
KiloNova: Zero-Knowledge PCD from
Non-Uniform Multi-Folding Schemes

Tianyu Zheng1, Shang Gao1, Yu Guo2, and Bin Xiao1

1 The Hong Kong Polytechnic University
2 SECBIT Labs

Abstract. Proof-Carrying Data (PCD) is a powerful cryptographic prim-
itive generalizing Incrementally Verifiable Computation (IVC) to enable
sequential computation by multiple distrusting parties. However, the
more complex construction of PCD incurs efficiency problems. For in-
stance, naively adopting existing folding schemes for IVC to PCD results
in an “explosive cross terms” problem. Additionally, the development of
virtual machines like EVM proposes new requirements of handling non-
uniform circuits and providing zero knowledge. To address these chal-
lenges, we introduce KiloNova, a new construction of zero-knowledge
PCD from non-uniform multi-folding schemes.
We first propose a generic folding scheme for multiple instances with
non-uniform circuits. Inspired by HyperNova (Kothapalli et al. ePrint
2023), we employ sum-check protocols to linearize the CCS relation.
This process yields a relaxed relation with linear claims on structures
and instance-witness pairs, thereby avoiding cross terms in the folding
operations. Based on the relaxed relation, we build a generic folding
scheme with comparable performance to other advanced work. We also
introduce an efficient approach to achieving zero knowledge for this fold-
ing scheme.
Next, we propose a novel construction for zero-knowledge PCD. Un-
like previous works, our construction eliminates the need for a sepa-
rate design of a zero-knowledge Non-Interactive Argument of Knowl-
edge (NARK), allowing a zero-knowledge PCD to be constructed with
only a zero-knowledge folding scheme. This theoretical improvement sig-
nificantly reduces the work of building zero-knowledge PCD. Based on
this, we construct KiloNova, the first zero-knowledge, non-uniform PCD
based on folding schemes. Our PCD outperforms others according to the
evaluation, with only a single multi-scalar multiplication dominating the
prover cost at each step. Its recursive circuit is dominated by O(log(n))
random-oracle-like hashes and O(k) scalar multiplications, where n is
the circuit input length and k is the instance number at each step. To
address potential efficiency challenges in the real-world implementation
of non-uniform PCD, we introduce a new technique for delegating the
costly structure folds.

1 Introduction

Recently, there has been a surge of interest in the realization of Incrementally
Verifiable Computation (IVC), a cryptographic primitive that runs sequential

computations [34] while allowing efficient verification of the execution at any
point. As a generalization of IVC to directed acyclic graphs, Proof-Carrying Data
(PCD) allows multiple distrusting parties to perform computations sequentially.
This property enables PCD in a wider range of applications such as distributed
computation [3,18] and blockchain technology [1,6,7]. Meanwhile, the ability to
handle multiple instances in each round provides a broader spectrum of trade-offs
for system performance, as mentioned in [20].

Folding/Accumulation Schemes. The traditional approach to constructing
IVC/PCD employs a general-purpose SNARK at each step i to attest the cor-
rectness of the proof output by step i− 1 recursively. This construction requires
implementing the whole verification logic in the SNARK proving circuit (specifi-
cally, the recursive circuit), which incurs a significant overhead as the verification
may include costly non-native operations such as elliptic curve pairings [10]. A
recent line of work proposes a more practical idea to “defer” the expensive oper-
ations in the proof verification and run them together at the end of IVC/PCD,
including Halo [10], Halo infinite [5], BCMS20 [15], BCLMS21 [14], Nova [26], Hy-
perNova [25], Protostar [13], etc. The fundamental concept behind these schemes
is inspired by batch verification [2], which allows checking multiple proofs in a
batch with almost the same cost as checking merely one proof. Concretely, in-
stead of checking the SNARK/NARK proof from the prior step in the recursive
circuit, the prover defers it by applying a so-called folding/accumulation scheme
(we use them interchangeably in the following) and continues the incremen-
tal computations. As a result, the expensive SNARK/NARK verification in the
recursive circuit is replaced with a cheaper verification of the folding scheme.
Finally, the IVC verifier (or the decider), conducts a batch verification for all
SNARK/NARK proofs deferred at each step.

Proof-Carrying Data. BCMS20 [15] introduces the first PCD construction
based on accumulation schemes for SNARKs, such as Sonic [28] and Plonk [22].
This scheme utilizes the “additive” property of polynomial commitments as de-
fined in [5], which allows accumulations on the evaluation proofs of existing
polynomial IOPs. To further reduce the recursion overhead, BCLMS21 [14] in-
troduces split accumulation schemes to accumulate only the statement part of
evaluation proofs. However, they can only construct PCD for R1CS relations that
can not express high-degree constraints. Although several folding/accumulation
schemes [13, 25, 26] have been demonstrated as effective primitives for building
IVC systems in recent years, directly applying them to PCD may cause severe
efficiency problems. This is due to the different structures between IVC and
PCD. Compared to IVC, which only folds two instances at each sequential step,
PCD requires folding multiple instances. This main difference raises a problem
of an exploding number of “cross terms” (also known as error terms in [13]).

Concretely, the cross terms are redundant elements generated when folding
non-linear relations. For example, when folding two quadratic instances (wi, ti)
such that w2

i = ti for i = 1, 2, the folded instance (w, t) = (w1+rw2, t1+rt2) with
a random challenge r does not satisfy w2 = t. The prover has to compute and

2

send an extra cross term as 2w1w2 for verification. As stated in [20], the number
of cross terms grows in O(ds) when folding s instances in d-degree relations
with the techniques given by Protostar [13]. Most of other schemes improved
on Nova [26] also encounter this problem more or less. Even worse, the “cross
terms” problem also hinders us from proposing PCD constructions to satisfy
the implementation of virtual machines with rich instruction sets (e.g., EVM,
RISC-V, Wasm). This application requires the ability to handle non-uniform
circuits. Providing zero knowledge may be required as well in privacy-preserving
scenarios. Unfortunately, achieving both these properties may exacerbate the
efficiency problem. We highlight their technical difficulties in detail as follows.

Challenge 1: Non-Uniform Circuits. To attest universal machine execu-
tions, SuperNova [24] realizes a non-uniform IVC by enhancing Nova [26] with
a selector for the list of predefined functions (i.e., instructions). The downside
is that the IVC proof at each step increases with the size of the instruction
set. Protostar [13] introduces a more expressive folding/accumulation scheme
for special sound protocols supporting Plonkish relations, which yields a non-
uniform IVC. Its major drawback lies in the exponential growth of the number
of cross terms when folding multiple high-degree instances, which hinders the
construction of PCD. Protogalaxy [20] aims to reduce the number of cross terms
in Protostar by leveraging the property of the Lagrange base, thus making the
recursion overhead tolerable for multi-instance situations. Though Protogalaxy
successfully reduced the exponential growth to linear in asymptotic, it causes a
quasi-linear prover complexity due to the computation of Lagrange bases.

Challenge 2: Zero Knowledge PCD. In addition to the difficulties in sup-
porting non-uniform circuits, adding zero knowledge to folding-based IVC/PCD
is also challenging. Since most existing schemes focus on scenarios involving one
prover, they only need to provide zero knowledge for the final verifier by applying
a general-purpose zkSNARK at the end of IVC. While for IVC/PCD run by mul-
tiple distrusting parties, zero knowledge between each two parties is not guaran-
teed. Such defect prevents a wider range of applications in privacy-preserving sce-
narios, such as anonymous De-Fi, confidential transactions, and trustless cross-
chain bridges [12, 36, 38]. Based on the theorems given by Bünz et al. [14], it is
efficient to compile any Non-Interactive Argument of Knowledge (NARK) with
a folding/accumulation scheme into PCD. Two more conditions are required for
further constructing zero-knowledge PCD: (1) the folding/accumulation scheme
is zero-knowledge, and (2) the NARK itself is zero-knowledge. The predicament
here is that transforming NARK instances into zero-knowledge forms with mask-
ing values requires an extra inefficient process with expensive prover cost and
cross terms. Section 4.3 elaborates on this predicament with concrete examples.

Our Motivation. Upon the research status described above, we develop our
motivation in two steps. First, can we build a non-uniform multi-folding scheme
without cross terms? If so, can we efficiently construct zero-knowledge PCD from
the folding scheme?

3

1.1 Our Contributions

We answer all questions above positively and present KiloNova, a non-uniform
zero-knowledge PCD from generic folding schemes. To achieve this, we make
theory and systems contributions as follows. (1) We introduce a relaxed CCS
relation with only linear claims on instance-witness pairs and structures. (2) We
build a non-uniform multi-folding scheme without cross terms from the relaxed
CCS relation. (3) We propose a new construction for zero-knowledge PCD and
construct KiloNova based on the non-interactive folding scheme. We also men-
tion some optimization techniques for enhancing the performance of the folding
scheme and PCD. Each of these contributions is elaborated below.

(1) Relaxed CCS Relations. Motivated by Nova [26], and HyperNova [25],
we introduce a new relaxed CCS relation called Atomic CCS (ACCS) to enable
our folding scheme to efficiently deal with non-uniform circuits. Similar to the
linearized committed CCS relation in HyperNova, this new ACCS relation is
also reduced from the original CCS relation [31] by partially running an “early
stopping” version of SuperSpartan [25]. The difference is that our protocol runs
an extra round of sum-check protocol than HyperNova, which stops right before
compiling the polynomial Oracle queries for the second sum-check protocol, as
illustrated in Figure 1. Thus, the obtained ACCS instances as input of the folding
schemes contain independent linear claims on instance-witness pairs and struc-
tures, enabling an efficient protocol of folding multiple non-uniform instances
without cross terms.

(2) Generic Folding Schemes. Based on the atomic CCS relations, we de-
sign a multi-folding scheme for multiple non-uniform CCS instances, which is
denoted as the generic folding scheme. Generally speaking, the generic fold-
ing scheme runs the SuperSpartan protocol for each CCS instance in parallel
and aggregates their sum-check protocols into one, except for the final Oracle
queries. The remaining expensive query operations are folded and formalized as
one atomic CCS instance, and its verification is “deferred” to the final verifier.
Therefore, the recursive circuit at each step only contains the cheap verification
of folding, while does not include the expensive verification of the final atomic
CCS instance. The following theorem captures its cryptographic and efficiency
characteristics. Since the folding scheme is public coin, it can be transformed

General Workflow of SuperSpartan

Linearized Comitted
CCS [HyperNova]

Atomic CCS
[KiloNova]

Multivariate polynomial

Fig. 1: Illustrations for Atomic CCS relations. Assume the input CCS relation is en-
coded as a multi-variate polynomial on variables of vectors x,y. The ACCS relation is
derived from the claims output by the second sum-check protocol on y.

4

into a non-interactive version in the random oracle model according to the Fiat-
Shamir heuristic [21].

Theorem 1. There exists a constant-round, public-coin folding scheme for mul-
tiple N -sized CCS instances with non-uniform circuit “structures” (i.e., CCS
coefficient matrices), the prover’s work is Oλ(s ·N), and the verifier’s work and
the communication are both Oλ(logN), assuming the existence of any additively-
homomorphic commitment scheme that provides Oλ(1)-sized commitments to
N -sized vectors over F (e.g., Pedersen’s commitments), where λ is the security
parameter and s is the number of instances.

For the purpose of building zero-knowledge PCD, we further derive a zero-
knowledge version of the generic folding scheme with several existing techniques.
First, we adopt an existing approach to ensure zero knowledge for sum-check pro-
tocols [17]. Second, for the intermediate non-linear claims in the folding schemes,
we utilize the random padding technique in [9] to avoid extra computation and
cross terms. Finally, we need an extra random instance for masking the output
atomic CCS instance.

(3) New Constructions of Zero-Knowledge PCD. Based on the generic
folding schemes, it is feasible to obtain a non-uniform PCD according to the
previous constructions [15, 26], which enables runtime circuit selection with the
proving cost and recursive overhead independent of the sizes of “uninvoked”
circuits. However, the previous theorem in [15] additionally requires a zero-
knowledge NARK for the construction of zero-knowledge PCD. As discussed
above, it is inefficient to transform the CCS relation into zero-knowledge ver-
sions. To solve this problem, we modify the construction of PCD by splitting
the task for each recursive step into two independent circuits as shown in Fig-
ure 23. This modification allows the prover to first transform the CCS instances
into zero-knowledge atomic CCS instances by reusing our generic folding scheme
rather than introducing an extra costly protocol. This new approach removes the
requirement of a zero-knowledge NARK in the construction of zero-knowledge
PCD. It can also be applied to existing IVC systems to achieve zero-knowledge.
We summarize the new construction model as a theorem below.

Theorem 2. (informal). There is an efficient construction that compiles any
NARK with a zero-knowledge folding/accumulation scheme into zero-knowledge
PCD. Additionally, if the folding/accumulation scheme is post-quantum secure,
then PCD is also post-quantum secure.4

This new construction yields a zero-knowledge and non-uniform PCD as Kilo-
Nova. Furthermore, we propose an optimization technique to solve a potential
efficiency problem existing in the non-uniform PCD: the increasing cost of deal-
ing with the non-uniform structures. Our technique delegates the computation

3 In Nova’s paper, the folding scheme prover does not output a proof π explicitly,
while the cross term T can be equivalently regarded as a proof.

4 Note that our new theorem does not conflict with [15] because we actually utilize
the zero-knowledge folding scheme to build a zero-knowledge NARK.

5

Nova's construction
for IVC

Our new construction
for ZK IVC/PCD

Fig. 2: Comparison between previous construction (left) and our construction (right).
The recursive circuit is split into two parts for incremental computation F and folding
scheme verification Multi-Fold.V in the right-side construction. The first part of F is
written into a new instance-witness pair as (u′,w′), which is folded into zero-knowledge
pair (Ui+1,Wi+1) by the Multi-Fold.P. Plus, the zero-knowledge folding scheme also
ensures the pair (ui+1, wi+1) is zero-knowledge.

of structure folds (folding atomic CCS matrices) to a more powerful third party
that runs an extra IVC in parallel, thereby reducing the proving and communi-
cation costs for nodes in the PCD.

1.2 Performance Evaluation

In this part, we present a comprehensive evaluation of our generic folding scheme
and zero-knowledge PCD and compare them to related work.

Comparison with Existing Folding Schemes. We first compare features
of our proposed generic folding scheme with other existing schemes in Table
1. Our scheme proves in the same CCS language as HyperNova [25], which is
expressive to generalize Plonkish, R1CS, and AIR with high-degree constraints.
Other expressive schemes, such as Protostar [13] and Protogalaxy [20], apply spe-
cial sound protocols (SPS) to support high-degree constraints. In addition, our
scheme efficiently supports both non-uniform circuits and multi-folding, which
is only provided by Protogalaxy [20] currently. Although a recent work called
UniPlonk [19] uniformizes the verifier’s work in Plonk to allow Halo2 [11] and
Nova [26] supporting non-uniform circuits, it is unknown whether it can be
applied to systems based on multi-folding schemes. The last column indicates
whether zero knowledge for IVC/PCD is achieved. Schemes that consider only
one prover and apply zkSNARKs for proving the final IVC/PCD proofs, e.g.,
Nova [26], are not counted as zero-knowledge IVC/PCD. Therefore, BCLMS21 is
the only scheme that provides zero knowledge among the schemes we compared.
However, it does not support high-degree constraints and multi-folding.

