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Abstract. FrodoKEM is a lattice-based Key Encapsulation Mechanism (KEM) based
on unstructured lattices. From a security point of view this makes it a conservative
option to achieve post-quantum security, hence why it is favored by several European
authorities (e.g., German BSI and French ANSSI). Relying on unstructured instead of
structured lattices (e.g., CRYSTALS-Kyber) comes at the cost of additional memory
usage, which is particularly critical for embedded security applications such as smart
cards. For example, prior FrodoKEM-640 implementations (using AES) on Cortex-M4
require more than 80 kB of stack making it impossible to run on some embedded
systems. In this work, we explore several stack reduction strategies and the resulting
time versus memory trade-offs. Concretely, we reduce the stack consumption of
FrodoKEM by a factor 2–3× compared to the smallest known implementations with
almost no impact on performance. We also present various time-memory trade-offs
going as low as 8 kB for all AES parameter sets, and below 4 kB for FrodoKEM-640.
By introducing a minor tweak to the FrodoKEM specifications, we additionally reduce
the stack consumption down to 8 kB for all the SHAKE versions. As a result, this
work enables FrodoKEM on more resource constrained embedded systems.
Keywords: Post-Quantum Cryptography · Small-stack · FrodoKEM

1 Introduction
The security of public-key cryptography is based on conjectured-to-be-hard mathematical
problems. The most widely used examples are RSA [RSA78] and Elliptic Curve Cryptog-
raphy [Kob87, Mil86] which remain secure as long as the integer factorization problem and
the discrete logarithm problem are hard. Although this has been a time-tested conjecture in
a pre-quantum world, both of these classes of algorithms are vulnerable to polynomial-time
attacks in a post-quantum era using a quantum computer [Sho94, PZ03].

Post-Quantum Cryptography (PQC) promises to deliver new type of algorithms that
are resistant against quantum (polynomial-time) attacks. There are many types of PQC
algorithms based on different mathematical problems. The USA’s National Institute of
Standards and Technology (NIST) initiated a process in 2016 to select which algorithms
will become their new public-key standard in a post-quantum world [Nat]. In 2022, this has
culminated to a single Key Encapsulation Mechanism (KEM) and three Digital Signature
schemes (DS) being put on track for standardization by 2024 and beyond.

Typically, NIST standards can be considered as global standards. However, it is not
uncommon for other countries or regions to define their own schemes next to this US
standard. For example, in the elliptic-curve domain several curves are standardized by the
German (BSI), French (ANSSI) and multiple other governments worldwide. For PQC the
situation is not different. Currently multiple European authorities have stated preferences
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for PQC algorithms which were not selected as the final winners by NIST (examples include
the German [Fed], French [Age] and Dutch [Net] governments). The more conservative
(in terms of security) choices of FrodoKEM [ABD+20] and Classic McEliece [ABC+22] are
prevalent in these documents. Also outside of Europe, it is expected that some countries
will choose to adapt their own standard.

In this work, we focus on FrodoKEM. Its security relies on the Learning With Errors
(LWE) problem [Reg05] and it was designed to provide a practical post-quantum key
exchange mechanism with conservative security. Compared to algebraically structured
alternatives, e.g., the NIST winner Kyber [SAB+22], it is widely considered a conservative
and secure choice in practice. The major downside is that this lack of algebraic structure
also leads to larger keys and ciphertexts and makes implementations of FrodoKEM require
more memory and be slower compared to the structured alternatives. For example, the most
memory-efficient implementation of FrodoKEM [HOKG18, Table 6] still uses about 23 kB,
41 kB and 51 kB of stack memory for key generation, encapsulation and decapsulation
respectively for the smallest parameter set. The stack usage only increases further for
larger parameter sets. Other existing scientific works focus mainly on the performance
(i.e., runtime) of FrodoKEM on constrained platforms: e.g. [BFM+18, BOR+21]. The
main reason that the stack memory usage remains high for embedded devices is that
the previous works were not willing to explore memory optimizations that (significantly)
impact performance. However, this means that FrodoKEM is simply infeasible to execute
on a wide variety of embedded systems. Meanwhile this range of constrained devices is
of interest for the European authorities recommending FrodoKEM. Examples of their use
include identity documents (passport, driver’s license) and access control of high-security
infrastructure.

Typical resource constrained examples are platforms which are based on ARM Cortex-
M0(+) cores. Such platforms are typical for a large family of IoT applications. Products in
this range include the LPC800 series by NXP (4 – 16 KiB of SRAM), STM32F0 by ST (4 –
32 KiB of SRAM), or the XMC1000 by Infineon (16 KiB of SRAM). A similar observation
was made in [BRS22] where the authors explore aggressive memory optimizations for
Dilithium in order to fit this into target platforms which have significantly limited memory
capabilities and computational power.

Contributions. We outline multiple strategies to significantly lower the memory consump-
tion of FrodoKEM in order to run this on resource-constrained (IoT) devices. In particular,
we show that the memory usage of FrodoKEM can be reduced significantly with little loss of
performance. For example, FrodoKEM-640 can be run using about 14 kB of stack memory
(compared to 51 kB in [HOKG18]) with only a 5% performance loss with respect to the
pqm4 implementation, making it suddenly feasible to execute this on resource constrained
platforms with 16 kB of stack. We also show that all parameter sets of FrodoKEM are
feasible to execute on platforms with at most 8 kB of stack memory available, with a
slowdown factor of about 3–4× compared to their more memory hungry counterparts. For
devices with at most 4 kB of SRAM not all parameter sets fit: however, we show that
certain algorithmic strategies result in implementations for FrodoKEM-640 that can be run
on such resource constrained platforms. We demonstrate the impact of these techniques in
terms of computational costs and illustrate this with actual performance figures using the
pqm4 benchmarking platform. We present all algorithmic techniques to reduce memory in
such a way that software libraries can immediately alter the existing software and benefit
from these techniques.

We note that there is a significant difference between the AES128 and SHAKE versions
of FrodoKEM in terms of memory optimizations. To enable low-memory versions using
SHAKE we propose a minor modification to the FrodoKEM specification that we hope
to be adopted in any future standards as it will significantly improve the performance
on embedded systems (with very little impact on other platforms). The memory and
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Table 1: The relevant FrodoKEM parameters and matrix dimensions for the various
security levels.

Parameter set NIST
q n̄ nsecurity level

FrodoKEM-640 1 215 8 640
FrodoKEM-976 3 216 8 976
FrodoKEM-1344 5 216 8 1344

Matrix size Matrix name
n× n A
n× n B, E, S
n× n B′, B′′, E′, S′

n× n C, E′′, M, V

performance figures that we present already include this modification.

2 Background
In this section we provide the basics of the FrodoKEM algorithm [BCD+16, ABD+20]
and its notation, with a focus on the main matrix operations and the generation of these
matrices needed in this paper. For further information, we refer the interested reader to
the specification of FrodoKEM [ABD+20].

In the remainder of this paper, we follow the notation as in [ABD+20]. The ring of
integers modulo q is denoted as Zq = Z/qZ. Vectors and matrices are denoted by lower
and upper case boldface letters respectively. For example, B ∈ Zm×n

q denotes a matrix of
size m× n and the matrix element in its i-th row and j-th column is denoted by Bi,j . Bit
strings are written as a vector over the set {0, 1}. A concatenation of bit strings is denoted
by ∥. For two bit strings k ∈ {0, 1}m and ℓ ∈ {0, 1}n their concatenation is written as
k∥ℓ ∈ {0, 1}m+n.

