
CryptoZoo: A Viewer for Reduction Proofs

Chris Brzuska1, Christoph Egger2, Kirthivaasan Puniamurthy1

1 Aalto University, Finland
2 Université Paris Cité, CNRS, IRIF, France

Abstract. Cryptographers rely on visualization to effectively communi-
cate cryptographic constructions with one another. Visual frameworks
such as constructive cryptography (TOSCA 2011), the joy of cryptog-
raphy (online book) and state-separating proofs (SSPs, Asiacrypt 2018)
are useful to communicate not only the construction, but also their proof
visually by representing a cryptographic system as graphs.
One SSP core feature is the re-use of code, e.g., a package of code might be
used in a game and be part of the description of a reduction as well. Thus,
in a proof, the linear structure of a paper either requires the reader to turn
pages to find definitions or writers to re-state them, thereby interrupting
the visual flow of the game hops that are defined by a sequence of graphs.
We present an interactive proof viewer for state-separating proofs (SSPs)
which addresses the limitations and perform three case studies: The equiv-
alence between simulation-based and game-based notions for symmetric
encryption, the security proof of the Goldreich-Goldwasser-Micali con-
struction of a pseudorandom function from a pseudorandom generator,
and Brzuska’s and Oechsner’s SSP formalization of the proof for Yao’s
garbling scheme.

Keywords: state-separation, proof viewer, reduction proofs, tooling

1 Introduction

Reduction proofs are a means to convince oneself and others of the security
properties of a cryptographic design. In addition to communication and veri-
fication, (reduction) proofs help us gain understanding of the properties that
are conducive to security and properties that are harmful. In order to improve
verification, communication and understanding of proofs of complex systems, the
cryptographic community has different techniques and styles which we briefly
review below.

Black-box primitives. Black-box primitives are abstractions which support mod-
ular proofs and information-hiding. For example, the concept of a symmetric
encryption scheme (SE) with indistinguishability under chosen plaintext attacks
(IND-CPA) allows one to build a system which uses SE without delving (or
even knowing about) the details of the AES cipher and suitable ciphermodes.
Cryptographic proofs of a complex system typically use multiple such black-box

primitives. Additionally, a modular proof tends to first abstract away a sub-
system, prove its security and then reduce the security of the bigger system to the
sub-system in a black-box way. These neat black-box interfaces are a rich resource
for structuring and understanding constructions and proofs, and they capture
the typical use of primitives so that studying black-box proofs has become an
established method also to understand the limitations of typical construction
approaches [RTV04,BBF13].

Universal composability. Useful security definitions for primitives which compose
well tend to consider adversarially chosen inputs, and Canetti’s universal compo-
sition framework (UC [Can01]) applies this insight to protocols as well, thereby
providing the basis to also prove protocol security by means of useful intermediate
notions. Since UC specifies how the adversary and the (adversarial) environment
can interact with the protocol, defining security in UC boils down to specifying
an ideal functionality, without the need to re-invent (and possibly mis-construct)
the adversarial model and enabling information-hiding since the UC-savvy reader
can focus on reading the ideal functionality alone. Several further frameworks
implement a similar approach, notably including Maurer’s abstract cryptogra-
phy framework [Mau11] and Rosulek’s Joy of Cryptography [Ros21], which both
encourage the use of visual components to follow proofs.

Game-hopping. Another important cryptographic technique that serves modular
proofs are game-hops, explained by Shoup in [Sho04]. Game-hopping splits a large
proof of indistinguishability between two games that formalize the security of a
system into a sequence of smaller indistinguishability steps, each of which can be
proven in isolation and the sequence of lemmas establishing the indistinguishability
of each pairs of subsequent games then implies the indistinguishability of the two
games in question.

Code-based game-hopping. Bellare and Rogaway [BR06] introduced the use of
code into game-hopping proofs, where pseudo-code allows to put two subsequent
games next to each other and inspect how exactly the code changes between
them. Code-based game-playing has a strong visual component which draws the
attention to the changes in a game-hop while at the same time keeping all the
relevant code at hand for the reader (since it is written above and below the code
which changes). In turn, game-hopping which is not code-based tends to describe
only the changes from one game to another, requiring the reader to remember
or recover the entire context from different parts of the paper (game definition,
construction definition, previous game-hops).

Modular code-writing. In the realm of real-world protocols, code-based games
are frequently used (see, e.g., [DDGJ22,DGGP21] for recent works) and/or code-
based game-hopping is widely used (see, e.g., [DHRR22,DHK+23] for recent
works). Interestingly, reductions are often specified in text or omitted—although
some works diligently provide reductions in pseudo-code, e.g., the proof of Yao’s
garbling scheme by Bellare, Hoang and Rogaway (BHR [BHR12]). BHR employ

careful packaging of code into sub-routines in order to make the large amount
of code in Yao’s garbling scheme manageable and be able to argue that the
reduction is sound. Concretely, reduction R that interacts with a smaller game
Gamebsmall is sound if for the larger game Gamebbig that the adversary A interacts
with, it holds that for both b ∈ {0, 1},

R → Gamebsmall ≡ Gamebbig, (1)

i.e., the behaviour of the reduction R composed with Gamebsmall is equivalent to
the input-output behaviour of Gamebbig.