6

Table 1: Features comparison between existing folding/accumulation schemes

Schemes Language Non-uniform Multi-Folding ZK

Nova [26] R1CS No/Yes in [19] No No

SuperNova [24] R1CS Yes No No

HyperNova [25] CCS No No/Yes in [39] No

BCLMS21 [14] R1CS No No Yes

Protostar [13] Degree-d Plonk/CCS Yes No/Expensive No

Protogalaxy [20] Degree-d Plonk/CCS Yes Yes No

KiloNova CCS Yes Yes Yes

For the theoretical performance of our generic folding scheme, we only com-
pare it with state-of-the-art schemes, including HyperNova [25] and Protostar
[13] as shown in Table 2. Note that the performance of our solution is close to
HyperNova. For degree d CCS instances with m×n circuit matrices, the prover
needs to compute a multi-scalar multiplication with |w| G operations, where |w|
denotes the number of non-zero elements in the witness. For the verifier cost,
our scheme performs logm + log n times more random-oracle-like hashes than
HyperNova due to the additional log n rounds in the second sum-check protocol.
The performance of ProtoStar equals our computation, while its recursive over-
head is minimal with only O(1) hashes. Moreover, KiloNova has more appealing
features than the other two schemes, as we mentioned in Table 1. If we consider
constructing non-uniform PCD that folds multiple instances with non-uniform
structures, it is impractical to apply HyperNova and Protostar because their
performance downgrades significantly.

Comparison with Existing PCDs. The above analysis demonstrates that our
generic folding schemes outperform other schemes with more appealing features
while retaining comparable complexity. Next, we compare the performance of
the KiloNova built from this folding scheme with other PCDs.

Comparison with BCLMS21. Bünz et al. introduce PCD in BCLMS21 [14] from
the split accumulation scheme that accumulates the proof of a NARK for uni-
form R1CS relations. The verification cost of the obtained PCD is relatively
high, requiring 10 multi-scalar multiplication (MSM) of size m, while KiloNova
only requires 1 MSM. In terms of prover cost and recursive overhead, BCLM21
needs to handle O(r) group operations with a larger coefficient than our scheme.
However, it avoids logarithmic random oracle queries. Notably, BCLM21 does
not support d-degree circuits and lookup operations.

Comparison with Protogalaxy. Recently, another effective accumulation scheme
named Protogalaxy [20] has been proposed. As the following-up work of Proto-
star [13], Protogalaxy reduces the cross terms from O(ds) to O(ds) when folding
s non-uniform instances and requires only O(1) random oracle queries. While
Protogalaxy appears being a promising primitive for constructing non-uniform
PCD, it faces challenges in explicit constructions. First, it needs to handle cross

7

Table 2: Performance comparison between different folding/accumulation schemes

Criteria KiloNova HyperNova [25] Protostar [13]

Prover
|w| G

O(|w|d log2 d) F
|w| G

O(|w|d log2 d) F
|w| G

O(|w|d log2 d) F

Verifier
1 G

logm+ logn RO
O(d logm) F

1 G
logm RO

O(d logm) F

3 G
O(1) RO

(d+O(1)) F

items with Lagrange bases, yielding a quasi-linear prover cost with instance
number s and degree d while ours is linear5. Besides, the prover cost is still
constantly higher than our work because of computing extra s evaluations on
ẽq(·). Second, Protogalaxy does not support circuit aggregation as we proposed
in Section 5.2 since the instances being folded are still non-linear. Lastly, the
authors of Protogalaxy neither provide constructions for non-uniform PCD nor
add zero knowledge, whereas KiloNova presents explicit descriptions and solves
the potential technical problems.

Concurrent work. In a paper concurrent with this work, Zhou et al. also con-
struct a PCD with a multi-folding scheme extended on HyperNova. However,
their work seems to be a complementary work for HyperNova6 and thus lack
theoretical contributions. Compared to KiloNova, their PCD supports neither
non-uniform circuits nor zero knowledge.

2 Preliminaries

2.1 Notations

In this paper, we use λ to denote the security parameter. Accordingly, negl(λ)
denotes an unspecified function that is negligible in λ. We denote by [n] the set
{1, ..., n} ⊆ N. Let F denote a finite field, e.g., Fp is a prime field for a large
prime p. The bold-type lower-case letters denote vectors, e.g., a ∈ Fn is a vector
of elements a1, ..., an ∈ F. a[i] is also used to denote the i-th element of a when
the element is not specified with a concrete value. To represent a set, we use
{ai}ni=1 as a short-hand for {a1, ..., an}. For a finite set S, let x ←$ S denote
sampling x from S uniformly at random. We use “PPT algorithms” to refer to
“Probabilistic Polynomial Time Algorithms”.

2.2 Definitions for Polynomials

We recall some basic definitions for polynomials from [30] as follows. Let f(·) :
Fn → F be a multivariate polynomial with n input elements over F, its total de-
5 To amend this problem, Protogalaxy proposes an alternative construction based on
sum-check by replacing Lagrange bases with ẽq(·). However, the sum-check protocol
increases the number of RO queries to O(logN).

6 In fact, HyperNova is already claimed to realize multi-folding schemes in the original
paper.

8

gree d is defined as the maximum degree over all monomials in f(·). Moreover,
the degree of a polynomial in a specified variable xi is the maximum exponent
that xi takes in any of the monomials in f(·). Particularly, a multivariate polyno-
mial is a multilinear polynomial if the degree of the polynomial in each variable
is at most one. To keep consistent with our notation of vectors, we use f(x) to
denote the polynomial f(·) with the specified input variable as vector x. Next,
we state the lemmas used in our paper.

Lemma 1 (Multilinear extensions [33]). Let f(·) : {0, 1}n → F be a func-
tion that maps n-bit elements into an element of F. The multilinear extension
of f(·) is a unique multilinear n-variate polynomial f̃(·) : Fn → F such that
f̃(x) = f(x) for all x ∈ {0, 1}n, which can be computed as follows.

f̃(x) =
∑

e∈{0,1}n
f(e) · ẽq(x, e),

where ẽq(x, e) =
∏n

i=1(xi · ei + (1− xi) · (1− ei)).

Lemma 2 (Schwartz-Zippel lemma [29]). Assume f(·) : Fn → F is a non-
zero n-variate polynomial of degree at most d. Then on any finite set S ⊆ F,

Prx←$Sn [f(x = 0) ≤ d/|S|],

where x is a randomly sampled vector from Sn and |S| denotes the size of S.

2.3 Sum-check Protocol

The sum-check protocol is an interactive proof proposed by Lund et al. [27]. It
has long attracted the attention of practitioners for its desirable performance,
especially in a recent study on proof systems with linear proving time [30, 37].
Here, we only briefly review it. More technical details can be referred to [30].

Assume f(·) : Fn → F as an n-variate low-degree polynomial with the maxi-
mum degree of d for each variable. The prover wants to convince the verifier of
the following claim:

sum =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

f(x1, ..., xn). (1)

To conduct this protocol with logarithmic verifier cost, the verifier chooses a
random vector r ∈ Fn as the challenges for the n-round interactions with the
prover. At the final step, the verifier outputs a claim about the evaluation f(r),
i.e., c ← Πsc(f, n, d, sum, r). If c = f(r) holds, then the verifier is convinced of
the claim about the sum of f(·) in Equation (1). According to previous work [27,
30], the sum-check protocol satisfies both completeness and soundness properties,
and its communication cost takes O(n · d) element of F.

9

2.4 Polynomial Commitment Scheme

We adapt the definition of the polynomial commitment scheme from [BFS20].

Definition 1 (Polynomial commitment (PC)). A polynomial commitment
(PC) scheme for multilinear polynomials is defined as a tuple of four protocols
PC = (Gen,Commit,Open,Eval):

– Gen(1λ, ℓ) → pp: takes as input ℓ (the number of variables in a multilinear
polynomial); produces public parameters pp.

– Commit(pp, f) → C: takes as input an ℓ-variate multilinear polynomial f :
Fℓ → F; produces a commitment C.

– Open(pp, C, f) → b: verifies the opening of commitment C to the ℓ-variate
multilinear polynomial f ; outputs b ∈ {0, 1}.

– Eval(pp, C,x, y, ℓ, f)→ b is a protocol between a PPT prover P and verifier
V. Both V and P hold a commitment C, the number of variables ℓ, a scalar
y ∈ F, and x ∈ Fℓ. P additionally knows an ℓ-variate multilinear polynomial
f . P attempts to convince V that f(x) = y. At the end of the protocol, V
outputs b ∈ {0, 1}.

A PC is an extractable polynomial commitment scheme for multilinear poly-
nomials over a finite field F if it satisfies completeness, binding, and knowledge
soundness properties as defined in Appendix A.1.

Definition 2. A polynomial commitment scheme for multilinear polynomials
PC = (Setup,Commit,Open,Eval) is additively homomorphic if for all ℓ and
public parameters pp produced from Setup(1λ, ℓ), and for any f1, f2 : Fℓ → F,
Commit(pp, f1) + Commit(pp, f2) = Commit(pp, f1 + f2).

2.5 Proof-Carrying Data

In this paper, we adopt the definition of PCD from [14,39]. We start with defining
some necessary terminologies before presenting the definition.

Definition 3. A transcript T is a directed acyclic graph with each vertex u ∈
V (T) labeled by local data z

(u)
loc and each edge e ∈ E(T) labeled by a message

z(e) ̸= ⊥. The output o(T) of a transcript T is a message z(e) where e = (u, v)
is the lexicographically-first edge such that v is a sink.

Definition 4. A vertex u ∈ V (T) is φ-compliant for φ ∈ F if for all outgoing
edges e = (u, v) ∈ E(T):

– (base case) if u has no incoming edges, φ(z(e), z
(u)
loc ,⊥, ...,⊥) accepts,

– (recursive case) if u has incoming edges e1, ..., em, φ(z(e), zloc(u) , z(e1), ..., z(em))
accepts.

We say that T is φ-compliant if all of its vertices are φ-compliant.

10

Definition 5 (Proof-Carrying Data [39]). A proof-carrying data scheme for
a class of compliance predicates F is a tuple of algorithms PCD = (G,K,P,V)
where

– G(1λ) → pp on input security parameter λ, samples and outputs public pa-
rameter pp.

– K(pp, φ)→ (pk, vk) on input public parameter pp and a compliance predicate
φ ∈ F, outputs a prover key pk and a verifier key vk.

– P(pk, z, zloc, {zi, Πi}ri=1)→ Π on input public key pk, message z of an out-
going edge, local data zloc, messages {zi}i∈[r] of incoming edges and their
corresponding proofs {Πi}i∈[r], outputs a new proof Π to attest the correct-
ness of z.

– V(vk, z,Π)→ 0/1 on input verifier key vk, message z and proof Π, outputs
0/1 to reject or accept.

A proof-carrying data scheme PCD should satisfy the perfect completeness,
knowledge soundness, and zero-knowledge properties described in Appendix A.2.

2.6 Customizable Constraint Systems

The customizable constraint system (CCS) is an intermediate representation
of arithmetic circuits introduced by Setty et al. [31], which can simultaneously
generalize R1CS, Plonkish, and AIR without overheads. However, directly imple-
menting the CCS relation into a zero-knowledge proof is neither straightforward
nor efficient. For modern SNARKs, practitioners usually combine a polynomial
IOP [16] with a polynomial commitment scheme [23]. Therefore, encoding the
CCS relation into low-degree polynomials and committing them correspondingly
will accommodate it to a more friendly form for building zero-knowledge proofs.
To fulfill these requirements, we present the definitions of the CCS relation and
committed CCS relation following HyperNova [25] in this part.

Consider a CCS structure S = (m,n,N, l, t, q, d, {Mj}j∈[t], {Si}i∈[q], {ci}i∈[q]).
Let sx = logm and sy = log n. We interpret each Mj (for j ∈ [t]) as functions

with the following mapping: {0, 1}sx × {0, 1}sy → F. For j ∈ [t], let M̃j de-

note the multilinear extension (MLE) of Mj i.e., M̃j is the unique multilinear
polynomial in sx + sy variables such that

M̃j(x,y) = Mj(x,y),∀x ∈ {0, 1}sx ,y ∈ {0, 1}sy .

Similarly, for a purported witness w ∈ Fn−l−1, let w̃ denote the unique MLE of
w viewed as a function. WLOG, let |w| = l + 1.

For ease of exposition, a CCS relationR should be defined over public param-
eters, structure, instance, and witness tuples. Specifically, a structure S describes
constraints and an “instance” consisting of the public input and output where
a “witness” should satisfy. We only define the committed CCS (CCCS) relation
as below. The definition of the CCS relation is given in Appendix A.3.

11

Definition 6 (Committed CCS). Let PC = (Gen,Commit,Open,Eval) de-
note an additively-homomorphic polynomial commitment scheme for multilinear
polynomials over a finite field F. Denote the public parameters of size bounds as
m,n,N, l, t, q, d ∈ N where n = 2 · (l + 1) and pp← Gen(1λ, sy). The committed
customizable constraint system (CCCS) relation RCCCS is defined as follows.

– A RCCCS structure S consists of:
• a sequence of sparse multilinear polynomials in sx+sy variables {M̃j}j∈[t]
such that they evaluate to a non-zero value in at most N = Ω(m) loca-
tions over the Boolean hypercube {0, 1}sx × {0, 1}sy .

• a sequence of q multisets {Si}i∈[q], where an element in each multiset is
from the domain {1, ..., t} and the cardinality of each multiset is at most
d.

• a sequence of q constants {ci}i∈[q], where each constant is from F.
– A RCCCS instance is (C, io) where C is a commitment to a multilinear poly-

nomial in sy − 1 variables and io ∈ Fl.
– A RCCCS witness consists of a multilinear polynomial w̃ in sy − 1 variables.

A RCCCS instance with structure S is satisfied by a RCCCS witness if Commit(pp, w̃) =
C and if for all x ∈ {0, 1}sx ,

∑
i∈[q]

ci

∏
j∈Si

 ∑
y∈{0,1}sy

M̃j(x,y) · z̃(y)

 = 0, (2)

where z̃(y) is an sy-variate multilinear polynomial such that z̃(y) = ˜(w, 1, io)
for all y ∈ {0, 1}sy .

3 Building Blocks

In this section, we describe several essential building blocks for the design of
KiloNova. First, we extend the multi-folding scheme introduced in HyperNova
[25] to support non-uniform circuit scenarios. The new model is called a generic
folding scheme. Next, we derive a new “relaxed” relation called atomic CCS
relation from the SuperSpartan protocol to remove the cross terms generated in
the generic folding schemes.

3.1 Generic Folding Schemes

Recall that a folding scheme [KST22] for a relation R is a protocol between a
prover and a verifier that reduces the task of checking two instances in R with
the same structure S into the task of checking a single folded instance in R also
with structure S. Then in HyperNova, the authors introduce a generalization
of folding schemes as multi-folding schemes, which can fold two collections of
instances in relations R(1) and R(2) with the same structure S respectively.

12

This paper extends the multi-folding scheme to allow it to fold relations
with different structures. Concretely, a generic folding scheme is defined with
respect to a set of relations {R(i)}ℓi=1 with different structures {S(i)}ℓi=1 and size
parameters {s(i)}ℓi=1 (the number of repetition for each S(i)). It is an interactive
protocol between a prover and a verifier that reduces the task of checking a
collection of s(i) instances in R(i) for all i ∈ [ℓ] (

∑
i∈[ℓ] s

(i) instances in total)
into checking a single folded instance inR∗ with structure S∗. We formally define
it below.

Definition 7 (Generic folding schemes). Consider relations {R(i)}ℓi=1 over
public parameters, structures, instance, and witness tuples such that each R(i)

has distinct structure S(i). A generic folding scheme for {(R(i), s(i))}ℓi=1 consists
of a PPT generator algorithm G, a deterministic encoder algorithm K, and a pair
of PPT algorithms P and V denoting the prover and the verifier respectively, with
the following interface:

– G(1λ)→ pp: on input security parameter λ, samples public parameters pp.

– K(pp, {S(i)}ℓi=1) → (pk, vk): on input pp, and common structures {S(i)}ℓi=1

among the instances to be folded, outputs a prover key pk and a verifier key
vk.

– P(pk, {S(i),u(i),w(i)}ℓi=1) → (S∗,u∗,w∗): on input ℓ vectors of instances
{u(i)}ℓi=1, where each vector u(i) is in R(i) with a distinct structure S(i), and
corresponding vector of witnesses w(i) for i ∈ [ℓ], outputs a folded instance-
witness pair (u∗,w∗) in a new relations R∗ with structure S∗.

– V(vk, {S(i),u(i)}ℓi=1) → (S∗,u∗): on input ℓ vectors of instances {u(i)}ℓi=1,
outputs a folded instance u∗ in a new relations R∗ with structure S∗.

