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Abstract

Classically, Private Information Retrieval (PIR) was studied in a setting without any pre-
processing. In this setting, it is well-known that 1) public-key cryptography is necessary to
achieve non-trivial (i.e., sublinear) communication efficiency in the single-server setting, and 2)
the total server computation per query must be linear in the size of the database, no matter in the
single-server or multi-server setting. Recent works have shown that both of these barriers can be
overcome if we are willing to introduce a pre-processing phase. In particular, a recent work called
Piano showed that using only one-way functions, one can construct a single-server preprocessing
PIR with Õ(

√
n) bandwidth and computation per query, assuming Õ(

√
n) client storage. For

the two-server setting, the state-of-the-art is defined by two incomparable results. First, Piano
immediately implies a scheme in the two-server setting with the same performance bounds as
stated above. Moreover, Beimel et al. showed a two-server scheme with O(n1/3) bandwidth
and O(n/ log2 n) computation per query, and one with O(n1/2+ε) cost both in bandwidth and
computation — both schemes provide information theoretic security.

In this paper, we show that assuming the existence of one-way functions, we can construct
a two-server preprocessing PIR scheme with Õ(n1/4) bandwidth and Õ(n1/2) computation

per query, while requiring only Õ(n1/2) client storage. We also construct a new single-server

preprocessing PIR scheme with Õ(n1/4) online bandwidth and Õ(n1/2) offline bandwidth and

computation per query, also requiring Õ(n1/2) client storage. Specifically, the online bandwidth
is the bandwidth required for the client to obtain an answer, and the offline bandwidth can be
viewed as background maintenance work amortized to each query. Our new constructions not
only advance the theoretical understanding of preprocessing PIR, but are also concretely efficient
because the only cryptography needed is pseudorandom functions.

1 Introduction

Private Information Retrieval (PIR), originally formulated by Chor, Goldreich, Kushilevitz, and
Sudan [15], studies the following important problem. Imagine that a server holds a public database
denoted DB ∈ {0, 1}n. A client with small local storage wants to query the database, while hiding
its queries from the server. PIR has wide applications in practice. For example, it enables private
contact discovery [20, 16], privacy-preserving light-weight clients for cryptocurrencies, private DNS
queries [52, 56, 24], private web search [27], and so on.

Classical PIR without pre-processing. A näıve solution for PIR is to have the client linearly
scan through the entire database for each query. Unfortunately, this would incur linear bandwidth. A
series of works spanning over two decades [15, 13, 26, 10, 14, 34, 38, 48, 25, 4, 53, 47, 41, 42] starting
with Chor et al. [15] showed how to construct PIR with non-trivial bandwidth. Specifically, in the
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single-server setting, it is well-known that with various cryptographic assumptions (e.g., Φ-hiding,
LWE, Damg̊ard-Jurik, DDH, QR), we can achieve Õλ(1) bandwidth per query [10, 28, 43, 22]
where Õλ(·) hides polylogarithmic factors and the dependence on the security parameter λ. In
the two-server setting, Dvir and Gopi [23] showed that information-theoretic PIR is possible with

nO(
√

log logn/ logn) bandwidth per query. All the aforementioned works studied PIR in the classical
setting without preprocessing. More specifically, the classical setting assumes that the server stores
only the original database, and need not store per-client state. Unfortunately, the classical setting
suffers from the following inherent limitations.

1. First, Beimel, Ishai, and Malkin [5] proved that any classical PIR scheme without preprocessing
must suffer from linear (in n) server computation per query. Intuitively, if there is any location
that the server does not look at during a query, then the client cannot be asking for that location.

2. Second, in a single-server setting, it is known that any PIR scheme with non-trivial (i.e., sublinear)
bandwidth would imply oblivious transfer [21], i.e., some form of public-key cryptography is
needed.

Pre-processing sublinear PIR without public-key cryptography. To get around the
aforementioned barriers, earlier works have suggested a pre-processing model. Specifically, we
consider a model with a one-time pre-processing phase upfront, followed by an unbounded number
of queries. The pre-processing model was first proposed by Beimel, Ishai, and Malkin [5] and
Corrigan-Gibbs and Kogan [18].

In a pre-processing model, we focus on exploring the efficiency of PIR with sublinear computation,
and without the use of public-key cryptography — to get around the aforementioned barriers, In
particular, the requirement of sublinear computation is especially important in practical scenarios
where the database is large — for example, in a private DNS application, the database can be
several hundred Gigabytes. Further, we restrict ourselves to Minicrypt (i.e., allowing PRFs but not
using any public-key cryptography) — this is not only motivated by theoretical interest, but also
the promise of concretely faster constructions since modern processors have hardware acceleration
for AES operations.

Earlier works showed that under a global, server-side preprocessing, one can overcome the
linear computation barrier [5, 18, 17, 55, 36, 35, 52, 37, 56]; and further, assuming a client-specific
preprocessing, we can overcome both of the aforementioned barriers [56, 45]. So far, we know
the following pre-processing PIR schemes which enjoy sublinear pre-processing without the use of
public-key cryptography. Beimel et al. [5] showed by leveraging a global server-side pre-processing, it
is possible to construct an information theoretic 2-server PIR with O(n1/3) bandwidth, O(n/ log2 n)
computation, while consuming O(n2) server storage. The same work also showed an incomparable
information-theoretic scheme with O(n1/2+ε) cost in both computation and bandwidth, while
incurring n1+ε′ server storage where ε′ is a constant dependent on ε.

Under a client-specific pre-processing model, the recent work Piano [56] and the subsequent
work of Mughees et al. [45] constructed single-server PIR schemes with Õ(

√
n) bandwidth and

server computation, Õλ(
√
n) client computation per query, while consuming Õλ(

√
n) client storage.

Their one-time preprocessing is done by letting the client streamingly download the whole database
and dynamically update the client’s local state. Interestingly, their schemes relied only on one-way
functions (OWFs) and do not make use of public-key cryptography. By contrast, classical (single-
server) PIR with non-trivial bandwidth implies oblivious transfer [21], i.e., we cannot get classical
single-server PIR in a blackbox way from OWF [31]. The reason why Piano [56] and Mughees et
al. [45] got away using only OWF is because their schemes require that the client make a streaming
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Table 1: Comparison of single-server and two-server pre-processing PIR schemes (for
unbounded queries). Any single-server scheme immediately implies a two-server result with
the same performance bounds. n is the size of the database and m is the number of clients. The
computation overhead counts both the client and the server’s computation, and here we report the
expected computation. The server space counts only the extra storage needed on top of storing the
original database.

Scheme Assumpt. Compute Comm. Space # Concrete
client server servers eff.

With public-key cryptography

[17] LWE Õλ(
√
n) Õλ(

√
n) Õλ(

√
n) Õλ(m · n)∗ 1 7

[55, 35] LWE Õλ(
√
n) Õλ(1) Õλ(

√
n) Õλ(m · n)∗ 1 7

[37] Ring-LWE poly((logn)1/ε) poly((logn)1/ε) 0 n1+ε 1 7

[52] LWE Õλ(
√
n) Õλ(1) Õλ(

√
n) 0 2 7

[36] Various Õλ(
√
n) Õλ(1) Õλ(

√
n) 0 2 3

Our work Various Õλ(
√
n)

Õ(
√
n) offline

Õλ(
√
n) 0 1 3

Õλ(1) online

Without public-key cryptography

[5] None O(n/ log2 n) O(n1/3) 0 O(n2) 2 7

[5] None O(n1/2+ε) O(n1/2+ε) 0 O(n1+ε′ )∗∗ 2 7

[18] OWF Õλ(
√
n) Õ(

√
n) Õλ(

√
n) 0 2 3

[33] OWF O(n) Õλ(1) Õλ(
√
n) 0 2 3

[56, 45] OWF Õλ(
√
n) O(

√
n) Õλ(

√
n) 0 1 3

Our work OWF Oλ(
√
n) Oλ(n1/4) Õλ(

√
n) 0 2 3

Our work OWF Oλ(
√
n)

O(
√
n) offline

Õλ(
√
n) 0 1 3Oλ(n1/4) online

∗ : In

the unbounded query setting, some earlier works [55, 35, 17] require that the next pre-processing is
persistently piggybacked on the current window of O(

√
n) operations, and the pre-processing consumes

Oλ(n) server space per client to evaluate under FHE an Õ(n)-sized circuit containing a sorting network.

∗∗ : ε′ > 0 depends on ε.

pass over the entire database during preprocessing; however, the cost of this preprocessing can be
amortized over an unbounded number of subsequent queries.

1.1 Our Results

We show new results that improve the state of our understanding regarding pre-processing PIR. In
all of our constructions, the server only needs to store the original database and need not store any
per-client state.

Main result 1. First, we construct a two-server pre-processing PIR scheme with asymptotically
better bandwidth than prior work, relying only on the existence of PRFs (which is equivalent to the
existence of one-way functions). Our result is stated in the following theorem.

Theorem 1.1 (Two-server pre-processing PIR with improved bandwidth). Assume the existence of
one-way functions. There exists a two-server pre-processing PIR scheme with Oλ(n1/4) bandwidth
and Oλ(n1/2) computation per query, while incurring Õλ(n1/2) client storage.

In comparison with the prior work of Beimel et al. [5], our Theorem 1.1 achieves significant
asymptotic improvements in both bandwidth, computation, and server-side storage. On the other
hand, we need to assume one-way functions whereas Beimel et al. [5]’s schemes are information
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theoretic; further, we additionally require Õ(
√
n) space on each client. However, our construction

that gives Theorem 1.1 is simple and concretely efficient, which is another advantage over Beimel et
al.

Main result 2. Second, we construct a new pre-processing PIR scheme in the single-server setting
that improves the online bandwidth in comparison with the state-of-the-art. In this theorem,
we differentiate between online bandwidth and offline bandwidth. The online bandwidth is the
bandwidth necessary for the client to obtain an answer to its query, so it matters to the response
time of the client. The offline bandwidth is the cost of background maintenance work amortized to
each query, and is not on the critical path of the client’s response time.

Theorem 1.2 (Single-server preprocessing PIR with improved online bandwidth). Assume the
existence of one-way functions. There exists a single-server pre-processing PIR scheme with Oλ(n1/4)
online bandwidth, O(n1/2) offline bandwidth, Oλ(n1/2) server computation and Õλ(n1/2) client
computation per query, while incurring Õ(n1/2) client storage.

In comparison with the state-of-the-art scheme Piano, Theorem 1.2 improves the online
bandwidth cost from Õ(

√
n) to Õλ(n1/4), while keeping all other costs the same. Moreover, recall

that earlier works [18, 17], proved the time-space product lower bound, showing that the product of
the client space and the online server time has to be at least linear in n. In this sense, Theorem 1.2
is tight (upto polylogarithmic factors) in terms of this time-space product.

Similar to Piano [56] and Mughees et al. [45], our 1-server result adopts the same model where the
client is allowed to make a streaming pass over the database during preprocessing (while consuming
small client space). Otherwise, we would encounter the well-known OT barrier [21].

We evaluate the concrete performance of our 1-server scheme in Section 6.

Additional results. While our main results focus on constructions in Minicrypt, if we are willing
to assume classical PIR with Õλ(1) bandwidth (which is known from various assumptions such as
LWE, Φ-hiding, Damg̊ard-Jurik, DDH, QR) [10, 28, 43, 22], our techniques would then give rise to a
concretely efficient single-server PIR scheme with Õλ(1) online bandwidth, Õ(

√
n) offline bandwidth

and computation per query, consuming Õλ(
√
n) client storage. In comparison, although the earlier

works by Zhou et al. [55] and Lazzaretti and Papamanthou [35] claim to achieve polylogarithmic
(online and offline) bandwidth, their schemes suffer from a significant drawback, that is, the server
would have to persistently store at least n amount of state per client! Specifically, Zhou et al. [55] and
Lazzaretti and Papamanthou [35] require the pre-processing phase of the next epoch be piggybacked
on the queries of the current epoch; however, their pre-processing phase requires that the server
allocate at least n amount of space per client, to perform homomorphic evaluation of a circuit
which is super-linear in size. So far, in the unbounded query setting, it is not known how to get
polylogarithmic overall bandwidth (including offline and online) per query under any assumption,
assuming that the server stores only the original database. We state this additional result in the
following theorem.

Theorem 1.3. Assume the existence of a classical single-server PIR scheme (i.e., without pre-
processing) that enjoys Õλ(1) bandwidth per query. Then, there exists a single-server pre-processing
PIR scheme with Õλ(1) online bandwidth, Õλ(

√
n) computation, Õ(

√
n) offline bandwidth, and

requiring Õλ(
√
n) client storage.

