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Abstract. Account recovery enables users to regain access to their ac-
counts when they lose their authentication credentials. While account
recovery is well established and extensively studied in the Web2 (tradi-
tional web) context, Web3 account recovery presents unique challenges.
In Web3, accounts rely on a (cryptographically secure) private-public key
pair as their credential, which is not expected to be shared with a single
entity like a server owing to security concerns. This makes account recov-
ery in the Web3 world distinct from the Web2 landscape, often proving
to be challenging or even impossible. As account recovery has proven
crucial for Web2 authenticated systems, various solutions have emerged
to address account recovery in the Web3 blockchain ecosystem in or-
der to make it more friendly and accessible to everyday users, without
“punishing” users if they make honest mistakes. This study systemati-
cally examines existing account recovery solutions within the blockchain
realm, delving into their workflows, underlying cryptographic mecha-
nisms, and distinct characteristics. After highlighting the trilemma be-
tween usability, security, and availability encountered in the Web3 re-
covery setting, we systematize the existing recovery mechanisms across
several axes which showcase those tradeoffs. Based on our findings, we
provide a number of insights and future research directions in this field.

1 Introduction

Blockchain-based applications such as cryptocurrencies, are typically associated
with a private-public key pair to authenticate a user transaction. This requires
the user to obtain and maintain the private key securely. While requiring this key
prevents unauthorized transactions, a potential loss of the key can lock out the
user of his/her accounts and, therefore, permanently lose access to all associated
funds and assets. The decentralized nature of the blockchains implies that there is
no single entity with the power to restore access. From the early days of Bitcoin,
there have been numerous stories, some quite dramatic, where users lost access
to their funds as they could no longer access their keys for various reasons. In
Web2 (or Web 2.0), users often rely on service providers for account recovery. If



users forget their password or lose access to their account, they typically have
to go through a service-led account recovery process. This process often involves
identity verification, security questions, or email verification.

As Web3 is building upon the core concepts of decentralization and openness,
this centralized process of account recovery is at direct odds. For Web3 applica-
tions over blockchains, users need to have more responsibility to safeguard their
accounts. If they lose their private keys, in most cases no central authority or
service provider can help them recover their account or their funds. If an ad-
versary steals their key and transfers funds away, there are no mitigations as in
credit card fraud protection schemes.

Some initial research efforts have been directed toward account recovery in
the blockchain setting. Cryptocurrency wallets are emerging that offer some form
of built-in recovery support in an attempt to give the user some confidence that
the account or its funds will still be available even if the private key is lost. The
idea is to generally make the Web3 world more “forgiving” and bring it closer
to the average user’s experience of mainstream Web2 payment systems.

Asset and account loss types. “Losing” the private key is one of the obvious
cases where a user will also lose access to an account and all of its associated
funds. Such cases include losing or destroying the medium of its storage, acciden-
tal deletion, hardware failure, viruses and malware etc. [12] A user passing away
is also considered a potential case of asset or account loss, as in cryptocurrencies
there is no built-in way of transferring funds to the heirs’ custody unless the
user has taken the prior steps necessary to transfer the private key to the heirs
upon his/her death [19].

A user might also lose funds when mistyping the recipient’s address, with
the assets being transferred under an account for which a private key does not
exist [10,14]. Unless specific countermeasures are taken by the application to
prevent such cases from happening (e.g., checksums [31] or QR codes), these
instances are effectively equivalent to key loss.

We note that a recent work by Maram et al. [50] considers four possible
states of a credential or key: safe (only the user knows it), leaked (the user and
an attacker know it), stolen (only an attacker knows it) and lost (neither the
user nor the attacker knows it). In this work, we only consider recovery for keys
that are in a “lost” state, and we consider cases where keys are in a “leaked” or
“stolen” form as out of scope, as the recovery approaches discussed in this paper
are not generally applicable. However, under certain circumstances and special
designs, some recovery methods (e.g., key rotation) might still work for leaked
keys, as we discuss later.

Our contributions. In this paper, we perform a systematization of recovery
solutions in the Web3 domain. We provide definitions of the various characteris-
tics of these solutions across different dimensions; we categorize them based on
these properties by highlighting the subtle differences. Finally, through our sys-
tematization methodology, we identify several gaps in the literature and provide
interesting insights for the future research directions.
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The rest of this paper is organized as follows. In Section 2, we provide defi-
nitions for the primitives and cryptographic background used in our paper and
a general overview of existing recovery methods in the Web3 space. In Section
3 we present the systematization methodology we use in our work. In Section
4, we review the most prominent recovery solutions that (to the best of our
knowledge) exist at the time of writing of this paper and categorize them based
on the systematization methodology we defined previously. We omit solutions
that are identical or with fewer functionalities in terms of authentication and
recovery compared to those we consider. In Section 5, we discuss the various
insights and research gaps we discovered based on our systematization method-
ology as well as our broader observations. In Section 6, we briefly overview some
additional cryptocurrency wallets that provide basic recovery mechanisms and
related works more broadly related to the Web3 recovery challenges. We con-
clude our paper in Section 7 with a summary of proposed research directions in
this field.

2 Preliminaries and Existing Recovery Methods

2.1 Definitions and background

We now provide informal definitions of the various elements and primitives used
in our paper. We provide formal definitions in the Appendix A.

Secret Sharing. A Threshold Secret Sharing scheme [36] is a mechanism to
generate shares of a secret sk among n parties such any t+1 or more parties can
reconstruct the secret value. However, no set of parties of size less than or equal
to t can recover the secret.

Threshold signatures. A digital signature scheme lets a user authenticate a
message m by signing it using a secret key sk corresponding to a public key pk. A
threshold signature scheme [54,30] lets a set of parties generate partial threshold
signatures such that the aggregated signature, generated from any t+1 or more
partial signatures, can be verified by the group public key. Here, the secret key
required for the signature generation is split among the set of parties generating
the threshold signature.

Multi-signatures. In a Multi-signature scheme [30,40], each of the n parties
has an independent secret key - public key pair (ski, pki) and generates an inde-
pendent signature σ(ski,m). These signatures are collected (and concatenated)
to form a Multi-Signature. Any threshold access structure can be realized using
the MultiSig scheme. The MultiSig is considered valid if at least t + 1 of the
parties produced valid signatures on the message m being signed.

