A Scalable Coercion-resistant Blockchain Decision-making Scheme

Zeyuan Yin*, Bingsheng Zhang*, Andrii Nastenko’, Roman Oliynykov'#, Kui Ren*
*The State Key Laboratory of Blockchain and Data Security, Zhejiang University
Email: {zeyuanyin, bingsheng, kuiren} @ zju.edu.cn
t10G Singapore Pte Ltd
Email: {andrii.nastenko, roman.oliynykov}@iohk.io
YV.N.Karazin Kharkiv National University, Ukraine

Abstract—Typically, a decentralized collaborative blockchain
decision-making mechanism is realized by remote voting. To
date, a number of blockchain voting schemes have been
proposed; however, to the best of our knowledge, none of
these schemes achieve coercion-resistance. In particular, for
most blockchain voting schemes, the randomness used by
the voting client can be viewed as a witness/proof of the
actual vote, which enables improper behaviors such as coercion
and vote-buying. Unfortunately, the existing coercion-resistant
voting schemes cannot be directly adopted in the blockchain
context. In this work, we design the first scalable coercion-
resistant blockchain decision-making scheme that supports
private differential voting power and 1-layer liquid democracy
as introduced by Zhang ef al. (NDSS’19). Its overall complexity
is O(n), where n is the number of voters. Moreover, the ballot
size is reduced from Zhang et al.’s ©(m) to ©(1), where m
is the number of experts and/or candidates. Its incoercibility
is formally proven under the UC incoercibility framework by
Alwen et al. (Crypto’15). We implement a prototype of the
scheme and the evaluation result shows that our scheme’s tally
procedure is more than 6x faster than VoteAgain (USENIX’20)
in an election with over 10,000 voters and over 50% extra ballot
rate.

1. Introduction

Blockchain technology enjoys its popularity since the
invention of Bitcoin in 2008, and it continues to reshape
our digital society with its property for decentralization,
transparency, and security. Democracy on the blockchain has
the potential to transform the way political systems function,
creating a more equitable and inclusive future.

Democracy on the blockchain. In a democratic blockchain
system, stakeholders have the right to participate in the
decision-making process through verifiable remote voting
where everyone can express his opinion. Usually, in a
blockchain voting, each participant’s voting power is dif-
ferent and is proportional to his stake, which is called
differential voting power in this work. This is one of the
main differences between blockchain voting and conven-
tional elections, where typically one participant has one
vote. On the other hand, direct democracy might not always

be the best choice for a blockchain decision-making process.
In practice, to make a wise decision, a stakeholder needs to
rationally put substantial effort into informing himself, and
also expert knowledge throughout the process. Therefore,
letting elites lead the decision-making might be an optimiza-
tion in most cases. Some systems such as ZCash [1] use a
small committee (consisting of several experts) to make the
decisions; however, this has the risk of centralization, i.e., if
the committee behaves maliciously, there is no mechanism
for stakeholders to alter their decisions whatsoever.

The concept of liquid democracy has been proposed to
achieve better collaborative intelligence. Liquid democracy
(also known as delegative democracy [2]) is a hybrid of
direct democracy and representative democracy. It provides
the benefits of both systems (whilst avoiding their draw-
backs) by enabling organizations to take advantage of ex-
perts in a blockchain voting process, as well as giving the
stakeholders the opportunity to vote. For each proposal, a
voter can either vote directly or delegate his voting power
to an expert who is knowledgeable and renowned in the
corresponding area.

Zhang et al. [3] proposed a treasury system that supports
liquid democracy. However, their scheme has the following
two drawbacks: (i) the ballot size is linear in the number of
candidates and/or experts; (ii) it is not coercion-resistant.
The coercion problem in remote voting. In real-world
voting, a voting booth gives a voter privacy and protects
him from being coerced. However, in remote voting, the
voting procedure can be viewed as a probabilistic algorithm
that takes as input a random coin and the voter’s choice. If
the output is published on the bulletin board, then we have a
problem: the input and randomness used in the voting proce-
dure can be viewed as a proof of casting a certain ballot, and
anyone can run the probabilistic algorithm again to verify it,
which makes coercion and vote-buying possible. Many well-
known e-voting systems are not coercion-resistant, such as
snapshot [4], Helios [5], and prét a voter [6]. What’s worse,
in the blockchain context, vote-buying becomes easier with
the help of smart contracts.

To address the coercion/vote-buying problem, several
schemes are proposed. Generally, coercion-resistant voting
can be divided into three categories: fake credentials [7],
[8], [9], re-voting [10], [11], [12], [13], and secure hard-

ware [14], [15]. In a coercion-resistant voting scheme using
fake credentials, a voter holds both real and fake credentials.
If coerced, a voter will cast a ballot using a fake credential,
which is indistinguishable from the real one in the coercer’s
view, and it will be silently uncounted in the tally phase. In a
re-voting scheme, a voter can cast his ballot multiple times
and only the last one will be tallied. Coercion-resistance
relies on that the voter can cast the ballot again after the
coercer leaves. In the schemes using secure hardware, the
secure hardware has its internal randomness source and can
do probabilistic encryption for the voter so that the voter
can lie about what has been encrypted.
Coercion-resistance v.s. deniability. All types of coercion-
resistant voting schemes must give a voter deniability
through some technique. Concretely, in “fake credentials”
schemes, the election authority will provide randomness in
the credential-related elements, and generate a designated
verifier proof of correctness. To deceive the coercer, a voter
can generate a fake credential and claim it as the real one
by simulating the designated verifier proof. Namely, the
registration procedure is deniable. In re-voting schemes, the
re-vote operation must be deniable, i.e., the tally procedure
will not reveal if a voter has re-voted. In the schemes using
secure hardware, the secure hardware hides the randomness
in the ciphertext so that a voter can claim that it is encryp-
tion of another candidate, i.e., the encryption operation is
deniable.

Challenges. Could we apply the aforementioned tech-
niques to realize a coercion-resistant voting scheme in the
blockchain context? It turns out to be a non-trivial task.
First of all, secure hardware based solutions might not
be suitable for the blockchain setting, because an open
blockchain allows anyone to join and leave freely and not
all devices are equipped with a secure hardware, such as a
trusted execution environment (TEE).

How about “fake credentials” and “re-voting” schemes?
Can we adapt those schemes with differential voting power?
There are still some challenges. For instance, JCJ [7] is a
well-known coercion-resistance voting scheme, and it can be
modified to support differential voting power; however, the
scheme has O(n?) complexity due to the pair-wise plaintext
equivalence tests (PETs), where n is the total number of
votes, limiting its scalability. On the other hand, although
the recently proposed scheme, VoteAgain [13], offers quasi-
linear complexity, its verifiability relies on a trusted third
party (TTP), which is undesirable in the blockchain setting.
The best-known candidate is Aradjo et al.’s “fake creden-
tials” scheme [9], which achieves O(n) complexity without
relying on TTP for verifiability. Unfortunately, the credential
of Araidjo et al’s scheme is in the form of two group
elements satisfying a linear relationship, and this makes
it unable to be modified trivially to support differential
voting power. To the best of our knowledge, no proper
coercion-resistant voting scheme in the literature can support
differential voting power and achieve O(n) complexity at
the same time. Hereby, we are asking the question:

Can we design a scalable (linear complexity)
coercion-resistant delegated voting scheme for

blockchain decision-making?

1.1. Our Approach

In this work, we answer the above question affirmatively
by proposing a new coercion-resistant voting scheme. Our
scheme belongs to the “fake credentials” category. We start
with the well-known JCJ scheme [7]. In the JCJ scheme,
each encrypted credential is put on the bulletin board in the
registration phase, and each ballot generally consists of an
encrypted candidate and an encrypted credential. In the tally
phase, by a shuffle and pair-wise PETs on the credentials,
the ballots with fake credentials will be silently eliminated.

It is intuitive that one can associate credentials with
voting power in the JCJ scheme to support differential
voting power, i.e., each encrypted credential is tied with
an encrypted voting power and we still perform PETs on
the encrypted credentials in the tally phase. However, the
scheme will have O(n?) complexity, so it does not scale well
when the number of voters is large. To improve scalability,
we propose a novel “dummy voting power” technique. The
key idea is that we allow voters to publish (encrypted) fake
credentials associated with (encrypted) zero voting power on
the bulletin board. Then, in the tally phase, after shuffle re-
encrypting the real and fake credentials, all the credentials
can be decrypted. In this way, we transform the pair-wise
PETs into “decrypt and match”, achieving O(n) complexity
(counting cryptographic operations only).

To achieve delegation, we design a “two-layer homo-
morphic tally” procedure consisting of “delegation calcula-
tion” and “final tally calculation”. In layer one, delegation
is calculated by decrypting voters’ choices and adding the
delegated voting power to the corresponding experts. In
layer two, the final tally result is calculated by decrypting
experts’ choices and adding experts’ voting power together
with voters’ direct votes. Thanks to the additive homomor-
phism of the encryption scheme, voters’ ballots and voting
power are hidden throughout the tally.

Combining the “dummy voting power” technique and
“two-layer tally” procedure together, we build the first
coercion-resistant voting scheme that has linear complexity
and supports private differential voting power and liquid
democracy. We perform the security analysis under the UC
(universal composable) framework, and we prove that our
scheme is UC coercion-resistant [15]. We implement the
scheme and evaluate its performance. Results show that our
scheme’s tally execution time is more than 6x faster than
VoteAgain [13] in elections with over 10,000 voters and
over 50% extra ballot rate'.

1.2. Related Work

Coercion-resistant voting can be roughly split into three
classes: fake credentials [7], [16], [17], [8], [9], [18], re-
voting [10], [11], [12], [13], and secure hardware [14],

1. In VoteAgain, it means that more than 50% voters re-voted once; in
our scheme, it means that more than 50% voters cast a fake ballot.

TABLE 1. COMPARISON OF VOTING SCHEMES. HERE, n IS THE NUMBER OF VOTERS AND m IS THE NUMBER OF ELECTION CANDIDATES. DEL.
MEANS DELEGATION. CRYPTO STATE MEANS THAT THE VOTER NEEDS TO KEEP A CRYPTOGRAPHIC SECRET FROM THE COERCER. EA STANDS FOR
ELECTION AUTHORITY. HARDWARE MEANS THAT THE PROPERTY IS GUARANTEED BY SECURE HARDWARE. AN ITEM IN BOLD TEXT MEANS THAT

OUR SCHEME IS THE BEST IN THIS ASPECT.

Schemes Diff. voting Del. B?“Ot Complexity C'ryp 1o B? Hlot Verifiability Coc?.r f:ion—

power size state privacy resistant

JCJ [7] (fake credentials) No No O(1) O(n?) Yes t-out-of-k | trust no one trust EA

ABBT [9] (fake credentials) No No O(1) O(n) Yes t-out-of-k | trust no one trust EA

AKL+ [11], LHK [12] (re-voting) No No O(1) O(n?) No t-out-of-k trust no one secret credential

VoteAgain [13] (re-voting) No No O(1) | O(nlogn) No t-out-of-k trust EA trust EA

MBC [14], AOZZ [15] (secure hardware) No No O(1) O(n) No hardware hardware hardware
Snapshot [4] Yes No 0(1) O(n) - t-out-of-k | trust no one -
ZOB [3] Yes Yes | O(m) O(mn) - t-out-of-k | trust no one -

Our scheme (fake credentials) Yes Yes [O(1) O(n) Yes t-out-of-k | trust no one trust EA

[15]. JCJ [7] is the first paper that introduces the “fake
credentials” type of coercion-resistant voting. In JCJ, each
ballot contains an encrypted credential and there is a list
of encrypted valid credentials in the bulletin board. In the
tally phase, by pair-wise plaintext equivalence tests (PETs),
the ballots with invalid credentials will be eliminated, but
the pair-wise PETs obviously have O(n?) complexity. Other
“fake credentials” schemes such as [8], [9] improve the time
complexity and achieve better properties such as everlasting
privacy. The re-voting type of coercion-resistant voting al-
lows a voter to cast multiple ballots and the tally procedure
will only count the last one. Achenbach et al. [11] and
Locher et al. [12] utilize a deniable vote update mecha-
nism to realize re-voting with quadratic complexity. The
Norwegian Internet voting protocol [10] and VoteAgain [13]
achieve (quasi-)linear complexity, but they both need a
trusted third party for verifiability. Schemes based on secure
hardware [14], [15] can achieve coercion-resistance easily,
but secure hardware is a strong assumption.