2.1 The FrodoKEM Algorithm
FrodoKEM is derived from the Frodo key agreement protocol proposed in [BCD+16],
whose security reduces to the hardness of the standard Learning With Errors (LWE)
problem [Reg05]. As is typical for PQC KEM schemes, FrodoKEM is built from a public-
key encryption scheme (PKE) named FrodoPKE. This PKE is transformed into a KEM
via (a variant of) the Fujisaki-Okamoto (FO) transformation [FO99]. The three main
algorithms are key generation FrodoKEM.KeyGen, encapsulation FrodoKEM.Encaps and
decapsulation FrodoKEM.Decaps (see Algorithm 1).

Since FrodoKEM is based on the standard LWE problem (without structured matrices),
its main operations are matrix sampling, multiplication and addition. All the matrices
used in FrodoKEM are of size n× n, n× n, n× n or n× n for both n and n depending
on the selected parameter set as recalled in Table 1. These matrices consist of elements
from Zq where q is a small power of two, which makes modular reduction very cheap on
a modern computer architecture. In the following sections we first describe the matrix
multiplication and addition involved in the three algorithms. Then, we detail the sampling
of these matrices from a random seed.

2.1.1 Matrix Operations

In FrodoKEM.KeyGen, the secret key is first generated and then used to compute the
public key. Concretely, the secret matrices S, E ∈ Zn×n

q are generated by sampling from
the small Gaussian distribution χ. The public matrix A ∈ Zn×n

q is generated by calling
FrodoKEM.Gen (see Section 2.1.2) with a seed seedA. Then, the public matrix B ∈ Zn×n

q

is computed as B = A · S + E and consists of an expensive matrix multiplication and
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Algorithm 1 FrodoKEM KeyGen, Encaps and Decaps algorithm descriptions.
Function: FrodoKEM.KeyGen
Input: None.
Output: (pk, sk′)

1: s∥seedSE∥z←$ U({0, 1}lens+lenseedSE +lenz )
2: seedA ← SHAKE(z, lenseedA )
3: A ∈ Zn×n

q via A← Frodo.Gen(seedA)
4: (r(0), r(1), . . . , r(2nn−1))← SHAKE(0x5F∥seedSE, 2nn · lenχ)
5: ST ← Frodo.SampleMatrix((r(0), r(1), . . . , r(nn−1)), n, n, Tχ)
6: E← Frodo.SampleMatrix((r(nn), r(nn+1), . . . , r(2nn−1)), n, n, Tχ)
7: B← AS + E
8: b← Frodo.Pack(B)
9: pkh← SHAKE(seedA∥b, lenpkh)

10: return pk ← seedA∥b, sk′ ← (s∥seedA∥b, ST, pkh)

Function: FrodoKEM.Encaps
Input: pk = seedA∥b ∈ {0, 1}lenseedA +D·n·n.
Output: c1∥c2 ∈ {0, 1}(m·n+m·n)D, ss ∈ {0, 1}lenss .

1: µ←$ U({0, 1}lenµ )
2: pkh← SHAKE(pk, lenpkh)
3: seedSE∥k← SHAKE(pkh∥µ, lenseedSE + lenk)
4: (r(0), r(1), . . . , r(2mn+mn−1))← SHAKE(0x96∥seedSE, (2mn + mn) · lenχ)
5: S′ ← Frodo.SampleMatrix((r(0), r(1), . . . , r(mn−1)), m, n, Tχ)
6: E′ ← Frodo.SampleMatrix((r(mn), r(mn+1), . . . , r(2mn−1)), m, n, Tχ)
7: A← Frodo.Gen(seedA)
8: B′ ← S′A + E′

9: c1 ← Frodo.Pack(B′)
10: E′′ ← Frodo.SampleMatrix((r(2mn), r(2mn+1), . . . , r(2mn+mn−1)), m, n, Tχ)
11: B← Frodo.Unpack(b, n, n)
12: V← S′B + E′′

13: C← V + Frodo.Encode(µ)
14: c2 ← Frodo.Pack(C)
15: ss← SHAKE(c1∥c2∥k, lenss)
16: return c1∥c2, ss

Function: FrodoKEM.Decaps
Input: c1∥c2 ∈ {0, 1}(m·n+m·n)D, sk′ = (s∥seedA∥b, ST, pkh) ∈ {0, 1}lens+lenseedA +D·n·n×Zn×n

q ×
{0, 1}lenpkh .

Output: ss ∈ {0, 1}lenss .
1: B′ ← Frodo.Unpack(c1, m, n)
2: C← Frodo.Unpack(c2, m, n)
3: M← C−B′S
4: µ′ ← Frodo.Decode(M)
5: pk ← seedA∥b
6: seedSE

′∥k′ ← SHAKE(pkh∥µ′, lenseedSE + lenk)
7: (r(0), r(1), . . . , r(2mn+mn−1))← SHAKE(0x96∥seedSE

′, (2mn + mn) · lenχ)
8: S′ ← Frodo.SampleMatrix((r(0), r(1), . . . , r(mn−1)), m, n, Tχ)
9: E′ ← Frodo.SampleMatrix((r(mn), r(mn+1), . . . , r(2mn−1)), m, n, Tχ)

10: A← Frodo.Gen(seedA)
11: B′′ ← S′A + E′

12: E′′ ← Frodo.SampleMatrix((r(2mn), r(2mn+1), . . . , r(2mn+mn−1)), m, n, Tχ)
13: B← Frodo.Unpack(b, n, n)
14: V← S′B + E′′

15: C′ ← V + Frodo.Encode(µ′)
16: (in constant time) k← k′ if (B′∥C = B′′∥C′) else k← s
17: ss← SHAKE(c1∥c2∥k, lenss)
18: return ss
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Algorithm 2 Frodo.Gen using AES128 (algorithm taken from [ABD+20]).
Input: Seed seedA ∈ {0, 1}lenseedA .
Output: Matrix A ∈ Zn×n

q .
1: for (i = 0; i < n; i← i + 1) do
2: for (j = 0; j < n; j ← j + 8) do
3: b← ⟨i⟩∥⟨j⟩∥0 · · · 0 ∈ {0, 1}128 where ⟨i⟩, ⟨j⟩ ∈ {0, 1}16

4: ⟨ci,j⟩∥⟨ci,j+1⟩∥ · · · ∥⟨ci,j+7⟩ ← AES128seedA(b) where each ⟨ci,k⟩ ∈ {0, 1}16

5: for (k = 0; k < 8; k ← k + 1) do
6: Ai,j+k ← ci,j+k mod q
7: return A

Algorithm 3 Frodo.Gen using SHAKE128 (algorithm taken from [ABD+20]).
Input: Seed seedA ∈ {0, 1}lenseedA .
Output: Pseudorandom matrix A ∈ Zn×n

q .
1: for (i = 0; i < n; i← i + 1) do
2: b← ⟨i⟩∥seedA ∈ {0, 1}16+lenseedA where ⟨i⟩ ∈ {0, 1}16

3: ⟨ci,0⟩∥⟨ci,1⟩∥ · · · ∥⟨ci,n−1⟩ ← SHAKE128(b, 16n) where each ⟨ci,j⟩ ∈ {0, 1}16.
4: for (j = 0; j < n; j ← j + 1) do
5: Ai,j ← ci,j mod q
6: return A

addition. The public key pk is derived from B and seedA, while the secret key contains S.
The error matrix E is not part of any key and is discarded.