1.2 Technical Highlights

The earlier work of Shi et al. [52] showed that assuming the existence of a privately puncturable
PRF [7, 6, 11, 9], one can construct an efficient 2-server pre-processing PIR scheme with Õλ(

√
n)
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computation per query and requiring Õλ(
√
n) client storage. Further, the communication per query

is only polylogarithmically larger than the size of a punctured key, which can be as small as Õλ(1)
using known constructions [7, 6, 11, 9]. Unfortunately, the only known techniques for constructing
a privately puncturable PRF [7, 6, 11, 9] requires two layers of fully homomorphic encryption, and
it is not known whether privately puncturable PRFs can be built from only one-way functions. The
elegant TreePIR work of Lazzaretti and Papamanthou [36] showed how to replace the privately
puncturable PRF with a weaker primitive called a “weak privately puncturable PRF”. Unfortunately,
their approach relies on recursing on a classical PIR scheme for a

√
n-sized database, and because

this database is dynamically constructed during the scheme, it is not possible to pre-process it.
Therefore, Lazzaretti and Papamanthou [36]’s techniques fundamentally also require public-key
cryptography.

Privately programmable pseudorandom set with list decoding. Our main contribution is
to come up with a new abstraction called a Privately Programmable Pseudorandom Set with List
Decoding (PPPS). Given a PPPS key sk, we can expand the key sk to a pseudorandom set denoted
Set(sk) of size

√
n. Further, deciding whether any element in {0, 1, . . . , n − 1} is in the set takes

only constant time. Importantly, we can call a Program algorithm to program sk such that the new
set is almost the same as the original Set(sk), except that the one element in the set is now changed
to another specified element. The programmed key does not leak information about which element
is programmed.

Our notion of PPPS is otherwise very similar to the earlier work of Zhou et al. [55], except that
we make a relaxation on the correctness when decoding a programmed key — this relaxation is
the crucial reason why we can construct it from only one-way functions, whereas Zhou et al. [55]’s
construction relies on LWE. More specifically, we do not require that one can correctly recover
the programmed set given a programmed key sk′. Instead, we allow list-decoding, that is, given
a programmed key sk′, decoding outputs a list of candidate sets, among which one must be the
true programmed set. Moreover, the list-decoding of our PPPS construction is structured, allowing
succinct representation and efficient computation.

Using only one-way functions, we construct a PPPS scheme with list decoding for a pseudorandom
set of size

√
n, where the programmed key has size Oλ(n1/4).

Using such a PPPS scheme, we show how to get a two-server scheme with Oλ(n1/4) communication
and Õλ(n1/2) computation per query, using only Õλ(n1/2) client space (Theorem 1.1). Unlike
TreePIR [36], our scheme need not recurse on a classical PIR scheme, and thus we do not need
public-key operations.

A new broken hint technique. To get our single-server scheme (Theorem 1.2), we encounter
some further challenges. In particular, it would have been easy to make the scheme work if our
PPPS scheme supported programming a key twice at two points. Specifically, in our construction,
when the client consumes a pseudorandom set (represented by sk) in the hint table containing the
current query x, it needs to replace the replaced entry with another randomly sampled PPPS key
sk subject to containing the query x. One way to achieve this is to fetch an unconsumed key from a
backup table, and program the key to contain x. However, later, when the client consumes this
already-programmed key in another query y, it needs to program the point y to some other random
point in order not to leak the query y.

Unfortunately, our PPPS construction does not support programming twice. Interestingly, earlier
works [55, 35] also encountered a similar challenge of needing to program a key twice, but there it
was resolved using different techniques that relied on the LWE assumption, which would not work
in our setting.

The way we resolve the problem is to introduce a new technique of allowing broken entries in the
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hint table. Basically, if the client consumes some PPPS key sk in the hint table, it simply replaces
the consumed sk with a new entry sampled according to the desired distribution (required for
privacy). However, since the client did not perform any preparation work during the pre-processing
phase for this new entry, consuming this entry later in a new query would result in an incorrect
answer, i.e., the replaced entry is broken. Fortunately, we can amplify correctness through repetition.
We defer the details to the subsequent technical sections.

Other applications of the broken hint technique. The broken hint technique can also lead
to other interesting applications. For example, recall that TreePIR is a 2-server pre-processing
scheme [36]. With our new broken hint technique, we can convert TreePIR to a single-server scheme
which enjoys the efficiency stated in Theorem 1.3.

Further improvements. The approach of using broken entries introduces a super-logarithmic
blowup in the bandwidth and computation costs, due the repetition needed for correctness amplifi-
cation. In Appendix B, we suggest an improved scheme that avoids this super-logarithmic blowup
and gets us the tighter bounds stated in Theorem 1.2, but the resulting scheme is somewhat more
complex to describe.

2 Formal Definitions

Single-server pre-processing PIR. We first define a single-server pre-processing PIR scheme.
A single-server pre-processing PIR scheme consists of two stateful algorithms: the client and the
server. The scheme consists of the two following phases.

1. Pre-processing : The pre-processing is run only once at the beginning. The client receives
no input, while the server receives a database DB ∈ {0, 1}n as input. The client and server
interact and the client may store some information in its local storage. We refer to this
information as “hints”.

2. Queries: This phase is repeated for every index x of the DB that the client wants to read.
For every query, the client sends a single message to the server, and the server responds with
a single message. The client then performs some computation and outputs an answer β.

Correctness. Given a database DB with entries indexed by 0, 1, . . . , n − 1, correctness entails
that the query for an index x ∈ {0, 1. . . . , n − 1} by the client in the query phase, results in an
answer DB[x] (the x-th bit of DB) output by the client. Formally, correctness requires that for
any security parameter λ ∈ N, for any n, q which are polynomially bounded in λ, there exists
a negligible function negl such that for any database DB ∈ {0, 1}n, for any sequence of queries
x1, x2, . . . , xq ∈ {0, 1, . . . , n − 1}, an honest execution of the PIR scheme with DB and queries
x1, x2, . . . , xq returns all correct answers with probability at least 1− negl(λ).

Privacy. Privacy of a PIR scheme entails that for any index x queried by the client to the server,
the view of the server must not leak information about the query x. Formally, we define the privacy
of a single-server PIR scheme as follows.

A single-server PIR scheme satisfies privacy if and only if there exists a probabilistic polynomial-
time simulator Sim(1λ, n) such that for any probabilistic polynomial-time adversary A acting as the
server, any polynomially bounded n and q, any database DB ∈ {0, 1}n, A’s views in the following
two experiments are computationally indistinguishable:
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• Real: an honest client interacts with A(1λ, n,DB) who acts as the server and may arbitrarily
deviate from the prescribed protocol. In every query step t ∈ [q], A may adaptively choose
the next query xt ∈ {0, 1, . . . , n− 1} for the client, and the client is invoked with xt as input.

• Ideal: the simulated client Sim(1λ, n) interacts with A(1λ, n,DB) who acts as the server and
may arbitrarily deviate from the prescribed protocol. In every query step t ∈ [q], A may
adaptively choose the next query xt ∈ {0, 1, . . . , n− 1} for the client, and the client is invoked
without xt as input.

Two-server pre-processing PIR. In the two-server setting, there are two non-colluding servers,
and the client may interact with both servers in both the preprocessing and query phases. The two
servers do not interact with each other.

Correctness is defined in the same way as the single-server setting. For privacy, we want the
definition of the single-server setting to hold for each individual server.

Additional notation. In the formal sections later, for clarity we distinguish between a statistical
security parameter denoted κ and a computational security parameter denoted λ.

3 Privately Programmable Pseudorandom Set with List Decoding

3.1 Definition

Distribution of set Dn. We want to construct a pseudorandom set whose distribution emulates
a set S ⊂ {0, 1, . . . , n − 1} of size

√
n sampled from the following distribution denoted Dn — we

assume that n is a perfect forth (n1/4 is an integer):

• Divide the n elements into
√
n chunks indexed with 0, 1, . . . ,

√
n− 1, where chunk i contains the

elements [` ·
√
n, (`+ 1) ·

√
n− 1]

• For each chunk ` ∈ {0, 1, . . . ,
√
n− 1}, sample a random offset δ`

$←{0, 1, . . . ,
√
n− 1}.

• Output the following set S := {` ·
√
n+ δ`}`∈{0,1,...,√n−1}.

Offset representation of a set. For convenience, in the rest of the section, we will always use an
offset representation of a set, i.e., we will represent a set as

S := {δ0, . . . , δ√n−1}

where each δi ∈ {0, . . . ,
√
n − 1} represents the relative offset of the i-th element inside the i-th

chunk.

Privately programmable pseudorandom set with list decoding. We introduce a new
abstraction called a privately programmable pseudorandom set with list decoding that we utilize in
our PIR constructions that follow. Intuitively, this primitive provides an algorithm to generate a
secret key that represents pseudorandom subset of {0, . . . , n−1} with a specific distribution. Further,
the primitive allows, given a key for a pseudorandom set, to produce a key for pseudorandom set
that is the same as the starting set except for being programmed at a particular location with a
specified value – with the guarantee that the new key does not reveal the programmed location.
Moreover, this primitive has a list decoding algorithm, that given a programmed key outputs a list
of sets such that one of them is the one is the correct set that the key represents.

Formally, define a privately programmable pseudorandom set (PPPS) with list decoding which
emulates the distribution Dn:
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• sk← Gen(1λ, n): takes in the security parameter 1λ, the size of the set n, and outputs a secret
key sk.

• S ← Set(sk): takes in a secret key sk, and expands it to a random set S of size
√
n. We sometimes

write Set(sk)[i] to denote the element in the i-th chunk for this set.

• sk′, i ← Program(sk, `, δ`): takes in a secret key sk, a chunk identifier ` ∈ {0, 1, . . . ,
√
n − 1}, a

desired offset δ` within the specified chunk `, and outputs a programmed key sk′, and some
auxiliary information i that indicates which of the decoded set will be correct.

• {S0, . . . , SL−1} ← ListDecode(sk′): takes in a programmed key sk′ and outputs a list of sets
S0, S2, . . . , SL−1, such that one of them is the correctly programmed set corresponding to the
key sk′.

Correctness. Correctness requires that for any λ, n ∈ N, for any `, δ` ∈ {0, 1, . . . ,
√
n − 1}, the

following holds with probability 1: let sk← Gen(1λ, n), sk′, i← Program(sk, `, δ`), S0, . . . , SL−1 ←
ListDecode(sk′), it must be that Si is equal to the Set(sk) but replacing the `-th element with δ`
instead.

Pseudorandomness. We say that a PPPS scheme emulates Dn iff the following two distributions
are computationally indistinguishable:

• Sample S
$←Dn and output S;

• Sample sk← Gen(1λ, n), output Set(sk).

Private programmability. We require that there exists a probabilistic polynomial time simulator
Sim such that for any n ∈ N that is a perfect square and polynomially bounded in λ, any ` ∈
{0, 1, . . . ,

√
n − 1}, any index x that belongs to the `-th chunk, the outputs of the following

experiments be computationally indistinguishable:

• Real. Sample sk ← Gen(1λ, n) subject to x ∈ Set(sk), let δ`
$←{0, 1, . . . ,

√
n − 1}, and let

sk′, ← Program(sk, `, δ`), output sk′.

• Ideal. Output Sim(1λ, n).

Efficiency. In our PIR scheme later, we need a programmed key sk′ to have size at most Oλ(n1/4).
Further, the size of the decoded list L = n1/4. Näıvely, since each set has size

√
n, it would take

n3/4 space to represent the L decoded sets. However, we want our scheme to satisfy a non-trivial
notion of efficiency, that is, it takes only O(

√
n) space to represent all L decoded sets. Specifically,

the compression is possible because the L decoded sets are correlated.

3.2 Construction

Intuition. In our construction, we will divide the
√
n chunks into n1/4 superblocks where the i-th

superblock contains the i-th group of n1/4 consecutive chunks.
To program a PPPS key in some chunk ` with the specified offset δ̃, we first expand the PPPS

key to n1/4 superblock keys denoted k0, . . . , kn1/4−1. Let i be the superblock corresponding to chunk

`. We then replace ki with a randomly sampled superblock key k̃i. We than expand ki into n1/4

offsets denoted δ0, . . . , δn1/4−1, one corresponding to each chunk contained in the i-th superblock.
Suppose chunk ` corresponds to the j-th chunk within the i-th superblock. We then replace δj
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with the desired δ̃. The programmed key is the combination of k0, . . . , ki−1, k̃i, ki+1, . . . , kn1/4−1,

and δ0, . . . , δj−1, δ̃, δj+1, . . . , δn1/4−1. Given this programmed key, we do not know which superblock

should contain the expanded offsets δ0, . . . , δj−1, δ̃, δj+1, . . . , δn1/4−1. However, we can generate a

list of n1/4 candidate sets by plugging in the offsets δ0, . . . , δj−1, δ̃, δj+1, . . . , δn1/4−1 into each of the

n1/4 superblocks. One of them must be the true programmed set.

Detailed PPPS construction. Henceforth, let PRF1 : {0, 1}λ × {0, 1}
logn
4 → {0, 1}λ, and

PRF2 : {0, 1}λ × {0, 1}
logn
4 → {0, 1}

logn
2 be two pseudorandom functions.

• Gen(1λ, n): Sample a PRF1 key sk and output sk.

