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Abstract. The MPC-in-the-Head paradigm is instrumental in building zero-knowledge proof systems
and post-quantum signatures using techniques from secure multi-party computation. In this work, we
extend and improve the recently proposed framework of MPC-in-the-Head based on threshold secret
sharing, here called Threshold Computation in the Head. We first address the two main limitations of
this framework, namely the degradation of the communication cost and the constraint on the number
of parties. Our tweak of this framework makes it applicable to the previous MPCitH schemes (and in
particular post-quantum signature candidates recently submitted to NIST) for which we obtain up to
50% timing improvements without degrading the signature size. Then we extend the TCitH framework
to support quadratic (or higher degree) MPC round functions as well as packed secret sharing. We
show the benefits of our extended framework for several applications. First we provide post-quantum
zero-knowledge arguments for arithmetic circuits which improve the state of the art in the “small
to medium size” regime. Then we apply our extended framework to derive improved variants of the
MPCitH candidates submitted to NIST. For most of them, we save between 5% and 37% of the signature
size. We further propose a generic way to build efficient post-quantum ring signatures from any one-
way function. When applying our TCitH framework to this design to concrete one-way functions, the
obtained scheme outperforms all the previous proposals in the state of the art. For instance, our scheme
instantiated with MQ achieves sizes below 6 KB and timings around 10 ms for a ring of 4000 users.
Finally, we provide exact arguments for lattice problems. Our scheme is competitive with the state of
the art and achieves proofs around 17 KB for LWE instances with similar security as Kyber512.

1 Introduction

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07] is a versatile paradigm to build zero-
knowledge proof systems from secure multi-party computation (MPC). While not providing (asymptotically)
succinet proofs like SNARKs [BCCT12, |Grol6|, the MPCitH paradigm is particularly efficient for small
circuits such as those involved to construct (post-quantum) signature schemes. This was first demonstrated
by the Picnic signature scheme, submitted to the NIST PQC process in 2017 [ZCD™"17]. In the recent NIST
call for additional post-quantum signatures [NIS22], 7 candidates out of the 40 selected for the first round
rely on the MPCitH paradigm.

The MPCitH paradigm can be summarized as follows. By emulating an MPC protocol verifying a witness
and by opening some (verifier chosen) parties, the prover convinces the verifier they know the witness
with soundness error around 1/N, for N the number of parties involved in the MPC protocol. In the
traditional MPCitH approach, the bottleneck in running times comes from the emulation of the N parties.
Recent works have shown how this bottleneck can be mitigated. The hypercube technique proposed at
Eurocrypt 2023 [AGH 23| improves the “traditional setting” (additive sharing with GGM tree commitments)
by decreasing the emulation phase to 1 4 logy IV parties with no extra communication cost. On the other
hand, MPCitH based on threshold secret sharing [FR23b|, here called Threshold Computation in the Head
(TCitH), only requires the emulation of a (small) constant number of parties. Specifically, TCitH requires ¢+1
parties for an (£ + 1, N)-threshold sharing (which is 2 parties for £ = 1). Moreover, it enjoys a very efficient
verification, which is logarithmic in N (against linear in N for the traditional and hypercube settings).



However, TCitH suffers some communication penalties which is due to the use of Merkle trees in place
of GGM trees for the commitments of shares (this overhead typically represents 2 KB for non-interactive
arguments with 128-bit security). Moreover, the number N of parties (and hence the achievable soundness)
is limited by the size of the finite field on which the witness is defined (N < |F|), which is an issue when
dealing with small fields.

Our contributions. In this work, we improve the TCitH framework in several ways and put forward
efficient applications of this framework:

1. TCitH with GGM trees. We first address the two aforementioned limitations of TCitH compared to
standard MPCitH (with seed trees and hypercube technique). We first show how using techniques
from |CDIO5|, we can generate and commit Shamir’s secret shares with the communication cost of a
GGM tree (as in the traditional approach) while benefiting the low-cost MPC emulation of TCitH. In
this TCitH-GGM variant, we further propose a way to mitigate the limitation on the number of parties
by lifting the MPC protocol into a field extension. This lifting does not impact the proof size but slightly
increases the number of party emulations to 1+ [log N /log |F|] (for a soundness error of ~ 1/N). In terms
of computation, the lifted version of TCitH-GGM is equivalent to the hypercube technique |AGH™23]
when the base field is as small as Fy while it is strictly more efficient for larger fields. We show that
our (lifted) TCitH-GGM framework can improve the computational performance of nearly all the recent
NIST post-quantum signature candidates based on the MPCitH paradigm with savings ranging from 9%
to 51% compared to their hypercube optimized version.

In comparison to the original TCitH framework with commitments based on Merkle trees, using this
GGM variant saves the extra communication cost but loses the advantage of having a very fast verification
algorithm inherited from Merkle trees. It hence essentially provides a new interesting trade-off.

2. Extended TCitH framework. We extend the original TCitH framework in two ways. First, we consider
MPC protocols locally computing quadratic (or higher degree) functions instead of being restricted to
linear functions. This extension allows us to cover richer MPC protocols resulting in smaller proofs
(or signatures). Second, we consider packed secret sharing which consists in packing several witness
coordinates in a single sharing. This extension allows us to compress the size of the witness in the
Merkle tree variant of the TCitH framework and to achieve better proof sizes for “small to medium” size
statements. We thus obtain a versatile framework supporting packing and high-degree MPC and which
comes with two variants depending on the used method to generate and commit the shares: GGM tree
(more compact) vs. Merkle tree (faster verification). We provide a tight soundness analysis for these two
variants with respect to the packing and and degree parameters of the MPC protocol.

3. Degree-enforcing commitment scheme. In the original TCitH framework, the Merkle tree commitment
allows a malicious prover to commit inconsistent Shamir’s secret sharings, namely sharings which are
not of the right degree. This results in a degradation of the soundness which is further amplified when
using packing and/or high-degree MPC functions. To tackle this issue, we introduce a degree-enforcing
commitment scheme for the Merkle tree variant. Such a scheme ensures that the committed sharings
are of the right degree with a tunable soundness error which can be made negligible. Our approach is
inspired from the proximity test for Reed-Solomon codes proposed in Ligero [AHIV17| but it crucially
relies on different parameters to achieve stronger guaranties (i.e., exact degree of committed sharings)
which allows us to reach a better soundness.

4. Applications. We demonstrate the efficiency and versatility of the improved TCitH framework with
various applications: (i) Short zero-knowledge arguments for arithmetic circuits. We provide generic proof
systems resulting in short proofs for arithmetic circuits. For “small to medium” size circuits (with < 216
multiplication gates), our arguments are (up to twice) smaller compared to Ligero [AHIV17, |AHIV23]|,
the state of the art in terms of post-quantum zero-knowledge arguments in this regime. (i) Improved post-
quantum signatures. We then apply our extended framework to propose improved variants of the recent
NIST post-quantum signature candidates based on the MPCitH paradigm. We save between 5% and 37%



of the signature size for all of these schemes. In particular, our framework applied to the non-structured
multivariate quadratic (MQ) problem provides signature sizes of 4.2 KB which is to be compared with
the 6.3 KB of MQOM signatures (previously the smallest based on non-structured MQ) and 4.8 KB of
Biscuit signatures (MPCitH scheme based on a structured MQ instance) [FR23a, BKPV23|. (iii) Short
post-quantum ring signatures. We also apply our TCitH framework to design efficient post-quantum ring
signatures from any one-way function. We propose concrete instances relying on the MQ and syndrome
decoding (SD) problems. For a ring of 1000 users, both schemes have a running time below 10 ms, while
achieving sizes around 5 KB for MQ and 9 KB with SD, which greatly improves the current state of the
art. We further apply our scheme to an AES-based one-way function, which gives us a ring signature
smaller that 8 KB that only relies on symetric cryptography assumptions (for up to 220 users). (iv) Ezact
proofs for lattice problems. We finally show how our framework provides short and exact zero-knowledge
arguments for lattice problems. On toy examples from the literature, our proofs are between 3 and 5 times
smaller than with the best previous MPCitH-based scheme. On the Kyber512 (resp. Dilithium2) LWE
instance, we achieve 23 KB (resp. 44 KB), which is competitive with the recent state of the art [LNP22]
achieving 19 KB for a lattice-based statement related to Kyber512 (but proving the Ly norm whereas we
prove the Lo, norm). For custom instances with same security as Kyber512, our proofs can be lowered
to 17 KB.

5. Unifying MPCitH-like proof systems. While the TCitH framework consists in an extension of standard
MPC-in-the-Head proof systems with packed Shamir’s secret sharing, we establish strong connections
between some variants and/or instanciations of our framework and other MPCitH-like proof systems,
namely VOLE-in-the-Head [BBASG™'23| and Ligero |[AHIV17, AHIV23|. Our framework thus unifies
different MPCitH-like proof systems under the same umbrella, which provides further insights on these
techniques and might foster further improvements.

2 Preliminaries

In this paper, we shall use the standard cryptographic notions of pseudorandom generator (PRG), collision
resistant hash function, (binding and hiding) commit scheme, Merkle tree, and zero-knowledge proof of
knowledge. While we do not reintroduce these notions here, the reader is referred to [FR23b]| for their formal
definitions with similar notations.

Notations for (vector) polynomials. Let F a finite field and P € F[X] a polynomial with coefficients in F.
We shall denote coeff; the function mapping a polynomial P to its degree-j coefficient, so that P(X) =
Z(;igop coeff;(P)X7. We call P = (P,...,P,) € (F[X])™ a vector polynomial. The coeff; function extends
to vector polynomials: for any P € (F[X])", coeff;(P) € F” is naturally defined as the tuple of the degree-j
coefficients (coeff;(Py), ..., coeff;(P,)).

2.1 Secret Sharing

Along the paper, the sharing of a value v is denoted [v] := ([v]1, ..., [v]n) with [v]; denoting the share of
index i for every ¢ € [1: NJ]. For any subset of indices J C [N], we shall further denote [v]; := ([[vﬂi)ieJ.

A (t, N)-threshold secret sharing scheme is a method to share a value v € F into a sharing [v] such that v
can be reconstructed from any ¢ shares while no information is revealed on the secret from the knowledge of
t — 1 shares. A linear secret sharing scheme (LSSS) is a secret sharing scheme such that for any two sharings
[v1], [v2] and any two values a1, as € F, computing a; - [v1] + az - [vs] yields a sharing of ajv; + asvs. The
additive secret sharing is an (N, N)-threshold LSSS for which v = Zfil[[v]]i

The techniques proposed in the paper rely on Shamir’s secret sharing [Sha79] and on its packed ver-
sion [FY92], which we formally define below.

Definition 1 (Packed Shamir’s Secret Sharing). Let F be a finite field and let s,d, N € N such that
s <d< N and s+ N < |[F| + 1, where s is called the pack size, d the degree and N the sharing size.



Let {e1,...,en} and {w1,...,wgy1} be two public setﬁ of distinct elements of F such that {wr,...,ws} is
disjoint from all e;’s. A (s,d, N)-packed Shamir’s secret sharing of a tuple v € F*® is a tuple

[v] = (w1, ..., [ln) €FN st [v]s := Py(e;) Vie[l:N],

for some polynomial P, of degree < d satisfying (P,(w1), ..., Py(ws)) =v.
Fresh sharing. A fresh sharing of v with parameter (s,d, N) is generated as follows:

— sample r1,...,ry uniformly in F where £ :=d+1—s,

— build the polynomial P, by interpolation as the polynomial of degree < d satisfying Py(w;) = v; Vi € [1 : s]
and Py(wiys) =7 Vi€ [1: 4],

— build the shares [v]; as evaluations P,(e;) of P, for each i € [1: NJ.

Privacy and reconstructability. The parameter { := d+1—s is the privacy threshold of the sharing: any
set of £ shares of a fresh sharing [v] do not reveal any information on v. On the other hand, d + 1 shares
are necessary to fully recover v. For any subset J C [N], s.t. |J| = d + 1, the recovery of v from [v]; works
by interpolating the polynomial P, from the d + 1 evaluation points [v]; = (Py(e;))ics and outputing the
evaluations (Py(w1), ..., Py(ws)) = v. The packed Shamir’s secret sharing scheme is hence a (¢,d + 1, N)-
quasi-threshold secret sharing scheme since, whenever s > 1, we have a gap between the privacy threshold (€)
and the number of shares (d+ 1= £+ s) allowing full recovery of v.

Vector sharings. For a tuple v € FI*l of length [v| > s, a (s,d, N)-packed sharing of v is defined as

[(v1, ..., vs)]
[v] = [[(US-‘Fla-"-aUQs)]] e (}FN)MJIS , (1)

where |v|s = [|v]/s] is the number of s-tuples composing v (where v is padded with 0’s or garbage if |v| is
not a multiple of s) and the number of sharings in the vector sharing. (For such a vector sharing the row
vs. column notations of tuples is used interchangeably without effect.) A vector sharing gives rise to a vector
polynomial P, € (F[X])I"ls defined as P,(X) = (Pv(l)(X),Plgz) (X),...) where pi e F[X] is the polynomial
arising in the Shamir’s secret sharing of the i*" packed tuple (v(i_l)sﬂ, ey Vi)

Linear and multiplicative homomorphisms. The (packed) Shamir’s secret sharing enjoys linear and multi-
plicative homomorphisms. Consider the packed sharings [v1], [ve] of tuples vq, vy € F*. Then for any scalars
a1, as € F we have that ay - [v1] + az - [ve] is a sharing of ay - v1 4 ag - v2 (where the scalars a; are multiplied
to each coordinate of the tuple v;). We also have that [vs] = [v1] - [v2] (where the product is sharewise,
namely [vs]; = [v1]i - [v2]: Vi € [1 : NJ) is a sharing of v3 = v o ve, where o denotes the coordinate-wise
product. Finally, for two vector sharings [v1], [va] € (FV)? encoding packed tuples vy, vy € F¥*, we denote
by [vs] = ([v1], [v2]) the “inner product” sharing which is defined as [vs] = Z§:1Hvl,j]] - [va,;] where [vy ;]
(resp. [v2,;]) denotes the j'" packed sharing in the vector sharing [v1] (resp. [vs]). The resulting sharing
[vs] encodes a tuple vz € F, for which the i*" coordinate is the inner product between the “column tuple”
made of the i coordinates of the packs of v; and the “column tuple” made of the ith coordinates of the
packs of wvs.

2.2 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm was introduced by Ishai, Kushilevitz, Ostrovsky and Sahai
in [IKOS07] to build zero-knowledge proofs from secure multi-party computation (MPC) protocols. We

3 We also consider the “evaluation point” e; = oco. For this special evaluation point, the evaluation P,(c0) of a
polynomial P, € F[X] is defined as the leading degree coefficient of P,.



first recall the general principle of this paradigm before introducing a formal model for the underlying MPC
protocols and their transformation into zero-knowledge proofsﬁ

Assume we want to build a zero-knowledge proof of knowledge of a witness w for a statement z such that
(z,w) € R for some relation R. To proceed, we shall use an MPC protocol in which N parties Py,..., Py
securely and correctly evaluate a function f on a secret witness w with the following properties:

— each party P; takes a share Jw]; as input, where [w] is a sharing of w;

— the function f outputs ACCEPT when (z,w) € R and REJECT otherwise;

— the protocol is ¢-private in the semi-honest model, meaning that the views of any ¢ parties leak no
information about the secret witness.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of a witness w satisfying
(z,w) € R. The prover proceeds as follows:

— they build a random sharing [w] of w;

— they simulate locally (“in her head”) all the parties of the MPC protocol;

— they send a commitment of each party’s view to the verifier, where such a view includes the party’s input
share, its random tape, and its received messages (the sent messages can further be deterministically
derived from those elements);

— they send the output shares [f(w)] of the parties, which should correspond to a sharing of ACCEPT.

Then the verifier randomly chooses ¢ parties and asks the prover to reveal their views. After receiving them,
the verifier checks that they are consistent with an honest execution of the MPC protocol and with the
commitments. Since only ¢ parties are opened, the revealed views leak no information about the secret
witness w, which ensures the zero-knowledge property. On the other hand, the random choice of the opened
parties makes the cheating probability upper bound by 1 — (IZ:;) / (IZ ), which ensures the soundness of the
proof.

The MPCitH paradigm simply requires the underlying MPC protocol to be secure in the semi-honest
model (and not in the malicious model), meaning that the parties are assumed to be honest but curious:
they follow honestly the MPC protocol while trying to learn secret information from the received messages.

2.3 General Model for MPCitH-Friendly MPC Protocols

Several simple MPC protocols have been proposed that yield fairly efficient zero-knowledge proofs and
signature schemes in the MPCitH paradigm, see for instance [KZ20b, BD20, BN20, BDK"21b, FJR22).
These protocols lie in a specific subclass of MPC protocols in the semi-honest model which is formalized
in [FR22]. In this model, an MPC protocol performs its computation on a base finite field F so that all the
manipulated variables (including the witness w) are tuples of elements from F. In what follows, the sizes of
the different tuples involved in the protocol are kept implicit for the sake of simplicity. The parties take as
input an additive sharing [w] of the witness w (one share per party), which is defined as

[w] = ([w]1,--., [w]ly) st w= z:[[w]]2 .

Then the parties compute one or several rounds in which they perform three types of actions:

Receiving randomness: The parties receive a random value (or random tuple) € from a randomness oracle
Opg. When calling this oracle, all the parties get the same random value ¢.

Receiving hint: The parties receive a fresh sharing [(] (one share per party) from a hint oracle Op. The
hint 8 can depend on the witness w and the previous random values sampled from Og.

* The following formalism is heavily borrowed from [FR22|.



Computing & broadcasting: The parties locally compute [o] := [¢(v)] from a sharing [v] where ¢ is
an F-linear function, then broadcast all the shares [a]q, ..., [a]x to publicly reconstruct a := ¢(v).

After t rounds of the above actions, the parties finally output ACCEPT if and only if the publicly re-
constructed values al,... ol satisfy the relation g(al,...,at) = 0 for a given function g. As formalized
in [FR22|, such an MPC protocol has a false positive probability. Namely, given the sharing of an invalid
witness as input, the protocol might still output ACCEPT with some probability p over the random choice
of the values €!, ..., ' from the randomness oracle Or. We refer to [FR22| for a formal definition or to
Section M below where we extend this MPC model.

2.4 MPCitH Transform based on Additive Sharing and GGM Trees

Any MPC protocol complying with the above description gives rise to a practical short-communication zero-
knowledge proof in the MPCitH paradigm. The resulting zero-knowledge proof is described in Protocol [T}
after sharing the witness w, the prover emulates the MPC protocol “in her head”, commits the parties’
inputs, and sends a hash digest of the broadcast communications; finally, the prover reveals the requested
parties’ inputs as well as the broadcast messages of the unopened party, thus enabling the verifier to emulate
the computation of the opened parties and to check the overall consistency.

1. The prover shares the witness w into a sharing [w].
2. The prover emulates “in her head” the N parties of the MPC protocol.
For j=1tot:
(a) the prover computes
B =1 (w, (€)i<y)s
shares it into a sharing [47];
(b) the prover computes the commitments

com

' {Com([[w]]“ (B0} ifj=1
T Com([8"]i;p7) if j > 1
for all i € {1,..., N}, for some commitment randomness p;
(c) the prover sends
hy 1= {Hash(co};?h(w:’jr;j A hngl}i]; iJ o
Lreven N ji>1
to the verifier;
(d) the verifier picks at random a challenge e’ and sends it to the prover;
(e) the prover computes
[o] == '»?fy)lgj,w)m ([w], (18'Di<s)

and recomposes o’ .

The prover further computes h¢41 := Hash([a]) and sends it to the verifier.
3. The verifier picks at random a party index ¢* € [N] and sends it to the prover.

4. The prover opens the commitments of all the parties except party i* and further reveals the commitments and broadcast messages of the unopened
party i*. Namely, the prover sends ([w]:, ([8°]i, 0))je))izi*» coml,...,comts, [@']i, ..., [a']i to the verifier.
5. The verifier recomputes the commitments com’ and the broadcast values [o/]; for i € [N]\ {i*} and j € [t] from ([w]s, ([87]i, pl)jcjy)izi in the
same way as the prover.
6. The verifier accepts if and only if:
(a) the views of the opened parties are consistent with each other, with the committed input shares and with the hash digest of the broadcast
messages, i.e. for j =1tot+1,

., Hash(com}, .,comy) ifj=1
hj = § Hash(com?,...,com},[o/']) ifj > 1
Hash([a']) if j=t+1
(b) the output of the MPC protocol is ACCEPT, i.e.
g(al,A“,at) Zo.

Protocol 1: Zero-knowledge protocol - Application of the MPCitH principle to the general MPC protocol
of [FR22].



Soundness. Assuming that the underlying MPC protocol follows the model of Section [2.3] with a false positive
probability p, the soundness error of Protocol [1]is

1 1

—4+(1=-=)p. 2

~vt+t(-5)P (2)
The above formula results from the fact that a malicious prover might successfully cheat with probability

1/N by corrupting the computation of one party or with probability p by making the MPC protocol produce

a false positive. This soundness has been formally proven in [FR22] for the general MPC model recalled above

as well as for several specific MPC protocols in other previous works — see, e.g., [DOT21} | BN20, FJR22].