On the other hand, blockchain voting [19], [4], [3], [20]
is becoming more and more popular nowadays. Snapshot [4]
is a popular DAO (Decentralized Autonomous Organization)
voting platform that frees voters from gas fees. It uses
IPFS [21] to store the proposals and votes, making the voting
process off-chain and gas-free. Zhang et al. [3] proposes
a treasury system for blockchain governance. It supports
liquid democracy and is provably secure, but its ballot size
is linear to the candidate number. Besides, to the best of our
knowledge, none of the existing blockchain voting schemes
are coercion-resistant.

Finally, Table | gives a comparison between our scheme
and previous work.

2. Preliminaries
Notations. Let A € N be the security parameter. Let G be

a cyclic group of prime order p with group generator g. We
abbreviate probabilistic polynomial time as PPT.

2.1. (Lifted) ElGamal Encryption

ElGamal encryption scheme consists of three PPT al-
gorithms: the key generation algorithm EC.Keygen(G, g, p)

takes as input the group parameters and outputs a public-
private key pair (pk := g¢°,sk); the encryption algorithm
EC.Encp(m) takes as input the public key pk and the
message m € G and outputs the ciphertext ¢ := (¢, ¢g) :=
(9", m-pk"); the decryption algorithm EC.Decg(c) takes as
input the secret key sk and the ciphertext ¢ and outputs the
message m := cp/c5<.

ElGamal encryption is a re-randomizable encryption
scheme. The re-encryption algorithm EC.Randy(c) takes
as input a ciphertext ¢ := (c1,c2) and outputs the re-
randomized ciphertext ¢ := (¢}, ch) == (g" - c1,h" - c2).

Lifted ElGamal encryption is a variant of ElGamal en-
cryption. The encryption algorithm LE.Encyk(m) takes as
input the public key pk and the message m and outputs the
ciphertext ¢ := (c1,¢2) := (g",9™ - pk”); the decryption
algorithm LE.Decg(c) takes as input the secret key sk and
the ciphertext c and outputs the message m := Dlog(cs/c),
where Dlog(x) outputs the discrete logarithm of z (note
that computing the discrete logarithm is inefficient, thus the
message space should be small in practice).

Clearly, the (lifted) ElIGamal encryption scheme is IND-
CPA secure under the DDH assumption (see Appendix B
for formal definition). Lifted ElGamal encryption is addi-
tively homomorphic, i.e., LE.Encpk(m1) - LE.Encpi(me) =
LE.Encp(mi + mg). Besides, (lifted) ElGamal encryption
can be distributed as a threshold encryption scheme [22].

2.2. Signature

A signature scheme Sig is defined by three PPT al-
gorithms: A key generation algorithm Sig.Keygen(1*) that
generates a public-private key pair (pk,sk); a signing al-
gorithm o < Sig.Signy (m) that generates a signature on
message m; and a verification algorithm Sig.Verify,, (o, m)
that outputs 1 if and only if o is a valid signature on m.

A secure signature scheme is existentially unforgeable
under chosen message attack (see Appendix B for formal
definition).

2.3. Non-interactive Zero-knowledge Proof (NIZK)

A non-interactive zero-knowledge proof (NIZK) con-
sists of four PPT algorithms: {Setup, Prove, Verify, Sim}

and is complete, sound, and zero-knowledge (see Ap-
pendix B for formal definition). Our scheme utilizes six
zero-knowledge proofs for proving: (i) voting power cor-
rectness (NIZKpower); (i) ElGamal encryption plaintext
knowledge (NIZKynowledge); (ili) re-encryption correctness
(NIZKpvE-reenc); (iv) knowledge of secret key (NIZKq); (v)
shuffle correctness (NIZKghysrie); and (vi) decryption correct-
ness (NIZKpec). We will give the details of these NIZKs in
Appendix A.

2.4. Universal Composibility

We perform security analysis under the Universally
Composable (UC) framework [23], [24]. In the UC frame-
work, a protocol is represented by a set of interactive Turing
machines (ITMs). Each ITM contains the program to be
run by a party. Security is based on the indistinguishability
between the real world execution EXECyy 4,z and the ideal
world execution EXECx s z. In EXECy 4 =z, the parties
run protocol II with the adversary A. In EXECr s z, the
parties interact with the ideal functionality F with the ideal
adversary (simulator) S. If for all PPT adversary A there
exists a PPT simulator S such that no PPT environment Z
can distinguish the real world and the ideal world, then we
say that the protocol II UC-realizes the ideal functionality
F.

2.5. Distributed Key Generation

Our voting scheme utilizes a distributed key generation
protocol for threshold key generation. We use an ideal
functionality }"é’kG [25] to abstract the DKG procedure. The
functionality Fgy. is depicted in Fig. 1. It interacts with
key generators P := {Py,..., P,} to generate a public key
pk and deal the secret key shares sk; to P;. Meanwhile, it
publishes each party P;’s partial public key ppk,. To realize
FB’,IQG, we can use the threshold distributed key generation
protocol proposed by Gennaro et al. [22].

2.6. Public Bulletin Board

For a voting scheme, a public bulletin board is needed
for broadcasting the ballots and other auxiliary information
such as zk proofs. Formally, we use a shared functional-
ity [24] Gppg to model the public bulletin board, as depicted
in Fig. 2. Gpgp has two interfaces: READ and WRITE, and
it guarantees the anonymity of the sender. In practice, the
blockchain serves as the public bulletin board.

2.7. Secure Channel

Coercion-resistant voting requires a secure channel be-
tween a voter and the authority. We model it as a UC secure
channel functionality Fg., as depicted in Fig. 3. Note that
Fsc only deals with transmission of a single message. Se-
cure channel for multiple messages is obtained by invoking
multiple sessions of Fg.

,—(Functionality]-'é’:G [G]}

The ideal functionality]:I;’P?G [G] interacts with key generators
P :={P1,..., P}, an ideal adversary S. It’s parameterized
with threshold ¢. Denote P. as the set of corrupted generators,
Pp, := P\Pc as the set of honest generators, and |P.| < t—1.
JFpkc maintains a set N (initially set to).

Upon receiving (CORRUPTSHARES, sid, ({j,sk;}p;ep.)) from

e Pick sk <~ Zg, and compute pk := g%

e Construct random polynomial F'(z) := E;(l) ap - x°
under the restriction F'(j) = sk; for P; € P, and
F(0) = sk;

e Compute sk; := F(i) and ppk; = g™ for i € [n];

e Send (KEYGEN,sid, {pk;};c[n) to S and send
(KEYGEN, sid, sk;) to P;,7 € [n].

Upon receiving (READPK, sid) from any party, return
(READPK, sid, pk, {ppk; }ic[n]) to the requestor.

Figure 1. DKG ideal functionality]:If)’rfG G]

,—‘ Functionality Gpgg

The ideal functionality Gpgg is globally available to all
participants. It is parameterized with a predicate Validate.

Upon initialization, set Storage := 0.
Upon receiving (READ, sid) from P:

e let val := Storage[sid];
e return (READ,sid,val) to the requestor.

Upon receiving (WRITE, sid, inp) from P, do the following:

e let val := Storage[sid];

e if Validate(val,inp) = 1, then set
Storage([sid] := val||inp, return (RECEIPT,sid) to the
requestor;

e Otherwise, return (REJECT,sid) to the requestor.

Figure 2. Functionality Gpgg

,—‘ Functionality Fsc

The ideal functionality Fsc proceeds as follows.

o Upon receiving (SEND, sid, R,m) from a party S,
send (SENT,sid, S, R, |m|) to the adversary S and
send (SENT,sid, S,m) to R.

. Ignore other requests.

Figure 3. Functionality Fsc

3. System Overview

In this section, we start by modifying the JCJ pro-
tocol [7] to build a coercion-resistant voting scheme that
supports differential voting power with O(n?) complexity.
Then, we give the intuition and details of our novel “dummy
voting power” technique and “two-layer tally” procedure.
We also optimize JCJ’s ballot structure to achieve smaller
ballot size. Finally, we provide an overview of our scheme.

3.1. The JCJ Protocol

We first recall the well-known JCJ protocol [7] and show
how to modify it to support differential voting power.
The original protocol. As mentioned above, JCJ is the
first protocol that introduces the concept of “fake creden-
tials”. Generally, it works as follows. For simplicity, we
use [z] to denote encryption of z in sec. 3.1 and 3.2. In
the registration phase, a voter authenticates to the election
authority (EA) and the EA generates a credential o <+ G.
Then, the EA publishes S = [o] on the PBB and sends
o to the voter along with a designated verifier proof that
S is encryption of o. In the voting phase, a voter cast a
ballot B = ([v], [o], Pf) where [v] is the encryption of
a candidate v, [o] is the encryption of a credential o, Pf
includes the NIZK proofs of knowledge of v and o, and a
NIZK proof that [v] encrypts a valid candidate. If a voter is
coerced, he generates a random ¢’ < G and claims it as the
real credential by simulating the designated verifier proof. In
the tally phase, the trustees shuffle the ballots and perform
pair-wise PETs on encrypted credentials to eliminate the
ballots with fake credentials. Finally, the trustees decrypt the
candidates and tally the votes. The overview of JCJ protocol
is shown in Fig. 4.
Supporting differential voting power. We can see that if
we associate each credential with voting power, then the
system can easily support differential voting power. More
specifically, in the registration phase, the EA publishes
S = ([o],]a]) on the PBB, where [o] is the encrypted
credential and [o] is the encrypted voting power under
an additively homomorphic encryption scheme. After the
pair-wise PETs, we get tuples of ([v], [a]), where [v] is
the encrypted candidate and [«] is the encrypted voting
power. Then, the trustees decrypt the candidates and add
the voting power by additive homomorphism. The overview
of the modified JCJ protocol with differential voting power
is shown in Fig. 5.

3.2. Our Technique

In this part, we will illustrate our novel techniques that
can achieve O(n) complexity and delegated voting.
Dummy voting power. We can see that in the JCJ protocol,
the pair-wise PETs cause O(n?) complexity. The idea is
that: if we allow voters to publish the fake credentials on
the PBB, but associate them with dummy (zero) voting
power, then we can directly decrypt the credentials instead
of performing PETs in the tally phase. In other words, in the

Regiatration

[o1]

\ IIU.(H]]

pair-wise PETs [va.]