Let Πfold denote the interaction between P and V. Then Πfold is a function
that takes as input ((pk, vk), {(S(i),u(i),w(i))}ℓi=1) and runs the interaction on
prover input (pk, {(S(i),u(i),w(i))}ℓi=1) and verifier input (vk, {S(i),u(i)}ℓi=1). At
the end of interaction Πfold outputs (u∗,w∗) where u∗ is the verifier’s output
folded instance, and w∗ is the prover’s output folded witness.

We slightly abuse the vector-from denotation (pp,S(i),u(i),w(i)) ∈ R(i) to

represent that (pp,S(i),u(i)j ,w
(i)
j) ∈ R(i) for all j ∈ [s(i)]. A generic folding

scheme for {R(i)}ℓi=1 satisfies the following requirements.

1. Perfect Completeness: For all PPT adversaries A, we have that

Pr

{(pp,S(i),u(i),w(i)) ∈ R(i)}ℓi=1

⇓
(pp, S∗,u∗,w∗) ∈ R∗

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
{S(i),u(i),w(i)}ℓi=1 ← A(pp),
(pk, vk)← K(pp, {S(i)}ℓi=1),
(S∗,u∗,w∗)
← Πfold((pk, vk), {S(i),u(i),w(i)}ℓi=1)

 = 1.

2. Knowledge Soundness: For any expected polynomial-time adversaries A
and P∗, Π∗fold is run by P∗,V, there is an expected polynomial-time extractor

13

Ext such that for all randomness ρ

Pr

{(pp,S(i),u(i),w(i)) ∈ R(i)}ℓi=1

∣∣∣∣∣∣
pp← G(1λ),
({S(i),u(i)}ℓi=1, st)← A(pp, ρ),
{w(i)}i∈[ℓ] ← Ext(pp, ρ)

 ≈

Pr

(pp,S∗,u∗,w∗) ∈ R∗
∣∣∣∣∣∣∣∣
pp← G(1λ),
({S(i),u(i)}ℓi=1, st)← A(pp, ρ),
(pk, vk)← K(pp, {S(i)}ℓi=1),
(S∗,u∗,w∗)← Π∗fold((pk, vk), {S(i),u(i)}ℓi=1, st)

 .

3. Efficiency: The communication costs and V’s computation are lower in the
case where V participates in the generic folding scheme and then checks a witness
sent by P for the folded instance than in the case where V checks witnesses sent
by P for each of the original instances.

A generic folding scheme is secure in the random oracle model if the above
requirements hold when all parties are provided access to a random oracle.

Definition 8 (Honest Verifier Zero-knowledge). Let trace(Πfold, input) de-
note the non-deterministic function which takes as input an interaction function
Πfold and a prescribed input input, and produces an interaction transcript between
P and V on input. A generic folding scheme (G,K,P,V) for {R(i), s(i)}ℓi=1 sat-
isfies honest verifier zero-knowledge if there exists a PPT simulator Sim such that
for all PPT adversaries A, the following distributions are (statistically/computationally)
indistinguishable(pp, {S(i),u(i)}ℓi=1, tr)

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
({S(i),u(i),w(i)}ℓi=1)← A(pp),
{(pp,S(i),u(i),w(i)) ∈ R(i)}ℓi=1,
(pk, vk)← K(pp, {S(i)}ℓi=1),
tr← trace(Πfold, ((pk, vk), {S(i),u(i),w(i)}ℓi=1)

and (pp, {S(i),u(i)}ℓi=1, tr)

∣∣∣∣∣∣∣∣
(pp, τ)← Sim(1λ),
({S(i),u(i)}ℓi=1, st)← A(pp),
{(pp,S(i),u(i),w(i)) ∈ R(i)}ℓi=1,
tr← Sim(pp, {S(i),u(i)}ℓi=1, τ)

 .

Definition 9 (Non-interactive). A generic folding scheme (G,K,P,V) is non-
interactive if the interaction between P and V consists of a single message from
P to V. This single message is denoted as P’s output and as V’s input.

Definition 10 (Public coin). A generic folding scheme (G,K,P,V) is called
public coin if all the messages sent from V to P are sampled from a uniform
distribution.

3.2 Atomic CCS Relations

In this part, we first introduce a relaxed CCS relation called atomic CCS that is
amenable to constructing generic folding schemes. Different from the committed

14

CCS relations or linearized committed CCS in [25], this new variant is satis-
fied with linear constraints on structures (matrices) and instance-witness pairs,
respectively. Therefore, folding multiple atomic CCS instances under different
matrices does not produce any cross terms.

Motivations. Generally speaking, most of the current solutions reduce the cross
terms with some “makeup” measures after the folding schemes, which adds extra
cost for the prover and verifier sides. While we believe a more practical way is
to take measures before the folding schemes to avoid the generation of cross
terms. Inspired by this idea, we extend the approach in HyberNova [25], which
linearizes the high-degree CCS relation by running an “early stopping” version of
SuperSpartan. To state it clearly, we need to first give a review of SuperSpartan.
On input as a committed CCS instance, the prover and verifier in SuperSpartan
rewrite it into a sum-check statement:

∑
x∈{0,1}sx

ẽq(α,x) ·
∑
i∈[q]

ci

∏
j∈Si

 ∑
y∈{0,1}sy

M̃j(x,y) · z̃(y)

 = 0 (3)

where α is a randomly sampled vector from Fsx and ẽq(α,x) is added to reduce
the sx constraints in RCCCS to one sum constraint above. To check Equation (3),
the prover and verifier run two rounds of sum-check protocols recursively on x
and y. After the first round of the sum-check protocol, the verifier can check the
final evaluation on rx with the following claims given by the prover:∑

y∈{0,1}sy
M̃j(rx,y) · z̃(y) = σj , ∀j ∈ [t]. (4)

where rx is the challenge vector generated among the protocol. These claims
can be further checked by running t sum-check protocols in parallel, and prover
sends t+ 1 claims for the verifier to check the final evaluation:{

M̃j(rx, ry) = θj , ∀j ∈ [t]

z̃(ry) = ϵ
. (5)

Note that Equation (4) only contains polynomial z̃(y) with degree of 1. For

two instances with same structures {M̃j}tj=1, folding their claims in Equation
(4) produces no cross terms. Therefore, HyperNova formalizes these claims as
a restricted form of CCS, i.e., linearized committed CCS. To prevent cross
terms in generic folding schemes, folding with the above linearized committed
CCS instances is not sufficient. We further run the second round of sum-check
protocol and obtain Equation (5). Note that Equation (5) contains claims on

M̃j(rx, ry), j ∈ [t] and z̃(ry) separately with degree at most 1. As a result,
folding these claims produces no cross terms, even for instances with different
structures. We denote this new variant of CCS as Atomic CCS and formalize it
in the following definition.

15

Definition 11 (Atomic CCS). Let PC = (Gen,Commit,Open,Eval) denote
an additively-homomorphic polynomial commitment scheme for multilinear poly-
nomials over a finite field F. Denote the public parameters of size bounds as
m,n,N, l, t ∈ N where n = 2 · (l + 1) and pp ← Gen(1λ, sy − 1). The atomic
customizable constraint system (ACCS) relation RACCS is defined as follows.

– An RACCS structure S consists of a sequence of sparse multilinear polynomi-
als in sx+ sy variables {M̃j}j∈[t] such that they evaluate to a non-zero value
in at most N = Ω(m) locations over the boolean hypercube {0, 1}sx×{0, 1}sy .

– An RACCS instance is (C, v0, io, rx, ry, v1, ..., vt, vz) where v0 ∈ F, io ∈ Fl, rx ∈
Fsx , ry ∈ Fsy , vz ∈ F, vj ∈ F for all j ∈ [t], and C is a commitment to a
multilinear polynomial in sy − 1 variables.

– An RACCS witness consists of a multilinear polynomial w̃ in sy−1 variables.

An RACCS instance (structure-instance tuple) is satisfied by an RACCS witness
if Commit(pp, w̃) = C, vz = z̃(ry) and if for all j ∈ [t], the equation vj =

M̃j(rx, ry) holds, where M̃j(x,y) is an (sx+ sy)-variate multilinear polynomial,

z̃(y) is an sy-variate multilinear polynomial such that z̃(y) = ˜(w, v0, io) for all
y ∈ {0, 1}sy .

4 Generic Folding Scheme for CCS

4.1 High-level Ideas

This section describes a generic folding scheme for CCS. Its aim is folding the
input instances into one atomic CCS instance. For better understanding, one
can first imagine running the “early stopping” SuperSpartan for each instance
independently and then applying aggregation techniques for their intermediate
steps, e.g., sum-check protocols and claims. We use Figure 3 to further illustrate
our idea. Given polynomials {f (i)(x)}ni=1 derived from the input committed CCS
or atomic CCS instances, the prover can aggregate them into one polynomial
f(x) by a challenge value γ given by the verifier. Then they can run the first sum-
check protocol for f(x) on the random vector rx. By fixing the input x as value
rx, we further derive polynomials {g(i)(y)}ni=1. Then, the prover and verifier run
the same aggregation with challenge δ and the sum-check protocol on ry. Finally,

the prover sends the claim to the evaluations of polynomials {M̃ (i)
j }j∈[t] and z̃(i)

for each i-th instance. A folding operation is executed on all claims above to
obtain a folded atomic CCS instance. To build such a folding scheme, our starting
point is to consider the simplest case of folding two instances. Practically, there
are three combinations of input instances to be folded:

– two committed CCS instances;

– one committed CCS instance and one atomic CCS instance;

– two atomic CCS instances.

16

instances to be folded

polynomial aggregation

polynomial aggregation

…

…
fold

folded instance

CCCS CCCS ACCS

…

Sum-check #1 on

Sum-check #2 on

Fig. 3: Workflow of Generic Folding Scheme. Take totally n committed CCS or atomic
CCS instances as inputs, the prover and verifier encode them into one aggregated
polynomial f(x) and run the “early stopping” SuperSpartan to obtain the n atomic
CCS instances, which can be folded into one without cross terms.

Note that if two committed CCS instances share the same structure, it is
trivial to run the “early stopping” SuperSpartan and fold their final atomic
CCS instances. For cases including ACCS (case 2 or 3), we are not ready to
build a folding scheme because they may not have the same random vectors
rx, ry, and it is infeasible to directly fold them. To amend this, we further run
“early stopping” SuperSpartan to “update” the random vectors of atomic CCS
instances for new ones. We illustrate this with a simple example: assuming a
claim (constraint) f(rx) = v, the prover writes a new polynomial as g(x) =
ẽq(rx,x) · f(x), and engages in a sum-check protocol with the verifier to show∑

x∈{0,1}sx g(x) = v with randomness r′x. This equation holds because the sum

of g(x) can be regarded as an MLE of f(·) as f̃(e) =
∑

x∈{0,1}sx ẽq(e,x) · f(x)
according to Lemma 1. By evaluating f̃(e) on e = rx, we obtain

v = f̃(rx) =
∑

x∈{0,1}sx
ẽq(rx,x) · f(x) =

∑
x∈{0,1}sx

g(x).

As a result, the prover produces a new claim as g(r′x) = v′ with updated r′x.
And the evaluation of f(r′x) can be computed as v′/e, where e = ẽq(ry, r

′
y).

17

The validity of the original claim can be guaranteed by the soundness of the
sum-check protocol.

For simplicity, we only present the folding scheme for case 2 in Section 4.2,
details for other cases are left to Appendix B. Concretely, we provide a folding
scheme for two instances in specific relations R and R′, where R and R′ are
ACCS and CCCS relations with different structures S and S ′ respectively. We
assume S and S ′ share the same size bounds m,n,N, l, t, but contain different
multilinear polynomials, {M̃j}j∈[t] and {M̃ ′j}j∈[t]. For structures with different
size bounds, we can use a simple padding scheme to ensure they are the same
size. According to protocols given in Appendix B, it is also efficient to build
a folding scheme for multiple instances. We present the general process of the
non-interactive generic folding scheme in Section 4.4.

4.2 Main Protocol

Construction 1 (Folding scheme for two instances). Let PC = (Gen,Commit,
Open,Eval) denote an additively homomorphic polynomial commitment scheme
for multilinear polynomials. The generator and the encoder are defined as follows.

G(1λ → pp) :

1 : Sample size bounds m,n,N, l, t, q, d ∈ N with n = 2 · (l + 1).

2 : ppPC ← Gen(1λ, logn− 1).

3 : Output (m,n,N, l, t, q, d, ppPC).

K(pp,S,S ′)→ (pk, vk) :

1 : Parse S to obtain {M̃j}j∈[t].

2 : Parse S ′ to obtain {M̃ ′
j}j∈[t], {S′

i}i∈[q], {c′i}i∈[q].

3 : pk← (pp, ({M̃j}j∈[t], {M̃ ′
j}j∈[t], {S′

i}i∈[q], {c′i}i∈[q])).

4 : vk← ⊥.
5 : Output (pk, vk).

To distinguish, we mark the parts corresponding to the committed CCS in-
stance in blue text. The verifier V takes as inputs an atomic CCS instance
(C, v0, io, rx, ry, {vj}j∈[t], vz) and a committed CCS instance (C ′, io′). The prover

P, in addition to the two instances, takes witnesses w̃ and w̃′. Let sx = logm,

sy = log n, z̃ = ˜(w, v0, io), and z̃′ = ˜(w′, 1, io′). The prover and the verifier
proceed as follows.

1. V → P: V samples γ ←$ F, α←$ Fsx , and sends them to P.
2. V: Sample r′x ←$ Fsx .

3. P: Compute z̃(y) = (w̃, v0, io), z̃′(y) = (w̃′, 1, io′).

18

4. V ↔ P: Run the sum-check protocol#1 cx ← Πsc(f, sx, d + 1, sumx, r
′
x),

where ẽq(rx,x), ẽq(ry,y) in Lj(x) are used for updating challenge vectors:

sumx :=
∑
j∈[t]

γj · vj ,

f(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt ·Q(x),

Lj(x) := ẽq(rx,x) ·

 ∑
y∈{0,1}sy

ẽq(ry,y) · M̃j(x,y)

 , j ∈ [t],

Q(x) := ẽq(α,x) ·

∑
i∈[q]

c′i ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)

,

5. P → V: ({σj}j∈[t], {σ′j}j∈[t]), where:

σj =
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(r

′
x,y),∀j ∈ [t],

σ′j =
∑

y∈{0,1}sy
M̃ ′j(r

′
x,y) · z̃′(y),∀j ∈ [t].

6. V: Compute e1 ← ẽq(rx, r
′
x) and e2 ← ẽq(α, r′x), and abort if:

cx ̸=

∑
j∈[t]

γj · e1 · σj

+

γt · e2 ·
∑
i∈[q]

c′i ·
∏
j∈Si

σ′j

.

7. V → P: V samples δ ←$ F, and sends it to P.
8. V: Sample r′y ←$ Fsy .
9. V ↔ P: Run the sum-check protocol#2 cy ← Πsc(g, sy, 2, sumy, r

′
y), where:

sumy :=
∑
j∈[t]

δj · σj + δt+1 · vz + δt+1 ·
∑
j∈[t]

δj · σ′j ,

g(y) :=
∑
j∈[t]

δj ·Rj(y) + δt+1 · S(y) + δt+1 ·
∑
j∈[t]

δj · Tj(y),

Rj(y) = ẽq(ry,y) · M̃j(r
′
x,y), ∀j ∈ [t],

Tj(y) = M̃ ′j(r
′
x,y) · z̃′(y), ∀j ∈ [t],

S(y) = ẽq(ry,y) · z̃(y).

10. P → V: (ϵ, ϵ′, {θj}j∈[t], {θ′j}j∈[t]), where:

ϵ = z̃(r′y),

ϵ′ = z̃′(r′y),

19

θj = M̃j(r
′
x, r
′
y), ∀j ∈ [t],

θ′j = M̃ ′j(r
′
x, r
′
y), ∀j ∈ [t].