Pseudorandomness and GGM trees. The communication of Protocol [I] includes:

— the input shares ([w];, [8']s,--.,[B!]:) of the opened parties. In practice, a seed seed; € {0,1}* is
associated with each party so that for each committed variable v (among the witness w and the hints
B, ..., B) the additive sharing [v] is built as

{ [v]; < PRG(seed;) for i # N
[ln = v =325 o]

Thus, instead of committing ([w];, [8'];), the initial commitments simply include the seeds for i # N,
and com? becomes useless for j > 2 and i # N. Formally, we have:

Com(seed;; p}) forj=1andi# N

com’ — Com([w]n, [B]n;py) forj=1landi=N
! 0 for j > 1 and i # N
Com([B7]n; py) forj>1andi=N

Some coordinates of the 37 might be uniformly distributed over F (remember that the 37 are tuples of
F elements). We denote 8" the sub-tuple composed of those uniform coordinates. In this context, the
last share [$""]x can be built as [8"™] 5 +— PRG(seedy) so that a seed seedy can be committed in
com}; (instead of committing [3"if] ). This way the prover can save communication by revealing seed

instead of [B"f] whenever the latter is larger;

— the messages [a!];-,...,[a!]; broadcasted by the unopened party. Let us stress that one can some-
times save communication by sending only some elements of [a!];«,...,[a!];+ and use the relation
g(at,...,at) =0 to recover the missing ones;

— the hash digests hq, ..., hy+1 and the unopened commitments <:om21*7 ..., comf. (as explained above, we

have com?. = 0 for j > 1 if i* # N).

As suggested in [KKW18], instead of revealing the (IV — 1) seeds of the opened parties, one can generate
them from a GGM tree [GGMS84] (a.k.a. a tree PRG or seed tree). Such a tree is a pseudorandom generator
that expands a root seed mseed into IV subseeds in a structured way. The principle is to label the root of a
binary tree of depth [log, N| with mseed. Then, one inductively labels the children of each node with the
output of a standard PRG applied to the node’s label. The subseeds (seed;);c[1.n] are defined as the labels
of the N leaves of the tree. Such a seed tree makes it possible to reveal all the subseeds but one by only
revealing log, (V) labels of the tree. The principle is to reveal the sibling path of the seed seed;« which one
wants to keep secret (i.e., all the labels on the siblings of the path from seed;- to the root). Those labels
allow the verifier to reconstruct the N — 1 seeds (seed;);c(1.n7\ {i=}- Using GGM trees, the prover hence only
needs to communicate logy N A-bit seeds to the verifier.



2.5 Threshold Computation in the Head: Original Framework

In [FR23b], the authors suggest building proof systems from the MPC-in-the-Head framework using a thresh-
old secret sharing scheme instead of using additive sharing as the wide majority of previous works. Their
approach leads to faster running times compared to the rest of the state of the art. For an MPC protocol
complying to the model described in Section the first step of the transform consists in replacing the
additive sharings handled by the protocol by (£+ 1, N)-threshold linear secret sharings (e.g. Shamir’s secret
sharings). Since the MPC protocols in this model only require linearity and ¢-privacy from the sharings, this
transformation is straightforward. Then, the TCitH transform compiles this MPC protocol into the following
proof of knowledge:

1. The prover generates a ({41, N)-threshold sharing [w] of w, and they commit each share independently:
for all i € {1,..., N}, com; < Com([w];, p;) where p; is some commitment randomness. They send a
hash digest hy of all {com;};e[1:n] to the verifier.

2. The prover emulates a subset S C {1,..., N} of £+ 1 parties and they send a hash digest hs of the values

which have been broadcast by these parties to the verifier.

. The verifier samples a random subset I C {1,..., N} of ¢ parties.

4. The prover opens the commitment of all the parties in I, namely they send ([w];, pi)icr. The prover
further sends additional information to enable the verifier to recompute h;. Additionally, the prover
sends broadcast shares of an unopened party i* € S\I.

5. The verifier checks that the open commitments are consistent with the corresponding hash and that the
revealed parties are consistent with the hash of the broadcast values.

w

Since only a small number of commitments need to be open in the TCitH framework, one relies on a
Merkle tree instead of a GGM tree. Namely, the commitment h; is computed as the root of a Merkle tree
with leaves com;. Then, while opening the commitments, the prover further sends the authentication paths
of the opened leaves {com;};cs to allow the verifier to recompute and check h;. In [FR23b], the soundness
error of the obtained proof system is shown to be

% +p- M , (3)
( e) {41
where p is the false positive probability of the underlying multiparty protocol. Since ¢ is typically a small
constant (for example, ¢ € {1,2,3}), the MPC emulation is far cheaper than in the traditional MPCitH
framework in which we used to emulate all the N parties.

The hypercube technique introduced in [AGH™ 23] already reduces the cost of emulating the MPC protocol
to 1 + log, N parties (instead of N) without impacting the communication cost. On the other hand, the
original TCitH framework [FR23b] decreases the emulation cost even more, to a constant number of parties,
but the communication is slightly larger. This is for two reasons:

— TCitH commitments are based on a Merkle tree for which an opening is twice larger than with a GGM
tree. This is because a Merkle authentication path is made of log N hash digests of 2 bits while a GGM
sibling path is made of log N seeds of A bits.

— There is a soundness loss since a malicious prover can commit an invalid sharing (see Equation vs.

Equation (2)).

In the next section, we show how we can use GGM trees for commitments in the TCitH framework, thus
achieving a constant number of party emulations (of ¢ + 1) without communication penalty.

3 TCitH with Pseudorandom Sharing and GGM Trees

3.1 General Technique

In this section, we only work on the case of the non-packed Shamir’s secret sharing for the sake of simplicity,
namely Shamir’s secret sharing of parameters (s, ¢, N) with s = 1. The general case of is described later in



Section So in the context of this section, whenever a tuple w € F!*! is shared, the sharing [w] is to be
interpreted as a tuple of the sharings ([w;])1<i<|w| of the coordinates w; € F. Without loss of generality,
we shall assume that the evaluation point w; revealing the secret coordinate is fixed to w; = 0, that is by
P,,(0) = w; (as in the original Shamir’s scheme).

Sharing generation. We propose to generate the Shamir’s secret sharings involved in TCitH framework in
a pseudorandom way using the technique described in [CDI05]. The first step consists in additively sharing
the secret w into (JX) shares, each labelled by a different set from {T' C [1: N, |T| = ¢}:

w = E ST.

TC[1:N],|T|=¢

This is also known as an ¢-private replicated secret sharing [ISN89, |(CDIO3|.

We can optimize the generation of this additive sharing using a GGM seed tree as in the MPCitH
transform with additive sharing described in Section Then, for every i € [1 : N], the i*? party receives
the additive shares {s7};g7 and converts them into one Shamir’s share [w];.

Let us denote S} all the subsets of [1 : N| of size ¢, and let us take such a subset Ty € S¥. We also
denote |w| the length of the secret tuple w. Formally, the sharing generation works as follows:

1. We sample a root seed rseed € {0,1}*.
2. We expand this root seed through a GGM tree to obtain (]Z) leaf seeds {SeedT}TESéV'

3. For all T, we expand sp € FI*! from the seed seedy using a pseudorandom generator:
st < PRG(seedr).

4. We compute the auziliary value Aw as Aw := w — ZTQS;V s7. We thus have

w= Aw + Z sT.
TesSy

Let us denote Pr € F[X] the unique degree-¢ polynomiaﬂ such that

Pr(0) =1
PT(ej) =0 for all Jje T

where {e;}; are the parties’ evaluation points of the Shamir secret sharing scheme. For ¢ € [1 : N], we
compute [w]; € FI*! as

[w]; == Z sp - Pr(e;) + {OAw - Pry(e;) if i & To, ()

) otherwise.
TGS;V €T

Correctness. Let us analyze the sharing {[w];}; obtained using the above procedure. We define the polyno-
mial P, (X) € (FX])™" as

Py(X) = Aw-Pr,(X)+ Y sr-Pr(X), (5)
Tesy

5 If there is a § € T such that e; = co, Pr is of degree £ — 1.



such that Jw]; = P(e;) for all i. Since all polynomials { Pr}r are obtained by interpolation of £ 4+ 1 points,
they are of degree (at most) £. We hence directly have that P is a degree-¢ polynomial. Moreover, we have

P(0) = Aw- Pp,(0)+ Y sr-Pr(0)
TeSy

= Aw + Z ST =w .

Tesy

We thus deduce that the shares {[w];}; forms a valid Shamir’s secret sharing of w, since they are evaluations
of a degree-¢ polynomial with w as constant term.

Remark 1. Steps 1-4 consist in generating the ¢-private replicated secret sharing of w, using a GGM tree.
Then Step 5 consists in converting this additive sharing into a Shamir’s sharing.

Remark 2. As mentioned previously, the generation process can be generalized for any LSSS. For T € SV,
let us denote v(T) the sharing of 1 such that the i*" share is zero for all i € T (it necessarily exists thanks
to the privacy property of the LSSS). Then, we can build a pseudo-random sharing of this sharing scheme
using the same procedure as before except that we compute [w]; as

[w]; := Aw - vaO) + Z ST - vi(T).
TeSY igT

Protocol description. We rely on the same zero-knowledge protocol as in the original TCitH framework
tweaked with the above sharing generation. Instead of committing {[w]:}i, the prover commits {seedr}pcsy
and Aw. To open a party 4, the prover then needs to reveal all the seeds {seedr}rcsy ;g and Aw (if i & Tp),
from which the verifier can recompute the share [w]; thanks to Equation . In practice, the prover should
reveal a subset I of ¢ parties, so they will reveal

all the seeds {seedr}r-71,

Aw if T # Tp.

In other words, it means that the prover should reveal all the seeds except seed;. To proceed, they just need
to reveal the sibling path of the hidden leaf seed; in the GGM tree.

Protocol [2| formally describes the zero-knowledge protocol obtained by applying the above TCitH frame-
work with GGM tree to the general MPC protocol formalized in [FR22| and overviewed in Section [2.3] where
{®7}, are the functions locally applied to derive the broadcast shares and 17 are the functions defining the
hints ]

Computing on polynomial coefficients. As briefly mentioned in [FR22], instead of emulating a subset of £+ 1
parties (i.e. applying the MPC computation for ¢ + 1 shares), the prover can directly emulate the MPC
protocol on the £ 4+ 1 coefficients of the polynomial P, (underlying the Shamir’s secret sharing [w]). Since
the constant term of the polynomial corresponds to the plain secret value, emulating the MPC protocol on
the constant coefficient is equivalent to computing the function underlying the MPC protocol (the function f
in Equation @) on the plain input witness. Such “emulation” is often cheaper than a party emulation, since,
in the MPCitH context, the prover already know some expected values o/ (which satisfy g(al,...,at) =
AcCEPT) and can thus save some computation.

6 A formal description of the general MPC protocol is also provided in Section (see Protocol . The zero-
knowledge protocol described here (Protocol [2)) is an application of our TCitH framework with GGM tree to this
general MPC protocol with the restriction that the ¢’ round functions are made of inner functions ¢** which are
linear.
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1. The prover samples a root seed rseed € {0,1}* and expands it through a GGM tree to obtain (}) leaf seeds {SeedT}TESZV‘
2. The prover expands each leaf seeds, s3. <~ PRG(seedr) for all 7, builds the auxiliary value Aw := w — S s, and computes
P,, + GenerateSharingPolynomial(Aw, {SOT}TQSPV)'

3. The prover emulates “in her head” the MPC protocol.

For j=1to t:

(a) the prover computes

B = (w, {"Yiesir’)
using fresh uniform random tape 7.

(b) the prover expands more randomness {SJT}TGSZN from the leaf seeds (such that |s}.| = |87] for all T'), builds the auxiliary value AB’ := 7 — >~ s7,, and computes
Pg; + GenerateSharingPolynomial(AS7, {S’JF}TES}"’)'

(c) the prover expands some commitment randomness p7. from the leaf seeds (such that |pZ.| = X for all T') and computes the commitments

Com(seedr; p}) if j =1 and T # To

com. i— Com(seedr, Aw, AB’; p}) if j=1and T =Tp
T 0 ifj>1and T #£Tp
Com(AB%;p%) if j>1and T =To

for all T € SPY.

the prover sends

(d

B Hash({com}.}r) if j =1
7 Hash({com}.}r, P,i-1) if j > 1
to the verifier;
(e) the verifier picks at random a challenge €’ and sends it to the prover;
(f) the prover compute the plain broadcast
o = coeffo(Pos) = & (w, (B")s;)-
(g) the prover computes, for i € [1: €],
coeffi(P,;) := &’ (coeff;(Pu), (coeffi (Pyr ) )k<;)-

The prover further computes hii1 := Hash(P,:) and sends it to the verifier.

'y

. The verifier picks at random a subset I C [1: N] of ¢ parties (i.e. |[I| = £) and sends it to the prover.

[

. The prover reveals the views of all the parties in I, namely they send the sibling path of seed; in the GGM tree to the verifier, together with Aw, {AB’},cn. when I # Tp.
The prover further sends the digests of the unopened commitments {com7};¢(1.) and the plain broadcast values {a”}je(1.4).

o

. The verifier recomputes the commitments com,i, for T # Ty and j € [1: ¢] from the sibling path and the auxiliary values (in the same way as the prover). They expand all the
randomness (s, sk, . .., s%)rzr from seeds and build the share of the open parties: for all i € I,

[w]: = GeneratePartyShare, ({5} 1.igr, Aw)
[87]; = GeneratePartyShare, ({s% } 1:igr, AB’) for all j € [1:¢]

where Aw and {ApB’}; are omitted if not provided by the prover. The verifier can emulate the MPC protocol on the open parties: for all i € I and j € [1:¢],
[o']: := & ([w]i, (18*]:)e<s)
Finally, the verifier can recompute the Shamir’s polynomials P,; of all {[a’]};: for all j € [1: ],
P,; = RecomputeSharing, (o, ([o”]:)ic1)-

7. The verifier accepts if and only if:

(a) the views of the opened parties are consistent with each other, with the committed input shares and with the hash digest of the broadcast messages, i.e. for j =1 to t+1,

., Hash({com}}r) ifj=1
h;j = { Hash({com%}.}r, P,i-1) if2<j<t
Hash(P,+) ifj=t+1;

(b) the output of the opened parties are ACCEPT, i.e.
glat,...,a") Z0.

Protocol 2: Zero-knowledge protocol: application of the TCitH framework with GGM tree to the general

MPC protocol of .
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Protocol routines. Protocol [2]is based on the following three routines that deal with sharings:

— GenerateSharingPolynomial takes as inputs an auxiliary value and the expanded randomness (i.e. the ran-
domness expanded from all the seeds), and outputs the corresponding Shamir’s polynomial (the polyno-
mial involved in the Shamir’s secret sharing). Formally, the call GenerateSharingPolynomial(Ax, (s7)pcsy)
outputs the polynomial P, defined as

||

Py(X) = Az- Pr,(X) + Y _sr- Pr(X) € (F[X])

— GeneratePartyShare; (for some i € [1 : N]) builds the share of the i*" party, using Equation (4). It takes
as inputs the randomness (s7)7.¢7, together with the auxiliary value when necessary. Formally, the call
GeneratePartyShare; ((s7)7.i¢1, Ax) outputs

[[Stl’]]z = Z ST - PT(ei) +

T:igT

{AZ‘-PTU(EZ') lflgTo,

otherwise.

— RecomputeSharing; builds the Shamir’s polynomial P, from a plain value z and ¢ party shares ([z];)ier-
It simply performs Lagrange interpolation with the points P,(0) = z and P,(e;) = [«]; for all ¢ € T.

Formally, the call RecomputeSharing;(x, ([2];)icr) outputs the polynomial P, € (F[X]) ! defined as

jerj#i ¢ jer

a(x)::x.HXjuz [[xﬂié. I f*eﬂj e XX —e)

- 7

jer J i€l

where i, is the index such that e; . = oo, and

I' =T\ {ic} and co :=[z]i, i €1,
I':=1 and co =0 ifioo ¢ I.

Soundness and zero-knowledge analysis. Let us analyze the soundness of Protocol 2] From a high-level
point of view, we just changed how the shares of the Shamir’s secret sharing are built. In the original TCitH
framework, one cannot force the prover to commit a valid sharing (i.e., where the shares are the evaluations
of the same degree-¢ polynomial). This degree of freedom impacts the soundness of the scheme: the false
positive probability p is scaled by a factor £(N — ¢)/(¢ + 1) in the soundness error (see Equation (3)) which
constrains the protocol to have a low p or to suffer an important loss in soundness. The situation is different
here: a malicious prover shall commit (]1\,[ ) seeds {seedr}r with an auxiliary value Aw. These values always
define a valid Shamir’s secret sharing with underlying polynomial

Py(X) = Aw- Pr,(X)+ Y s Pr(X)
T

where sy + PRG(seedr) for all T. While this sharing might not correspond to a valid witness, it is a valid
Shamir’s secret sharing of a (possibly invalid) witness w. Namely, all the sets of ¢ + 1 shares among the
[w];’s encode the same (possibly invalid) witness w. Thus, a malicious prover has no way of committing to
something that is not a valid Shamir’s secret sharing. For this reason, the soundness error e is

L < . )
=T TP\ Ty )
(2) (2)
which for £ = 1 matches the soundness error of the MPCitH framework with additive sharing (see Equa-
tion ) The obtained soundness is hence better than the original TCitH framework for which the soundness
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error is degraded by the fact that a malicious prover might commit an invalid Shamir’s secret sharing. This
result is formally stated in Theorem [1]in the next section (for an extension of the TCitH framework).

Regarding the zero-knowledge property, it simply holds from the following observation: the seed seed;
remains hidden and the plain witness w is masked by the hidden value s; := PRG(seed;). This ensures that
the proof system leaks no information about the witness (provided that the underlying MPC protocol is
¢-private in the semi-honest model).

Performances. Let us analyze the communication cost of Protocol 2} The prover sends

t + 1 hash digests hi, ..., htt11, which cost (¢t + 1) - 2\ bits;

— the sibling path of seed; in a seed tree with (2) which costs A - log, (JZ) bits;

the auxiliary values (Az, {AB7};ep. 1 ) when I # Tp;

— the plain broadcast values o', ..., a?;

— some commitment digests {com I}]E[l:t]> which cost ¢ - 2\ bits when I = Ty and 2\ bits otherwise (since

com? is @ for j > 0 and T # Tp).

We obtain a total communication cost of

— when I # Ty,
N
Cost = (t+1)-2A input Al 20 ).
ost = (t+1) +( inputs + comm + og2<£ + )
Riha,.hest Aw,AB1L,..., al, ot ~—-(—2 coml
seedp for T#I
— when I =Ty,

N
Cost = (t+1) - 2A +(comm + A - log, (£> + 2) ).
Rihaseshers  Olses@' e s comi,...,com}
seedp for T#I

where inputs denote the bitsize of (Aw, ABY, ..., AB?), and where comm denotes the bitsize of (at,...,at).

To achieve a soundness error of 27*, one must repeat the protocol 7 times such that €7 < 27*. The
resulting averaged cost (in bits) is the following:

Cost=(t+1)-2\+ - (([}7)1

(%)

N M —1 4t
inputs+comm+)\~log2<€) +(£)N-2)\>.

(2)

Comparison. Let us first consider the case £ = 1. We can check that Protocol [2| (with £ = 1) achieves
ezactly the same communication cost and soundness as the MPCitH transformation with additive sharing
and GGM tree (see, e.g., [FR23bl Section 3.2]). Moreover, in Protocol

— the prover emulates ¢ + 1 = 2 parties and
— the verifier emulates ¢ = 1 party.

This is to be compared with 1 4 logy, N (for the prover) and log, N (for the verifier) using the MPCitH
transform with additive sharing speed up with the hypercube technique of [AGHT23]. We thus obtain
a proof system with the same communication and soundness but always faster than the recent MPCitH
schemes accelerated with the hypercube technique.

Moreover, our result can be argued to be optimal in terms of party emulation: the verifier could not verify
less than one party (to get a sound proof) and the prover must emulate strictly more parties than those opened
to the verifier (to achieve the zero-knowledge property). We present in Section a detailed comparison
between the TCitH framework using pseudo-random sharings and GGM tree (abbreviated TCitH-GGM in
the following) and the former approach based on a Merkle tree recalled in Section (and abbreviated
TCitH-MT in the following).
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Remark 3. When repeating the protocol 7 times to achieve a negligible soundness error, we obtain a proof
system that emulates 27 parties in total for the prover. However, if the used MPC protocol has a negligible
false positive probability p, we can use the trick proposed in the Limbo proof system [DOT21] which consists
in using the same MPC challenges €',...,e" across the 7 parallel executions. In that case, we get exactly
the same plain values for the hints and the broadcast. Since one of the two party executions per repetition
is the plain MPC computation, we can make it once for all the repetitions. The overall MPC emulations for
the prover thus consist in emulating only 1 4 7 parties.

Case of £ > 1. To compare the cases £ = 1 and ¢ > 1, let us analyze the communication cost and the running
times with respect to a given soundness error 2-*¢ for a single repetition:

— Communication cost. We can assume that
N N
N N
(2) (%)
for all £. Moreover, we can observe that the seed trees have 22 leaves in both cases. We thus get that
the communication cost is the same for any ¢ (up to the above approximations).

and

— Running times. The size of the seed trees is the same in both cases and there is the same number of
commitments. The difference in the computation mainly comes from the MPC emulation: we need to
emulate 1 + £ parties (for the prover).

To sum up, taking ¢ > 1 leads to slower schemes while keeping the communication cost unchanged. So the
best choice is always to take the minimal value for £.

The only good reason to take ¢ > 1 would be to bypass the constraint on the number of parties. Remind
that we have the limitation that the number N of parties should be less than the field size (N < |F|) which,
for a small field, might prevent reaching the target per-repetition soundness error 27?0, While increasing /,
we can thus amplify the single repetition soundness with a limited N. While this approach is relevant, we
show another way to handle the case of the small fields in the next section which achieves better soundness-
performance trade-offs.