[o]

Ballots
([v1], [o1], Pf) / l decrypt
. remove Pf
: & shuffle final tally
(vznl; [o2nl, P£) re-encrypt result

Figure 4. JCJ original protocol

Regiatration

(], [en])

— [Eelld

(oub foad)| . :
Ballots patrwise PETS | .1, [)

([v1],[o1], Pf) / decrypt candidates
H remove Pf

& add voting power
) . & shuffle & decrypt voting power sum
<HUZW]]~, ngn]]a Pf) re-encrypt

final tally
result
Figure 5. JCJ protocol with differential voting power

real credentials with
real voting power

<[[Ul]]: [as])

(low]. [on])
{141, D)

shuffle
re-encrypt

{I4]. 10D

fake credentials with

([va:], [oa,)

decrypt credentials

dummy voting power & match ([va,], [,)
decrypt candidates
Ballots & add votirlg power
([1]. [o1]. P£) o & decrypt voting power sum
. remove P
: & shuffle final tally
([v21]; [o20], P) re-encrypt result

Figure 6. Dummy voting power technique

[«]

final tally
result

I 5. decrypt

ballos cindidates o= oal
sl el s

53 =[] - 55

o 4. calculate
final tally result
" n (layer 2)

2. calculate
delegation
(layer 1)

experts’

ballots L8] ‘ 18] H

‘ G H 54 = los] - [l ‘ 3. decrypt
‘ candidates

Figure 7. Two-layer tally

55 = [ad]

registration phase, the EA publishes (encrypted) real creden-
tials and (encrypted) real voting power; at any convenient
time, voters can also publish (encrypted) fake credentials
and (encrypted) dummy voting power. In this way, we switch
pair-wise PETs into shuffle-decrypt and matching, achieving
linear complexity. Furthermore, “dummy voting power” also
hides the number of votes obtained by each candidate. The
idea of “dummy voting power” technique is shown in Fig. 6.
Two-layer tally. To support delegation, the trustees perform
a “two-layer tally” procedure in the tally phase. Generally
speaking, in layer one, voters’ choices are decrypted and the
delegated voting power will be added to the corresponding
experts; in layer two, experts’ choices are decrypted and
the final tally result is calculated by adding experts’ voting
power and voters’ direct votes. Note that, experts have input
independence instead of ballot privacy so their ballots can
be decrypted directly. Fig. 7 shows the process of “two-layer
tally” where there are 3 candidates and 2 experts.

3.3. Overview of Our Scheme

In this section, we define the roles in our system and
provide an overview of our scheme in the blockchain con-
text.

Roles. There are five roles in the protocol: voters, experts,
registration authority (RA), shuffler, and trustees.

e A voter has a certain amount of voting power and
can either vote on the proposal directly or delegate
his voting power to an expert.

e An expert does not have voting power himself, but
he can be delegated to vote on others’ behalf.

o The RA is responsible for the registration procedure.

e The shuffler performs verifiable shuffle procedures
on the ciphertexts.

o The trustees are responsible for decrypting the ballot
and revealing the final tally result.

We use n,m, ¢ to denote voter number, expert number,
and candidate number, respectively. There are k trustees with
a threshold ¢.

An optimization of JCJ’s ballot structure. In our scheme,
we optimize JCJ’s ballot structure in the following two
aspects. Firstly, we observe that it is not necessary to prove
that [v] encrypts a valid candidate because all of them will
be decrypted in the tally phase. If it encrypts an invalid
value, we can simply treat it as ‘“abstain” and drop it.
Secondly, instead of defining o as the secret credential,
we can define the discrete logarithm of o as the secret
credential (voting secret key) and define o as the voting
public key, i.e., 0 := pk := g%. Then, the ballot can be
modified as (pk, u, 7, Sig), where u := [v] is the encrypted
choice, 7 is a NIZK proof of plaintext knowledge of u, and
Sig < Sign(sk,u). By doing so, we change an Elgamal
encryption [o] to a group element pk, achieving smaller
ballot size.

Overview. Our voting scheme has four phases: preparation
phase, registration phase, voting/delegation phase, and tally
phase.

PBB

1. Register 2. Re-encrypt and sign | (K, Ay, tx, 61, 0ra1)
(K, A, tx, d) (K, A, tx, 8, ora) :

(K, Ap, t5, 0, ORAR)

(K7, Ao, p1)

Voter

3. Publish fake key
(K', Ao, p)

(K;. s Ao, pn)

Figure 8. Registration phase

In the preparation phase, the RA generates a public-
private signing key pair (pkga,skra). The trustees perform
a distributed key generation protocol to generate pky and
they share skr.

1. Cast real vote PBB
<pk7u7ﬂ-70’> <pk|7u1771'1,01>
Voter :
2. Cast fake vot;c (Yvh?n coerced) (ks 2 Ty)
(pk', u', 7", ")
(E1,¢1,71,0€,)
Expert 3. Cast vote :
<E7 G UE> <E'm7 Cms Ty UE,,L>

Figure 9. Voting/delegation phase

In the registration phase (see Fig. 8), each voter first
freezes some stake by transaction tx. Then, he generates
a pair of real voting keys (pk,sk) and sends a regis-
tration message (K, A, tx,d) to the RA (step 1), where
K < EC.Encpy, (pk) is encryption of real public key, A <
LE.Encpy, () is encryption of voting power, tx is the trans-
action that freezes some stake, and ¢ is a NIZK proof that
the encrypted voting power equals the frozen stake (Cf. Ap-
pendix A). After authenticating the voter (i.e., checking that
the voter knows the sk corresponding to tx’s sender’s pk by
an interactive zero-knowledge protocol), the RA re-encrypts
K as K and signs the registration message. Then, the RA
sends a designated verifier proof of re-encryption correct-
ness to the voter, and sends (/, A,tx,d,0ra) to the PBB
(step 2), where ora < Sig.signg, (K|[A[[tx||d). At any
convenient time, the voter can generate a pair of fake voting
keys (pk’,sk’) and publish a fake key item (K’, Ay, p) on
the PBB (step 3), where K’ < EC.Encp (pk’) is encryption
of fake public key, Ag is a deterministic encryption of 0, and
p is a NIZK proof of knowledge of sk’. The voter can repeat
step 3 multiple times to generate multiple fake keys.

In the voting phase (see Fig. 9), each voter encrypts
his choice with the trustees’ public key pky, signs it with
the voting secret key and casts it on PBB (step 1). Specif-
ically, a voter’s ballot is of the form (pk,w,w,o), where
u < EC.Ency, (v) is the encrypted choice, 7 is a NIZK
proof of plaintext knowledge of u, and o <« Sign(sk, u)
is the signature. If a voter is coerced, he will use the
fake key pair (pk’,sk’) to perform the voting process (step
2). Thanks to the re-encryption by RA and the desig-
nated verifier proof, the voter can claim that K is re-

(K1, A, tx1, 01, 0RA1) (K1, Ay)
o o o) <pk(1|7All1> \
(K, A tXn, 0n, ORAR) (Kn, Ay) 2. shuffle 3. decrypt pk
! / re-encrypt A, g,
(K1, f?o»ﬂl) <K1; Ao) ryp (Pkon. Ausn)| 4. match pk (:) s huffle
(K}, Ao, pn) (K}, Ap) (Agy, ey, re-encrypt
”””””””””””” 1.check [~
PBB | (pk,, 1,71, 71) | “validity <pk1:u1> / 6. decrypl|u
k ns U2n, T2n, O2n <pk n7u2n>
Pl ot l) - o)
(E1,c1,71,0€,) (E1,c1) :
: @f (E,,»5) | {8.two-layertallyy (Acs v2n)
<Em7 Cms Tm; (TEm> <Em7 cm> 8; = H A(;:HZ‘ (S [1, NL]
: (Em, vE,) vy =t 9. decrypt s final tally
result

8, 1= H A, H sjpvelLd | T ©
=0 ofeu

Figure 10. Tally phase

encryption of EC.Encp, (pk’) by simulating the designated
verifier proof. In this phase, each expert also casts his ballot
by simply encrypting the choice and signing it with his
blockchain secret key (step 3), i.e., an expert’s ballot is
of the form (E, ¢, 7,0g), where E is the expert’s identity,
¢ « EC.Encp, (vF) is the encrypted candidate, 7 is the
NIZK proof of plaintext knowledge, and og is the signature.

In the tally phase (see Fig. 10), the PBB contains
“encrypted public key items”, voters’ ballots and experts’
ballots at the beginning. For simplicity, in Fig. 10, we
assume there are n real ballots and n fake ballots; in reality,
a voter can cast any number of fake ballots. Firstly, the
shuffler checks the validity of all the “encrypted public
key items” and ballots, and removes the NIZK proofs and
signatures (step 1). Then, the shuffler shuffle re-encrypts the
“encrypted public key items” (step 2). Next, the trustees
jointly decrypt the public keys in “encrypted public key
items” and voters’ ballots (step 3). If the same public key
appears more than once, then drop them. The encrypted
voting power and encrypted choices with the same public
key will be matched (step 4). To ensure ballot privacy, the
matched items need to be shuffle re-encrypted (step 5).
Next, the trustees jointly decrypt voters’ choices (step 6) and
experts’ choices (step 7). After the decryption, the trustees
will add the voting power to the corresponding candidates by
a two-layer tally (step 8). In layer 1, each expert’s obtained
voting power is calculated, i.e., expert E;’s obtained voting
power is s; := ij:e-m‘ Ae;yi € [1,m], where £ is the
candidate number and m is the expert number; in layer 2,
the votes for each candidate are tallied by adding direct votes
and expert votes together, i.e., candidate v’s obtained voting
power is s, = [[, _, Ac, [[,e_, 8;,v € [1,1]. Ballots
that encrypt an invalid choice will be dropped. Finally, the
trustees jointly decrypt {s,},e[1,¢ to publish the final tally
result (step 9).

Blockchain deployment. To deploy the scheme on a

blockchain, we need to select the RA, shuffler, and trustees
properly. Also, there should be a validator that checks all
the NIZK proofs.

The RA. Note that the communication between the voter
and the RA must be secret to the coercer. Also, the RA
is trusted for coercion-resistance and cannot be distributed
(see sec. 4.1 for details). Therefore, it may be instantiated
with trusted execution environment (TEE) like Intel SGX.

The shuffler. The shuffler can be implemented by a
mixnet [26], and the mixnet nodes can be selected by
cryptographic sortition [27]. Ballot privacy is preserved as
long as one mixnet node is honest.

The trustees. The trustees can also be selected by crypto-
graphic sortition [27]. In the blockchain context, the major-
ity of trustees are honest with a high probability when the
majority of the stake is honest.

The validator. Every participant can be the validator to check
all the NIZK proofs if he wants. Since there are shuffle
proofs in our scheme, whose verification cost is relatively
heavy, it is not recommended to deploy a smart contract to
play the role of the validator.

Roles of the blockchain. In our scheme, the blockchain
serves as the PBB. It also plays the role of PKI in the
registration phase to authenticate a voter.

4. Assumptions and Security Modeling

In this section, we first informally define ballot privacy,
verifiability, and coercion-resistant and we analyze under
which assumptions these properties are achieved. Then, we
formally introduce the UC incoercibility framework.

4.1. Security Properties and Assumptions

Definition 1. (Ballot privacy) The adversary cannot learn the
votes of honest voters.

Definition 2. (Verifiability) Honest voters’ ballots must be
tallied and the adversary cannot cast more votes than the
number of voters that he controls.

Definition 3. (Coercion-resistance) A coercer cannot deter-
mine if the coerced party is trying to deceive him.
Assumptions. Our scheme only relies on basic assumptions
that any “fake credentials” type of coercion-resistant voting
scheme needs. We list these assumptions, explain the ne-
cessity of them, and discuss how they are achieved in the
blockchain context.

Assumption 1. The public bulletin board is honest and the
communication with the PBB is anonymous.

PBB is a basic assumption for any electronic voting
scheme. A malicious PBB can break verifiability by cre-
ating different views for different voters [28]. Then, since
ballots can be dropped undetectably, ballot privacy will be
undermined [29], and it is not possible to have coercion-
resistance without ballot privacy. Thus, PBB is trusted for
all three properties. Moreover, communication with PBB
must be anonymous; otherwise, the coercer will catch the
deceiving voter when he tries to cast the real ballot.