State-separating proofs. Modular code-writing with reductions in mind was
systematically developed further by Brzuska, Delignat-Lavaud, Fournet, Kohbrok
and Kohlweiss (BDFKK [BDF+18]) who structure the pseudo-code of a game
into stateful pieces of code which can call one another, but else not access each
others state whence the term state-separation. If Gamebbig is defined by a call-
graph of code packages and if the reduction R and the game Gamebsmall are
defined via call-graphs of code packages as well, then we can compare the graph
R → Gamebsmall obtained by “gluing” to the graph of Gamebbig. If the two call
graphs are equal (i.e. they preserve the same edge relation), then Equation (1)
holds trivially. Additionally, the reductions R can simply be defined by drawing a
cut in the graph of Gamebbig, foregoing not only the need to prove the soundness
of the reduction, but also the need to write the code of the reduction.

This code re-use approach is a core feature of SSPs which makes proofs concise
and precise at the same time. On the other hand, code re-use also means that code
packages are used many times across an article, while the package code is specified
at a single place—or repeated redundantly at the cost of cluttering the paper and
interrupting its flow. See [Koh23] for a gentle and thorough introduction to SSPs
as well as a conceptual overview of recent works using and formalizing SSPs.

An SSP viewer. We address the limitations of paper-based presentation by
designing the proof viewer CryptoZoo3 for SSPs. CryptoZoo presents the claims
and call-graphs of games in the left pane, and the code-based definitions in the
right pane, the latter of which is available at all times, enabling code-linkage
without code repetition, without breaking the flow and without the need to scroll
away from a proof step in the current context. Additionally, clicking on individual
packages highlights the relevant code in the code pane.

In addition to addressing these SSP-specific challenges, CryptoZoo also ad-
dresses presentational obstacles present for proofs in mathematics and information
about systems in general and in cryptography specifically. We now briefly review
three key areas where improvement of presentation is necessary and useful and
then describe how CryptoZoo addresses these.

Information linkage Beyond code, proof steps reference different aspects, in-
cluding previous lemmas and definitions. It is important to make this rela-
tionship functional and allow easy retrieval of all related facts.

3 Available at https://proofviewer.cryptozoo.eu

https://proofviewer.cryptozoo.eu

Information hiding Since human memory is bounded, readers concentrate on
facts and information immediately useful to the current task at hand. It is
useful to hide information that does not contribute to understanding in a
particular moment.

Soundness and structure Proofs are structured into claims and lemmas which
form a proof tree (or DAG). The reader needs to verify that a set of claims
indeed implies the statement of the parent node—and in the end, the reader
can inspect the proofs of the claims at the leaves of the tree. In addition
to the tree structure, the author of an article usually suggests a meaningful
traversal which eases comprehension. A good medium for proofs should both
provide the high-level tree structure and a recommended reading order while
giving the reader freedom to deviate.

To address the latter point, CryptoZoo makes the proof tree visible and
explicit at each point in the proof. In order to address retrieval speed challenges,
CryptoZoo links cryptographic definitions and claims so that they can be retrieved
quickly without losing the current context. Finally, to support user memory
management and focus, CryptoZoo allows the user to hide text, definitions,
lemmas, claims and their proofs, e.g., in order to focus on one particular subtree.
The aforementioned approaches can be employed also generically when working
with (cryptographic) proofs. It is, however, especially useful for the SSP method
which inherently relies on a modular and visual approach. Additionally, SSPs
have a quite well-defined set of proof steps which CryptoZoo supports while
proofs in general (or even in cryptography) can be expressed in quite diverse
ways which conflicts with the need of a proof viewing tool which supports more
than the basic tree structure present in all mathematical proofs. For this reason,
the SSP methodology is a useful scope for our proof-viewing tool.

Case studies. We provide three case studies for the SSP proof viewer. As a simple
example, we show that the standard game-based notion of indistinguishability
under chosen plaintext attacks (IND-CPA) and simulation-based security for
symmetric encryption are equivalent (Section 5). A more advanced example is a
state-separating proof of a (constant-depth) version of the Goldreich-Goldwasser-
Micali (GGM) theorem which transforms pseudo-random generators (PRGs)
into pseudorandom functions (PRFs) by using the PRG in a tree-structured
construction. This proof is interesting, since it involves a two-dimensional hybrid
argument, i.e., a hybrid argument both over the depth and width of the tree
(Section 6). Finally, as an advanced example, we present a proof of Yao’s garbling
scheme in the version by Brzuska and Oechsner [BO23] (Section 7) which covers
circuits which are structured in layers. This proof also involves a two-dimensional
hybrid argument, both over the width and depth of the garbled circuit. In both
proofs, SSPs allow to make the reductions explicit and visually accessible. The
(constant-depth) GGM proof becomes visually straightforward using the proof
viewer, although it is known as a rather complex proof in the foundations of
cryptography. The rather involved proof of Yao’s garbling scheme does not become
straightforward, but its structure is significantly simplified—moreover, the proof
viewing tools is useful due to the amount of code which needs to be managed.

Our case study on (constant-depth) GGM is the first formalization of the GGM
proof in SSPs and useful to understand GGM—but it is also useful to understand
SSPs, since it is the first intermediate-size SSP example. While BDFKK gave
several simple examples, most follow-up work (e.g. [BCK22,BDE+22]) study
complex protocols which are too complex to learn the SSP methodology based
on them. The GGM proof is a nice middle-ground between simple and complex
case studies.

Outline. We cover related work on visual tools in Section 2. Subsequently,
Section 3 introduces SSPs and elaborate on the interrelation between useful
aspects of SSPs and proof viewer design. We then discuss the proof viewer design
and further considerations in the implementation (Section 4) and then turn to
the three case studies.