3.2 Lifting in a Field Extension

As explained previously, the TCitH framework suffers the constraint that the number N of parties should
be smaller than the field size: N < |F| (or N < |F| + 1 in some cases) as long as £ < N — 1 (see Lemma
1in [FR23b])E] This limitation is an issue when dealing with statements defined over small fields (and in
particular the binary field Fy). A natural idea to overcome this limitation is to lift the sharing in a field
extension.

Lifting in a field extension. Let us take n such that N < |F|" and consider the field extension K = F[d]/f(0)
where f is a public irreducible degree-n polynomial. We tweak a bit the sharing generation of Section [3.1
After expanding all sp € Fl*l for all T S}, we still compute the auxiliary value Aw as

Aw i=w — Z ST EFlw‘,
Tesy

but we compute the shares [w]; using Equation with parties’ evaluation points {e;} living in the field
extension K (instead of living in ). As consequence, the shares {[w];}; live in KI*’! instead of Fl*l. Let us
stress that the security properties still hold using this tweak:

— Zero-knowledge: the seed seed; remains hidden as previously, and so the plain value w is masked by the
hidden value sy := PRG(seed;).
— Soundness: the extractor of the proof of Theorem [1| (see Section [4) outputs the witness even if the
polynomials live in a field extension.
" Note that £ = N — 1 is equivalent to a trivial linear secret sharing (e.g., the additive secret sharing) and is not of
interest for the TCitH framework which benefits from small values of £.
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Performances. The communication cost remains unchanged since the proof transcript only contains auxiliary
values and plain values which still live in the base field F. Regarding the computational cost for the prover,
we can remark that:

— The cost of running the plain protocol (Step 3(f) of Protocol remains unchanged, since the plain values
still live in IF;

— The cost of running the MPC protocol on the ¢ other coefficients of the Shamir’s polynomials (Step
3(g) of Protocol |2)) is bigger. It is exactly n times bigger as we can decompose this computation into 7
smaller independent computations living in the base field. Indeed, by denoting Ay, ..., A; the matrices
and b the vector underlying the definition of ¢/, which is ¢7 : (vo,...,vj) = Ag-vo+ -+ Aj - v; +b
and by denoting z|4 the F-coordinate of x € K corresponding to the coefficient of the term 5971 when
decomposing = € K in the F-basis (1,6,...,6""1), we have:

Coeﬂ:i(Paj)‘d =’ (coefFi(Pw)7 (Coeffi(PBk))ij)

|d
= (Ag - coeff;(Py)) |4 + Z(Ak - coeff; (Pt ))jq + coeff; (Py)
k<j
= Ap - (coeff;(Py)q) + ZAk - (coeff; (Pgr )|q) + coeff;(Pp)
k<j

= (pj (coefFZ—(Pw)|d7 (Coeffi(Pﬁk)‘d)kgj)
which holds since the coefficients of Ay, ..., A; live in F.

The same analysis also holds for the verifier: emulating the parties is 7 times more expensive. To sum up,
when lifting in a field extension of degree 7, we obtain the same communication cost, but emulating the
MPC protocol is as expensive as emulating

— 14 ¢ - n parties for the prover,
— £ - n parties for the verifier.

We can observe that taking n = 1 corresponds to the zero-knowledge proof system of the previous
section. Taking 7 larger does not change the communication cost but the emulation phase becomes more
expensive. Despite this overhead, taking n larger than 1 can overcome the limitation of N < |F|. Indeed, we
can now execute the proof system with at most |K| := |F|” parties. For instance, if the witness (and MPC
computation) is defined over F1g and if one wants to take N = 256, one just needs to take n = 2. One then
gets 3 party emulations for the prover (instead of 2) and 2 party emulations for the verifier (instead of 1)
while squaring the affordable number of parties. Since the proof system is slower with larger 7, the optimal
strategy is to choose the minimal n satisfying N < |F|".

Let us remark that lifting in a field extension of degree n > 1 is more efficient to deal with small fields
than the alternative solution with ¢ > 1 (described in the previous section). Indeed, when targeting the
same soundness error, both cases have similar communication costs, but the lifting tweak requires fewer
emulations. This is illustrated in Figure [I] for the field Fy;.

We describe hereafter a way to further speed up the lifting tweak with ¢ = 1 using a hypercube structure
for the generation of shares.
Hypercube sharing generation. A straightforward execution of the routine GenerateSharingPolynomial to build
the corresponding Shamir’s polynomial P, (X) = ¢- X + x with

N
1 1

c:i=—Ax+ —8;
e

€
N i—1 4

involves around N scalar multiplications between a value from K and a vector from Fl?l, or equivalently
N - scalar multiplications between a value from F and a vector from Fl#l. However, we can pack these
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7 1 —— Lifting in a field extension
Taking£>1

3_ i

272 2—4 2’76 2’78 27’10 2712
Soundness error

Number of party emulations (prover)
IS wn

Fig. 1: Emulation cost when working on Fi3 using lifting and using ¢ > 1.

multiplications by defining the parties’ evaluation points {e;}; as follows. First, we index these points over
[1:N1] x...x[1l: N, where Nq,...,N, are some parameters satisfying N = Ny - ... - N,. Then, for
1€ [1l: N1 x...x[1: Ny], we define e; such that

1 1 1 1
i:T+T,5+.“+T,67Z*1€K’
(7 eil 6i2 in

where {€}; are distinct points over F* U {oo}. With this definition, we get that ¢ can be computed as

C = — Z és,

2€[1: N1 X... X [1:Ny]

1 1 1
- Z <,+/(5+...+/(5n_1>8i

€
1€[L: N1 x...x[1:Ny] " 2 n

i 1
Z Z fsi 5](271

k=1 \G€[1:N1]x...X[1:N,] k

n Ny,

DI DI i

k=1 \j=1 J duip=j

which involved only N; + ...+ N, multiplications instead of - N = n- Ny -...- N, and around - N
additions. The routine GeneratePartyShare; is also impacted: on inputs (s;);2; and Az, GeneratePartyShare;
outputs [z]; where

n Ni e e
1 1 Az - (1 - —4—) ifi# N,
[x]s :==es - E E (e — e/> E 8j SR 4 {0 ( E(N1,-os Nn)) 7

k=1 \v=1,vi otherwise.
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Remark 4. Let us remark that the extreme case of n = logo, N and N; = ... = N, = 2 corresponds to
the standard additive-sharing MPCitH framework with hypercube optimization from |[AGH™23] (since for
(¢,N) = (1,2) a Shamir’s secret sharing is equivalent to an additive sharing). Whenever the base field is
F5, this gives the best we can hope for with our approach. Whenever the field is larger, our “pseudorandom
sharing + lifting” TCitH framework always brings a better trade-off.

Remark 5. One may wonder what is the best choice for Ny,..., N, given N and |F|. For instance, working
on Fi31 with N = 512, one could take (N1, N2) = (32,16) or (N7, N2) = (128,4). The only place where
the choice of (Ni,...,N,) has an impact is for the computation of the leading coefficient in the routine

GenerateSharingPolynomial. As explained before, this step involves around Ny + ...+ N, multiplications, thus
the best choice consists in minimizing Ny + ...+ N,. The AM-GM inequality implies (N1 + ...+ N,)/n >
/Ny -...- N, which, together with N = Ny -...- N, gives us:

We deduce that taking N; as close as possible to VIV leads to the optimal computational cost.

3.3 Global Comparison
In Table |1} we compare the following MPCitH/TCitH-based zero-knowledge proof systems:

— the traditional additive-sharing MPCitH framework [KKW18, BN20|, where the prover emulates all the
N parties in their head;

— the additive-sharing MPCitH framework with hypercube optimization [AGH™ 23|, where the prover only
emulates 1 + log, IV parties;

— the original TCitH framework [FR23b| using Merkle tree commitments;

— the alternative TCitH framework using pseudo-random sharings and GGM trees, proposed in the previous
section.

For all these proof systems, we give the number of party emulations for the prover and the verifier, while
achieving a soundness error of 27* with N parties. Moreover, we give the overall complexity of the prover
and the verifier, which includes the emulation cost but also the cost of generation and commitment of the
input sharings.

TCitH
Additive-sharing MPCitH
Merkle tree variant GGM tree variant (¢ = 1)
Traditional Hypercube =1 Any ¢ Basic With lifting
Number of Emulations N N o \loga N1 ~ 2 oAbt 2. 2 L _14n
(prover) ~ Mogy N ~ logyg N ~ Mogy N ~ logs (7) logy N logy N
Time Complexity ¥ N
(prover) O()‘log]\z[N) O(AN) O()‘logw) O()‘logz N) O()‘imgj\;]v) O()\ilogan)
Number of Emulations oy N-1 ylogy N N 1 N P 1 .
(veriﬁer) ~ Alog2 N ~ Alogz N ~ Alog2 N ~ Alogz (IZ) A logy N A logy N
Time Complexity .
(verifier) Oy w) O(AN) oM o0 | OOy | O0R)
Restriction - - N < |F| N < |F| N < |F| YN < |F|

Table 1: Computational complexities for the existing MPCitH-based transformations, when achieving a
soundness error of 27* (assuming a negligible false positive probability p).

We can make the following observations:
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— The smallest emulation costs are achieved by the TCitH framework. In fact, in TCitH, taking N larger
reduces the emulation cost, while it was the opposite in the traditional MPCitH framework.

— All the protocols have a prover complexity around O(A%) even when the emulation cost is small
because of the generation and the commitment of sharings. We deduce that the latter shall be the
computational bottleneck for the TCitH framework (unless relying on heavy MPC protocols). When
working on large fields, the hypercube approach has the largest overall asymptotic complexity of O(AN).
We note that for small fields, TCitH has similar asymptotic complexity since one needs to take ¢ ~n =

log N.

— The TCitH framework with GGM tree is strictly better than the additive-sharing MPCitH framework
with hypercube optimization as soon as the base field has more than two elements (both are equivalent
on Fy).

— The original TCitH framework is the only zero-knowledge proof system achieving fast verification (thanks
to the Merkle trees). However, the original TCitH framework has a slightly larger communication cost
than the other protocols (due to Merkle authentication paths vs. GGM sibling paths as explained in

Section .

Remark 6. Let us mention that the framework TCitH with GGM trees is compatible with the principle of
MPCitH with rejection proposed in [FMRV22].

3.4 Application to NIST Post-Quantum Signature Candidates

In the recent NIST call for additional post-quantum signature schemes, 7 submissions fit the MPCitH
frameworkﬂ AlMer [KHS™22,|(CCH™ 23|, Biscuit [BKPV23|, MIRA |[ABC™23,|/ABB™23d|, MiRitH |[ARZV23,
ABBT23b], MQOM [FR23a], RYDE |[BCF723, ABB"23c| and SDitH [FJR22, |AFGT23]. We fetched the
source codes of all these submissions, applied our alternative TCitH framework, and compared with the
former approaches. The resulting running times are given in Table

Let us stress that we only fetched the source codes relative to the MPC protocols (and the arithmetic
parts). For the rest of the implementation, we used a factorized source code implementing the MPCitH
transformations. We are thus relying on the same source code for the symmetric components (pseudorandom
generation, commitments, ...), leading to a fairer comparison. In addition, we can rely on exactly the same
transformations for the three compared approaches. For example, in MiRitH, an implementation with the
hypercube optimization is provided but it emulates 2log, N parties while an optimal implementation only
requires 1+logy N party emulations. In our benchmark, the running times given for MiRitH with hypercube
correspond to an emulation of 1 + log, IV parties. In our source code, the pseudo-randomness is generated
using SHAKE and the hash function is instantiated with SHA3. We have benchmarked all the codes on
a 3.8 GHz Intel Core i7 CPU with support of AVX2 and AES instructions. All the reported timings were
measured on this CPU while disabling Intel Turbo Boost.

As expected, we can observe the TCitH framework does not lead to faster algorithms for AIMer and
RYDE, since the latter have the binary field Fy as base field. When working on larger fields, the TCitH
framework with GGM tree always leads to faster timings: the heavier the underlying MPC protocol, the
larger the gain. For instance, for MIRA (which uses the heaviest MPC protocol among the submissions), the
TCitH framework halves the running times.

Let us further stress that the timing improvements obtained thanks to the TCitH framework with GGM
tree tend to flatten the MPC protocol contributions in the NIST candidate timings and hence significantly
lessen the timing differences between the candidates. While the running times are in the range 4.5-344.3 ms
for the traditional approach with N = 256, they are in the range 3.22-9.89 ms with the TCitH framework.

8 PERK |ABB™23a| follows the shared-permutation framework [FJR23| which differs from the standard MPCitH
framework.
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Additive MPCitH TCitH (GGM tree)
Scheme N Size Traditional | Hypercube | n| Our scheme | Saving
AlMer 16 | 5904 0.64 0.52 4 0.52 —0%
256 | 4176 153 3.22 g 3.22 —0%
Biecuit 16 | 6726 2.81 .71 1 1.44 ~16%
scu 256 | 4758 1771 1.65 2 124 ~9%
VIRA 32 | 7376 74.95 15.02 2 8.04 —46%
256 | 5640 384.26 20.11 2 9.89 “51%
— 16 | 7661 6.81 2.59 1 1.52 %
MiRitH-la 256 | 5665 54.15 6.60 2 5.42 ~18%
. 16 | 8800 11.22 2.04 1 211 —18%
MiRitH-1b 256 | 6298 89.50 8.66 2 6.66 —23%
32 | 7621 12.88 1.64 1 3.31 —29%
MQOM-gf3l |33 96.41 11.27 2 874 —22%
32 | 7809 8.56 3.0 1 2.16 —20%
MQOM-gf251 | —=——6575 1411 7.56 1 5.97 21%
RVDE 32 | 7446 231 114 5 114 —0%
256 | 5956 12.41 1.65 8 1.65 ~0%
. 32 | 11515 16.85 2.90 1 3.07 —37%
SDitH-gf256 256 | 8241 78.37 7.23 1 5.31 —27%
. 32 | 11515 417 217 1 1.79 ~18%
SDith-gf251 I g o 19.15 753 1 6.44 —14%

Table 2: Benchmark of all the NIST MPCitH-based signature schemes, for the three approaches. The sizes
are in bytes and the timings are in milliseconds. The given timings correspond to the signing time, but
the verification time is always very close to the signing time (since the verifier makes almost the same
computation as the prover).

4 Extended TCitH Framework and Applications

This section presents our extended TCitH framework. We start by formalizing the MPC model for our ex-
tended framework (as an adaptation of the model from [FR23b|), then we describe our extended TCitH proof
system in two variants (Merkle tree vs. GGM tree), and finally give several applications and implementation
results.

4.1 MPC Model

We consider an MPC protocol that performs its computation on a base finite field F. We rely on packed
Shamir’s secret sharing with pack size s. All the manipulated variables (including the witness w) are assumed
to be tuples of elements from F. The size of such a tuple v shall be denoted |v| so that v € Fl*l. As we shall
make use of packed secret sharing with some fixed pack size parameter s, we shall split such a tuple v into
several s-tuples. By convention and according to Definition |1} a sharing [v] of v € Fl*l is a vector of packed
sharings: [v] = ([(v1, ..., v6)], [(Vss1s s v28)],-..) € (FN)¥s with ||, the number of s-tuples composing v
which is |v|s = [ |v|/s].

As in the MPC model formalized in [FR23b| and overviewed in Section [2.3] in our extended MPC model,
the parties jointly run the computation of a function

AccepT if g(ax) =0,
w7 E? = . 6
I A) {REJECT otherwise, (©)
with e = (¢!,...,&?) the random values from a randomness oracle Og, B = (B8',..., %) the hints from a
hint oracle Oy, a = (al, ..., at) := &(w,e,B) the broadcasted and publicly recomputed values (for some

function @ made explicit below), and g some final check function. The main differences with the previous
model are the following:

19



1. The considered protocols apply to packed Shamir’s secret sharings of the form

[v] = ([l - -, [v]w) == (Po(e), - ., Pulen))

for v € F* as defined in Section [2.1] We recall that d + 1 shares are sufficient to reconstruct P, and hence
recover (vy,...,vs) = (Py(w1),..., Py(ws)) whenever the polynomial P, is of degree deg(P,) < d (the
initial sharings are of degree d < s+ ¢ — 1 but the degree can grow throughout the protocol execution
as explained hereafter). Manipulated variables can also be tuple larger than s, i.e. of size |v| > s or
equivalently |v|s > 1, in which case [v] is a |v|s-tuple of packed sharings.

2. The round computation functions @', ..., @' (which are used to compute the broadcast values o?, ..., at)
are not restricted to be F-linear but can be polynomial functions of higher degrees.

The latter difference implies that the sharings computed by the parties during the protocol can be of higher
degrees than ¢ + s — 1 (the degree of the input witness sharing). In the following, we denote

deg([v]) = deg(Py)

the degree of the polynomial P, underlying a Shamir’s secret sharing [v], also called the degree of [v]. While
the input sharing of the protocol is a fresh degree-(¢ + s — 1) sharing, the computation of non-linear round
functions ¢ might produce sharings [«] of higher degrees.

Protocol ingredients. The considered MPC protocol is as follows. At the start, the parties receive as input
a fresh (s, ¢, N)-packed Shamir’s secret sharing (i.e. a sharing of degree £+ s — 1) [w] of the witness w (one
share [w]; per party). Then the parties process one or several rounds of the following actions:

— Receiving randomness: The parties receive a random value (or random tuple) € € Flel from a random-
ness oracle Or. When calling this oracle, all the parties get the same random value €. Upon application
of the TCitH transform, these random values are provided by the verifier as challenges.

— Receiving hint: Optionally, the parties receive a sharing [8] from a hint oracle Op. For some function
1, the plain hint 3 is computed as 3 := ¥ (w, ;7) where € = (¢},¢2,...) is made of the previous random
values from O and where r is fresh randomness. A fresh degree-d s-packed sharing of 5 is then generated
and distributed to the parties (one share per party), for some hint degree d (which might be different
from s+ ¢ — 1). Upon application of the TCitH transform, the hint [3] is generated and committed by
the prover.

— Computing & broadcasting: The parties compute [a] := @([w], [B],[0]), which means that they
locally compute

[a]i := o ([w]:, 18, [6]:) » Vie[l:N]

where [3] = ([8],[B2?],...) is made of the previous outputs of O and [f] is a fixed (publicly known)
sharing. The parties then broadcast [a] and publicly recompute «.

The function ¢ is any multivariate polynomial function over F whose coeflicients possibly depend on the
previously broadcasted values and the previous random values from Opg. (Similarly, the fixed shares of
[0] possibly depend on these previously broadcasted or random values.) Let d = deg([a]), the degree of
the obtained sharing which depends on the degrees of the input sharings [w], [3], [0] as well as on the
(multivariate) degree of the function ¢. We have that [a] is a (¢,d + 1, N)-quasi-threshold packed secret
sharing of «. Upon application of the TCitH transform, the prover computes [a] from the previously
committed shares (as well as previous broadcasted values and random values) and sends d + 1 shares of
« to the verifier (since d + 1 shares are necessary to fully reconstruct the sharing a).

Example 1. A broadcast value could be computed as

[o] = [w] - [we]
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with wy,ws € F*® two size-s coordinate packs of the witness. Here the function ¢ is simply the product
of these two coordinate packs: a will be equal to wy o ws, where o is the coordinate-wise multiplication.
This sharing product is computed sharewisely: [a]; := [wi]; - [wz2]; for every i. The obtained sharing
[«] has underlying polynomial P, := P,,, - Py,, with Py, , Py, the polynomials underlying the sharings
[wi]), [wz]. We hence have deg([a]) = 2(¢+s—1). Upon application of the TCitH framework, the prover
must communicate 2(£ + s — 1) + 1 shares of [a] to allow the verifier to reconstruct the full sharing.

At the end of the protocols, the parties evaluate a function g of the publicly recomputed values !, ..., af.

They output ACCEPT if g(al,...,at) = 0 and REJECT otherwise.

General protocol description. We consider two notions of rounds in our MPC model. The MPC protocol
is composed of one or several outer rounds. The first outer round starts with the parties receiving the input
sharing and possibly a first sharing from the hint oracle. It is then composed of a call to the randomness
oracle and one or several inner rounds of computing and broadcasting. Then the protocol either finishes with
the computation of g, or the parties call the hint oracle. In the latter case, a new outer round begins with a
call to the randomness oracle followed by one or several inner rounds. In the MPCitH or TCitH paradigm, a
new outer round begins each time the prover needs to commit a new sharing (i.e., the sharing of a requested
hint). Namely, an outer round in the MPC protocol translates to a pair of commit-challenge communication
rounds in the zero-knowledge protocol.

Successive rounds of computing and broadcasting are called inner rounds. Each outer round j € [1 : ]

) inner rounds of locally computing and broadcasting [a/*F] = @¥*([w], [8], ..., [6°], [6"*])

for k € [1 : t;in)]. This enables each function ¢’* to depend on previously recomputed values o/, ...,

performs tg-m

a’**=1. This notably gives a way to compute or verify non-linear (high degree) functions although the 7+

functions might be linear (or low degree) — see for instance the product-check protocol of [BN20]. We shall
(in)

denote by @7 the global iterative functions obtained from those t; " inner rounds:

. . . (in) . .
[0’] = ([o”'],.... [o?* 1) = &7 ([w], [8'], -, [6])
where the fixed sharings [7*] are “hardcoded” in the definition of &7.