• Set(sk):

1. First, expand sk to n1/4 superblock keys:

∀i ∈ {0, . . . , n1/4 − 1} : ki = PRF1(sk, i) (1)

2. Next, for each superblock i ∈ {0, . . . , n1/4 − 1}, compute the pseudorandom offset for each of
its n1/4 chunks, that is:

∀i, j ∈ {0, . . . , n1/4 − 1} : δi,j = PRF2(ki, j) (2)

3. Define the alias δi·n1/4+j := δi,j , and output S := {δ`}`∈{0,...,√n−1}.

• Program(sk, `, δ̃):

1. Expand sk to n1/4 superblock keys denoted k0, . . . , kn1/4−1 as in Equation (1).

2. Let i := b`/n1/4c be the superblock containing the `-th chunk, let j := ` mod n1/4 be the
index of chunk ` within superblock i.

3. Sample a fresh PRF key k̃i to replace ki with.

4. For j′ ∈ {0, 1, . . . , n1/4 − 1}, compute δj′ = PRF2(ki, j
′).

5. Output the following:

sk′ :=

(
(k0, . . . , ki−1, k̃i, ki+1, . . . , kn1/4−1),

(δ0, . . . , δj−1, δ̃, δj+1, . . . , δn1/4−1),

)
, i

• ListDecode(sk′):

1. Parse sk′ = ({ki}i∈{0,...,n1/4−1}, {δ∗j }j∈{0,...,n1/4−1}).

2. ∀i, j ∈ {0, . . . , n1/4 − 1}, compute δi,j like in Equation (2), let S be the matrix S :=
{δi,j}i,j∈{0,1,...,n1/4−1}.

3. For i ∈ {0, . . . , n1/4 − 1}, let Si be the same as S except for substituting the i-th row with
{δ∗j }j∈{0,...,n1/4−1}. In other words,

Si :=



δ0,0, . . . , δ0,n1/4−1,

. . . , . . . , . . . ,
δi−1,0, . . . , δi−1,n1/4−1,

δ∗0 , . . . , δ∗
n1/4−1 ,

δi+1,0, . . . , δi+1,n1/4−1,

. . . , . . . , . . . ,
δn1/4−1,0, . . . , δn1/4−1,n1/4−1,
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!"

"# "$ "%

Figure 1: Two-layer set representation. The first layer key expands to n1/4 superblock keys. Each
superblock key further expands to n1/4 offsets, one for each chunk in the superblock.

!"

"# "$ "%
"′Server: "# "%

Client: 

Step 1: The client expands the PPPS key to n1/4

superblock keys and replaces the key corresponding
to x’s superblock with a random key.

!"
#$ #" #%

#′Server: 
Here? Here? Here?

#$ #%

Client: 

Step 2: The client expands the replaced superblock
key to n1/4 offsets and replaces x’s offset to a random
one. The server constructs the candidate sets by
plugging these offsets into every superblock.

Figure 2: Illustration about how PPPS is used in our PIR schemes. The client programs the key
and the server will decode the list of candidate sets.

4. Output (Flatten(S0), . . . ,Flatten(Sn1/4−1)) where Flatten outputs the vector obtained from
concatenating all rows of the matrix,

Size of programmed key and efficiency of ListDecode. Clearly, the programmed key sk′ output
by Program has size Oλ(n1/4). It is also easy to have a succinct representation of size O(

√
n) of all

n1/4 candidate sets output by ListDecode. Specifically, one can first compute the common set S of
size
√
n (we abuse the notation that this set is derived from flattening the matrix S in ListDecode).

Then, the symmetric difference between the i-th candidate set and the common set S is just 2n1/4

elements (those elements in the i-th superblocks). So the succinct representation (and hence the
efficient algorithm) of ListDecode takes Oλ(

√
n) space and time.

Efficient set membership. The above construction also supports Oλ(1)-time set membership
query. Given a secret key sk that has not been programmed, to check if some element x ∈ Set(sk)
or not, one simply has to check

PRF2(PRF1(sk, b`/n1/4c), ` mod n1/4)
?
= x mod n1/2 where ` = bx/n1/2c

3.3 Proof of Correctness

To see correctness, let sk← Gen(1λ, n), let sk′, i∗ ← Program(sk, `, δ`). Recall that sk′ can be parsed
as sk′ = ({ki}i∈{0,...,n1/4−1}, {δ∗i }i∈{0,...,n1/4−1}), and by construction, we know that i∗ = b`/n1/4c is
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the index of the superblock that contains the chunk `. Let j∗ := ` mod n1/4. Let S∅ := Set(sk),
and we can view S∅ as a n1/4 × n1/4 matrix. The correct programmed set S∗ is S∅ but replacing
the element at index (i∗, j∗) with δ`.

Below, we show that the set Si output by ListDecode is the same as S∗. By construction, in
the ListDecode(sk′) algorithm, the intermediate set S is the same as S∅ except for the i∗-th row.
Further, the i∗-th row of S∅ is the same as {δ∗j }j∈{0,...,n1/4−1} but replacing the j∗-th element with
δ`. Additionally, the Si output by ListDecode is obtained by replacing the i∗-th row of S with
{δ∗i }i∈{0,...,n1/4−1}.

3.4 Proof of Security

We now prove pseudorandomness and private programmability assuming the security of the under-
lying PRF1 and PRF2.

Pseudorandomness. Pseudorandomness follows directly from the pseudorandomness of the
underlying PRFs.

Private programmability. We can consider the following sequence of hybrid experiments. Fix
an arbitrary chunk identifier ` and an index x that belongs to the `-th chunk. Throughout, let
i∗ = b`/n1/4c, let j∗ = ` mod n1/4.

Experiment Real. Recall the definition of the real experiment. Sample a PRF key sk such that

PRF2(PRF1(sk, i∗), j∗) = x mod
√
n. Let δ`

$←{0, 1, . . . ,
√
n− 1}, and let sk′, ← Program(sk, `, δ`),

output sk′.

Experiment Hyb. Same as Real except with the following modification: when executing the
Program(sk, `, δ`) algorithm instead of using the k0, . . . , kn1/4−1 keys that are expanded using
PRF1(sk, ·), sample k0, . . . , kn1/4−1 at random subject to PRF2(ki∗ , j

∗) = x mod
√
n.

Lemma 3.1. Suppose that PRF1 is secure. Then, Hyb is computationally indistinguishable from
Real.

Proof. Suppose there is an efficient adversary A that can distinguish Real and Hyb with non-
negligible probability. We can construct the following efficient reduction B which can distinguish a
PRF from a random function with non-negligible probability. Basically, B is interacting with its
own challenger who either answers queries using a PRF or using a truly random function. B will
query its own challenger on the inputs 0, 1, . . . , n1/4 − 1, and it will obtain k0, . . . , kn1/4−1 from its
challenger. It will check if ki∗ satisfies the relation PRF(ki∗ , j

∗) = x mod
√
n. If not, B aborts and

outputs 0. Otherwise, it runs the Program algorithm where it plugs in the terms k0, . . . , kn1/4−1 as
the superblock keys. It gives the resulting sk′ to A. Henceforth, we use b = 0 to denote the world in
which B’s challenger uses a truly random function, and we use b = 1 to denote the world in which
B’s challenger uses a randomly sampled PRF function. We use the notation Prb[·] to denote the
probability of events in world b ∈ {0, 1}. Let G be the good event that the relation PRF(ki∗ , j

∗) = x
mod

√
n is satisfied.

Pr
b

[B outputs 1] = 0 · Pr
b

[G] + Pr
b

[A outputs 1|G] · Pr
b

[G]

We know that Pr0[G] = 1/
√
n which is non-negligible. If the PRF is secure, then it must be

that |Pr1[G]− Pr0[G]| ≤ negl(λ) due to a straightforward reduction to PRF security. Therefore, we
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have that ∣∣∣Pr
1

[B outputs 1]− Pr
0

[B outputs 1]
∣∣∣

=
∣∣∣Pr

1
[A outputs 1|G] · Pr

1
[G]− Pr

0
[A outputs 1|G] · Pr

0
[G]
∣∣∣

≥
∣∣∣Pr

1
[A outputs 1|G]− Pr

0
[A outputs 1|G]

∣∣∣ · 1√
n
− negl(λ)

Observe also that in world 0, conditioned on G, A’s view in the experiment is identically
distributed as Hyb. In world 1, conditioned on G, A’s view in the experiment is identically
distributed as Real. Therefore, the term∣∣∣Pr

1
[A outputs 1|G]− Pr

0
[A outputs 1|G]

∣∣∣
represents A’s advantage in distinguishing Real and Hyb. We can now conclude that if A can
distinguish Real and Hyb with non-negligible probability, then B can break PRF security with
non-negligible probability.

Experiment Ideal. The Ideal experiment is almost the same as Hyb except with the following
modification: when outputting the sk′, instead of using the δ0, . . . , δj∗−1, δj∗+1, δn1/4−1 terms derived

from evaluating PRF2(ki∗ , ·) at the points 0, 1, . . . , j∗ − 1, j∗ + 1, . . . , n1/4 − 1, we now sample
δ0, . . . , δj∗−1, δj∗+1, δn1/4−1 at random from {0, . . . , n1/2 − 1} instead.

Observe that in the Ideal experiment, we no longer make use of knowledge of the query x.
Therefore, the description of the Ideal experiment also uniquely specifies the simulator Sim we want
to construct.

Lemma 3.2. Suppose that PRF2 is secure. Then, Ideal is computationally indistinguishable from
Hyb.

Proof. It suffices to show that the following to probability ensembles are computationally indistin-
guishable for any fixed δ∗ ∈ {0, 1, . . . ,

√
n− 1}, and j∗ ∈ {0, 1, . . . , n1/4 − 1}.

1. Distr0: Output a randomly sampled vector δ0, . . . , δn1/4−1 ∈ {0, 1, . . . ,
√
n− 1}n1/4

.

2. Distr1: Sample a PRF key k subject to PRF2(k, j∗) = δ∗. Sample δ′ ∈ {0, 1, . . . ,
√
n−1} at random.

For j ∈ {0, 1, . . . , n1/4 − 1}, compute δj = PRF2(k, j). Output δ0, . . . , δj∗−1, δ
′, δj∗+1, . . . , δn1/4−1.

If there is an efficient adversary A that can distinguish between the above Distr0 and Distr1 with
non-negligible probability, we can construct an efficient reduction B that can distinguish whether
it is interacting with a random oracle or a randomly chosen PRF function. Basically, B sends the
inputs 0, . . . , n1/4 − 1 to the oracle it is interacting with, and gets back δ0, . . . , δn1/4−1. If δj∗ 6= δ∗,

then B aborts and outputs 0. Otherwise, it replaces δj∗ with a random value from {0, . . . , n1/2 − 1}
and gives the resulting vector to A. Suppose B is interacting with a random oracle, then conditioned
on the good event δj∗ = δ∗, A’s view is identically distributed as Distr0. On the other hand, suppose
B is interacting with a PRF, then conditioned on the good event δj∗ = δ∗, A’s view is identically
distributed as Distr1. The rest of the proof can be completed due to a similar probability calculation
as Theorem 3.1.
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Two-server scheme for Q =
√
n log κ · α queries

Offline preprocessing.

• Hint table. Let M1 =
√
n log κ ·α(κ). For each i ∈ [M1], sample a fresh PPPS key ski, send ski

to the right server and receive a parity pi := ⊕j∈Set(ski)DB[j] back. Let T := {(ski, pi)}i∈[M1]

denote the client’s hint table.

• Replacement entries. For each chunk ` ∈ {0, . . . ,
√
n − 1}, repeat the following M2 =

3 log κ · α(κ) times: sample a random index r1 ∈ {0, . . . , n − 1} in chunk `, send r1 to the
left server, and receive DB[r1]. Store the tuple (r1,DB[r1]).

Similarly, for each chunk ` ∈ {0, . . . ,
√
n − 1}, repeat the following M2 times: sample a

random index r2 in chunk `, send r2 to the right server, and receive DB[r2]. Store the tuple
(r2,DB[r2]).

Query for index x ∈ {0, 1, . . . , n− 1}.

1. Step 1: (Client Querying)

• Find the first entry (sk, p) in the hint table such that x ∈ Set(sk). a

• Find the first unconsumed replacement entries (r1,DB[r1]) retrieved from right server,
such that r1 is in chunk(x). b

• (sk′1, j1)← Program(sk, chunk(x), r1 mod
√
n).

• Send sk′1 to the left server.

2. Step 2: (Client Reconstructing)

• Receive (β0,1, . . . , βn1/4−1,1) from the left server.

• Save the answer as y = p⊕ DB[r1]⊕ βj1,1.

3. Step 3: (Client Refreshing)

• Sample sk2 such that x ∈ Set(sk2).

• Find the first unconsumed replacement entries (r2,DB[r2]) retrieved from left server, such
that r2 is in chunk(x).

• (sk′2, j2)← Program(sk2, chunk(x), r2 mod
√
n).

• Send sk′2 to right server.

• Receive (β0,2, . . . , βn1/4−1,2) from the right server.

• Replace the hint (sk, p) with (sk2,DB[r2]⊕ βj2,2 ⊕ y) in the table.

4. Server Responding: (Same for Left and Right Server)

• Upon receiving sk′, compute (S0, S1, . . . , Sn1/4−1)← ListDecode(sk′).