11. V → P: V samples η ←$ F and sends it to P.
12. V: Compute e3 ← ẽq(ry, r

′
y), and abort if:

cy ̸=
∑
j∈[t]

δj · e3 · θj + δt+1 · e3 · ϵ+ δt+1 ·
∑
j∈[t]

δj · θ′j · ϵ′

13. V,P: Output the folded atomic CCS structure S∗ containing

M∗j = Mj + η ·M ′j

for all j ∈ [t] and its instance (C∗, v∗0 , io
∗, r∗x, r

∗
y , {v∗j }j∈[t], v∗z), where r∗x =

r′x, r
∗
y = r′y, and for all j ∈ [t]:

C∗ ← C + η · C ′,
io∗ ← io+ η · io′,
v∗0 ← v0 + η · 1,
v∗j ← θj + η · θ′j ,
v∗z ← ϵ+ η · ϵ′.

14. P : Output the folded witness w + η ·w′.

Theorem 3. (Folding scheme for committed CCS). Construction 1 is a public
coin folding scheme for (R,R′) with perfect completeness and knowledge sound-
ness.

Proof sketch. It is trivial to prove that Construction 1 satisfies completeness.
For the knowledge soundness, we prove that Construction 1 is knowledge sound
if the commitment scheme Commit() satisfies the binding property. Concretely,
if there exists an adversary A that succeeds in producing valid proof with non-
negligible probability, we show that a polynomial time extractor Ext that outputs
the witness with non-negligible probability can be constructed. According to the
conclusion in [8], given a 2sx+sy -tree of transcripts, we can either find a pair of
commitments breaking the binding property or construct an expected extractor
outputting the witness.

The detailed proof of Theorem 1 is given in Appendix B.3.

4.3 Adding Zero-knowledge

The above construction is proven to satisfy completeness and knowledge sound-
ness properties. In this part, we further discuss adding zero knowledge to it. A
straightforward idea is directly adding a masking value for the witness w. That
is, the prover runs the protocol with ρ ·w+w instead of w, where w ∈ Fn−l−1.
Although this technique can prove the validity of folding without leaking any

20

information about the witness, the prover needs to do the extra computation,
especially when folding committed CCS instances. We illustrate this point with
the following example. Assume the prover wants to run the sum-check#1 on a
committed CCS instance with a masking vector w. The target polynomial is
written as:

f(x) = ẽq(α,x) ·

∑
i∈[q]

ci ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃j(x,y) · Z̃(y)

 ,

where Z̃(y) = ˜(ρ ·w +w, 1, io). Since the masking vector w is sampled ran-
domly, the above target polynomial no longer equals zero. To ensure the equation
holds, the prover has to compute the sum of the new polynomial f(x), which
takes O(N+tm+qmd log2 d) F-ops dominated by the computation of non-linear
part with degree d. When dealing with multiple committed CCS instances, the
prover must execute the above computation for each independently. Moreover,
the prover has to send O(2d) cross terms for each instance to convince the veri-
fier of the original relation on w. To alleviate these problems, we propose a more
efficient approach for our scheme by separating the zero-knowledge problem into
three parts and solving them independently.

(1) Zero-knowledge for prover claims. We first consider shielding the wit-
ness w among the verification of the claims. The verifier is expected to learn no
information about w except its validity to the CCS instance from steps 5, 6, and
10-12. As mentioned above, the non-linearity part of the CCS relation prevents
us from directly masking the witness as ρ ·w+w. Here, we utilize an approach
in [9] by Bootle et al. to randomize the claims, which will not introduce extra
costs for non-linear parts. Generally speaking, the claims at steps 5 and 10 can
be regarded as linear combinations of the values in w. According to the result
given by Bootle et al., if we pad the witness with as many non-zero random
values as the number of combinations it receives, then all the responses will be
uniformly random and leak no information.

Again, we take the committed CCS relation in Equation (6) as an example.
With a randomly sampled vector r = [rj]

t
j=1, rj ∈ F2 added to the vector r, the

equation can be rewritten as∑
i∈[q]

ci · ⃝j∈Si

[
Mj O
O Ij

]
· (z, r) = (0,

∑
i∈[q]

ci · ⃝j∈Sirj),

where O denotes zero matrix, Ij is a 2× 2t matrix with an 2× 2 identity matrix
I in the j-th position, i.e.,

Ij = [O, ..., O︸ ︷︷ ︸, I, O, ..., O].

j − 1

So far, the zero knowledge of the committed CCS instance is retained against 2t
queries of the linear combination of w. To accommodate it to our folding scheme,

21

we denote extra two sets of variables as a ∈ {0, 1}, b ∈ {0, 1}log(2t) for repre-
senting Ij , rj . The above equation can be further written into the multilinear
polynomial form as follows7:

∑
i∈[q]

ci
∏
j∈Si

 ∑
y∈{0,1}sy ,b∈{0,1}log(2t)

(M̃j(x,y) + Ĩj(a, b)) · (z̃(y) + r̃(b))

=

∑
b∈{0,1}log(2t)

∑
i∈[q]

ci · ⃝j∈Si r̃j(b)

 ,

for all x ∈ {0, 1}sx ,a ∈ {0, 1}, where Ĩj(a, b)), r̃j(b) are the MLE’s for Ij , rj on

a, b and r̃(b) =
∑t

j=1 r̃j(b).

(2) Zero-knowledge for sum-check protocols. Preserving the privacy of
w among the claims sent by the prover is insufficient to ensure zero knowledge
of the whole folding scheme. Note that the sum-check protocols#1 and #2 at
steps 4 and 9 are not shielded. Thus, the transcripts in the protocol also leak
the information of w. To amend this problem, we refer to a previous work as
Libra [35], which presents a zero-knowledge sum-check protocol by masking the
coefficients of the target polynomial f(x) with a random polynomial fr(x) of size
O(d), where sx = |x| is logarithmic of the size of target polynomial f(x). Briefly,
the random polynomial can be constructed as fr(x) = r0 + r1(x1) + r2(x2) +
· · ·+ rsx(xsx), where ri(xi) = ri,1xi+ ri,2x

2
i + · · ·+ ri,dx

d
i is a random univariate

polynomial of degree d. For simplicity, we denote the zero-knowledge sum-check
protocol as c← Πzksc(f, n, d, sum, r). The security is guaranteed accordingly by
the results in [17].

(3) Zero-knowledge for folded instances. The previous two techniques can
guarantee zero knowledge of most processes in Construction 1 except the final
folding operation at step 14. The prover outputs the folded witness w+η·w′ with-
out randomization. To amend this, the masking value w ∈ Fn−l−1 mentioned at
the beginning has to be introduced. Differently, only onew is needed this time be-
cause the privacy in the previous steps is already preserved. Therefore, the prover
takes the masking value as another committed CCS instance, i.e., masking in-
stance, with empty structure S, empty io and commitment C = Commit(pp, w̃),
and runs the folding scheme accordingly, where O denote m× n zero matrix.

Besides, we also want to mention a trick for saving the computation of the
sum of w̃. The polynomial f(x) aggregates the masking value with all other
instances. According to the proving algorithm for the sum-check protocol pro-
posed in [32], it is handy to acquire the sum of f(x) from the bookkeeping table.
Thus, we can obtain the sum of w̃ by subtracting sums of other instances, i.e.,

7 It is more efficient to write polynomials on x ∈ {0, 1}log(m+2),y ∈ {0, 1}log(n+2t),
we omit this expression for simplicity. In fact, the extra variables may even be
unnecessary in real-world implementation since most vector z ends with a number
of zeros, which can be replaced with randomness.

22

∑
j∈[t] γ

j · vj · vz for atomic CCS instance and 0 for committed CCS instance,

from
∑

x∈{0,1}sx without actually computing the concrete evaluations.
The final zero-knowledge generic folding schemes based on the above three

techniques only require the prover to compute one additional polynomial sum
for masking the folding instances in (3). Besides, there is no extra cross terms
introduced in the scheme. Due to page limitations, we only integrate these tech-
niques into the non-interactive folding scheme in the following subsection, rather
than independently presenting a zero-knowledge version of construction 1.

4.4 Putting Everything Together

We present a non-interactive generic folding scheme with input as multiple com-
mitted CCS or atomic CCS instances in Construction 2. Zero knowledge is
achieved as well by applying the techniques mentioned above. Guaranteed by
the security of construction 1, it is not difficult to argue that construction 2 also
satisfies completeness, knowledge soundness, and zero-knowledge. At the end of
this part, we give a comprehensive evaluation of the performance, including the
prover cost, verifier cost, and communication complexity. (While we do present
the corresponding security proof of zero knowledge in Appendix B.3)

Construction 2 (Zero-knowledge non-interactive generic folding scheme). We
construct a zero-knowledge non-interactive generic folding scheme as zk-NIFS,
which consists of 4 PPT algorithms (G,K,P,V). Let H be the random oracle,
PC = (Gen,Commit,Open,Eval) denote an additively-homomorphic polynomial
commitment scheme for multilinear polynomials. For generality, we assume the
scheme takes input as multiple CCS instances, including

–
∑

i∈[ℓ1] s
(i) atomic CCS instances in a set of relations {R(i)}i∈[ℓ1] with different

structures {S(i)}i∈[ℓ1], where each relation R(i) corresponds to s(i) instances.

Let s1 =
∑

i∈[ℓ1] s
(i), each atomic CCS instance consists of (S(k),u(k),w(k)),

where u(k) = (C(k), v
(k)
0 , io(k), r

(k)
x , r

(k)
y , {v(k)j }j∈[t], v

(k)
z) for all k = 1, ..., s1.

–
∑ℓ1+ℓ2

i=ℓ1+1 s
(i) committed CCS instances in a set of relations {R(i)}ℓ1+ℓ2

i=ℓ1+1 with

different structures {S(i)}ℓ1+ℓ2
i=ℓ1+1, where each relation R(i) corresponds to s(i)

instances. Let s2 =
∑ℓ1+ℓ2

i=ℓ1+1 s
(i), each committed CCS instance is consists of

(S(k),u(k),w(k)), where u(k) = (C(k), io(k)) for all k = s1 + 1, ..., s1 + s2

Denote s = s1+s2, we use i, k to index the relations (structures) {R(i)}i∈[ℓ] and
instances {u(k)}k∈[s] respectively. By applying Fiat-Shamir transformation to the
zero-knowledge sum-check protocol mentioned in Section 4.3, we obtain the prov-
ing algorithm FS[Πzksc].P with output transcript as ts = (c,∆sum, {mj}j∈[s], r)
and the verifying algorithm FS[Πzksc].V with output 1 for validity. We only
present the concrete algorithms for zk-NIFS.P, zk-NIFS.V below to highlight the
differences compared to Section 4.2.

23

zk-NIFS.P((pk, vk), {S(i)}i∈[ℓ], {u(k)}k∈[s], {w(k)}k∈[s]) :
1 : Randomly sample {r(k) ∈ F2t}k∈[s],w ∈ Fn−l−1.

2 : Generate instance u(0) with w.

3 : Pad each z(k) with r(k), update sumx.

4 : Generate claims on sums of w̃(y), {r̃(k)(y)}sk=0.

5 : Pad each M
(i)
j with Ij .

6 : γ,α← H({u(k)}sk=0), construct polynomial f .

7 : Run sum-check#1 as tsx ← FS[Πzksc].P(f, sx, d+ 1, sumx).

8 : Generate claims on {σ(k)
j }

s,t
k=0,j=1.

9 : δ ← H(tsx, {σ(k)
j }

s,t
k=0,j=1), construct polynomial g..

10 : Run sum-check#2 as tsy ← FS[Πzksc].P(g, sy, d+ 1, sumy).

11 : Generate claims on {ϵ(k)}sk=0, {θ
(k)
j }

s,t
k=0,j=1.

12 : η ← H(tsy, {ϵ(k)}sk=0, {θ
(k)
j }

s,t
k=0,j=1).

13 : Set vectors for each instance u(k), k = 0, ..., s as

v(k) := ({M (k)
j }j∈[t], C

(k), v
(k)
0 , io(k), {θ(k)j }j∈[t], ϵ

(k),w(k)).

14 : v∗ :=

s∑
k=0

ηk · v(k), M∗
j :=

∑
i∈[ℓ]

ηi ·M (i)
j , ∀j ∈ [t].

15 : Set folding proof as

pf := (u(0), γ,α, r′
x, tsx, {σ

(k)
j }

s,t
k=0,j=1, δ, r

′
y, tsy, {ϵ(k)}sk=0, {θ

(k)
j }

s,t
k=0,j=1).

16 : Output ({M∗
j }j∈[t],v

∗, pf).

zk-NIFS.V((pk, vk), {S(i)}i∈[ℓ], {u(k)}k∈[s], pf) :
1 : Check the validity of sumx with claims on w̃(y), {r̃(k)(y)}sk=0.

2 : Pad each M
(i)
j with Ij .

3 : γ,α← H({u(k)}sk=0).

4 : Check sum-check#1 as 1
?
= FS[Πzksc].V(tsx, sx, d+ 1, sumx).

5 : Check claims on {σ(k)
j }

s,t
k=0,j=1 with cx, γ,α.

6 : δ ← H(tsx, {σ(k)
j }

s,t
k=0,j=1).

7 : Check sum-check#2 as 1
?
= FS[Πzksc].V(tsy, sy, d+ 1, sumy).

8 : Check claims of {ϵ(k)}sk=0, {θ
(k)
j }

s,t
k=0,j=1 with cy, δ.

9 : η ← H(tsy, {ϵ(k)}sk=0, {θ
(k)
j }

s,t
k=0,j=1).

24

10 : Set vectors for each instance u(k), k = 0, ..., s as

v(k) := ({M (k)
j }j∈[t], C

(k), v
(k)
0 , io(k), {θ(k)j }j∈[t], ϵ

(k),w(k)).

11 : Check v∗ :=

s∑
k=0

ηk · v(k), M∗
j :=

∑
i∈[ℓ]

ηi ·M (i)
j ,∀j ∈ [t].

Complexity. Denote the random oracle for sum-check protocol as Hsc.
The folding scheme prover

– asks logm+ log n queries to Hsc and logm+ 2 queries to H;
– computes sum-check protocols (steps 7,8,10,11 in zk-NIFS.P) with

O(s1(N + tm) + s2(N + tm + qmd log2 d)) F-ops for all s1 atomic CCS
instances and s2 committed CCS instances where
• for each atomic CCS instance, runs O(N+ tm) F-ops according to the

standard linear-time-sum-check techniques [32],
• for each committed CCS instance, runs O(N + tm+qmd log2 d) F-ops
according to the technique in SuperSpartan [31];

– performs O(s) G-ops to combine {C(k)}sk=0;

– performs O(ℓN + s(n+ t)) F-ops to combine {M (i)
j }

ℓ,t
i,j=1 and {v(k)}sk=0.

The folding scheme verifier

– asks logm+ log n queries to Hsc and logm+ 2 queries to H;
– checks sum-check protocols (steps 4,5,7,8 in zk-NIFS.V) with

O(s1(d logm + log n) + s2(dq + d logm + log n)) F-ops for all s1 atomic
CCS instances and s2 committed CCS instances;

– performs O(s) G-ops to combine {C(k)}sk=0;

– performs O(ℓN + s(n+ t)) F-ops to combine {M (i)
j }

ℓ,t
i,j=1 and {v(k)}sk=0.

We further mention a bonus feature of the ACCS relation for optimizing
the performance above. In real-world implementations, instead of directly op-
erating on the raw data of a matrix M , we prefer to first squeeze the m · n
field elements into a group element as Commit(M) with commitment schemes.
Assume an output atomic CCS instance contains matrices {Mj}j∈[t] and corre-
sponding claim values {vj}tj=1 in the generic folding scheme, we observe that it
is feasible to apply a batch verification of all claims: instead of checking each
claim independently, we can check only one claim on the aggregated matrices
and values. To achieve this, the prover needs to compute

∑t
j=1 Commit(Mj) and∑t

j=1 vj if the discrete logarithm independence is satisfied among these commit-
ments (If not, the prover needs to compute linear combinations). As a result,
the t matrix commitments and values of an atomic CCS instance can be ag-
gregated into one matrix and one value, respectively. The number of matrix
commitments in the folded instance sent to the next node is reduced from t to
1. For input two instances, the communication complexity can be reduced from
O(d logm+ log n+ tN) to O(d logm+ log n+N), while the prover and verifier
need to perform extra st group additions to aggregate matrix commitments.