Following this structure, our general MPC protocol is depicted in Protocol

False positive probability. The functionality computed by the protocol deterministically depends on the
broadcasted values e (through the function g), which in turn deterministically depend on the input witness
w, the sampled random values €, and the hints 3. It is formally given by the function f from Equation @,
with @ = ¢(w, €, 3) where P is the deterministic function mapping (w, e, 3) to a (defined by the coordinate
functions @1, ..., ®!). This function f aims at checking the validity of a witness w for a statement z with
respect to some relation R, namely checking that (z,w) € R. As in the MPC model of [FR23b|, we restrict
our model to MPC protocols for which the function f satisfies the following properties:

— (Correctness) If w is a good witness, namely w is such that (z,w) € R, and if the hints 3 are genuinely
sampled as 7 < ¢’ (w,el, ..., &7 r7) for every j, then the protocol always accepts. More formally:

Pre » [f(w,sﬁ) = ACCEPT (z,w) €ER ] =1.

VJ,/BJ <_ /ll[}](w7€1""7€]71;’r])

— (Soundness) If w is a bad witness, namely w is such that (z,w) ¢ R, then the protocol rejects with
probability at least 1 — p, for some constant probability p which is called the false positive probability.
The latter holds even if the hints B are not genuinely computed. More formally, for any (adversarially
chosen) deterministic functions x!,...,x?, we have:

(z,w) ¢ R

— ) X ) <
Pre {f(w,s,,@) ACCEPT Vi, 3 <—X3(w,£1,...,53_1;r7)} <np.
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1. The parties take as input an (s, ¢, N)-packed Shamir’s secret sharing [w].

2. For j =1 to t (outer rounds):

(a) For some function ¢? and some sharing degree dg,, the parties get a fresh degree-dg; s-packed sharing
[87] from the hint oracle O, such that

/BJ <_ w](w7 617' i 76]_1;7‘])

for a uniform random tape 7. (For this packed sharing generation, the size of the randomness is set to
dg; — s+ 1 so that the degree of the generated sharing is dg;. In case dg; = s + £ — 1 as for the input
sharings, the size of the randomness is £ and [$] is a fresh (s, ¢, N)-packed sharing.)

(b) The parties get a common random &’ from the oracle Og.

(¢) Inner rounds: The parties locally compute and broadcast
[o] := & ([w], [8'], - -, [8°])

and publicly recompute o?.
This step is detailed in Protocol [4)

3. The parties finally accept if g(al, ...,a") = 0 and reject otherwise.

Protocol 3: General MPC protocol for extended TCitH framework.

(c) For k=1 to tg-i") (inner rounds):
— For some F-polynomial function ¢’*, the parties compute:
[ := ¢"*([w], [8'], - -, [8°], [6""])
where [67°%] is some fixed sharing.

— The parties broadcast [o?*] and publicly reconstruct o?.

NB: The coefficients of the function ¢?* possibly depend on €', ..., &%, o, ..., o?~

. . (in) . _ (in) , .
NB: We denote [o’] = ([o”'],.. ., [o% 1) and &7 = ([¢"'],...,[¢"" 1), with [6"*] “hardcoded” in &7 so
that [o] := &7 ([w], [6'], ..., [’]).

1 k—1

and o', ..., o

Protocol 4: General MPC protocol: inner rounds.

We say that a false positive occurs whenever the MPC protocol outputs ACCEPT on input a bad witness w,
which occurs with probability at most p.

Remark 7. We use the terminology of false positive probability to differentiate from the soundness error of
the proof of knowledge which is obtained by applying the MPCitH or TCitH transform to such MPC protocol.
We further stress that the notion of false positive probability is different from the notion of robustness error
existing in the MPC literature. The robustness error corresponds to our false prositive probability in the
presence of an adversary that can actively corrupt a number of parties and usually in the absence of a hint
oracle. In our context, we do not require the MPC protocol to be robust (i.e. it is not required to satisfy
any security property in the presence of an active adversary) but we consider a hint oracle which can be
malicious: the false positive probability holds for any adversarial choice of the hints. Moreover, in contrast
to an MPC context where the robustness error is required to be negligible, we can take advantage of MPC
protocols with non-negligible false positive probability.
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4.2 Extended TCitH Framework

We describe hereafter our extended framework of Threshold Computation in the Head (TCitH). The main
difference with the original framework is the support of packed secret sharing and non-linear MPC round
functions. We further propose a tweak of the original TCitH framework in the way to deal with the commit-
ment of hints in protocols with multiple outer rounds. Our extended framework comes in two variants, namely
TCitH with Merkle tree (TCitH-MT) as the original framework, and TCitH with GGM tree (TCitH-GGM)
as presented in Section [3]

Tweaking hint commitments. The proof system described in the original TCitH framework [FR23b]
makes use of a different Merkle tree to commit the witness sharing [w] (together with first hint [3']) and
each hint sharing [37] in next outer rounds. In total, the resulting proof system thus uses t Merkle trees. We
propose here the following tweak: while generating the sharings [w] and [3'] in the first round, the prover
also generates and commits the sharings [32], ..., [3!] of uniformly random values 5% € IFW', ..., Bt eFIF
In the TCitH-MT variant, these sharings are committed using the same Merkle tree. In the following rounds,
to generate and commit a sharing of the j* hint 57, the prover just needs to compute a hint correction AB7
as A’ := B9 — 7 and they can then deduce a sharing [3’] of 37 using

18] « 5] + [467] (7)

where [AB’] denotes the “constant sharing” corresponding to the degree-s polynomial Pg; satisfying
Ppgi(w;) = AB] foralli e [1: s}ﬂ
This tweak presents three advantages:

— It only requires one Merkle tree instead of ¢, the communication cost induced by the authentication paths
is thus decreased by a factor ¢t. However, to reveal [37];, the prover now needs to reveal [3/]; and A3’
(instead of just [37];). The global communication cost is smaller as soon as sending AS7 is cheaper than
sending an authentication path, which is often the case in practice.

— It allows to have symmetry between both variants, TCitH-MT and TCitH-GGM. In TCitH-GGM, by
committing the seed tree in the first round, we are naturally committing random sharing [32], ..., [8].

— To obtain sound proof in the MPCitH-MT variant, we will need what we call a degree-enforcing com-
mitment scheme to make sure that the committed sharings are of the right degrees. This requires an
additional challenge-response round for each sharing commitment. Using the above tweak, this additional
round is performed a single time (after the initial Merkle tree commitment) instead of ¢.

Proof system blueprint. For both variants, the proof system arising from our extended framework runs
as follows:

1. The prover generates and commits the witness sharing [w], a first hint [8'] and ¢ — 1 random shar-
ings [3?] ..., [B"]; In the TCitH-MT variant, an additional degree-enforcement round of challenge and
response is performed (see details below);

2. The verifier generates the randomness €' as challenge;

3. The prover runs the inner rounds of computing and broadcasting in their head and commits the broadcast
shares [a!] to the verifier;

4. For each j from 2 to t:
(a) The prover generates and commits the hint correction AS7;

(b) The verifier generates the randomness €/ as challenge;
% Here, whenever |37| > s, the sharings [3°], [3’] and [AB7] are vector sharings and P,g; is a vector polynomial in

the sense of Definition |1} Then, Pg; (ws) = ABg is to be interpreted as the vector composed of the ith coordinates
of the packs composing ApS”.
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(c) The prover runs the inner rounds of computing and broadcasting in their head and commits the
broadcast shares [o] to the verifier;

5. The verifier generates a random subset I C [1: N| of cardinality |I| = ¢ as challenge;

6. The prover sends to the verifier: the shares [w]r, [8']z, [8%]r, - - -, [B]1 (with hint corrections AB2, ..., ABY),
the sharings [o'], ..., [o!].
7. The verifier checks:
— the commitments of the open shares [w]z, [8*]r, {[87]1, A8’} ;>2 and of the broadcast sharing [a!],

- [o'];
— the correct computation of the shares [a]; from [w]; (and [BY];, ..., [B‘]1);

— that g(al,...,a?) =0 (i.e. that the protocol accepts).

The generation and commitment of shares in Step 1 and their openings in Step 6 depend on the variant
(MT vs. GGM - see details below). In Steps 3 and 4(c), the commitment of the sharing [a’] is done by
hashing the dq, +1 first shares and sending the obtained hash h; = Hash([a/ ﬂ[lzd% +1]) to the verifier, where
do, = deg([a?]). Then, in Step 6, the opening of [o/] simply consists in revealing the shares [a/] s for some
set S such that |S| = do, +1—¢ and SNI = 0. In Step 7, the verifier recomputes the shares [a/]; from [w];
(and [B]1, ..., [B]1), then reconstructs the shares [[ozj]][lzdajﬂ] from the shares [a/]us to finally check
the correctness of the hash h;. This process checks at the same time the correct computation of the shares
[a]r and the commitment of the sharing [a?].

Degree-enforcing commitment scheme (TCitH-MT). As explained in Section (see the “Analysis”
paragraph), one advantage of the TCitH-GGM framework is to enforce the commitment of a valid Shamir’s
secret sharing (of a possibly incorrect witness), while in the TCitH-MT framework a malicious prover might
commit an invalid sharing, i.e., a sharing for which the shares do not correspond to the evaluations of a
degree-(s+ ¢ — 1) polynomial. The latter issue results in a degradation of the soundness which would further
amplify in the extended framework due to the use of higher degree sharings. To avoid this issue in our
extended TCitH-MT framework, we tweak the sharing commitment scheme to make it degree enforcing, as
described hereafter.

We describe hereafter a way to constrain the prover to commit a valid packed Shamir’s secret sharing
of the witness (i.e., corresponding to a sharing of degree s + ¢ — 1). Our technique uses the idea of the
test of interleaved linear codes (a.k.a. proximity test) for Reed-Solomon codes proposed in Ligero |AHIV17].
However, we use different parameters which crucially allows us to ensure a stronger soundness result. In
Ligero (improved with subsequent analysis from [BCIT20|), the test ensures that committed codewords have
a distance lower than §/2 from genuine codewords (where 6 is the minimum distance of the underlying code)
with possibly non-negligible soundness error. In our context, this translates to ensuring that a committed
sharing supposed to be of degree d has a distance lower than (N — d)/2 (i.e., less than (N — d)/2 non-equal
evaluations) to some degree-d sharing. Instead, we ensure that the committed sharings are exactly of the
expected degree (which can be d = s+ £ — 1 or larger), with a tunable soundness error (which can be made
negligible).

We first explain the basic principle ignoring hint commitments for the sake of simplicity. At the beginning,
the witness is extended with a random vector u € F(7%) so that the extended witness (u,w) is shared and
committed. By definition, the sharing [u] is composed of 1 packed secret sharings of random s-tuples. Once
[u], [w] have been committed by the prover, the verifier samples a random matrix I = (v, ) % of dimensions
1 X |wl|s. The prover then computes the sharing

[l =T [wl+[u], (8)

namely the sharing defined as [¢]; = I" - [w]; + [u]; for all i € [1 : N], where [w]; € Fl*ls is the vector
composed of the ith share of each packed sharing composing [w] and [u]; € F" is the vector composed of the
ith share of each packed sharing composing [u]. The prover commits [¢] to the verifier by sending the hash
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value of the underlying vector polynomial P¢. The sharing [¢] will be later revealed to the verifier which can
then check that [£] is of right degree s + ¢ — 1 and that the revealed shares well satisfy (8). This ensures
that the committed sharings [u], [w] were of degree s+ £ — 1 with high probability. The sharing [u] is used
to ensure the zero-knowledge property by masking [£] so that revealing [£] does not leak any information
on w.

When hints are used, we must further ensure that the committed sharings [3'], [3?], ..., [5¢] are of the
right degrees, which might be different for the different hints. Let dg; denote the degree of the hint [87] and
let dg = max(s+{—1,dg,,...,ds,). Our goal is to enforce that the polynomials P, Pga,, ..., P, underlying

the committed sharings are of right degrees deg(P,) = s + ¢ — 1, deg(Pp;) = dg, for all j € [1 : t]. Let
us stress that, in its basic form explained above, the degree enforcement consists in sending a polynomial
P: := I' - P, + P, to the verifier where P, € (F[X])!*ls and P, € (F[X])" are the vector polynomials
underlying the packed sharing [w] and [u]. To extend this to further polynomials with different degrees,
we shall align all the polynomials to the degree dg by multiplying each polynomial P by the monomial
Xds=deg(P) Namely, we define the global vector polynomial Q € (F[X])?! as

QX) := (X770 Py(X) | X7 Py (X) | -+ | X% Py (X)) (9)

which is of length |Q| = |wl|s + |8Y|s + - -+ + |B!|s. In this general setting, the mask sharing [u] randomly
generated and committed by the prover is of degree dg and the random matrix I" generated by the verifier
is of dimensions 7 x |Q|. The revealed degree-enforcing polynomial P; € (F[X])" is then defined as

Pe:=T-Q+P,. (10)

In the above equation, the dot product I'- @ is to be interpreted coefficient-wise: coeff;(P¢) = I" - coeff; (Q) +
coeff;(P,) for all i € [1 : dg], where coeff;(P;) € F" (resp. coeff;(P,) € F", coeff;(Q) € FI?l) is the vector
composed of the ith coefficient of each coordinate polynomial of P¢ (resp. P,, Q).

To wrap-up, our degree-enforcement commitment scheme works as follows:

1. The prover generates the sharing of the witness [w], the sharing of the random mask [u], the sharing of
the first hint [3'] and sharings [3?], ..., [3!] of uniform random vectors 37 € FI#’| for all j € [2 : t].

2. The prover commits these sharings using a Merkle tree. Specifically, they compute the leaf commitments
com; := Com([w];, [u]s, [8 i, [8%]i, - - -, [B']i; pi) and the root hy := MerkleRoot(comy,...,comy) and
send h; to the verifier.

3. The verifier samples a random matrix I" of dimensions n x |Q| where |Q| = |w|s + |B]s + - - +|8!]s and
sends it to the prover.

4. The prover computes the degree-enforcing polynomial P € (F[X])” using Equation and sends
hi := Hash(P¢) to the verifier.

The rest of the protocol runs as overviewed above with the following tweaks. During the opening phase,
the prover further reveal P (e;) for all ¢ € S with S some set of cardinality |S| = dg + 1 — ¢ and disjoint
of I (the set of opened shares). During the final checks, the verifier computes Pe(e;) = I' - Q(e;) + Py(e;)
for all i € I from opened shares [w];, [u]:, [8']:, [5%]is- - -, [B]: (by definition Q(e;) and P,(e;) are linear
functions of these shares). From {P¢(e;)}icsur the verifier reconstructs P¢ by interpolation and check the
hash hj = Hash(F).

Pseudorandom generation of high-degree sharings (TCitH-GGM). In Section [3| we explain how
Shamir’s secret sharings of degree ¢ can be pseudorandomly generated and committed (in a ¢-private way)
using a GGM tree with (]Z,f ) leaves. For the extended TCitH-GGM framework, we need to generate and
commit packed Shamir’s secret sharings of degrees possibly greater than ¢ (for the witness and the hints).
We explain hereafter how to adapt this ¢-private pseudorandom generation to the case of higher degree
sharings.
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To generate a pseudorandom degree-d packed sharing [z] of a value 2 € F*, the expanded randomness
st is of length (d — £+ 1) - logy |F|. Then the underlying polynomial P, is defined as

s d—Li+1
PX) =Y Awp - Prg(X)+ Y. Y s Pra(x) e (FIX)),
k=1 TesN k=1

while the recovery of the ith party share [z]; from ({sr}r.gr, Az) is defined as:

d—0+1 s o
Azxy, - P i fidTo,
[z]; := Z Z ng“) - Pry(ei) + {Zk—l zr - Pryg(e) ifigTo

TeSN igT k=1 0 otherwise.
where
— for all T, sp = (s, ..., s\ ) ¢ pa-e+1,

— Az = (Axy,. .., Ax,) satisfies Axy := ETesgV sg,?) for all k € [1: s];
— for all (T, k), Pry, is the degree-d polynomial satisfying

PT’k(e%) =1
Pry(ef) =0 forallje[l:d— ¢+ 1)\{k}
PT,k(6j> =0 for all] eT
with {e;}; and {e}}; two disjoint sets of distinct field elements with e} = w1, ..., e} = w;.

Protocol description. The zero-knowledge protocol obtained by applying our extended TCitH framework
to the general MPC protocol (Protocol is formally described in Protocol [5| The way the shares are
generated and committed (as well as opened and decommitted) depends on the variant (TCitH-GGM vs.
TCitH-MT). The formal description hence makes use of four variant-dependent routines:

— GenerateAndCommitShares: This routine takes as input the witness w, the first hint 6{, and a root seed
rseed, and it generates the sharings [w], [3'] of w and B!, the random sharings [u], [3?], ..., [5], and
a commitment h; of these sharings.

— OpenShares: This routine takes as input the witness w, the root seed rseed, the hint 3!, the hint corrections
{AB7};>2 and a set I C [1: N] such that |I| = ¢, and it returns views; an opening of the shares in I as
well as decom; the necessary data to decommit views; (namely to check the consistency of views; with
the commitment h;). In the TCitH-GGM framework, views; is defined as the sibling path of the leaf with
index I, concatenated with (Aw, ABY, ..., AB") when I # Ty, and decom; is defined as the commitment
com; (the leaf which cannot be recomputed from the sibling path). In the TCitH-MT framework, views; is
defined as all the shares [w]z, [3']1, [8%]r,- - -, [B¢]; and the hint corrections AB?, ..., AB!, and decom;
is defined as the authentication paths of the open commitments {com;};c; in the Merkle tree.

— VerifyDecommitment: This routine takes as input an opening viewsy, some associated decommitment data
decom; and the set I and it recomputes the commitment h;.

— RetrieveShares: This routine takes as input an opening views; and the associated set I and returns the
witness shares [w]; and the hint shares {[87]};.

The formal description of these routines is given in Figure[2] In the formal description of OpenShares, some
values must be retrieved from (w, %, rseed) which have been already computed in GenerateAndCommitShares.
We denote this by (w, %, rseed) +— (...). Of course, in practice, this computation does not need to be
performed twice. Moreover, the routines in Figure 2] rely on GGM trees and Merkle trees. To handle the
GGM trees, we denote

— TreePRG the subroutine that expands the seed tree from the root seed,
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1. The prover samples a root seed rseed € {0,1}*, compute the plain hint 8! = ¥(w; ') with r' <~ PRG(rseed), and computes:
([w], [u], [8'T, 15°], - - -, [B'], h1) ¢ GenerateAndCommitShares(w, 3", rseed) .

The prover sends h; to the verifier.

In the TCitH-MT variant, the prover and verifier additionally perform the following steps:
(a) The verifier samples a random matrix I" from F7¥1*! and sends it to the prover;

(b) The prover computes P¢ := I" - Q + P, where Q is computed from the polynomials of the sharings ([w], [3'], [5°],.--,[B']) using @ and P, is the
polynomial of [u]. The prover sends k) := Hash(P%) to the verifier.

2. The verifier samples at random a challenge ! and sends it to the prover;

3. The prover runs the MPC computation in their head. Specifically, the prover computes the shares

lo']i = &' ([wl:, [8']:) Vi€ [L:da, +1].

4. For j=2tot:

(a) The prover computes the plain hint B = (w,e', ..., &7 1) with 77 < PRG(rseed) and deduce the hint correction Ap’ = B9 — 37 and the hint
sharing [8°] = [8°] + [AB’] following Equation 4 The prover then computes the hash h; = Hash([[a]’l]][l:da]ﬂJrl], A7) and sends it to the verifier.

(b) The verifier samples at random a challenge £’ and sends it to the prover;

(¢) The prover runs the MPC computation in their head. Specifically, the prover computes the shares
[ = @ ([w]i, [8'Ti,- -, [8]:) Vi€ [l:da; +1].

5. The prover computes hit+1 = Hash([[a‘]][l:dwﬂ]) and sends it to the verifier.
6. The verifier samples at random a subset I C [1 : N] of £ parties (i.e. |I| = £) and sends it to the prover.
7. The prover reveals the views of all the parties in . Specifically, the prover computes
(views;,decom;) <~ OpenShares(w, rseed, 8, {AB}j52,1) .

The prover sends views;, decomy, {[a’]ss};eq.4 to the verifier, where S/ C [1: N] is of cardinality |S7| = da; + 1 — £ and such that $7 N T = 0, the prover

computes [o] g from [[O’]][Irda]ﬂ]'

In the TCitH-MT variant, the prover further sends {P¢(e;)}ies for a set S C [1: N] of cardinality |S| = dg + 1 — £ and such that SNI = 0.
8. The verifier performs the following checks:

— (Shares’ commitment) First, the verifier checks the opened views vs. the commitment h;. Namely it computes:

hi VerifyDecommitment(views;, decomy, I) .

If by # hy the verifier stops and outputs REJECT.
— (Parties’ computation) Then, the verifier computes
([wlz, {[B8°]1};) < RetrieveShares(views;, I)
and )
[o']i = @7 ([w]i, [8'Ti,- -, [87]))  Viel Vie[l:4].
For all j € [1 : t], the verifier recovers the shares [(y][1:d07+1] from [a];,ss and checks that hjy1 = Hash([[a]]][l:daFﬁ”,Aﬁj“) (if j <t) or hjp1 =
Hash([[a]]][l:da]ﬂ“]) (if j = t). If the check fails, the verifier stops and outputs REJECT.
In the TCitH-MT variant, the verifier further computes Pe(e;) = I' - Q(ei) + Pu(es) for all i € I from opened shares. From {Pe(e;)}icsur the verifier
reconstructs P¢ by interpolation and check that h} = Hash(P%). If the check fails, the verifier stops and outputs REJECT.

— (Protocol outcome) The verifier recovers the plain broadcast value « from [a];us and checks that g(a) = 0. If one of the checks fails, the verifier stops
and outputs REJECT.

If none of the above checks failed, the verifier outputs ACCEPT.

Protocol 5: Zero-knowledge protocol: Application of the extended TCitH framework to the general MPC
protocol (Protocol.
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— GetSiblingPath; the subroutine which computes the sibling paths of the leaves indexed by I,
— RetriveLeavesFromPath the subroutine which recomputes all the leaves except those indexed by I from
the corresponding sibling paths.