A similar computation occurs in FrodoPKE.Enc, where positions in the multiplication
are swapped. A public matrix B′ ∈ Zn×n

q is computed from the same matrix A as
B′ = S′ ·A + E′ where the matrices S′, E′ ∈ Zn×n

q are generated by sampling from χ. This
is followed by another matrix multiplication to compute V ∈ Zn×n

q as V = S′ ·B+E′′ where
E′′ ∈ Zn×n

q is also sampled from χ. Since encryption is a subroutine of both encapsulation
and decapsulation, these two matrix computations occur in both FrodoKEM.Encaps and
FrodoKEM.Decaps. Finally, decapsulation is preceded by a matrix computation, computing
M ∈ Zn×n

q as M = C−B′ · S where C ∈ Zn×n
q is derived from the ciphertext.

2.1.2 Generation of the Public Matrix A.

Following previous work in this area [ADPS16, BCD+16], the public matrix A is generated
dynamically and pseudorandomly for every generated key. This helps to avoid the possibility
of backdoors and all-for-the-price-of-one attacks [ABD+15].

Let us recall how the matrix A is constructed following the FrodoKEM specifica-
tion [ABD+20] since this will be relevant for the memory reduction techniques in this paper.
The algorithm FrodoKEM.Gen takes as input the modulus q, a seed seedA ∈ {0, 1}lenseedA

and a dimension n ∈ Z, and outputs a pseudorandom matrix A ∈ Zn×n
q . There are

two options for instantiating FrodoKEM.Gen. The first method uses AES128, the second
instead uses SHAKE128.

When using AES128, the matrix A ∈ Zn×n
q is generated 8 elements at-a-time (of

two bytes each). For each row and each block of 8 elements (in different columns), the
algorithm generates a 128-bit block of predefined input based on the location in the matrix.
This input is encrypted using the seedA as the AES128 key. This process is outlined in
Algorithm 2. More specifically, the input blocks to AES128 are ⟨i⟩∥⟨j⟩∥0∥ · · · ∥0 ∈ {0, 1}128,
where i, j are encoded as 16-bit integers (see Line 3). It then splits the 128-bit AES128
output block into eight 16-bit elements, which it interprets as non-negative integers ci,j+k
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for k = 0, 1, . . . , 7 (see Line 4). Finally, it sets Ai,j+k = ci,j+k mod q for all k. Since q is
always a power of two, this modular reduction is “for free” by dropping the most significant
bits whenever q < 216 (e.g. by applying a bitmask).

The second method uses SHAKE128 instead of AES128 to generate the rows of the
matrix A ∈ Zn×n

q . This process is shown in Algorithm 3. In this case, each entire row is
generated with a SHAKE128 call: this reduces function call overhead compared to the
AES128 approach (assuming the entire output can be stored). Its input consists of the
row index encoded as a 16-bit integer, followed by seedA to produce a 16n-bit output (see
Line 3). The output is then split into 16-bit integers ci,j ∈ {0, 1}16 (for j = 0, 1, . . . , n− 1),
and used to set the corresponding matrix entries Ai,j = ci,j mod q in Line 5.

2.1.3 Generation of Secret and Error Matrices

The secret and error matrices S and E in key generation, and their counterparts S′, E′ and
E′′ in encapsulation and decapsulation are sampled from the distribution χ. Sampling from
χ is done via a constant-time lookup table, using an inversion sampling technique. To do
sampling, a random bit string of length 16 denoted by r(·) is required per coefficient in the
matrix. These random bit strings are first generated using SHAKE128 (in FrodoKEM-640)
or SHAKE256 (in FrodoKEM-976 and FrodoKEM-1344), by using a fixed prefix and a
freshly generated random seed as input. In FrodoKEM.KeyGen, 2nn · 16 bits are extracted
via SHAKE, resulting in bit strings (r(0), . . . r(2nn−1)). The first nn bit strings are used to
sample the rows of ST, while the next nn bit strings are used to sample the rows of E.
Similarly in encapsulation and decapsulation, 2nn + nn bit strings are generated, which
are used to sample the rows of S′, E′ and E′′ respectively.

3 Stack Reduction Strategies
The main contributor to the stack usage in key generation, encapsulation and decapsulation
is the (temporary) storage of large matrices. These matrices include B, E and S in the key
generation, B′, S′, E′ and B in encapsulation and B′, S, S′, E′, B′′ and B in decapsulation.
All these matrices are of size n×n̄ or n̄×n and each entry is 2 bytes large, resulting in a size
of 10 240, 15 616 and 21 504 bytes for FrodoKEM-640, FrodoKEM-976 and FrodoKEM-1344
respectively. In this section we describe our main strategies of reducing stack usage. We
first focus on the AES128 versions, since this allows for more independence of how elements
within A are generated. This in turn gives more flexibility for matrix-multiplication
techniques. We highlight the main differences of these optimization techniques for the
SHAKE versions in Section 3.5, for which we also propose a change to FrodoKEM.Gen in
the current specification to simplify the implementation.

Matrix Multiplication Strategies. A multiplication of matrices can be seen as a collection
of inner-products of two arrays, which boils down to a repeated multiplication with
accumulation. Optimizing the speed of matrix multiplications has been extensively studied,
including for the specific case of those in FrodoKEM. For example, in [BOR+21] the matrix
multiplications in FrodoKEM are sped up via various cache-friendly techniques [HSHvdG16]
as well as asymptotically faster algorithms such as Strassen [Str69]. This assumes, however,
that the matrices can be stored in full. For resource constrained devices this assumption
is often not valid, thus we do not consider these techniques here. Furthermore, we leave
other advanced matrix tricks such as decomposition techniques out of scope, since these
methods are not well-defined when the entries of the matrices are defined over a finite field.

As a starting point we consider the matrix multiplication strategies introduced in
[BFM+18], who target the Cortex-M4 architecture. The first strategy is a straight-forward
inner-product, which assumes a row of the left operand and a column of the right operand
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are stored in full. More importantly, it assumes the coefficients are stored in memory as a
contiguous array in order to use special instructions to load multiple values at once. This
occurs naturally when multiplying with S on the right since it is sampled as ST, putting
the columns contiguous in memory. The inner-product of these arrays is then computed
by loading multiple values of each operand into registers as halfwords, and applying a
multiplication with accumulation of halfwords.

Whenever the coefficients of the right operand are not contiguous in memory, a second
strategy is used that is referred to as the row-by-chunk method. This is the case when
the rows of the right operand are contiguous in memory, thus the column elements have a
fixed offset in memory. In this case, loading the coefficients of the right operand requires
additional operations to collect them from different memory locations, and to extract the
16-bit halfwords from 32-bit memory loads. As a result only 8 coefficients can be loaded
into registers at a time. Since it is more expensive to load the right operand, it is more
efficient to process all row elements of the left operands whenever 8 values of the right
operand are in registers.

Note that the two strategies are efficiently implemented by relying on SIMD instructions.
In this section, we modify these two strategies depending on what and how parts of matrices
are stored.

3.1 Key Generation
Matrix Operations. The matrix operation taking place in key generation is B = A ·S+E.
Since S is generated by sampling ST row-by-row, the columns of S are naturally already
contiguous in memory. The public matrix A is generated row-wise independent of the
symmetric primitive used. Therefore, the inner-product subroutine can be applied in a
straight-forward manner. Modifications to this method can be made by eliminating the
requirement to store rows and columns in full and only storing a constant number of values.

