
Faulting Winternitz One-Time Signatures
to forge LMS, XMSS, or SPHINCS+ signatures

Alexander Wagner1,2[0000−0003−2853−3063],
Vera Wesselkamp2[0009−0002−8481−9103], Felix Oberhansl1[0000−0002−7822−2880],

Marc Schink1,2, and Emanuele Strieder1,2[0000−0003−0204−3234]

1 Fraunhofer Institute for Applied and Integrated Security (AISEC),
Garching near Munich, Germany

firstname.surname@aisec.fraunhofer.de
2 Technical University of Munich,

Munich, Germany
firstname.surname@tum.de

Keywords: fault injection · post-quantum cryptography · hash-based signa-
tures · winternitz one-time signatures · LMS · XMSS · SPHINCS+

Abstract. Hash-based signature (HBS) schemes are an efficient method
of guaranteeing the authenticity of data in a post-quantum world. The
stateful schemes LMS and XMSS and the stateless scheme SPHINCS+

are already standardised or will be in the near future. The Winternitz
one-time signature (WOTS) scheme is one of the fundamental building
blocks used in all these HBS standardisation proposals. We present a new
fault injection attack targeting WOTS that allows an adversary to forge
signatures for arbitrary messages. The attack affects both the signing
and verification processes of all current stateful and stateless schemes.
Our attack renders the checksum calculation within WOTS useless. A
successful fault injection allows at least an existential forgery attack and,
in more advanced settings, a universal forgery attack. While checksum
computation is clearly a critical point in WOTS, and thus in any of
the relevant HBS schemes, its resilience against a fault attack has never
been considered. To fill this gap, we theoretically explain the attack, es-
timate its practicability, and derive the brute-force complexity to achieve
signature forgery for a variety of parameter sets. We analyse the refer-
ence implementations of LMS, XMSS and SPHINCS+ and pinpoint the
vulnerable points. To harden these implementations, we propose counter-
measures and evaluate their effectiveness and efficiency. Our work shows
that exposed devices running signature generation or verification with
any of these three schemes must have countermeasures in place.

1 Introduction

Hash-based signature (HBS) schemes have been known for decades but they were
not really considered for further research or practical applications in the past.

2 A. Wagner et al.

This changed when the need for post-quantum cryptography (PQC) emerged
that could withstand attacks by quantum computers.

The standardization of stateful HBS schemes started with the publication-
s of the IETF RFCs for the eXtended Merkle Signature Scheme (XMSS) and
Leighton-Micali hash-based signature (LMS) in 2018 and 2019, respectively [HBG+18,
MMC19]. The National Institute of Standards and Technology (NIST) published
a supplement to their digital signature standard recommending parameters for
both of these algorithms in 2020 [CAD+]. The French national agency for the
security of information systems (ANSSI) and the German federal office for in-
formation security (BSI) also specify both algorithms in their own publication-
s [ANS22, BSI22]. The stateless scheme SPHINCS+ was selected in 2022 at the
end of the third round of the process to standardize quantum-resistant public
key cryptographic algorithms [MAA+].

Since their standardization, stateful HBS algorithms have been deployed in
several products ranging from embedded devices up to servers [Rai22, Cis19,
gen20]. Due to their inherent nature of statefulness, the number of signatures
that can be created with a key pair is limited, which also limits the range of
applications. In practice, they are most applicable to verify the integrity and au-
thenticity of data that rarely changes, such as the firmware of embedded devices.
The verification procedure then takes place during a secure boot or firmware up-
date process. In past works, the research community has investigated hardware
and software optimizations for this use case [WOS22, WJW+, KPC+, KGC+20]
and vendors brought forward products [Rai22]. The standard for SPHINCS+

is yet to be published sometime between today and 2024, but the scheme is
already considered for adoption [MAA+]. For example, the OpenTitan project
considers to integrate SPHINCS+ into their open source hardware root of trust
for firmware verification [goo].

These efforts demonstrate the need for a post-quantum secure boot and
firmware update process. An adversary who can circumvent such a process can
execute malicious firmware, which compromises the security of embedded de-
vices completely. Over time, researchers have established that fault attacks pose
a considerable threat to exposed embedded devices, e.g. by allowing exactly such
a circumvention of the secure boot process [BFP19, Rot19]. Developers of secure
boot libraries such as MCUboot3 and microcontroller manufacturers have rec-
ognized this by introducing countermeasures against such attacks in the basic
control flow [AdGHB]. The cryptographic implementations, however, remained
unprotected. We present a fault attack, which demonstrates that such an as-
sumption could prove fatal for an exposed embedded device that uses any of the
three HBS schemes: LMS, XMSS, and SPHINCS+.

Attack Overview. Instead of trying to entirely skip a secure boot or firmware up-
date process, our fault attack targets the internal structure of HBS schemes. Our
attack grants the adversary signature forgery for arbitrary malicious payloads.
We want to emphasize the impact of such an attack, if executed successfully. It is

3 https://github.com/mcu-tools/mcuboot

https://github.com/mcu-tools/mcuboot

Faulting Winternitz One-Time Signatures 3

common practice to rely on one entity for signing firmware updates with one key
pair for a complete line of products. Therefore, forging a single signature for a
malicious payload that seems valid with respect to the entity’s public key allows
the adversary to corrupt any device. We introduce the idea behind the attack
itself in detail in Section 3 and the adversarial model in Section 3.5. The attack
can target either the signing or the verifying entity, is applicable to LMS, XMSS,
and SPHINCS+, and consists of two phases. In one phase, a fault is introduced
into the Winternitz one-time signature (WOTS) signing or verifying procedure.
The other phase is responsible for brute-forcing a forgery candidate. The order
of these phases depends on whether it is applied to the signer or the verifier.
Further, the effort and success probability of the brute-force phase (analyzed
in Section 4) depends on the algorithmic part targeted during fault injection.
We demonstrate how our attack can be used on the reference implementations
of LMS, XMSS, and SPHINCS+ in Section 6.

Related Work. The only fault attack known in the context of HBS is the ‘Grafting
Trees‘ attack, proposed in [CMP18]. Effective and efficient countermeasures have
not yet been sufficiently developed [Gen23]. Practicable evaluations of this fault
injection attack were shown in [GKPM18, ALCZ20]. It targets the signature
generation of multi-tree schemes, therefore it only affects SPHINCS+ and the
multi-tree variants of LMS and XMSS. The adversary tampers with the signing
procedure, such that the signer unknowingly leaks secret information. A few
tries suffice for the adversary to be able to reconstruct the signer’s secret key.
The attack has the advantage of very lax requirements with respect to the fault
model and the temporal precision. Once the adversary extracts the secret key,
she can sign arbitrary messages. The disadvantage is that the attack can only be
carried out on the signer. Therefore, it is not applicable in the context of firmware
updates or secure boot, as the adversary typically does not have physical access
to the signing entity.