25

5 KiloNova: Non-uniform Zero-knowledge PCD

This section explains how to build non-uniform zero-knowledge PCD from the
above-mentioned generic folding scheme. To begin with, we discuss the opti-
mization technique used to reduce the overhead for handling structure folds in
non-uniform PCD in Section 5.2. Based on this technique, we further construct
zero-knowledge PCD from the zero-knowledge non-interactive generic folding
scheme in Section 5.1.

5.1 New Constructions for Zero-knowledge PCD

This part constructs zero-knowledge PCD from our zero-knowledge non-interactive
generic folding scheme. If zero knowledge is not considered, one can directly
adapt the scheme in [39] to build a PCD from the folding scheme. However, a
technical gap exists when we try to achieve zero knowledge of PCD. According
to the conclusion in [15], a zero-knowledge PCD is built from an accumulation
scheme (folding schemes in our paper) and an argument system (SNARK in [14]
or NARK in [14]) for proving the recursive circuit, both of which are required to
satisfy zero-knowledge. Unfortunately, in the construction of [39], PCD prover
only computes and outputs a committed CCS instance for the recursive circuit
without providing zero knowledge. Adding zero-knowledge to the committed
CCS instance will introduce extra prover cost, as discussed in Section 4.3.

Therefore, we must find another efficient approach to realize the zero-knowledge
PCD. The general idea is to reuse the zero-knowledge folding scheme to trans-
form the committed CCS instance into a zero-knowledge atomic CCS instance.
To achieve this, we need to redesign the original construction for PCD in [39]. To
state the problem clearly, we describe the predicates represented by the recursive
circuit as follows

1. Check that the compliance predicate φ(z, zloc, z1, ..., zs) satisfies.
2. Check that the hash values for all input instances with non-empty zk, k ∈ [s]

are valid.
3. Run the zk-NIFS.V algorithm to check the validity of the folded instance.
4. Compute the hash value for the folded instance.

Note that predicates 3 and 4 will not leak information about zloc, z1, ..., zs
since the generic folding scheme already achieves zero knowledge. Thus, we only
need to preserve the privacy of the witness zloc, z1, ..., zs for predicates 1 and 2
(z is public). Thankfully, predicates 1 and 2 do not require the output of folding
scheme zk-NIFS.P, which means that they can be checked before the prover runs
zk-NIFS.P. We can split the circuit for the predicate into two parts as R0,R1

and handle them respectively in different steps. As a result, the prover first
computes the instance (u0,w0) for R0, then folds it with other input instances.
In the circuit R1, the validity of the folded instances U is checked. And the
prover computes another instance for R1.

Compared to the original construction, PCD prover only needs to run the
folding scheme with one more instance for R0, which adds negligible cost to its

26

asymptotic complexity. We also show that this modification does not contradict
the securities of PCD in Appendix C. Moreover, the same modification can be
applied to the construction of zero-knowledge IVC as long as they are built from
a multi-folding scheme.

Construction 3 (A PCD from Generic Folding Schemes). Let zk-NIFS be the
zero-knowledge non-interactive generic folding scheme for committed CCS and
atomic CCS relations {R(i)}i∈[ℓ]. Let (u⊥,w⊥) be a default trivially satisfy-
ing atomic CCS instance-witness pair for any structure and public parameters.
According to the definition of PCD, we can construct a scheme consisting of
polynomial-time algorithms PCD = (G,K,P,V) for a class of compliance pred-
icates F. Besides, we assume all the structures used below are valid, which is
guaranteed by the extra IVC for proving the structure folds.

Denote a compliance predicate φ selected from F with a cryptographic hash
function Hash, we first define the circuits R0 and R1 realizing the recursion on
s inputs of {zk,Uk,uk}sk=1.

0/1← R0(h; (z, zloc, {zk,Uk,uk}k∈[s], vk′)):
1 : Check that the compliance predicate φ(z, zloc, z1, ..., zs) accepts.

2 : For all k ∈ [s] such that zk ̸= ⊥, check that uk.io = Hash(vk′, zk,Uk),

where uk.io is the public IO of uk.

3 : If the above checks hold, output 1; otherwise, output 0.

Since R0 can be computed in polynomial time, it can be represented as a RCCCS

structure s0. Let

(s0,u0,w0)← trace(R0, (h, (z, zloc, {zk,Uk,uk}k∈[s], vk′))

denote the satisfied RCCCS instance for the execution of the circuit R0 on input
(h, (z, zloc, {zk,Uk,uk}k∈[s], vk′)).

0/1← R1(h; ({Uk,uk}k∈[s],u0, vk′,U, Π)):

1 : If zk = ⊥ for all k ∈ [s], check that h = Hash(vk′, z,U) and u0 = U, else check that

(a) U = zk-NIFS.V ′(vk′, {Uk, uk}k∈[s], u0, Π).

(b) h = Hash(vk′, z,U).

2 : If the above checks hold, output 1; otherwise, output 0.

Since R1 can be computed in polynomial time, it can be represented as a RCCCS

structure s. Let

(s,u,w)← trace(R0, (h, ({Uk,uk}k∈[s],u0, vk′,U, Π))

denote the satisfied RCCCS instance for the execution of the circuit R1 on input
(h, ({Uk,uk}k∈[s],u0, vk′,U, Π)).

Now, we can define the algorithms (G,K,P,V) for PCD.

27

pp← G(1λ):
1 : Compute and output pp′ ← zk-NIFS.G(1λ).

(pk, vk)← K(pp, φ):
1 : Compute (pkfs

′, vkfs
′)← zk-NIFS.K′(pp′, Rφ).

2 : Output (pk, vk)← ((φ, pkfs
′), (φ, vkfs

′)).

Π ← P(pk, z, zloc, {zk, Πk}sk=1):

1 : For k ∈ [s], parse Πk as satisfied atomic CCS instance (Sk,Uk,Wk) and

satisfied committed CCS instance (sk, uk,wk)).

2 : (s0, u0,w0)← trace(R0, (h, (z, zloc, {zk,Uk, uk}k∈[s], vk
′))

3 : If zk = ⊥ for all k ∈ [s], then set (U,W, pf) := (u0,w0,⊥), else compute

(S,U,W, pf)← zk-NIFS.P ′(pkfs, {Sk,Uk,Wk}k∈[s], {sk, uk,wk}sk=0).

4 : Compute h← Hash(vkfs
′, z,U).

5 : (s, u,w)← trace(R1, (h, ({Uk, uk}k∈[s], u0, vkfs
′,U, pf))).

6 : Output Π := ((S,U,W), (s, u,w)).

0/1← V(vk, z,Π):

1 : Parse Π as ((S,U,W), (s, u,w)).

2 : Check that u.io = Hash(vkfs
′, z,U).

3 : Check that W is a satisfied RACCS witness to U and w is a satisfied

RCCCS witness to u.

4 : If the above checks hold, output 1; otherwise, output 0.

Theorem 4. PCD = (G,K,P,V) in Construction 3 for a class of compliance
predicates F with constant depth in definition XX satisfies the perfect complete-
ness, knowledge soundness, and zero knowledge in the random oracle.

The proof of Theorem 4 is presented in Appendix C. We present the evalua-
tion of complexity below.
Complexity. Denote the random oracle for sum-check protocol as Hsc.

The recursive cost at each step contains

– computing the compliance predicate φ;
– computing r times pf hash function Hash;
– invoking zk-NIFS.V ′ with 2 logm+ log n random oracle queries, O(s(dq+

d logm+ log n)) F-ops and s G-ops.

The native prover at each step cost contains

– invoking zk-NIFS.P ′ with 2 logm+ log n random oracle queries, O(s(N +
tm+ qmd log2 d)) F-ops and s G-ops;

28

– computing 1 time of hash function Hash;
– computing two satisfying committed CCS instances for the execution of
R0,R1, which is dominated by computing the commitment of witness
w0,w with O(n) G-ops.

The proof Π consists of an atomic CCS instance (S,U,W) and a committed
CCS instance (s,u,w), which are linear in the size of Rφ. While according to
previous work in Nova [26] and HyperNova [25], we can fold these two instances
with zk-NIFS.P and apply a general SNARK (the folded instance is already
zero-knowledge) to prove their validity. For example, instantiating a polynomial
IOP based on Bulletproofs polynomial commitment schemes [12] for (S,U,W)
and (s,u,w) can reduce the proof size to O(logm).

The PCD verifier cost contains

– invoking zk-NIFS.V for two instances with 2 logm + log n random oracle
queries, O((dq + d logm+ log n)) F-ops and 2 G-ops;

– verification of polynomial commitments withO(log n) random oracle queries
and O(n) G-ops;

– verification of the IVC system for structure folds with O(mn) F-ops.

The security of the folding scheme still holds. Here, we only give sketch proof
of the knowledge soundness. Assume the original folding scheme zk-NIFS satis-
fies knowledge soundness. Thus, there exists an extractor Ext runs in polynomial
time for zk-NIFS, which succeeds in extracting witness with non-negligible prob-
ability ϵ. For the new aggregated folding scheme, an extractor Ext′ can also
be constructed by calling Ext. The extractor Ext′ invokes Ext to obtain t tran-
scripts, each with different challenge ζ(i), i = 1, .., t. By interpolating, the ex-
tractor can compute the matrices {M∗j }j∈[t] and values {v∗j }tj=1 from the linear

combined M∗ and v∗. It is naive to argue that Ext′ runs in polynomial time.
For the advantage Ext′ succeeds with probability (ϵ − negl(λ)) · (1 − negl(λ)).
This is because given that Ext does not abort, the probability that different
challenges are sampled with less than d+1

√
|F| rewinds, i.e., ζ(1) ̸= · · · ≠ ζ(t), is

(1−O(1)/ d+1
√
|F|) · ϵ · (1− d+1

√
|F|

d
/|F|).

5.2 Delegation Schemes.

First, we explain the complexity problem caused by structure folds and highlight
the necessity of applying our optimization techniques. In real-world implemen-
tations, the folding scheme verifier does not directly compute the linear combi-
nation of matrices as described in step 11 of zk-NIFS.V. Instead, commitments
on each matrix are used according to Protostar and Protogalaxy [13,20], which
incurs a large number of group scalar multiplications in the recursive circuits
when handling multiple non-uniform instances. Take our generic foldings scheme
as an example, the verifier zk-NIFS.V needs to compute the linear combination

of matrix commitments {Commit(M
(i)
j)}i∈[ℓ] for all j = [t], leading to O(ℓ · t) G

operations in total. This raises complexity concerns for PCD, especially when the

29

prover needs to fold multiple instances with different structures among mutually
distrustful nodes. On the one hand, the verification logic should be written into
the recursive circuit, increasing the prover cost. On the other hand, the folded
matrix commitments should be sent to the next node in PCD, incurring a high
communication cost.

To alleviate this problem, we introduce an optimization technique for del-
egating the costly structure folds. In our folding scheme, the prover folds the
structures by computing the linear combinations of public matrices, and the
verifier repeats the same process. We observe that this subprotocol is indepen-
dent of other steps in the folding scheme. Thus, the original prover can prove
the structure folds by delegating to a third party8. This is because the matri-
ces are selected from a public list, e.g., an instruction set. Such delegation is
extremely useful for optimizing the performance of PCD because the delegated
computation is an IVC executed by only one prover, which avoids communica-
tion between different nodes. As a result, we can safely remove the verification of
structure folds from the original prover as long as ensuring the consistency of the
challenge for folding. This observation also applies to other non-uniform folding
schemes such as Protostar and Protogalaxy [13,20]. Concretely, the prover runs
another IVC system for iteratively computing the linear combination of matrix
commitments for folding the structure. We believe an IVC system instantiated
from Nova [26] is sufficient for this task. One thing left is to ensure the dele-
gated prover uses the same challenge η as the original prover. To achieve this,
we can instantiate an accumulator with the binding property in both parties.
A naive approach is computing an extra function as ri = Hash(ri−1, ηi) at each
step. Other existing accumulators, such as [4], can also be utilized. Since these
accumulators are also incremental computations, it is natural to add this com-
putation in the original function F in the IVC system. Figure 4 illustrate this
construction in details.

PCD IVC

Fig. 4: Delegation schemes for PCD. The structure folds are delegated to a third party
running the IVC. To ensure the soundness property, an extra accumulation for the
challenge η should be instantiated in the recursive circuits marked in the red box. The
binding property guarantees that PCD and IVC always use the same η for folding.

8 It is also practical to delegate this task directly to the final verifier (or decider) if it
is not very frequent to run the verifier in PCD.

30

Acknowledgement

We would like to thank Binyi Chen and Benedikt Bünz from Espresso Systems for
the inspiring discussions about the technical details of ProtoStar. We would also
like to thank Yingfei from the Secbit zero-knowledge discussion group, Josh Beal
from Yale University and Yanpei Guo from Beihang University for helping proof-
read our paper. This research has received partial support from HK RGC GRF
under Grants PolyU 15216721, 15207522, 15202123, and NSFC Youth 62302418.

31

References

1. Beal, J., Fisch, B.: Derecho: Privacy pools with proof-carrying disclosures. Cryp-
tology ePrint Archive (2023)

2. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular expo-
nentiation and digital signatures. In: Advances in Cryptology—EUROCRYPT’98:
International Conference on the Theory and Application of Cryptographic Tech-
niques Espoo, Finland, May 31–June 4, 1998 Proceedings 17. pp. 236–250. Springer
(1998)

3. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for snarks and proof-carrying data. In: Proceedings of the forty-fifth
annual ACM symposium on Theory of computing. pp. 111–120 (2013)

4. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to iops and stateless blockchains. In: Advances in Cryptology–CRYPTO
2019: 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18–22, 2019, Proceedings, Part I 39. pp. 561–586. Springer (2019)

5. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying data
from additive polynomial commitments. In: Advances in Cryptology–CRYPTO
2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16–20, 2021, Proceedings, Part I 41. pp. 649–680. Springer (2021)

6. Bonneau, J., Meckler, I., Rao, V.: Coda: Decentralized cryptocurrency at scale.
Cryptology ePrint Archive (2020)

7. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Mina: Decentralized cryptocurrency
at scale. New York Univ. O (1) Labs, New York, NY, USA, Whitepaper pp. 1–47
(2020)

8. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Advances in
Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35. pp. 327–357. Springer (2016)

9. Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge iops with linear-time prover and
polylogarithmic-time verifier. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 275–304. Springer (2022)

10. Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted
setup. Cryptology ePrint Archive (2019)

11. Bowe, S., Grigg, J., Hopwood, D.: Halo2. https://github. com/zcash/halo2 (2020)
12. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:

Short proofs for confidential transactions and more. In: 2018 IEEE symposium on
security and privacy (SP). pp. 315–334. IEEE (2018)

13. Bünz, B., Chen, B.: Protostar: Generic efficient accumulation/folding for special
sound protocols. Cryptology ePrint Archive (2023)

14. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. In: Advances in Cryptology–CRYPTO 2021: 41st Annual In-
ternational Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part I 41. pp. 681–710. Springer (2021)

15. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumu-
lation schemes. Cryptology ePrint Archive (2020)

16. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. In: Ad-
vances in Cryptology–EUROCRYPT 2020: 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10–14, 2020, Proceedings, Part I 39. pp. 677–706. Springer (2020)

32

17. Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its appli-
cations. arXiv preprint arXiv:1704.02086 (2017)

18. Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge. In: Ad-
vances in Cryptology-EUROCRYPT 2015: 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II 34. pp. 371–403. Springer (2015)

19. Chu, S., Gomes, B.H., Iglesias, F.H., Norton, T., Tebbs, D.: Uniplonk: Plonk with
universal verifier. Cryptology ePrint Archive (2023)