In our system, the blockchain is a public ledger and
serves as the honest PBB. A voter can use anonymous
channels (e.g., TOR) to broadcast on the blockchain.
Assumption 2. There is a secure (untappable) channel be-
tween the voter and the RA.

In all “fake credentials” schemes, a voter needs to es-
tablish a secret in the registration phase and keep the secret
from the coercer. If the coercer taps all the communication
between the voter and the authorities, then the voter’s private
information is a receipt/witness of what he cast [30].

As mentioned above, the RA can be instantiated with
TEE such as Intel SGX. A voter can use TOR to commu-
nicate with the RA.

Assumption 3. The authentication is inalienable [11], i.e.,
the coercer cannot impersonate the voter or stop the voter
from authenticating.

Inalienable authentication is a must for all voting
schemes. Otherwise, the adversary can vote on the voter’s
behalf or launch a forced abstention attack.

In the blockchain context, the blockchain plays the role
of PKI and each voter authenticates to the RA by proving
knowledge of his blockchain secret key. It is assumed that a
voter will not reveal his blockchain secret key to the coercer,
which will put the voter’s stake at risk.

In the following, we analyze how ballot privacy, verifi-
ability, and coercion-resistance are achieved in our scheme.
Ballot privacy. In the registration phase, the voter himself
generates the voting public key, and he encrypts it with
the trustees’ public key before sending it to the RA. Thus,
nobody knows the link between the voting public key and
the voter as long as the majority of trustees are honest. In the
voting/delegation phase, voters’ ballots are also encrypted
with the trustees’ public key. In the tally phase, ballots
and “encrypted public key items” will be shuffled before
decryption so that the link between identity and ballot/voting
public key is broken by the shuffle. Therefore, ballot privacy

TABLE 2. TRUST ASSUMPTIONS ON THE ENTITIES.

Ballot 1 g iabitiy | COereion-

privacy resistance
PBB Trusted Trusted Trusted
RA Untrusted Untrusted Trusted
Shuffler Trusted Untrusted Trusted

Trustees | t-out-of-k Untrusted t-out-of-k

is achieved if the shuffler and the majority of trustees are
honest.
Note: In delegated voting, usually the experts have input
independence rather than ballot privacy, i.e., when casting
the ballot, it should be independent of the others; later in the
tally phase, it will be decrypted directly without shuffle. This
is an important requirement for delegated voting because we
want to detect if an expert’s behavior deviates from what he
claimed.
Verifiability. A process composed of several subroutines is
verifiable if each subroutine is verifiable itself. In the prepa-
ration phase, the trustees perform a verifiable distributed
key generation protocol [22]. In the registration phase, we
use two NIZKs to ensure that (i) the encrypted voting
power is equal to the frozen stake; (ii) the RA does the re-
encryption correctly. In the voting/delegation phase, EUF-
CMA property of the signature scheme prevents anyone who
does not know the secret key from casting a valid ballot. In
the tally phase, the shuffle correctness is guaranteed by the
shuffle NIZK [31], and decryption correctness is guaranteed
by the decryption NIZK [22]. In conclusion, all subroutines
in our scheme are publicly verifiable so no one needs to be
trusted for verifiability.
Coercion-resistance. A coercer may ask the voter to reveal
his real voting key pair, but the voter can claim a fake key
pair as real by simulating the designated verifier proof, as
long as the RA is not colluding with the coercer. In the tally
phase, after shuffling all the “encrypted public key items”,
real keys and fake keys become indistinguishable from the
coercer’s perspective. Besides, the majority of trustees must
be honest to ensure that the coercer cannot decrypt the
ciphertexts.

Finally, Table 2 summarizes the trust assumptions on the
entities for achieving each property.
Notes on distributing the shuffler and RA: To distribute the
shuffler, a mixnet [26] can be utilized and we can perform
a cryptographic sortition [27] on the blockchain to select
the mixnet nodes. The assumption becomes that at least one
of the mixnet nodes is honest instead of trusting a single
shuffler.

However, simply distributing the RA does not lead to
a weaker assumption because the coercer can ask the voter
to provide the entire view of the registration phase. Even
if only one of the RA parties is colluding with the coercer,
the voter who does not know which RA party is colluding
cannot simulate the registration view with negligible fail
probability. Concretely, if the voter fakes a message sent by
a RA member, then he will have at least 1/n probability of
being caught (in the case that the RA member is malicious),

where n is the number of RA parties. Therefore, it is better
not to distribute the RA for “fake credentials” schemes. We
suggest using TEE to instantiate the RA on the blockchain.

4.2. Security Modeling

Framework. We formally perform security analysis under
the Universal Composable (UC) framework [23]. As men-
tioned in sec. 2.4, security is based on the indistinguisha-
bility between the ideal world and the real/hybrid world.
Modeling coercion-resistance. We adopt the UC inco-
ercibility definition proposed by Alwen, Ostrovsky, Zhou,
and Zikas (AOZZ) [15]. In their definition, the ideal de-
ception strategy DI in the ideal world is controlled by the
environment Z and the ideal adversary S plays the role
of coercer. When DI receives an input z from the ideal
adversary (coercer) S, the environment Z maps x to =’ and
instructs DI to forward z’ to the ideal functionality F (z’
can be equal to x). In the real world, the real deception
strategy DR is a twist on the protocol II and DR internally
runs DI. DR will interact with the real adversary (coercer)
A and do actions according to DI’s output.

We can see that, in the ideal world, the ideal deceiving
strategy can map the coercer’s input x to any other input ',
which represents “cast-as-intend”. Also, the ideal adversary
S determines if a party is deceiving no better than someone
who only sees the outputs of the computation. Thus, if for
every DI there exists DR that makes the ideal world and the
real world indistinguishable, we say that the protocol II is
IUC (incoercible UC) secure.

The ideal world execution. In the ideal world, the voters V,
experts &, trustees 7, shuffler, registration authority RA, and
ideal adversary S communicate with the ideal functionalit
Frm-bbk (Cf Fig. 11). The ideal functionality Fyr-th"
has four phases: preparation phase, registration phase, vot-
ing/delegation phase, and tally phase.

Preparation phase. In the preparation phase, the ideal func-
tionality Fsm“"* receives the initialization commands
from the trustees and the RA, and it sends initialization
notification to the simulator S. At the end of the preparation
phase, Fium-b0F gets state := 1.

Registration phase. In the registration phase, the ideal func-
tionality f\:f,’tre“’e’t’k receives registration requests from voters
and records their voting power. If there are ¢t or more
corrupted trustees, voting power will be leaked to the ideal
world adversary S. At the end of the registration phase,
Frm-bbk et state 1= 2.

Voting/Delegation phase. In the voting/delegation phase, the
ideal functionality]-"\Z;tre"’e’t’k receives vote commands from
voters and experts, and records their votes. Similarly, if there
are t or more corrupted trustees, the votes will be leaked to
S. At the end of the voting/delegation phase, Fis """ sets
state := 3.

Tally fhase. In the tally phase, the ideal functionality
FromAbE receives tally commands from the trustees and
performs the tally algorithm. The tally algorithm TallyAlg
(Cf. Fig 12) takes as input all the ballots and voting power

and outputs the final tally result. During the tally, experts’
ballots and voters’ ballot count are leaked (Cf. Fig. 13), but
this does not affect ballot privacy of voters.

Ideal deception. The ideal deceiving strategy Dl is controlled
by the environment Z. When a voter V; is coerced by the
ideal adversary S to vote for z, Z maps x to =’ and instrusts
DI; to send (VOTE,sid,z’) to Fium“"* Note that, in the
modeling, DI; can either obey (i.e., x = z) or deceive (i.e.,
x # 2.

Connection with the properties. It is easy to see that a
protocol II ITUC-realizing F5™*** has ballot privacy, ver-
ifiability and coercion-resistance. Firstly, voters’ ballots are
never leaked by Fum“"F if the shuffler and majority of
trustees are honest. Secondly, nobody can falsify the final
tally result computed by F/57“** Thirdly, the definition
of the ideal deception DI ensures that a voter can cast-as-
intend even if he is being coerced.

The real world execution. In the real world, we invoke
the distributed key generation functionality fé’,ﬁc [G] (Cf.
Fig. 1) and the secure channel functionality . (Cf. Fig. 3).
The parties perform the voting protocol. When a voter V;
is coerced, he switches to the real deceiving strategy DR;
to resist coercion.

5. The Protocol

In this section, we give a detailed protocol description
of our voting scheme and formally prove security of our
scheme in the UC framework.

5.1. Protocol Description

. . . n,m,l,t.k
Coercion-resistant voting II, ;.

Denote the voters as V := {Vq,...

, V.. }, the experts as

& .= {E1,...,En}, the candidates as C := {Cy,...,Cs},
the registration authority as RA, the trustees as 7 :=
{T1,..., Tr}. The protocol is parameterized with threshold
4

Preparation Phase:
Upon receiving (INIT, sid) from the environment Z, the
trustee T; does the following:

e« Send (KEYGEN,sid) to f[t)"gc and receive
(KEYGEN, sid, (pky,skt)).

o Send (WRITE,sid, pky) to Gpgg.

Upon receiving (INIT, sid) from the environment Z, the
RA does the following:

o Generate a public-private signing key-pair (pkga,
skra) < Sig.Keygen(1?*).
e Send (WRITE,sid, pkga) to Gpgeg.

Registration Phase:
Upon receiving (REG, sid, «;) from the environment Z,
the voter V; does the following:

e Generate a public-private
(pkj7skj) — Sig.Keygen(l)‘).

signing key-pair

r—(Voting ideal functionality]—'\Z’t’:’e’t‘k}

The functionality .F\Z’t;n’g’t’k interacts with a set of voters V := {V1,...,Vn}, a set of experts £ := {E1,...,Em}, a set of trustees
T :={T1,...,Tg}, the shuffler, the registration authority RA and the adversary S. It is parameterized with candidate number ¢ and

threshold ¢ and it internally keeps variables 7, n, state, ballots. Denote Tcor and Thonest as the set of corrupted and honest trustees,
respectively. Denote the candidates as C.
Initially, J := 7 := ballots := (), state := 0.

Preparation phase.
Upon receiving (INIT, sid) from the trustee T;, send a notification message (INITNOTIFY,sid, T;) to S.
Upon receiving (INIT, sid) from the RA, send a notification message (INITNOTIFY, sid, RA) to S.

Registration phase.
When Frumb0F receives (INTT, sid) from all trustees and RA, set state := 1.

Upon receiving (REG, sid, «;) from the voter V;,]-—Vré‘tz@’z‘t’k does the following: (ignore the request if state # 1)

e Set power[V,] := aj.
If |7 N Teor| > t, send (LEAKPOWER, sid, (i, V;)) to S.
Otherwise, send a notification message (REGNOTIFY, sid, V) to the adversary S.