Contributions. We present the first attack that allows to tamper the signing as
well as the verification operation of HBS schemes in general. Our attack is appli-
cable to all variants of LMS, XMSS, and SPHINCS+, by targeting the checksum
mechanism in the fundamental WOTS scheme. The attack consists of two phas-
es. The first phase is a brute-force search for a suitable message digest. This
phase happens offline, i.e. there are no strict timing requirements on the adver-
sary. We derive the brute-force complexity and success probability depending
on the fault model and algorithmic parameters. Further, we estimate the cost
of the brute-forcing capabilities needed in practice. The second phase covers the
physical attack on the victim device, typically an embedded system to which the
adversary has physical access. We analyze real world implementations for weak
spots and show the applicability of our attack with respect to the capabilities
of the adversary. In combination with the brute-force cost, our analysis shows
that attacking reference implementations of all considered HBS schemes, name-
ly LMS, XMSS, and SPHINCS+ is feasible. To conclude, we outline different

4 A. Wagner et al.

countermeasures to mitigate our attack, estimate their effectiveness and costs,
and stress their importance for exposed devices.

2 Hash-Based Signatures

We briefly introduce the structure of WOTS and explain how it is used as a fun-
damental building block in the HBS algorithms LMS [MMC19], XMSS [HBG+18],
and SPHINCS+ [HBD+20].

2.1 Winternitz One-Time Signatures

Figure 1 depicts the principle behind WOTS+ as described in [Hü]. In the fol-
lowing we refer to WOTS+ as WOTS, unless clearly stated otherwise, as it is
the foundation for all ”WOTS-like” algorithms in LMS, XMSS, and SPHINCS+,
the most relevant HBS schemes to date.

0b11 FFF

Secret KeyMessage
Chunks

Checksum
Chunks

0b10 FFF

0b01 FFF

0b00 FFF

Public Key

0b10 FFF

Initial state

w=4

Final state

0b01 FFF

l =41

l =22

K

Fig. 1: Simplified Winternitz one-time signature – w = 4 and n = 1 – with the
nodes of the secret key (), the public key (), and the signature () highlighted.

A WOTS signature consists of l hash chains and of these l1 are required for
the message digest and l2 for the checksum, which are defined as

l = l1 + l2, l1 =

⌈
8n

log2(w)

⌉
, l2 =

⌊
log2(l1(w − 1))

log2(w)

⌋
+ 1. (1)

To generate a WOTS signature, a message is hashed into an n-byte value
m. The message digest m is split into l1 chunks. Each chunk is interpreted as a
value mi = N (m, i), i.e. the function N maps the i-th chunk of m to mi, where
mi ∈ [0, w− 1] and i ∈ [0, l1− 1]. The parameter w is the Winternitz parameter.
Each of the values mi is assigned an individual hash chain consisting of w nodes,
each represented by an n-byte value. The start node is the one-time signature

Faulting Winternitz One-Time Signatures 5

(OTS) secret key (), and the end node the OTS public key (). Advancing
from one node to another is realized by applying a function F to the current
node. The output of F serves as the next node. The end nodes are combined
by applying the function K to obtain the compressed OTS public key. Although
the exact implementations of F and K may differ, we assume both to be single
calls to a cryptographic hash function. In reality, before being hashed, the node
data might be - depending on the scheme - pre-processed with masks and keys,
which are also the output of a hash function.

To sign (→) or verify (→) a mi the corresponding hash chain is
advanced by applying F . For signing, F is applied mi times to the respective
secret key node () and the resulting node () is taken as part of the WOTS
signature. For verifying, the signature node () is taken as basis and advanced
w − 1 −mi times. If this does not yield the public key (), the verifier rejects
the signature.

If the WOTS scheme were used just with the l1 hash chains representing
the message digest m, an adversary could trivially sign any message, where
the digest r consists only of chunks ri, where ri ≥ mi,∀i ∈ [0, l1 − 1]. This is
because the adversary gains information about intermediate hash chain nodes
from the original signature. Information that was prior to the signing operation,
private. The adversary can simply advance all signature nodes by ri − mi to
forge a signature. To mitigate this, a checksum mechanism is part of the WOTS
scheme. In addition to the message digest and its corresponding signature nodes,
each WOTS signature consist also of a checksum c, which has its own signature
nodes (Figure 1). The calculation of the checksum c for a message digest m is
denoted as

c = C(m) =

l1−1∑
i=0

(w − 1−mi). (2)

Put in simple terms, c corresponds to the sum of ”steps left” over all message
hash chains. The value c is split into l2 checksum chunks ck, where k ∈ [0, l2−1]
and l2 is defined in Equation (1). The mapping between c and checksum chunks
ck is defined by the function N (c, k), similar to the mapping between mes-
sage digest m and message chunks mi. For the final signature, message chunks
and checksum chunks are appended, s.t. m0 |m1 | . . . |ml1−1 | c0 | c1 | . . . | cl2−1.
By doing an index transformation from k ∈ [0, l2 − 1] to j ∈ [l1, l − 1], we
map ck = mj , s.t. we can simplify our signature to a continuous series of
m0 |m1 | . . . |ml−1, where mi are nodes corresponding to message chunks and mj

are nodes corresponding to checksum chunks. With the checksum nodes, it is now
guaranteed that for a malicious message digest r for which ri ≥ mi,∀i ∈ [0, l1−1]
the checksum c′ < c. Therefore, the adversary would have to get to a lower node
from a higher node for at least one checksum chain. This is impossible from an
algorithmic perspective, as these lower nodes are neither public nor computable.

The WOTS scheme used today (WOTS+ [Hü]) is a result of optimizing the
original scheme by Winternitz [Mer90] and the updated version from [BDE+11].
Its actual instantiations in LMS, XMSS and SPHINCS+ differ, but the parts

6 A. Wagner et al.

relevant for this paper are equivalent. This includes the Winternitz one-time sig-
nature with tweakable hash functions (WOTS-TW) scheme, the WOTS scheme
used in SPHINCS+, which was formally extracted and equipped with a new
security proof in [HK22], after a flaw in the original proof was found. The Com-
pressed Winternitz one-time signature (WOTS+C) scheme [KHRY22], however,
differs in the fact that no checksum chains are required. Instead, a short ran-
dom bit string (salt) is introduced in the signing procedure. The salt is sampled
randomly until a message digest with a pre-defined value for c is found. This
modification was proposed as part of the efforts to compress SPHINCS+ signa-
tures, as it makes the checksum signature nodes obsolete.