To handle the Merkle tree, we denote

— MerkleRoot the subroutine which computes the root of the Merkle tree for the given leaves,

— GetAuthPath the subroutine that extracts the authentication paths for the leaves indexed by I,

— RetrieveRootFromPath the subroutine which recomputes the root of the Merkle tree from some leaves
with their authentication paths.

Security. The completeness, soundness, and zero-knowledge properties of the obtained protocol are stated
in the following theorem. The input MPC protocol has the following parameters: the size of the sharings NV
(a.k.a. the number of parties), the privacy threshold ¢, the pack size s, the maximal degree of the broadcast
sharings d,, the maximal degree for the hint sharings dg (wlog. dg < d,), the false positive probability p.
With these parameters, the input sharing is a (s, ¢, N)-packed Shamir’s secret sharing and the MPC protocol
is required to be f-private. The theorem proof is provided in Appendix [A]

Theorem 1. Let II be an MPC protocol of parameters (N,{,s,dq,dg,p) complying to the format of Pro-
tocol [3 In particular, II is (-private in the semi-honest model and of false positive probability p. Then,
Protocol [3 built from IT satisfies the three following properties:

— Completeness. A prover P who knows a witness w such that (x,w) € R and who follows the steps of
the protocol always succeeds in convincing the verifier V.

— Soundness. Suppose that there is an efficient prover P that, on input x, convinces the honest verifier
V to accept with probability

e =Pr[(P,V)(x) > 1] > ¢

where the soundness error € is defined as

()

p+(l—p)- 0 for the TCitH-GGM wvariant,
€= (o) ) (11)
p+(l—p)- (Jf,) + \BFI”’ for the TCitH-MT variant.
4

Then, there exists a probabilistic extraction algorithm & with time complexity in poly(\, (€ — €)~ 1) that,
given rewindable black-box access to P, outputs either a witness w satisfying (x,w) € R, a hash collision,
or a commitment collision.

— Homnest- Verifier Zero- Knowledge. Let the pseudorandom generator PRG used in Pmtocol@ be (t, epra)-
secure and the commitment scheme Com be (t, econ)-hiding. There exists an efficient simulator S which,
given random challenge I outputs a transcript which is (t,eprg + €com)-indistinguishable from a real
transcript of Protocol[3

Dealing with small fields. One of the drawbacks of using the (packed) Shamir’s secret sharing scheme is
that the number N of parties should be smaller than the field size F. It can be an issue when working with
statements based on a small field Fy as the binary field. To handle that, we should share the secret in an
larger field extension F and lift all the multiparty computation in this larger field. The concrete impact on
the proof size depends on the considered variant.

With TCitH-MT, each revealed share shall weight more in communication while living in the extension
field ([F : Fo] times more expensive, where [F : Fy] is the degree of the extension). Moreover, the MPC
protocol should include a test to check that the shared values live in the base field Fy (for example, by
checking that a random Fy-linear combination of the shared values is in Fy).
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TCitH-GGM TCitH-MT

GenerateAndCommitShares(w, 3%, rseed): GenerateAndCommitShares(w, 3%, rseed):

{seedT}Tgs?v + TreePRG(rseed) {Tﬁ}ke[(,;[,” « PRG(rseed, 0)
For all T, {Té}kg[o;dﬁl _s] < PRG(rseed, 1)

5% 1= (%4, 8%4) < PRG(seedr,0) u, {71 ref0:dy—s) < PRG(rseed, —1)

st 1= (S%q, slT_',,) < PRG(seedr, 1) For all i € [1 : NI
Aw e w—3 5%, Pu(X) = L,(X) + F(X) - Yy_orh - X*
AB' - ' = Y sk Pt (X) = I (X) + F(X) - S532 " rf - X
[w] < GenerateSharing(Aw, {s%-}r,£) Pu(X) =I1.X)+ F(X) - Zii;s ri. X*
[8'] + GenerateSharing(AB*, {st}r,dg, ) For all j € [2: ],
For all j € [2: ], B, {Ti}ke[l):d/j] —s) ¢ PRG(rseed, j)

sh = (s ., sh,) < PRG(seedr, j) For alli e [1: NJ:

[37] + GenerateSharing(0, {5} }7 ds, ) Pyy(X) =TIy, + F(X)- 00 ol X*
For all T € S: For all i € [1: N]

IfT # T, [w]i + Pu(e:)

comy < Com(seedr; pr) [8']s < Pai(ei)
Else [87]: <= Pz (e:) for all j > 2
comr + Com(seedr, Aw, AB'; pr) com; := Com([w]: || [8']: I [B°1: || - 1 [8°D:, 2)
h1 < Hash({comr}r) h1 := MerkleRoot(comy, ..., comy)
Return ([w], 0, [5'], [8°], - .-, [B']. ) Return ([w], [u], [8'], [B°], - -, [B°], 1)
OpenShares(w, rseed, 81, {AB7} 52, I): OpenShares(w, rseed, 8, {AB7} 52, I):

(w, rseed, B') — (Aw, AB*, comy) (w, rseed, BY) = ([w], [8*1, [8%],- - -, [B'], {com; }:)
path; + GetSiblingPath, (rseed) views; < ([w]r, [8*11, [8°]1,- - -, [B']1, AB?, ..., ABY)
views; « (path;, Aw, AB*, ..., AB") decom; < GetAuthPath({com;};, I)
decom; < com;y Return (viewsy, decomy)

Return (views, decomy)

VerifyDecommitment(view51, decomy, I): VerifyDecommitment(view51, decomy, I):

(pathl, Aw, Aﬁl, c ,Aﬁt) <— viewsy ([[’LU]]], Hﬁlﬂj, [IE2I|1, ey [[3‘]]1, Aﬁ2, . Aﬁf) <— viewsy

{seedr} 1.1 < RetriveLeavesFromPath(path;)

com; < decom;y For all ¢ € I:

For all T # I: com; := Com([w]; || [B*1: || [B?Li || - - - || [B*]is p2)
IfT#To h1 < RetrieveRootFromPath(decom;, {com; }icr)

comy < Com(seedr; pr) Return hy

Else

comr + Com(seedr, Aw, AB*; pr)
h1 < Hash({comr}r)

Return hy
RetrieveShares(viewsy, I): RetrieveShares(viewsy, I):
path; || (Aw, ABY,..., AB") < views; shares; || (ABZ_, P Aﬂt)_ < views;
{seedr}7r < RetriveLeavesFromPath(path,) ([wli, 18 14, [8%1s, - - - » [B])ier < shares;
ForqllT;éI., For all i € I,
s+ PRG(seedr, j) for j € {0,...,t} If e; # oo, -
Foralliel, [67]: <= AB? + [8°]: for all j > 2
[w]: < GeneratePartyShare, ((s%)7.igr, Aw, £) Else, -
For all j € [1:¢): [8°]¢ « [B7]: for all j > 2

[8]i < GeneratePartyShare, ((s}.)1:igr, A3, dg,) Return ([w]z, [8]1,- .., [8']1)
Return ([w]r, [8']1,---, [B]r)

Fig. 2: Sharing generation and commitment routines, where the polynomial F(X) is defined as []; _; (X —wy,)
and I, is the polynomial defined by interpolation such that Vi € [1 : s], I(w;) = v;.
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With TCitH-GGM, the situation is different. As in Section we tweak a bit the sharing generation
of the witness w so that the expanding randomness {sr} and the auxiliary value lie in the small field.

Specifically, after expanding all sy € IF(I)w‘ forall T € Sév , we compute the auxiliary value Aw € ]Fl)w‘ as

Aw = w — Z STGIE‘g“U‘,

TesyN

but we compute the shares [w]; using Equation with parties’ evaluation points {e;} living in the field

extension F (instead of Fy). As consequence, the shares {[w];}; live in Fl*l instead of IF‘Owl. Since the proof
transcript contains the auxiliary value Aw of w, but no shares of Jw], the communication cost induced by
revealing the opened shares is unchanged. The same observation holds for the hint sharings [5'],..., [8].
However, the lifting impacts the communication cost due to the broadcasted sharings [a!], ..., [a!].

5 Application of the Extended TCitH Framework

We present hereafter several applications of the TCitH framework. Before describing these applications,
we start by introducing a useful building block which is a protocol to generate high-degree random, par-
tially structured, sharings (Section . We introduce two general zero-knowledge proof systems obtained
by applying the TCitH framework to simple MPC protocols: the first one, TCitH-1I,, checks polynomial
constraints on the witness in the non-packed setting (Section while the second one, TCitH-II, pp, checks
global linear constraints and parallel polynomial constraints on the witness in the packed setting (Section.
We show how these proof systems results in competitive zero-knowledge arguments for (low-degree) arith-
metic circuits (Section. We further described improved post-quantum (ring) signatures from TCitH-IT,
(Sections and as well as zero-knowledge arguments for lattices from TCitH-IT ppc (Section .

5.1 Generation of High-Degree Sharings

We describe hereafter a protocol to generate a uniformly-random degree-d’ sharing [v] of a random tuple
v € F¥, where d’ is strictly larger than d = s+ ¢ — 1. For the TCitH-GGM variant, such a sharing [v] can be
directly obtained from the hint oracle Og. We note that we could do the same with the TCitH-MT variant
but this implies a penalty in communication (or argument size). Indeed, a degree-d’ hint implies dg = d’
which increases the communication of the degree-enforcing commitment (compared to dg = d in the absence
of high-degree hints). For this reason, we introduce the protocol ITg described below (see Protocol @ We
further introduce variants of this protocol to generate random sharings of zero and random sharings summing
to zero.

Generation of a Random Sharing (IIg). The idea behind our approach is to define the polynomial P,
underlying the random sharing [v] from lower degree polynomials P,,, ..., P, as follows:

n

Py(X) =) P, (X) XU~

J

Jj=1

for some n,0 € N. Here, using polynomials P,,, ..., P,, , of degree dg and P, of degree d' —(n—1)d < dg
we get that P, is of degree d’. Based on this definition of P,, ITg is formally defined in Protocol @

Lemma 1. In Protocol[6, let n:= [(d' +1—10)/(dg — £+ 1)] and § := dg — £+ 1. Then, given the views of
¢ parties of indices i € I for some set I C [N] s.t. |I| = £, the sharing [v] is uniformly random of degree d’
conditioned to [v]; being consistent with the views. Namely, for any set J of cardinality |J| < d' +1—¢ s.t.
INJ =0, [v]s is a uniform random tuple of FI'I mutually independent of the views.
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1. The parties get n — 1 random sharings [ui], ..., [un—1] of degree dg from the hint oracle O,
2. The parties get a random sharing [u,] of degree d’ — (n — 1)§ from the hint oracle Og,
3. The parties locally computes

[oli = > lusli - ()"

Jj=1

4. The parties now hold a random degree-d’ sharing [v].

Protocol 6: IIg — Generation of a random degree-d’ sharing.

Proof. Let us take a set I C [N]s.t. |[I| = £. For all j € [1: n], the polynomial P,; can be written as

Puj (X) - uJ,I +H —61 Ruj,I(X) 5
— —— el ——
of degree of degree £—1 | , of degree
dg when j<n of degree £ dg—¢ when j<n
d’—(n—1)6 when j=n d’'—(n—1)6—¢ when j=n

where

— 1,1 is defined by interpolation such that I, 1(e;) = [u;]; for all i € I, and

— the distribution of R, ; knowing [u;]r is the uniform law dlstrlbutlon over polynomials of degree at
most dg — £ (for R,, 1, of degree at most d’ — (n —1)d), since P,; is a uniformly-random polynomial
satisfying P, (e;) = [u;]; for all i € I.

So, we have

PU(X):i )+ J[(X =€) - Ru, 1(X) | - X710

j=1 iel
— [Z L, (X)) - X000 4 T(X =€) [ D Ruy (X)) - XU
j=1 iel j=1

By defining I(X) := Y7 I, 1(X) - XU and R(X) := 37 Ry, 1(X) - XU~D% we have that P,(X) =
I(X)+]];c; (X —ei)- R(X). The distribution of the polynomial R knowing {[u;];}; is a uniform distribution
from the polynomials of degree at most d’ — ¢, when ¢ := deg R, + 1 = dg — £+ 1. So, P,(x) is a random
polynomial of degree at most d’ such that P,(e;) = [v]; for all ¢ € I. O

For a target degree d’ and a target maximal degree dg for the hints, Lemma [1] gives the parameters n
and 0 of the generation protocol IIg. For the TCitH-MT variant, the parameter dg can then be chosen to
minimize the communication by balancing its impact on the degree enforcement parameter 1 and the number
n of hints Ju;] (both impacting the proof size).

Generation of Sharings of Zero (ITp). Let us now consider the case of the generation of a uniformly-
random degree-d’ sharing of (0,...,0) € F*. This can be achieved by using the protocol ITg to generate
a uniformly-random degree-(d’ — s) sharing which is then locally multiplied by the constant sharing [0]
corresponding to the degree-s polynomial Py(X) = [[;_,(X — w;) (where we recall that the w;’s are the
evaluation points for the plain coordinates). Formally, the protocol Iy for the generation of a uniformly-
random degree-d’ sharing of (0, ...,0) € F* performs the following steps:

1. The parties run protocol ITg to obtain a uniformly-random degree-(d’ — s) sharing [v],

2. The parties locally compute [z]; = [0]; - [v]s,

3. The parties now hold a random degree-d’ sharing [z] of (0,...,0) € F*.
In terms of privacy, Lemma [1| implies that given the views of any ¢ parties of indices in J, the generated
sharing [z] is uniformly-random conditioned to (P, (w1),. .., P:(ws)) = (0,...,0) and to [z]; consistent with
the views.
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Generation of Sharings Summing to Zero (IIso). We finally consider the case of the generation of a
uniformly-random degree-d’ sharing [v] of a uniformly-random v = (vq,...,vs) € F* such that };_; v; = 0.
This can be achieved using a tweak version of protocol ITg. In this tweaked version, the sharings Jui], ...,
[ur] returned by the hint oracle Oy are not fully random: the constant term of the polynomial P,, is defined
w.r.t. the random polynomials {P,, };>2 such that P,(wy)+ -+ P,(ws) = 0. In practice, this tweak simply
involves one hint correction Au; € F to correct one evaluation, say Pul(wl)m This tweak of the protocol
Il is referred to as the protocol ITsy in the following. In terms of privacy, Lemma implies that given the
views of any ¢ parties of indices in J, the generated sharing [v] is uniformly-random conditioned to [v]s
consistent with the views and to Y., _; v; = 0.

5.2 Proof System for Polynomial Constraints

We instantiate the TCitH framework with an MPC protocol verifying for general polynomial constraints
without using packed sharing, i.e. with s = 1. The communication of the obtained proof system only depends
on the size of the input of the circuit and the circuit degree (and not of its number of multiplications as
many previous MPCitH proof systems).

For a witness w € F!*!, the considered MPC protocol checks that w satisfies some polynomial relations:

vje [1 : mij(u)) =0

where fi,..., f, are polynomials from F[X7,. .., X,] of total degree at most d. The protocol IT: checking
such polynomial constraints is formally described in Protocol [7}

The parties receive a sharing [w], with s = 1 and deg[w] = .

The parties get a uniformly-random degree-(d¢) sharing [v] of v = 0 € F using I1o (Section [5.1)).
The parties receive random values 71, . ..,Vm € F from Og.

The parties locally compute

o=

fol = [l + Y- - fo(lul)

5. The parties open [o] to publicly recompute a.
6. The parties output ACCEPT if and only if a = 0.

Protocol 7: IIpc — Verification of polynomial constraints.

Lemma 2. The protocol Iy is correct, namely it always outputs ACCEPT when w vanishes the polynomials
fis-- -y fm. The protocol Il is also sound with false positive probability ﬁ and {-private.

Proof. 1t is easy to check that IIp outputs ACCEPT when w vanishes the polynomials f1,..., f;, (and when
the hints are well-formed, i.e. v = 0) since

m

a=v+Y 7 filw)=0.

j=1
When w does not vanish the polynomials, there exists j’ such that f;/(w) # 0. In that case, « is uniformly
random in [ since 7, has been chosen uniformly at random in F. We get that ITp¢ shall output ACCEPT with
probability ﬁ, which corresponds to its false positive probability. Finally, the ¢-privacy of the protocol holds
for the following reason. In our MPC model, the protocol is ¢-private as long as the broadcast sharings do
not leak information on the witness. In the present case, we have that [v] is a uniformly-random degree-(d¢)
sharing of 0, which implies that [a] is a uniformly-random degree-(d¢) sharing of Z;”:l v, - fj(w) = 0. The
protocol IT,¢ is thus f-private. O

10 Specifically, the constant sharing [Au;] added to [u1] for correction corresponds to the polynomial Pa., such that
Ppu, (w1) = Auy and Pay, (w;) =0 for all i € [2: s].
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Parallel repetitions. The false positive probability can be made arbitrarily small by performing several
repetitions of Il in parallel. The obtained protocol Hég) is similar to Il with the following differences:

— p sharings [v1], ..., [v,] are generated using IT, in Step 2,

— p batches of m random values (1), ..., (7p,i); are requested from Op in Step 3,

— psharings [en], ..., [a,] are computed and broadcasted in Step 4, s.t., [ax] = [vr]+ 3272, vi,5- f5 ([w]),
— the parties output accept iff the p recomputed values verify a; = --- = a, = 0.

A simple adaptation of the proof of Lemma |2| implies that ngg) is sound with false positive probability ﬁ.

The TCitH-II,. proof system. By Theorem |1} when applying the TCitH framework to the protocol
H;(,g) we obtain a complete, sound, and HVZK proof system of soundness error

| | ‘ | (N) or the 1t varlanl,
' 1 1 (Z) (ZN-‘H) i .
W + — W . (N) + ‘ ‘ or the TCitH-MT variant.

To obtain a zero-knowledge non-interactive argument of knowledge, we perform 7 parallel repetitions of
the protocol and apply the Fiat-Shamir transform. Since the proof system has 5 rounds (with TCitH-GGM)
or 7 rounds (with TCitH-MT) and uses parallel repetitions, one must be careful while selecting the parameters
to avoid potential KZ-like forgery attacks [KZ20a]. To achieve A bits of security in the non-interactive setting,
we propose to select

. . . . N2 _

— the parameter n of the degree-enforcing commitment in TCitH-MT such that (Z+1) /(2|IF|’7) <27,
— the number p of MPC repetitions in the protocol HF(,@) such that 1/|]F|p <27,
(Y < 9on

<27M
) ) ~
Here, N, £ and dg are flexible parameters which can be chosen to optimize the proof size. The proof transcript
includes:

— the number 7 of PoK repetitions such that <

— The opened shares [w]; of the witness w € FI*!, for each of the 7 PoK repetitions.

— The opened shares of the hints used to build the sharing [v], for each of the p MPC repetitions of the 7
PoK repetitions. With the variant TCitH-GGM, these shares are communication-free.

— The degree-(df) sharing [o], for each of the p MPC repetitions of the 7 PoK repetitions. Since [a]; can be
recomputed by the verifier and since the « should be zero, the prover just needs to send (d¢+1)—£¢—1 =
(d — 1)¢ shares.

— The sibling paths in the GGM tree in the variant TCitH-GGM together with the unopened seed com-
mitments, or the authentication paths in the variant TCitH-MT.

— In TCitH-MT, the communication cost due to the sharing degree enforcing, which consists in the opened
shares [u]; used to mask the output of the sharing-degree test (where v € F7®) together with dg+1— ¢
additional shares of [¢] (where & € %), for each of the 7 PoK repetitions.

We obtain the following proof size when applying TCitH-GGM:

S1ZEgom = 4A+ 7 | £+ |Jw| - logy |F|+ (d — 1)¢- p - logy |F| 4+ A - logg N +2A
—_———
[w]r [a] GGM tree
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and when applying TCitH-MT:

S1ZEyT = 6A+ 7 - | £ (|w] 4+ nnints - p) - logy [F|+ (d — 1)€- p - log, |F|
[wlz,[v]z [o]

N
+2)\-€~log27+(d5+1)'ﬂ'logzm

degree enforcing

Merkle tree

where npings = [((d —1) - €)/(dg — £+ 1)].

5.3 Proof System for Linear and Parallel Polynomial Constraints

We now introduce a general MPC protocol to efficiently instantiate the TCitH framework with packed secret
sharing (s > 1). We consider a witness w = (wy,...,wps) € F™ arranged in n packs:

W1, .., We, [(wi, ..., ws)]
w = W41y «- -5 W2s, s.t. Hw]]: H(ws+17"'7w25)ﬂ

following the formalism of Section We shall further denote w™), ..., w®) the “column tuples” of the
arranged witness, namely w®) = (wy, wsyg, ..., W(n—1)s+k) for every k € [1: s].

The MPC protocol we introduce here checks polynomial constraints in parallel on each pack slot as well
as global linear constraints. With my the number of (parallel) polynomial constraints and mso the number of
(global) linear constraints, the protocol IT ppe checks that w verifies:

1. (parallel polynomial constraints) the w®)’s satisfy some polynomial relations:
Vje[l:my], Vke[l:s], fi(w®)=0

where f1,..., fm, are polynomials from F[X7,..., X,] of total degree at most d;

2. (global linear constraints) w satisfies a linear relation A - w = t where A is a matrix from F™2* (%) and
t is a vector from [F™2.