Group signatures. A group signature [27] allows any group member to sign
anonymously on behalf of the group of size n. Any verifier can check that a group
member has signed the message but can not identify the signer unless revealed.

Secure multi-party computation (MPC). MPC consists of the crypto-
graphic methods enabling parties to jointly compute a function, where each
party provides a private input [33,58]. One of the main requirements in MPC is
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that each party’s input is not revealed to anyone, but also no information related
to that input is leaked due to the protocol execution, except the information that
can be inferred by the output.

MPC Wallets. In the blockchain setting, MPC wallets are generated by two
or more parties6 which generate the public key associated with the wallet in
an interactive fashion, while retaining their individual keys (or shares) as their
private information, which are then used to sign messages (e.g., a transaction).
For the purposes of our paper, we overload the definition to include wallet that
make use of any of the cryptographic signature schemes mentioned above, i.e.
any wallet which is controlled by two or more private keys.

2.2 Recovery methods

We now overview, to the best of our knowledge, some of the most prominent
methods for recovering accounts in the Web3 setting. For simplicity, we assume
that an account is reflected by the account owner’s public key pk, although ac-
counts in most blockchain applications are reflected using additional operations
on top of pk (e.g., a hashed public key). Under normal circumstances, the account
holder uses the private key sk associated with pk to create transactions on the
blockchain (e.g., create a signature σ(m) where m is an instruction to perform a
value transfer from the account holder’s balance or execute some smart contract
operation which only the account holder is authorized to perform). However, as
secure key management in blockchains remains an issue (especially for the av-
erage user), there are cases where the account holder loses access to the private
key, as discussed in the “loss types” previously in Section 1. In the following
paragraphs, we provide an initial overview of ways of recovery in blockchains.

Off-chain backup and recovery. The first and most intuitive method available
to enable account recovery is to back up sk into a secondary medium and recover
it on demand. However, as the sk is a sensitive piece of information, the backup
must be performed securely to prevent attackers from accessing it, compromising
the account and draining its assets.

The easiest way to perform such a backup is to copy sk to an offline device
(e.g. a USB thumb drive) and store it somewhere safely. This provides a method
to move a key back from the “lost” state to the “safe” state; however, it cannot
move it back from the “leaked” or “stolen” states. Also, a private key in plaintext
(even in offline devices) still raises security concerns. Encrypting the private
key either using a software encryption scheme or with a hardware device is still
problematic, as the user will have to manage an additional key, while the backed-
up key is still susceptible to medium destruction or loss.

A more elegant way of performing a backup in this manner is making use of
cloud storage services. Such services are widely used today by the majority of
the user base, which makes using a cloud service for key backup a reliable and
user-friendly solution. However, despite the security measures employed by cloud
providers such as two-factor authentication (2FA), there’s still a major concern

6 Note that in our setting, a single user can control multiple “parties”.
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about the backed-up key being compromised with devastating consequences to
the account. Encrypting the plaintext key under another key (sometimes re-
ferred to as “Key Encryption Key” or KEK), mitigates this risk. However, as
before, there’s still a problem with managing the KEK. Therefore, some wal-
let providers [1] natively offer hosting services for the KEK and only help with
decrypting sk after verifying the user’s request with 2FA methods. In this ap-
proach, the security risk is mitigated as an attacker must successfully compro-
mise both the user’s cloud provider and the wallet service provider, which offers
a good tradeoff between security and user-friendliness. Also, the recovery process
is performed off-chain, and the user can regain access to the account without
additional delays or costs. The main drawback of this method is that it is proac-
tive, meaning that the user must “plan ahead” and create those backups ahead
of time.

Also, instead of utilizing a single KEK, sk can be broken into shares, and
then storing the shares into different locations (e.g., some combination of dif-
ferent cloud providers, wallet providers, and/or offline storage). This “key share
distribution” approach is essentially an extension/upgrade of using a single KEK,
enabling the user to design a customized recovery plan.

Use of seed phrases. As an alternative off-chain backup method, seed phrases,
typically consisting of a sequence of random words, provide a user-friendly way
of key backup while providing sufficient entropy to create a private key determin-
istically. Essentially, the user needs to record a small number of words (usually
12) on paper instead of managing cloud services, hardware devices, or additional
keys, as in the backup methods discussed before. However, the user needs to keep
them somewhere safe, as anyone learning those words is equivalent to a private
key compromise. Note that as other methods based on mnemonics such as pass-
words, PINs or security questions do not provide sufficient entropy to generate
a key, these are exclusively used in the context of access control of the wallet
app or logging in to the server of a wallet provider as additional security lay-
ers. Therefore, such mnemonics cannot be used as a recovery method in a key
loss, and recovering access to an account that requires the knowledge of those
mnemonics as an extra layer of security is not within the scope of our paper.

Pre-signed transactions. A user could pre-sign transactions which send some
or all of the account’s funds to a secondary account, and store them in an offline
medium. This would work in case of key loss as a fallback mechanism to recover
the account’s funds [56], however, it is cumbersome for the user and creates a
burden to manage the secondary account keys. Also, this method might not work
for unspent transaction output (UTXO)-based systems, as the unspent outputs
used at the time of pre-signing might be spent later.

Smart contract recovery through guardians. Alternative recovery meth-
ods can be created by utilizing the power of smart contracts. One such way is
through the use of guardians7, which are designated parties with the power to
help the user perform account recovery when needed, but without having any

7 In the Web3 space, recovery using guardians is sometimes referred to as “social”
recovery.
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other powers over that account, such as signing messages or spending funds.
They are normally hand-picked by the user (e.g., reputable service providers or
reliable close friends or relatives), giving the user confidence that they will follow
the recovery protocol when asked to help. However, some wallet providers put
themselves in a default guardian role to increase user-friendliness. This removes
the requirement of proactive action by the user while still providing the option to
add (or remove) additional guardians [1]. Naturally, for such recovery methods
to work, they require a smart contract that orchestrates all account operations,
as the contract provides advanced functionalities needed to assign other parties
to an account with special roles. Therefore, these methods are not applicable to
standard accounts or in blockchains that do not support smart contracts.