2.2 LMS, XMSS, and SPHINCS+

For most of today’s applications of digital signatures, a one-time signature
scheme like WOTS alone can hardly ever be used. Therefore, many-time sig-
natures (MTSs) like XMSS and LMS combine WOTS with one or multiple
Merkle trees. The idea of Merkle signature schemes (MSSs) can be traced back
to [Mer90]. Its structure is depicted in Figure 2a. These schemes are stateful, i.e.
the amount of signatures that can be created with one key pair is greater than
one but still limited and the signer needs to keep track of the signatures that
were already used (maintain a state). As in the previous subsection, WOTS is
used to sign the initial message digest. The WOTS public key nodes () corre-
spond to the leaf nodes of a Merkle tree. The root node of the tree (), in turn,
corresponds to the LMS or XMSS public key. Therefore, a Merkle tree with a
tree height of h can authenticate 2h WOTS key pairs, each of which can be used
once.

OTS
Public Key

MSS
Public Key

K

(a) The MSS scheme.

K

K

K

(b) The GMSS scheme.

Fig. 2: MTS variants with one (MSS) and multiple (GMSS) levels of Merkle trees.

Faulting Winternitz One-Time Signatures 7

To sign a message, the signing entity publishes the WOTS signature () and
the so-called authentication path (). These nodes are used by the verifying
entity to compute the root node and check whether it matches the MSS public
key ().

For a large number of signatures, MSS schemes still proof impractical. For
larger tree heights h, the runtime of key and signature generation is no longer
feasible. The generalized Merkle signature scheme (GMSS) [BDK+] addresses
this issue, by stacking up d Merkle trees of smaller height h′ = h/d instead of
using one large tree of height h (see Figure 2b). The WOTSs of the top and in-
termediate Merkle trees are used to authenticate the root nodes of the respective
Merkle trees below (sub-trees). The WOTSs of the Merkle trees on the lowest
layer are used to sign message digests. The multi-tree variants of XMSS, XMSS-
MT, and LMS, hierarchical signature system (HSS), specify different parameter
sets for d and h, which can be chosen depending on the number of required
signatures.

For SPHINCS+, a limited subset of parameters exist. The SPHINCS+ scheme
is an stateless signature scheme. Theoretically, a bound for the maximum number
of allowed signatures can be derived, but due to a careful combination of param-
eters, this number is too high to pose a limitation for real-world applications.
Additionally, the message digest in SPHINCS+ is not signed with WOTS, but a
few-time signature (FTS) scheme called forest of random subsets (FORS). Since
the usage of FORS is not of importance for our attack, we omit an explanation
here and refer the interested reader to [HBD+20] instead.

3 Attack Sketch

Our attack enables an adversary to choose an arbitrary message and create a
valid signature, which we refer to as forged signature throughout this paper.
The forged signature can be generated if the adversary has at least one signa-
ture which was signed with the secret key. In contrast to existing fault attacks
in the context of HBSs, the adversary can either target the signing or the veri-
fying entity. In the following, we abbreviate the two scenarios with FS and FV
for faulting the signer or faulting the verifier, respectively. Both scenarios, de-
scribed in detail in Section 3.4, share that the injected faults target the checksum
mechanism of the WOTS scheme to render it ineffective. We refer to the phase
in which this fault is injected as fault injection phase, it is described in detail
in Section 3.2. Also, in both scenarios, the adversary must perform a brute-force
search to generate a signature for its malicious message. We refer to this phase
as brute-force phase and it is described in Section 3.1.

3.1 Brute-Force Forgery of WOTS

In the following we assume that the checksum mechanism is not part of the
WOTS scheme, i.e. is ineffective due to the injected fault. Without the checksum,
a WOTS of the message digest m created by an entity A can be used to sign

8 A. Wagner et al.

other message digests, e.g. to forge a signature for a malicious payload. This is
possible as the hash chains can be advanced by repeatedly hashing the signature
chunks. To be able to exploit this, the adversary needs to be in possession of a
message digest r, s.t. ri ≥ mi ∀i (ri = N (r, i) and mi = N (m, i), see Section 2.1).
The forged signature behaves as if A had signed r using its secret key. Finding a
message which maps to such a message digest r is only possible through brute-
force search, due to the preimage resistance of the underlying hash function. The
number of trials that is necessary for an adversary to succeed in such a search
is analyzed in Section 4.1. Section 6.1 reviews the means by which an adversary
can efficiently perform the brute-force search.

3.2 Fault Attack on WOTS Checksum Chains

If the adversary is in possession of a malicious message digest r, s.t. ri ≥ mi ∀i,
the checksum of r will always be lower than that of m. The checksums cannot
be equal as this would imply that all chunks of m and r are equal. We disregard
the case where the adversary selects its malicious message to be equal to the
original message, as this would be of no benefit. And, further, if the digests r
and m are equal but not the messages, this would resemble an infeasible second
preimage attack.

However, for some checksum chunks rj = N (C(r), j) and mj = N (C(m), j),
rj ≥ mj may still hold. For these, the adversary can simply reuse or advance
chains of the signature of m for her forgery. But, if rj < mj , the adversary
must know prior nodes of the OTS checksum hash chain. Recovering prior nodes
by inverting F is impossible as it is based on a cryptographic hash function.
To overcome this issue, we instead propose a fault attack: The injected fault
shall force a node to a lower level on the chain than required by the respective
checksum chunk. Consider a value v ∈ [0, w − 1] for checksum chunk mj =
v. Then, either the corresponding secret key node skj (during signing) or the
signature node sigj (during verification) is advanced v or w − v − 1 times, i.e.
Fv(skj) or Fw−v−1(sigj). Our fault attack forces the implementation to use
values smaller than the actual v, or w− v − 1, respectively. If the signing entity
is attacked, prior nodes than the actual signature nodes are revealed. If the
verifying entity is attacked, a correct public WOTS key is derived from nodes
too far progressed. With the fault, the adversary is able to forge a valid WOTS
for r.

We describe both attack variants in Section 3.4. For our theoretic analysis in
Section 4.1 we assume that the adversary is able to completely skip the checksum
calculations. In this case we do not need to care about individual checksum
chunks and whether we can forge them or not. We refine this by limiting our
attacker capabilities to skip or tamper single or multiple calculations in the
theoretic analysis in Section 4.2. We show the practicability of our fault attack
in Section 6.

Faulting Winternitz One-Time Signatures 9

3.3 Faulting WOTS to break LMS, XMSS, and SPHINCS+

So far we have established how an adversary can forge a WOTS signature with
fault injection. This section establishes that faulting WOTS is sufficient to break
any of the HBS algorithms introduced in Section 2.2 and describes the attacks
an adversary can mount on the respective schemes.