Generating A On-The-Fly. The biggest pressure on the memory in key generation is
the public matrix A. To reduce the stack memory usage this can be generated on-the-fly
as opposed to storing it in full. Indeed, this is recommended by the FrodoKEM team and
already included in the provided optimized implementation. This strategy offers several
time-memory trade-offs.

The strategy in the official FrodoKEM.KeyGen implementation stores and computes
tk = 4 rows of A simultaneously where tk is a trade-off parameter. This enables to
compute 4 inner products each time a column of S is available, allowing the use of the
single instruction, multiple data paradigm when available. In such an implementation
of matrix multiplication, the memory usage for A is proportional to the number of its
simultaneously available coefficients (n · tk). As a result, the stack consumption can
be reduced by taking tk = 1, hence generating a single row at the time at the cost of
performance overheads as detailed in the next paragraph.

Furthermore, when AES128 is used to generate a row of A, 2n-byte arrays for both the
input and the output are used. The motivation for this is that for every iteration of a row
of A, only the row indices need to be updated of the input array. Instead, we can re-use
the same array for both the input and output (saving 2n bytes), at the cost of having to
reconstruct the input array for every iteration.

Reducing Storage for S. The matrix S of size n×n also represents a significant part of the
memory consumption if stored in full. The values in S are sampled from the distribution
χ which has a support of size {25, 21, 13} (i.e. the number of values with a non-zero
probability) when using n ∈ {640, 976, 1344}: hence, only 5, 5 and 4 bits are needed to
store the values for the respective parameter sets. For convenience, these coefficients can
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be stored in a two-byte representation (as done in all previous implementations). In this
way, the values are sampled from 2-byte values r(·) and later also multiplied with 2-byte
values. To reduce memory consumption, we instead compress the values of S down to
whole bytes or nibbles: using an 8-, 8- and 4-bit representation respectively depending
on the parameter set. This reduces the stack usage by 5 120, 7 808, and 16 128 bytes
respectively for the full matrix S.

Computing S On-The-Fly. Alternatively, we detail the trade-offs for an on-the-fly gener-
ation of S in the matrix multiplication A · S for the parameter tk. First if both S and A
are generated on-the-fly, then S would need to be recomputed exactly n times if a single
row of A is stored in memory (tk = 1). As the number of times S needs to reconstructed
is equal n

tk
, storing more rows of A leads to faster (but larger) implementations. One can

optimize the storage of S even further: instead of storing a full row at once, process 10
coefficients at-a-time (this is the maximum number of elements that can be processed
in registers simultaneously on Cortex-M4). This multiplication is depicted in Figure 1a.
Computing S on-the-fly reduces its storage from 2nn bytes down to 20 bytes.

Computing B On-The-Fly. Another significant improvement in memory usage in key
generation can be achieved by reducing the storage of the matrix B. In all current
implementation strategies, B is generated and stored in full. At the end of key generation,
the matrix B is packed and written to the output as well as hashed as part of the secret
key for the public-key hash pkh.

Let us describe a memory reduction technique using the on-the-fly pack-and-hash
method. Instead of first completely storing B, we propose to directly pack and hash
coefficients of B as soon as they are produced. In order to be compliant with FrodoKEM
specifications, this strategy ensures that that the elements of B are computed row-wise.
Concretely, we generate tk rows of B by leveraging the matrix multiplication on-the-fly
strategy. These coefficients are then packed (when q = 215), written to the output buffer,
absorbed into the SHAKE state and then one moves to the following coefficients. Note
that we absorb seedA before we start processing B, and squeeze out pkh after processing
all of B. This technique reduces the storage of B from 2nn bytes down to 2tkn bytes.

This strategy completely eliminates the need for a memory buffer for B. Hence,
one cannot use the memory allocated to B as scratch space to store E as done in the
implementation used in pqm4. We overcome this by storing the appropriate SHAKE state
from which the values of E can be generated on-the-fly instead.

3.2 Encapsulation
Matrix Multiplication. The main memory consuming computations in encapsulation are
the matrix operations to compute B′ = S′A + E′ and V = S′B + E′′. Note that the
public matrix A is the right operand in the computation of B′. Since this is generated
row-wise and the elements are addressed column-wise for S′A, the layout in memory is
not contiguous for this arithmetic operation. The same observation holds for the matrix
B in the computation of V. Therefore the row-by-chunk strategy is required for the
multiplications in encapsulation. Modifications to this method are made depending on
how many elements or rows of the matrix S′ can be stored.

Generating A and S′ On-The-Fly. Since we need to compute inner-products with
columns of A, we use the row-by-chunk multiplication method that operates on eight
values in a column of A at once. Because AES128 generates eight values in a row, one now
stores an 8× 8 block of A. This implies one needs to store at least eight values in a row of
S′, but to avoid re-computation of any matrix we also store the eight values of every n
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(a) Matrix-multiplication to compute the prod-
uct A · S on-the-fly.

(b) Matrix-multiplication to compute the prod-
uct S′ ·A on-the-fly, with storing result in full.

(c) Matrix-multiplication to compute the prod-
uct S′ ·B on-the-fly.

(d) Matrix-multiplication to compute the prod-
uct S′ ·A, without storing result in full.

Figure 1: A summary of the matrix multiplication techniques that we use for the various
operations in FrodoKEM.

rows, resulting also in an 8× 8 block for S′. With a block of both S′ and A, all 8 · 8 = 64
size-8 inner-products are computed and accumulated to the respective values in B′, which
is initialized as E′. For every block of S′, eight rows of A need to be processed, meaning
that we go through eight rows of A as blocks: this strategy is depicted in Figure 1b.

Note that S′ is generated row-wise from a single seed via SHAKE, thus one cannot
immediately generate an 8× 8 block from a single state. In order to generate consecutive
blocks, one needs to prepare eight SHAKE states first. This is done by running through
all of S′ once with an incremental SHAKE state, and store the state every time it reaches
the start of a row. The values of S′ are not computed at this point. To generate a new
8× 8 block, each stored SHAKE state is used to squeeze out eight values (i.e., eight values
of two bytes r(·) which are then used to sample from χ). Since S′ is not fully stored, but
needed again to compute V, one can compute both B′ and V in parallel. This is done by
also preparing an 8 × 8 block of B for every block of S, as depicted in Figure 1c. This
block of B is obtained by unpacking the corresponding coefficients from b which is part of
the public key. Again, with the row-by-chunk method all 8 · 8 = 64 size-8 inner-products
between the blocks of S′ and B are computed and accumulated to V, which initially
contains E′′. After B′ is computed it has to be packed to c1, and to avoid having to fully
store c1 we apply the on-the-fly pack and hash method.

In previous implementations, 4 rows of A were stored, requiring 8n bytes. This is now
reduced to a block of 128 bytes. The storage of matrices S′ and B are reduced from 2nn
bytes each down to 128 bytes each.
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Generating B′ On-The-Fly. With A and S′ generated as 8×8 blocks, the remaining mem-
ory allocation mainly consists of storing the matrix B′. Similar to B in FrodoKEM.KeyGen,
the on-the-fly pack-and-hash method is applicable with the constraint that B′ is computed
row-wise and is directly used as input to SHAKE. Again, if both inputs are not fully
stored, the right operand has to be recomputed, which is A in this case. Concretely, as
described in Figure 1d, a single row of S′ is stored and the columns of A are generated as
8× 8 blocks. One can then sequentially multiply eight columns of A as 8× 8 blocks, after
which the corresponding eight values of E′ are added. This results in a row chunk of 8
coefficients of B′, which is packed and absorbed to a SHAKE state for the shared secret
ss. This process needs to be repeated for every row of S, and therefore all of A is need to
be re-computed n times.