Each of those guardians, denoted by G, has its public key reflected in the
smart contract as pkG . Then, the smart contract code enables G to perform
special recovery operations, e.g., rotate the account key after the user has gener-
ated a new (pk, sk) pair. This operation might be associated with a timed delay
enforced by the contract, which lets the user cancel a potential malicious re-
covery operation within that period e.g., by signing a special “cancel recovery”
transaction. Also, the account holder has the power to add, remove or replace
guardians if he/she desires, and initiating the recovery operation would require
a pre-determined threshold of the guardians set (e.g. over 50%). This essentially
mitigates the risk of a rogue guardian trying to steal the user’s assets, as the user,
after careful planning, would have picked those guardians with diverse charac-
teristics. Naturally, changes to the guardian set or any other logic changes to
the smart contract require a digital signature using the account’s key.

The main advantage of a smart contract-based recovery (such as using guardians)
is that it can be reactive, meaning it might not require the user to take any
preparatory steps beforehand and can be invoked when the user loses sk. This
recovery might help even when the key is in a “leaked” state, for example, when
the funds have not yet been fully drained from the user’s account (e.g., because
of restrictions in the smart contract) and the user becomes aware (or simply
suspects) that the key has already been leaked. In this case, the user might ask
a guardian to rotate the keys, invalidating the compromised sk.

The disadvantages are that it only applies to accounts associated with or con-
trolled by smart contracts, and the operation is performed on-chain, incurring
gas costs. Such an on-chain operation is publicly visible, providing an adversary
with ways of exploiting such information. Also, its security and user-friendliness
characteristics are not ideal, as the risk of malicious guardians increases the
attack surface. The user must either actively monitor the blockchain for unau-
thorized recovery attempts or rely on third-party services that notify the user
(e.g., by email) if a recovery attempt is detected during the enforced time delays.

Smart contract guardian-less recovery. Some methods, such as KELP [29],
also based on smart contracts, do not involve guardians at all but rely entirely
on the smart contract to perform the recovery operation on behalf of the user.
Essentially, the contract lets anyone make a recovery claim for some account
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(instead of relying on pre-determined guardians), and on such claim receipt, the
contract follows a designated protocol to complete the recovery process.

Such a method generally inherits the advantages and disadvantages of the
previous one, which involves guardians - it is reactive, as no prior action is
required by the user, but requires an account associated with a smart contract,
is publicly observable, and incurs paying gas costs. However, parties with special
powers are no longer required, and the user does not need to place trust in anyone
except the smart contract itself. On the other hand, the time delay will typically
be longer than those with guardians, as the trustless model needs to mitigate
targeted recovery attempts, e.g., when an account holder is known to be “off the
grid” by the attacker. We discuss KELP in more detail in Section 4.

3 Systematization methodology

As in most applications in technology, there is a natural tension between us-
ability and security since hardening security typically comes at the expense of
the user’s experience. In the Web3 recovery setting, (lack of) security captures
an adversary’s ability to control an account or its associated assets. However
when introducing recovery mechanisms in this setting, an additional property
that needs to be considered is availability, which captures the user’s ability to
invoke and complete the recovery functionality successfully when needed.

A trilemma for the recovery mechanisms in wallets. We observe an inter-
esting trilemma among the properties, where only two of the three of usability,
strong security, and high availability are being satisfied for any existing recovery
mechanism. We informally define these properties and expand on them below.

Usability: A usable system should meet the requirements of the user and
should be easy to use [45,46]. However, the nature of non-custodial wallets,
where users have control over private keys (and naturally bear a large burden of
managing/recovering the keys), often requires complex mechanisms for key re-
covery, affecting usability. For instance, users may need to manage seed phrases
or multiple keys for recovery, which is similar to managing multiple authentica-
tion secrets (some of which might be rarely used) and shown to be less usable
(due to cognitive burden) [39,37,28]. Similarly, setting recovery mechanisms with
the help of two different servers/devices is more usable for users than setting it
on hundreds of devices which increases the cognitive burden and possibility of
error.

Security: A secure key recovery system should ensure that only the legiti-
mate user can recover their keys (i.e., resistant to any unauthorized recovery).
However, other attack vectors should also be considered, which we discuss in de-
tail later in section 3.7, namely denial of recovery, key compromise attacks, and
privacy-related threats. Therefore, we consider a recovery system secure if it is re-
sistant against the attack vectors we consider as a whole. Consequently, achieving
security often requires complex cryptographic techniques or authentication-level
techniques such as multi-factor authentication, which can reduce usability. On
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the other hand, making key recovery too simple or accessible could make it easier
for malicious parties to perform such attacks.

Availability : The key recovery system should be accessible whenever users lose
their keys. However, some secure key recovery methods, such as multi-signature
schemes or recovery using guardians, depend on the availability of other parties
or multiple keys. If these are unavailable, the user may be unable to recover their
keys when needed.

To better illustrate the properties and the trilemma between them, we con-
sider a (t, n)-guardian-assisted recovery scheme, where the user needs to select
n guardians from a pool of servers (or a pool of social contacts), and at least t
guardians are needed to perform a recovery operation.

– Usable and Available (and not secure): A guardian recovery scheme with
n = 6 and t = 2 is usable (as the user only needs to setup the recovery with
6 servers) and available (since only 2 servers are required to help the user
when required). However it is not very secure because an adversary only
needs to corrupt 2 guardians to steal the user’s funds.

– Secure and usable (and not available): A guardian recovery scheme with
n = 6 and t = 4 is equally usable as before, as the user needs to perform
the same proactive tasks. While it is more secure (as the adversary needs
to corrupt more servers simultaneously), it is less available (as the user now
will require the help of 4 servers when needed).

– Secure and Available (and not usable): If we now consider a scheme with
n = 12 and t = 4, it is equally available as the first (assuming the probability
of each server crashing or otherwise unavailable remains the same) and as
secure as the second (as the adversary needs to corrupt the same amount of
servers). However it is less usable, since the user needs to perform the more
difficult proactive task of setting up recovery with 12 servers, as finding more
guardians with the same high degree of security and availability can be hard
in practice.

With all previous examples showcasing the challenges the design of a recovery
system must address, we choose to systematize our findings across the dimensions
outlined in this section, which highlight the tradeoffs of the usability vs. security
vs. availability trilemma.