• Return (β0, . . . , βn1/4−1) to the client where βi = ⊕i∈SbDB[i].

aIn a rare case, if not found, let sk be a freshly sampled PPPS key subject to x ∈ Set(sk), and let p = 0.
bIn a rare case, if such an r1 is not found, let it be a random index in chunk(x), and use 0 whenever DB[r1] is

needed later.

Figure 3: Two-server preprocessing PIR with Oλ(n1/4) communication, Oλ(n1/2) computation based
on PRFs.
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4 Our Two-Server PIR Scheme

4.1 Construction

Intuition. The scheme has three major components.

• Preprocessing. The client randomly samples Õ(
√
n) privately programmable pseudorandom sets,

each of size
√
n. It queries the right server for the sets’ parities, storing them along with the keys.

Moreover, the client queries the right server for the values of logarithmic numbers of randomly
sampled indices for each

√
n-size chunk. Those entries are stored as the “replacement” entries.

• Online Query. Given a query x, the client finds a set S such that x ∈ S. The client then finds a
replacement entry r that resides in the same chunk as x. The client privately programs the set,
intending to change it from S to (S/{x}) ∪ {r}. Once the client knows the parity for this new
set, it can computes DB[x] because it already knows DB[r] and the parity for S. The client uses
the PPPS programming function to program the set, and sends the programmed key sk′ to the
left server. The left server runs the list decoding algorithm, then computes and returns all n1/4

candidate sets’ parities. The client knows that there is one candidate parity corresponding to the
correct set (S/{x}) ∪ {r}, which is enough to compute the answer.

• Refresh. Each query consumes a set. After each query, the client just samples a new set conditioned
on it containing the query x, and queries the right server for its parity with the same query
technique mentioned above. The new set will replace the consumed set.

Detailed algorithm for bounded, random queries. We describe the detailed construction
for Q =

√
n log κ · α random, distinct queries in Figure 3. We can easily extend such a scheme to

support unbounded, arbitrary queries using known techniques [55]. For completeness, we explain
how the extension works shortly after.

Efficiency. Observe that the list decoding produces n1/4 candidate sets each of size
√
n. Naively,

expanding all sets and computing their corresponding parities takes Oλ(n3/4) time. We are still
going to rely on the fact that ListDecode has an O(

√
n)-size succinct representation to optimize the

computation. Recall that we can first compute the common set of size
√
n, and then the symmetric

difference between each possible decoding set and the common set will only contain 2n1/4 elements.
Therefore, to compute the parities for all n1/4 possible sets, we first compute the parity for the
common set S, which takes Oλ(

√
n) time. Then, it takes Oλ(n1/4) time to enumerate the symmetric

difference between the i-th set and the common set, which suffices to compute the parity for the
i-th set. So the total computation time will be Oλ(

√
n).

Supporting unbounded, arbitrary queries. For completeness, we review the techniques
described in previous works for upgrading the scheme for Q random, distinct queries to a scheme
supporting unbounded, arbitrary queries. We can easily get rid of the distinct query assumption in
the following way: we require the client to store a local cache of size Q for caching the most recent
Q queries. If the client wants a repeated query, it can lookup in the cache and make a distinct fake
query.

Further, we can assume that the queries are random without loss of generality as follows: we can
let the client and the servers agree on a small-domain pseudorandom permutation (PRP) [51, 29]
(which is implied by one-way functions [30]) upfront and the server can permute the database
according to the PRP. Another option is let one of the servers build the database as a key-value
storage and use a cuckoo hash table [49, 54] directly based on a PRF to locate the queries, and
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share it with the other server. Notice that, in both implementations, the client can still make
queries adaptively depending on the real query sequence and the responses, which is sufficient for
practical usage. Then, as long as the client makes the queries independent of the randomness of the
PRP/PRF, those queries can be considered as uniformly random. This assumption is only needed
for the correctness.

Lastly, we can remove the bounded Q query assumption as follows: we use a pipelining trick
suggested in earlier works [55, 56]. Essentially, we can spread the pre-processing for the next window
of Q queries over the current window of Q queries.

Theorem 4.1. Let α(κ) be any superconstant function. Suppose that PRF1,PRF2 are secure
pseudorandom functions, and that n is bounded by poly(λ) and poly(κ). The two-server scheme
in Figure 3 that supports Q =

√
n log κ · α random, distinct queries is private, and correct with

probability 1−negl(λ)−negl(κ) for some negligible function negl(.). Further, it achieves the following
performance bounds:

• Oλ(
√
n log κα(κ)) client storage and no additional server storage;

• Pre-processing Phase:

– Oλ(n log κ · α) server time and Oλ(
√
n log κ · α) client time;

– Oλ(
√
n log κ · α) communication;

• Query Phase:

– Oλ(
√
n) expected client time and Oλ(

√
n) server time per query;

– Oλ(n1/4) communication per query.

Therefore, the amortized communication per query is Oλ(n1/4), and the amortized server computation
and expected client computation per query is Oλ(

√
n).

Proof. We defer the privacy and correctness proofs to Section 4.2 and Section 4.3 respectively.
Here, we focus on proving the efficiency claims.

The client stores M1 =
√
n log κ · α number of PPPS keys, and M2 = 3 log κ · α number of

replacement entries per chunk. Therefore, the space required is Oλ(
√
n log κ · α).

During the offline phase, the client sends M1 PPPS keys to the right server, and sends M2 indices
per chunk to either server for constructing replacement entries. Therefore, the offline communication
is bounded by Oλ(

√
n log κ · α). The right server needs to expand the sets for each PPPS key

received and evaluate the xor-sums. Both servers need to return the bits for the replacement entries.
Therefore, the total server computation is bounded by Oλ(n log κ · α).

During the query phase, the client sends one programmed PPPS key to each server, and the size
of a programmed key is at most Oλ(n1/4). Each server sends back the xor-sums of n1/4 candidate
sets. Each candidate set has size n1/2, however, all n1/4 candidate sets has a succinct representation
of size only n1/2, and server can compute this succinct representation in time Oλ(n1/2). Further, it
is not hard to see that due to the structure of the candidate sets, the server can compute all n1/4

xor-sums in time only O(n1/2). Therefore, the servers’ running time is bounded by Oλ(n1/2) during
each query query. The client needs to find a matched hint, and compute O(1) xor operations during
each query. Its running time is dominated by the cost of finding a matched hint, which can be done
by invoking the set membership operation for each of the M1 hints. Using Theorem 4.2 and the
pseudorandomness property of the PPPS, the expected number of hints checked until a key sk such
that Set(sk) contains the current query is found is O(

√
n). The expected number of tries till success

is
√
n. Therefore, the client’s expected running time per query is upper bounded by Oλ(

√
n).
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4.2 Privacy Proof

Suppose that the underlying PPPS scheme satisfies private programmability. Below, we prove the
privacy of our two-server PIR scheme.

In the pre-processing phase, the server sends the sets Set(ski) only to the right server, thereby
no information about these sets is leaked to the left server. Similarly, no information about the
indices r1 is leaked to the right server and no information about the indices r2 is leaked to the left
server. We will first the lemma about the distribution of client’s hint table, when the adversary
controls either of the left or right server.

Lemma 4.2. Recall that in each time step t, the adversary A adaptively chooses a query xt ∈
{0, 1, . . . , n− 1} for the client. At the end of each time step t, the client’s hint table is distributed
as a table of size M1 where each entry is a freshly sampled PPPS key, even when conditioned on
A’s view so far.

Proof. Suppose the above statement holds at the end of time step t − 1. We prove that it still
holds at the end of time step t. Since the hint table is distributed as a fresh randomly sampled table
even when conditioned on A’s view at the end of t− 1, we may henceforth assume an arbitrary fixed
query xt. The distribution of the hint table before the t-th query can be equivalently rewritten as:

• First, sample the decision whether any of the M1 entries contains the current query xt, and if so,
which is the first entry (denoted i∗) that contains xt. If not found, we assume i∗ = M1 + 1.

• For each i < i∗, sample a random PPPS key subject to not containing xt.

• For each i = i∗, sample a random PPPS key subject to containing xt.

• For each i > i∗, sample a random PPPS key.

Using the above interpretation, it is easy to see that the distribution of the hint table after the
t-th query is unaltered no matter which of the two servers A controls.

4.2.1 Left Server Privacy

We first construct the following simulator for proving left server privacy.

Simulator construction.

• During the pre-processing phase, for each chunk `, sample M2 random indices belonging to `,
send them to A.

• During each query, call the simulator of the PPPS scheme which outputs sk′, send sk′ to A.

Indistinguishability of Real and Ideal. We now prove the indistinguishability of the Real and
Ideal for both the servers assuming the private programmability of the underlying PPPS scheme.

First, due to Theorem 4.2, we can equivalently rewrite the Real experiment for the right server
as follows: at the end of each time step, resample the entire hint table freshly at random before
continuing to answer more queries. As a result, the view of A who controls the right server is
distributed as:

• Pre-processing phase. For each chunk `, send M2 random indices in chunk ` to A.

• Each time step t.
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– sample a PPPS key sk at random subject to containing the query xt; sample δ at random
from {0, . . . ,

√
n− 1}.

– call sk′, ← Program(sk, chunk(xt), δ);

– send sk′ to A.

One way to see this is to think of the distribution of the table as the equivalent distribution in the
proof of Theorem 5.2. Further, observe that each r2 mod

√
n in the scheme is distributed randomly

from the perspective of the left server, since they were only sent to the right server during the
pre-processing phase.

Therefore, the rest of the proof follows due to a straightforward hybrid argument where we
replace the programmed keys (denoted sk′ earlier) sent to the right server in all time steps one by
one with a simulated key, relying on the private programmability of the underlying PPPS.

4.2.2 Right Server Privacy

We first construct the following simulator for proving right server privacy.

Simulator construction.

• During the pre-processing phase, send M1 randomly sampled PPPS keys to A. Further, for each
chunk `, sample M2 random indices in `, send them to A.

• During each query, call the simulator of the PPPS scheme which outputs sk′, send sk′ to A.

Indistinguishability of Real and Ideal. We now prove the indistinguishability of the Real and
Ideal for both the servers assuming the private programmability of the underlying PPPS scheme.
The view of A who controls the right server is distributed as:

• Pre-processing phase. Sample M1 random PPPS keys, and send them to A. Further, for each
chunk `, send M2 random indices in chunk ` to A.

• Each time step t.

– sample a PPPS key sk at random subject to containing the query xt; sample δ at random
from {0, . . . ,

√
n− 1}.

– call sk′, ← Program(sk, chunk(xt), δ);

– send sk′ to A.

To see the above, observe that each r1 mod
√
n in the scheme is distributed randomly from the

perspective of the right server, since they were only sent to the left server during the pre-processing
phase.

Therefore, the rest of the proof follows due to a straightforward hybrid argument where we
replace the programmed keys (denoted sk′ earlier) sent to the right server in all time steps one by
one with a simulated key, relying on the private programmability of the underlying PPPS.

4.3 Correctness Proof

We show that with Q =
√
n log κ · α random, distinct queries, the probability of ever having

correctness error is negligibly small. An error can happen if one of the following bad events take
place:
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• No matched hint. During some query for x, no hint is found that contains the query x.

• Depleting replacement entries. During some query for x, there is no more replacement entry of
the form (r1,DB[r1]) or (r2,DB[r2]) corresponding to chunk(x).

Below, we show that the probability of each bad event during a window of Q random, distinct
queries is negligibly small.

Probability of no matched hint. Due to Theorem 4.2, for any fixed time step t, we can assume
the client’s hint table contains freshly sampled PPPS keys and is independent of the current query
xt. Due to the pseudorandomness property of the PPPS, the sets generated by the keys in the
hint table are computationally indisintinguishable from M1 sets independently sampled from the
distribution Dn. Below we calculate the probability that a fixed element xt is not in any of the M1

sets sampled independently from Dn — the probability that xt is not contained in any entry in the
client’s hint table can only be negligibly different.

The probability that one set sampled from Dn contains xt is 1/
√
n. Therefore, the probability

that none of the M1 sets contains xt is (1− 1/
√
n)M1 , and given the choice of M1 =

√
n log κα(κ)

where α(κ) is a super-constant function, this probability is negligibly small in κ.
Finally, taking a union bound over all polynomially many time steps, the probability of ever not

having a matched hint is negligibly small in κ.

Probability of depleting replacement entries. One can only deplete the replacement entries
of some chunk ` if the chunk ` is encountered more than M2 times. With Q random distinct
queries, each query will hit a random chunk. The expected number of hits per chunk is therefore
Q/
√
n = log κ · α. By the Chernoff bound, the probability that the number of visits to some fixed

chunk ` exceeds M2 = 3 log κ · α is negligibly small in κ as long as α(κ) is a super-constant function.
Finally, taking a union bound over all chunks and all polynomially many time steps, the

probability of ever depleting replacement entries of any chunk is negligibly small in κ.

5 Our Single-Server PIR Scheme

5.1 Construction

Notation. For x ∈ {0, 1, . . . , n − 1}, we define chunk(x) := bx/n1/2c and superblock(x) :=
bchunk(x)/n1/4c. We assume (Gen,Set,Program,Decode) is a PPPS scheme over the distribution
Dn as described in Section 3.