The re-computation of A gives performance overheads: one can perform a time-memory
tradeoff using the parameter ted. Storing ted +1 rows of S′ means that n(ted +1) coefficients
must be stored: however, this reduces the number of re-computations of A down to n

ted+1 .
It is important to note that the first row of B′ can be directly packed and hashed, but this
is not the case for the ted extra ones as B′ must be hashed row-wise. As a result, when this
trade-off is used, a full row of B′ needs to be stored for every of the ted extra rows stored
in S′. This reduces the storage of B′ from 2nn bytes down to 16 + 2tedn bytes. Note that
the rows of B′ can also be stored packed. This saves only 80 bytes for FrodoKEM-640 and
nothing for the other parameter sets. Hence, we do not consider this optimization further.

With this method it is no longer beneficial to compute B′ and V in parallel. Indeed,
for every a row of S′, a column of B needs to be accessed. Since B is packed row-wise in
the public key, such access pattern is not trivial. Additionally, for every row of S′, B must
be fully loaded. Therefore V is computed after B′, and the block method as in Figure 1c
is used. The computation of V can now re-use memory from the computation of B′.

3.3 Decapsulation
Matrix Multiplication. Since decapsulation includes a re-encryption, FrodoKEM.Decaps
benefits from the same optimizations as in FrodoKEM.Encaps. For computations preceding
the re-encryption step, the main memory consuming computation consists of the matrix
operation M = C−B′S. This is what we focus on in this subsection.

Generating B′ On-The-Fly. The first option is to fully store both the matrices M and S
(with S being copied from the secret key). One can re-use the memory to later store the
matrices V and B′′, respectively. Additionally, up to a full row of B′ is unpacked from c1
and stored. With the availability of full rows of ST and B′ one can simply compute an
inner-product to compute M.

After the re-encryption step is completed, one still needs to compare B′ with B′′. When
this strategy is used, a memory block is available for the entire matrix B′′. Hence, we lever-
age a similar approach as for FrodoKEM.Encaps as described in Figure 1b. Unfortunately,
B′ is not available in memory hence one needs to (in an on-the-fly manner) unpack a single
row of B′ from c1 and compare this to its respective part of B′′. Using these techniques,
the stack usage of decapsulation matches the requirement of the encapsulation because
the same memory blocks can be re-used, except for a small caveat for the FrodoKEM-1344
parameter set. Here 64 bytes more are needed for the storage of a row of B′ as this
becomes the memory bottleneck of the subroutines.

Generating B′′ On-The-Fly. For decapsulation we can generate B′′ on-the-fly by using the
same strategy as in encapsulation at the cost of re-computation of A (see Figure 1d). This
means this memory block of B′′ cannot be shared with S. As a result, the computation of M
is performed with the block technique similar as for the generation of V in FrodoKEM.Encaps
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(Figure 1c). Note however, that now a straight-forward inner-product of size eight can be
used instead of the row-by-chunk method. This only requires an 8× 8 block of both S and
B to be stored.

In this case neither B′ nor B′′ are stored, which need to be compared for equality at
the end of the decapsulation as part of the FO transform. This can be done by loading in
the necessary respective coefficients of B′ on-the-fly whenever the analogous coefficients of
B′′ are computed. It is important that the computation continues whenever inequality is
encountered, since the comparison has to be performed in constant time. This is fairly
straightforward by maintaining a flag that signals whether any coefficients have been
different, and using this flag to reject only after all coefficients have been compared. A
similar approach can be taken to compare C against C′.

Alternatively, we can compare hashes of the packed matrices using SHAKE. The packed
matrices (B′′∥C′) are absorbed on-the-fly during their computation, while the hash of
the matrices (B′∥C) is computed alongside the computation of the shared secret. This
latter part is done by copying the SHAKE state after absorbing c1∥c2, where one copy
is finalized and the comparison hash is squeezed out, while the other state first gets k
absorbed and then the shared secret is derived from it by finalizing and squeezing from the
state. This strategy leads to a little additional memory to maintain the SHAKE state, and
a computational trade-off between additional memory loads for B′ and C, and SHAKE
absorbs. The comparison is not exact and equality is only guaranteed up to collision
resistance of SHAKE (SHAKE128 for FrodoKEM-640 and SHAKE256 for FrodoKEM-976
and FrodoKEM-1344). We take the former of the two approaches in our implementation,
though the difference is performance is minor.

3.4 Implementation Strategies
We introduced several memory reduction techniques in Sections 3.1–3.3, but it remains
to decide which ones to select for implementation. In this section we present various
implementation strategies for all parameter sets of FrodoKEM. We first give details of a
low-cost stack-optimized implementation strategy. In this strategy we select the techniques
that significantly reduce the stack usage, while the performance (i.e., runtime) does not
increase significantly. This implementation is characterized by still storing one large (i.e.
of size n× n or n× n) matrix throughout the algorithm.

For a more drastic reduction of the stack usage we provide a second memory reduction
strategy, which offers specific time-memory trade-offs based on a selected target. This
strategy is characterized by not storing any large matrix in full, which comes at the cost
of re-computations.

Both strategies are further optimized by optimizing placement of memory blocks.
Any variables that do not have an overlapping lifetime will share a memory block. To
fully utilize this method, a single block of memory is allocated for all subroutines. This
is then passed to all subroutines but also used to store short-lifetime variables in the
main function. This requires careful optimization of the various routines. We show an
example for FrodoKEM-AES-640.KeyGen in Figure 2. Analogous figures for the remaining
algorithms can be found in Appendix A.

In Table 2 we show our results by breaking down the memory usage of every optimization
technique. We compare our two implementation with the pqm4 implementation to highlight
the differences.

Low-Cost Memory Reduction. In key generation, both matrices A and B can be
processed on-the-fly instead of storing them fully, without any need for re-computation
of other matrices. This is not the case for the matrix S, which we store entirely. Note
that it is possible to reduce the stack usage of key generation even further, by reducing
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Table 2: Breakdown of stack memory per optimization technique, measured in bytes.

Implementation pqm41 Ours Ours
(Low-Cost) (Trade-Off)

FrodoKEM-640.KeyGen (AES)
A 10,240 1,280 1,280 · tk

B, E 10,240 16 16 · tk

S 10,240 10,240 20
Total2 31,489 12,448 1,556 + 1,296 · tk

FrodoKEM-640.Encaps (AES)
A 20,480 128 128
B 10,240 128† 128†

V, E′′ 128 128 128†

C 128 128† 128†

B′, E′ 10,240 10,240 16 + 1,280 · ted

S′ 10,240 128 + 1,664 1,280 · (ted + 1) + 1,664†

c 9,720 15† + 120† 15† + 120†

Total2 61,977 13,024 2,801 + 2,560 · ted

FrodoKEM-640.Decaps (AES)
A 20,480 128 128
B 10,240 128† 128†

B′ 10,240 1,280† 128†

S 10,240 10,240 128†

M, V, E′′ 128 128† 128†

C 128 128† 128†

C′ 128 128† 128†

B′′, E′ 10,240 10,240† 16 + 1,280 · ted

S′ 10,240 128 + 1,664 1,280 · (ted + 1) + 1,664†

c 9,720 15† + 120† 15† + 120†

Total2 82,585 13,024 2,593 + 2,560 · ted

1 https://github.com/mupq/pqm4/tree/master
commit: 685fbbb4059b882cad00f3fb4a345bf36b37ef4b
2 This also includes smaller variables such as seeds, but also stack usage of the symmetric
subroutines (i.e. AES and SHAKE)
† These variables do not increase peak stack usage in this implementation by reusing
memory from previous variables

https://github.com/mupq/pqm4/tree/master
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Figure 2: Memory allocation in bytes for the FrodoKEM-AES-640.KeyGen algorithm.
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the storage for S, as explained in Section 3.1. We opted not to implement it since key
generation is already in the same range of encapsulation and decapsulation.