3.1 Proactive vs. Reactive

The primary distinction among recovery approaches lies in the requirement for
prior user action. Approaches like off-chain backups inherently necessitate user-
initiated actions beforehand, making it essential for users to be proactive. These
methods won’t be available if users haven’t followed the procedure of backing up
keys or shares as stipulated by the wallet. In contrast, reactive methods do not
necessitate prior user actions and offer recovery options on-demand. The latter
is generally preferred, particularly since most users prefer straightforward and
expedient wallet setups. In other words, reactive solutions by definition offer the
best usability.
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Based on the above explanation, we present the following definitions:

Definition 1. A recovery method is classified as “proactive” or “off-chain” if it
mandates user-initiated actions before the occurrence of account or key loss.

Definition 2. A recovery method is classified as “reactive” or “on-chain” if
it does not require any prior user-initiated actions but relies solely on system-
initiated actions.

One could argue that all recovery methods exhibit proactive elements, given
that even methods labeled as “reactive” involve some system-initiated actions,
with the broader system (like the blockchain or smart contract) proactively act-
ing on behalf of the user. In this context, the only truly “reactive” methods
would resemble hard forks or the DAO (as discussed in section 6), which rely on
mass user votes to determine recovery outcomes.

However, since our focus is primarily on the user’s perspective and needs,
we still classify methods requiring prior system-initiated actions as “reactive.”
This classification aids users in comprehending their level of involvement and
responsibility in securing their assets.

Lastly, we do not view any user-required actions involving access-control
mechanisms during account setup, such as passwords or PINs (discussed in Sec-
tion 2.2) as a “user-initiated” action for recovery purposes. As these are an “ev-
eryday” method of accessing the key using additional security layers, we consider
these as orthogonal to our work.

3.2 Account recovery vs. Funds recovery

In cryptocurrency systems, in the majority of cases, a user’s primary objective is
to safeguard the custody of the funds associated with their accounts, ultimately
aiming to recover the associated value in case of a loss. However, the recovery
process may not always entail the restoration of the initial account, typically
represented by the public key. For instance, consider a scenario where a smart
contract is programmed to make periodic deposits to a specific account address.
In such cases, merely recovering funds from the account may prove insufficient
as all subsequent deposits may be lost.

This limitation arises depending on the chosen recovery method and becomes
especially pertinent when the account in question has external properties or logic
associated with it. This complexity becomes even more apparent in systems like
Libra and Aptos [22,26], where accounts are equipped with features such as key
rotation and delegated withdrawals, making the recovery process more intricate
than a straightforward funds retrieval.

3.3 Standard wallet accounts vs. Smart contract accounts

A standard wallet account8 only requires a signature (or a set of signatures) gen-
erated by a private key (or multiple keys) in order to be to be able to spend the

8 In the Ethereum ecosystem these are referred to as “externally-owned accounts”.
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funds associated with that account. However, smart contract accounts are not
limited to the functionality above, but add programmability features that can
control the funds with arbitrary logic. Examples of such accounts are Ethereum’s
account abstraction proposal [32] or delegating withdrawal capabilities in Li-
bra/Aptos [22,26]. Therefore as a natural consequence, smart contract accounts
offer more sophisticated recovery capabilities as discussed in Section 2.2.

3.4 Recovery using guardians

In certain types of wallets, the client has the option to designate ‘Guardians’.
Guardians in crypto wallets are individuals or entities that are trusted by the
wallet holder to help them recover their assets if they lose their private keys. The
client may choose these guardians based on reputation from an available pool.
However, the client may also choose parties she trusts as guardians, possibly
from her social circle, like friends and family. The guardians may or may not
know the identities and existence of other guardians. They perform the asset
recovery on behalf of the client in case of key loss. We view this trust-based
social recovery as a special case of recovery using guardians.

3.5 Multi-key recovery

For specific varieties of wallets, such as Multi-Party Computation (MPC) wallets
or those utilizing multi-signatures or threshold signatures, the authentication
process for issuing a transaction does not rely on a single key. Instead, it requires
two or more keys. In such scenarios, there may be instances where only one key
is lost while the other keys remain accessible. In these situations, the recovery
process can be initiated using the remaining keys to replace the lost key. This
recovery procedure can be executed either directly within the cryptographic
scheme [27] or by utilizing smart contract functionalities.

3.6 Key-custody

In general, the term “custody” in the Web3 space refers to the level of (lack
of) control the user has over his/her private key(s). The general consensus in
the Web3 community is that a “custodial” wallet refers to a wallet in which
the private keys are not held by the user but by a third party, managing the
keys on the user’s behalf9[6,5]. However, with the advent of wallets that are
co-managed by the user and a third party using primitives outlined in Section
2.1, we observe irregularities and broad interpretations of the terms frequently
encountered in the space such as “non-custodial” or “self-custodial”. Mostly,
these two terms are being used interchangeably [7,8,9,20], implying that the
user has full control of the account. It is without any external party existing
with the power to refuse a transaction, but on the other hand without providing
any recovery options in case of key loss. However, in recent proposals e.g. the

9 Another terminology encountered is “user-controlled” and “developer-controlled” [4].
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MPC wallet from Coinbase [47], we observe that these terms became overloaded,
with the “self-custodial” wallet definition being used even if an external service
provider needs to co-sign the user’s transactions, with the “self” term referring
to the ability of the user to remove the service provider entirely from the wallet
scheme if desired, while the entire wallet is referred to as “Coinbase-aided”.

Having observed these inconsistencies in the Web3 ecosystem, we provide the
following definitions which we use for our systematization:

Definition 3. A wallet or Web3 account is called “custodial” if all private keys
are managed by an external service provider acting on the user’s behalf.

Definition 4. A wallet or Web3 account is called “self-custodial” if all private
keys are managed by the user, and no single external service provider has the
ability to censor or prevent the user’s transactions at any point.

Definition 5. A wallet or Web3 account is called “non-custodial” if the private
keys are distributed between the user and an external service provider which
retains the ability to have some form of control over the user’s account.

We use different definitions for the terms “non-custodial” and “self-custodial”
to make the distinction of account control explicit.

3.7 Attack vectors

Designing a recovery mechanism for web3 accounts needs careful design, as an
adversary might take advantage of them and compromise the user’s account.
In general, wallets that are augmented with some recovery functionalities are
susceptible to the following attack vectors:

1. Unauthorized recovery: An adversary might attempt to invoke a recov-
ery of a victim’s account with the goal of taking control of the account or
transferring its assets to an adversarial account. Note that this attack vec-
tor includes cases where the adversary has corrupted one or more recovery
agents who belong to the set of authorized agents (if the recovery scheme
includes such an approach).