2 Related Work

Visual aids are a natural match for teaching and can be found in teaching not only
cryptography, but also computer science at large. For example, Vamonos [CR15]
combines visual and (pseudo-)code aspects to communicate algorithmic correct-
ness, while e.g. ProtoViz [Elm04] and GRACE [CDSP08] focus on the message
flow in protocols. Crucial in these tools is the combination of exploration by the
user together with a visual representation of the results. One can see editors
for proof assistants like Coq [The17] and Lean [dMKA+15] in a similar spirit.
The user provides a further proof step and is presented with the statements
which still require a proof. Similarly, Tamarin [SMCB12]—a prover for protocol
security—can display a graph of its internal reasoning and update it step-by-step.

While exploring a theorem statement in e.g. Coq can give insights and
help students learn to formally reason, once proofs become complex this access
becomes insufficient, in particular if proof search features are used. While exploring
intermediate states of the proof remains helpful, the high level structure of a
complex proof is not easily accessible from the linear proof file. Here tools like
the prooftree [Tew] plugin for Coq can help to visually explore the dependencies
between intermediate claims in a structured manner.

Alectryon [Pit20] adds a different dimension by allowing to freely switch be-
tween a textual proof description and the formally verified proof script (which can
also be used to deduce the intermediate proof state). To this end it combines text
formatting tools with the Coq prover (and has been extended to LEAN [Bül22])
to provide an interactive HTML document detailing the complete proof in a
manner optimized to be digested by a human reader—while still guaranteed to
be in sync with the mechanically verified version.

Visual Cryptographic Proofs The present work is inspired by the rational
underlying SSPs, which bring the necessary rigor needed for formal verification
while exposing similarities with teaching tools in cryptography which existed
before, importantly, Rosulek’s Joy of Cryptography [Ros21]. Rosulek groups
blocks of code into libraries or packages and argues on the call-graph in a similar

(although less formal) way. This, in particular, allows students to draw from
experience e.g. in object oriented programming where internal state of objects
remain hidden and cannot be accessed. Maurer’s dot-calculus in constructive
cryptography [Mau11] facilitates proof communication by giving a visual outline
on the relationship between objects.

3 State-Separating Proofs

The state-separating proofs (SSP) methodology by Brzuska, Delignat-Lavaud,
Fournet, Kohbrok and Kohlweiss (BDFKK [BDF+18]) specifies not only a proof
style for game-hopping proofs, but also a definitional style. Similar to the UC
framework, SSP-style definitions specify security as indistinguishability between
two games, typically a real and an ideal game. Indistinguishability is useful for
composability, because even for (strong) unforgeability under chosen message
attacks (UNF-CMA)—conceptually a search problem—a game-hop typically
replaces real signature verification by log-based ideal signature verification, so that
reductions between indistinguishability games tend to be more straightforward.

GETid
Prgid0

Prgid1

Keyid
GETid

GETid0

GETid1

Keyid0

Keyid1

GETid0

GETid1

Fig. 1: Games Gprg0id and Gprg1id

Both in SSPs and UC, the adversary is the main algorithm which starts the
system by activating other parts—in UC, the adversary activates the environment,
the simulator or protocol parties (by sending messages to them), while in SSP-
style games, the adversary activates the game by making oracle queries to it. For
a game Game, we write Pr

[
1 = A O1,O2→ Game

]
for the probability that adversary

A returns 1 when interacting with the oracles O1 and O2 of Game, where the
oracles O1 and O2 are defined via pseudo-code that operates on the state of the
Game. An SSP-style game typically splits its code into multiple packages with
separate state—a package, like a game, consists of a set of oracles operating on
its state, but in the case of a package, oracles can make queries to the oracles
of other packages as well, giving rise to a call-graph. As an example, consider a
length-doubling pseudorandom generator (PRG) g : {0, 1}λ → {0, 1}2λ such that
g(x) (for x sampled uniformly at random) is indistinguishable from a uniformly
random string y of length 2λ. We formalize security of PRGs as a game with two
GET oracles, a GET0 oracle which gives the adversary access to the left half of y
and a GET1 oracle which gives the adversary access to the right half of y. In the
real game, the oracles return the left and right half of y = g(x), respectively. In

GETidPrf KeyEVAL EVAL RO

Fig. 4: The games Prf → Key and RO

the ideal game, the oracles both return a uniformly random string of length n.
Modeling a PRG to return the chunks separately is equivalent to returning them
at once, but will be useful in the security proof of the pseudorandom function
(PRF) construction by Goldreich Goldwasser and Micali (GGM [GGM86]), where
each half is post-processed separately.

Keyid

Parameters

λ : sec. param

State

x : string

GETid

if x = ⊥ :

x←$ {0, 1}λ

return x

Prgid0

Parameters

λ : sec. param
g : PRG

State

no state

GETid0

x← GETid()

z ← g(x)

y ← z1..λ
2

return y

Prgid1

Parameters

λ : sec. param
g : PRG

State

no state

GETid1

x← GETid()

z ← g(x)

y ← z(λ
2
+1)..λ

return y

Fig. 2: Code of Keyid , Prgid0 and Prgid1

We now define the ideal
game as a composition of
two smaller games Key0 and
Key1 which we compose in
parallel (cf. Figure 1 (right)).
The GET0 and GET1 oracle of
Key0 and Key1, respectively,
each sample a uniformly ran-
dom string and return it to the
adversary. For the real game,
we define two packages Prg0
and Prg1 whose oracles GET0

and GET1 each retrieve a key
from the Key package via a
GET oracle, then apply the
PRG g to the value x they re-
ceive and return the left and
right half of x, respectively.