Intuition. The major differences between our single-server scheme and the two-server scheme are
summarized below.

• Preprocessing. The two server scheme allows the client to do preprocessing with one server and do
online queries with another server. Our single-server scheme uses the technique from Piano [56]
such that the client makes a streaming pass over the whole database (retrieving from the only
server) and runs the preprocessing locally.

• Query and Refresh. The two-server scheme allows the client to replace a consumed set with a
new set on-the-fly, because the client can query another server for the new parity. Instead, in the
single-serve scheme, we use a new broken hint idea. The client still generates a new set after the
query, but it only marks the new set as “broken hint” since the parity is unknown. To ensure
correctness, the client now uses all the matched sets given one query, and as long as there is one
non-broken hint, the answer can be computed correctly.

18



Single-Server Scheme for Q =
√
n/2 Queries a

Notation. κ denotes a statistical security parameter, λ denotes a computational security
parameter. We use α(κ) to denote an arbitrarily small super-constant function.

Preprocessing.

• Client samples M1 = 2
√
n log κ · α(κ) master PPPS keys denoted sk1, . . . , skM1 ∈ {0, 1}λ.

Initialize the parities p1, . . . , pM1 to zeros.

• Client downloads the whole DB from the server in a streaming way: when the client has the
j-th chunk DB[j

√
n : (j + 1)

√
n]:

– Update primary table: for i ∈ [M1], let pi ← pi ⊕ DB[Set(ski)[j]].

– Store replacement entries: sample and store M2 = 3 log κ · α(κ) tuples of the form
(r,DB[r]) where r is a random index from the j-th chunk.

– Delete DB[j
√
n : (j + 1)

√
n] from the local storage.

• At this moment, let T := {(ski, pi)}i∈[M1] denote the client’s hint table. Mark all the hints as
“good”.

Query for index x ∈ {0, 1, . . . , n− 1}.

1. Client: For each matched entry (ski, pi) such that x ∈ Set(ski) in the hint table, do the
following unless there are already M3 = 3 log κ · α matched entries:

• For the first good (i.e., non-broken) matched entry, find the first unconsumed replacement
entry (r,DB[r]) for chunk(x). b

• Otherwise, sample a random index r in chunk(x).

• (sk′, i∗)← Program(ski, chunk(x), r mod
√
n).

• Send sk′ to the server, and receive {βi}i∈{0,...,n1/4−1} from the server.

• For the first good matched entry, save the answer pi ⊕ βi∗ ⊕ DB[r].

• Sample a fresh PPPS key sknew subject to x ∈ Set(sk), and replace the consumed entry
(ski, pi) with (sknew, 0) and mark the entry as broken.

2. Client: If less than M3 keys are sent in the previous step, send more dummy programmed
keys to the server until there are M3 keys sent c.

3. Client: Output the saved answer. If no answer was saved, output 0.

4. Server: for each sk′ received, let S0, . . . , Sn1/4−1 ← ListDecode(sk′). For each i ∈ {0, . . . , n1/4−
1}, send the xor-sum ⊕j∈SiDB[j] to the clientd.

aWe first present the scheme supporting distinct and random queries. As mentioned, these restrictions can be
removed by applying PRP and local caching.

bIf not found, treat it as the otherwise case.
cThe dummy key is constructed as sampling a random PPPS key sk subject to x ∈ Set(sk) and call

sk′, ← Program(sk, chunk(x), δ′).
dWe use the normal representation of the set Si and not the offset representation.

Figure 4: Our single-server pre-processing PIR scheme.
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Detailed algorithm for bounded, random queries. In Figure 4, we describe our algorithm
which supports Q =

√
n/2 random and distinct queries. It is well-known how to upgrade such an

algorithm to support an unbounded number of arbitrary queries [55]. For completeness, we briefly
describe the upgrade shortly after.

Efficiency. Observe that although the list decoding produces n1/4 candidate sets each of size
√
n,

all n1/4 sets can actually be represented using only O(
√
n) space. Further, computing the parities of

all sets takes only O(
√
n) time. This is because all n1/4 sets are derived from some common set S,

but replacing offsets within each of the n1/4 superblocks with another random vector δ0, . . . , δn1/4−1.
We give a full efficiency analysis in the proof of Theorem 5.1.

Supporting unbounded, arbitrary queries. We can easily get rid of the distinct query
assumption in the following way: we can require the client to store a local cache of size Q for caching
the most recent Q queries. If the client wants a repeated query, it can lookup in the cache and make
a dummy query.

Further, we can assume that the queries are random without loss of generality as follows: we
can let the client and the server agree on a pseudorandom permutation (PRP) [51, 29] upfront and
the server can permute the database according to the PRP. Another option is let the server build
the database as a key-value storage and use a cuckoo hash table [49, 54] directly based on a PRF to
locate the queries. Notice that, in both implementations, the client can still make queries adaptively
depending on the real query sequence and the responses, which is sufficient for practical usage.
Then, as long as the client makes the queries independent of the randomness of the PRP/PRF, those
queries can be considered as uniformly random. This assumption is only needed for the correctness.

Lastly, we can remove the bounded Q query assumption as follows: the straightforward way is
that once the client finishes a window of Q queries, the client and the server reruns the preprocessing
phase again, using fresh randomness. The drawback is that the client has to wait a long time before
starting the next window. As previous work pointed out [56, 55], we can easily avoid this drawback
through a simple pipelining trick, by spreading the preprocessing work of the next Q window over
the current Q window of queries.

Theorem 5.1. Let α(κ) be any super-constant function. Suppose that PRF1,PRF2 are secure
pseudorandom functions, and n is bounded by poly(λ) and poly(κ). The single-server scheme
in Figure 4 that supports

√
n/2 random, distinct queries is private, and correct with probability

1−negl(λ)−negl(κ) for some negligible function negl(·). Further, it achieves the following performance
bounds:

• Oλ(
√
n log κ · α) client storage and no additional server storage;

• Pre-processing Phase:

– O(n) server time and Oλ(n log κ · α) client time;

– O(n) communication;

• Query Phase:

– Oλ(
√
n log κ · α) expected client time and Oλ(

√
n log κ · α) server time per query;

– Oλ(n1/4 log κ · α) communication per query.

Therefore, the amortized online communication per query is Oλ(n1/4 log κ · α), the amortized offline
communication per query is O(

√
n), the amortized client and server computation per query is

Oλ(
√
n log κ · α).
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Proof. We defer the privacy and the correctness proof to Section 5.2 and Section 5.3 respectively.
The client only stores M1 = 2

√
n log κα λ-bit keys and store in total

√
n ·M2 = 3

√
n log κ · α

index-value pairs. So the storage is Oλ(
√
n log κ · α). The pre-processing phase’s performance

bounds follow straightforward by the algorithm descriptions.
For the query phase, the client first enumerates all M1 hints to find x, which takes Oλ(

√
n log κ·α)

time. For all the M3 = Θ(log κ · α) found hints, the Program algorithm takes Oλ(n1/4) client
computation. For the server, during the query phase, the client sends M3 programmed PPPS key
to the server, the size of which is Oλ(n1/4). The server sends back the xor-sum of n1/4 candidate
sets for each key after running ListDecode. Even though each candidate set has size n1/2, all the
candidate sets have a succinct representation of size n1/2 and server can compute this representation
in time Oλ(n1/2). Further, as observed in Theorem 4.1, due to the structure of the candidate sets,
the sever can compute all the n1/4 xor-sums in time only O(n1/2). Hence, the server’s running time
Oλ(
√
n).

The client needs to find M3 matched hints, compute O(log κ · α) xor operations during each
query and for the matched hints, it needs to sample fresh PPPS key sknew subject to x ∈ Set(sknew).
The client’s computation time is dominated by this sampling step. We consider the expected
computation time: each key in the hint table will have 1/

√
n probability to be replaced in this and

each sampling takes Oλ(
√
n) expected time to finish using Lemma 5.2 and pseudorandomness of

PPPS, the expected number of keys checked until a key sk such that Set(sk) contains the current
query is found is O(

√
n). So the total expected time for the query phase is Oλ(

√
n log κα) per

query. The server time is Oλ(
√
n(log κ · α)) per query. The online communication per query is

Oλ(n1/4(log κ · α)).

5.2 Privacy Proof

Suppose that the underlying PPPS scheme satisfies private programmability. Below, we prove the
privacy of our single-server PIR scheme.

In the pre-processing phase, the server observes a single scan over the database, and thus no
information is leaked. The rest of the proof will therefore focus on the query phase.

Lemma 5.2. Recall that in each time step t, the adversary A adaptively chooses a query xt ∈
{0, 1, . . . , n− 1} for the client. At the end of each time step t, the client’s hint table is distributed
as a table of size M1 where each entry is a freshly sampled PPPS key, even when conditioned on
A’s view so far.

Proof. Suppose the above statement holds at the end of time step t − 1. We prove that it still
holds at the end of time step t. Since the hint table is distributed as a fresh randomly sampled table
even when conditioned on A’s view at the end of t− 1, we may henceforth assume an arbitrary fixed
query xt. The distribution of the hint table before the t-th query can be equivalently rewritten as:

• First, sample the indices of the entries (henceforth denoted I) that contain the query xt.
Specifically, each i ∈ [M1] is chosen into the set I independently with probability 1/

√
n.

• For each i /∈ I, sample a random PPPS key subject to not containing xt.

• For each i ∈ I, sample a random PPPS key subject to containing xt.

Using the above interpretation, it is easy to see that the distribution of the hint table after the
t-th query is unaltered.
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Simulator construction and the Ideal experiment. Consider the following simulator construc-
tion which does not make use of the queries: in every time step t, call the simulator Sim of the
PPPS scheme, and let the output be sk′. Send sk′ to the server.

Indistinguishability of Real and Ideal. We now prove the indistinguishability of the Real and
Ideal assuming the private programmability of the underlying PPPS scheme.

First, due to Theorem 5.2, we can equivalently rewrite the Real experiment as follows: at the
end of each time step, resample the entire hint table freshly at random before continuing to answer
more queries. As a result, the messages sent to A in each time step t is distributed as

Repeat M3 times:

– sample a PPPS key sk at random subject to containing the query xt; sample δ at random
from {0, . . . ,

√
n− 1}.

– call sk′, ← Program(sk, chunk(xt), δ);

– send sk′ to A.

One way to see this is to think of the distribution of the table as the equivalent distribution in the
proof of Theorem 5.2.

Therefore, the rest of the proof follows due to a straightforward hybrid argument where we
replace the programmed keys (denoted sk′ earlier) sent to the server in all time steps one by one
with a simulated key, relying on the private programmability of the underlying PPPS.

5.3 Correctness Proof

For the correctness analysis, we may assume that every set is sampled independently from Dn. Due
to the pseudorandomness property of the PPPS, this will only affect the correctness probability by
a negligible amount.

Recall that we have a window of Q =
√
n/2 random, distinct queries. There are only two bad

events that can cause correct failure: 1) the client cannot find a good hint that contains the query
index; 2) the client runs out of replacements in a chunk.

We first analyze the second bad event, i.e., depleting replacement entries For every query, at
most one replacement entry is consumed. Therefore, the second bad event only happens when the
client makes more than M2 queries in one chunk. The analysis is the same as analysis of depleting
replacement entries in the proof of correctness for our 2-server scheme (see Section 4.3).

The first bad event, i.e., no matched good hint, can only arise from the following events: 1)
there are no good hints left that match the query; 2) there are more than M3 matched hints but
the first M3 matched hints are all broken.

Fix a sequence of query x1, . . . , xm and consider the error probability for xm. Consider the
initial hint table in which each entry represents a random set sampled from Dn. If a hint in the
initial hint table contains xm and does not contain x1, . . . , xm−1, this hint will remain good until
the query for xm. We have that, for any hint

Pr [ the hint contains xm] = 1/
√
n .

Further, conditioned on a hint containing xm, if xi and xm are not in the same chunk, then the hint
contains xi with probability 1/

√
n because each chunk has its own randomness. Moreover, if xi and
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xm are in the same chunk, this hint definitely will not contain xi. Hence, we have that

Pr
[

hint is broken
∣∣ the hint contains xm

]
≤Pr

[
∃i ∈ {1, . . . ,m− 1} hint contains xi

∣∣ the hint contains xm
]

≤(m− 1)/
√
n ≤ Q/

√
n ≤ 1/2 .

Therefore,

Pr [ hint is good and contains xm]

≥Pr
[

hint is good
∣∣ the hint contains xm

]
· Pr [ the hint contains xm] ≥ 1/(2

√
n) .

Then, the probability that there is no good hint matching xm in the table is at most(
1− 1

2
√
n

)M1

=

(
1− 1

2
√
n

)2
√
n lnκ·α(κ)

≤ (1/e)lnκα(κ) = κ−α(κ).