20. Eagen, L., Gabizon, A.: Protogalaxy: Efficient protostar-style folding of multiple
instances. Cryptology ePrint Archive (2023)

21. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Conference on the theory and application of cryptographic
techniques. pp. 186–194. Springer (1986)

22. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive (2019)

23. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Advances in Cryptology-ASIACRYPT 2010: 16th
International Conference on the Theory and Application of Cryptology and In-
formation Security, Singapore, December 5-9, 2010. Proceedings 16. pp. 177–194.
Springer (2010)

24. Kothapalli, A., Setty, S.: Supernova: Proving universal machine executions without
universal circuits. Cryptology ePrint Archive (2022)

25. Kothapalli, A., Setty, S.: Hypernova: Recursive arguments for customizable con-
straint systems. Cryptology ePrint Archive (2023)

26. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments
from folding schemes. In: Annual International Cryptology Conference. pp. 359–
388. Springer (2022)

27. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. Journal of the ACM (JACM) 39(4), 859–868 (1992)

28. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2111–2128 (2019)

29. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM (JACM) 27(4), 701–717 (1980)

30. Setty, S.: Spartan: Efficient and general-purpose zksnarks without trusted setup.
In: Annual International Cryptology Conference. pp. 704–737. Springer (2020)

31. Setty, S., Thaler, J., Wahby, R.: Customizable constraint systems for succinct ar-
guments. Cryptology ePrint Archive (2023)

32. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Annual Cryp-
tology Conference. pp. 71–89. Springer (2013)

33. Thaler, J., et al.: Proofs, arguments, and zero-knowledge. Foundations and
Trends® in Privacy and Security 4(2–4), 117–660 (2022)

34. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Theory of Cryptography: Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008. Proceedings 5. pp.
1–18. Springer (2008)

35. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,

33

CA, USA, August 18–22, 2019, Proceedings, Part III 39. pp. 733–764. Springer
(2019)

36. Xie, T., Zhang, J., Cheng, Z., Zhang, F., Zhang, Y., Jia, Y., Boneh, D., Song,
D.: zkbridge: Trustless cross-chain bridges made practical. In: Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security. pp.
3003–3017 (2022)

37. Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover time.
In: Annual International Cryptology Conference. pp. 299–328. Springer (2022)

38. Zheng, T., Gao, S., Song, Y., Xiao, B.: Leaking arbitrarily many secrets: Any-out-
of-many proofs and applications to ringct protocols. In: 2023 IEEE Symposium on
Security and Privacy (SP). pp. 2533–2550. IEEE (2023)

39. Zhou, Z., Zhang, Z., Dong, J.: Proof-carrying data from multi-folding schemes.
Cryptology ePrint Archive (2023)

A Formal Definitions

A.1 Security Definitions for Polynomial Commitment

A PC is an extractable polynomial commitment scheme for multilinear polyno-
mials over a finite field F if it satisfies completeness, binding, and knowledge
soundness properties as defined below.

1. Completeness. PC has completeness if for all ℓ-variate multilinear polynomial
g ∈ F[ℓ],

Pr

[
Eval(pppc, C, ℓ, r, v; f) = 1
∧f(r) = v

pppc ← Setup(1λ, ℓ);
C ← Commit(pppc, f)

]
= 1.

2. Binding. PC has binding if for any PPT adversary A, size parameter ℓ > 1,

Pr

[
b0 = b1 ̸= 0
∧f0 ̸= f1

pppc ← Setup(1λ, ℓ); (C, f0, f1)← A(pppc);
b0 ← Open(pppc, C, f0); b1 ← Open(pppc, C, f1)

]
≤ negl(λ).

3. Knowledge soundness. PC has knowledge soundness if given pppc ← Setup(1λ, ℓ),
Eval is a succinct argument of knowledge for NP relation

REval(pppc) = {(C, r, v; f) : f ∈ F[ℓ] ∧ f(r) = v ∧ Open(pppc, C, f) = 1}.

A.2 Security Definitions for PCD

A proof-carrying data scheme PCD should satisfy the perfect completeness,
knowledge soundness, and zero-knowledge properties.

1. Perfect Completeness. PCD has perfect completeness if for every adversary
A,

Pr

 V(vk, z,Π) = 1

pp← G(1λ);
(φ, z, zloc, {zi, Πi}ri=1)← A(pp);

(pk, vk)← K(pp, φ);
φ ∈ F;φ(z, zloc, {zi}ri=1) = 1;

∀i ∈ [r], zi = ⊥ or V(vk, zi, Πi) = 1;
Π ← P(pk, z, zloc, {zi, Πi}ri=1)

 = 1.

34

2. Knowledge soundness. PCD has knowledge soundness (w.r.t. an auxiliary
input distribution D) if for every expected polynomial time adversary P∗,
there exists an expected polynomial time extractor ExtP∗ such that for every
set Z,

Pr

 φ ∈ F
∧(pp, ai, φ, ◦(T), ao) ∈ Z
∧T is φ-compliant

pp← G(1λ);
ai← D(pp);

(φ,T, ao)← ExtP∗(pp, ao)

 ≥
Pr

 φ ∈ F
∧(pp, ai, φ, ◦, ao) ∈ Z
∧V(vk, ◦, Π) = 1

pp← G(1λ);
ai← D(pp);

(φ, ◦, Π, ao)← P∗(pp, ai);
(pk, vk)← K(pp, φ)

− negl(λ).

3. Zero Knowledge. PCD has (statistical) zero knowledge if there exists a prob-
abilistic polynomial-time simulator Sim such that for every polynomial-size
honest adversary A the distributions below are computationally indistin-
guishable: (pp, Π)

pp← G(1λ);
(φ, z, zloc, [zi, Πi]

r
i=1)← A(pp);

(pk, vk)← K(pp, φ);
Π ← P(pk, φ, z, zloc, [zi, Πi]

r
i=1)

and (pp, Π)

(pp, τ)← Sim(1λ);
(φ, z, zloc, [zi, Πi]

r
i=1)← A(pp);

Π ← Sim(pp, φ, z, τ)

 .

A.3 Definitions for CCS

Definition 12 (CCS [31]). We define the customizable constraint system (CCS)
relation RCCS as follows. Let the public parameter consist of size bounds m,n,N,
l, t, q, d ∈ N where n > l.
An RCCS structure S consists of:

– a sequence of matrices {Mj ∈ Fm×n}j∈[t] with at most N = Ω(max(m,n))
non-zero entries in total;

– a sequence of q multisets {Si}i∈[q], where an element in each multiset is from
the domain {1, ..., t} and the cardinality of each multiset is at most d.

– a sequence of q constants {ci}i∈[q], where each constant is from F.

A RCCS instance consists of public input and output io ∈ Fl.
A RCCS witness consists of a vector w ∈ Fn−l−1.
A RCCS instance io with structure S is satisfied by a RCCS witness w if∑

i∈[q]

ci · ⃝j∈SiMj · z = 0, (6)

where z = (w, 1, io) ∈ Fn, Mj ·z denotes matrix-vector multiplication,⃝ denotes
the Hadamard product between vectors, and 0 is an m-sized vector with entries
equal to the additive identity in F.

35

B Details for Generic Folding Schemes

We first present two special sound protocols for committed CCS and atomic
CCS relations separately to illustrate how to run “early stopping” SuperSpartan
for them. According to the workflow in Figure 3, one can first assume running
the special sound protocol for each instance independently and then applying
aggregation techniques for their intermediate steps, e.g., sum-check protocols
and polynomial evaluations.

B.1 Special Sound Protocol for Committed CCS

This part describes special sound protocols for the committed CCS relation
RCCCS. The basic idea is to commit the special sound protocol in SuperSpar-
tan [31]. Unlike the general-purpose protocol described in Protostar [13], the
special sound protocol we used is specified for concrete CCS relations because
the relation itself is already expressive enough. Note that Protostar also cov-
ers CCS relations with their special sound protocol to manifest expressiveness.
While their protocols are not based on sum-check protocols. The performance
of the final scheme is still restricted by the accumulation scheme they proposed.

We instantiate a protocol with a series of interactions between two parties
(P,V), checking the validity of relation RCCCS by running sum-check protocols
on the target multi-variate polynomials. The running steps of the protocol are
given in ΠCCCS below. Specifically, the prover wants to convince that Equation
(2) holds for all x ∈ {0, 1}sx . To check this equation with sum-check protocol, a
trick is introduced in Spartan [30]: if multiply each value with a corresponding
term ẽq(α,x) with random chosen α, then their sum equals to zero only when

all values equal to zero with high probability. Formally, denote F̃ (x) as

F̃ (x) =
∑
i∈[q]

ci

∏
j∈Si

 ∑
y∈{0,1}sy

M̃j(x,y) · z̃(y)

 ,

denote Q̃(t) as

Q̃(t) =
∑

x∈{0,1}sx
F̃ (x) · ẽq(t,x),

where ẽq(t,x) =
∏sx

i=1(ti ·xi+(1− ti) · (1−xi)). Note that Q(t) is a multivariate

polynomial evaluates to F̃ (t) for all t ∈ {0, 1}sx . Therefore, Q(t) is a zero-

polynomial if and only if F̃ (x) evaluates to zero everywhere on x ∈ {0, 1}sx (that
is, the CCS relation is satisfied). To check whether Q(t) is a zero-polynomial,
it is sufficient to query its value on a random input t = α with an acceptable
soundness error.

Lemma 3. Prα{Q(α) = 0 | ∃x ∈ {0, 1}sx s.t. F̃ (x) ̸= 0} ≤ logm/|F|.

Proof. Refers to the proof of Lemma 4.3 in Spartan [30].

36

As a result, the prover runs the first sum-check protocol at step 4 on the
polynomial f(x) with the randomness α, rx given by the verifier at step 1 and
2, where sumx = 0.

Special Sound Protocol ΠCCCS = (P,V) for relation RCCCS

1. V : Sample α←$ Fsx and send to P.
2. V : Sample rx ←$ Fsx .

3. P : Compute z̃(y) = ˜(w, 1, io).

4. Sum-check#1. Run cx ← Πsc(f, sx, d+ 1, sumx, rx) where:

f(x) = ẽq(α,x) ·
(∑

i∈[q] ci ·
∏

j∈Si

(∑
y∈{0,1}sy M̃j(x,y) · z̃(y)

))
.

5. P : Compute {σj}j∈[t] and send to V, where for all j ∈ [t]:

σj =
∑

y∈{0,1}sy M̃j(rx,y) · z̃(y).

6. V : Compute e← ẽq(α, rx), and abort if:

cx ̸= e ·
∑

i∈[q] ci ·
∏

j∈Si
σj .

7. V : Sample δ ←$ F, and send to P.
8. V : Sample ry ←$ Fsy .

9. Sum-check#2. Run cy ← Πsc(g, sy, 2, sumy, ry) where:

g(y) =
∑

j∈[t] δ
j · M̃j(rx,y) · z̃(y).

10. P : Compute ϵ, {θj}j∈[t] and send to V, where for all j ∈ [t]:

ϵ = z̃(ry), θj = M̃j(rx, ry).

11. V : Abort if:

cy ̸=
∑

j∈[t] δ
j · θj · ϵ.

12. P : Open the witness w̃.

13. V : Check that

(1) Commit(pp, w̃) = C

(2) ϵ = z̃(ry), θj = M̃j(rx, ry).

To evaluate f(rx), the verifier needs to know the value of
∑

y∈{0,1}sy M̃j(x,y) ·
z̃(y) for all j ∈ [t], which can be reduced to another sum-check problem. Thus,
the prover makes t separate claims to the sums on y ∈ {0, 1}sy to the verifier
at step 5. The verifier checks two facts accordingly: (1) cx in sum-check#1 is
consistent with the above claims (step 6), and (2) the t claims are valid.

37

The first fact is verified directly at step 6. For the second fact, a naive ap-
proach is to run t more times the sum-check protocol in parallel for t claims. A
more elegant solution aggregates these claims by linear combination with weights
[δ1, ..., δt] generated from a random δ. Consequently, the prover and verifier can
run the sum-check protocol only once on the aggregated multi-variate polynomial
g(y) at step 9 with the randomness ry and sumy =

∑
j∈[t] δ

j ·σj . Likewisely, the

prover makes claims to t evaluations {Mj(rx, ry)}tj=1 and one evaluation z̃(ry)
at steps 10. The verifier checks accordingly by running step 11 and computing
the evaluations at step 13.

The security properties of the protocol ΠCCCS are guaranteed as follows:

– Completeness. ΠCCCS satisfies perfect completeness.
– Knowledge Soundness. ΠCCCS is a knowledge sound protocol for RCCCS if the

commitment scheme Commit() satisfies the binding property. To prove it, let
ExtCCCS be the PPT extractor for the protocol ΠCCCS. By rewinding the ma-
licious prover P∗ twice with different challenges ρ, ρ′, ExtCCCS can compute
a witness w′ satisfying: (1) Commit(pp, w̃′) = C guaranteed by the binding
property of commitment scheme and (2) the CCS relation guaranteed by
the soundness of sum-check protocol [27] and Schwartz-Zippel lemma. By
applying the union bound, we claim that the soundness error of ΠCCCS is at
most O(d · logm+ t+ log n)/|F|.

B.2 Special Sound Protocols for Atomic CCS

Based on the observations above, we build a special sound protocol ΠACCS

friendly for the folding schemes. The prover and verifier run a series of inter-
actions in the protocol to substitute the random vectors rx, ry in the atomic

CCS instance. First, the prover rewrites each M̃j(rx, ry), j ∈ [t] as

Mj(x) = ẽq(rx,x) ·

 ∑
y∈{0,1}sy

ẽq(ry,y) · M̃j(x,y)

Then the prover and verifier run the first sum-check protocol on x for each
Mj(x). With the random challenge γ sampled by the verifier at step 1, the
prover constructs an aggregated polynomial f(x) as the linear combinations of
each Mj(x). Then the prover and verifier run the sum-check#1 on f(x) at step
4 with the random vector r′x, where the sumx equals to

∑
j∈[t] γ

j · vj . If the
sum-check#1 is correctly executed, the claims on matrices are updated to

σj =
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(r

′
x,y)

for j ∈ [t] with the new random vector r′x at step 5. Next, the prover rewrites

for z̃(ry) and each M̃j(rx, ry) as

Mj(y) = ẽq(ry,y) · M̃j(r
′
x,y), z(y) = ẽq(ry,y) · z̃(y)

38

the prover and verifier run the sum-check#2 on the aggregated g(y) at step 9
with the random vector r′y, where sumy =

∑
j∈[t] δ

j ·σj+δt+1 ·vz. The remaining
process runs similarly. Finally, the protocol transforms the original atomic CCS
into a new one on r′x, r

′
y.

For the security of the proposedΠACCS, it retains completeness and soundness
as the ΠCCCS does. We omit the security proof since it can be covered by the
proofs for our generic folding scheme in Appendix B.3.

Special Sound Protocol ΠACCS = (P,V) for relation RACCS

1. V : Sample γ ←$ F, and send to P.
2. V : Sample r′

x ←$ Fsx .

3. P : Compute z̃(y) = (w̃, 1, io).

4. Sum-check#1. cx ← Πsc(f, sx, 2, sumx) with random r′
x where:

f(x) =
∑

j∈[t] γ
j · ẽq(rx,x) ·

(∑
y∈{0,1}sy ẽq(ry,y) · M̃j(x,y)

)
.

5. P : Compute {σj}j∈[t] and send to V, where:

σj =
∑

y∈{0,1}sy ẽq(ry,y) · M̃j(r
′
x,y), for all j ∈ [t].

6. V : Compute e1 ← ẽq(rx, r
′
x), and abort if:

cx ̸= e1 ·
∑

j∈[t] γ
j · σj .

7. V : Sample δ ←$ F, and send to P.
8. V : Sample r′

y ←$ Fsy .

9. Sum-check#2. cy ← Πsc(g, sy, 2, sumy) with random r′
y where:

g(y) =
∑

j∈[t] δ
j · ẽq(ry,y) · M̃j(r

′
x,y) + δt+1 · ẽq(ry,y) · z̃(y).