For the single tree variants of LMS and XMSS, the adversary is limited to
attacking the only WOTS instance within these schemes, the one signing the
actual message digest. A successfully forged WOTS signature is also valid for
LMS and XMSS, as the Merkle tree in those schemes only authenticates the
WOTS public key.

For the many-time signatures HSS and XMSS-MT, the adversary has more
possibilities to mount an attack. If she chooses to attack the lowest WOTS,
which signs the actual message, the attack is equivalent to the attack on a
single tree scheme described above. However, choosing one of the intermediate
WOTSs, which authenticates the root of the respective lower Merkle tree, allows
an adversary to sign arbitrary malicious messages. This is because, if the attack
on an intermediate WOTS succeeds, the adversary gains the capability to forge
a signature for a root node of a lower Merkle tree. Once such a signature is
forged, the adversary can arbitrarily construct an entire tree and is therefore
in possession of a secret key, which can be used to sign (a limited amount of)
arbitrary messages. For the brute-force phase we propose to use the topmost
authentication node of the targeted intermediate tree as a counter to efficiently
search for suitable root node candidates.

This also applies to the stateless signature scheme SPHINCS+. The only
difference between attacks on SPHINCS+ and attacks on HSS and XMSS-MT
is, that SPHINCS+ uses FORS instead of WOTS to sign the actual message.
However, this structural difference does not impact the adversary’s capabilities
to forge an entire Merkle tree.

3.4 Attack Variants

The two scenarios to which our attack applies, faulting the signer or verifier (FS
or FV), differ in the order in which the fault injection and brute-force phase take
place.

Faulting the signer (FS). In case of the FS scenario, the message and therefore
the digest m is only known to the adversary after the signature was generated.
Nevertheless, the adversary manipulates the WOTS checksum mechanism during
signing. The general goal is to force the signer to not advance any checksum hash
chain up to the needed signature node, i.e. manipulating Fv(skj) to Fv′(skj),
where v′ < v. This reveals nodes which need to be kept secret. Depending on
the adversary capabilities described in Section 3.5, we show in Section 4.2 that
there are different strategies to achieve this outcome.

The fault was successful, if the result is a tampered signature revealing e-
nough prior nodes in the checksum hash chains. To forge a valid signature for the

10 A. Wagner et al.

malicious payload, the tampered signature is used as an input for the brute-force
phase. Here, the selected fault strategy also has an impact on the probabilities
for finding a message digest which is suitable to forge a signature.

The malicious payload is forwarded with the forged signature to the victim
for verification, e.g. during a secure boot or firmware update. Since the adversary
crafted a dedicated payload for the tampered signature, the victim’s verification
of the message with the public key stored on the device yields a valid signature.

Faulting the verifier (FV). In the FV scenario, the adversary is able to collect a
set of signatures. These signatures are used as an input for the brute-force phase.
Depending on the faulting capabilities of the adversary, the success probability
of the brute-force phase, and therefore also the computational cost, vary.

During the fault injection, the adversary tries to force the verifier to not ad-
vance a checksum hash chain as determined by the respective checksum chunk,
i.e. manipulate Fw−v−1(sigj) to Fo(sigj), where o < w−v−1. A straightforward
approach for the adversary is to manipulate the victim, s.t. o = 0. In this case,
the chain calculation of a checksum chunk is skipped entirely and the sigj node
of the forged signature is forwarded directly to the computation of the WOTS
public key candidate. To achieve verification, the adversary sets sigj to the top
value of the respective chain, s.t. the correct public key is computed. In Sec-
tion 4.2, we evaluate both relaxed assumptions on the adversary, where setting
o = 0,∀j is possible and more constrained assumptions, where only individual
checksum hash chains are (partly) skipped. As described above, these scenarios
imply different degrees of freedom for the brute-force phase.

The malicious payload and the forged signature are forwarded to the target
device for verification. To trick the verifier into accepting the invalid signature
containing invalid OTSs for the checksum, an adversary applies the fault attack
as described above. The fault injection was not successful, if the verifier advances
this hash chain too far and calculates an invalid compressed OTS public key,
which fails verification. If the fault injection was successful, the verifier derives
the correct WOTS public key, the signature is verified as valid, and the malicious
payload is accepted by the target device.

3.5 Adversarial Model

In this section, we introduce the faulting and brute-force capabilities of the
adversary.

Faulting capabilities. A fault attack has the purpose of manipulating the control
or data flow of an application to achieve an outcome that is desired by the
adversary. Typical fault attacks we deem applicable to this work are clock and
voltage glitching, electromagnetic fault injection (EMFI), laser fault injection
(LFI) or software-based hardware attacks like Rowhammer. To simplify analysis,
we condense all these attacks into two basic fault models. Please note, that this is
not sufficient to fully analyze an implementation. To do so, fault models specific

Faulting Winternitz One-Time Signatures 11

to the underlying hardware need to be derived and used for analysis of the exact
data and control flow.

The first fault model we deem reasonable allows an adversary to skip a single
instruction. This fault model is frequently reported in literature and has been
demonstrated on various embedded devices [OSS17, GTSC, O’F19].

The second fault model allows the adversary to tamper data. More precisely,
we assume that the adversary is able to inject single or multiple bit-flips into
registers or memory [SZK+18, FKK+22]. By applying both fault models and
showing vulnerable spots within the HBS implementations (Section 6), we want
to highlight the general applicability of our attack to several devices in different
environments and scenarios.

Brute-forcing capabilities. As this attacks bears some computational complexity,
we need to evaluate its feasibility depending on the adversary’s capabilities. To
do so, we base our categorisation on [Aum19], which classifies security strengths
below 100 bits as weakened, and below 80 bits as broken. This is commonly used in
similar scenarios like side-channel analysis [VCGS13, HMU+20]. In Section 6.1,
we evaluate different hardware platforms (CPUs, GPUs, or ASICs) to give an
estimate for the economic costs connected to this attack.

4 Probabilistic Analysis

In the previous section, we established that the complexity of the fault attack,
and the complexity of the brute-force search for a suitable message digest to
forge a signature are connected. In the following section, we first analyze the
computational complexity for the brute-force phase when assuming that the
checksum is rendered completely ineffective by the fault attack (Section 4.1). We
refine these probabilities and the cost of the attack wrt. the faulting capabilities
of the attacker in Section 4.2.