Voting/Delegation phase:
When FI5740F receives (REG, sid) from all voters, set state := 2.
Upon receiving (VOTE, sid, v;) from the voter V; or the expert E;, .F\Z;Ten’e’t’k
e Set ballots[V;(or E;)] := v;.
o If the request is from a voter, send (VOTENOTIFY, sid, VOTER) to S. Otherwise, send (VOTENOTIFY, sid, EXPERT) to S.
If |7 N 7Tcor| > t, send (LEAKVOTE,sid, (v;, V;(or E;))) to S.

does the following: (ignore the request if state # 2)

Tally phase.
Upon receiving (VOTEEND, sid) from the shuffler, send (VOTEEND, sid) to the adversary S, and set state := 3.
Upon receiving (TALLY, sid) from the trustee T;, F, b K Goes the following: (ignore the request if state # 3)

vote

o Set J:=TJU{T;}, if | T N Thonest| + |Teor| > t, compute n < TallyAlg(V, €, C, ballots, power) (Cf. Fig. 12) and
bey + CountAlg(V, &,C, ballots) (Cf. Fig. 13). Denote experts’ ballots as ballotsg. Send
(LEAKTALLY, sid, n, ballotsg, bcy)) to the adversary S.

o If |7 N Thonest| + | Tcor| >t and the shuffler is corrupted, send (LEAKBALLOTS, sid, ballots) to the adversary S.

e Send (TALLYNOTIFY,sid, T;) to adversary S.

o If |J| >t, set n «+ TallyAlg(V, &, C, ballots, power) (Cf. Fig. 12).

Upon receiving (READTALLY, sid) from any party, return (READTALLYRETURN, sid, 7)) to the requestor.

Figure 11. The voting ideal functionality ;™"

,—(The tally algorithm TaIIyAIg) N

,—(The ballot-counting algorithm Cou ntAIg}

Input: a set of the voters V), a set of the experts &£, a set of

candidates C, a table of ballots ballots and a table of voting Input: a set of the voters V), a set of the experts &, a set of
power power. candidates C, a table of ballots ballots.
Output: the tally result 7. Output: voters’ ballot count bcy.
Use n,m, ¢ to denote |V|,|&|, |C|, respectively. Use n,m, ¢ to denote |V|, |E]|, |C|, respectively.
Init: Init:
e For each candidate C;, set initial score as s; := 0. e For each candidate C;, set initial ballot count as
For each expert Ej;, set initial score as s ; := 0. ¢; := 0. For each expert E;, set initial ballot count as
. Copj = 0.
Tally Computation:
Computation:
e For each V; € V, let v := ballots[V;], set
Sy 1= Sy + power[V;]. e For each V; € V, let v := ballots[V], set
e For each E; € &, let v := ballots[E;], set Ccy =y + 1.
Sv 7= 8o ¥ Seti Output:

Output:
e Return becy := {Ci}ie[l,Hm]'
e Return 7:={s;};e[1,0-

Figure 13. The ballot-counting algorithm
Figure 12. The tally algorithm

10

Send (SEND, sid, RA, (K, A;, tx;,;)) to
Fsc, where K; — EC.Encka(pkj), Aj
< LE.Encp, (aj), tx; is the transaction
that freezes the voter’s stake, and J; <
NIZKpower-Prove(4;,tx;) is a NIZK proof that the
frozen stake equals a; (Cf. Appendix A).

Upon receiving (SENT,sid, V;, (K;, A;,tx;,0;)) from
Fsc, the registration authority RA does the following:

Compute b := NIZKpower. Verify(d;, Aj||tx;). If b =
0, send (SEND,sid, V;, REJECT) to Fy.
Else, compute K; < EC.Randy, (Kj).
(V\’RIT]E',7Sid7 <K’j7Aj,th,5j,~O'RA’j>) to
where ORA,j < Sig.signskRA (Kj||AJ||tXJH5J)
Generate a designated verifier proof mpyp of re-
encryption correctness (Cf. Appendix A) and send
(SEND7 sid, Vj, 7TDVP) to Fec.

Send
GpeB.,

Voting/Delegation Phase:
Upon receiving (VOTE, sid, v;) from the environment Z,
the expert E; does the following:

Compute ¢; < EC.Encpy, (v;) and the correspond-
ing NIZK 7; <= NIZKynowledge-Prove(c;), which is a
proof of plaintext knowledge of ¢; (Cf. Fig. 18).
Compute og, + Sig.signskEi (¢q).

Denote the ballot as BF := (E;, ¢;, 7, 0k,).

Send (WRITE, sid, BF) to Gpgg.

Upon receiving (VOTE, sid, v;) from the environment Z,
the voter V; does the following:

Compute u; < EC.Encpy, (v;) and the correspond-
ing NIZK 7; < NIZKinowledge-Prove(u;), which is
a proof of plaintext knowledge of u; (Cf. Fig. 18).
Compute 0; < Sig.signg (u;).

Denote the ballot as B; = (pk;, u;, 7;,0;).

Send (WRITE, sid, B;) to Gpgg.

Upon coerced, the voter V; switches to the real decep-
tion strategy as described in Fig. 14.

,—(Real Deceiving Strategy DR) N\

The real deception strategy DR; internally runs DI;. Upon
coerced, it does the following:

o Generate a fake signing key pair:
sk’;, pk < Sig.Keygen(1*).

« Compute K < EC.Encpk, (pk}).

e Send (WRITE,sid, (KJ’.,Ao,pj)) to Gpgg, Where
Ap = LE.Ency, (0;0) and p; < NIZKsk.Prove(K;)
is a NIZK proof of knowledge of sk;- (Cf. Fig. 20).

o Use (sk’;, pk;) to perform the voting procedure,
following the coercer’s instruction.

o Use (skj, pk;) to perform the voting procedure again,
where the candidate v; is the same as the one
submitted by DlI;.

Figure 14. Real Deceiving Strategy DR

Tally Phase:
Upon receiving (VOTEEND, sid) from the environment
Z, the shuffler does the following:

Send (READ, sid) to Gpgg and get all the ballots and
“encrypted public key items”.

For each voter’s ballot B; = (pk;,u;,7;,05),
check (i) NIZKynowteage-Verify(m,u;) = 1 (i)
Sig.Verify, (0, u;) Z 1. Remove the invalid bal-
lots and remove 7;,0;. Now a voter’s ballot 3 is of
the form (K, u).

For each “encrypted public key item”
<K7‘, Aj, tx;, (5j, URA,j> published by RA,
check (1) NIZKpower-Verify(d;, Ajl[tx;) = 1
.. . . g ?

(ii) Slg.VerlfykaA(aRAJ,Kj||Athxj||5j) = 1.
Remove the invalid ones and remove tx;,d;, 0ra ;.
For each “encrypted public key item”
(K}, Ao,p;) published by a voter, check

NIZKinowtedge- Verify (p;,) = 1. Remove the
invalid ones and remove p;.

Put all the valid “encrypted public key items” to-
gether. At this point, each item W is of the form
(K, A), where K is the encrypted public key, A is
the encrypted voting power.

Verifiably shuffle re-encrypt the encrypted public
key items (Cf. [31]).

Send (WRITE, sid, ({8}, {W}, 7)) to Gpgg, Where 7
is the proof of shuffle correctness (Cf. [31]).

Upon receiving (TALLY,sid) from the environment Z,
the trustee Ty, ¢ € [k] does the following:

Send (READ,sid) to Gpgg to get {5}, {W}.
Jointly decrypt the public keys (i.e. K) in {W}
(Cf. [22]).

For each ballot 3, if the public key does not match
any public key in {W}, drop it.

Put the corresponding A together with u, i.e., as-
sume § = (Kp,u) and W = (K, A), and Kp,
K4 are decrypted to the same public key, then
we put A and u together to form a new item
I:=(A,u).

Send (WRITE, sid, {I}) to Gpgs.

Send (SHUFFLE, sid) to the shuffler.

Upon receiving (SHUFFLE, sid) from the trustees, the
shuffler does the following:

Send (READ,sid) to Gpgg and get {I}.

Shuffle {I} and send (WRITE,sid, ({I'}, 7)) to
Gpea, Where 7 is the proof of shuffle correctness
(Ct. [31)).

Send (SHUFFLEEND, sid) to all the trustees.

Upon receiving (SHUFFLEEND, sid) from the shuffler,
the trustee Ty, ¢ € [k] does the following:

For each candidate C;, set initial score as s; :=
LE.Encpy, (0). For each expert E;, set initial score
as Syqj = LE.EnCka(O).

o For each item I := (A, u), jointly decrypt u to v
(Cf. [22]) and update candidate (or expert) v’s score
Sy = 8, - A.

e After tallying all the ballots, for
each expert’s ballot BE (Ei, ¢i, Tiy OF,),
check (i) NIZKinowledge Verify(ri, ;) = 1; (i)

Sig.Verify,,_ (o€, ¢;) < 1. Remove the invalid

voters’

ballots and 7;, og,. Now an expert’s ballot 5E is of
the form (E;, ¢;).

o« Form a list of each expert’s encrypted score and
encrypted candidate, i.e., expert E;’s entry is of the
form (sg44,¢;).

o For each expert’s entry (s, ¢), jointly decrypt ¢ to v
(Cf. [22]) and update candidate v’s score s, := S,-S.

o For each candidate C;, jointly decrypt the score s;
to s; (Cf. [22]).

o Send (WRITE,sid, {Si}ie[é]) to GpgBg.

Upon receiving (READTALLY,sid) from the environ-
ment Z, the party P does the following:

o Send (READ,sid) to Gpgg and get {s;}ic[y-
o Return (READTALLYRETURN,sid, {s;}ic[q) to the
requestor.

5.2. Security

We show the security of our construction via the follow-
ing theorem.

Theorem 1. Assume that the NIZKs NIZK;,i €
{power, knowledge, DVF-reenc, sk, shuffle, Dec} are com-
plete, sound, and zero-knowledge. Assume that the ElGamal
encryption scheme EC is IND-CPA secure. Assume that Sig
is a signature scheme satisfying EUF-CMA. Then the pro-
tocol TI550F [UC-realizes FIu“* against static cor-
ruption and adaptive coercion in the {.7-'3(26 [G], Fsc, GpaB }-
hybrid world.

The proof of the theorem is deferred to Appendix C.

5.3. Discussion

Vote-buying via stake-buying. In blockchain voting, typ-
ically a voter’s voting power is proportional to his stake.
Since blockchain coins are publicly traded in open ex-
changes, one may argue that it is always possible to realize
vote-buying via stake-buying. However, acquiring sufficient
voting power through stake-buying is impractical. For an
adversary to be successful, he needs to purchase a substan-
tial amount of stake. Here’s the catch: when buying from
an exchange, there is often limited availability of stakes.
Furthermore, rapidly purchasing large volumes of stake will
inevitably drive up the price due to the basic principles
of supply and demand. This surge in price could put the
adversary’s capital at risk. In contrast, vote-buying is a much
simpler method and is detrimental to the decision-making
process. Our coercion-resistant voting scheme effectively
prevents vote-buying on the blockchain.

12

Stake renting/smart contract vote-buying. Another attack
on blockchain voting is to use a smart contract to “rent”
stakes. The smart contract collects stakes, uses the stakes for
voting, and returns them back with an extra payment after
the election. We defend this attack by prohibiting contract
accounts from participating in the voting.

Inalienable authentication. Coercion-resistant voting re-
quires inalienable authentication [11], i.e., the coercer can
neither impersonate the voter nor prevent the voter from
authenticating. In the blockchain context, in-person authen-
tication is inappropriate. Instead, a voter authenticates to the
RA by proving knowledge of his blockchain secret key and
it is assumed that the voter will not give his secret key to
the coercer. However, there is still an attack if the coercer
can use TEEs. Specifically, the coercer can set up a TEE
running a “cryptocurrency wallet” and use remote attestation
to prove that the wallet will only do authentication and will
not steal money. Then, a voter can input his secret key to
this TEE in exchange for payments. This attack enables
vote-selling without the coercer knowing the secret key. As
pointed out in [32], this problem is inherent in any remote
voting scheme where the secret key is generated by the
voter. Kelkar ef al. [33] proposed two schemes to defend
such kind of attacks using TEEs and ASICs (Application-
Specific Integrated Circuit), respectively. But neither of them
is suitable in the blockchain context. In this work, we
assume that the authentication is inalienable. How to defend
this type of attack is out of the scope of this paper. We leave
this as an interesting open problem.