Checking the polynomial constraints works as previously: the f;’s are locally applied to the shares and
the protocol checks that the f;([w]) are (high degree) sharings of (0,...,0) € F® in the same way as
protocol ITpc. To check the global linear constraints, we use a similar approach as Ligero [AHIV17]. Each
row A; = (Aj1,..., A4 ns) of the matrix gives rise to a constant sharing [A;] defined as:

[(Aj1, -y Ayl
14;] = [ [(Assrrsees 420l

where each packed sharing [(A4;1, ..., 4;)], ... isaconstant degree-(s—1) sharing (a sharing interpolated
from the s matrix coefficients and without randomness). Let [b;] := ([A4;], [w]), we have that the jth linear
constraint (A;,w) = t; is satisfied if and only if [b;] shares a tuple b; = (bj1,...,b;s) € F® satisfying
> i=1bji = tj. The my linear constraints are batched by computing [o] = [v] 4+ X272, v;[bs], for [v'] a
random degree-(2s + £ — 2) sharing of a random tuple v’ = (v{,...,v}) € F* satisfying }_;_; v} = 0. We then

have A-w =t if [o/] is such that > ;_, of = Z;ﬂjl 7;t; with high probability (specifically with false positive

probability 1/|F|). The obtained protocol I} pp¢ is formally described in Protocol
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1. The parties receive a sharing [w], with pack size s and degree £+ s — 1.
2. The parties get a uniformly-random degree-(d- (s+¢—1)) sharing [v] of v = (0, ...,0) € F* using Iy (Section[5.1)).
3. The parties get a uniformly-random degree-(2s + ¢ — 2) sharing [v] of a random tuple v' = (vy,...,v;) € F*

satisfying >_;_, v; = 0 using IIxo (Section [5.1)).
4. The parties receive random values 71, ...,7m, € F and 71,...,7m, € F from Og.
5. The parties locally compute

fol = B+ Y% - fi(lul)
1=+ 3% 1] with Bs] = ([4,], [l

6. The parties open [a] and [a'] to publicly recompute a, o’ € F*.
7. The parties output ACCEPT if and only if v = (0,...,0) and 377, af = 37" jt;.

Protocol 8: I ppc — Verification of linear & parallel polynomial constraints.

Lemma 3. The protocol Il ppe is correct, namely it always outputs ACCEPT when w satisfies the parallel
polynomial constraints and the global linear constraints described above. The protocol Il ppe is also sound
with false positive probability ﬁ and (-private.

Proof. Tt is easy to check that IT,ppc outputs ACCEPT when the witnesses satisfy the desired properties and
when the hints are well-formed, since

Viel: s, ozi:vi—i—Zijj(w(i)):O—i—Z%-O:O,

s s = s mo j:1m2 s ma
Doai=D vl D Y jbii=0+ Z%(me) = it
i=1 i=1 i=1j=1 j=1 i=1 j=1

On the other hand, when w does not satisfy one of the constraints:

— Either there exists (k') € [1 : my] x [1 : s] such that fj(w®)) # 0. In that case, o is uniformly
random in [F since 7;, has been chosen uniformly at random in F.

— Or there exists j' € [1 : mo] such that (A;,w) # ¢;. In that case, Y _;_, «} is uniformly random in F since
7}, has been chosen uniformly at random in F.

In both cases, we get that Il ppe shall output ACCEPT with probability 1/|F|, which corresponds to its false
positive probability. In our MPC model, the protocol is ¢-private as long as the broadcast sharings do not leak
information on the witness. In the present case, we have that [v] is a uniformly-random degree-(d-(s+¢—1))
sharing of (0,...,0) € F*, which implies that [a] is a uniformly-random degree-(d - (s + ¢ — 1)) sharing of
(Z;n=1 - fj(w(k)))k = (0,...,0). Moreover, we have that [v'] is a uniformly-random degree-(2s + ¢ — 2)

/

sharing of v" € K* satisfying Y.°_, v, = 0, which implies that [o'] is a uniformly-random degree-(2s + £ — 2)

Jj=17J
sharing of o/ = v’ 4 Y772 7/b;. Thanks to the randomness of v/, o’ is a uniformly-random tuple of F*
conditioned to Y i_, o = Z;ﬂ:zl 7} - t;j. The protocol ITippe is thus (-private. O

Parallel repetitions. As for the protocol Iy, the protocol I ppe gives rise to a parallel-repetition version
HL(Q’F),C which lowers the false positive probability to ﬁ. Here again, the principle is to compute and broadcast

p version of the sharings [a] and [@'] (as when the protocol IT,pp was executed p times in parallel) and
check that the p versions all satisfy the final checks.
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The TCitH-II,,. proof system. By Theorem when applying the TCitH framework to HL(ﬁ}),C we obtain
a complete, sound, and HVZK proof system of soundness error

1 1 (d'(sze—l))
— 4+ (1 ) e for the TCitH-GGM variant,
| (- o
) Ly () ()
— 4+ (1-— ) . + 2 for the TCitH-MT variant.
w5 (1w OERELE

To obtain a zero-knowledge non-interactive argument of knowledge, we perform 7 parallel repetitions of
the protocol and apply the Fiat-Shamir transform. Since the proof system has 5 rounds (with TCitH-GGM)
or 7 rounds (with TCitH-MT) and uses parallel repetitions, one must be careful while selecting the parameters
to avoid potential KZ-like forgery attacks [KZ20a]. To achieve A bits of security in the non-interactive setting,
we propose to select

. . . . 2 _
— the parameter 1 of the degree-enforcing commitment in TCitH-MT such that (s:\_]é) J(2[F|m) <272,
— the number p of MPC repetitions in the protocol HL(QZC such that 1/|IF|” <27,

(d-(s+1{—l)) T
— the number 7 of PoK repetitions such that ((’IQ)> <27,
4
Here, N, £ and dg are flexible parameters which can be chosen to optimize the proof size. The proof transcript
includes:

— The opened shares Jw]; of the witness w € F™| for each of the 7 PoK repetitions.

— The opened shares of the hints used to build the sharings [v] and [v'], for each of the p MPC repetitions
of the 7 PoK repetitions. With the variant TCitH-GGM, these shares are communication-free except for
the correction term Au; € F arising in the generation of [v'] (see Section [5.1)).

— The degree-(d - (s + £ — 1)) sharing [« and the degree-(2s + ¢ — 2) sharing [«/], for each of the p MPC
repetitions of the 7 PoK repetitions. Since [a]; and [o']; can be recomputed by the verifier, since the
a € F* should be zero, and since the sum of the coordinates of o/ € F should be equal to a public
value (which is 37, v7t;), the proof just needs to include (d - (s + £ — 1) + 1) — £ — s shares for [a] and
((2s+¢—2)+1) — £ — 1 shares for [o/].

— The sibling paths in the GGM tree in the variant TCitH-GGM together with the unopened seed com-
mitments, or the authentication paths in the variant TCitH-MT.

— In TCitH-MT, the communication cost due to the sharing degree enforcing, which consists in the opened
shares [u]; used to mask the output of the sharing-degree test (where u € F7'®) together with dg+1— ¢
additional shares of [¢] (where £ € F"'%), for each of the 7 PoK repetitions.

We obtain the following communication cost (in bits):

SizEgem =4A+7- | £+ (ns+ p) - log, |F|

Aw,Auy

+ |(d=1)-(s+£2—-1)4+(25s—2)| - p-logy |F| + X -logy N +2X\
~—— ———
[l [e] GGM tree
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for TCitH-GGM, and

S1ZEmT = 6A 4+ 7 | (dg 4+ 1) -1 - logy |F| +£ - (n + Nhints - p) - logs |F|

degree enforcing [wls,[vls,[v']s

N
+ {(d=1)-(s+L—-1)+(2s—=2)| - p-logy [F|+2X- £ -log, — | (12)
——— Y4

[a] [a'] Merkle tree

for TCitH-MT, where npings := [(dfdl;'_(;ﬁ*l)—‘ + [djs—z}uw

Remark 8. One could try to optimize the above protocol by batching [a] and [o/] into a single broadcasted
sharing. But to keep the soundness of the protocol in doing so, the unique broadcast would be of higher
degree d, = d- (s + ¢ —1) 4 (s — 1) which, one one hand, would not reduce the number of field elements in
the proof transcript, and, on the other hand, would increase the soundness error of a single repetition (see
Equation . Therefore, such an optimization is not interesting here.

Remark 9. The protocol Il ppc can be seen as a generalization of the protocol Ilp.. Indeed, IT; ppc with s = 1
is equivalent to ITpe. To see this, observe that the broadcast sharing of o is communication-free (since its
cost per iteration was (2s — 2) field elements) and it can be removed since the global linear constraints can
be handled by the polynomial constraints (which are also global when s = 1).

5.4 Zero-Knowledge Arguments for Arithmetic Circuits

In this section, we apply the previous zero-knowledge arguments TCitH-IIp and TCitH-II ppc to general
(low-degree) arithmetic circuits.

Arguments for Low-Degree Arithmetic Circuits. TCitH-II,. is particularly efficient when applied
to an arithmetic circuit C' of low degree d (i.e. a circuit for which the output coordinates are degree-d
polynomials in the input coordinates). We obtain a zero-knowledge argument of knowledge of a witness w
satisfying C(w) = y for a public output y. We get m = |y| polynomial constraints f;(w) = C;(w) — y;,
where y; € F denotes jth coordinate of the output y and C; denotes the subcircuit computing this output
coordinate. From the analysis of Section[5.2] the size of the obtained argument is independent of the number
of gates in the circuit (and in particular on the number of multiplications) and mainly depends on its degree
d.

Arguments for General Arithmetic Circuits. TCitH-II ;pc can be used to get a sublinear arguments
for arithmetic circuits without restrictions on the circuit degree. For this purpose, an arithmetic circuit
statement C(x) = y can be expressed as an LPPC instance as in the Ligero proof system |[AHIV17].

The witness w is defined as the concatenation of three vectors a, b and ¢ whose coordinates a;, b; and c;
are respectively the first operand, the second operand and the result of the j'" multiplication gate of C' on
input z. Then proving C'(x) = y is similar to proving ¢ = aob, where o is the coordinate-wise multiplication,
and proving the linear constraints of the circuit, which can be expressed as a = A; - w, b = As - w and
y = As - w for some matrices Ay, As, A3E

Denoting |C| the number of multiplication gates in C' and assuming that |C| is a multiple of s, the witness
(of size |w| = 3|C|) is easily arranged so that we have m; = |C|/s quadratic polynomial constraints of the
form f(a,b,c) = c—a-b to verify (each of them verifying s multiplication gates in parallel). We further have

1 Here, the linear constraints of A; and A, are not trivial (e.g., forwarding the a-part of w to a through an identity
matrix A1) but encode the linear relations between the input and the multiplication operands.
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ms = 2|C| + |y| global linear constraints to verify (for the computation of a, b and y). For this particular
LPPC instance, the MPC protocol Il pp is a slightly optimized version of the Ligero MPC protocol, which
we therefore denote It ;gero hereE The zero-knowledge argument obtained when applying our framework is
denoted TCitH-II1gero-

Remark 10. Let us mention that the TCitH-II ppe proof system can deal with circuits with higher-degree
gates instead of just considering multiplication gates. This could provide significant gain for some applications
but highly depends on the topology of the underlying circuit.

Comparison. Figures[3a]and b compare our two schemes TCitH-1T,,c and TCitH-ITyigero to other MPCitH-
based proof systems performing well on small-to-medium size arithmetic circuits, namely Ligero |[AHIV17|
and Limbo . For completeness, we further plot an optimized version of Ligero (curve “Ligero (opt.)”)
which uses the opened shares to interpolate the broadcast polynomials, instead of sending the entire poly-
nomials (this optimization being natively integrated in the TCitH framework).

From those figures, we observe that TCitH-1I,. achieves very competitive cost when the circuit degree is
small (below 50). For general circuits, both Ligero and our scheme quickly outperform Limbo when the circuit
size increases, and our scheme performs better than Ligero for small-to-medium size circuits, specifically
circuits with < 2'6 multiplication gates. A qualitative comparison between Ligero and our scheme is given
in Section [6.21

The following table further provides concrete parameters for Ligero vs. TCitH-Il1gcro for a circuit with
256 multiplications:

l Scheme [ [F] [[z[[IC[[[r[ N] ¢ [ s [n]p] Size |
Ligero 1]1975(219 (106 | — |10 | 49.2 kB
TCitH-I1igero 8192 | 100 | 256 11924 | 50 | 28 |69 | 10| 22.9 kB
.ngero 232 | 100 | 256 11975219106 | — | 4 | 54.9 kB
TCltH—ULigero 11924 | 50 | 28 |28 | 4 | 26.1 kB
10°
— Ligero — Ligero
—~=~- Ligero (opt.) ~=~- Ligero (opt.)
—— Limbo 103{ — Limbo
— TCitH-Tliger, — TCitH-Tiger,
O TCitH-Tl per, deg=2 P TCitH-Tlp, deg=2
£ e TCitH-Tlpc, deg=5 £ TCitH-Tl pe, deg=5
) TCitH-TIpc:, deg=10 ) TCitH-Tpe:, deg=10
=102 TCitH-Il e, deg=50 - IERS TCitH-Ipc, deg=50
i ........................................................................ i i
E § .........................................................................
l“‘_ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
.................................................................................. L]
> AN = o > " e An
Number of multiplications Number of multiplications
(a) Over the field Fg192 (b) Over the field Fy32

Fig. 3: Comparison of TCitH-IIpc, TCitH-II1iger0, Ligero [AHIV17] and Limbo [DOT21| for arithmetic cir-
cuits (with input = € F109),

12 Compared to the original Ligero MPC protocol, IIyigero relies on an optimized arithmetization: a textbook ap-
plication of the Ligero arithmetization includes the input x and all the outputs of the addition gates of C' in the
witness w, which we avoid here by an alternative definition of the linear constraints.
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5.5 Improved Post-Quantum Signature Schemes

A standard way to build a post-quantum signature scheme is as follows. First, select an (allegedly) post-
quantum secure one-way function F'. For a random input w of F', the private key is defined as w and the
public key is defined as y = F(w). Then use an (allegedly) post-quantum secure zero-knowledge argument
to prove knowledge of w satisfying y = F'(w) (in a non-interactive message-dependent way). We follow this
approach hereafter with our general proof system for polynomial constraints (without packing) TCitH-1T
(Section for classical post-quantum one-way functions, namely the multivariate quadratic problem, as
used in MQOM [FR23a] and on the syndrome decoding problem, as used in SDitH |[FJR22, AFG™23]. In
both cases, we explain how to transform the relation y = F'(w) into low-degree polynomial constraints. We
further show how TCitH-II, can apply to other MPCitH-based schemes submitted to the recent NIST call
for additional post-quantum signatures.

Multivariate Quadratic (MQ) problem over Fy. Given matrices Ay, ..., A, € Fy*™, vectors by, ..., by € Fy
and scalars y1,...,ym € Fy, the MQ problem consists in finding a vector x such that, for all 7, xTij+bJT:v =
y;. Applying the proof system to this problem is straightforward since it is naturally expressed as degree-2
polynomials. We just need to define the polynomials f1,..., fi, as

Viel:m], fj(z)= xTAj:chbij -y

Syndrome Decoding (SD) problem over F,. Given a matrix H = (H'|I,,—j) € an_k)m and a vector y € Fp—F,
the SD problem consists in finding a vector x such that y = Hz and such that x has at most w non-zero
coordinates. Using the arithmetization of the SDitH scheme |[FJR22|, the SD problem consists in finding a
vector 24 € F¥ and a monic degree-w polynomial Q(X) := X‘“—i—Z;‘:Ol Q; X" € F,[X] such that z;-Q(e;) = 0
for all j where x = (x4 || y — H'z4) and {e;} are distinct public points of F, (requiring that ¢ > n). We can
use the proof system by defining the polynomials fi,..., f,, as

et e
. w 7 (xA)J lf‘] S k’

v : _ S PP I

je[l:m], fi(za,Q) <€; + ZZ:;Q eJ) {(y_ Hza)j—p ifj>k.

Performances. Table [3| summarizes the obtained signature sizes and running times (benchmarked on the
same platform as before) for the proposed MQ-based and SD-based signature schemes (when taking ¢ = 1)
and compares them to MQOM and SDitH. Our extended TCitH-GGM framework saves 35% and 11% of size
for MQOM and SDitH respectively. In particular, our MQ-based scheme achieves signatures of size 4.2 KB
for similar (non-structured) MQ instances as the MQOM scheme. This also outperforms Biscuit [BKPV23]
which is yet based on a structured MQ problem.

TCitH-GGM TCitH-MT
Size Signing Verif Size Signing | Verif
MQ over Fas1 MQOM 6575 B | 5.97 ms | 5.57 ms |~ 13000 B - -
(m =n =43) Our scheme | 4257 B | 5.23ms | 4.77 ms | 7177 B | 3.55 ms | 0.63 ms
SD over Fas1 SDitH 8241 B | 644 ms | 6.11 ms | 10117 B | 1.55 ms | 0.17 ms
(n =230,k =126,k = 79)| Our scheme | 7335 B | 6.73 ms | 6.45 ms | 10255 B | 4.85 ms | 0.30 ms

Table 3: Benchmark for the signature schemes based on MQ and SD problems over Fos1. The timings
of MQOM and SDitH when using TCitH-GGM correspond to the running times of these schemes when
integrating the optimization of Section [3| (see Section for details). The timings of SDitH using TCitH-
MT correspond to the running times of the official (optimized) implementation on the same platform. The
authors of MQOM did not propose a variant of their scheme using TCitH-MT, but we give in Table [3]| the
signature size they would obtain.
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To complete the overview, we give in Table {4 the sizes we would obtain with the TCitH-GGM framework
using alternative parameter sets than those of MQOM and SDitH, namely the multivariate quadratic problem
over Fy and the binary syndrome decoding problem (with the split variant proposed in [FJR22]). In each
case, we give the size of the former scheme which led to the best signature size with the considered security
assumption.

‘ Hardness Assumption ‘ n ‘ m ‘ k ‘ w ‘ Former size ‘ TCitH-GGM ‘ Saving ‘
MQ over Fy 88 | 88 | - - 8609 B [Wan22] 3858 B —55%
SD over Fa 1280| - [640|132| 11160 B |FJR22] 7354 B —34%
6-split SD over Fo  |[1536| - |888|120 | 12066 B |[FJR22] 6974 B —42%

Table 4: Signature sizes using alternative MQ and SD problems.

Application to other NIST post-quantum signature candidates. As explained in Section several MPCitH-
based schemes relying on different hardness assumptions have been proposed in the new NIST call for
additional post-quantum signatures. We already deal with the case of MQOM and SDitH above (the Fos;
instance in both cases) but our proof system can also be applied to the other schemes. We provide in Table
a list of NIST candidates for which an application of our TCitH-1T,, proof system (GGM variant) provides an
improvement of the signature size, namely all the MPCitH-based candidates except PERK [ABB™23a] (which
is based on the shared-permutation technique |[FJR23] and does not fit our framework) and AIMer [CCH™23].

As it was the case for the non-structured MQ problem, adapting the NIST candidate Biscuit [BKPV23]
is straightforward since it relies on a structured variant of the M(Q problem, called the PowAff2 problem,
which is directly expressed as degree-2 polynomial constraints on the witness. MiRitH [ABB™23b]| relies on
the MinRank problem which consists, given k + 1 matrices My, M1, ..., My, in finding x such that the rank
of E := My+ Z§:1 xj-Mj € F**™ is smaller than a public bound r. The idea of MiRitH is to show that the
n—r last columns Eg of E := (Ey, | Er) can be expressed as a linear combination of the r first columns Ey,,
namely there exists a matrix A € ]FZX (=) Such that ERr = Ep-A. The latter relation provides us the degree-2
polynomial constraints we can use, assuming A is part of the witness (together with z). MIRA [ABBT23d|
is another NIST candidate that relies on the MinRank problem, but using another verification circuit (based

on g-polynomials). The idea of MIRA is to show that there exists 8 € Fy.. such that x?T + Z:;& Bi x;f =0
for all j, Whgre x; is the 4 column of E := My + Z?Zl xj - My € F**™ written as a field element of Fym.
Since - — - is a Fg-linear application, the previous relations lead to degree-2 polynomial constraints. Let
us remark that the transcript size of our proof system only depends on the size of the witness (and not on
the number of multiplications involved in the constraints). In MiRitH, the witness is composed of = € IF’;
and of the matrix A € Fy~ . In MIRA, the witness is composed of z € IFZ and of a vector of Fy,. (which

represents a monic degree-¢” g-polynomial of Fyn[X]). We thus have that adapting MIRA will lead to larger

signature sizes than adapting MiRitH (for the same MinRank parameters). Finally, RYDE [ABB™23c| relies
F(::k)xn
q

(n—r)

on the syndrome decoding problem in the rank metric which consists, given a matrix H € and a

vector y € Fym * in finding = € [Fym such that the rank of z is smaller than a public bound 7 and y = Hz.
As for MIRA, RYDE relies on g-polynomials. The idea is to show that z satisfies the desired linear relation

and that there exists 3 € Fy,» such that x‘;r + ZZ& Bi - x?I = 0 for all j.