4.1 Probabilities

For the attack, the adversary needs to find a digest whose signature is forgeable
by using a set M of signed random message digests. We assume the adversary
has intercepted the set M of signed digests m ∈ M . As the attacker does not
have an influence on the digests contained in M , its capabilities are those of a
random message attack (RMA). She now performs the calculation of digests r
of messages that are usable for the attack. The set of these trials is R. Even
if the adversary has a specific target message, e.g. in the form of a binary, an
infinite number of potential forgery targets can be generated by appending a
counter to the payload. Among others, this principle was also used in [BHRVV]
to efficiently generate a vast amount of different message digests. If it is not
possible to append a counter to the selected message, an attacker can exploit
the fact that for LMS and XMSS the message is digested using a method called
randomised hashing. The hashing instance is initialised with a seed chosen by

12 A. Wagner et al.

the signer. An attacker can therefore choose arbitrary values. For SPHINCS+ a
different approach is used, with similar capabilities, which is described in more
detail at the end of this section. We thus assume that, if needed, the adversary
can generate any amount of candidate digests, only limited by its computational
resources. In the following, we describe the attack scenario for the adversary
goals of universal forgery (UF), selective forgery (SF), and existential forgery
(EF). These goals were also used in [GBH18] to evaluate their attack.

To model the probability, we need to know the distribution of values the
signed message can take. More precisely, we require the distribution of the mes-
sage digest, as the message is always hashed prior to signing. We are not inter-
ested in weaknesses of the underlying hash functions, therefore we assume that
F behaves like an oracle with uniformly randomly distributed output.

Universal forgery (UF). An UF is a the strongest forgery attack as it enables
an adversary to sign any given digest r. When applied to WOTS, it is necessary
for the attacker to possess a valid signature of a message digest m that consists
of all zeros – which is rarely the case. However, if the adversary has obtained
such a signature, she has obtained all OTS secret keys. Hence, each hash chain
can be advanced to an arbitrary node, signing any message. The probability for
a single hash chain of length w to be equal to zero is 1

w . The probability that
this is the case for all hash chains is

pUF =

(
1

w

)l1

= 2−8n.

Given a set of M validly signed message hashes, the probability that one of
them is a zero-hash can be modeled by the CDF of a geometric distribution with
parameter pUF as following

Prbreak[M,R] = 1− (1− pUF)|M |.

The adversary has no possibility to increase the overall probability as its
brute-force set R has no influence. As n ∈ [16, 24, 32] – for the NIST security
levels of one, three, and five, respectively – the success probability to achieve
UF-RMA when our attack is applied only to WOTS is infeasible. By extending
our attack to HBS schemes with multiple trees, we show how an attacker can
still achieve UF-RMA within certain constraints. This extension is described
in Section 3.3.

Selective forgery (SF). In case of a SF, an adversary chooses a fixed digest r
before gaining knowledge of the set M . Based on [GBH18], we model this scenario
as follows: To maximize the likeliness that the chosen r is a forgery candidate
for the unknown set M , the adversary chooses a threshold b ∈ [0, w − 1]. Now,
an r where for each chunk ri it holds that ri ≥ b is pre-calculated. The attack
succeeds with such a chosen r, if M contains a message hash m where for each
chunk mi holds mi ≤ b. In this case, the adversary has knowledge of an r for
which holds that ri ≥ mi,∀i. Thus, m can be misused to forge a signature for

Faulting Winternitz One-Time Signatures 13

r. Due to the equally distributed output of the hash function, the probabilities
that ri ≥ b and mi ≤ b ∀i are given as

pSF≥b
=

(
w − b

w

)l1

, pSF≤b
=

(
b

w

)l1

.

Each of the two cases applied to the whole set, i.e. ∃m ∈ M |mi ≤ b and
∃r ∈ R | ri ≥ b ∀i, can again be modeled as the CDF of a geometric distribution
dependent on the size of the set. Thus, the joint probability of both occurring is

Prbreak[M,R] =
(

1− (1− pSF≤b
)|M |

)
·
(

1− (1− pSF≥b
)|R|
)
.

The selection of the threshold b constitutes a trade-off, as a higher b leads
to a higher pSF≤b

allowing for a smaller set M , but at the same time raises
the necessary pre-computation for the set R as pSF≥b

drops. In the case that
∃m ∈ M |mi ≤ b ∀i a signature m can still be leveraged for the forgery, if
∃m ∈ M and ∃r ∈ R |mi ≤ ri ∀i. Thus the actual probability is at least the
above.

The SF scenario corresponds to cases where the computation of the forgery
candidate needs to occur before the attacker gets access to m. We deem this as
less relevant and therefore do not further investigate this scenario within this
work.

Existential forgery (EF). In case of EF, an adversary succeeds in signing one
arbitrary digest. To achieve this when given set of signed digests M , the ad-
versary performs a calculation of forgery candidates r for each m ∈ M , i.e. the
size of both sets are equal: |M | = |R|. The probability that one chunk ri of the
candidate is greater or equal to the corresponding chunk mi of the message m
can be described using the law of total probability

Pr [ri ≥ mi] =

=

w−1∑
x=0

Pr [ri ≥ mi|mi = x] · Pr [mi = x]

=

w−1∑
x=0

(
w − x

w

)
1

w
=

w + 1

2w
.

This leads to the overall probability for l1 chunks of r being larger than m
with |R| number of trials:

Prbreak[M,R] = 1−

(
1−

(
w + 1

2w

)l1
)|R|

. (3)

14 A. Wagner et al.

The results for different parameters are plotted in Figure 3. As we assume for
each forgery trial to draw an unseen m, we model the probability for each trial as
independent event. While this case allows an exact calculation of the correspond-
ing probabilities, it can only be used to roughly estimate the order of complexity
for cases where |M | = I and |R| � I. Hence, it remains unclear how many trials
are required in the adversaries scenario and a more exact representation of the
probability is needed.

20 210 220 230 240 250 260 270 280

Trials

0.0
0.2
0.4
0.6
0.8
1.0

Pr
br

ea
k[M

,R
] n=16, w=256

n=24, w=256
n=32, w=256
n=16, w=16
n=24, w=16
n=32, w=16

Fig. 3: The success probability of an EF-RMA with |M | = |R|.

A different approach is to calculate the probability of a forgery for each m
individually. For a certain m we can calculate the probability that all l1 chunks
ri of the candidate are greater or equal to the corresponding chunks mi:

Pr [ri ≥ mi,∀i] =

l1∏
i

w −mi

w
.

In contrast to the previous scenarios, this probability is dependent on m.
It is thus not possible to derive a general pEU . The probability of breaking a
non-fixed message m using a set R is the sum of probabilities for all possible m,
each of which occurs with the same probability:

Prbreak[m,R] =
∑
m∈M

(1− (1− Pr[ri ≥ mi,∀i])|R|) · Pr[m]

=
∑
m∈M

(1− (1− Pr[ri ≥ mi,∀i])|R|) ·
1

wl1
.