Complexity. In the preparation phase, the RA takes O(1)
time to generate the signing key pair, and the trustees take
O(k) time to perform the DKG protocol, where k is the
number of trustees. In the registration phase, a voter gener-
ates a NIZK proof of voting power correctness and verifies
a designated verifier proof, which has O(1) complexity. In
the voting/delegation phase, a voter encrypts his choice and
generates a NIZK proof of plaintext knowledge, which has
O(1) complexity, too. In the fally phase, the shuffler shuffles
the ballots and the encrypted public key items, which has
O(n) complexity (counting cryptographic operations only),
where n is the number of voters. Then, the trustees decrypt
the public keys, do the matching between the voting power
and candidates, and decrypt the candidates. Thus, the time
complexity of a trustee is also O(n). Adding them together,
the whole scheme has O(n) time complexity.

6. Implementation and Evaluation

We implement a prototype of our voting scheme in Rust.
The implementation uses OpenSSL 1.1.1t to provide the
basic elliptic curve math and it uses Schnorr signature as
the signature scheme. We evaluated all the cryptographic
building blocks and the time consumption in each phase. The
experiments are performed on a workstation with Intel Core
i7-1165G7 @2.80GHz and 32GB RAM running Ubuntu
20.04.4 LTS x64, using the elliptic curve secp256rl.

w
=1
=]
=]

2500 4

2000 +

1500 4

1000 4

500 4

Tally execution time, s (25% extra ballots)

—— Our scheme
——- \VoteAgain

0
0

T T T T T
20000 40000 60000 80000 100000
Number of voters

3000

2500

2000

1500

1000 A

500 4

—— Our scheme
--- VoteAgain ,

Tally execution time, s (50% extra ballots)

0 T T T T T
0 20000 40000 60000 80000 100000

Number of voters

Tally execution time, s (75% extra ballots)

3000

2500 A

2000 -

1500 -

1000 A

500 4

—— Our scheme
——- VoteAgain

0
0

T T T T T
20000 40000 60000 80000 100000
Number of voters

Figure 15. Comparison of tally execution time between our scheme and VoteAgain [13] (with extra ballot rate as 25%, 50%, 75% from left to right). In
VoteAgain, % extra ballot rate means that x% voters re-vote once; in our scheme, 2% extra ballot rate means that % voters cast one fake ballot.

1000

0.30 | —-- Execution time o
—— oOverall traffic e
III
0.25 1 7 800
.
g
/’ [}
" 7
N] # X
g 020 - be0o g
£ . o
= ’ £
c) o
2 015 4 st
E] ’ ®
s [
3 ¥ taoo T
& y :
0.10 / °
"
o 200
0.05 s
”’
0.00 . T T T T T 0
0 10 20 30 40 50 60

Number of trustees

Figure 16. DKG execution time and overall traffic with respect to different
numbers of trustees

Preparation phase. We evaluate the DKG execution time
and traffic with respect to different numbers of trustees: from
4 to 64. Results are given in Fig. 16.

Registration phase. In the registration phase, the voter uses
NIZKpower in the registration request to prove that the frozen
stake is equal to the encrypted voting power, and the RA
proves re-encryption correctness by a designated verifier
proof NIZKpye._reenc- Generating a registration request costs
430.95 ps and its size is 475 bytes. The designated verifier
proof costs 102.91 us to generate and 181.69 ps to verify,
and its size is 141 bytes. Generating a fake “encrypted public
key item” costs 336.05 ps and the size is 267 bytes.
Voting/Delegation phase. In the voting/delegation phase,
voters and experts encrypt the choice, sign it, and use
NIZKknowledge to prove plaintext knowledge of the ballot.
It takes 283.27 ps to generate a ballot. The size of a voter’s
ballot is 358 bytes and the size of an expert’s ballot is 332
bytes.

Tally phase. We evaluate the tally execution time with
respect to different numbers of voters and different extra
ballot rates and compare the results with VoteAgain [13].
Here, extra ballot rate represents how many voters cast extra
ballots, i.e., in VoteAgain, 50% extra ballot rate means that
50% voters re-vote once; in our scheme, 50% extra ballot

13

rate means that 50% voters cast one fake ballot. Note that,
in our scheme, a voter’s ballot takes more time to tally than
an expert’s ballot (because voters’ ballots are shuffled and
experts’ ballots are not shuffled), so we set expert number
as zero in the experiments.

Fig. 15 shows the tally execution time compared with
VoteAgain [13] when the extra ballot rates are 25%, 50%,
and 75% from left to right. VoteAgain’s benchmark fails
in 102400 voters with 50% and 75% extra ballot rates
(probably because of too large ciphertext input). We can see
that our scheme’s execution time grows linearly and VoteA-
gain’s execution time grows quasi-linearly (O(nlogn)). A
higher rate of extra ballots confers a greater advantage, as
it necessitates VoteAgain to introduce a substantial quantity
of dummy ballots in this scenario. In large-scale voting with
more than 10000 voters and over 50% extra ballot rate,
our scheme’s tally execution time is over 6x faster than
VoteAgain.

7. Conclusion

In this work, we propose the first scalable coercion-
resistant blockchain decision-making scheme that supports
differential voting power and liquid democracy. It is scalable
in the sense that it has constant ballot size and linear
complexity. We formally prove the scheme secure under
the UC incoercibility framework without any extra strong
assumptions. Compared with existing voting schemes, our
scheme has an advantage over all of them, so it is suitable
to be applied to large-scale coercion-resistant blockchain
voting programs.

References

E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, 1. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in 2014 IEEE Symposium on Security and Privacy. Berke-
ley, CA, USA: IEEE Computer Society Press, May 18-21, 2014, pp.
459-474.

[1]

[2] B. A. Ford, “Delegative democracy,” Tech. Rep., 2002.

(3]

(4]

(51

(6]

(7]

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

B. Zhang, R. Oliynykov, and H. Balogun, “A treasury system for
cryptocurrencies: Enabling better collaborative intelligence,” in ISOC
Network and Distributed System Security Symposium — NDSS 2019.
San Diego, CA, USA: The Internet Society, Feb. 24-27, 2019.

Snapshot, “Snapshot,” online: https://snapshot.org (Last accessed:
2023-10-16).

B. Adida, “Helios: Web-based open-audit voting,” in USENIX Secu-
rity 2008: 17th USENIX Security Symposium, P. C. van Oorschot, Ed.
San Jose, CA, USA: USENIX Association, Jul. 28 — Aug. 1, 2008,
pp. 335-348.

P. Y. Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia, “Prét
a voter: a voter-verifiable voting system,” IEEE transactions on
information forensics and security, vol. 4, no. 4, pp. 662-673, 2009.

A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant elec-
tronic elections,” in Proceedings of the 2005 ACM workshop on
Privacy in the electronic society, 2005, pp. 61-70.

J. Clark and U. Hengartner, “Selections: Internet voting with over-the-
shoulder coercion-resistance,” in FC 2011: 15th International Con-

ference on Financial Cryptography and Data Security, ser. Lecture

Notes in Computer Science, G. Danezis, Ed., vol. 7035. Gros Islet,
St. Lucia: Springer, Heidelberg, Germany, Feb. 28 — Mar. 4, 2012,
pp. 47-61.

R. Aradjo, A. Barki, S. Brunet, and J. Traoré, “Remote electronic
voting can be efficient, verifiable and coercion-resistant,” in FC
2016 Workshops, ser. Lecture Notes in Computer Science, J. Clark,
S. Meiklejohn, P. Y. A. Ryan, D. S. Wallach, M. Brenner, and
K. Rohloff, Eds., vol. 9604. Christ Church, Barbados: Springer,
Heidelberg, Germany, Feb. 26, 2016, pp. 224-232.

K. Gijgsteen, “The norwegian internet voting protocol,” in E-
Voting and Identity: Third International Conference, VotelD 2011,
Tallinn, Estonia, September 28-30, 2011, Revised Selected Papers 3.
Springer, 2012, pp. 1-18.

D. Achenbach, C. Kempka, B. Lowe, and J. Miiller-Quade, “Improved
coercion-resistant electronic elections through deniable re-voting,”
{USENIX} Journal of Election Technology and Systems ({JETS}),
vol. 3, pp. 26-45, 2015.

P. Locher, R. Haenni, and R. E. Koenig, “Coercion-resistant internet
voting with everlasting privacy,” in FC 2016 Workshops, ser. Lecture
Notes in Computer Science, J. Clark, S. Meiklejohn, P. Y. A. Ryan,
D. S. Wallach, M. Brenner, and K. Rohloff, Eds., vol. 9604. Christ
Church, Barbados: Springer, Heidelberg, Germany, Feb. 26, 2016, pp.
161-175.

W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso, “VoteAgain: A
scalable coercion-resistant voting system,” in USENIX Security 2020:
29th USENIX Security Symposium, S. Capkun and F. Roesner, Eds.
USENIX Association, Aug. 12-14, 2020, pp. 1553-1570.

E. Magkos, M. Burmester, and V. Chrissikopoulos, “Receipt-freeness
in large-scale elections without untappable channels,” Towards the E-
Society: E-Commerce, E-Business, and E-Government, pp. 683-693,
2001.

J. Alwen, R. Ostrovsky, H.-S. Zhou, and V. Zikas, “Incoercible multi-
party computation and universally composable receipt-free voting,” in
Advances in Cryptology — CRYPTO 2015, Part II, ser. Lecture Notes
in Computer Science, R. Gennaro and M. J. B. Robshaw, Eds., vol.
9216. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 16-20, 2015, pp. 763-780.

M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward a secure
voting system,” in 2008 IEEE Symposium on Security and Privacy.
Oakland, CA, USA: IEEE Computer Society Press, May 18-21, 2008,
pp- 354-368.

S. Bursuc, G. S. Grewal, and M. D. Ryan, “Trivitas: Voters directly
verifying votes,” in International Conference on E-Voting and Iden-
tity. Springer, 2011, pp. 190-207.

D. Chaum, “Random-sample voting,” White Paper, 2016.

14

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Votem, “Votem,” online: https://votem.com (Last accessed: 2023-10-
16).

Y. Li, W. Susilo, G. Yang, Y. Yu, D. Liu, X. Du, and M. Guizani, “A
blockchain-based self-tallying voting protocol in decentralized iot,”
IEEE Transactions on Dependable and Secure Computing, vol. 19,
no. 1, pp. 119-130, 2020.

J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure dis-
tributed key generation for discrete-log based cryptosystems,” in
Advances in Cryptology — EUROCRYPT’99, ser. Lecture Notes in
Computer Science, J. Stern, Ed., vol. 1592. Prague, Czech Republic:
Springer, Heidelberg, Germany, May 2-6, 1999, pp. 295-310.

R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in 42nd Annual Symposium on Foundations
of Computer Science. Las Vegas, NV, USA: IEEE Computer Society
Press, Oct. 14-17, 2001, pp. 136-145.

R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally com-
posable security with global setup,” in TCC 2007: 4th Theory of
Cryptography Conference, ser. Lecture Notes in Computer Science,
S. P. Vadhan, Ed., vol. 4392. Amsterdam, The Netherlands: Springer,
Heidelberg, Germany, Feb. 21-24, 2007, pp. 61-85.

D. Wikstrom, “Universally composable dkg with linear number of
exponentiations,” in Security in Communication Networks: 4th Inter-
national Conference, SCN 2004, Amalfi, Italy, September 8-10, 2004,
Revised Selected Papers 4. Springer, 2005, pp. 263-277.

