑗∈S∗

such that |S∗ | ≤ 𝑛.

– Challenger receives the set of puzzles and runs
{
(𝑠∗𝑗 , 𝑍 ∗𝑗 )

}
𝑗∈S∗
← BatchSol(pp,

{
𝑍 ∗𝑗

}
𝑗∈S∗
).

∗ For all 𝑗 ∈ S∗, parse each 𝑍 ∗𝑗 = (𝑖 𝑗 , 𝑍 ′𝑗 , 𝑘∗𝑗 , 𝑐 𝑗 , 𝜋 𝑗 ).

∗ LetS′ be the set such that the resulting puzzle set is denoted by
{
𝑍 𝑗

}
𝑗∈S′ i.e.

{
𝑖 𝑗 , 𝑍

′
𝑗 , k
∗
𝑗 , 𝑐 𝑗 , 𝜋 𝑗

}
𝑗∈S′

.

– Adversary wins the game and the output of the experiment is 𝑏 = 1, if ∀𝑗 ∈ S∗, IsValid(pp, 𝑍 ∗𝑗 ) =
1 and for some 𝑗 ∈ S∗, 𝑍 ∗𝑗 = 𝑍 , 𝑠∗𝑗 ≠𝑚. Else the experiment outputs 0.

• Hyb1: In this hybrid, the challenger outputs 0 if there exists an index 𝑗 ∈ S such that 𝑖 𝑗 = 𝑖∗, but
𝑍 ′𝑗 ≠ 𝑍 ′.

• Hyb2: In this hybrid, the challenger outputs 0 if for some 𝑗 ∈ S∗, IsValid(pp, 𝑍 ∗𝑗 ) = 1, and let
k′𝑗 = Decode𝑝,ℓ (LHP.Sol(ppLHP, 𝑍 ′𝑗 )), but there does not exist randomness 𝑟 such that the punctured
key k∗𝑗 = PRF.Puncture(ppPRF, k𝑗 , 𝑖 𝑗 ; 𝑟 ).

Lemma D.2. Let Hash be a collision resistant hash function. Then for every adversary A, there exists a
negligible function negl(·) such that for all 𝜆 ∈ N,

��Pr[Hyb1(A) = 1] − Pr[Hyb0(A) = 1]
�� = negl(𝜆).

Proof. The only difference in the hybrids is if the adversary was able to find a collision to 𝑖∗. Thus the
adversary after seeing the public parameters pp, and 𝑍 ′, can come up with a puzzle 𝑍 ′𝑗 ≠ 𝑍 ′ such that
𝑖∗ = Hash(ppHash, 𝑍 ) = Hash(ppHash, 𝑍 ′𝑗 ) and hence breaking collision resistance. □
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Lemma D.3. Let NIZK be a sound NIZK proof. Then for every adversary A, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N,

��Pr[Hyb2(A) = 1] − Pr[Hyb1(A) = 1]
�� = negl(𝜆).

Proof. The only difference in the hybrids is if the adversary was able to break NIZK security by having
IsValid output 1, but the NIZK statement is not in the language. □

Lemma D.4. The probability that an adversary wins in Hyb2 is 0.

Proof. We begin with two cases.

• Case 1: If 𝑍 is included in the set of puzzles to be matched, i.e. 𝑍 ∈
{
𝑍 𝑗

}
𝑗∈S′ .

• Case 2: If 𝑍 is not included in the set of puzzles to be matched, i.e. 𝑍 ∉
{
𝑍 𝑗

}
𝑗∈S′ .

In this case, there exists some index 𝑗 ′ ∈ S′ such that 𝑖 𝑗 ′ = 𝑖∗ and 𝑍 ∗
𝑗 ′ = 𝑍 (if the puzzles are unequal,

the output of the experiment is 0 due to definition of Hyb1).

Additionally, for both cases, if the condition checked in Hyb2 is such that IsValid passes but the keys in 𝑍 ′𝑗
and k∗𝑗 don’t match, then the adversary cannot win. Thus we assume that there is an underlying key that
agrees with the puzzle and the punctured key.

• Since theNIZK proofs verify for all 𝑗 ∈ S∗, we know that have that k′𝑗 = Decode𝑝,ℓ (LHP.Sol(ppLHP, 𝑍 ′𝑗 ))
and that the punctured key k∗𝑗 is a punctured key to the same k′𝑗 .

• Thus, we have that, 𝑘 ′ =
∑

𝑗∈S′ k
′
𝑗 .

• Since 𝑐𝑖∗ was computed honestly, we have, 𝑐𝑖∗ = PRF(ppPRF, k, 𝑖∗) +𝑚⌈𝑝/2⌉.