For a set M , the overall probability thus becomes

Prbreak[M,R] = 1− (1− Prbreak [m,R])
|M |

. (4)

To calculate the probability Prbreak[m,R], all valid digests m ∈ M need
to be evaluated. Due to the amount of possible outputs of a cryptographic hash

Faulting Winternitz One-Time Signatures 15

function, this is infeasible to compute. Therefore, we propose to approximate the
expected probabilities with the help of simulations. If the values from Figure 3
are taken as a reference point to estimate the complexity for simulating the
attack, it becomes obvious that a high resource usage is required. For example,
the experiment with n = 32, w = 16 might require up to 260 trials. Further,
we would have to run the experiment a significant number of times to draw
conclusions from it and the simulation only allows to draw conclusions for the
number of trials performed.

To circumvent this issue, we instead simulate Prbreak[M,R] for |M | > 1.
This reduces the computational effort and, thus, allows to use general-purpose
computing equipment. With these results we can approximate Prbreak[m,R], i.e.
|M | = 1 as

Prbreak

[
m,

R

|M |

]
= 1− |M|

√
1− Prbreak[M,R]. (5)

Figure 4 shows our results. Please note that the analysis of the w = 16, n = 32
parameter set exceeded our available computing resources and is therefore omit-
ted. For the parameter set of w = 16, n = 24, we have run our simulations with
|M | = 131072. Due to the high count of |M | and limited computing resources, we
selected 4096 messages from M , for which the brute-force search had the highest
success probability based on Equation (3) – effectively reducing the input to the
brute-force search by 32. Hence, Prbreak for w = 16, n = 24 is at least as high as
given by the results of our simulations. To reflect this in the plots, we marked
the count of the message set with |M∗|.

Extending existential forgery to universal forgery. The results shown so far
demonstrate that, if only a single WOTS signing a message is targeted, an adver-
sary can only achieve EF with reasonable high probabilities. This changes if the
attack is applied to any of the multi-tree algorithms, i.e. the HSS variant of LMS,
XMSS-MT, and SPHINCS+. By exploiting the dependency between trees, the
adversary is able to extend its forging capabilities such that UF can be achieved.
Section 3.3 established that an adversary may target WOTS instances that au-
thenticate sub-trees. This affects the brute-force complexities slightly. The input
to the signing or verifying operation is no longer a message, which can be cho-
sen freely, but the root node of a sub-tree. During the brute-force phase, the
adversary must generate a new sub-tree with a suitable root node. For this, the
secret key (a seed which is used to generate all the leaf nodes) is chosen freely.
Then, the adversary constructs the tree from the secret key and divides it into
signature and authentication nodes (see Section 2.2). The top-most node of the
authentication path can be replaced with a counter which is iterated until a suit-
able root node is found. The difference to attacking a WOTS instance signing a
message is that the adversary is now capable of authenticating a key pair and
is in possession of the secret key. Therefore, the adversary gains the possibility
to sign messages without any additional effort. If a message-signing WOTS in-
stance is attacked, every new message requires a new brute-force phase. Hence,
the attack is extend from EF to UF.

16 A. Wagner et al.

20 210 220 230 240 250 260 270 280

Trials

0%

20%

40%

60%

80%

100%

Pr
br

ea
k[M

,R
]

w=16, n=16
|M|=1
|M|=2
|M|=4
|M|=8
|M|=16
|M|=32
|M|=64
|M|=128

20 210 220 230 240 250 260 270 280

Trials

0%

20%

40%

60%

80%

100%

Pr
br

ea
k[M

,R
]

w=256, n=16
|M|=1
|M|=2
|M|=4
|M|=8
|M|=16

20 210 220 230 240 250 260 270 280

Trials

0%

20%

40%

60%

80%

100%

Pr
br

ea
k[M

,R
]

w=16, n=24
|M|=1
|M|=2
|M|=4
|M|=8
|M|=16
|M|=32
|M|=64
|M|=128
|M|=256
|M|=512
|M|=1024
|M|=2048
|M|=4096
|M|=8192

20 210 220 230 240 250 260 270 280

Trials

0%

20%

40%

60%

80%

100%

Pr
br

ea
k[M

,R
]

w=256, n=24
|M|=1
|M|=2
|M|=4
|M|=8
|M|=16
|M|=32
|M|=64

20 210 220 230 240 250 260 270 280

Trials

0%

20%

40%

60%

80%

100%

Pr
br

ea
k[M

,R
]

w=256, n=32
|M|=1
|M|=2
|M|=4
|M|=8
|M|=16
|M|=32
|M|=64
|M|=128
|M|=256

Fig. 4: Simulated (solid line), and approximated (dotted line) probability of find-
ing suitable hash for different Winternitz parameters w, hash output lengths n,
and signature set sizes |M |, with respect to the number of trials |R|. All results
for a certain set size |M | are plotted using the same color. The dashed lines
represent the approximations obtained from the respective maximum |M |. The
solid lines show actual simulation results to verify the estimated data.

Faulting Winternitz One-Time Signatures 17

4.2 Probabilities wrt. adversary capabilities

In this section, we empirically derive the theoretic probability that an adversary
can produce a valid forgery with a digest r derived from the brute-force phase
by means of fault injection. The general probability to find such a digest r
can be obtained from Figure 4. Recall, that in Section 4.1 and Figure 4, the
assumption was that the complete checksum computation can be skipped. Now
the probabilities that r is suitable for a forgery in more constrained fault models
are analyzed. Recall that for a forged signature to be accepted, each chunk of the
faulted checksum C(r) needs to be larger or equal to the corresponding chunk
of C(m). Therefore, suitable in this context means that faults corresponding to
certain models can be used to manipulate the checksum in this manner. We
define this probability as Prvalid. Obviously, this probability varies depending
on the adversary’s fault injection (FI) capabilities.

Two properties factor into Prvalid: the type of fault attack and the number
of independent faults injected during one operation, either during signing or
verifying. We introduced the general FI capabilities of the attacker in Section 3.5.
We simplified our evaluation by assuming two fault models, control flow and data
corruption. For control flow corruption we only consider single instruction skips,
for data corruption we analyze single and double bit-flips. We assume bit-flips for
arbitrary positions with no positional constraints. Further, in the case of double
bit-flips, both are independent from each other and behave as two single bit-flip
faults. From these fault models, we derive three concrete fault scenarios, which
are listed in the following.

In Section 3.4, two variants of our attack were introduced, FS for applying
the fault attack to the signer, and FV for applying the fault attack to the
verifier. For the FS scenario, the adversary needs a strategy to fault the signing
operation without knowledge of the message and its signature, s.t. the probability
to find a forged signature in the brute-force phase is as high as possible. For all
listed scenarios we list the highest achievable probability with the respective
strategy in Table 2. In the FV scenario, the attacker is already in possession of
a forged signature obtained in the brute-force phase and therefore knows how
the checksum computation needs to be manipulated. Therefore, for the listed
probabilities in Table 1 it is not necessary to differentiate between different
strategies.