10. P : Compute ϵ, {θj}j∈[t] and send to V, where for all j ∈ [t]:

ϵ = z̃(r′
y), θj = M̃j(r

′
x, r

′
y).

11. V : Compute e2 ← ẽq(ry, r
′
y), and abort if:

cy ̸= e2 · (
∑

j∈[t] δ
j · θj + δt+1 · ϵ).

12. P : Open the witness w̃.

13. V : Check that

(1) Commit(pp, w̃) = C ,

(2) ϵ = z̃(r′
y), θj = M̃j(r

′
x, r

′
y).

B.3 Security Proofs for Folding Scheme

In this section, we present the formal security proofs of our generic foldings
scheme, including perfect completeness, knowledge soundness, and honest verifier

39

zero-knowledge. For the former two properties, we mainly refer to the proof of
the HyperNova [25].

Lemma 4. (Perfect Completeness). Construction 1 satisfies perfect complete-
ness.

Proof. Consider public parameters pp = (m,n,N, l, t, q, d, ppPC) ← G(1λ) and
let sx = logm and sy = log n. Consider arbitrary structures

S = {M̃j}j∈[t] ← A(pp),

S ′ = {M̃ ′j}j∈[t], {S′i}i∈[q], {c′i}i∈[q] ← A(pp).

Consider prover and verifier key (pk, vk)← K(pp,S,S ′). Suppose the prover and
verifier are provided an atomic CCS instance

(C, v0, io, rx, ry, {vj}j∈[t], vz),

and a committed CCS instance

(C ′, io′).

1. Sum-check protocol#1 : suppose the prover is additionally provided the corre-
sponding satisfying witnesses w̃ and w̃′. Since the input atomic CCS instance-

witness pair is satisfying, we have, for z̃ = ˜(w, v0, io), that

vj =
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(rx,y)

=
∑

x∈{0,1}sx
ẽq(rx,x) ·

 ∑
y∈{0,1}sy

ẽq(ry,y) · M̃j(x,y)

=

∑
x∈{0,1}sx

Lj(x),∀j ∈ [t].

Moreover, since the input committed CCS instance-witness pair is satisfying, we

have, for z̃′(y) = ˜(w′, 1, io′)(y), that

0 =
∑
i∈[q]

c′i ·
∏
j∈S′

i

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)

 ,∀x ∈ {0, 1}sx .

Treating the right-hand side of the above equation as a polynomial in x, because
it is multilinear and vanishes on all x ∈ {0, 1}sx , we have that it must be the

40

zero polynomial. Therefore, we have, for α sampled by the verifier, that

0 =
∑
i∈[q]

c′i ·
∏
j∈S′

i

 ∑
y∈{0,1}sy

M̃ ′j(α,y) · z̃′(y)

=

∑
x∈{0,1}sx

ẽq(α,x) ·

∑
i∈[q]

c′i
∏
j∈S′

i

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)

=

∑
x∈{0,1}sx

Q(x).

For γ sampled by the verifier, by linearity, we have that

∑
j∈[t]

γj · vj =
∑

x∈{0,1}sx

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

=

∑
x∈{0,1}sx

f(x).

Therefore, by the perfect completeness of the sum-check protocol, we have for
e1 = ẽq(rx, r

′
x), e2 = ẽq(α, r′x) and

σj =
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(r

′
x,y),∀j ∈ [t],

σ′j =
∑

y∈{0,1}sy
M̃ ′j(r

′
x,y) · z̃′(y),∀j ∈ [t],

that

cx = f(r′x)

=

∑
j∈[t]

γj · Lj(r
′
x)

+ γt+1 ·Q(r′x)

=

∑
j∈[t]

γj · e1 · σj

+ γt+1 · e2 ·
∑
i∈[q]

c′i ·
∏
j∈S′

i

σ′j .

41

2. Sum-check protocol#2 : According to the results of sum-check protocol#1, for
z̃(x), z̃′(x) and sampled r′x, we have

σj =
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(r

′
x,y)

=
∑

y∈{0,1}sy
Rj(y),∀j ∈ [t],

vz =
∑

y∈{0,1}sy
ẽq(ry,y) · z̃(y)

σ′j =
∑

y∈{0,1}sy
M̃ ′j(r

′
x,y) · z̃′(y),

=
∑

y∈{0,1}sy
Tj(y),∀j ∈ [t].

For δ sampled by the verifier, by linearity, we have that∑
j∈[t]

δj · σj + δt+1 · vz + δt+1 ·
∑
j∈[t]

δj · σ′j

=
∑
j∈[t]

δj ·Rj(y) + δt+1 · S(y) + δt+1 ·
∑
j∈[t]

δj · Tj(y)

=
∑
j∈[t]

g(y).

Therefore, by the perfect completeness of the sum-check protocol, we have for

ϵ = z̃(r′y),

ϵ′ = z̃′(r′y),

θj = M̃j(r
′
x, r
′
y),∀j ∈ [t],

θ′j = M̃ ′j(r
′
x, r
′
y),∀j ∈ [t],

that

cy = g(r′y)

=
∑
j∈[t]

δj ·Rj(r
′
y) + δt+1 · S(y) + δt+1 ·

∑
j∈[t]

δj · Tj(r
′
y)

=
∑
j∈[t]

δj · e3 · θj + δt+1 · ϵ+ δt+1 ·
∑
j∈[t]

δj · θj · ϵ′.

The above two steps imply that the verifier will not abort. Now, consider the
atomic CCS instance obtained from R′ as

(C ′, 1, io′, r′x, r
′
y, {θ′j}j∈[t], ϵ′).

42

By the precondition that the committed CCS instance (C ′, io′) is satisfied by w̃′

and by the definition of {θ′j}j∈[t], ϵ′ we have that this new atomic CCS instance

is satisfied by the witness w̃′.

Therefore, for random η sampled by the verifier, and folded structure S∗
with {M∗j = Mj + η ·M ′j}tj=1, folded instance C∗ = C + η · C ′, v∗0 = v0 + η · 1,
io∗ = io+ η · io′, v∗j = θj + η · θ′j , v∗z = ϵj + η · ϵ′j , we have that the output folded
atomic CCS instance

(C∗, v∗0 , io
∗, r′x, r

′
y, {v∗j }j∈[t], v∗z).

is satisfied by the witness w̃∗ ← w̃+η ·w̃′ under the structure S∗ by the linearity
and the additive homomorphism property of the commitment scheme.

Lemma 5. (Knowledge Soundness). Construction 1 satisfies knowledge sound-
ness.

Proof. Consider an adversary A that adaptively picks the structures and in-
stances, and a malicious prover P∗ that succeeds with probability ϵ. Let pp ←
G(1λ). Suppose on input pp and random tape η, the adversary A picks two
structures

S = {M̃j}j∈[t],

S ′ = {M̃ ′j}j∈[t], {S′i}i∈[q], {c′i}i∈[q].

a new committed CCS instance

u = (C, v0, io, rx, ry, {vj}j∈[t], vz),

and committed CCS instance

u′ = (C ′, io′),

and some auxiliary state st.

1. Extraction Algorithm: we construct an expected-polynomial time extractor
Ext that succeeds with probability ϵ − negl(λ) in obtaining satisfying witnesses
for the original instances as follows.

43

Ext(pp, ρ):

1 : Obtain the output tuple from A:

(S,S ′, u, u′, st)← A(pp, ρ).

2 : Compute (pk, vk)← K(pp,S,S ′).

3 : Run the folding interaction#1

(S∗
1 , u

∗
1, w̃

∗
1)← ⟨P∗,V⟩((pk, vk),S,S ′, u, u′, st)

once with the final verifier challenge η1 ←$ F.
4 : Abort if (pp,S∗

1 , u
∗
1, w̃

∗
1) /∈ RACCS.

5 : Run the folding interaction#2

(S∗
2 , u

∗
2, w̃

∗
2)← ⟨P∗,V⟩((pk, vk),S,S ′, u, u′, st))

with a different verifier’s final challenge η2 ←$ F while maintaining the same

prior randomness. Keep doing so until (pp,S∗
2 , u

∗
2, w̃

∗
2) ∈ RACCS.

6 : Abort if η1 = η2 or S∗
1 ̸= S∗

2 .

7 : Interpolating points (η1, w̃
∗
1) and (η2, w̃

∗
2), retrieve the witness polynomials

w̃ and w̃′ such that for i ∈ {1, 2}

w̃ + ηi · w̃′ = w̃∗
i .

8 : Output (w̃, w̃′).

We first demonstrate that the extractor Ext runs in expected polynomial time.
Observe that Ext runs the folding interaction#1 once, and if it does not abort,
keeps rerunning the folding interaction#2 until P∗ succeeds. Let W denote the
event that the extractor does not abort at step 4, and W̄ denotes that the event
W does not happen. Define the number of folding interactions Ext runs in total
as a variable X (i.e., number of rewinds). We can calculate its expectation as

E[X] = Pr[W] ·(1+ 1

Pr[⟨P∗,V⟩ succeeds]
)+Pr[W̄] ·1 = ϵ ·(1+ 1

ϵ
)+(1−ϵ) ·1 = 2.

Therefore, we have that the extractor runs in the expected polynomial time.
2. Advantage Analysis: We now analyze Ext’s success probability. We must
demonstrate that Ext succeeds in producing w̃ and w̃′ such that

(pp,S,u, w̃) ∈ RACCS and (pp,S ′,u′, w̃′) ∈ RCCCS

, with probability ϵ− negl(λ).
To do so, we first show that the extractor successfully produces some output

(i.e., does not abort) in less than 3
√
|F| rewinding steps with probability ϵ −

negl(λ). Indeed, by the malicious prover’s success probability, we have that the
extractor does not abort at step (4) with probability ϵ. Given that the extractor
does not abort at step (4), by Markov’s inequality, we have that the extractor

44

rewinds more than 3
√
|F| times with probability

Pr[X ≥ 3
√
|F|] ≤ E[X]

3
√
|F|

=
2

3
√
|F|

,

where X is the random variable of the number of running folding interactions.
Thus, the probability that the extractor does not abort at step (4) and requires
less than 3

√
|F| rewinds is (1− 2/ 3

√
|F|) · ϵ.

Now, suppose that the extractor does not abort at step (4) and requires
less than 3

√
|F| rewinds. This ensures that the extractor tests at most 3

√
|F|

values for η. Since the challenges are sampled uniformly in random form |F|, the
probability that ρ(1) ̸= ρ(2) is 1− 3

√
|F|

2
/|F|. Therefore, assuming 3

√
|F|

2
≥ 2, we

have that the probability the extractor successfully produces some output under
3
√
|F| rewinding steps is

Pr[X < 3
√
|F|] · Pr[ρ(1) ̸= ρ(2)] = (1− 2

3
√
|F|

) · ϵ · (1−
3
√
|F|

2

|F|
)

= (1− 2
3
√
|F|
−

3
√
|F|

2

|F|
+

2

|F|
)

= ϵ− negl(λ).

Next, if the extractor does not abort, we show that the extractor succeeds
in producing satisfying witnesses with probability 1 − negl(λ). This brings the
overall extractor success probability to (ϵ− negl(λ)) · (1− negl(λ)).

For i ∈ {1, 2}, let u∗i = (C∗i , v
∗
0,i, io

∗
i , r
∗
x,i, v

∗
1,i, ..., v

∗
t,i, v

∗
z,i). We first show that

the retrieved polynomials are valid openings to the corresponding commitments
in the instance. For i ∈ {1, 2}, since w̃∗i is a satisfying witness, by construction,

Commit(pp, w̃) + ηi · Commit(pp, w̃′)

= Commit(pp, w̃ + ηi · w̃′)
= Commit(pp, w̃∗i)

= C∗i

= C + ηi · C ′.

Interpolating, we have that

Commit(pp, w̃) = C, (7)

Commit(pp, w̃′) = C ′. (8)

Next, we must argue that w̃ and w̃′ satisfy the remainder of the instances
(S,u) and (S ′, φ′) respectively.

Consider {θj}j∈[t], {θ′j}j∈[t] and ϵ, ϵ′ sent by the prover which by the extrac-
tor’s construction are identical across all executions of the interaction. By the
verifier’s computation we have that for i ∈ {1, 2} and all j ∈ [t]

vj,i = θj + ηi · θ′j , (9)

vz,i = ϵ+ ηi · ϵ′. (10)

45

Now, because w̃∗i is a satisfying witness, for i ∈ {1, 2} we have for all j ∈ [t]
that

vj,i = M̃∗j,i(r
′
x, r
′
y),

vz,i = z̃∗i (r
′
y),

where M̃∗j,i = M̃j + ηi · M̃j , z̃
∗
i = ˜(w∗i , v

∗
0,i, io

∗
i) = z̃ + η · z̃′.

Meanwhile, according to equations (9) and (10), for i ∈ {1, 2} and j ∈ [t], we
have

θj + ηi · θ′j = vj,i = M̃j(r
′
x, r
′
y) + ηi · M̃ ′j(r′x, r′y),

ϵ+ ηi · ϵ′ = vz,i = z̃(r′y) + ηi · z̃′(r′y),

where z̃ = ˜(wi, v0,i, ioi) and z̃′ = ˜(w′, 1, io′). Interpolating, we have that, for all
j ∈ [t]

θj = M̃j(r
′
x, r
′
y),

θ′j = M̃ ′j(r
′
x, r
′
y),

ϵ = z̃(r′y),

ϵ′ = z̃′(r′y).

Thus, because the verifier does not abort at step 11, we have that

cy =
∑
j∈[t]

δj · e3 · θj + δt+1 · e3 · ϵ+ δt+1 ·
∑
j∈[t]

δj · θ′j · ϵ′

=
∑
j∈[t]

δj · ẽq(ry, r′y) · θj + δt+1 · ẽq(ry, r′y) · ϵ+ δt+1 ·
∑
j∈[t]

δj · θ′j · ϵ′

=
∑
j∈[t]

δj · ẽq(ry, r′y) · M̃j(r
′
x, r
′
y) + δt+1 · ẽq(ry, r′y) · z̃(r′y) + δt+1 ·

∑
j∈[t]

δj · M̃ ′j(r′x, r′y) · z̃′(r′y)

=
∑
j∈[t]

δj ·Rj(r
′
y) + δt+1 · S(r′y) + δt+1 ·

∑
j∈[t]

δj · Tj(r
′
y)

= g(r′y),

by the soundness of the sum-check protocol#2, this implies that with probability
1−O(d · sy)/|F| = 1− negl(λ) over the choice of r′y,∑

j∈[t]

δj · σj + δt+1 · vz + δt+1 ·
∑
j∈[t]

δj · σ′j

=
∑

y∈{0,1}sy
g(y)

=
∑

y∈{0,1}sy

∑
j∈[t]

δj ·Rj(y) + δt+1 · S(y) + δt+1 ·
∑
j∈[t]

δj · Tj(y)

=

∑
j∈[t]

δj ·
∑

y∈{0,1}sy
Rj(y) + δt+1 ·

∑
y∈{0,1}sy

S(y) + δt+1 ·
∑
j∈[t]

δj ·
∑

y∈{0,1}sy
Tj(y).

46

By the Schwartz-Zippel lemma [Sch80], this implies that with probability 1 −
O(t)/|F| = 1− negl(λ) over the choice of δ, for all j ∈ [t], we have

σj =
∑

y∈{0,1}sy
Rj(y) =

∑
y∈{0,1}sy

ẽq(ry,y) · M̃j(r
′
x,y),

vz =
∑

y∈{0,1}sy
S(y) =

∑
y∈{0,1}sy

ẽq(ry,y) · z̃(y),

σ′j =
∑

y∈{0,1}sy
Tj(y) =

∑
y∈{0,1}sy

M̃ ′j(r
′
x,y) · z̃′(y).