5.6 Short Post-Quantum Ring Signatures

As another application of TCitH-ITp. (Section|5.2)), we introduce a new ring signature scheme. Such a scheme
allows a user to sign a message on behalf of a group of people (called a ring) without revealing which member
of the ring signed the message. We denote r the size of the ring and consider r public keys y1, ...y, (one per
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‘ ‘ Original size ‘ Our variant ‘ Saving‘

Biscuit [BKPV23] 4758 B 41048 B | —15%
MIRA [ABB™23d] 5640 B 5340 B —5%
MiRitH-Ta [ABBT 23] 5665 B 16948 | —17%
MiRitH-Ib [ABB ' 23b) 6298 B 5245 B | —17%
MQOM (over Fas1) [FR23a) 6575 B 1257 B | —35%
MQOM (over F31) [FR23a) 6348 B 4027 B | -37%
RYDE [ABB23c| 5956 B 5281 B | —11%
SDitH (over Fas; & Fagg) [FIR22[JAFGT 23] 8241 B 7335 B | —11%

Table 5: Signature sizes for NIST MPCitH-based candidates.

ring member). The important security property of the scheme (beyond the unforgeability) is the anonymity
of the signer. Let us denote j* the secret index of the signer within the ring. To build a ring signature scheme
with our framework, we need to build an MPC protocol that checks that the input sharing [w] is the private
key which corresponds to one public key of the ring, namely y;-, while keeping j* private. A way to proceed
is to input to the protocol (in addition to the witness sharing [w]) a sharing [s] of a one-hot encoding
s €{0,1}" of j*. That isVj € [1: 7], s; = 1 if j = j* and s; = 0 otherwise. Then the MPC protocol starts
by securely computing a sharing of the right public key as

T
ly;-] =[50 v
j=1
and next checks that [w] corresponds to [y,«] using some existing protocol (depending on the underlying

one-way function). The main drawback of this strategy is that the signature includes some shares of [s] and so
its size scales linearly with the size r of the ring. To handle this issue, we propose to use a “multidimensional

one-hot encoding” which is composed of d one-hot vectors s, ... (4 of size ¢/r such that
o _ .2 _ @
Sjx = 8jx —---—sj; =1
while the other coordinates of the sU)’s equal zero, where (4%,--.,75) is the base-{/r decomposition of j*

“shifted by one” (which means that (j5 —1,...,75 — 1) is the standard base-/r decomposition of j* —1; we
use this translation because vector indices start from 1). Here d is a parameter of the scheme that we can
tune to optimize the signature size. Then we can compute a sharing of the standard one-hot encoding [s]
from the sharings [s(V], ..., [s()] by

i, Is;] = [s3)] x ... < [s$2] (13)
with (j1,...,7q4) the base-/r decomposition of j “shifted by one”. Computing [s] with the above method
involves a large number of multiplications, but fortunately, using of our proof system of Section the
obtained signature size is independent of this number of multiplications but solely depends on d. The MPC
protocol should further check that the [s()] corresponds to the sharing of a one-hot vector with {/r — 1 zeros
and 1 one. To this purpose, we further extend the input of the protocol with secret values {p;}, encoding
the position of the non-zero coordinates in the vectors {s(j)}j:

Vjel:d], Vke[l: {r], s,(cj);é() & pj = ek
where {ej }1 are public distinct points of F. Then the protocol first checks
Vjie[l:dl, Vkell: ¥, s - (v —p;) =0, (14)

which guarantees that each of the sU)’s has a single non-zero coordinate and hence that s has a single
non-zero coordinate, then the protocol checks

dosi=1, (15)
j=1
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to verify that this non-zero coordinate of s equals 1.

To sum up, the MPC protocol takes as input the sharing [w] of the witness, the sharings [s(V], ..., [s(?]
of the one-hot vectors, and the sharings [p1], ..., [pa] of the non-zero position encodings, then runs the
following steps:

1. Compute [s] from [sV], ..., [s(] using Equation (T3);

2. Compute [y;-] as 377, [s] - y;
3. Check that [w] is a valid witness for [y;«];
4. Check that [s] is in the right form by checking Equations and (15).

Using this method, we can build a ring signature from any one-way function. We propose hereafter
concrete schemes relying on the MQ and SD problems by adapting the polynomial constraints of the schemes
described in Section [5.5]to handle the one-hot vector s. We also propose two additional ring signature schemes
based on one-way functions relying on AES.

In what follows, we shall denote g; the degree-d function defined as

d
gj(s(l), .. .,s(d)) = HSEZ) .

i=1

Ring signatures from M. We shall use the same quadratic equations {A;,b;}; for all the users of the ring
so that only the solution y of the system shall differ between the different public keys. In that case, we can
define the functions as polynomial constraints:

fj(a:,s(l),...,s(d),p) = xTAjz + bfx — thlgh(5(1)7--~,$(d)) “yn Vie€[l:m],
F(@,sM 8D py =60 (o —p;) Wjell:d] Vke[l: ],

f”(.l?,s(l), - .,s(d),p) — thlgh(s(l)’ - -,S(d)) —1.

All these polynomials have degrees at most max{d, 2}, and we can apply the proof system of Section
(with the Fiat-Shamir transformation) to get the desired signature scheme.

Ring signatures from SD. We shall use the same matrix H for all the users of the ring so that only the
syndrome y = Hx shall differ between the different public keys. In that case, we can define the functions as
polynomial constraints:

w—1 .
fj(xA7Q78(1)a .- '7s(d)ap) = (Z;J + Zi:O Qi : Z;)
o (@a); if j <k,
O ign(sW o sy vy — Hry)jop  if > k.
fik(z,s(l),...,s(d),p) = s,gj) (v —pj) Vi€l:d Vke[l: ],
f”(.’l?, 8(1)7 .. .7S(d)7p) = Z gh(s(l)7 .. .,S(d)> —1.

All these polynomials have degrees at most d + 1, and we can apply the proof system of Section (with
the Fiat-Shamir transformation) to get the desired signature scheme.

Vje[l:m],

h=1

Ring signatures from AES. We rely on the same arithmetization as the FAEST scheme [BBDT23|: we
include the outputs of the S-boxes (splitted in bits) in the witness and prove the correctness of each S-box
by checking a multiplication between two linear combinations of the witness. The exact constraints depend
on the considered one-way function:
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— When considering pk := (z, AESq(z)), we also include the signer’s public key in the witness. The
polynomial constraints are split in two categories: ones checks the correctness of the S-boxes using the
shared signer’s public key, while the other checks that the shared signer’s public key is consistent with
the one-hot encoding of the signer’s index. All the constraints have degree at most max{d,2}. We could
avoid including the signer’s public key in the witness, but in that case, the polynomial constraints would
be of degrees d + 1 (d to reconstruct pk from the one-hot encoding and +1 for the multiplications with
linear combinations of the witness checking the last s-box layer).

— When considering the Even-Mansour (EM) construction pk := (x, AES,(sk) ® sk), we shall use the same
AES key x for all the users of the ring so that only AES, (sk) @ sk shall differ between the different
public keys. With this variant, we only include the block-cipher output AES, (sk) & sk in the witness to
avoid an increase of the constraint degree. As in the previous case, the polynomial constraints are split
in two categories: some check the correctness of the S-boxes, while the other check the correctness of the
signer’s public key w.r.t. the one-hot encoding of the signer’s index. All the constraints have degree at
most max{d, 2}.

Remark 11. Let us mention that we do not consider multi-user attacks over the private key in this article
for the sake of simplicity (to have simpler polynomial constraints). Taking the same coefficients for the MQ
instances, the same matrix for the SD instances, or the same AES key for a given ring would degrade the
overall security vs. multi-user attacks if a large ring is considered. To prevent this type of attacks, one should
use independent public keys (i.e. different coefficients for the MQ instances, different AES key x for the
EM variant, etc.). This would slightly increase the signature size because the witness and/or the constraint
degree would be larger. For example, a MQ-based ring signature scheme secure againts multi-user attacks
has size around 9.7 KB (instead of 8.2, see Table @ for 220 users when relying on Fa5:. This would also
slightly increase the signing/verification time since the MPC protocol would be heavier.

Benchmark. The obtained MQ-based and SD-based signature sizes and running times are depicted in Figure[d]
with respect to an increasing ring size. We use the same M(Q and SD parameters as in the previous section.
However, the sizes depend on the field structure:

— when using Fos; (no subfield), we need to share the coordinates of 5(1), ce 5@ over Fa51. Sending such
a share costs log,(251) bits per coordinate.
— when using Fos6 (for which the smallest subfield is Fs), we can share the coordinates of s s over

F3, so sending such a share only costs 1 bits per coordinate.

For this reason, we obtain smaller sizes when working on a field extension, but we obtain very competitive
sizes in both cases. We benchmarked the MQ-based and SD-based schemes over Fo5; on the same platform
as the previous sections. Signing and verification for a ring of 1000 users takes less than 10 ms, which is
very competitive compared to the state of the art of post-quantum ring signatures. Running times with Fogg
would be similar, up to the fact that a multiplication over Fos5¢ is slower than a multiplication over Fa5; on
the considered platform (the field multiplication time is the bottleneck of the scheme). Let us stress that we
only implemented and benchmarked the TCitH-GGM variant here. The TCitH-MT variant would give close
results in terms of timings (since the bottleneck is the emulation of the MPC protocol which is similar in
both variants) but would suffer an increased signature size (of roughly 2KB for a 128-bit security) due to
the Merkle tree vs. GGM tree trade-off.

We compare our schemes with the previous post-quantum ring signatures from the state of the art in
Table [} We can remark that we achieve the smallest signature sizes in all the cases with our MQ-based
scheme.

5.7 Exact Zero-Knowledge Arguments for Lattices

We now present an application of our generic proof system TCitH-I1;pp¢ (Section [5.3]) to obtain short and
exact zero-knowledge arguments for lattice problems. Previous tries using the MPC-in-the-Head paradigm
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Fig. 4: Benchmark of the proposed ring signature schemes

Table 6: Signature size (KB) for different post-quantum ring signature schemes.

#users 2% 26 28 210 212 2%0 Assumption Security
Our scheme 2023 4.41 4.60 4.90 5.48 5.82 8.19 MQ over Fas; NIST I
Our scheme 2023 4.30 4.33 4.37 4.45 4.60 5.62 MQ over Fas6 NIST I
Our scheme 2023 7.51 8.40 8.72 9.36 10.30 12.81 SD over Fas1 NIST I
Our scheme 2023 7.37 7.51 7.96 8.24 8.40 10.09 SD over Fase NIST I
Our scheme 2023 7.87 7.90 7.94 8.02 8.18 9.39 AES128 NIST I
Our scheme 2023 6.81 6.84 6.88 6.96 7.12 8.27 AES128-EM NIST I
2018 - 250 - - 456 - LowMC NIST V
2021 - - - 56 - - LowMC NIST V
2019 10 81 333 1290 5161 - MSIS / MLWE 100 bit
2019 19 31 - - 148 - MSIS / MLWE NIST 11
2020 30 32 - - 35 - MSIS / MLWE NIST I
2020 5 8 - - 14 - CSIDH 128 bit
2022 11 14 - - 20 - Code Equiv. 128 bit
2022 27 36 64 145 422 - MinRank NIST I

lead to large proof transcripts. This comes from the fact that an MPCitH-based proof includes a share of
the secret vector and that the latter lives in a large space. In , the authors use sharing over the
integers with rejection in order to lower the communication cost of the shares of the secret vector since the
latter is known to be small (i.e. of a small norm). Another option to reduce this cost is to use packed secret
sharing with our TCitH-MT framework, which we develop here.

In what follows, we show how to apply TCitH-1I ppc to check an instance of an Inhomogeneous Short
Integer Solution (ISIS) problem. Such a scheme proves the knowledge of a vector e € Fy such that [[e[|oc < S8
and t = A-e, where A € F"*" and t € F" are publicly known. We stress that the Learning With Error
(LWE) problem (as well as its ring or module variants) can be expressed as a particular form of ISIS with
A= (AI,).

Let us denote s the pack size of the used secret sharing and assume that n is a multiple of s (otherwise
we shall pad e and A with zeros). We decompose e as k := [log, (28 +1)] vectors (e, ... e*=1) of {0,1}"

such that
k—2

e=>Y 2@+ (28-26"" 1)V - 3 (16)

i=0
where 8 = (B,...,8) € F7. If all vectors e() belong to {0,1}", the above relation gives that |||l < 8. So,
as in [FMRV22], we give the sharing [w] of the witness w = (e(®) || --- || e*=1) to the MPC protocol instead
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of [e]. The latter can then check that [w] is the sharing of a binary vector and that A - [e] corresponds to
t modulo g where [e] is recovered by linearity of . This can be expressed as an instance of the II;ppc
protocol (Section with the following global linear constraints:

e(0)

A-(Iy 2L, ] -+ | 28721, [ (28 — 281 + 1)1, - : =t+A-B
ek=1)

e+pB

and the following parallel polynomial constraints:
Vie{0,....k—1}, eWDo(el) —1)=0,

where 0 = (0,...,0) € F¢, 1 = (1,...,1) € F} and o is the coordinate-wise multiplication. By applying the
TCitH-II,ppe proof system of Section with the variant TCitH-MT, the size of the proof transcript is
given by Equation , where the degree d is 2 and the packed witness size is n/s.

We apply this proof system on toy ISIS instances with ¢ ~ 232 and ¢ ~ 25! from the lattice zero-
knowledge literature as well as on Kyber [ABD21] and Dilithium [BDK'21a| instances. The results are
depicted in Table [7] We further compare our results on the toy instances to previous works in Table 8] Our
arguments are 3 to 5 times smaller than the previous best MPCitH-based arguments [FMRV22]. Let us
remark than [FMRV22] supports ISIS instances with any value of ¢ while we require a prime ¢ (due to the
use of Shamir’s secret sharing), which is not a strong restriction in practice. Previous works relying on lattice
techniques [LNS21], [LNP22| achieve better sizes on the first toy instance (33 KB and 15 KB vs. 41 KB) but
either rely on NTT-friendly fields [LNS21| or prove the Lo norm |[LNP22| (instead of proving the L., norm
as the other schemes). Regarding the Kyber512 instance, our size (23 KB) is close to the 19 KB obtained
by [LNP22] on a slightly different instance arising in a verifiable encryption use case (and still for the Lo
norm against L., in our case).

‘ISIS/LWE InstanceH q ‘ n ‘ m ‘ B8 H N ‘T‘ l ‘ s ‘ n ‘ p HProof Size‘
Toy Example 1 ~ 252 2048 1024 | 1 [[1024[1]43[32]28] 4 || 41386 B
Toy Example 2 ~ 201 4096 512 [1/2[[1024|1[47[41]17|3 || 62139 B

Kyber512 3329 [(242) x 2562 x 256 3 [[1024]1]37[19|64]11]] 23325 B
Kyber768 3329 [(3 4 3) x 2563 x 256 2 |[1024]1[39[23|68|11|| 27517 B
Kyber1024 3329 [(4+4) x 2564 x 256 2 |[1024]1]41[27|72[11]] 31250 B
Dilithium2 8380417[(4 + 4) x 256]4 x 256| 2 [[1024[1[43(32[39[ 6 || 43578 B
Dilithium3 8380417((6 + 5) x 256|6 x 256| 4 [[1024[1[45|37]41] 6 || 61537 B
Dilithium5 8380417[(8 + 7) x 256|8 x 256| 2 [[1024[1[45|37]41] 6 || 62024 B

Table 7: Proof sizes when applied on some SIS/LWE instances.

Remark 12. Let us remark that we can directly check that the ISIS secret e satisfies the relation (e — ) o
(e—pB+1)o...0(e+B) =0, which is a (28 + 1)-degree constraint (instead of decomposing the secret). We
can also a mix: decompose e in a larger base to have constraints between 2 and 25 + 1. According to our
tests, we obtain similar or higher argument sizes.

We also apply our proof system to custom instances of LWE. The selected parameters have similar
security than Kyber512 according to the lattice estimator |[APS15]. In our experiments, we observed that
taking a smaller ¢ led to shorter arguments up to a point where the constraint on the number of parties
(N + s < g+ 1) became detrimental to efficient packing. Table |§| provides the selected prameters for ¢ = 251
and ¢ = 1021 (8 = 1/2 means that the small vectors are binary). For the latter, we achieve argument size
below 17 KB.
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Toy Example 1 Toy Example 2
Scheme Year Any q ProofySize‘R;. Rate ProofySize‘R;. Rate

|ILNSW13] 2013 v 3600 KB 0 8988 KB 0
Ligero |[AHIV17] 2017 |gq prime + NTT| 157 KB 0 - -
Aurora [BCRT19] | 2019 |q prime + NTT| 71 KB 0 - -
[BLS19] 2019 |¢ prime + NTT| 384 KB | 0.92 - -
{BN20| 2020 q prime - - 4077 KB 0
|Beu20| 2020 ¢ prime 233 KB 0 444 KB 0
[ENS20 2020 |g prime + NTT| 47 KB 0.95 - -
[LNS21] 2021 |q prime + NTT| 33.3 KB 0.85 - -

[FMRV22] (batching)| 2022 7 201 KB | 004 | 201 KB | 0.04

| [FMRV22] (C&C) | 2022 v 184 KB | 005 | 184KB | 0.05
I [CNP22f 2022 | q prime 147 KB | 0.86 N N
Our scheme 2023 q prime 41 KB 0 62 KB 0

Table 8: Comparison with the existing exact protocols which prove the knowledge of the solution of a ISIS
instance. (*): All the schemes prove the infinity norm, except [LNP22] that proves the La-norm.

‘ LWE Instance H q ‘ n ‘ m ‘ B H N ‘T‘ 0 ‘ s ‘d/g‘ n ‘ p HProof Size‘
LWE over Fi021(/1021|561|561|1/2(/1000(1|34|11]44|65|13|| 16944 B
LWE over Fas1 || 251 |473|473|1/2| 240 |4]10] 6 [17|39|17|| 18583 B

Table 9: Proof sizes for LWE instances.

6 Connections to Other MPCitH-like Proof Systems

This section compares our framework to other MPCitH-like proof systems, namely VOLE-in-the-Head [BBdSG ™ 23]
and Ligero |[AHIV17, |JAHIV23|. While the TCitH framework consists in an extension of standard MPC-in-
the-Head proof systems with packed Shamir’s secret sharing, we establish strong connections between some
of its variants and/or instanciations and these proof systems. Those connections are illustrated in Figure

Application of Shamir's
secret sharing with
Merkle tree commitments

MPCitH with additive
sharing, e.g.
[KKW18,BN20,DOT21]

Original TCitH
framework
[FR23b]

+ GGM variant
+ packed secret sharing

General TCitH
framework
(this work)

VOLEitH = TCitH with
s =¢ =1 and large field
embedding

+ non-linear round functions
+ degree-enforcing MT commitment

TCitH with Ty jper0 =
optimised version of the

VOLE-in-the-Head
[BBDG 23]

Ligero
[AHIV17,AHIV23]

Ligero concrete scheme

Fig.5: The TCitH framework in the landscape of MPCitH-like proof systems.
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6.1 Connections to VOLE-in-the-Head

The VOLE-in-the-Head (VOLEitH) framework [BBASG™ 23| was published at CRYPTO 2023 concurrently
to the early stages of our work. This framework provides a way to compile any zero-knowledge protocol in the
VOLE-hybrid model into a publicly verifiable protocol. As mentioned by the authors “like MPCitH, VOLE-
in-the-head proofs are based on standard symmetric cryptographic primitives and are publicly verifiable.”
An interesting question is how much VOLEItH is related to MPCitH? We show hereafter that VOLEitH can
be interpreted as an MPCitH construction, more precisely, as a particular case of our TCitH framework.

Let us recall that a VOLE (for vector oblivious linear evaluation) is a multiparty gadget, where one party
called prover, learns a pair u € Fi,v € Fﬁ », while the verifier learns a random A € Fx and ¢ = u-A+v € ]Fi .
The key idea of the VOLEitH construction consists in proposing a method to commit a random vector u
through a VOLE for which the verifier will be enabled to get a VOLE correlation (4A,q¢ = u - A + v).
The used technique consists in transforming a vector commitment with all-but-one opening into a VOLEitH
correlation. We can observe that a VOLE gadget can be seen as a (non-packed) (¢ = 2, N)-threshold Shamir’s
secret sharing of wu, for which the secret is stored at P,(0c0) (i.e., for evaluation point w; = oo instead of the
usual w; = 0). Namely, to share u,

— one samples a random degree-1 polynomial P such that P,(00) = u, i.e. one samples a random v € F
and defines P, (X) := uX + v,
— the i*? party share is defined as
[u]; :== Pu(e;) =u-e; + v,

where {e;}; are public evaluation points.

In this setting, each share corresponds to a VOLE correlation. Then, the technique of [BBASG™ 23] to generate
a VOLE correlation through a GGM tree is equivalent to the pseudo-random generation of a Shamir’s secret
sharing with £ = s = 1 derived from [CDIO5| (see Section [3.1)). Let us stress that the techniques developed
in our article do not specifically require storing the secret in P(0), this is just the most common choice. In
Equation 7 if we want to store the plain value at the infinity point, we just need to adapt the definition
of Pr: Pr is here the unique degree-¢ polynomial such that

1 (instead of Pr(0) =1)
Pr(e;)=0 forall jeT.

In that case, if we restrict Equation with £ = 1, we obtain (up to the auxiliary value)

[wli = sy - Pyyled)
i

= sy (ei—¢))

J#i

which exactly corresponds to the formulae from [BBASG™23| (see Equation 2 in [BBASG™23| for example).
Once we made this observation (committing a VOLE gadget is equivalent to committing a (2, N)-threshold
Shamir’s secret sharing), we may wonder what would be the equivalent MPC protocol used in [BBASG™23].
In fact, [BBASG 23] relies on a variant of the QuickSilver VOLE-based protocol [YSWW21|, and it can be
equivalent to the MPC protocol IT of Section [5.2] adapted to the case where the plain values are stored at
the infinity point in the sharing. To sum up, the VOLE-in-the-Head construction can be interpreted as an
instantiation of the TCitH-GGM framework with ¢ = s = 1 applied to Ilpc.