D. L. Chaum, “Untraceable electronic mail, return addresses, and
digital pseudonyms,” Communications of the ACM, vol. 24, no. 2,
pp- 84-90, 1981.

J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theoretical Computer Science, vol. 777, pp. 155-183, 2019.

L. Hirschi, L. Schmid, and D. A. Basin, “Fixing the achilles heel of
E-voting: The bulletin board,” in CSF 2021: IEEE 34th Computer
Security Foundations Symposium, R. Kiisters and D. Naumann, Eds.
Virtual Conference: IEEE Computer Society Press, Jun. 21-24, 2021,
pp. 1-17.

V. Cortier and J. Lallemand, “Voting: You can’t have privacy without
individual verifiability,” in ACM CCS 2018: 25th Conference on Com-
puter and Communications Security, D. Lie, M. Mannan, M. Backes,
and X. Wang, Eds. Toronto, ON, Canada: ACM Press, Oct. 15-19,
2018, pp. 53-66.

M. Hirt and K. Sako, “Efficient receipt-free voting based on
homomorphic encryption,” in Advances in Cryptology — EURO-
CRYPT 2000, ser. Lecture Notes in Computer Science, B. Preneel,
Ed., vol. 1807. Bruges, Belgium: Springer, Heidelberg, Germany,
May 14-18, 2000, pp. 539-556.

S. Bayer and J. Groth, “Efficient zero-knowledge argument for
correctness of a shuffle,” in Advances in Cryptology — EURO-
CRYPT 2012, ser. Lecture Notes in Computer Science, D. Pointcheval
and T. Johansson, Eds., vol. 7237. Cambridge, UK: Springer,
Heidelberg, Germany, Apr. 15-19, 2012, pp. 263-280.

P. Daian, T. Kell, I. Miers, and A. Juels, “On-
chain vote buying and the rise of dark daos,” online:
https://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
(Last accessed: 2023-11-27).

M. Kelkar, K. Babel, P. Daian, J. Austgen, V. Buterin, and A. Juels,
“Complete knowledge: Preventing encumbrance of cryptographic se-
crets,” Cryptology ePrint Archive, 2023.

A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Advances in Cryptology —
CRYPTO'’86, ser. Lecture Notes in Computer Science, A. M. Odlyzko,
Ed., vol. 263. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 1987, pp. 186-194.

[35] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Advances in Cryptology — EUROCRYPT 2016, Part II, ser. Lecture
Notes in Computer Science, M. Fischlin and J.-S. Coron, Eds., vol.
9666. Vienna, Austria: Springer, Heidelberg, Germany, May 8-12,
2016, pp. 305-326.

B. Biinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE Symposium on Security and Privacy. San Francisco, CA,
USA: IEEE Computer Society Press, May 21-23, 2018, pp. 315-334.

R. Cramer, I. Damgard, and B. Schoenmakers, “Proofs of partial
knowledge and simplified design of witness hiding protocols,” in
Advances in Cryptology — CRYPTO’94, ser. Lecture Notes in Com-
puter Science, Y. Desmedt, Ed., vol. 839. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 21-25, 1994, pp. 174-187.

(36]

(371

Appendix A.
NIZKs

In this section, we show the construction of the
NIZKs used in our system. There are six zero-knowledge
proofs in our scheme for proving: (i) voting power cor-
rectness (NIZK,ower); (i) ElGamal encryption plaintext
knowledge (NIZKynowledge); (ili) re-encryption correctness
(NIZKpvE-reenc); (iv) knowledge of secret key (NIZKgy) (v)
shuffle correctness (NIZKghysrie); and (vi) decryption correct-
ness (NIZKpec). We adopt Bayer and Groth’s scheme [31]
for shuffle correctness and Gennaro et al.’s scheme [22]
for decryption correctness. Here, we will demonstrate how
to use Sigma protocols to construct the other four zero-
knowledge proofs. In practice, they will be transformed into
NIZKs by Fiat-Shamir heuristic [34].

Proof of voting power correctness. In the registration
phase, the voter will create a transaction that freezes some
stake. Then, he sends the transaction tx, encrypted voting
power A, and proves that the encrypted voting power is the
same as the value of tx. In a privacy-preserving blockchain
cryptocurrency system, tx usually contains an encrypted
transaction value v. In this case, the zero-knowledge proof
proves that A and v encrypt the same value. If the trans-
action value is encrypted by Lifted Elgamal, then Fig. 17
shows the Sigma protocol for voting power correctness.
If it is encrypted by a hybrid encryption scheme (e.g.,
ZCash [1]), then we can utilize other zero-knowledge
protocols for general circuits (e.g. Grothl16 [35], Bullet-
proofs [36]).

Proof of ElIGamal encryption plaintext knowledge. In the
voting phase, we use a NIZK for ballot plaintext knowledge
to prevent copying the other voter’s choice. This can also
be proven with Sigma protocol, depicted in Fig. 18.

Proof of re-encryption correctness. In the registration
phase, the RA needs to generate a designated verifier proof
for re-encryption correctness. To make it a designated ver-
ifier proof, the statement is “this is a correct re-encryption
OR I know the verifier’s blockchain secret key” so that the
verifier can simulate the proof. The Sigma protocol for re-
encryption correctness is depicted in Fig. 19. By the CDS
composition [37], we can compose the Sigma protocol for
re-encryption correctness and the standard Schnorr protocol
to construct the designated verifier proof of re-encryption
correctness.

15

,—(Sigma protocol for voting power correctness }

J

CRS: g, h,m.

Statement: A = (A1, A2),v = (v1,v2).

Witness: «, 71,72 such that A = (¢g",g*h"™) A v
(g"2,g*m™2).

Prover:

. / ! / .
e Pick random o', 7,75 < Zqg;
e Compute
. 7" . (1/ 7" . 7‘/ . (!l 7‘,.
ay:=g1tl,az2:=4g h17a3~:92:a4'=9 m'2;
e P—V:ai,az,a3,a4.

Verifier:
e V — P:random e ¢ Z,.
Prover:

e Compute
zi:=ri+e-r1,z2:=rh+e-re,z3:=0a +e -
. P—V: 21,22, 23.

Verifier:
e Output 1 if and only if the following holds:
- gt =a1-Af;
- g*h* =ay- AS;
- g2 =a3 v}
- g#3h?2 =a4~v§.

Figure 17. Sigma protocol for voting power correctness

,—(Sigma protocol for plaintext knowledge}

CRS: g, h.
Statement: ¢ = (c1,c2).
Witness: m,r such that ¢c; = g" A co =m-h".

Prover:

e Pick random 7’ < Zg,m’ < G;

’ ’
e Compute aj :=g" ,ag :=m'-h";
. P—V: ai,ag.

Verifier:
e V — P:random e < Zq.
Prover:

e Compute z1 :=7" 4+ e 7,22 :=m'-m;
. P—V: Z1,22.

Verifier:
e Output 1 if and only if the following holds:

- g =a1-cf
- 2kl =ay -

\.

Figure 18. Sigma protocol for ElGamal encryption plaintext knowledge

,—(Sigma protocol for re-encryption correctness

—

CRS: g, h.
Statement: v = (u1,u2),v = (v1,v2).
Witness: r such that v1 = uj - g" A va =u2-h".

Prover:

e Pick random 1’ < Zg;

’ ’
e Compute a1 =¢" ,a2 :=h";
e P —V:iaias.

Verifier:
e V — P:random e < Zg.
Prover:

e Compute z:=7"+e-7r;
) P—-V:z

Verifier:
e Output 1 if and only if the following holds:

- gF=a1- (vi/u1)%
- h® =az - (v2/u2)e.

Figure 19. Sigma protocol for re-encryption correctness

,—(Sigma protocol for knowledge of secret key\

J

CRS: g, h.
Statement: ¢ = (c1, c2).
Witness: z,r such that ¢c; = g" A c2 =g%-h".

Prover:

e Pick random 1’ + Zg, 2’ + G;

’ ’ ’
e Compute aj :=g¢" ,a2 :=9¢* -h";
. P—=V: al,a.

Verifier:
e V — P:random e < Zg.
Prover:

e Compute 21 :=7"+e 1,20 :=2" +e-x;
e P —V:z,20.

Verifier:
e Output 1 if and only if the following holds:

- g* =a1-cf;
- g*2-h*l =a2-c§.

Figure 20. Sigma protocol for knowledge of secret key

16

Proof of knowledge of secret key. To publish an (en-
crypted) fake voting public key item on the PBB, the voter
needs to prove knowledge of the corresponding secret key.
This is a variant of the Schnorr protocol, depicted in Fig. 20.

Appendix B.
Security Definitions of NIZK, Encryption, and
Signature

Here, we give formal game-based definitions of com-
pleteness, soundness, zero-knowledge of a NIZK, IND-CPA
property of an encryption scheme, and EUF-CMA property
of a signature scheme.

NIZK. A non-interactive zero-knowledge proof
(NIZK) for relation R has four PPT algorithms
(Setup, Prove, Verify, Sim) such that

(0, 7) < Setup(R): The setup algorithm outputs a common
reference string o and a simulation trapdoor 7 for relation
R.

7 + Prove(R, o, ¢, w): the prover algorithm takes as input
a common reference string o and (¢, w) € R and outputs a
proof .

0/1 + Verify(R, o, ¢,): the verification algorithm takes
as input a common reference string o, a statement ¢ and a
proof 7, and it returns O or 1 for rejection or acceptance,
respectively.

7 < Sim(R, 7, ¢): the simulation algorithm takes as input
a simulation trapdoor 7 and a statement ¢, and it outputs a
proof .

Completeness. A NIZK protocol is complete if an honest
prover can always successfully convince an honest verifier.
Formally, for all (¢, w) € R,

Pr[(o,7) < Setup(R); 7 + Prove(R, 0, ¢, w) :
Verify(R,0,¢,7) = 1] =1
Zero-knowledge. A proof is zero-knowledge if no other
information is leaked except that the statement is true.

Consider the following experiment:
Experiment EXPTf}ﬁMZK(/\):

1) For a relation R, (o,7) < Setup(R), (¢, w) € R,
the challenger computes my < Prove(R, o, ¢, w)
and m < Sim(R, T, ¢).

2) The challenger picks a random bit b € {0,1}.

3) Ais given (o, m,) as input, and it outputs a guess
bit b’ € {0,1}.

4) If b=1"/, output 1; otherwise, output 0.

A NIZK is zero-knowledge if the adversary A’s advan-
tage Adviizc (A, \) = |2 PrEXPT% \z«(A) = 1] — 1] is
negligible in .

Soundness. A proof is sound if it is not possible for a
prover to prove a false statement. Consider the following
experiment:

Experiment EXPTif{t’,{,‘ﬁZK (N):

1) For a relation R, (o, 7) < Setup(R).
2) Given o as input, A outputs (¢, 7).

3) [If Verify(R,o0,¢,7) = 1 and ¢ ¢ Lg, output 1;

otherwise, output O.

A NIZK is sound if the adversary .A’s advantage
Advigi (A,) == Pr[EXPT'K(A) = 1] is negligible
in A
Encryption scheme. An encryption scheme consists of
three PPT algorithms (Keygen, Enc, Dec). The ElGamal en-
cryption scheme we used is IND-CPA secure. Formally,
consider the following%3 IND-CPA experiment:

Experiment EXPT'E,E'CCPA (A):

1) The challenger performs the key generation algo-
rithm (pk,sk) < Keygen()) and sends pk to the
adversary A.

2) A sends mg, my to the challenger.