2. Denial of recovery: While a recovery agent might not act maliciously and
actively attempt to control a user’s account or its funds, an agent might
refuse to cooperate when needed and extort the user for money.

3. Key compromise attack: In web3 accounts that have distributed keys
(e.g., threshold or MPC wallets), an adversary can take control of one or
all of the participating parties to compromise the key or extract secret in-
formation [48]. If the adversary compromises a set of devices less than the
threshold required for the full recovery of the secret information, the thresh-
old for further compromise is reduced.
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3.8 Privacy-related threats

The fact that an address owner is engaging with recovery solutions and related
software can leak some private information which can sometimes be indirectly
exploited. Some notable examples include:

1. Recovery in progress: If an adversary becomes aware that a user has ini-
tiated a recovery process, they could exploit this information to carry out
malicious activities. For instance, they could launch social engineering at-
tacks or attempt to outpace the user in the recovery protocol itself, a tactic
known as front-running. This underlines the importance of maintaining con-
fidentiality during the recovery process to mitigate potential security risks.

2. Backup structure: Some designs reveal the exact key structure of an ac-
count, leading to the extraction of information on the wallet software backing
an account. An example is plain or smart contract-based multi-sig accounts
exposing the number of keys involved. Interestingly, one of the main ad-
vertised features of threshold MPC wallets is that addresses are indistin-
guishable from regular single-key accounts, and hence, they defend against
the aforementioned structure leak of multi-sig solutions. However, even with
threshold MPC wallets, it has been reported that some implementations di-
vert from the official signature scheme standards, which can break this indis-
tinguishability property. An example includes the case of ed25519 threshold
wallets randomizing their signatures on retries; against the EdDSA stan-
dard recommendation (that most plain-key ed25519 implementations fol-
low), which suggests deterministic signatures over the same message [34].

4 Existing solutions

In this section we review the existing solutions for account recovery in a blockchain
setting, highlighting their properties based on our definitions provided previ-
ously. We distinguish them between recovery proposals and wallets, with the
latter category being commercial software implementations.

4.1 Recovery proposals

EIP2429 [53] was among the first solutions to enable account recovery in the
Ethereum cryptocurrency. This proposal enables the user to select a private list
of Ethereum addresses (i.e., “guardians”) which can authorize a call protected
by a secret only known to the user. Such a secret, which is never revealed on
chain, but hashed with a nonce, can be based on the user’s biometrics, personal
information or a password, and its intention is to prevent attempts of malicious
guardians to take over the user’s account without his or her permission. The
guardian list is also hidden in a Merkle tree and is only revealed when recovery
is invoked. This is intended to prevent collusion between guardians.

ERC4337 [32] while not primarily focused on the recovery aspect, enables users
to program Ethereum wallet recovery using guardians.
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KELP [29] provides a way to recover funds using a smart contract. It is a reactive
method, therefore the user doesn’t need to take any action proactively. The most
prominent feature of this method, however, is that there are no “guardians”
involved, and anyone can invoke a recovery request on any existing account.
Therefore KELP needs to mitigate 2 major attack types: First is “front running”,
where an attacker might see a pending recovery transaction and front-run it by
invoking another recovery first, and a “random testing”, where the attacker
might make recovery attempts for a large number of random accounts.

Therefore the smart contract protocol is split into three phases, a commit, re-
veal, and challenge phase, with two separate time delay periods in between, each
associated with a fee as collateral. The first is used to publish a commitment to
a recovery request from one account to another (which prevents front-running
attacks). The key assumption however is that the account owner is the first
to realize that the key is lost, otherwise an attacker can still publish a recov-
ery request commitment and front-run the account owner. The second period
is intended to provide the opportunity for a legitimate account owner to chal-
lenge the recovery request. More specifically, similar to the methods involving
guardians, a user can “challenge” an unauthorized recovery attempt, where ei-
ther the attacker would simply forfeit the collateral or the user would claim the
collateral amount and credit it towards his/her account. This mechanism acts
as a disincentivize towards random testing attacks. We point the reader to [29]
for a more detailed description of the protocol.

4.2 Recovery wallets

Argent [1] is a wallet solution combining the proactive off-chain recovery and
the reactive smart-contract guardian recovery methods discussed in Section 2.2.
Argent encrypts the private key with a KEK stored on Argent’s servers, while
the encrypted private key is stored on the user’s cloud storage. As an alternative
recovery method, Argent provides a guardian-assisted recovery by enabling the
user-designated guardians to rotate the user’s keys after a 2FA authentication
and a 48-hour time delay, which is still reconfigurable. Note that the guardian
method is still reactive, as the wallet has pre-selected the Argent organization
as a default guardian, while the user can still add more guardians (with the
recovery request requiring a signature of the majority of them), or even remove
Argent entirely from the default guardian role. The guardian set however still
remains publicly visible, which can have privacy implications for the user.

Braavos [3] is a StarkNet account abstraction smart contract wallet that man-
ages 2 keys: one key is stored by the user’s device HSM, while the other is
deterministically derived from a seed phrase. A 2-out-of-2 multisig is required to
execute a transaction. In case the device key is lost, a user initiates a recovery
request using the seed phrase through a “Remove Hardware Signer Request”
transaction. There is a (configurable) delay for this request to be completed,
enabling the user to transfer the funds out of the wallet in case the seed is
compromised.

13



ZenGo [21] is a wallet that manages a secret-shared key. The first share (Per-
sonal Share) is created and stored on the user’s device, while the second share
(Remote Share) is created and secured on ZenGo’s servers. To execute a trans-
action, both secret shares are used to sign. ZenGo offers a proactive backup
recovery method by encrypting the personal share in the user’s cloud service,
using a KEK which is stored at ZenGo servers. To initiate the recovery, the user
needs to provide biometric information to ZenGo (e.g., face recognition). To en-
able recovery of the remote share, the user also keeps the remote share encrypted
with ZenGo’s “master key”. In case ZenGo ceases to operate, a designated law
firm will publish the master key to enable recovery of the remote share.