Large field embedding. Compared to the TCitH-GGM-II,; proof system, the VOLEitH construction
relies on an additional optimization which we shall call large field embedding. In what follows, we explain this
optimization under our formalism (i.e., £ = s = 1 Shamir’s secret sharings rather than VOLE correlation),
thereby showing that it can be also applied to the TCitH framework. Let us assume that we have 7 sharings
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[u]®, ..., [u]™ of the same value u € F. We denote P”(X) := u- X +v®, ..., P{7(X) i= u- X +v(™ the
corresponding Shamir’s polynomials (while assuming the shared value is stored to the infinity point). Let us
consider an isomorphism ¢ between F and F,-. Then, the N7-sharing [u] ) defined as

(it ir) € 1 N]7, [l n o yees = o[l - [ul ()

is a (2, N7)-threshold Shamir’s secret sharing of u € F, with polynomial
PO(X)=u-X + oM ... o).
Indeed, we have

W(ir, ... i) € LN, [l v i = PO (eny, . ei).

So, 7 N-sharings of the same value can be seen as a single N7-sharing of this value (living in the field
extension F,-). Then, instead of executing 7 times the MPC protocol on these 7 sharings, we can merge them
and execute the MPC protocol only once in the field extension. The main advantage is that the resulting
soundness error will be around % instead of (%‘”)T, where d, is the maximal degree of the broadcasted
sharings. However, it implies executing the MPC protocol in F,- instead of executing it 7 times in Fy,
which represents an extra computational cost. So this tweak actually provides new trade-offs between the
communication cost and the signature size (shorter size, but larger running times). Let us further remark
that to use this tweak the prover must additionally prove that these 7 sharings encode the same value u,
which can be easily handled by adding an additional verifier challenge (increasing the number of rounds)
and short fixed-size communication cost.

Let us compare a pure usage of TCitH-GGM (with ¢ = s = 1) and VOLEIitH (featuring the large field
embedding). We provide in Tablesandthe sizes we obtain when applying TCitH-GGM and VOLEitH to
the MPCitH-based candidates to the new NIST call for post-quantum signatures. In Table the estimated
sizes are obtained when using seed trees with 256 leaves (most common choice in the NIST MPCitH-based
submissions), while in Table the estimated sizes are obtained when using seed trees with 2048 leaves
(let us remark that the short version of FAEST [BBD 23|, the VOLEitH-based candidate to the NIST call,
relies on seed trees with 2048 to 4096 leaves). In the first case, the size differences are smaller than 600
bytes (except for SDitH), and they are even smaller in the second case (less than 250 bytes). However, with
a pure application of TCitH, we do not rely on a large field extension as in VOLEitH, as stressed in the
columns “Computat. Field” of those tables. For example, for MQOM-251 in Table we run 13 times the
MPC protocol over Foz12 while VOLEitH run the MPC protocol only once, but in the field extension Fo5q24.
We thus expect the overall computation cost for the MPC emulation to be smaller with a pure usage of
TCitH-GGM. This difference will be particularly significant when for use cases where the MPC emulation
is the bottleneck as, e.g., the ring signatures presented in Section [5.6]

Let us stress that the large field embedding optimization of VOLEitH only support Shamir’s secret
sharings with / = s = 1 in the TCitH framework. It cannot be used with ¢ > 1 or with packed sharings.
However, while this optimization is presented in a context relying on GGM trees, it could also be used in the
TCitH-MT variant (with £ =1 and s = 1), thus providing an additional trade-off. In a non-packed context,
with £ = s = 1, the TCitH-MT variant comes with a penalty in the proof size compared to the TCitH-GGM
variant but with the benefit of a fast verification. While this trade-off seems in conflict with the trade-off
offered large field embedding optimization, there could exist particular applications for which considering
the optimization with TCitH-MT would be of interest (which we leave as an open question).

6.2 Connections to Ligero

As in Ligero, our framework with packed secret sharing, TCitH-MT variant, relies on committing Shamir’s
secret sharings a.k.a. randomized Reed-Solomon codewords using a Merkle tree and opening some shares /
codeword coordinates requested by the verifier. Although conceptually close, our framework is less restrictive
in the covered MPC protocols and it achieves smaller proof sizes for small to medium size statements.
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TCitH-GGM VOLEitH
Size |Comput. Field|| Size |Computat. Field

[ATMer [CCH* 23] 4352 B| 19x GF(2®) |[3938 B GF(2'%%)

Biscuit [BKPV23] 4048 B |19x GF(16%) || 3682 B GF(162X16)
MIRA |[ABB™23d] 5340 B | 19x GF(16%) || 4770 B| GF(16*%'%)
MiRitH-Ta [ABB™23b| 4694 B |19x GF(16%) || 4226 B GF(162“6)
MiRitH-Tb [ABB™23b| 5245 B | 19x GF(16%) || 4690 B| GF(16*%'%)
MQOM (over F2s51) [FR23al | 4257 B | 19x GF(251) || 3858 B| GF(251')
MQOM (over F31) [FR23a] | 4027 B|19x GF(31%)||3660 B| GF(31%*'°)

8

RYDE |ABB™23¢] 5281 B 11;): ng ((2231)) 4720 B GF(2'%)

SDitH (over Fos51) [AFGT23]| 7335 B | 19x GF(251) || 6450 B| GF(251')
SDitH (over Fas6) [AFGT23]| 7335 B | 19x GF(256) || 6450 B| GF(256'°)

Table 10: Comparison between TCitH-GGM and VOLEitH using GGM trees of 256 leaves.

TCitH-GGM VOLEitH
Size |Comput. Field|| Size |Computat. Field
AlMer |[CCH™ 23] 3639 B | 13x GF(2") || 3546 B GF(2'%®)
Biscuit [BKPV23] 3431 B |13x GF(16®) || 3354 B GF(16“X12)
MIRA [ABB*23d] 4314 B | 13x GF(16%) || 4170 B| GF(16%**?)
MiRitH-Ta [ABB¥23b) 3873 B |13x GF(16%) |[3762 B| GF(163*'?)
MiRitH-Ib [ABB"23b] 4250 B | 13x GF(16%) (/4110 B| GF(16**'?)

MQOM (over Fo51) [FR23a| | 3567 B [13x GF(251%)|| 3486 B| GF(2512%'?)
MQOM (over Fs1) [FR23a] |3418 B |13x GF(31%)[[3338 B| GF(313*!?)
13x GF(2')
13x GF(2°)
SDitH (over Fas1) |[AFG123]| 5673 B [13x GF(251%)| 5430 B | GF(251*%'?)
SDitH (over Fas6) [AFGT23]| 5673 B [13x GF(256%)|| 5430 B | GF(256%%'%)

Table 11: Comparison between TCitH-GGM and VOLEitH using GGM trees of 2048 leaves.

RYDE [ABB"23c] 4274 B 4133 B GF(2'%®)
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As our framework, Ligero first address a “general case” which provides a generic transformation from an
MPC protocol to a zero-knowledge proof system. Our framework distinguishes itself from this transformation
in several key aspects. Firstly, our framework eliminates the need for the robustness property from the
MPC protocol and simply requires the latter to be secure against a passive adversary. In addition, unlike
the “general case” of the Ligero, we consider MPC protocols that might have non-negligible false positive
probability and which might rely on hints (obtained through a hint oracle). This makes our framework
compatible with many existing protocols from the MPC-in-the-Head literature which commonly rely on
hints and usually have non-negligible false positive probability. Finally, the soundness error achieved by our
general transformation is about (%) /(%), where d, is the maximal degree of broadcast shares (which is
much smaller than N) against (1 —t,/N)* for the general Ligero transformation, where ¢, is the robustness
threshold, which gives us better sizes for “small to medium size” circuits given the selection of the parameters
de and t, in this regime.

Then, Ligero further provides a concrete zero-knowledge proof system for arithmetic circuits. As shown
in Section our framework can be applied to the MPC protocol Ily,gero Which is an optimized version
of the Ligero protocol to check an arithmetic circuit. The obtained specific instantiation of our framework,
TCitH-I1igero, is close to this concrete proof system but achieves smaller proof sizes (see Figures and
for circuits with < 2'6 multiplication gates.

One key ingredient to this improvement is our degree-enforcing sharing commitment scheme described in
Section and the related soundness analysis (see the proof of Theorem . The concrete scheme of Ligero
includes a proximity test ensuring that the committed sharings are “close” to sharings of degree d. Here
close means that the distance between the sharing and the closest degree-d sharing is lower than (N —d)/2
(i.e., less than (N — d)/2 non-equal evaluations). This guaranty leaves much room to a malicious prover for
cheating by committing inconsistent sharings and answering MPC challenges in a way to maximize their
cheating probability. In comparison, our degree-enforcing sharing commitment ensures that the committed
sharings are exactly of the expected degree (which can be d = s+ ¢ — 1 or larger) by adding an additional
prover-verifier interaction, with a tunable soundness error (which is usually made negligible in practical
instanciations).
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A Proof of Theorem [1

We first recall the theorem statement, and then give the proof.

Theorem Let II be an MPC protocol of parameters (N, £, s,dq,dg,p) complying to the format of Pro-
tocol [§ In particular, II is (-private in the semi-honest model and of false positive probability p. Then,
Protocol [5 built from II satisfies the three following properties:

— Completeness. A prover P who knows a witness w such that (z,w) € R and who follows the steps of
the protocol always succeeds in convincing the verifier V.

— Soundness. Suppose that there is an efficient prover P that, on input x, convinces the honest verifier
V to accept with probability

E=Pr[(P,V)(z) = 1] > ¢

where the soundness error € is defined as

p+(1—p)- ((f:)) for the TCitH-GGM wvariant,
€= () ) (17)
p+(1—p) =+ \ﬁFI" for the TCitH-MT variant.

—~
~ 2
~|

Then, there exists a probabilistic extraction algorithm & with time complexity in poly(A, (€ — €)~1) that,
given rewindable black-box access to P, outputs either a witness w satisfying (x,w) € R, a hash collision,
or a commitment collision.

— Homnest- Verifier Zero-Knowledge. Let the pseudorandom generator PRG used in Protocol@ be (t, epra)-
secure and the commitment scheme Com be (t, econ)-hiding. There exists an efficient simulator S which,
given random challenge I outputs a transcript which is (t,epra + €coum)-indistinguishable from a real
transcript of Protocol[3

Proof. The completeness and the zero-knowledge properties directly hold from the correctness and the pri-
vacy of the MPC protocol II. We sketch the soundness proof hereafter for both variants of the TCitH
framework. Along the proof, we shall denote Succ the event that the malicious prover P succeeds in convine-
ing the verifier V, that is:

Succ = “P,V)(z) = 17,

In the following, we assume that for any set of successful transcripts received by the extractor, no
commitment collisions or hash collisions occur. Otherwise, the extractor trivially outputs such a collision.
We will thus assume that for any hash or commitment value produced by P, a single preimage of this
commitment/hash can be extracted from P. In particular, the commitment h; corresponds to a single
extractable value of the sharing [w].

Proof of soundness for the TCitH-GGM framework. Since P is malicious, their first message ki commits a
sharing Jw] of an invalid witness w, i.e. which does not satisfy (z, w) € R. While going through the protocol,
two cases can occur:

— A false positive event occurs: the MPC randomness €', ...,e* sampled by the verifier is such that an

honest execution of the MPC protocol produces the output ACCEPT. By definition of the considered
MPC protocol II, this case occurs with probability p.

— No false positive event occurs. In that case, we show below that the last challenge-response round of the
zero-knowledge protocol can be seen as a ((dg‘) + 1)—specia1—sound protocol. The probability that the

verifier is convinced after the last round is thus (d; ) / (]Z ), since (JZ ) is the size of the challenge space.
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Denoting FP the false positive event, we get that the soundness error satisfies:

da
¢ = Pr[FP] + Pr[-FP] - Pr[Succ | =FP] =p+ (1 — p) - % .
(2)

We now show how to upper bound Pr[Succ | =FP] to obtain the above inequality. Let us assume that the
malicious prover ran all the rounds of the protocol except the last one such that no false positive occurred.
We will show that the remaining challenge (the party opening challenge) and associated response form a
((d;) + 1)—Specia1—sound protocol. Namely, we will show that if (d;) + 1 different accepting transcripts can
be obtained from the malicious prover which only differ in their last round of challenge-response (opening of
the parties), then a valid witness w can be extracted from these transcripts, leading to a contradiction. This

shall imply that at most (d;) valid transcripts can be obtained from the malicious prover if no false positive

event occurs, implying Pr[Succ | =FP] < (d;)/(JZ).
Let us consider (dg‘) + 1 accepting transcripts {7k} kelt:(%e) Each of them corresponds to some party

opening set Ij, (with I # I}, for k # k') and satisfies:

+1]°

Te := (hi,eb, .. by, et hygr, I, 0 = (viewslk,decomfk,{[[aj]]si}ie[lzt]))

Same for all transcripts Prover’s last response
where views;, = (pathlk,Aw,A,Bl,...,Aﬁt) (the A’s being omitted if I, = Tp), decomy, = comj, =
Com(seedy,; pr,) and S} denotes some set of cardinality |Sy| = doj] + 1 — £ disjoint of I} (as defined
in Step 7 of Protocol . From the revealed {[a] s }; and the opened views, one can recover the full sharings

{[e’]}; and the plain broadcast values {a’};. By assumption, the seed paths, the plain broadcast values
{a7};, and the auxiliary values in {0} are consistent since otherwise we would get a commitment collision
or a hash collision. Since we have at least two transcripts, we have at least two different party challenges,
which means that all the leaves of the seed tree are known. Moreover, one can always recover the auxiliary
values (Aw, ABY, ..., AB?) from {7z}, since at most one transcript does not contain those values (if I, = Ty
for one of the 7;). We can then build the Shamir’s polynomials P,, Pg1,..., Pt using the Equation .
Since {7}k are valid transcripts, it means that, for all ¢ € |J, I and j € [1 : t], we have

Pi(e;) = D7 (Py(e;), (Par(e:))r<y)

since [a?]; = Pyi(e:), [w]i = Pu(e;) and [B*]; = Pgr(e;). Since the polynomials in the above relation are of
degree at most d, and since the relations hold for at least d, + 1 evaluation points {ei}Uk 1., We have that
the relations hold directly on the polynomials: P,; = &7 (Pw, (Pﬁk)kgj) for all j. In particular, the relations
are true when evaluating the polynomials in wq, ..., ws, the evaluation points revealing the packed secrets,
which implies

ol =& (w, (%)) -

(In the above equation &7 applies independently on each “slot” of the s-tuples composing the plain values.)
Moreover, since {7}, are valid, we have

It means that we have an honest execution of the MPC protocol which outputs ACCEPT on the witness w.
Since we assumed that there were no false positive events, we get that w must be a valid witness, which
concludes the proof.

Proof of soundness for the TCitH-MT framework. In the TCitH-MT framework, the first message hy sent by

the prover is a Merkle tree commitment of the sharings [w], [u], [8'], [3?], - .., [8!] where each leaf of the
tree is a commitment of the ith shares of all the sharings, for ¢ € [1 : N]. Since only ¢ leaves are eventually
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open, the malicious prover may commit some sharings that do not form valid Shamir’s secret sharings of the
expected degrees.

Let J C [1: N] such that |J| = dg+ 1, where dg = max(s+¢—1,dy,...,d;). We shall denote QY resp.
P&J), the polynomial obtained by interpolation of {Q(e;)}ic.s, resp. {Pu(e;)}ic, for Q defined in Equation (9)
(where both Q(e;) and P,(e;) are defined with respect to the shares [w];, [u]s, [8']:, [8%]s, - - -, [B*]:). We
stress that if the committed sharings are valid Shamir’s secret sharings of their respective degrees (meaning
that the polynomials P, P,, Pg,, ..., P, are of degrees s + ¢ — 1, dg, d1, ..., d respectively), all the
polynomials Q(/) are equal to Q. But by committing invalid sharings (sharings of higher degrees), one ends
up with different polynomials Q). We shall further denote Pg(‘]) =I-QY + Pis‘]).

In the following, we shall assume that there exists a set J C [1 : N] (with |J| = dg + 1) such that

PS(J) = P, where F; is the committed polynomial. Indeed, if no such set exists we have that at most dg
parties are such that P:(e;) = I' - Q(e;) + Pyu(e;) in the final checks of the verifier. The malicious prover
can then only convince the verifier if the open parties are among these dg parties. This means that we get

Pr[Succ] < (df) / (JX) < (d;) / (]Z) so the final result directly holds. For this reason, we always consider that

at least one set J C [1: N] (with |J| = dg + 1) is such that Pé“’) = Pe.

The idea behind the degree-enforcing commitment scheme is the following: even though the malicious
prover might commit invalid sharings giving rise to several pairs of polynomials (Q(" ), PQEJ)), the commitment
of P¢ should constrain the malicious prover to choose a single of these pairs, namely to choose a single set
of sharings [w], [u], [8'], [8?], - -, [B] of the right degrees. More formally, for any two sets J, J' C [1: N]

with |J| = |J'| = dg + 1, such that (Q(J),REJ)) # (Q(J/),qu‘],)), we have:

J J’ ’ ’ 1
Pr [P = P QP # (@) P < i
where the above probability is over the randomness of I'. We can deduce that for any initial commitment,
and, more generally, for any set of polynomials {(Q(”), P&J))h J|=ds+1, We have

Pr[Coll] < (o, 1) 2
2[F"
for Coll the event defined as
Coll = “3J,J' C[1: N] with |J| = |J| = dg + 1 s.t. (QU), PD) # (@), Py and PV =PI

The soundness error of the protocol then satisfies:

2
(451)

e = Pr[Coll] + Pr[=Coll] - Pr[Succ | =Coll] < Pr[Succ | =Coll] + Q[F]

Let us now focus on Pr[Succ | =Coll], namely we consider a valid transcript for which —Coll occurs. As
argued above, there exists at least one set J C [1: N] with |J| = dg + 1 such that Pg(‘]) = F¢. Let us denote

n= J 7.

J
PV =P,

For any ¢ ¢ H, we have Pe(e;) # I' - Q(e;) + Pyu(e;) (where Q(e;) and P,(e;) are recomputed from the
shares [w]s, [uls, [8*]s, [B%], - - -, [B]:), so the verification always fails if such a party is open. Moreover,
since —Coll occurs, {Q(J)}Jg.[ is a singleton, meaning that the shares {[w];, [u]s, [8']:, [8%]s, - - -, [B]: bien
are valid Shamir’s secret shares of unique values w, u, 8%, 32, ..., Bt. The rest of the proof is similar as the
TCitH-GGM case. We also consider two cases:
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— A false positive event occurs: the MPC randomness €', ...,e* sampled by the verifier is such that an

honest execution of the MPC protocol produces the output ACCEPT. By definition of the considered
MPC protocol II, this case occurs with probability p.

— No false positive event occurs. In that case, we show below that the last challenge-response round of the

zero-knowledge protocol can be seen as a ((d;) + 1)—special—sound protocol. The probability that the

verifier is convinced after the last round is thus (d;) / (%)), since () is the size of the challenge space.

We get that the soundness error satisfies:
e < Pr[FP] 4 Pr[-FP] - Pr[Succ | (=FP) A (—Coll)] + Pr[Coll]

(@) N
o) 2

<p+(1-p)- (18)

We now show how to upper bound Pr[Succ | (=FP)A(—=Coll)] to obtain the above inequality. Let us assume
that the malicious prover ran all the rounds of the protocol except the last one such that no false positive
occurred. We will show that the remaining challenge (the party opening challenge) and associated response
form a ((d;) + 1)—special—sound protocol. Namely, we will show that if (d;) + 1 different accepting transcripts
can be obtained from the malicious prover which only differ in their last round of challenge-response (opening
of the parties), then a valid witness w can be extracted from these transcripts, leading to a contradiction.

This shall imply that at most (dé‘) valid transcripts can be obtained from the malicious prover if no false

positive event occurs, implying Pr[Succ | (=FP) A (=Coll)] < (d;)/(]z).
Let us consider (d;) + 1 accepting transcripts {7} kell:(%e) Each of them corresponds to some party

opening set Ij, (with I # I}, for k # k') and satisfies:

+1]°

77€ = (hl,F, hll,{-:l, .. .,ht,et,ht+1,lk,ak = (viewslk,decomjk,{[[aj]]si}ie[lzt]))

Same for all transcripts Prover’s last response

where viewsy, = ({[[w]]“ 18474, [8%1s, - - -, [B]i Yier,, AB?, ... .,ABt), decom;, = path; and SZ, denotes some
set of cardinality |Si| = da[j] +1—¢ disjoint of I}, (as defined in Step 7 of Protocol. From these transcript,
since Iy, # I} for all k # K/, we can retrieve at least dy +1 > dg + 1 shares of the committed sharings [w],
Tul, 181, [8%1, ---, [B] (which pass the degree-enforcement test, i.e. which are consistent with P¢). From
these shares, we can build the Shamir’s polynomials P,,, P,, Pg1, ..., Pg: by interpolation. The rest of the
proof is similar to the GGM case. Since {7}, are valid transcripts, it means that, for all i € (J, I and
j €[1:¢], we have
Poi(ei) = 97 (Pu(ei), (Pgr(€))k<;)

since [a/]; = Pyi(e;), [w]; = Py (e;) and [B*]; = Ps(e;). Since the polynomials in the above relation are of
degree at most d, and since the relations hold for at least d, + 1 evaluation points {ei}Uk I1,.» We have that
the relations hold directly on the polynomials: P,; = &7 (Pw, (Pﬁk)kgj) for all j. In particular, the relations
are true when evaluating the polynomials in wq, ..., ws, the evaluation points revealing the packed secrets,
which implies
o =& (w, (B")us;) -

(In the above equation &/ applies independently on each “slot” of the s-tuples composing the plain values.)
Moreover, since {7} are valid, we have

glat,...,a") =0.

It means that we have an honest execution of the MPC protocol which outputs ACCEPT on the witness w.
Since we assumed that there were no false positive events (—FP), we get that w must be a valid witness,
which concludes the proof. O
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