During encapsulation avoiding re-computation means having to store the entire matrix
B′. Both A and S′ can be generated on-the-fly by only storing an 8× 8 block, requiring
128 bytes for each block. This will result in a small overhead in runtime to construct the
additional SHAKE states of S′, as explained in Section 3.2.

Decapsulation uses the same strategy as in encapsulation for its re-encryption subroutine.
For FrodoKEM-640-AES, FrodoKEM-976-AES, the re-encryption preceding computations
require no additional stack allocation compared to encapsulation since the encapsulation
stack is the bottleneck (whereas FrodoKEM-1344-AES uses an additional 64 bytes as
explained in Section 3.3).

Time-Memory Trade-Offs. If further memory reduction is required, re-computation of
certain matrices is required. The second strategy leverages time-memory tradeoffs.

In key generation, we choose to compute the matrix S on-the-fly and re-compute when
needed. We select the trade-off parameter tk as a divisor of n for convenience. Increasing
tk increases the number of stored rows of A (at the cost of 2n bytes per row) as well as
the stored rows of B (at the cost of 16 bytes per row).

Similar trade-offs exist in encapsulation, where one can process B′ on-the-fly instead of
storing the full matrix. Depending on the stack available, the trade-off parameter ted can
be increased to store additional rows of S′ (at the cost of 2n bytes per row) and B′ (at the
cost of 2n bytes per row), which reduces the number of required re-computations of A.
For convenience of implementation, we only consider the values ted ∈ {0, 1, 3, 7}.

When applying the same strategies for the re-encryption in decapsulation, there is less
stack available for the preceding computation of M. This is solved by using the strategy
of loading both S and B on the fly as blocks, as explained in Section 3.3. Similar stack
issues arise for the comparison after the re-encryption step of the decapsulation. By using
the on-the-fly comparing strategy as described in Section 3.3, storing the entire matrices
can be avoided. In contrast to encapsulation, during the on-the-fly computation of B′′, no
hash of it has to be computed. Hence, in total decapsulation requires roughly 200 bytes
less (i.e. one SHAKE state).

3.5 FrodoKEM with SHAKE: Efficient Matrix Generation
Finally, we highlight a significant difference between the FrodoKEM parameter sets using
AES128 and SHAKE128. Whereas when generating A using AES128, each eight values
in a row are generated independently from one another, when using SHAKE128 instead
a complete row is squeezed from a single seed (see Algorithm 3). In high-performance
settings this has the advantage that it reduces SHAKE128 function call overhead, but in
low memory implementations it comes at the cost of multiple re-computations.

For example, in the memory reduction technique for FrodoKEM.Encaps illustrated in
Figure 1b, the rows of A are computed in 8 × 8 blocks. This requires coefficients from
eight rows at once, which can be achieved by initializing the eight corresponding SHAKE
states and squeezing coefficients when needed. This gives significant memory overheads
since storing a SHAKE state requires at least 200 bytes, hence this method uses at least
1400 bytes more than using only a single state.

Another example of the drawback of squeezing the full rows of A from a single
SHAKE128 state is illustrated by the strategy Figure 1d. There A is accessed column-wise
with 8× 8 blocks, hence the impact is even larger. Indeed, the first block contains values
from row 0–7 and the first eight columns while the second block we process contains values
from row 8–15 and still the first eight columns. As a result, in order to access the block
containing the coefficient Ai,j , for each of the 8 rows, a SHAKE state must be initialized
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Algorithm 4 Frodo.Gen using SHAKE128 using customization
Input: Seed seedA ∈ {0, 1}lenseedA .
Output: Matrix A ∈ Zn×n

q .
1: n′ ← 84 ·

⌊
n
84

⌋
2: n′′ ← n mod 84
3: for (i = 0; i < n; i← i + 1) do
4: for (j = 0; j < n′; j ← j + 84) do
5: b← ⟨i⟩∥⟨j⟩∥seedA ∈ {0, 1}32+lenseedA where ⟨i⟩, ⟨j⟩ ∈ {0, 1}16

6: ⟨ci,j⟩∥⟨ci,j+1⟩∥ · · · ∥⟨ci,j+83⟩ ← SHAKE128(b, 16 · 84) where each ⟨ci,k⟩ ∈ {0, 1}16

7: b← ⟨i⟩∥⟨n′⟩∥seedA ∈ {0, 1}32+lenseedA where ⟨i⟩, ⟨n′⟩ ∈ {0, 1}16

8: ⟨ci,n′⟩∥⟨ci,n′+1⟩∥ · · · ∥⟨ci,n−1⟩ ← SHAKE128(b, 16n′′) where each ⟨ci,k⟩ ∈ {0, 1}16

9: for (j = 0; j < n; j ← j + 1) do
10: Ai,j ← ci,j mod q
11: return A

according to the row i and then squeezed to obtain all the coefficients j′ such that j′ < j
despite not being used in this block. In the worst case, to generate coefficients in the
right-most columns of A, the full rows must be generated from a SHAKE state. This is
much different to AES128, where each 8× 8 block can be generated using eight seeds at
the cost of 128 bytes per seed.

In order to reduce the impact of SHAKE128 compared to AES128 on low-memory
implementations, we propose a modification to the Frodo.Gen routine as shown in Algo-
rithm 4 (compared to the original Algorithm 3). There, we propose to generate the rows
as blocks of 168 bytes which corresponds to 84 coefficients in Zq. This choice of blocksize
is motivated by the size of rate of SHAKE128 which is equal to 1600− 256 = 1344 bits
which corresponds to 168 bytes. As this block-size fully exploits the rate of SHAKE128,
the number of calls to the underlying permutation (which is a dominating cost factor) is
unchanged compared to the specifications of FrodoKEM. We note that this solution still
induce some slight overheads in the absorbing phase, since this is done for each 84-byte
block instead of only once per row. However since this only consists of initializing a 1600-bit
state the overhead is minimal as detailed in the benchmarks of Section 4. Concretely, to
ensure uniqueness of every row, the input to SHAKE128 now requires both a row and
column index as indicated in Line 5 of Algorithm 4. Since n = 640 and 976 do not have
84 as a divisor, the remaining bytes of the last block are discarded. With this change,
memory-friendly implementations of FrodoKEM are in scope of the (adapted) SHAKE
parameter sets as well.

The new Frodo.Gen for SHAKE enables efficient low-memory implementations without
unused recomputations of rows, similarly as for AES128, but with slight differences in
terms of block sizes used for the matrix multiplications. For the strategy described in
Figure 1d, our SHAKE version processes blocks of A of size 8× 84 instead of 8× 8 for
the AES128 (and still a full row of S′). This means that 84 columns of A are processed
simultaneously instead of 8. Hence, the memory allocation for these blocks increases by a
factor 10.5. Eventually, it means also that the memory allocation for row chunks of B′

also slightly increases.