In Case 1, we have, 𝑖∗ ∈ S′ and we perform the computation,

𝜇𝑖∗ = 𝑐𝑖∗ +
∑︁

𝑖∈S′\{𝑖∗}
PRF.PuncturedEval(ppPRF, k∗𝑖 , 𝑖, 𝑖∗) − PRF(ppPRF, k′, 𝑖∗) (mod 𝑝)

and set𝑚𝑖∗ as ⌊𝜇𝑖∗⌉ ⌈𝑝/2⌉ . Simplifying the computation, we have,

𝜇𝑖∗ = PRF(ppPRF, k, 𝑖∗) +𝑚 · ⌈𝑝/2⌉ +
∑︁

𝑖∈S′\{𝑖∗}
PRF.PuncturedEval(ppPRF, k∗𝑖 , 𝑖, 𝑖∗) − PRF(ppPRF, k′, 𝑖∗) (mod 𝑝)

= PRF(ppPRF, k, 𝑖∗) +𝑚 · ⌈𝑝/2⌉ +
∑︁

𝑖∈S′\{𝑖∗}
PRF.PuncturedEval(ppPRF, k∗𝑖 , 𝑖, 𝑖∗) −

∑︁
𝑗∈S′

PRF(ppPRF, k′𝑗 , 𝑖∗) + 𝑒 (mod 𝑝)

=𝑚 · ⌈𝑝/2⌉ + 𝑒′

The first equation holds from the almost key homomorphism, and the second equation holds from the
almost functionality preserving property. Thus the message computed after rounding is exactly𝑚.
In Case 2, we have, for some 𝑗 ′ ∈ S′, such that 𝑖∗ = 𝑖 𝑗 ′ , 𝑍 ′ = 𝑍 ′

𝑗 ′ and we perform the computation, such
that 𝜇 𝑗 ′ − 𝑐 𝑗 ′ = −PRF(ppPRF, k𝑗 ′, 𝑖∗) + 𝑒 as stated above. Since, 𝑍 ′ = 𝑍 ′

𝑗 ′ and the NIZK verifies, we have that
k𝑗 ′ = k. Computing𝑚𝑖∗ = ⌊𝜇 𝑗 ′ − 𝑐 𝑗 ′ + 𝑐𝑖∗⌉ ⌈𝑝/2⌉ and setting the honest computation of 𝑐𝑖∗ , we have that
𝑚𝑖∗ = ⌊𝑚 · ⌈𝑝/2⌉ + 𝑒⌉ ⌈𝑝/2⌉ =𝑚 and thus the adversary cannot win.

□

The proof follows from the previous three lemmas. □
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Construction (Bounded Setting, Pairings). We give the complete construction and proof below. Let
Hash be a random oracle and NIZK be a secure non-interactive zero knowledge proof. The construction is
a slight modification to the previous construction.

pp← Setup(1𝜆,𝑇 , 𝑛):

• Let 𝑛new and 𝑑 be set according to parameters in Lemma 6.3.
• Sample ppLHP ← LHP.Setup(1𝜆,𝑇 ).
• Sample ppPRF ← PRF.Setup(1𝜆, 1𝑛new).
• Sample ppNIZK ← NIZK.Setup(1𝜆).
• Output pp = (ppLHP, ppPRF, ppNIZK).

Gen(pp,𝑚):

• For each 𝑖 ∈ [𝑑], sample the index independent values, i.e. sample a PRF key k(𝑖 ) ← Zℓ𝑝 .
Compute the puzzle 𝑍 ′(𝑖 ) ← LHP.Gen(ppLHP, Encode𝑝,ℓ (k(𝑖 ) )).

• Compute the set 𝑉 ∈ [𝑛new]𝑑 by applying the random oracle i.e. 𝑉 = Hash
(
𝑍 ′(1) , . . . , 𝑍 ′(𝑑 )

)
.

Let 𝑉 = {𝑣𝑖}𝑖∈[𝑑 ] .
• For each 𝑖 ∈ [𝑑], compute the punctured key k∗,(𝑖 ) ← PRF.Puncture(ppPRF, k(𝑖 ) , 𝑣𝑖). Mask the
message 𝑐 (𝑖 ) ← PRF(ppPRF, k(𝑖 ) , 𝑣𝑖) +𝑚 · ⌈𝑝/2⌉. Compute a NIZK proof 𝜋 (𝑖 ) that certifies for
(𝑍 ′, k∗,(𝑖 ) , 𝑣𝑖) that there exists a k(𝑖 ) ∈ Zℓ𝑝 such that 𝑍 ′(𝑖 ) = LHP.Gen(ppLHP, Encode𝑝,ℓ (k(𝑖 ) ))
and k∗,(𝑖 ) = PRF.Puncture(ppPRF, k(𝑖 ) , 𝑣𝑖).