Sequence [17] is a wallet offering 2 different versions. The first uses 2 keys, a
Session key and a backup key which is only shown during account creation. The
second version has 3 keys: a session key stored on the user’s device, a guard
key stored in the wallet provider’s servers, and a “Torus” key stored at Torus
network [18] in a 2-of-3 secret-shared format, shared between the user’s device, a
secondary device and the Torus network nodes. A standard transaction execution
requires 2-of-3 or 1-of-2 multi-sig (depending on the version), while a recovery
transaction request can be signed by 2 keys replacing the third one, or using the
backup key. The issues with Sequence are that a “Lazy” user can still hold the
device keys on a single device anyway, creating a single point of failure, while
the backup key has too much power over all other keys as it can be used to sign
any transaction by itself.

Coinbase [47] proposes a proactive distributed key solution for recovery through
an MPC wallet. This wallet consists of two distinct backup and recovery solu-
tions: The first consists of 2 shares, one held by the user which can be proac-
tively backed up directly to the user’s cloud storage, and the second is held by a
designated service provider which can be used to restore through strong authen-
tication. The second is by encrypting both shares using a public key belonging
to the user, which gives the user the ability to recover the key without relying
on an external service provider or mnemonics.

BitGo [2] offers a WaaS product line which offers both custodial and “semi-
custodial” solutions. The semi-custodial versions come in two flavors, one using
multi-signatures and the other using threshold signatures. In both cases, the
user generates two keys, a main key, and a backup key, while BitGo holds a
key of its own. Although BitGo does not have any access to either of the user’s
keys, it needs to sign every user-generated transaction using its own key. To
perform recovery in case of key loss, the user needs to store a “keycard” which
(among others) has the two keys in an encrypted format. Then the user using the
encrypted keys combined with a user passphrase and a number of other inputs,
builds a transaction that sends the account funds to a new address [13].

4.3 Systematization

In Table 1 we categorize our findings based on the methodology discussed in
Section 3, while in Table 2 we focus on the tradeoffs within the usability vs.
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Solution Action
Recovery

type
Account
type

Guardian
Multi-key
support

Custody

EIP2429 Reactive Funds SC Yes No Self-custodial

ERC4337 Reactive Funds SC Yes No Self-custodial

KELP Reactive Funds SC No No Self-custodial

Argent Both Both SC Yes No Self-custodial

Braavos Proactive Account SC No Yes Self-custodial

Sequence Proactive Account Standard No Yes Self-custodial

ZenGo Proactive Account Standard No Yes Non-custodial

Coinbase Proactive Account Standard No Yes Non-custodial

BitGo Proactive Funds Both No Yes Non-custodial

Table 1: Systematization on existing recovery methods. Here, SC means Smart
Contract

Solution EIP2429 ERC4337 KELP Argent Braavos Sequence ZenGo Coinbase BitGo

Usability ✔ ✔ ✔ ✕ ✕ ✕ ✕ ✔ ✕

Availability ✔ ✔ ✔ ✔ ✔ ✕ ✕ ✔ ✕

Malicious
recovery

✔ ✔ ✕ ✕ ✔ ✔ ✔ ✔ ✔

Recovery
denial

✕ ✕ ✔ ✔ ✔ ✔ ✕ ✕ ✔

Key com-
promise

✔ ✔ ✔ ✔ ✔ ✕ ✕ ✕ ✕

Privacy ✔ ✕ ✕ ✕ ✕ ✕ ✔ ✔ ✔

Table 2: Recovery solution properties.

availability vs. security trilemma, where we distill the security aspects based
on the attack vectors discussed. Also recall that purely reactive solutions by
definition offer the best usability.

5 Research insights and gaps

With our systematization results in place, we now provide our overall obser-
vations, followed by a number of interesting research directions in the Web3
recovery space. We first discuss the research insights we have gathered as a part
of this work. We then present some gaps that are evident from our analysis.

5.1 Research Insights

First, we observe that solutions that use a smart contract account are typically
reactive and can only recover the funds but not the account themselves. On the
other hand, in standard accounts, the recovery is typically performed for the
whole account, but the method is proactive.
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Insight 1 There is a high correlation between reactive recovery, fund recovery,
and smart contract accounts. Similarly, there is a high correlation between proac-
tive recovery, account recovery, and standard accounts.

As discussed in Section 2.2, low-entropy mnemonics such as PINs and pass-
words cannot be used for recovery purposes when the key is lost. Therefore, we
consider such mnemonics as Web2 solutions. However, such mnemonics can be
used to encrypt MPC keys, which can in turn perform recovery for a missing
key in an MPC wallet.

Insight 2 While low-entropy mnemonics cannot be used by themselves for re-
covering a lost key, they can be a useful tool for encrypting key shares in MPC
wallets, which in turn can perform recovery of lost MPC keys.

Then, a natural question is if managing shares provides more availability than
managing high-entropy mnemonics (e.g., 12 random words). Indeed, key shares
can be distributed in digital format across many places (e.g., cloud storage,
offline media etc.), while it is harder to store mnemonics in more than one place,
which makes it less available.

Insight 3 Key shares provide higher availability for recovery purposes compared
to high-entropy mnemonics.

Finally, smart contract-based recovery systems seem to offer good design so-
lutions when combined with MPC wallets for transferring funds to heirs after the
account holder passes away. Such designs can involve a key that is not sufficient
to spend but can still invoke a recovery.

Insight 4 A weak “dead man’s key” as part of an MPC architecture within a
smart contract-based recovery can provide a method to transfer funds to the heirs.

5.2 Gaps

When considering a recovery method that involves backup keys or MPC wallets,
the general recommendation is to transfer the account assets to a new account
using the remaining key(s). However, this recommendation is problematic when
a key belonging to an important entity in the blockchain ecosystem (e.g. a val-
idator or a guardian) is lost, as this opens up the possibility of other attacks not
applicable to a simple account (e.g. a long range attack for validators).

Gap 1 When keys are lost by entities in a blockchain system that have special
powers such as validators or guardians, the recovery methods available for users
might not be recommended or applicable. Key recovery systems in blockchains
need to be carefully designed to address such cases.

We have examined several wallet proposals that integrate multiple recov-
ery methods into a single solution. For instance, Argent [1] merges off-chain
recovery with a guardian-based approach to enhance user accessibility. However,
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while these methods may be secure individually, their combination could poten-
tially create a vulnerable system. For instance, a backup key could be misused
to execute an unauthorized guardian recovery. Therefore, while the intention of
combining recovery methods is to increase security and availability, it is crucial
to carefully consider potential security risks that might arise from such combi-
nations.