3.6 Low-Memory Trade-Offs
We conclude this section by illustrating the possible trade-offs for a more granular stack-
budgets described in Section 3.4. For this purpose, we use an STM32F4 discovery clocked at
24 MHz. See Section 4 for further details on this board and more extensive implementation
results. Figure 3a contains the data for FrodoKEM with AES, while Figure 3b displays
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(a) FrodoKEM-AES (b) FrodoKEM-SHAKE

Figure 3: Possible stack/cycle tradeoffs using low-memory strategies for FrodoKEM.

similar results when using SHAKE with the modified FrodoKEM.Gen from Section 3.5
(as regular version leads to prohibitive overheads). In these figures only the markers
are achievable trade-offs. Namely, the parameter tk in FrodoKEM.KeyGen is selected
to be a divisor of the parameter n, where we only consider values small enough such
that the stack memory is below the low-cost implementation. For FrodoKEM.Encaps and
FrodoKEM.Decaps, the trade-off parameter considered are ted ∈ {0, 1, 3}. Here ted = 7 is
excluded since this always produces worse results for both stack and performance compared
to the low-cost implementation. From these figures, several observations can be made.

First, decreasing the trade-off parameter (tk or ted) implies a reduction in memory,
but comes at the cost of additional computing. Indeed, the right bullets on the plots
corresponds to large(r) trade-off parameters, hence with large(r) memory but small(er)
cycle counts. By decreasing the trade-off parameters, the stack reduces, but the cycle count
increases. The cycle count impact is less than a factor five between using the maximum
stack and the minimal stack for all cases, but many trade-offs are possible in-between.

Second, for all parameter sets one can observe that stack values of FrodoKEM.Encaps
and FrodoKEM. Decaps are very close. Indeed, as Decaps contains a re-encryption, memory
optimization and memory allocation techniques can be applied to both (see Section 3.3 for
details).

4 Implementation and Evaluation
In this section we implement the presented memory reduction techniques in order to validate
the exact performance impact and compare against the literature. The implementations
target the Arm Cortex-M4: this allows us to re-use and extend some of the assembly
routines present in existing implementations. The initial development was performed
on an NXP FRDM-K28FA board (equipped with a Cortex-M4) containing a Kinetis
MCU running at a maximum frequency of 150 MHz and containing 1 MB of SRAM. It
was selected due to its large memory size that would fit any parameter set of FrodoKEM
without problems. No special features of this board were used which allows direct execution
on other platform which contain microcontrollers based on a Cortex-M4 CPU.

To simplify evaluation and comparison with existing literature, we target the devel-
opment boards used by default in pqm4 for benchmarking and reporting. This default
board is the STM32F4 Discovery, containing an STM32F407 microcontroller operating
at a maximum frequency of 168 MHz and containing 192 kB of RAM. Unfortunately, this
is not sufficient RAM to execute the implementations of the two largest parameter sets
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Table 3: Stack memory consumption in kilobytes (kB) on the STM32F407VG (STM32F4
Discovery) platform. The implementation of [HOKG18] targets the Round 2 version of
FrodoKEM.

Algorithm Impl. Keygen Encaps Decaps

FrodoKEM-640 (AES) [HOKG18] 23.4 41.2 51.7
ours 13.0 13.0 13.0

FrodoKEM-976 (AES) [HOKG18] 35.5 63.5 63.6
ours 19.0 18.8 18.9

FrodoKEM-640 (SHAKE) [HOKG18] 22.4 37.8 48.2
ours 12.5 14.5 14.5

FrodoKEM-976 (SHAKE) [HOKG18] 33.8 58.0 58.1
ours 18.6 19.9 19.9

of FrodoKEM. This explains why pqm4 has only included the smallest parameter set
(n = 640) into its framework. To get around this limitation and get meaningful result
using pqm4 we also benchmark our implementations on the STM32 Nucleo-144, containing
640 kB of RAM and running at a maximum frequency of 120 MHz. As is typical for
pqm4, all benchmarks were obtained at 24 MHz to avoid memory-related wait cycles. We
measure only a single execution of the algorithms, but since they are implemented in
constant-time and fairly slow there is only very little variance. All numbers were obtained
using arm-none-eabi-gcc 11.3.rel1 using the default optimization flags from the pqm4
build environment. For the ROM code size our implementations have little to no impact
compared to the pqm4 implementations.

4.1 Comparison
We compare our results to the ones reported in pqm4 as well as the numbers reported
by [HOKG18]. As mentioned, the pqm4 framework only includes an implementation of
the smallest parameter set. In order to make a comparison for the larger parameter sets,
we extend the pqm4 implementation such that it also supports these larger parameter sets.
This was achieved by adapting the assembly for the matrix multiplication to work for all
parameter sets. We also include a slightly modified version of the pqm4 implementation
that includes the adaptation to the SHAKE parameter sets as suggested in Section 3.5.
As one can see in Table 4 and Table 5, this has virtually no impact on the stack memory
consumption for the unoptimized version and a minor increase in runtime of at most 5%
compared to the FrodoKEM implementations in pqm4. However, it has major advantages
for further reducing the stack memory.

We also note that [HOKG18] does not implement the FrodoKEM submission of Round
3 but rather an older version. Since the differences are fairly small, we think a direct
comparison here is still meaningful. It is clear that their memory optimizations avoided
impact on the runtime. For example, the cycle counts reported in [HOKG18, Table 5] are
on par with pqm4. However, the memory reductions with our techniques are significant
with little loss of performance. We summarize the improvements in Table 3.

STM32F4 Discovery. We ran both the pqm4 implementation of FrodoKEM as well as
the implementation of the techniques from this work on the STM32F4 Discovery board.
For the low-stack implementation, we benchmark the low-performance-impact techniques
of Section 3.4 as well as the trade-offs that reduce the stack usage below 16 kB, 8 kB and
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4 kB respectively. These sizes were chosen because they are common amounts of available
stack memory on commercial (secure) microcontrollers. The results are in Table 4.

We observe that for the FrodoKEM-640 parameter set, the stack reduction techniques
lead to a 53% and 84% reduction in stack memory, respectively, for the AES and SHAKE
implementations with a minimal increase in the cycle count of 2–6%. For the two larger
parameter sets we are unable to compare to pqm4 as their stack usage is too large to run
on the Discovery board. Note that the duplicate lines for the FrodoKEM-640 parameter sets
are not an error; in these cases the low-performance-impact techniques of Section 3.4 were
already under 16 kB in stack and outperformed those where the time-memory tradeoffs of
Section 3.4 were set to achieve this limit.

Further reduction to 16 kB and 8 kB is possible for all parameter sets, and a reduction
to 4 kB is even possible for the FrodoKEM-640 and FrodoKEM-976 parameter sets. Of
course, the performance impact in this case is more significant. For example, in the
decapsulation of FrodoKEM-640 (AES) the stack memory usage of pqm4 can be reduced
by (approximately) a factor 28.6× at the expense of increasing the runtime by a factor
6.3×.

STM32 Nucleo-144. In order to run all FrodoKEM parameter sets we also consider the
STM32 Nucleo-144 which is supported by pqm4 and does have a much larger stack memory.
The conclusions are very similar as for the STM32F4 Discovery: the stack memory usage
is reduced by a factor 2–3× with virtually no impact on the runtime, while the memory
can be reduced further with more significant performance impact. The full results are in
Table 5.