• Output
({
(𝑣𝑖 , 𝑍 ′(𝑖 ) , k∗,(𝑖 ) , 𝑐 (𝑖 ) , 𝜋 (𝑖 ) )

}
𝑖∈[𝑑 ]

)
.

IsValid(pp, 𝑍 ):

• Parse pp and 𝑍 appropriately. If parsing fails, output 0.
• If Hash(𝑍 ′(1) , . . . , 𝑍 ′(𝑑 ) ) ≠ 𝑉 , output 0.
• If for some 𝑖 ∈ [𝑑], 𝜋 (𝑖 ) does not verify, output 0.
• If all checks pass, output 1.

BatchSol
(
pp,

{
𝑍 𝑗

}
𝑗∈S

)
:

• For each 𝑗 ∈ S, parse each 𝑍 𝑗 as
({
(𝑣𝑖, 𝑗 , 𝑍 ′(𝑖 )𝑗

, k∗,(𝑖 )
𝑗

, 𝑐
(𝑖 )
𝑗
, 𝜋
(𝑖 )
𝑗
)
}
𝑖∈[𝑑 ]

)
.

• Let 𝐺 = (S, [𝑛new], E) be a bipartite graph where

E =
{
( 𝑗, 𝑣𝑖, 𝑗 ) : 𝑗 ∈ S, 𝑣𝑖, 𝑗 ∈ [𝑛new]

}
.

• Compute the maximal matchingmap← FindMatch(𝐺) where the matched vertices are denoted
by the set S′ and the mapping map =

{
( 𝑗, 𝑣∗𝑗 )

}
𝑗∈S′

. Set Snew =

{
𝑣∗𝑗

}
𝑗∈S′

.

• Let the resulting puzzle set be denoted by
{
𝑍 𝑗

}
𝑗∈S′ i.e.

{
𝑣∗𝑗 , 𝑍

′
𝑗 , k
∗
𝑗 , 𝑐 𝑗 , 𝜋 𝑗

}
(values 𝑍 ′𝑗 , k

∗
𝑗 , 𝑐 𝑗 , 𝜋 𝑗

are the corresponding puzzle values associated with index 𝑣∗𝑗 ).
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• Compute the sum of puzzles, 𝑍 ← LHP.Eval
(∑

, ppLHP, {𝑍 ′𝑗 } 𝑗∈S′
)
where

∑
indicates that a sum

of puzzles is computed homomorphically.
• Solve the resulting puzzle k̃← LHP.Sol(ppLHP, 𝑍 ).
• Compute k′ ← Decode𝑝,ℓ (k̃).
• For all 𝑗 ∈ S′, compute

𝜇 𝑗 = 𝑐 𝑗 +
∑︁

𝑖∈S′\{ 𝑗 }
PRF.PuncturedEval(ppPRF, k∗𝑖 , 𝑖, 𝑗) − PRF(ppPRF, k′, 𝑗) (mod 𝑝)

and set𝑚 𝑗 as ⌊𝜇 𝑗 ⌉ ⌈𝑝/2⌉ .
• For all remaining puzzles 𝑗 ∈ S, if there exists some puzzle 𝑗 ′ ∈ S′ such that the index set
and the puzzle match, i.e

({
𝑣𝑖, 𝑗

}
𝑖∈[𝑑 ] ,

{
𝑍
′(𝑖 )
𝑗

})
=

({
𝑣𝑖, 𝑗 ′

}
𝑖∈[𝑑 ] ,

{
𝑍
′(𝑖 )
𝑗 ′

})
, then compute 𝑚 𝑗 =

⌊𝜇 𝑗 ′ − 𝑐 𝑗 ′ + 𝑐 𝑗 ⌉ ⌈𝑝/2⌉ .

Theorem D.5. If Hash is a random oracle, NIZK is a sound non-interactive zero-knowledge proof, then the
construction above satisfies security against rogue puzzle attacks according to Definition 6.1.

Proof. We start by defining a sequence of hybrid experiments:

• Hyb0 : This is the original rogue puzzle security game.

– AdversaryA outputs the time for locking puzzle 𝑇 and a bound on the number of puzzles to be
batched 𝑛.

– Challenger outputs the public parameters pp← Setup(1𝜆,𝑇 , 𝑛).
– Adversary A sees the public parameters and outputs a message𝑚.
– Challenger honestly generates a puzzle 𝑍 ← Gen(pp,𝑚) and outputs the puzzle 𝑍 .