Single hash chain skip The attacker skips the calculation of one OTS checksum
hash chain by means of a single instruction skip. In our practical analysis
in Section 6, we show that this is a reasonable assumption. We assume that
the adversary is able to skip one chosen checksum hash chain precisely. The
exact point in time of individual checksum hash chains depends on m and
therefore is not constant in time. However, in the FV scenario, the adversary
knows the order of operations as r is known. In case of the FS scenario, the
adversary could obtain such informations via a side-channel inspection. If
the hash chain calculation is skipped, the chain will not be advanced by the
signer or verifier at all, but execution stalls with the input node. Therefore,
the input node is used as-is for the further execution of the algorithm.

18 A. Wagner et al.

Single bit-flip The attacker corrupts the value of one of the checksum chunks
with a single induced bit-flip. Ideally, this manipulates the checksum opera-
tion, s.t. instead of advancing by v steps, i.e. Fv, the chain is only advanced
by v′ < v. In contrast to hash chain skips, timing might be less of an issue
as the data can be targeted while stored in memory.

Double bit-flip The attacker corrupts the value of at least one of the checksum
chunks with two induced bit-flips. We do not differentiate between cases
where both bit-flips target the same chunk and cases where the bit-flips
apply to different chunks. In contrast to the single bit-flip scenario, a double
bit-flip has more possible outcomes in terms of how the checksum chunks
are manipulated. Therefore, v′ < v can hold for one or two checksum hash
chains.

Table 1: The average probability Prvalid in case of FV for a single suitable hash
r depending on the attacker capabilities.

Fault type Scenario
w=16 w=256

n=16 n=24 n=16 n=24 n=32

Control flow
corruption

Single hash
chain skip

54.1 % 44.1 % 46.8 % 39.6 % 51.0 %

Data
corruption

Single
bit-flip

54.1 % 34.8 % 46.8 % 39.6 % 51.0 %

Double
bit-flip

89.1 % 65.8 % 81.2 % 72.0 % 83.8 %

Table 2: The average probability Prvalid for the most suitable fault locations in
case of FS for a single suitable hash r depending on the attacker capabilities.

Fault type Scenario
w=16 w=256

n=16 n=24 n=16 n=24 n=32

Control flow
corruption

Single hash
chain skip

54.1 % 34.8 % 46.8 % 39.6 % 51.0 %
rj |j = 0 rj |j = 0 rj |j = 0 rj |j = 0 rj |j = 0

Data
corruption

Single
bit-flip

54.1 % 28.0 % 46.8 % 17.3 % 51.0 %
bit 8 bit 8 bit 11 bit 11 bit 12

Double
bit-flip

56.6 % 29.3 % 48.0 % 22.5% 51.4%
bit 8, 7 bit 8, 7 bit 11, 5 bit 11, 10 bit 12, 4

Table 1 shows the average Prvalid for the scenarios of FV. A value of Prvalid =
54.1% for FV, w = 16, n = 16, and single hash chain skip, reads as ”slightly

Faulting Winternitz One-Time Signatures 19

more than half of all digests found in the brute-force phase described in Sec-
tion 4.1 can be realized in scenarios, where only one fault can be applied, s.t. a
single hash chain calculation is skipped”. Obviously, an adversary can determine
directly from r, whether an attack will succeed within a certain fault scenario.
Therefore, the fault injection phase is only performed for digests r for which
Prvalid(r) = 1. In the FS scenario, Table 2 additionally shows which strategy
an adversary needs pursue to achieve the highest probability Prvalid. A value of
Prvalid = 54.1% with rj |j = 0 for FS, w = 16, n = 16, and single hash chain
skip, reads as ”if during signing, a checksum chain with index rj |j = 0 is skipped,
slightly more than half of all digests found in the brute-force phase described in
Section 4.1 can be used to forge a signature”. For the fault type of data corrup-
tion we list Prvalid along the bits that needs to be targeted during signing to
achieve this probability, e.g. for the parameter w = 16 and n = 16 the adversary
has the highest probability of 54.1 % or 56.6 % if fault attacks with single-bit
flips target bit 8 or with double bit-flips target bit 8 and 7, respectively. This is
due to the fact that the brute-force phase described in Section 4.1 does not have
any constraints on the checksum and its chunks, but only on the message chunks
(ri ≥ mi ∀i). These constraints are introduced by the fact that candidates found
in the brute-force phase can only used for forgery with a probability of Prvalid.

The analysis of the probabilities in general and the strategies for FS is based
on the simulation results displayed in Figure 4. For each pair of (r,m) we applied
any possible fault for the three listed fault scenarios. We applied the fault to the
checksum of m or r for FS or FV, respectively. We calculated Prvalid by dividing
the number of suitable sets (r,m) for forgery by the total number of generated
candidates r which fulfill the constraints of ri ≥ mi ∀i.

5 Countermeasures

To protect HBS implementations against the presented attack, different measures
are applicable depending on the two attack variants, FS and FV. In the case of
FS, hardening the implementation is straightforward. As a consequence of the
tampered signature generation, the signer generates an invalid signature. This
weakness of the attack can be used to design a countermeasure (CM). If the
signer verifies the signature after generation, the attack will be detected. Since
the cost of verification is minimal compared to signature generation, this step
can easily be added by the signing entity. In the case of FV, the countermeasures
are more diverse and costly. We describe their design in the following sections.
However, due to the more complex approach, we evaluate their efficiency and
effectiveness in detail in Section 6.

Hash chain length calculations. Any error introduced into the calculation of
the hash chain length can lead to a wrongly calculated, but potentially ex-
ploitable, hash chain length value. Repetition and comparison of the calculated
hash lengths allows any tampering to be detected. The cost of this counter-
measure is small, as this part of the algorithm is negligible in terms of overall
performance.

20 A. Wagner et al.

Hash chain calculations. The countermeasures for the hash chain calculations
can be divided into two independent levels: skipping partial and full hash chain
calculations.

The attack vector of a partial skip of a hash calculation can be avoided by
using a memory comparison of the input and output buffers. This will detect if
the hash operation was skipped and thus render the attack vector ineffective.
This countermeasure only needs to be performed during the first iteration, as an
adversary must skip from the first iteration onwards. This is due to the fact that
the iteration index is an input to each hash step calculation. To ensure successful
verification, the verifier must be tricked to combine the malicious checksum node
with the correct iteration index. Therefore, it is not possible to swap hash steps
and the skip must be introduced from the first iteration onwards.

The complete skip of the hash chain calculation can be countered by assur-
ing that at least one hash chain calculation is performed. Combined with the
countermeasure to disable a partial skip of the hash calculation, this makes this
attack vector impossible to execute. In practice, an implementation can simply
return the iteration counter. The calling function compares the returned value
with the maximum value for the iteration. If it does not match, a fault has been
introduced and execution is aborted.