Now let us argue that for query xm, the probability of more than M3 hints being matched is small.
Due to the Lemma 5.2, we may assume that at the beginning of each query, the hint table contains
freshly and independently chosen sets. Each set sampled from Dn contains the query with probability
1/
√
n. The expected number of hints that match the query is therefore M1/

√
n = 2 log κ · α. Using

the Chernoff bound, we have that the probability of more than more than M3 = 3 log κ · α hints
being matched is bounded by a negligibly small function in κ.

Finally, we can apply a union bound over all
√
n/2 queries and conclude that the probability of

the first bad event (i.e., no matched good hint) ever happening is negligibly small in κ.

6 Evaluation

We implement our optimized single-server PIR scheme (Appendix B) and compare it against a
state-of-the-art preprocessing single server PIR scheme (Piano [56]). We show that the performance
of our scheme is reasonably efficient and practical, while having a huge advantage in the online
communication.

Implementation and Parameters. We implement our scheme with Go, based on the open-sourced
code base of Piano [56]. Our code base is open-sourced1. We set Q =

√
n lnn, set the correctness

failure parameter κ to 40 and set the computational security parameter λ to 128. We adjust the
chunk size and also superblock size by constant factors to optimize the overall performance. The
parameter combination ensures the failure probability is bounded by 2−κ = 2−40 for all queries. We
use 128-bit keys and use AES to instantiate the PRF.

Evaluation Setup. We evaluate our scheme and the baseline scheme on a single AWS m5.8xlarge
instance with 128GB of RAM and run the experiment on local network. In this case, the network
will not be the bottleneck. However, we do expect that our scheme can perform relatively better
compared to Piano in a network-constrained environment.

6.1 Experiments Results

We evaluate the schemes under two scenarios: 1) a 64GB database with 4.2 billions of 16-byte
entries; 2) a 100GB database with 1.6 billions of 64-byte entries. As the same as Piano, we use

1https://github.com/wuwuz/QuarterPIR
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8-thread parallelization during the preprocessing phase, and only use a single thread during the
online phase.

64GB 100GB
Piano Ours Piano Ours

Preprocessing
Client time 81min 114min 32min 46min

Communication 64GB 64GB 100GB 100GB

Per query
Online Time 14.0ms 42.7ms 11.9ms 46.3ms

Online Communication 256KB 5KB 100KB 8KB
Am. Offline Time 3.3ms 4.7ms 2.2ms 3.2ms

Am. Offline Communication 46KB 46KB 120.5KB 120.5KB

Client Storage 419MB 684MB 839MB 1.8GB

Table 2: Performance of our scheme and Piano on 64GB and 100GB sized databases. The 64GB
database has 16-byte entries and the 100GB database has 64-byte entries. “Am.” is an abbreviation
of “Amortized”. We report the online costs as well as the offline costs amortized over Q =

√
n lnn

queries.

In Table 2, we show the cost for the one-time preprocessing, the online query cost, and also
the amortized offline cost. Notice that the amortized offline cost can also be considered as the
background maintenance cost that is not on the critical path of the query.

Computation Costs. As seen in Table 2, our scheme is worse compared to Piano in terms of
computation cost. The offline time is worse by around 1.4× (the same for the maintenance time),
and the per query online time is worse by around 3.0×. Although the two schemes have the same
asymptotic computation costs, our scheme is more complicated, resulting in a larger constant factor.
The most significant factor is that our scheme needs to make at least two PRF evaluations per hint,
while Piano only makes one PRF evaluation. Also, Piano further optimizes the PRF evaluations.
This explains the 3.0× gap.

Communication Costs. Our scheme has the same offline communication cost (same streaming
preprocessing) and a much better online communication compared to Piano. The asymptotic online
communication is Oλ(n1/4) for our scheme and is O(

√
n) for Piano. Thus, given a bigger n, the gap

will be bigger. The concrete performance also depends on many other factors, including the size of
the entries, the size of the chunk and the size of the superblock. We see a 12× gap when n is 1.6
billions in the 100GB database case (with a larger entry size) and a 51× gap when n is 4.2 billions
in the 64GB database case (with a smaller entry size).

Stroage Costs. Our scheme has worse storage cost compared to Piano. In our experiment, the
gap is 1.6 × −2.1×. Our optimized scheme needs to additionally store the superblock parity for
each hint, and also stores the constraints generated during the query phase, compared to Piano.
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Supplementary Materials

A Sublinear Preprocessing PIR with Õ(1) Online Communication
from Stronger Assumptions

Previously, we focused on designing preprocessing PIR schemes that rely only on one way func-
tions (OWF). In this section, we show that the “broken hint” technique used in our one-server
construction Section 5 can also be applied to the state-of-the-art two-server scheme, TreePIR [36].
This gives us a single-server scheme with Õλ(1) online communication cost, O(

√
n) offline communi-

cation, and Õλ(
√
n) computation per query, assuming the existence of a classical single-server PIR

scheme with polylogarithmic bandwidth.

A.1 Privately Puncturable Pseudorandom Set with List Decoding

The elegant TreePIR work [36] constructs a Privately Puncturable Pseudorandom Set with List
Decoding (henceforth denoted PPPS−). Specifically, their implied PPPS− also emulates the same
set distribution Dn which we inherit in our paper (see Section 3.1), and it supports the following
operations:

• sk← Gen(1λ, n): takes in the security parameter 1λ, the size of the universe n, and outputs a
secret key sk representing a set.

• S ← Set(sk): takes in a secret key sk and outputs a set S of size
√
n.

• sk′, i← Puncture(sk, `): takes in a secret key sk, a chunk index `, and outputs a punctured key
sk′ which removes the element in the `-th chunk from the set, as well as auxiliary information i
that indicates which of the list decoded answers later is the correct answer.

• S0, . . . , SL−1 ← ListDecode(sk′): takes in a punctured key sk′, and outputs a set of candidate
sets S0, . . . , SL−1. It is guaranteed that one of them is the correctly punctured set.

A PPPS− scheme needs to satisfy the following properties:

1. Correctness. For any λ, n, any ` ∈ {0, . . . ,
√
n− 1}, the following must hold with probability 1:

let sk← Gen(1λ, n), sk′, i← Puncture(sk, `), S0, . . . , SL−1 ← ListDecode(sk′), it must be that Si
is equal to Set(sk) but with the `-th element removed.

2. Pseudorandomness. Defined in the same way as in Section 3.1.

3. Private puncturability. There exists a probabilistic polynomial-time simulator Sim such that
for any n that is polynomially bounded in λ, for any x ∈ {0, . . . , n − 1}, the following two
distributions are computationally indistinguishable:

• Real: Sample sk ← Gen(1λ, n) subject to x ∈ Set(sk), let sk′, ← Puncture(sk, chunk(x)),
output sk′.

• Ideal: Let sk′ ← Sim(1λ, n), output sk′.

TreePIR [36] implies a PPPS− scheme constructed from PRFs, satisfying not only the above
properties but also the following efficiency requirements:

• Fast membership: testing whether an element x ∈ {0, . . . , n− 1} is in the set or not takes Oλ(1)
time.
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Single-Server Scheme for Q =
√
n/2 Queries

Notation. κ denotes a statistical security parameter, λ denotes a computational security
parameter. We use α(κ) to denote an arbitrarily small super-constant function.

Preprocessing. Same as in Figure 4 but no more need for replacement entries.

Query for index x ∈ {0, 1, . . . , n− 1}.

1. For each entry (ski, pi) in the client’s hint table, if x ∈ Set(ski) (henceforth called a matched
entry), do the following unless there are already M3 = 3 log κ · α matched entries:

• Let sk′, i∗ ← Puncture(ski, chunk(x)). Send sk′ to the server.

• Server calls S0, . . . , S√n−1 ← ListDecode(sk′), and for each i ∈ {0, . . . ,
√
n− 1}, it computes

βi := ⊕j∈SiDB[j].

• Client and server run a classical PIR scheme on the database (β0, . . . , β√n−1), and the
client retrieves βi∗ .

• If the matched entry is good, client saves the answer pi ⊕ βi∗ .
• Client samples a fresh PPPS− key sknew subject to x ∈ Set(sk), and replaces the consumed

entry (ski, pi) with (sknew, 0) and mark the entry as broken.

2. Let cnt be the number of matched entries in the previous step. If cnt < M3, then client
repeats the following M3− cnt times: sample a random PPPS− key sk subject to x ∈ Set(sk),
call sk′, ← Puncture(sk, chunk(x)), and send sk′ to the server. Invoke a classical PIR scheme
with the server to retrieve any index in {0, . . . ,

√
n− 1}, and ignore the answer received.

3. Client outputs any saved answer. If no answer was saved, output 0.

Figure 5: Our single-server pre-processing PIR scheme with Õ(1) online bandwidth from a classical
PIR scheme.

• Small punctured key: a punctured key has size Õλ(1).

• Efficient list decoding: Although ListDecode outputs
√
n candidate sets, all

√
n candidate sets

has a succinct representation of size O(
√
n); moreover, the ListDecode algorithm runs in Oλ(

√
n)

time.

A.2 A Single-Server PIR Scheme with Polylogarithmic Online Communication

Given a PPPS− scheme with the aforementioned security and efficiency requirements, we can
construct a single-server pre-processing PIR scheme as in Figure 5.

We can prove the following theorem about this construction.

Theorem A.1. Assume the existence of a classical PIR scheme with linear computation, storage
and polylogarithmic communication. We can construct a PIR scheme supporting

√
n/2 queries that

is private and achieves the following performance bounds:

• Oλ(
√
n log κα(κ)) client storage and no additional server storage;

• Pre-processing Phase:

– Oλ(n log κ · α) client time and Oλ(n log κ · α) server time;
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– O(n) communication;

• Query Phase:

– Õλ(
√
n) expected client time and server time per query;

– Õλ(1) communication per query.

Further, assuming that n is bounded by poly(λ) and poly(κ), all the Q =
√
n/2 queries in the

scheme in Section A will be answered correctly with probability at least 1 − negl(λ) − negl(κ) for
some negligible function negl(·).

Proof. The proofs about efficiency is nearly the same as the proof of Theorem 5.1 – the main
differences being that the PPPS− replaces the PPPS here and that the classical PIR scheme that
is run during the query phase needs to be taken into account for the storage, computation and
communication. Since the storage and computation of the classical scheme is linear, and the
communication polylogarithmic, the overall complexities do not change asymptotically. Also, we
note in the context of the PPPS− scheme that the parities of the

√
n sets can be computed by the

server in O(
√
n) time as shown in [36].

The proof of correctness is the same as the analysis in Section 5.3, assuming correctness of the
underlying classical PIR scheme. The privacy proof is also nearly the same as the privacy proof
in Section 5.2 except the following couple changes: 1) the PIR’s simulator additionally calls the
underlying classical PIR’s simulator; and 2) instead of calling the simulator of PPPS scheme, the
PIR’s simulator now calls the simulator of the PPPS− scheme.

B Removing the Repetition Overhead in the Single-Server Scheme

Since our earlier single-server scheme in Section 5 employs the broken hints technique, there is
a superlogarithmic factor multiplicative overhead due to the repetition needed for correctness
compared to the two-server scheme in Section 4. In this section, we describe an improved single-
server pre-processing PIR scheme that avoids this super-logarithmic repetition overhead. For this
optimized version, we cannot use the PPPS scheme in a completely blackbox manner.

Why previous schemes do not worry about broken hints. First, we need to understand
why in the previous single-server schemes like Piano [56], the client does not have to worry about
broken hints. Notice that in the two-server scheme, the client will replace the consumed hint with a
resampled hint that contains the current query, and interact with another server to fetch the correct
parity for this new hint. This ensures that all hints are useful. In the single-server setting, the client
cannot rely on the additional server to dynamically fetch the parity for the resampled hint. To fix
this, Piano requires the client to prepare polylogarithmic backup hints for each of the

√
n chunks.

The backup hints for the i-th chunk will record the parity of the set and also the value of the item
in the i-th chunk. After querying for x, the client will replace the consumed hint with a backup
hint from x’s chunk and lazily mark that i-th element of the hint to be the current query x, which
maintains the distribution of the hint table. Since the values for the original i-th element and x
are known to the client, the correct parity for this edited hint can be derived by the client locally,
avoiding the issue of broken hints. Then, the client only needs to find the first hint that contains x,
instead of finding all matched hints and making multiple queries based on those hints, hoping that
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one of them will be good. 2 Now, after the client expands the key to a whole set, the client can
easily enforce the marking (if necessary) by just changing the corresponding element.

We will try to follow the backup hint and the lazy-marking idea. There is one challenge remaining:
in Piano, the client can expand the whole set and possibly change two elements obliviously before
sending the set to the server. The client not only needs to change the offset in the current query’s
chunk to ensure the privacy, it also needs to change the offset in the lazy marked element’s chunk
to reflect the correct history. Our main construction in Section 3 only allows us to program one
location. How should we modify the scheme to support programming at two points?

One way to achieve that is by privately programmable pseudorandom function (PPPRF). PPPRF
allows us to directly program on the key. This is nearly the same idea in two previous single-server
PIR schemes [55, 35]. Unfortuantely, this primitive is only known under strong cryptographic
assumptions like LWE, and still only exists in theoretical literatures – it is completely impractical
at the current stage.