5 Conclusion
In this work we focus on memory optimization techniques for FrodoKEM. We present
various optimization techniques for FrodoKEM that further reduce the stack memory usage
with little impact on performance. We also showed that while for previous implementations
it was not possible to execute any FrodoKEM parameter set on a device less than 72 kB
SRAM, using the presented memory reduction strategies AES parameter sets can be
implemented even within 8 kB SRAM constraints, and some even within 4 kB SRAM. The
same can be achieved for the FrodoKEM SHAKE parameter sets, but it requires a minor
tweak to the FrodoKEM specification. As this tweak does not lead to a (significant) loss of
performance, we propose this to be adopted into any future FrodoKEM standard to enable
implementation on embedded systems.

There are a few areas to investigate for further research. First, we did not investigate
the re-use of memory buffers for inputs and outputs as workarea memory (i.e., keys
and ciphertext). Since large buffers are required for FrodoKEM, the memory could be
significantly reduced with such optimizations. We did not consider this optimization in
this work since the small devices with only 4–16 kB of SRAM are unlikely to have such
large buffers available. Instead, they would likely stream out keys and ciphertexts or write
them to Flash memory that cannot be used as stack.

Second, for many constrained microcontroller applications, protection against fault and
side-channel attacks is also a main priority. As a follow-up to this work we would like to
investigate the impact of masking on the memory requirements of FrodoKEM.

Lastly, there are more NIST and non-NIST schemes which are a challenge to run on
constrained devices. For instance Falcon [PFH+22] and Classic McEliece [ABC+22] both
require rather large memory requirements as well. Future work could also investigate
whether stack reductions are feasible there as well.
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Table 4: Performance benchmarks for the FrodoKEM implementation (AES and SHAKE)
on the STM32F407VG (STM32F4 Discovery) platform.

Implementation Keygen Encaps Decaps
stack cycle stack cycle stack cycle

[bytes] [106] [bytes] [106] [bytes] [106]
FrodoKEM-640 (AES)

pqm41 31,964 43 62,476 47 83,100 47
ours 12,940 44 13,436 49 13,436 49
ours <16kB 12,940 44 13,436 49 13,436 49
ours <8kB 7,164 226 5,844 160 5,660 160
ours <4kB 3,204 776 3,188 294 2,908 294

FrodoKEM-976 (AES)
pqm41 - - - - - -
ours 18,988 100 18,828 110 18,836 109
ours <16kB 9,844 563 15,708 203 15,556 203
ours <8kB 5,908 1,029 7,884 364 7,692 364
ours <4kB 3,884 1,962 3,812 677 3,620 677

FrodoKEM-1344 (AES)
pqm41 - - - - - -
ours 25,636 186 24,732 203 24,804 202
ours <16kB 12,788 1,007 10,116 687 9,932 687
ours <8kB 7,380 1,865 4,572 1,278 4,372 1,279

FrodoKEM-640 (SHAKE)
pqm41 26,428 73 51,804 79 72,428 78
pqm42 26,428 76 51,844 82 72,468 81
ours 12,516 75 14,468 85 14,476 84
ours <16kB 12,516 75 14,468 85 14,476 84
ours2 <8kB 7,948 223 6,668 293 6,460 294
ours2 <4kB 2,732 811 - - 3868 568

FrodoKEM-976 (SHAKE)
pqm41 - - - - - -
pqm42 - - - - - -
ours 18,572 169 19,860 186 19,868 185
ours2 <16kB 9,388 637 8,700 668 8,500 667
ours2 <8kB 5,444 1,103 4,796 1,296 4,596 1,296

FrodoKEM-1344 (SHAKE)
pqm41 - - - - - -
pqm42 - - - - - -
ours 25,196 309 25,764 345 25,772 344
ours2 <16kB 12,332 1,139 10,924 1,223 10,716 1,223
ours2 <8kB 6,916 2,003 5,532 2,380 5,324 2,379

1 https://github.com/mupq/pqm4/tree/master
commit: 685fbbb4059b882cad00f3fb4a345bf36b37ef4b
2 This includes a modification to the specification for the generation of A (see
Section 3.5)

https://github.com/mupq/pqm4/tree/master
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Table 5: Performance benchmarks for the FrodoKEM implementation (AES and SHAKE)
on the STM32L4R5ZI (STM32 Nucleo) platform.

Implementation Keygen Encaps Decaps
stack cycle stack cycle stack cycle

[bytes] [106] [bytes] [106] [bytes] [106]
FrodoKEM-640 (AES)

pqm41 31,976 47 62,496 51 83,112 50
ours 12,984 48 13,448 53 13,440 53
ours <16kB 12,984 48 13,448 53 13,440 53
ours <8kB 7,112 239 5,728 170 5,552 170
ours <4kB 3,216 821 3,192 317 2,992 317

FrodoKEM-976 (AES)
pqm41 48,144 106 95,440 116 126,808 114
ours 19,032 108 18,864 119 18,872 118
ours <16kB 9,808 607 15,600 220 15,416 220
ours <8kB 5,864 1,111 7,784 390 7,568 390
ours <4kB 3,896 2,118 3,848 731 3648 731

FrodoKEM-1344 (AES)
pqm41 65,832 198 130,832 214 173,960 212
ours 25,632 200 24,744 220 24,840 219
ours <16kB 12,744 1,092 9,992 732 9,800 732
ours <8kB 7,336 1,989 4,608 1,378 4,384 1,378

FrodoKEM-640 (SHAKE)
pqm41 26,416 80 51,800 85 72,416 84
pqm42 26,416 84 51,840 88 72,456 88
ours 12,528 81 14,472 91 14,472 90
ours <16kB 12,528 81 14,472 91 14,472 90
ours2 <8kB 7,944 237 6,688 315 6,488 315

FrodoKEM-976 (SHAKE)
pqm41 39,888 181 79,368 191 110,736 189
pqm42 39,888 189 79,416 199 110,784 197
ours 18,576 182 19,864 204 19,872 203
ours2 <16kB 9,328 690 8,728 717 8,520 717
ours2 <8kB 5,392 1,194 4,800 1,389 4,592 1,389

FrodoKEM-1344 (SHAKE)
pqm41 54,632 330 108,872 347 152,000 345
pqm42 54,632 345 108,912 362 152,040 360
ours 25,200 331 25,768 371 25,776 370
ours2 <16kB 12,272 1,240 10,952 1,314 10,744 1,313
ours2 <8kB 6,864 2,137 5,560 2,551 5,328 2,550

1 https://github.com/mupq/pqm4/tree/master
commit: 685fbbb4059b882cad00f3fb4a345bf36b37ef4b
2 This includes a slight modification to the specification for the generation of A (see
Section 3.5)

https://github.com/mupq/pqm4/tree/master
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Figure 4: Memory allocation in bytes for the FrodoKEM-AES-640.KeyGen algorithm in the Trade-Off implementation.
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Figure 5: Memory allocation in bytes for the FrodoKEM-AES-640.Encaps algorithm in the Low-Cost implementation.
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Figure 6: Memory allocation in bytes for the FrodoKEM-AES-640.Encaps algorithm in the Trade-Off implementation.



J.W
.B

os,O
.B

ronchain,F.C
usters,J.R

enes,D
.Verbakeland

C
.van

Vredendaal
27Figure 7: Memory allocation in bytes for the FrodoKEM-AES-640.Decaps algorithm in the Low-Cost implementation.
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