Gap 2 Combining different recovery schemes can negatively impact the overall
security of a web3 system.

We also observe from Tables 1 and 2 that while on-chain recovery methods
are generally reactive (which is a desired property), none of them preserve users’
privacy, as they expose to the public that the account holder has made a recov-
ery request. Also, no reactive solution exists for blockchain systems that offer
privacy-preserving characteristics to the user, e.g., confidentiality or anonymity.

Gap 3 a. Can we design reactive recovery methods that do not reveal that a
recovery is in process?

b. Can we design reactive recovery methods for privacy-preserving blockchains?

We also observe that all (desirable) reactive methods require a smart contract
account. However, there are no reactive methods available for standard accounts.

Gap 4 Can we design a reactive recovery solution for standard accounts?

In the introduction, we discussed that mistyping the recipient’s address is
effectively equivalent to key loss, and such cases are usually mitigated through
checksums or QR codes. However, these mitigations can be cumbersome and
introduce an overhead for the user and the application.

Gap 5 Can mistyped addresses be prevented by automated logic (e.g. a smart
contract) which would check if an address actually exists before transferring
funds?

Additionally, we discussed that account recovery methods are applicable for
keys that are in a “lost” state, but are not applicable for keys that are in a
“leaked” or “stolen” state (with only a few special exceptions which involve key
rotation, and assume that the attacker is not actively attempting to make a
competing recovery attempt).

Gap 6 Can we design a secure and available account recovery scheme that works
for leaked keys?

A potential research area would be exploring novel smart contract (plus no-
tification) systems that introduce transaction execution delays on purpose (i.e.,
via time-lock [57] and/or fraud proof [24] logic) so that a user whose key is com-
promised can monitor unintended transactions and stop them from finalization.
It is still an open problem though how such a system would prevent vicious cycle
scenarios, where the account owner tries to stop malicious transactions, while
the adversary prevents the legitimate user from transferring their assets. An-
other interesting avenue is linking identity (with privacy) to blockchain address
derivation, such as in zkLogin [35], and then recovering via identity proofs.
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Gap 7 Standardization of applying a user-experience friendly time-delayed trans-
action system or identity proofs to prevent malicious activity in the case of com-
promised keys is an interesting, open problem.

Finally, we described how modern wallets apply secret sharing methods by
splitting a key between multiple entities and storage mediums. The reality is that
most of the storage options for the shares can be weaker (in terms of security
guarantees) compared to the recommendations for storing cryptographic keys.
For instance, many threshold wallets store key shares in Google Drive or their
back-end premises. However, if the key (mnemonic) was not split and stored
as a whole, the official security recommendations will not necessarily be using
systems like cloud file-systems or a startup’s database, but preferring password
managers, hardware secure modules or offline vaults that have been designed for
that purpose. Additionally, an attack to any of these key-share storage mediums
would reveal one of the shares for all users using that system, which would imply
that the threshold recovery property is lost and all accounts will be downgraded
from i.e., a 2-of-3 to an 1-of-2 structure, and thus thousands of millions of ac-
counts will get affected, resulting in initiating the recovery process (and transfer
of assets to a new account) en masse.

Gap 8 Community is lacking a rigorous and quantitative analysis around stor-
ing multiple shares in independent, but potentially centralized and weaker storage
mediums versus sacrificing recoverability but storing them in strong key-storage
recommended solutions.

6 Related Work

In this section we mention some wallets that have lesser recovery functionalities,
therefore we do not include them is our systematization. We also review related
work that is more broadly related to recovery in a blockchain setting.

6.1 Other Relevant Cryptocurrency Wallets

Circle [4] offers a WaaS solution known as “Programmable Wallets”. In their
non-custodial version, referred to as ”User Controlled”, users establish a PIN
code and answer security questions during the initialization process. This setup
allows users to restore their PIN if they ever forget it. In this wallet, the user’s
private key is stored on their phone, and the PIN serves as the encryption key
for the private key.

The recovery process in this wallet pertains to restoring the PIN, which can
only be accomplished by correctly answering the security questions set during the
setup. However, the user cannot restore the PIN independently. Before answering
the security questions, the user needs to connect to Circle’s servers to obtain an
encryption key and a challenge ID to carry out the restoration process.

Consequently, the user is not entirely self-reliant in restoring the PIN, and
if the user’s device is lost, recovery of the wallet’s assets becomes impossible.
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This highlights the importance of safeguarding the device where the wallet is
installed and remembering the answers to the security questions.

Safe [16] follows a modular design for creating smart contract accounts, where
add-on “modules” can be used to add functionalities or features to the core con-
tract. Among the modules proposed is a “recovery” module which uses guardians
to recover the funds associated with the account when the private key is lost.

Magic [11] provides a WaaS solution similar to Circle, and the recovery func-
tionality is limited to the user’s email which is used as a method to login to
the wallet. In case the user loses access to his/her email, Magic provides an
“account recovery” feature, where a secondary method of authentication using
phone SMS has to be proactively enabled. As in Circle, Magic does not offer an
explicit account recovery functionality in case the phone is lost.

6.2 Other Related Work

Firstly, a number of works performed taxonomies of wallets [43,55,38], however
these works focus primarily aspects such as security and performance and not
recovery. Still some of those wallets proposed recovering the account using a
seed phrase or even splitting the private key into encrypted secret shares in a
distributed network [41]. We consider those as the first attempts in the account
recovery efforts in a blockchain setting.

In 2020, a special decentralized autonomous organization (DAO) was pro-
posed as part of the Ethereum’s ecosystem [10]. That DAO would enable users
to recover their funds in the case of mistakenly sending those to a wrong, non-
existent address (e.g. by mistyping one character). The core idea behind this
proposal was that the DAO would transfer donated funds to addresses with only
one or two characters difference.