Our solution: rejection sampling. We observe that all we need to do is just to “maintain” the
right distribution of the hint table and the keys sent to the server. If we can monitor the change
in the distribution, we can rejection-sample the PRF keys according to the right distribution and
avoid the difficulty of doing private programming on the key level.

Maintaining the distribution for the local hint table is relatively simple and is already achieved by
the lazy-marking technique. For the local hint table, what we actually care about is the distribution
of the actual sets, regardless how we represent them. Assume that the client already queries for y
and knows DB[y]. Now the client consumes a hint that contains y, and replaces it with a hint from
those backup hints prepared for chunk(y). Suppose the key for the backup hint is sk. Set(sk) may
not contain y, but we can mark y alongside the key, such that whenever we need to do membership
testing on this key, we will consider y is already programmed into the set. This maintains the local
table’s distribution.

The more tricky case is how we handle the keys that the client sends to the server. Suppose
client is now querying for x, and it finds the first hint that contains x. Also, it notices that the
hint is marked with y. Recall that in the PPPS programming algorithm, the client will expand the
master key into n1/4 keys and expand the keys corresponding to the superblock of x to n1/4 offsets.
Now there are two cases:

1. x and y are in the same superblock. This is a relatively simple case. As the normal programming
step in the PPPS, we will replace the sub-key corresponding to the superblock of x (the
same as y) with a uniformly random sub-key. However, when we expand the original sub-key
to n1/4 offsets, we need to replace x’s offset with a random one, and also manually set the
offset corresponding to y’s chunk to y’s offset, reflecting that we enforce y to be included. No
rejection sampling is required in this case.

For the answer, since we are just replacing the original element in y’s chunk to y, the influence
of such change should be corrected. We can require the client to store the database value for the
i-th element for all the backup hints dedicated for the i-th chunk. Then, if this promoted hint sk
is used, we can correct the answer by xoring the influence value, DB[Set(sk)[chunk(y)]]⊕DB[y].

2. x and y are in the different superblocks. This is the more involved case. In the programming,
we will again replace the sub-keys corresponding to x’s superblock with a uniformly random

2A natural question is why the client cannot simply pick the first good hint. Observe that it would be equivalent
to deleting a consumed hint from the table because a broken hint will never be used again. Then, it would skew the
distribution of the hint table because the remaining hints are less likely to contain the past queries, which leads to
privacy leakage.
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Augmented Query Protocol Based on a Single Hinta

Client’s input:

• A master PPPS key sk assuming x ∈ Set(sk);

• The parity of Set(sk) is assumed to be psk;

• A random index r in x’s chunk such that the DB[r] is assumed to be known.

1. Step 1: (Client)

(a) Let (sk′, i)← Program(sk, chunk(x), r mod
√
n) and send sk′ to the server;

2. Query Step 2: (Server) Upon receivin sk′:

(a) Parse sk′ as

(k0, . . . , kn1/4−1), (δ0, . . . , δn1/4−1).

(b) Let S0, . . . , Sn1/4−1 ← ListDecode(sk′);

(c) For i ∈ {0, . . . , n1/4 − 1}:
i. Let βi = ⊕x∈SiDB[x];

ii. Expand ki to n1/4 offsets and consider them being the corresponding index offsets
in chunk {i · n1/4, . . . , (i + 1) · n1/4 − 1}. Compute the xor-sum of the database
values for those indices as

αi = ⊕j∈{0,...,n1/4−1}DB[(j + in1/4)
√
n+ PRF2(ki, j)].

(d) Return (α0, . . . , αn1/4−1), (β0, . . . , βn1/4−1) to the client.

3. Step 3: (Client)

Upon receiving (α0, . . . , αn1/4−1), (β0, . . . , βn1/4−1):

• Save (α0, . . . , αn1/4 − 1) if the answer needs to be corrected later.

• Return psk ⊕ βi ⊕ DB[r] as the answer.

aThe augmented part is highlighted in red.

Figure 6: The augmented query protocol based on a single hint. The augmentation is mainly about
returning the the parities of those superblocks corresponding to the n1/4 sub-keys and will be used
in Figure 7.
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Optimized Single-Server Scheme for Q =
√
n log κ · α Queries a

Notation. κ denotes a statistical security parameter, λ denotes a computational security
parameter. We use α(κ) to denote an arbitrarily small super-constant function.

Preprocessing.

• In addition to the previous algorithm:

– Client samples M2 = 3 log κα(κ) backup keys ski,1, . . . , ski,M2 for chunk i;

– For each backup hint, Client stores ski,j and the following information:

∗ The parity for the whole set: pi,j = ⊕x∈Set(ski,j)DB[x];

∗ The parity for those items within the superblock that contains the i-th chunk:

bi,j = ⊕x∈Set(ski,j)1
[
superblock(x) =

⌊
i

n1/4

⌋]
DB[x]b

∗ The DB-value of the i-th item: DB[Set(ski,j)[i]].

Query for index x ∈ {0, 1, . . . , n− 1}.

1. Query:

(a) Client finds the first matched hint (ski, pi) such that x ∈ Set(ski) and the hint does not
have a positive constraint y that chunk(y) = chunk(x).

(b) If there is no positive constraint on this hint: proceed the subroutine Figure 6 as usual.

(c) If there is a positive constraint +y on this hint:

i. If superblock(y) = superblock(x), execute the subroutine, except that

• After the client programs the key and gets n1/4 sub-keys and offsets, replaces the
(chunk(y) mod n1/4)-th offset with y’s offset;

• Let the return value be v, mark the answer as v⊕DB[y]⊕DB[Set(ski)[chunk(y)]].

ii. If superblock(y) 6= superblock(x), execute the subroutine, except that:

• After the client has the programmed key of n1/4 sub-keys and offsets, replace the
superblock(y)-th key with a rejection-sampled key k′. The rejection sampling key
k′ should satisfy all constraints related to the matched hint (+y,−z1, . . . ,−zt) if
k′ controls superblock(y) (as specified in Section B).

• Let the return value be v, mark the answer as v ⊕ αsuperblock(y) ⊕ b, where
αsuperblock(y) is the corresponding parity of superblock controled by the rejection-
sampled sub-key and b is the original parity for that superblock, known by
preprocessing.

2. Refresh:

• Client adds the constraint −x for the first i− 1 entries.

• Client replaces the matched hint with an unconsumed hint from the chunk(x)’s backup
hint group. Clean all other constraints and only mark +x for the i-th entry.

aFor clarity, we present the scheme supporting distinct and random queries.
b1[A] is 1 when A is true and 0 otherwise.

Figure 7: The optimized sublinear single server preprocessing PIR protocol introduced in Section
B. The protocol uses a subroutine defined in Fig. 6 as a sub-routine.
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sub-key and replace the offsets in x’s chunk with a random one. However, we need to ensure
that the key corresponding to y’s superblock will expand to the correct offset for y’s chunk, to
ensure that y is included. Now, we will rejection-sample a sub-key k for y’s superblock, such
that it expands to the correct offset of y. This is what we refer to as a positive constraint,
and we write this constraint as +y. Additionally, to maintain the right distribution, there
are also negative sampling constraints. Observe that if the i-th hint entry is the first one to
contains x, it means that from the client’s perspective, the first i− 1 entries do not contain
x. Suppose between the query y and query x, there are some other queries. After making
those queries, the client also knows that the current hint entry does not contain some queries
z1, . . . , zt. We write down the negative constraints as −z1, . . . ,−zt. Then, when we do the
rejection sampling for the sub-key for y’s superblock, we will consider all the constraints:
+y,−z1, . . . ,−zt, until we find a sub-key k that satisfies all the constraints. This ensures that
the resampled sub-key for y’s superblock has the right distribution.

We also need to argue that the rejection-sampling is efficient. The positive constraint is
satisfied with probability 1/

√
n. Conditioned on the positive constraint being satisfied, for

each negative constraint, it is satisfied with probability at least 1− 1/
√
n. We only need to

focus on the negative constraints related to the n1/4 chunks in that particular superblock.
Due to a simple balls-into-bins argument, the maximum queries in each chunk is bounded by
3 log κ · (α(κ)) with high probability, and the same bound holds for the the maximum number
of negative constraints in each chunk. Therefore, the rejection sampling can satisfy the all
negative constraints in those n1/4 chunks with probability at least 1− n1/4 · 3 log κ·(α(κ))√

n
, which

is at least 1/2 given a sufficiently large n. Therefore, we conclude that a freshly sampled
sub-key satisfies all the constraints with probability at least 1/2

√
n, and the expected sample

time is O(
√
n).

A noticable detail is that when we draw a new fresh key, we first check the positive constraint.
Only when the positive constraint is satisfied, we check the negative constraints. The positive
constraint is satisfied with probability 1/

√
n but only takes O(1) time to check. Conditioned

on the positive constraint being satisfied, the negative constraints take O(
√
n) to check, but

they are satisfied with probability at least 1/2. So even including the constraint checking time,
the expected sampling time is still O(

√
n).

For the answer, since we are essentially replacing the original superblock to a rejection-sampled
one. To remove the influence of this step, we can require the client to store the parity for
the corresponding superblock controlling the i-th chunk for all the backup hints dedicated
for the i-th chunk. Then, if this promoted hint sk is used, we can correct the answer by
xor-ing the parity for the original superblock (known by preprocessing) and the parity for
the rejection-sampled superblock. This is why we need an augmented version of the response
protocol for the server Figure 6 – we need the server to tell the client about the parity of the
rejection-sampled superblock.

We provide the pseudocode of this construction in Figure 7.

Theorem B.1. Let α(κ) be any superconstant function. Assume n is bounded by poly(λ) and poly(κ).
The PIR scheme in Figure 7 that supports

√
n log κα(κ) queries is private, correct with probability 1−

negl(λ)−negl(κ) and achieves the following performance bounds (the optimized parts are underlined):

• Oλ(
√
n log κα(κ)) client storage and no additional server storage;

• Pre-processing Phase:
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– Oλ(n log κα(κ)) client time and O(n) server time;

– O(n) communication;

• Query Phase:

– Oλ(
√
n) expected client time and Oλ(

√
n) server time per query;

– Oλ(n1/4) communication per query.

Therefore, the amortized online communication per query is Oλ(n1/4), the amortized offline
communication per query is O(

√
n), the amortized client computation is Oλ(

√
n log κα) and the

server computation is Oλ(
√
n).

Proof. The correctness proof will be similar to the correctness proof for the main scheme described
in Section 4.3.

We defer the privacy proof to later.
The additional storage for the client will be those M2 backup hints per chunk, which results

in total of O(λ
√
n log κα(κ)) space. Notice that the client does not directly store the negative

constraints, otherwise the storage will be blown up. The client can directly store the history of
those matched hint entry index (which takes O(

√
n log n) space) and also the generation time label

of each hint. Whenever the client finds the first matched hint, say entry i, it finds all the previous
queries that are older than the current hint’s generation time and whose matched hint entry indices
are larger than i. Those history queries will be the negative constraints. By doing this, maintaining
all the constraints only takes O(

√
n log n) space.

The pre-processing phase’s performance bounds are obvious by the algorithm description.
For the query phase, the client first finds the first hint that contains x. Each hint contain x

with probability 1/
√
n, so the expected time is O(λ

√
n). The subroutine in Figure 6 takes O(λn1/4)

client computation and O(λ
√
n) server computation, while consuming O(λn1/4) communication

cost. The refresh phase takes only O(1) time (if the client maintains the negative constraint using
the technique mentioned above). So the expected client time is O(λ

√
n) per query. The server time

is O(λ
√
n) per query. The online communication per query is O(λn1/4) per query.

B.1 Privacy Proof

Proof. We will prove this theorem via a sequence of hybrids. The first hybrid in the sequence will
capture the real experiment in the privacy definition of single server PIR, and the last hybrid will
capture the ideal experiment. We first define the hybrid Real∗:

• Pre-processing phase. A receives the streaming signal. The client samples sk1, . . . , skM1

$←{0, 1}λ.

• Query phase. For each round t, A chooses a query xt:

– The client finds the first matched key ski in the hint table, that is, x ∈ Set(ski) and if
there’s a positive constraint +y on this entry, x is not in the same chunk as y.

– If the entry i has no positive constraint: execute the subroutine.

– If the entry i has a positive constraint +y:

∗ If y and x are in the same superblock: execute the subroutine, with the difference
that when the client is expanding the sub-key corresponding to the superblock of x
to n1/4 offsets, replace the offset of y’s location to y’s offset.
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∗ If y and x are not in the same superblock: execute the subroutine with the difference
that when the client is expanding the master key to n1/4 sub-keys, replace the sub-key
corresponding to y’s superblock to a rejection sampled key k′, such that when k′

is considered as the key for that superblock, the expanded set should satisfy all
constraints related to entry i;

– Then, the client replaces the entry ski with a freshly-sampled key sk′, but deletes other
constraints and marks constraint +x for entry i;

– The client also marks constraints −x for entry 1 to entry i− 1.

This hybrid is identically distributed as the actual experiment that we just remove all parts
unrelated to the privacy proof.