Definition 1 (Pseudorandom Generator). A polynomial-time computable,
deterministic function g : {0, 1}∗ → {0, 1}∗ with ∀x ∈ {0, 1}∗, |g(x)| = 2|x| is a
PRG if for all indices id ∈ {0, 1}∗ and all probabilistic polynomial-time (PPT)
adversaries A, the following advantage is a negligible function in λ:

Adv(A,Gprg0id ,Gprg1id) :=
∣∣Pr[1 = A → Gprg0id

]
− Pr

[
1 = A → Gprg1id

]∣∣.
Packages and adversaries receive the security parameter implicitly, i.e., advantage
Adv(A,Gprg0id ,Gprg1id) maps a value λ ∈ N to a number in the interval [0, 1].

Indices. Instead of defining the Key package in three variants, we simply allow it
to carry a bitstring id ∈ {0, 1}∗ as index and modifies oracle and package names
for disambiguation, leading to Key, Key0 and Key1.

PRFs. As a 2nd example, we define a pseudorandom function. Here, we use
the useful convention of defining the game in terms of the construction, i.e., we

define a pseudorandom function as a stateless package Prf. I.e., a pseudorandom
function Prf is a package which (a) does not remember state between invocations,
(b) makes use of a key from a Key package and (c) is indistinguishable from a
random oracle, see Figure 4.

Definition 2 (Pseudorandom Function). A pseudorandom function is a
stateless package Prf which provides oracles [→ Prf] = EVAL and calls oracle
[Prf →] = GET such that for all PPT adversaries A, the advantage

Adv(A,Prf → Key,RO) := |Pr[1 = A → Prf → Key]− Pr[1 = A → RO]|

is negligible in λ. Prf and RO are assumed to use the same input length in.

4 A proof viewer for SSPs

Prf Package

Parameters

λ : sec. param
in : input length

State

no state

Oracle

[→ Prf] : EVAL

[Prf →] : GET

RO Package

Parameters

λ : sec. param
in : input length

State

T : table

EVAL(x)

assert x ∈ {0, 1}in

if T [x] = ⊥ :

y ←$ {0, 1}n

y ← T [x]

return y

Fig. 3: Code of Prf and RO

In Section 4.1, we discuss how we real-
ize the proof viewing concepts outlined
in Section 1 in the SSP proof viewer,
and in Section 4.2, we consider further
implementation considerations.

4.1 Proof Viewing Concepts

Linking and simultaneous visibility.
CryptoZoo displays code of packages in
a separate pane from games and lemmas,
so that the reader can reach the code
without losing the context of the games
and lemmas they are currently study-
ing. Additionally, clicking on a package
will highlight the relevant code in the
right pane (and scroll to it if needed).
Additionally, CryptoZoo has clickable
security definitions which open in a sep-
arate window.

It is possible to emulate those features partially in static PDF also via clickable
packages, and opening several instances of the same PDF, which contain code and
definitions, but achieving linking (showing and highlighting code when clicking)
at the same time as simultaneous visibility would require non-standard links
across several PDFs.

Proof structure and information hiding. When security definitions of a state
separating proof are presented as suitable SSP graphs, a state-separating proof
that involves many reductions can sometimes be not only more precise, but also
shorter than a similar traditional proof since defining a reduction and proving
its soundness consists only of drawing two graphs, cf. [BCK22]. In turn, when

proving equivalence with standard security definitions in addition, an SSP proof
usually grows by at least two graphs and two inlining proofs for the high-level
security definitions as well as at least two graphs and two inlining proofs for each
of the underlying assumptions, cf. the proof of Yao’s garbling scheme by Brzuska
and Oechsner (BO [BO23]).

The proof viewer allows to hide sub-trees of a proof graph and, per default,
hides code equivalence steps, but allows to display them next to the actual claim
and relevant graphs and, again, with the code pane on the right. Again, one can
emulate this feature partially by opening several instances of the same PDF, but
the interactive hiding of arbitrary proof subtrees does not seem to be emulatable
in PDF. An interesting and useful approach in static PDF has been taken in the
thesis by Egger [Egg23] which presents security reductions for TLS 1.3 and first
shows an overview proof tree and repeats sub-trees later in the relevant sections,
recalling relevant context. Since CryptoZoo is not bound to linear structure, the
user can fold and un-fold subtrees interactively. Additionally, the user can toggle
between showing explanatory text or not, allowing to include comprehensive
explanatory text while at the same allowing for compact representation.

4.2 Implementation Considerations

CryptoZoo is implemented as a web application, to allow user to access it without
a dedicated application. To this end we believe assuming the availability of a web
browser to be generally justified. The viewer is also designed to function offline,
with minimal dependencies. Proofs/definitions are stored in a JSON format,
which is loaded by the viewer when requested by the user.

5 Case study: IND-CPA vs. simulation-based security

Simulation-based security notions for symmetric encryption state that the ad-
versary should not learn more than some ideal leakage and that everything the
adversary can do when given a ciphertext can also be done when only given
the ideal leakage, but not the ciphertext. While different views on ideal leakage
are possible, the minimal approach is to leak the length of the message that is
encrypted, since an adversary can infer the length of the message from the length
of the ciphertext4. Simulation-based notions which leak the length of the message
are typically equivalent to their game-based counterparts, see, e.g., [DF18].

In this case study5, we provide an SSP-style proof showing that indistinguisha-
bility under chosen plaintext attacks (IND-CPA) security in its Real-or-Zeroes
formulation is equivalent to a simulation-based formulation where the simulator
receives only the length of the message m, encoded in unary as 0|m|. For com-
pleteness, let us state the correctness and security properties before turning to a
discussion of the equivalence proof.
4 Length-hiding encryption can mitigate this issue to some extent, but due to

information-theory and correctness of decryption, the length of the ciphertext is
always an upper bound on the length of the message.