∗ Let 𝑍 be parsed as
{
(𝑣𝑖 , 𝑍 ′(𝑖 ) , k∗,(𝑖 ) , 𝑐 (𝑖 ) , 𝜋 (𝑖 ) )

}
𝑖∈[𝑑 ] .

– Adversary receives the puzzle 𝑍 and outputs a set of puzzle
{
𝑍 ∗𝑗

}
𝑗∈S∗

such that |S∗ | ≤ 𝑛.

– Challenger receives the set of puzzles and runs
{
(𝑠∗𝑗 , 𝑍 ∗𝑗 )

}
𝑗∈S∗
← BatchSol(pp,

{
𝑍 ∗𝑗

}
𝑗∈S∗
).

∗ For all 𝑗 ∈ S∗, parse each 𝑍 ∗𝑗 as
{
(𝑣𝑖, 𝑗 , 𝑍 ′(𝑖 )𝑗

, k∗,(𝑖 )
𝑗

, 𝑐
(𝑖 )
𝑗
, 𝜋
(𝑖 )
𝑗
)
}
𝑖∈[𝑑 ]

.

∗ Let 𝑗∗ ∈ S∗ be the index such that 𝑍 ∗
𝑗∗ = 𝑍 where 𝑍 is the honest puzzle.

∗ Let 𝐺 = (S, [𝑛new], E) be the bipartite graph computed.

∗ LetS′ be the set such that the resulting puzzle set is denoted by
{
𝑍 𝑗

}
𝑗∈S′ i.e.

{
𝑣∗𝑗 , 𝑍

′
𝑗 , k
∗
𝑗 , 𝑐 𝑗 , 𝜋 𝑗

}
𝑗∈S′

.

– Adversary wins the game and the output of the experiment is 𝑏 = 1, if ∀𝑗 ∈ S∗, IsValid(pp, 𝑍 ∗𝑗 ) =
1 and for some 𝑗 ∈ S∗, 𝑍 ∗𝑗 = 𝑍 , 𝑠∗𝑗 ≠𝑚. Else the experiment outputs 0.

• Hyb1: In this hybrid, we analyze what happens if 𝑗∗ ∈ S∗ (the index corresponding to the honest
puzzle) is not included in the maximal matching. There are two possible cases. This happens
because there exists some 𝑗 ′ ∈ S′ such that

(
{𝑣𝑖}𝑖∈[𝑑 ] ,

{
𝑍 ′(𝑖 )

})
=

({
𝑣𝑖, 𝑗 ′

}
𝑖∈[𝑑 ] ,

{
𝑍
′(𝑖 )
𝑗 ′

})
or ∀𝑗 ′ ∈ S′,(

{𝑣𝑖}𝑖∈[𝑑 ] ,
{
𝑍 ′(𝑖 )

})
≠

({
𝑣𝑖, 𝑗 ′

}
𝑖∈[𝑑 ] ,

{
𝑍
′(𝑖 )
𝑗 ′

})
. If it’s the former we continue the game. If its the latter,

the challenger outputs 0.
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• Hyb2: In this hybrid, the challenger outputs 0 if for some 𝑖 ∈ [𝑑], 𝑗 ∈ S∗, IsValid(pp, 𝑍 ∗𝑗 ) = 1, and
let k′(𝑖 )

𝑗
= Decode𝑝,ℓ (LHP.Sol(ppLHP, 𝑍

′(𝑖 )
𝑗
)), but there does not exist randomness 𝑟 such that the

punctured key k∗,(𝑖 )
𝑗

= PRF.Puncture(ppPRF, k
(𝑖 )
𝑗
, 𝑣𝑖, 𝑗 ; 𝑟 ).

Lemma D.6. Let Hash be a random oracle. Then for every adversary A, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N,

��Pr[Hyb1(A) = 1] − Pr[Hyb0(A) = 1]
�� = negl(𝜆).

Proof. The only difference in the hybrids is if the adversary is able to exclude the honest puzzle 𝑍 from the
perfect matching by sampling a bunch of malicious puzzles

{
𝑍 ∗𝑗

}
𝑗∈S∗

and doesn’t simply copy the puzzle

sets
(
{𝑣𝑖}𝑖∈[𝑑 ] ,

{
𝑍 ′(𝑖 )

})
. Thus to not have 𝑗∗ ∈ S∗ be included in the maximal matching for graph 𝐺 , and

since IsValid holds, we must have sampled bad indices to break Lemma 6.3 security where 𝑞 is the number
of queries the adversary A can make to the random oracle. Since we choose the parameters according to
𝐿𝑒𝑚𝑚𝑎 6.3, this is not possible. □

The rest of the proof follows identically to Theorem D.1 and we do not repeat here for brevity. □
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