Thus, because the verifier does not abort at step 5, we have that

cx =

∑
j∈[t]

γj · e1 · σj

+

γt+1 · e2 ·
∑
i∈[q]

c′i ·
∏
j∈Si

σj

=

∑
j∈[t]

γj · ẽq(rx, r′x) · σj

+

γt+1 · ẽq(α, r′x) ·
∑
i∈[q]

c′i ·
∏
j∈Si

θj

=

∑
j∈[t]

γj · ẽq(rx, r′x) ·
∑

y∈{0,1}sy
ẽq(ry,y) · M̃j(r

′
x,y)

+

γt+1 · ẽq(α, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

∑
y∈{0,1}sy

M̃ ′j(r
′
x,y) · z̃′(y)

=

∑
j∈[t]

γj · Lj(r
′
x) + γt+1 ·Q(r′x)

= f(r′x),

by the soundness of the sum-check protocol#1, this implies that with probability
1−O(d · sx)/|F| = 1− negl(λ) over the choice of r′x,

∑
j∈[t]

γj · vj + γt+1 · 0 =
∑

x∈{0,1}sx
f(x)

=
∑

x∈{0,1}sx

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

=

∑
x∈{0,1}sx

γj ·

∑
j∈[t]

Lj(x)

+ γt+1 ·
∑

x∈{0,1}sx
Q(x).

47

By the Schwartz-Zippel lemma [Sch80], this implies that with probability 1 −
O(t)/|F| = 1− negl(λ) over the choice of γ, for all j ∈ [t], we have

vj =
∑

x∈{0,1}sx
Lj(x),

0 =
∑

x∈{0,1}sx
Q(x).

Therefore,

vj =
∑

x∈{0,1}sx
Lj(x)

=
∑

x∈{0,1}sx
ẽq(rx,x) ·

 ∑
y∈{0,1}s

ẽq(ry,y) · M̃j(x,y)

= M̃j(rx, ry).

This implies that w̃ is a satisfying witness to (S,u). Finally, we have that

0 =
∑

x∈{0,1}sx
Q(x)

=
∑

x∈{0,1}sx
ẽq(α,x) ·

∑
i∈[q]

c′i ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)

=

∑
i∈[q]

c′i ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃ ′j(α,y) · z̃′(y)

 .

By the Schwartz-Zippel lemma, this implies that with probability 1 − sx/|F| =
1− negl(λ) over the choice of α, we have that for all x ∈ {0, 1}sx

0 =
∑
i∈[q]

c′i ·
∏
j∈Si

 ∑
y∈{0,1}sy

M̃ ′j(x,y) · z̃′(y)

 .

This implies that w̃′ is a satisfying witness to (S ′,u′). Thus, if the extractor
does not abort, it succeeds in producing satisfying witness w̃, w̃′ with probability
1− negl(λ).

Lemma 6. (Honest Verifier Zero Knowledge). Construction 1 satisfies honest
verifier zero knowledge.

Proof. Consider an adversary A that adaptively picks the structures and in-
stances. Let pp← G(1λ). Suppose on input pp, the adversary A picks two struc-
tures

S = {M̃j}j∈[t],

S ′ = {M̃ ′j}j∈[t], {S′i}i∈[q], {c′i}i∈[q],

48

a new committed CCS instance-witness pair

(u,w) = (C, v0, io, rx, ry, {vj}j∈[t], vz,w),

and committed CCS instance-witness pair

(u′,w′) = (C ′, io′.w).

With the keys generated by (pk, vk) ← K(pp,S,S ′), the non-deterministic
function trace produces an interaction transcript tr between honest P and V of
Πfold on input ((pk, vk), (u,u′), (w,w′)).

Next, we construct a PPT simulator Sim producing the trace t̂r with indis-
tinguishable distribution from tr with the input of (pp, {(S,S ′), (u,u′), ρ).

To begin with, the simulator inputs a random challenge η̂ to aggregate the
structures and instances accordingly to obtain the folded structure Ŝ∗ containing

M̂j
∗
= η̂ ·Mj + η̂2 ·M ′j

for all j ∈ [t], and part of the folded instance û∗ containing

v̂0
∗ ← η̂ · v0 + η̂2 · 1,

îo
∗ ← η̂ · io+ η̂2 · io′.

v̂j
∗ ← η̂ · vj + η̂2 · v′j ∀j ∈ [t],

To simulate the trace t̂r, the simulator samples a random vector in Fn− l − 1
as ŵ∗, and compute the commitment on the random witness w in the masking
instance as

Ĉ ′′ = Commit(pp, ŵ∗)− η̂ · C − η̂2 · C ′.

The commitment Ĉ∗ = Commit(pp, ŵ∗) is added to the instance û∗.
By sampling another random value as v̂z

∗, the simulator computes the value
ϵ̂′′ for the claim on v̂z

′′ of the masking instance as

ϵ̂′′ = v̂z
∗ − η̂ · ϵ̂− η̂2 · ϵ̂′,

where ϵ̂ = vz, ϵ̂
′ = v′z. The v̂z

∗ is then added to the instance û∗.

Denote θ̂j = vj , θ̂j
′
= v′j , θ̂j

′′
= ⊥ Now, we have obtained the claims on

matrices and instance-witness pairs for three instances as follows

ϵ̂ = z̃(r′y),

ϵ̂′ = z̃′(r′y),

ϵ̂′′ = z̃′(r′y),

θ̂j = M̃j(r
′
x, r
′
y),∀j ∈ [t],

θ̂j
′
= M̃ ′j(r

′
x, r
′
y),∀j ∈ [t].

49

Note that the matrices for making instance can be set equal to either {Mj}j∈[t]
or {M ′j}j∈[t]. The above values are indistinguishable from those in tr.

According to the conclusion given by Chiesa et al. in [17], the Sim can invoke
another efficient simulator Simsc to simulate an indistinguishable trace tr2 for
sum-check#2 based on the claims above.

By running the similar process as above, the Sim can simulate another indis-
tinguishable trace tr1 for sum-check#1 based on the claims given in tr2.

Finally, the Sim outputs a valid trace t̂r constructed from ϵ̂, ϵ̂′, ϵ̂′′, θ̂j , θ̂j
′
, θ̂j
′′

and tr1, tr2. Obviously, the Sim can be executed in polynomial time.

C Security proofs for PCD

We refer to the security proofs of completeness and knowledge soundness to [39].

Lemma 7 (Perfect Completeness). Construction 3 satisfies perfect com-
pleteness.

Proof. For public parameter pp, consider arbitrary adversarially chosen messages
(φ, z, zloc, {zi, Πi}k∈[s]) satisfying

φ ∈ F;φ(z, zloc, {zk}k∈[s]) = 1;

∀k ∈ [s], zk = ⊥ or V(vk, zk, Πk) = 1,

such that the perfect completeness precondition is satisfied. We show that given
Π ← P(pk, z, zloc, {zk, Πk}k∈[s]), the verifier algorithm passes, i.e., V(vk, z,Π) =
1 with probability 1.

Specifically, there are two cases:

– If zk = ⊥ for all k ∈ [s], the prover runs the algorithm honestly, and the
compliance φ(z, zloc, z1, ..., zs) holds by the preconditions. The circuitR0 can
be constructed accordingly and a satisfied RCCCS instance is as

(s0,u0,w0)← trace(R0, (h, (z, zloc, {zk,Uk,uk}k∈[s], vk′))

Then the prover sets (U,W, pf) accordingly to (u0,w0,⊥) and computes h =
Hash(vk′mathsffs, z,U). And the circuit R1 can be constructed accordingly
and a satisfied RCCCS instance is as

(s,u,w)← trace(R1, (h, ({Uk,uk}k∈[s],u0, vk′,U, Π)).

Besides, u.io = H(vk′, z,U). As a result, V(vk, z,Π) = 1 with probability 1.
– If ∃k ∈ [s] such that zk ̸= ⊥, by the perfect completeness precondition,
{Uk,Wk}k∈[s] are satisfied RACCS instance-witness pairs, {uk,wk}k∈[s] are
satisfiedRCCCS instance-witness pairs, and uk.io = H(vk′, zk,Uk). The prover
runs the algorithm honestly, and the compliance φ(z, zloc, z1, ..., zs) holds
by the preconditions. The circuit R0 can be constructed accordingly and a
satisfied RCCCS instance is as

(s0,u0,w0)← trace(R0, (h, (z, zloc, {zk,Uk,uk}k∈[s], vk′))

50

Then, the prover runs the generic foldings scheme for {Sk,Uk,Wk}k∈[s],
{sk,uk,wk}sk=0. By the perfect completeness of the generic folding scheme,
we have that (U,W) is a satisfied RCCCS instance-witness pair. The circuit
R1 can be constructed accordingly and a satisfied RCCCS instance is as

(s,u,w)← trace(R1, (h, ({zk,Uk,uk}k∈[s],u0, vk′,U, Π)).

Besides, u.io = H(vk′, z,U). As a result, V(vk, z,Π) = 1 with probability 1.

In conclusion, we show that Construction 3 has perfect completeness.

Lemma 8 (Knowledge Soundness). Construction 3 satisfies knowledge sound-
ness.

Proof. Given a fixed set Z, pp ← G(1λ) and auxiliary input ai ← D(pp), the
polynomial time adversary P∗ succeeds in producing valid transcript (φ, ◦, Π, ao)
with non-negligible probability ϵ. We aim to show that it is feasible to construct
an extractor ExtP∗ on input (pp, ai), succeeds in outputting (φ,T, ao) with prob-
ability ϵ− negl(λ), where φ ∈ F, (pp, ai, φ, ao) ∈ Z and T is φ-compliant.

According to [14], it is convenient to assume the transcript T as a d-depth
tree, where d is the depth of φ. Among the tree T, each node u with local
data z(u)loc has a unique outgoing edge labelled with z(u) and a proof Π(u)

for the correctness of z(u). The extractor ExtP∗ is constructed inductively by
constructing a sequence of extractors Ext0, ...,Extd. For i ∈ 0, ..., d, Exti outputs
a (i + 1)-depth tree Ti. Basically, we define Ext0(pp, ai) runs (φ, ◦, Π, ao) ←
P∗(pp, ai) and outputs (φ,T0, ao), where T0 contains only one node labeled with
(◦, Π).

Then assume we already have extractor Exti−1. To construct Exti, an adver-
sary P∗i−1 for the zero-knowledge non-interactive generic folding scheme needs
to be constructed first.

P∗i−1(pp, ai, ρ):
1 : Compute (φ,Ti−1, ao)← Exti−1(pp, ai). If Ti−1 is not a tree of depth i, abort.

2 : For each node u ∈ LTi−1(i), denote its label as (z(u), Π(u)).

3 : Parse Π(u) as ((U(u),W(u)), (u(u),w(u))).

4 : Obtain ({U(u)
k , u(u)

k , z
(u)
j }k∈[s], u0, pf

(u)) from w(u).

5 : Let Li−1 := {u ∈ LTi−1(i) | ∃k ∈ [s], z
(u)
k ̸= ⊥}.

6 : Output

({
{U(u)

k , u(u)
k }k∈[s], u

(u)
0 ,U(u),W(u), pf(u)

}
u∈Li−1

, (φ,Ti−1, ao)

)
.

where LTi−1
(i) denotes the set of nodes of T at depth i. According to the

knowledge soundness of the generic folding scheme, we can construct another

extractor ExtP∗
i−1

. On input v ∈ Li−1, ExtP∗
i−1

outputs {W(u)
k ,w

(u)
k }k∈[s] and

w
(u)
0 with non-negligible probability, where {U(u)

k ,W
(u)
k }k∈[s] are satisfied atomic

CCS instance-witness pairs and {u(u)k ,w
(u)
k }sk=0 are satisfied committed CCS

instance-witness pairs.
Based on P∗i−1,ExtP∗

i−1
, we can further construct Exti as follows.

51

(φ,Ti, ao)← Exti(pp, ai):

1 : Compute

({
{U(u)

k ,W(u)
k }k∈[s], {u(u)

k ,w(u)
k }

s
k=0

}
u∈Li−1

, (φ,Ti−1, ao)

)
← ExtP∗

i−1
(pp, ai, ρ). If Ti−1 is not a tree of depth i, abort.

2 : Retrieve {w(u)}u∈LTi−1
(i) from the internal state of P∗

i−1 and obtain z
(u)
loc , {z

(u)
k }k∈[s]

from w(u).

3 : Append z
(u)
loc to the label of u ∈ LTi−1(i).

4 : For each node u ∈ Li−1, let Lu := {k ∈ [s] | z(u)k ̸= ⊥}. Construct Ti of depth i+ 1

from Ti−1 by adding, for each node u ∈ Li−1, (z
(u)
k , Π

(u)
k) to the label of its child k ∈ Lu,

where Π
(u)
k =

(
(U(u)

k ,W(u)
k), (u(u)

k ,w(u)
k)

)
.

5 : Output (φ,Ti, ao).

We claim that for i ∈ {0, 1, ..., d}, the extractor Exti(pp, ai) outputs (φ,Ti, ao)
in expected polynomial time such that with probability ϵ−negl(λ), the following
conditions hold

– φ ∈ F, (pp, ai, φ, ◦(Ti), ao) ∈ Z;

– Ti is φ-compliant up to depth i;

– for all u ∈ LTi
(i+ 1), V(vk, z(u), Π(u)) = 1.

The correctness of the above claim can be proved by induction.

– (Base case.) Since Ext0(pp, ai) runs (φ, ◦, Π, ao)← P∗(pp, ai), it satisfies the
conditions above.

– (Inductive hypothesis.) Assume that the extractor Exti−1 satisfies the above-
mentioned conditions.

– (Inductive step.) Based on the hypothesis, we show that Exti also satisfies
the conditions by the following discussion.

The inductive hypothesis ensures that Exti−1 satisfies with probability ϵ−negl(λ),
that φ ∈ F, (pp, ai, φ, ◦(Ti−1), ao) ∈ Z, Ti−1 is φ-compliant up to the depth i−1,
and for all u ∈ LTi−1

(i), V(vk, z(u), Π(u)) = 1. By the correctness of algorithm
V, we have

– (1) {(U(u),W(u)), (u(u),w(u))}u∈LTi−1(i)
are satisfied instance-witness pairs.

Since Ti−1 is φ-compliant, by the construction ofR0,R1 and hash function Hash,
we have

– (2) for u ∈ LTi−1
(i), φ(z(u), z

(u)
loc , z

(u)
1 , ..., z

(u)
s) accepts;

– (3) for u ∈ Li−1, U
(u) = zk-NIFS.V ′(vk′, {U(u)

k }k∈[s], {u
(u)
k }sk=0, pf

(u));

– (4) for u ∈ Li−1, u
(u)
k .io = Hash(vk′, z

(u)
k ,U

(u)
k) ∀k ∈ [s].

52

(2) implies that Ti is φ-compliant up to depth i and φ ∈ F, (pp, ai, φ, ◦(Ti), ao) ∈
Z. (1) and (3) imply that there exists efficient construction of P∗i−1 that succeeds
in producing folded pairs {U(u),W(u)}u∈Li−1 with probability ϵ− negl(λ). Then

there exists an efficient extractor ExtP∗
i−1

outputting {{W(u)
k }k∈[s], {w

(u)
k }sk=0}u∈Li−1

guaranteed by the knowledge soundness of generic foldings scheme. (1)-(4) imply
that V(vk, z(u), Π(u)) = 1 holds for all u ∈ L(T)i(i+1). Therefore, the hypothesis
for Exti also holds.

In conclusion, we prove that Construction 3 is knowledge-sound.

Lemma 9 (Zero Knowledge). Construction 3 satisfies zero knowledge.

Proof. We prove that PCD is zero-knowledge by constructing a probabilistic
polynomial-time simulator Sim as

Sim(1λ):

1 : Compute (ppfs, τfs)← Simfs(1
λ).

2 : Output (pp = ppfs, τ = τfs).

Sim(pp, φ, z, τ):

1 : Obtain {Sk,Uk}k∈[s], {sk, uk}sk=0 from public R1.

2 : Compute (S,U,W, pf)← Simfs(ppfs, {S
(k),U(k)}k∈[s], {s(k), u(k)}sk=0, τ).

3 : Compute h← Hash(vk′fs, z,U).

4 : Output (s, u,w)← trace(R1, (h, ({Uk, uk}k∈[s], u0, vk
′
fs,U, pf))).

53