5 https://proofviewer.cryptozoo.eu/sim-ind-cpa-landing.html

https://proofviewer.cryptozoo.eu/sim-ind-cpa-landing.html

Definition 3 (Symmetric Encryption Syntax). A symmetric encryption
scheme se consists of two probabilistic polynomial-time (PPT) algorithms se.Enc
and se.Dec

c←$se.Enc(k,m)

m←se.Dec(k, c)

which satisfy that for all security parameters n ∈ N, encryption is correct, i.e.,

∀m ∈ {0, 1}∗ Prk←${0,1}n [se.Dec(k, se.Enc(k,m)) = m] = 1.

Definition 4 (IND-CPA security). A symmetric-encryption scheme se is
indistinguishable under chosen plaintext attacks if for all PPT adversaries A,
the advantage

Adv(A,Genc0,Genc1) :=
∣∣Pr[1 = A → Genc0

]
− Pr

[
1 = A → Genc1

]∣∣
is a negligible function in the security parameter, where Genc0 := Enc → Key
and Genc1 := Zeroer→ Enc→ Key, Key is defined in Figure 2, and Zeroer and
Enc are defined in Figure 7.

Definition 5 (Simulation-based security). A symmetric-encryption scheme
se satisfies simulation-based security if there exists a PPT simulator Sim such
that for all PPT adversaries A, the advantage

Adv(A,Genc0,Genc(Sim) :=
∣∣Pr[1 = A → Genc0

]
− Pr[1 = A → Genc(Sim)]

∣∣
is a negligible function in the security parameter, where Genc0 := Enc → Key
and Genc(Sim) := Zeroer→ Sim are defined in Figure 7.

Enc0 Package

Parameters

λ : sec. param
se : sym. enc. sch.

State

no state

ENC(m)

k ← GET()

c←$ se.enc(k,m)

return c

Zeroer Package

Parameters

no parameters

State

no state

ENC(m)

m′ ← 0|m|

c← ENC(m′)

return c

Fig. 7: Package definitions for IND-CPA
and simulation-based security of se.

We will see that the ideal encryp-
tion game can act as a simulator, since
all the simulator needs to do is to
encrypt zeroes. In this way, we ob-
tain a straightforward proof that IND-
CPA security implies the simulation-
based security notion for symmetric
encryption (See Figure 5). In the con-
verse direction, we need to use the
simulation-based security notion twice
in the proof—once to move away from
encrypting real messages to encrypting
simulated messages, and once to argue
that encrypting simulated messages
is indistinguishable from encrypting
zeroes—since the ideal functionality
which gives 0|m| to the simulator yields

Fig. 5: Using the real game as a simulator.

Fig. 6: Using the real game as a simulator.

the same output, regardless of whether m is an all-zeroes string or not. These
arguments become visible in the proof structure (see Figure 6) and its associated
proof graphs. The game hop from Genc1 to Hybrid-Lemma-1 is a reduction step
which can be visualized as a cut in a graph, depicted in Figure 8 which hatches the
reduction in red. The last game hop is directly implied by the indistinguishability
of the real game Genc0 and the simulated game Genc(Sim), and the middle game
hop follows by observing that two Zeroer packages are equivalent to a single one.

Fig. 8: Reduction hatched in red.

6 Case study: Constant-depth GGM tree

Goldreich, Goldwasser and Micali (GGM [GGM86]) introduced the notion of
pseudorandom functions and provided a construction of a pseudorandom function
based on a length-doubling pseudorandom generator (see Definition 1). The proof
is commonly include in courses on the foundations of cryptography and contained,
e.g., in Chapter 3.6.2 (Theorem 3.6.6) of the Foundations of Cryptography I
textbook by Goldreich [Gol04]. The construction is naturally amenable to visual-
ization: It structures PRG instances into a binary tree and the left halves and
right halves of a PRG output become the input to the PRG instances on the
next tree layer, until reaching the leaf layer.

Fig. 9: Hybrid step in the GGM proof

The construction6 is in-
deed often visualized as a tree.
See, e.g., Figure 3.5 in Chap-
ter 3.6.2 of [Gol04]. As we will
see, not only the construction,
but also the proof can be vi-
sualized. We will see how the
security of each of the PRG in-
stances is applied and how the
reduction looks like. The proof
is a hybrid argument over all
of the PRG instances. For il-
lustration, consider the two hy-
brid games in Figure 9. Their
difference can be reduced to
the PRG security by using the
boxed hatched in red as a re-
duction (Figure 10).

The proof which we have
chosen to implement into the
proof viewer is a variant of the
GGM proof where the tree is
of constant depth. This is anal-
ogous to how the GGM con-
struction is often depicted in
books, namely restricted to a
constant level, since the full
GGM construction is an n-
level tree with 2n leaves which
is harder to represent than a
finite tree.

We depict the hybrid argument for tree depth 3 which requires 23−1 = 7 PRG
instances and thus also 7 game-hops. Each of the hybrid games is represented
via a binary tree. The format of the proof viewer is convenient here since we
avoid page boundaries and can depict the hybrids simply as a long sequence of
8 games. Note that the full GGM proof does not proceed via a hybrid over the
entire tree, but only visits polynomially many of the PRG instances in the tree.
Our constant-depth representation does not capture this subtlety of the proof,
and the SSP version of the full GGM proof that we are aware of, is visually not
as appealing (see Section 7 for a compelling hybrid argument over polynomially
many hybrids). Therefore, we prefer to present a constant-depth version of GGM
which captures the main essence of the construction and, importantly, its security
proof.