Abramova et al. [23] performed a study of 359 crypto-asset users and grouped
them into three categories cipherphunks, holders, and rookies based on their per-
ceived notions of security and self-efficacy in protecting their keys. Each of these
groups has different concerns regarding the security and recovery of their keys. In
a recent study [49], the authors investigate user perceptions and preferences con-
cerning multi-device cryptocurrency wallets, aiming to bridge the gap between
the wallets’ designed security models and users’ mental models. The study in-
volves 357 participants and employs both qualitative and quantitative analyses
to gain insights into current wallet usage patterns, choices, and the willingness
to transition from single-device to multi-device wallets. The findings reveal sev-
eral results: (1) The majority of participants primarily use single-device wallets,
yet over 80% express concerns about potential fund loss or key compromise.
(2) When provided with essential knowledge about both single and multi-device
wallets, 54.7% of participants express their readiness to shift to multi-device
wallets. (3) Regarding key-management and architectural preferences, 60.8% of
participants prefer a small number of reputable servers, while 34.6% choose a
higher number of servers. Their preferences were also significantly affected by
the key shares are hosted. This shows that the users choice of keys regarding
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security (and by extension recovery) of the keys is affected by the government
policy and the reputation of the servers hosting the key shares.

In a related line of research the usable security and privacy researchers ex-
plored the social authentication paradigm for authentication and account re-
covery [44,52,51,42,25]. In social authentication, account holders rely on their
trustees to help them authenticate. Schechter et al. [52] envision such social
authentication as a backup option to regain access to the account. Alomar et
al. surveyed the existing social authentication schemes and identified that they
can be broadly classified into two types— knowledge-based and trust-based [25].
Facebook deployed knowledge-based social authentication where they asked the
users to identify photos of their friends—this scheme is broken by Kim et al, and
Polakis et al. using facial recognition [44,51]. In response Jain et al., proposed
knowledge-based social authentication using more private information about
users’ interaction with social contacts [42]. On the other hand, trust-based so-
cial authentication employs offline communication with trustees of a user for
authentication [25]. These trustees can be chosen by user, by system, or by net-
work properties. We build on this line of work—however, our context is quite
different than these previous efforts. Instead of considering social-relationship-
aware systems (e.g., Facebook) that most of these previous works considered,
we particularly considered blockchain recovery, where the onus is on the user
to ensure the recovery mechanism to recover their account (or keys). Our work
sheds light on the unique usability-security trade-off for users while setting up
social authentication in this context.

Also, in some proposals there is no private key management for the user at
all. For instance, “keyless” wallets [59] use one-time passwords to enable spend-
ing funds, while in Qredo [15] the key is held by servers in a “decentralized
MPC” fashion and the user is authenticated with biometrics. Because such pro-
posals deviate from the classic private key management approach and a “key
loss/recovery” is not applicable, we consider those as out of scope in our sys-
tematization work. In addition, we do not treat key rotation techniques used
proactively when a key compromise is suspected as account recovery. Finally,
in custodial wallets where the user does not need manage any private key, but
delegates the account management to an external service provider who holds the
key on the user’s behalf, an account recovery is essentially a web2 recovery where
a user will need to perform functionalities such as a password reset. Therefore,
we also consider recovery in custodial wallets as out of scope. However, given
the ambiguity of the “custody” aspect in the Web3 space, we provide definitions
of the various wallet types in Section 3.

7 Conclusion

While account recovery is a well-established concept in the context of Web2, it
presents unique challenges in the Web3 landscape. In Web3, accounts rely on
a secure signing-verification key pair, which is not shared with a central entity
with Web2 focus on security via decentralization. This distinction makes Web3

20



account recovery more complex. Fortunately, the Web3 community is experi-
encing increased interest and effort into recovery mechanisms to provide users
confidence that their assets will be available even if they do not have the exper-
tise on managing cryptographic keys. While we have observed innovative designs
that attempt to bridge this gap, the existing solutions are imperfect, and do not
strike a balance between usability, security and availability.

This study systematically investigates existing account recovery solutions in
the blockchain realm, analyzing their workflows, cryptographic techniques, and
unique characteristics. We shed light on a trilemma involving usability, security,
and availability that arises in Web3 recovery scenarios as a natural extension of
security and usability dilemma in Web2 and security and availability tradeoff in
distributed systems. By categorizing existing recovery mechanisms along differ-
ent axes that highlight trade-offs, we offer valuable insights and suggest future
research directions for improving Web3 account recovery.
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A Formal definitions

Secret sharing. A Threshold Secret Sharing scheme consists of two algorithms
Share and Reconstruct as described below:
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– Share(λ, n, t) → {si}i∈[n]: It takes the security parameter λ, and the access
structure parameters (n, t) as inputs. n is the total number of parties and
t is the threshold for reconstruction. It outputs n shares, corresponding to
each individual party.

– Reconstruct({sj}j∈R) → s: The reconstruction function takes shares from a
set R of valid shares of size at least t + 1 and outputs the reconstructed
secret s.

Threshold signature scheme. A threshold signature scheme consists of algo-
rithms to generate key shares, generate partial signatures, aggregate the partial
signatures into a threshold signature, and verify any partial or threshold signa-
ture.

– keygen(1λ, n, t) → {ski, pki}i∈[n]: The key generation algorithm generates
private secret key and verification key shares such that any t+ 1 or more of
the secret key shares can reconstruct the system secret key sk.

– parsign(ski,m) → σi: Each signer indexed i, i ∈ [n]generates a partial signa-
ture σi using his secret key share ski.

– aggregate{σi}i∈R → σ: The signature aggregation algorithm takes any set
of t+ 1 or more valid partial signatures to produce the threshold signature
σ.

– verify(σ,m, pk) → 1/0: The verification algorithm takes the signature (thresh-
old or partial) along with the corresponding verification key. If the verifica-
tion is successful, it outputs 1, else 0.

Multi-signature scheme. A Multi-signature scheme consists of the following
algorithms:

– keygen(1λ) → {sk, vk}: The key generation algorithm generates the private
secret key and the corresponding verification key. This is run by each party
indexed i to generate their local key pairs (ski, vki)

– sign(sk,m) → σ: The signature algorithm takes the secret key and the mes-
sage m to generate a signature σ. Each party indexed i generates a signature
σi using his secret key ski.

– verify(σ,m, vk) → 1/0: The verification algorithm takes a signature and the
corresponding verification key. If the verification is successful, it outputs 1,
else 0.

– muSigVerify({σi, vki}i∈R,m, n, t) → 1/0: The verification algorithm takes a
set of t + 1 or more signatures and verifies each of them using the verify
algorithm. If at least t+ 1 of them return 1, the algorithm returns 1, else 0.
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