3) The challenger picks a random bit b € {0,1} and
sends ¢ < Encp(my) to A.

4) A outputs a guess bit b’ € {0,1}. If b =¥/, output

1; otherwise, output 0.

An encryption scheme is IND-CPA secure if the
adversary A’s advantage Advpe “TA(A,\) |2 -
PrEXPTREPA(N) = 1] — 1] is negligible in A.
Signature. A signature scheme consists of three PPT al-
gorithms (Keygen, Sign, Verify). We require the underlying
signature scheme to be existentially unforgeable under cho-
sen message attack (EUF-CMA). The EUF-CMA experi-
ment is as follows:

Experiment EXPTE‘l’JSF{gCMA()\):

1) The challenger performs the key generation algo-
rithm (pk, sk) < Keygen()\) and sends pk to the
adversary A.

2) A can repeatedly request for signatures on chosen
messages (my, . .., mg), and receives the valid sig-
natures (oo, ...,04) in response.

3) A outputs a message and signature (m*,o*).

4) If m* is not one of the messages requested in step

2, and Verifypk(m*,a*) = 1, output 1; otherwise,
output 0.

A signature scheme is EUF-CMA if the adversary A’s
EUF-CMA EUF-CMA
advantage Advs;, (A, A) == PrEXPTRLE M (M) = 1]
is negligible in A.

Appendix C.
Proof of Theorem 1

Theorem 1 Assume that the NIZKs NIZK;,i €
{power, knowledge, DVF-reenc, sk, shuffle, Dec} are com-
plete, sound, and zero-knowledge. Assume that the ElGamal
encryption scheme EC is IND-CPA secure. Assume that Sig
is a signature scheme satisfying EUF-CMA. Then the pro-
tocol TIS40F JUC-realizes FIu“"" against static cor-
ruption and adaptive coercion in the {fé’fc [G], Fec, GraB }-
hybrid world.

Proof. To prove the theorem, we construct the real deception
strategies DR and a simulator S such that no non-uniform

17

PPT environment Z can distinguish (i) the real execu-

. fékkc [G],Fsc,GreB
tion EXECH"’""“"“,DR,A,Z

EXECOrs
Frmbtk plg oz

Real DVeOEeption Strategy. The real deception strategy DR;
internally runs Dl;, forwarding messages between DI; and
the environment Z. DR; performs as described in Fig. 14.

When the coercer asks for the view of the registration
phase, DR; generates K’ < EC.Encp, (pk]). Then, the
voter claims that (K7, A;,tx;,d;) is the message sent to
the RA by simulating the designated verifier proof of re-
encryption.

Simulator. The simulator S internally runs A, forwarding
messages to and from the environment Z. S simulates the
voters V := {Vq,...,V,}, the experts £ := {Eq,...,E,},
the registration authority RA, the shuffler, the trustees 7 :=
{T1,..., i}, and the ideal functionalities Fiyec[G], Fec. It
works as follows:

In the preparation phase:

Upon receiving (INITNOTIFY,sid, T;) from the ideal
functionality F/57“"* 'S simulates the trustee T; following
the protocol TI';7“%* ag if he receives (INIT, sid) from the
environment Z.

Upon receiving (INITNOTIFY, sid, RA) from the ideal
functionality F75™"* S simulates the RA following the
protocol I A as if he receives (INIT,sid) from the
environment Z.

In the registration phase:

Upon receiving (LEAKPOWER, sid, (o;,V;)) from the
ideal functionality F7“"* S simulates the voter
V, following the protocol IL{ LBE as if he receives
(REG, sid, ;) from the environment Z.

Upon receiving (REGNOTIFY,sid,V;) from the ideal
functionality F“"* S simulates the voter V; following
the protocol IT5“* ag if he receives (REG, sid,0) from
the environment Z.

When the the registration authority RA receives
(SENT,sid, V;, (K, Aj,tx;,0;)) from the simulated Fc, S
simulates the RA following the protocol T4k
In the voting/delegation phase:

Upon receiving (VOTENOTIFY, sid, VOTER) from the
ideal functionality Fi5™“"* S simulates an honest voter
V, following the protocol II{ LBE as if he receives
(VOTE,sid, vg) from the environment Z.

Upon receiving (VOTENOTIFY, sid, EXPERT) from the
ideal functionality Fi2“"* S simulates an honest ex-
pert E; following the protocol IT™:™“** 4 if he receives
(VOTE,sid, vg) from the environment Z.

When a voter V; is coerced, S simulates V; performing
the real deceiving strategy DR; to cast a fake ballot follow-
ing the coercer’s instructions.

Once Gpgp receives (WRITE,sid,Bf), S does the fol-
lowing:

from the (ii) the ideal execution

o Parse BF as (E;, c;, 7i, 0F,).
e Check (i) NIZKnoueage. Verify(mi, ;) = 1; (i)
Sig.Verify . (o€, ¢i) L.

o If it is valid, compute v; = EC.Decg, (c;);
e If E; is not corrupted, S will abort.
« Send (VOTE,sid, v;) nmG6E on behalf of E;.

to]:vote
Once Gppg receives (WRITE, sid, B;), S does the fol-
lowing:
e Parse Bj as (pkj,uj,wj,aj).
. Check (1) NIZKknowIedge~Verify<7Tj; uj)
Sig.Verify (0j,u;) 2.
o Ifit is valid, compute v; = EC.Decg, (u;);
« Find the owner of pk; by decrypting all the regis-

tration messages. Denote him as V.
o If Vj is not corrupted, S will abort.

« Send (VOTE,sid, v;) to Fasm"“"* on behalf of V.

L (i)

to fvote

In the tally phase:

Upon receiving (VOTEEND, sid) from the ideal func-
tionality F7=%"% S simulates the shuffler following the
protocol II)y ok as if he receives (VOTEEND, sid) from
the environment Z.

Upon receiving (LEAKTALLY, sid, 7, ballotsg, bey) from
the ideal functionality F/5“"* S records 7, ballotsg, bey.

Upon receiving (LEAKBALLOTS,sid, ballots) from the
ideal functionality F.5™*"* 'S records ballots.

Upon receiving (TALLYNOTIFY, sid, T;) from the ideal

functionality F5m 4% S does the following:

vote

] Set j = jU {Tz}

o If | T N Thonest| + | Teor] < t, S simulates the trustee
T, following the protocol II";™“** as if he receives
(TALLY, sid) from the environment Z.

e Otherwise, S simulates T,;’s decryption and the cor-
responding NIZK based on the tally result) and the
known information about ballots.

Indistinguishability.
We prove indistinguishability through a series of hybrid
worlds Hy, ..., Hg.

Hybrid H,: This

FikelClFec,G
EXECHELKE"[’f]f k DRP?: z
Hybrid’ “Hy: FLy is the same as except that during

the tally phase, the honest trustees’ decryption NIZKs are
generated by the NIZK simulator.

Claim 1: If NIZKpec is zero-knowledge with adversary ad-
vantage AdeNﬁZKDeC(A, A), then H; and H, are indistin-
guishable with distinguishing advantage at most (4n +m +
0) - Ade\IkIZKDeC(-A7 A).

Proof 1: With each voting casting at most one fake ballot
in our modeling, there are at most 2n voters’ ballots and
2n encrypted public key items. For experts and candidates,
each of them has one ciphertext to decrypt. Therefore, the
overall advantage is at most (4n +m +£) - Advifizx,. (A, \)
by a standard hybrid argument.

Hybrid #H,: H is the same as H; except that during
the tally phase, the honest trustees’ decryption shares are
backward calculated from the tally result.

Claim 2: H, and H; are perfectly indistinguishable.

is the real world execution

18

Proof 2: In out threshold cryptosystem, the backward cal-
culated shares in H, and the shares in H; have the same
distribution.

Hybrid H3: H3 is the same as Ho except that in the vot-
ing/delegation phase, the honest voters’ ballots are replaced
with ballots for candidate vg.

Claim 3: If the encryption scheme EC is IND-CPA with
advantage AdvIND CPA(A A) and NIZKknOMedge is zero-
knowledge with adversary advantage AdVNIZKknow.edge(A A)s
then Hz and H, are 1nd1st1ngulshable with d1st1n-
gulshmg advantage at most n - Adv| EC (.A A) +
AV ZK ey, (A5 A):

Proof 3: With at most n honest voters in the system, the
overall advantage is at most n - Advpe> “TA(A,) +
Ava,ZKknowle oo (A)\) by a standard hybrid argument.
Hybrid H4: H4 is the same as Hg except that if a cor-
rupted voter generates a valid ballot for an honest voter, the
execution will abort.

Claim 4: If the signature scheme Sig is EUF-CMA with
advantage AdvEgF'CMA(.A A), then H, and Hs are in-
dlstm&vulshable with distinguishing advantage at most n -
AdvE) F-CMA (A, N).

Proof 4. There are at most n honest voters, so the probability
of abortion is no more than 7 - AdvEéF'CMA(A, A) by a
standard hybrid argument.

Hybrid #s5: Hs is the same as H,4 except that if a corrupted
expert generates a valid ballot for an honest expert, the
execution will abort.

Claim 5: If the signature scheme Sig is EUF-CMA with
advantage AdvEéF CMA(A, \), then Hs and H, are indis-
tinguishable with distinguishing advantage at most m -
Adv EILéF-CMA(A 2.

Proof 5: Same as the previous Eroof the probability of
abortion is no more than m-AdvE) “MA(A, \) by a standard
hybrid argument.

g

Hybrld He: This is the ideal execution
EXECS™, .0\ o)
Claim 6: 6 If the decryptlon NIZK NIZKpe. is sound

sound

with adversary advantage Adv{zk,. (A,) and the shuf-
fle NIZK NIZKgpyfre is sound with adversary advantage
Advf\,",%'ﬁhume (A, \), then Hg and Hjs are indistinguishable
with distinguishing advantage at most (4n + m + /) -
Advi,,. (A, A) + AV, (A, A).-

Proof 6: It suffices to argue that the ideal tally and the real
tally output the same result. We can see that, as long as
the re-encryption in the registration phase is correct and
the shuffle and decryption in the tally phase are sound, the
ideal tally and the real tally did the same computation by
the additive homomorphism of lifted ElGamal encryption

scheme. Thus, the overall advantage is no more than n -

Advsi (AN + (dn +m +) - Advigie (A,) +
Advls\?&r;(shufﬂe (A’ >\) .
Comblmng together, the real execution
SHe]G], Fuc, Gree . .
EXECH&? L0k DRAZ and the ideal execution
EXECYPee are indistinguishable with

FEn.m, itk Dl S =z
dlstmgulshmg advantage at most

(4n +m + £) - Advilizi,. (A) + 1 - AdvEe A (A,)

+ 1+ AdVRizK, e (As A) + (1 + 1) - Advim MA(A, N

+ - AdVRITR o (AN + (dn+m o+ 0) - Adviigk (A, N)
+ AVRIZR, o (A)

This concludes the proof.

19

	Introduction
	Our Approach
	Related Work

	Preliminaries
	(Lifted) ElGamal Encryption
	Signature
	Non-interactive Zero-knowledge Proof (NIZK)
	Universal Composibility
	Distributed Key Generation
	Public Bulletin Board
	Secure Channel

	System Overview
	The JCJ Protocol
	Our Technique
	Overview of Our Scheme

	Assumptions and Security Modeling
	Security Properties and Assumptions
	Security Modeling

	The Protocol
	Protocol Description
	Security
	Discussion

	Implementation and Evaluation
	Conclusion
	References
	Appendix A: NIZKs
	Appendix B: Security Definitions of NIZK, Encryption, and Signature
	Appendix C: Proof of Theorem 1