6 https://proofviewer.cryptozoo.eu/ggm-landing.html

https://proofviewer.cryptozoo.eu/ggm-landing.html

Fig. 10: Reduction step in the GGM proof

Fig. 11: Semantic switch step in the proof viewer (Eq. 2 of Yao, proof via inlining).

Fig. 12: Hybrids code equivalence in the proof viewer (Eq. 7 of Yao, proof via
graph equality).

7 Case Study: Yao’s Garbling Scheme

Secure multi-party computation constructs protocols where several parties to-
gether compute a function on the participants’ input but without revealing their
inputs to other protocol participants (beyond what the output of the function
leaks). Yao [Yao86] proposed a protocol for this purpose which we know today as
garbled circuits. For analyzing the security of this construction, BHR [BHR12] ex-
tracted the intermediate notion of a garbling scheme and proved security of Yao’s
garbling scheme. Brzuska and Oechsner [BO23] give a state-separated proof7 of
garbling security for layered circuits where they further extract a notion of layer
garbling which allows sequential composition and therefore allows structuring
the security proof by composing security layer-by-layer. This step is inherently
visual (Figure 12). Moreover, to define these reductions for the viewer, the proof
author need not produce separate graphs and code, but only needs to specify
cuts on the same graph, enabling code re-use.

On a gate-by-gate level, Yao’s garbling scheme operates by assigning two SE
keys to each wire in a circuit representing the values 0 and 1. A binary logic gate
can then be implemented by encrypting the key on the output wire under both
input wire keys for all entries of the truth table: for a logic AND gate the output
1-key is encrypted under the 1-keys for both the left and right input wire while
the output 0-key is encrypted under all other combinations of the input keys.
Consequently, a party can access the output 1-key exactly if it knows both 1-keys
for the input wires whereas the 0-key remains hidden in this case.

A central element of the security proof is a semantic switch – instead of
considering 0-keys and 1-keys the security game distinguishes between “active”
keys known to the party and “passive” keys which remain secret which makes the
party’s state independent of the actual input value when evaluating the circuit
(Figure 11). The formal code equivalence proof of this step is quite tedious, but
the proof viewer keeps components necessary to verify this step close together,
which should help the reader.

8 Comparison.

We now review SSP proofs for the Transport Layer Security (TLS [Res18])
protocol, the Messaging Layer Security (MLS [BMO+23]) protocol and Yao’s
garbling scheme. In each case, we discuss the presentation of the respective papers
and how CryptoZoo could further contribute to communication, and, in the case
of Yao’s garbling scheme, how CryptoZoo compares to the original presentation
by Brzuska and Oechsner [BO23]. Afterwards, we briefly discuss SSP proofs in
formal verification tools.

8.1 Yao’s garbling scheme

Brzuska and Oechsner (BO [BO23]) formalize security and correctness of garbling
schemes in SSPs and then revisit Yao’s garbling scheme. While correctness can also
7 https://proofviewer.cryptozoo.eu/yao-landing.html

https://proofviewer.cryptozoo.eu/yao-landing.html

be proven in SSPs, BO focus on security only and provide an SSP-style reduction
for Yao’s garbling scheme to the IND-CPA security of the underlying garbling
scheme. The BO paper introduces games for IND-CPA security and garbling
security in a natural flow, slowly increasing complexity in order to familiarize the
reader with the novel SSP encoding and, as a first proof, show an equivalence
for different encodings for IND-CPA security. Our CryptoZoo implementation
follows this outline by BO. Concretely, the CryptoZoo landing page for Yao’s
garbling scheme explains the purpose of the different pages and then recommends
to the reader to first visit the IND-CPA security page which explains the SSP
encoding of IND-CPA security and the equivalence proof with the encoding of
IND-CPA security which is useful for the security proof of Yao’s garbling scheme.
Subsequently, BO discuss the SSP encoding of garbling scheme security and
Yao’s garbling scheme construction. Our CryptoZoo implementation follows this
approach and provides a page introducing the garbling scheme security notion
in SSP-style and also explains Yao’s garbling scheme construction. Thus, up to
the main theorem statement, the BO paper and our CryptoZoo implementation
proceed analogously.

The main difference between CryptoZoo and the BO presentation is the proof
of the main theorem which reduces security of Yao’s garbling scheme to IND-CPA
security. BO proceed in a bottom-up fashion, slowly building and explaining
sub-packages needed in the proof and showing equivalence with the top-level
security notion in the end.

In turn, CryptoZoo natively presents the proof in a top-down fashion and
explains the code of the modular packages previously in the context of the Yao
construction. Below the statement of the main theorem, CryptoZoo recommends
to the reader, however, to first read the proof bottom-up and then, once more,
top-down. CryptoZoo allows the reader to proceed through the proof in both
directions, since clicking on a lemma hides all the remaining proof steps, focusing
solely on the lemma and its sub-tree. The reason that we first recommend a
bottom-up reading of the proof is analogous to the presentation rationale of
BO: The reader’s familiarity with all packages grows successively with each
proof step until reaching a statement for the entire garbling construction. In
turn, reading the proof top-down in the first reading iteration either requires
reading and understanding all code at once or treating some of the packages as
black-boxes (since most of the proof steps are purely syntactical). However, after
a first bottom-up read that helps familiarizing with all code and steps, making a
top-down pass through the proof seems useful to gain a conceptual understanding
of how the proof connects the high-level garbling security notion to the low-level
IND-CPA definition. CryptoZoo supports both, the bottom-up and the top-down
reading flow, and the user can, of course, also read the proof in an arbitrary order
based on their preference. The CryptoZoo proof tree and information-hiding
helps the user to engage with the proof conveniently in an order of their choice
while having all information conveniently at hand. In turn, the BO proof has a
fixed order where code has a fixed place in the paper and needs to be manually
connected. As mentioned previously, opening multiple PDFs of BO (and adding

a proof tree to their paper) will reach a similar effect, but at a lower level of
convenience than in CryptoZoo.