We define Hyb1 by removing PRF1 from Real∗: for each sampled master key sk, the client will
directly sample n1/4 random sub-keys and store them in the local storage. When the client executes
the programming step in the subroutine, it no longer has to expand the master key to n1/4 sub-keys.

Hyb1 is computationally indistinguishable from Real∗ due to a straightforward reduction to the
pseudorandomness of PRF1.

Since we already replaces all master keys with n1/4 sub-keys, the later hybrids no longer need to
expand a master key to n1/4 sub-keys in the subroutine.

We define Hyb2 as following: Hyb2 is the same as Hyb1, except that whenever the client finds the
matched hint for query x, it will resample all those n1/4 sub-keys according to all the marked
negative constraints and also the new constraint +x. Notice that the history-dependent
positive constriaint (usually written as +y) is not considered in this new resample step and only
enforced just before the client sending messages to the server.

Now we argue that Hyb2 is identically distributed as Hyb1.

Claim B.2. The view of the adversary in Hyb2 is identically distributed as in Hyb1.

Proof. For all Q queries, lets consider the matched hint index vector I = (i1, . . . , iQ) where it
denotes the client finds it as the matched hint in the t-th round. Notice that the recorded constraints
at t-th round are completely determined by i1, . . . , it−1.

Now we add the matched index vector to the view of the adversarys, and we will argue that
even with the augmented view, the view of the adversary are still identically distributed in the two
experiments.

First, observe that the two experiments have exactly the same way to generate the matched
index vector. We only need to argue that, the selected entry in each round has the same distribution
in both experiments, and then the messages observed by the adversary should have the same
distribution.

We claim that conditioned on the same i1, . . . , it−1, the selected entry in round t have the same
distributions in the two experiments.

In Hyb1, we can equivalently consider the client first uniformly sample the M1 primary hints
and extra t− 1 replaced hints. Then, given the queries x1, . . . , xt−1, the client finds the matched
hint and hence derives i1, . . . , it−1 and those selected entry.

In Hyb2, we can equivalently consider the client first observes the queries x1, . . . , xt−1 and
samples i1, . . . , it−1 from the marginal distribution (conditioned on x1, . . . , xt−1 and all the initial
M1 hints and the t− 1 replacement hints are random). Then, the client samples the selected entry
for each round by deriving the constraints from i1, . . . , it−1 and does rejection sampling.

A key observation is that in Hyb1, the adversary cannot observe what the hint table is before
round t. Then, from the adversary’s perspective, the selected entry’s distribution is the posterior
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distribution of them after observing i1, . . . , it−1. Moreover, that posterior distribution is exactly
the same as the distribution the client uses to generate the selected entry (and even the whole
table) in round t (i.e., containing the query xt and some negative constraints −z1,−z2, . . . ) in Hyb2.
Therefore, from the adversary’s perspective, the selected hints in the two experiment share the same
distribution, and thus the views are identically distributed.

We define Hyb3 as following: Hyb3 is the same as Hyb2, except that whenever the client finds
the matched hint for query x, it will resample that entry also considering the history-dependent
positive constraint. Hyb2 does not consider the history-dependent positive constraint because the
history-dependent constraint is only marked locally and is only enforced before sending the message.
That is, it will include the positive constraints of including the current query x and a history query
y (if necessary) and all other negative constraints. We will prove that Hyb3 is computationally
indistinguishable from Hyb2.

Claim B.3. Hyb3 is computationally indistinguishable from Hyb2.

Proof. For each query xt, there are three cases for the selected hint entry: 1) it does not have a
history-dependent positive constraint; 2) it has a history-dependent positive constraint +y, but y
and x are not in the same superblock; 3) it has a history-dependent positive constraint +y such
that y and x are in the same superblock.

The first case is trivially identical in the two experiments. For the second case, since the client
will always resample the sub-key for y’s superblock before sending messages to the server, it does not
matter whether the original hint contains y or not (which only affect the sub-key for y’s superblock).
The final case is that the current query x and the positive constraint y are in the same superblock.
We can view Hyb2 and Hyb3 be the case where we sample the sub-key in that particular superblock
according to the same constraints, except that Hyb3 will have one additional constraint that the
offset in y’s chunk should be y’s offset. Then the client will expand the sampled sub-key to n1/4

offsets and change the offset in y’s chunk to y’s offset. Due to the pseudorandomness of PRF2, the
two distributions are computationally indistinguishable.

Now, define Hyb4 the same as Hyb3, except that in the query phase, after the client resample
the selected hint entry, the client will not do the processing steps related to the history-dependent
positive constraint.

For clarity, we write the full definition of Hyb4:

• Pre-processing phase. A receives the streaming signal. The client samples sk1, . . . , skM1

$←{0, 1}λ.

• Query phase. For each round t, A chooses a query xt:

– The client finds the first matched keys ski in the hint table, that is, x ∈ Set(ski) and if
there’s a positive constraint +y on this entry, x are not in the same chunk as y.

– Resample a key sk subject to all the constraints recorded for this entry (e.g. including
the current query x and the history query y, while satisfying some negative constraints
−z1, . . . ).

– Execute the subroutine based on this resampled key.

– Then, the client replaces the entry ski with a freshly-sampled key sk′, but deletes other
constraints and marks constraint +x for entry i;
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– The client also marks constraints −x for entry 1 to entry i− 1.

Hyb4 is identically distributed as Hyb3. There are only two different cases in Hyb4 and Hyb3:

• The history-dependent positive constraint y is in the same superblock as the current query x.
Notice that the client already resamples the sub-key subject to y is included, so the offset in
chunk(y) is already y’s offset;

• The history-dependent positive constraint y are not in the same superblock as the current
query x. In Hyb3, we already have another step to resample the sub-key correponding to y’s
superblock. However, notice that the two resampling steps are independent and subject to
exactly the same constraints, so removing the latter one preserves the distribution.

Now we define Hyb5 as following:

• Pre-processing phase. A receives the streaming signal. The client samples sk1, . . . , skM1

$←{0, 1}λ.

• Query phase. For each round t, A chooses a query xt:

– The client finds the first matched keys ski in the hint table, that is, x ∈ Set(ski).

– Execute the subroutine with this matched key.

– Then, the client replaces the entry ski with a freshly-sampled key sk′ subject to x ∈
Set(sk′).

Notice that in Hyb5, the client does not record any constraint and does not resample the matched
hint.

Claim B.4. The adversary’s views in Hyb4 and Hyb5 is computatonally indistinguishable.

Proof. This argument is similar to the argument for Claim B.2. We can still consider adding the
matched index vector I to the adversary’s views and prove the augmented views are indistinguishable.

We first argue that the distributions of I are computationally indistinguishable in the two
experiments. Observe that given any time, if we expand all the local hints to sets, the distributions
of those sets are computationally indistinguishable. The only difference between the two experiments
is that in Hyb4, the client replaces the matched hint with a uniformly random new hint and lazily
marks the current query x to the entry in Hyb4, while in Hyb5, the client directly does rejection-
sampling to sample a new hint containing x. These two sets are computationally indistinguishable
due to the pseudorandomness of the PRF2.

Conditioned on the same matched indices i1, . . . , it, we only need to argue the selected entry
in round t has the same distribution in both experiments, and then the messages observed by the
adversary should have the same distribution.

In Hyb4, we can equivalently consider the client first observes the queries x1, . . . , xt−1 and
sample i1, . . . , it from the marginal distribution (conditioned on x1, . . . , xt, those initial M1 hints
are uniformly random, and the extra t− 1 replacement hints are sampled conditioned on containing
the corresponding queries). Then, the client samples the selected entry for this round by deriving
the constraints from i1, . . . , it and does rejection sampling.

In Hyb5, we can equivalently consider the client first generates M1 primary hints and also the
t− 1 replacement hints given the queries x1, . . . , xt−1. Then, the client finds the matched hint in
each round and hence derives i1, . . . , it and chooses those selected entries.
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Again, the key observation is that in Hyb5, the adversary cannot observe what the hint table
is before round t. Then, from the adversary’s perspective, the whole table’s distribution is the
posterior distribution after observing i1, . . . , it. Moreover, that posterior distribution is exactly the
same as the distribution the client recorded as the form of constraints.

Therefore, from the adversary’s perspective, the selected entries in the two experiment share the
same distribution conditioned on the same matched indice i1, . . . , it. So we can conclude that the
adversary’s view in the two experiments are computationally indistinguishable.

Finally, we define the hybrid Ideal:

• Pre-processing phase. A receives the streaming signal.

• Query phase. For each round t, A chooses a query xt:

– The client will

∗ Independently sample k0, . . . , kn1/4−1
$←{0, 1}λ;

∗ Independently sample r0, . . . , rn1/4−1
$←{0, . . . ,

√
n− 1}.

∗ Send (k0, . . . , kn1/4−1), (r0, . . . , rn1/4−1) to the server.

The argument that Ideal and Hyb5 are computationally indistinguishable is nearly the same as
the proof in Section 5.2

C Additional Related Works

Now we review some additional related works.

PIR with linear computation cost. The classical single-server PIR setting does not have
preprocessing and the server is required to store the database without further encodings. Beimel,
Ishai and Malkin [5] proved that the per-query time of any PIR scheme in the classical model
has to be Ω(n). Early theoretical works [10, 13, 26] improve the communication cost of PIR to
polylogarithmic. Some later works [40, 1, 43] focus on improving the concrete computation time,
mainly by reducing the number of public key cryptographic operations.

Within the scope of linear-computation cost PIR, recent schemes [50, 44, 19, 28] also utilize
preprocessing to improve the concrete performance. In particular, SimplePIR [28] achieves the
fastest computation time and claims that the online query time in their implementation is already
limited by the server’s memory I/O speed, instead of the computation.

Nonetheless, all these schemes have linear online time per query, which hinders them from being
practical when scaling to large databases.

Batch PIR. In batch PIR schemes [32, 3, 2, 46, 39], the client is assumed to have a Q-size batch
of queries simultaneously. The client can make a batched query and the server’s computation cost
for the whole batch is still O(n), while the amortized computation cost for each query is reduced to
Õ(n/Q). The main drawback of batch PIR schemes is that the client cannot make adaptive queries.
Also, batch PIR schemes usually need some form of homomorphic encryption evaluation on the
whole database, making the query latency significantly large. See the comparison in [28].

Preprocessing PIR with sublinear computation cost. Biemel, Ishai and Malkin [5] introduced
PIR with preprocessing in order to circumvent the Ω(n) lower-bound on server side computation.
They showed that the servers could compute polynomially many bits offline that reduces the online
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computation for the servers. Specifically, for any ε > 0, k ≥ 2, they gave a k-server protocol that has
O(n1/2k−1) communication and O(n/(ε log n)2k−2) online server computation, and needs O(n1+ε)
extra server storage. In order to reduce the online server computation further, they gave a second
construction which for any ε > 0 achieves O(n1/2+ε) online server computation and communication,
and requires O(n1+ε′) extra server storage, where ε′ depends on ε. While the second construction
reduces online server computation significantly, the extra server storage is concretely very large, e.g.,
to achieve n0.6 server side computation, the server must store roughly n3.2 extra bits. In practice,
this kind of overhead is prohibitively large.

Our scheme can be categorized as the “client-preprocessing” model, where the client will store
some database-dependent hints and use those hints to make efficient online query. In fact, most of
the recent schemes follow the same design framework proposed by Corrigan-Gibbs and Kogan [18]:
the client will store many sets and their corresponding parities as hints and later on the client will
find a local set S that contains the online query x, then make a carefully-designed query to learn
the parity of S/{x}. The initial scheme [18] only supports one query, and subsequent works extend
the idea to support multiple queries. In the two-server setting, Shi et al. [52], Checklist [33] and
TreePIR [36] improve the communication cost to Õλ(1) while the amortized computation cost is
Õλ(
√
n). TreePIR is also concretely efficient. In the single-server setting, Corrigan-Gibbs, Henzinger

and Kogan [17] provide a scheme that has Õλ(
√
n) amortized computation and communication cost

using FHE. Zhou et al. [55] and Lazzaretti and Papamanthou [35] further improve the communication
cost to Õλ(1), relying on privately puncturale PRF.

All these aforementioned schemes require cryptographic assumptions that imply PKC, such as
DDH and LWE. Recnetly, Piano [56] and a subsequent work from Mughees, I, and Ren [45] introduce
concretely efficient schemes based on the OWF assumption, while achieving optimal client-storage
and online communication tradeoff (both are Õλ(

√
n)) and Õλ(

√
n) amortized communication cost

per query. Our work preserves the optimal tradeoff and improves the online communication cost to
Õλ(n1/4).

Doubly Efficient PIR (DEPIR), also known as the “server-proprocessing model”, requires the
server first preprocesses the database and store additional bits, and subsequently, the server may
answer queries with sublinear computation time. Earlier DEPIR schemes [12, 8] rely on non-standard
assumptions such as oblivious locally decodable code (OLDC) or virtual-blackbox obfuscation (VBB).
Recently, a breakthrough work from Lin, Mook and Wichs [37] constructs a DEPIR scheme based
on the standard Ring-LWE assumption.
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