8.2 SSP proofs of TLS 1.3

Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok and Kohlweiss (BDEFKK
[BDE+22]) analyze the TLS 1.3 key schedule and Egger [Egg23] further connects
the TLS 1.3 key schedule security with the TLS 1.3 handshake security. BDEFKK
and Egger both introduce different code, assumptions and games in a natural flow,
starting from a conceptually simple game (collision-resistance of hash-functions
in BDEFKK and PRF security in Egger).

A remarkable property of the TLS 1.3 security analysis is the strongly layered
approach: Each layer comes with a main theorem which builds upon the result
of the previous layer as well as additional lemmata specific to the current layer.
As such each layer in isolation can be an insightful read, e.g. to learn how to
relate key schedule hand handshake security. Highlighting such additional ad-hoc
structure of the proof tree is easy to do in a PDF presentation, and Egger’s
thesis follows this approach with a proof tree with clickable lemma statements
and chapters zooming in (both visually and content wise) into each layer of the
tree. While currently not implemented, adding this layer structure to CryptoZoo
would be a reasonable task if it turns out to be applicable to many projects.
Finally, both, for BDEFKK and Egger (as well as in a possible future CryptoZoo
implementation), the proof trees are also useful to compute final advantage
statements, see [Egg23, p.48,p.56].

8.3 SSP proofs of the MLS key schedule

Brzuska, Cornelissen and Kohbrok (BCK [BCK22]) analyze the MLS key schedule
and its composition with TreeKEM [BBR18]. Again, BCK slowly build up
complexity in their article and a CryptoZoo implementation would proceed
analogously. Again, the main advantage of CryptoZoo lies in the availability and
easy accessiblity of code, and in this case, also in an additional proof tree—but a
proof tree could also be added to BCK. Again, a proof tree would be useful to
compute final advantage statements, cf. [BCK22, p.18-19].

8.4 Formal verification tools for SSPs

SSProve is a Coq-based formal verification tool for SSPs by Abate, Haselwarter,
Rivas, Van Muylder, Winterhalter, Hritcu, Maillard and Spitters [AHR+21],
and Dupressoir, Kohbrok and Oechsner [DKO22] formalized SSPs in Easy-
Crypt [BDG+14,BGHZ11]. Representation of SSPs in both, SSProve and Easy-
Crypt, is code-based and thus, CryptoZoo could help present the obtained proof
visually. Potentially, CryptoZoo code could be generated automatically and thus
not only help in proof communication but perhaps also in proof development,
allowing the proof developer faster visual navigation of the proof draft.

9 Conclusion and future work

One useful feature of visual(izable) frameworks such as UC, abstract cryptography,
the Joy of Cryptography and SSPs is the visualization of proofs. In this article, we
explored the presentation of SSP proofs in the interactive proof viewer CryptoZoo
which we developed. We would like to claim that CryptoZoo improves the quality
of verification by providing improved navigation of proofs and by allowing users
to conveniently and quickly retrieve relevant information. However, readers of
PDFs can compensate by retrieving information in different (slower) ways (cf.
Section 4.1). Therefore, it seems more accurate that CryptoZoo improves the
speed of verification or the quality of verification given a fixed, limited amount of
time.

Future Work. It would be interesting to conduct a user study to compare the
verification of (well-written) PDF proofs with the verification of (well-written)
CryptoZoo proofs. Furthermore, it would be interesting to see whether CryptoZoo
is useful for helping a proof developer maintain state in a visual form while writing
an SSP proof. Last, but not least, CryptoZoo might be connected with formal
verification tools for SSPs, such as SSProve [AHR+21] and or a formalization of
SSPs in EasyCrypt [BDG+14,BGHZ11]. In this case, reduction steps and, more
importantly, code-equivalence steps could be verified by in the underlying tool
(rather than by the user/reader), turning CryptoZoo into an interface which helps
a user/reader gain understanding of proof conducted in a formal verification tool
and thus serve to ease a notoriously hard communication task.

Acknowledgments This project was supported by the Research Council of
Finland and the European Commission under the Horizon2020 research and
innovation programme, Marie Sklodowska-Curie grant agreement No 101034255.

References

AHR+21. Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van
Muylder, Théo Winterhalter, Catalin Hritcu, Kenji Maillard, and Bas
Spitters. SSProve: A foundational framework for modular cryptographic
proofs in coq. In Ralf Küsters and Dave Naumann, editors, CSF 2021
Computer Security Foundations Symposium, pages 1–15. IEEE Computer
Society Press, 2021.

BBF13. Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-
box reductions, revisited. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 296–315. Springer,
Heidelberg, December 2013.

BBR18. Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM:
Asynchronous Decentralized Key Management for Large Dynamic Groups
A protocol proposal for Messaging Layer Security (MLS). Research report,
Inria Paris, May 2018.

BCK22. Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Security analysis
of the MLS key derivation. In 2022 IEEE Symposium on Security and
Privacy, pages 2535–2553. IEEE Computer Society Press, May 2022.

BDE+22. Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger, Cédric Fournet,
Konrad Kohbrok, and Markulf Kohlweiss. Key-schedule security for the
TLS 1.3 standard. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part I, volume 13791 of LNCS, pages 621–650. Springer,
Heidelberg, December 2022.

BDF+18. Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok,
and Markulf Kohlweiss. State separation for code-based game-playing
proofs. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 222–249. Springer, Heidelberg,
December 2018.

BDG+14. Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In
Foundations of Security Analysis and Design VII - FOSAD 2012/2013
Tutorial Lectures, volume 8604 of Lecture Notes in Computer Science, pages
146–166. Springer, 2014.

BGHZ11. Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptographer.
In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
71–90. Springer, Heidelberg, August 2011.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012, pages 784–796. ACM Press, October 2012.

BMO+23. R. Barnes, J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert. The
Messaging Layer Security (MLS) Protocol. RFC 9420, 2023.

BO23. C. Brzuska and S. Oechsner. A state-separating proof for yao’s garbling
scheme. In 2023 2023 IEEE 36th Computer Security Foundations Sym-
posium (CSF) (CSF), pages 127–142, Los Alamitos, CA, USA, jul 2023.
IEEE Computer Society.

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption
and a framework for code-based game-playing proofs. In Serge Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
Heidelberg, May / June 2006.

Bül22. Niklas Bülow. Proof visualization for the lean 4 theorem prover, April
2022.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CDSP08. Giuseppe Cattaneo, Alfredo De Santis, and U Ferraro Petrillo. Visualization
of cryptographic protocols with grace. Journal of Visual Languages &
Computing, 19(2):258–290, 2008.

CR15. B. Carmer and M. Rosulek. Vamonos: Embeddable visualizations of
advanced algorithms. In 2015 IEEE Frontiers in Education Conference
(FIE), pages 1–8, 2015.

DDGJ22. Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager. On the
concrete security of TLS 1.3 PSK mode. In Orr Dunkelman and Stefan
Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS,
pages 876–906. Springer, Heidelberg, May / June 2022.

DF18. Jean Paul Degabriele and Marc Fischlin. Simulatable channels: Extended
security that is universally composable and easier to prove. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume
11274 of LNCS, pages 519–550. Springer, Heidelberg, December 2018.

DGGP21. Jean Paul Degabriele, Jérôme Govinden, Felix Günther, and Kenneth G.
Paterson. The security of ChaCha20-Poly1305 in the multi-user setting. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1981–2003.
ACM Press, November 2021.

DHK+23. Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky,
Gregor Seiler, and Dominique Unruh. A thorough treatment of highly-
efficient NTRU instantiations. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS, pages
65–94. Springer, Heidelberg, May 2023.

DHRR22. Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler.
Strongly anonymous ratcheted key exchange. In Shweta Agrawal and
Dongdai Lin, editors, ASIACRYPT 2022, Part III, volume 13793 of LNCS,
pages 119–150. Springer, Heidelberg, December 2022.

DKO22. François Dupressoir, Konrad Kohbrok, and Sabine Oechsner. Bringing
state-separating proofs to EasyCrypt A security proof for cryptobox. In
CSF 2022 Computer Security Foundations Symposium, pages 227–242.
IEEE Computer Society Press, August 2022.

dMKA+15. Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van
Doorn, and Jakob von Raumer. The lean theorem prover (system de-
scription). In Amy P. Felty and Aart Middeldorp, editors, Automated
Deduction - CADE-25 - 25th International Conference on Automated De-
duction, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of
Lecture Notes in Computer Science, pages 378–388. Springer, 2015.

Egg23. Christoph Egger. On Abstraction and Modularization in Protocol Analysis.
Doctoral thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
2023.

Elm04. Niklas Elmqvist. Protoviz: A simple security protocol visualization. the
University of Gothenburg, Tech. Rep, 2004.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

Gol04. Oded Goldreich. Foundations of Cryptography: Basic Applications, vol-
ume 2. Cambridge University Press, Cambridge, UK, 2004.

Koh23. Konrad Kohbrok. State-Separating Proofs and Their Applications. Doctoral
thesis, Aalto University School of Science, 2023.

Mau11. Ueli Maurer. Constructive cryptography–a new paradigm for security
definitions and proofs. In Joint Workshop on Theory of Security and
Applications, pages 33–56. Springer, 2011.

Pit20. Clément Pit-Claudel. Untangling mechanized proofs. In Ralf Lämmel,
Laurence Tratt, and Juan de Lara, editors, Proceedings of the 13th ACM
SIGPLAN International Conference on Software Language Engineering,
SLE 2020, Virtual Event, USA, November 16-17, 2020, pages 155–174.
ACM, 2020.

Res18. Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, August 2018.

Ros21. Mike Rosulek. The joy of cryptography. Oregon State University, 2021.
Draft of January 3, 2021.

RTV04. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 1–20. Springer, Heidelberg, February 2004.

Sho04. Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332, 2004. https://
eprint.iacr.org/2004/332.

SMCB12. Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin.
Automated analysis of diffie-hellman protocols and advanced security prop-
erties. In Steve Zdancewic and Véronique Cortier, editors, CSF 2012
Computer Security Foundations Symposium, pages 78–94. IEEE Computer
Society Press, 2012.

Tew. Hendrik Tews. Prooftree.
The17. The Coq Development Team. The coq proof assistant, version 8.7.0, October

2017.
Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended

abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332

	CryptoZoo: A Viewer for Reduction Proofs