WOTS+C. WOTS+C is designed to compress WOTSs [KHRY22] as introduced
in Section 2.1. The key idea behind this study is to skip the checksum chains in
favor of a checksum with a fixed value. This makes control flow attacks to skip
a checksum chain no longer feasible. The applicability of data errors needs to be
investigated, as well as any impact on the brute-force phase. Operations such
as checksum comparison may be suitable targets for FI and must therefore be
hardened.

6 Attack in Practice

In this section we describe a real-world scenario to demonstrate the practica-
bility and severity of our attack. The target is an embedded device based on
the commonly used ARM Cortex-M4 processor. The attacker’s goal is to run
malicious firmware on the embedded device. To protect the firmware execution
on the device against tampering from physical adversaries, secure boot is used
directly after power-up to verify any firmware after loading it into the internal
memory and before execution. For verification one of the hash-based signature
schemes is used. The secure boot implementation is based on MCUboot [mcu].
We assume that the attacker has physical access and therefore is able to modi-
fy or exchange the off-chip stored firmware before it is loaded into the internal
memory and to execute a fault attack.

Fault Model and Hardening. If MCUboot is used, the secure boot implementa-
tion is partially hardened against FI attacks [mcu]. The scope of the hardenings
is to, for example, protect against an instruction skip. Therefore, instruction

Faulting Winternitz One-Time Signatures 21

skip fault attacks that target the generic secure boot flow, e.g. ensuring that
only valid images are booted, will not be successful. The cryptographic imple-
mentations are only partially hardened with similar countermeasures [Ban] and
may therefore still be vulnerable to FI attacks.

PQ Secure Boot. To fulfill the requirements of a post-quantum secure boot,
the targeted embedded device verifies each stage using a HBS scheme instead
of classical asymmetric cryptography. Please note that MCUboot does not yet
support PQC schemes, but plans to do so [Bro]. We select the algorithms and
the respective parameters based on the results in Figure 4, related research
works [KPC+] and public available information on embedded devices, which
employ HBSs for secure boot or firmware updates or plan to do so [Phi22]. The
probabilistic analysis in Section 4.1 has shown that – for the analyzed parameters
– the parameter set of w = 16 and n = 24 has the highest brute-force complexity.
Therefore, we deem it relevant to be investigated within this scenario. As we
select these parameters, we assume either LMS or XMSS with a single tree,
reflecting the worst case for the attacker based on our results. In [KPC+], HSS
and SPHINCS+ with 192-bit key length, w = 256, and three or five Merkle
trees, respectively, is considered as relevant for UEFI secure boot. In [Phi22],
SPHINCS+ with 128-bit key length is reported as suitable for the secure boot
of an embedded device. As the tree structure is not specified, but a reduced
maximum signature count is requested, we assume a similar tree structure as
in [KPC+], and set the Winternitz parameter as w = 16 based on the statement
in [Phi22] that performance is a constraint.

In summary, this results in these distinct algorithms and parameter sets for
our practical analysis: LMS or XMSS with w = 16 and n = 24; HSS with three
Merkle trees, w = 256 and n = 24 [KPC+]; SPHINCS+ with five Merkle trees,
w = 16 and n = 16, and w = 256 and n = 24 [KPC+, Phi22].

6.1 Brute-force Forgery of WOTS

As described in Section 3.1, the brute-force phase requires at least one WOTS
message-signature pair as input, in this scenario we use the more suitable term
of firmware-signature pair. Within this attack, the adversary has access to the
external memory, which contains firmware and the corresponding signature. Be-
cause the device receives updates, the adversary is even capable to collect several
pairs for the brute-force. To reflect different update intervals we analyze the s-
cenario with the assumption that the adversary can collect firmware-signature
pairs with a count out of [1, 10, 100, 1000].

By applying our fault injection attack, a verifier is tricked to assume a mali-
cious signature as valid. Before the actual fault attack, the attacker must forge
this signature. This brute-force process can happen ”offline” and ”off-site”, i.e.
there are no strict timing requirements. Depending on the HBS scheme the
adversary achieves existential or universal forgery as described in Section 3.3
and Section 4.1. In practice, the efficiency of signature forging boils down to
the number of hash calculations per timespan, i.e. the hash rate, the attacker

22 A. Wagner et al.

Table 3: Hash rates of SHA-256 for different platforms.

Hardware Type Hash rate

Intel i7-9700K [Son19] CPU 299 MH/s
Nvidia RTX 3090 [Cro20] GPU 9.71 GH/s
Nvidia RTX 4090 [Cro22] GPU 22.0 GH/s
Antminer S19 XP [Bit22] ASIC 140 TH/s

can achieve. Table 3 shows different platforms with their respective hash rates.
For central processing units (CPUs) and graphics processing units (GPUs), the
benchmarks were performed with hashcat.

In comparison to CPUs and GPUs, application-specific integrated circuits
(ASICs) achieve the best performance. However, we deem ASICs less relevant s-
ince their dedicated design would make them very expensive. GPUs are, however,
attractive due their combination of high performance and flexibility. The attack-
er can easily gain access to many devices, e.g. from cloud computing providers.
We selected a single Nvidia RTX 4090 GPU to estimate the time required for
a brute-force search for the selected parameters. The results in Figure 5 show
that, for all three parameter sets based on a multi-tree structure, a forgery suc-
ceeds (Prbreak ≥ 90%) in less than an hour. We achieve these results even if an
adversary has only access to a single firmware-signature pair. While the effort
is significantly larger for single tree structures (d = 1), it is still feasible, e.g. if
multiple GPUs are available.

10 6 10 3 100 103 106 109 1012

GPU seconds

0%

20%

40%

60%

80%

100%

Pr
br

ea
k

|M|=1
|M|=10
|M|=100
|M|=1000

w=16, n=24, d=1 w=16, n=16, d=5 w=256, n=24, d=3 w=256, n=24, d=5

Fig. 5: Cost estimation for brute-force forgery of the selected parameter and
structure with a single GPU. Estimations are displayed for the number of
firmware-signature pairs for the values of 1, 10, 100, and 1000.

6.2 Fault Attack on Hash-Based Signatures

Having the possibility to forge a signature for a malicious firmware image brings
the attacker one step closer to the goal of executing malicious code. The miss-

Faulting Winternitz One-Time Signatures 23

Table 4: Number of instructions that will lead to a successful verification of an
invalid signature if only one is skipped.

Optimization CMs
Generic FI WOTS FI
(1) (2) (3) (1) (2) (3)

LMS
-O2

No 20 - 15 32 - 27
Yes 1 - 0 1 - 0

-Os
No 18 - 18 33 - 33
Yes 2 - 0 2 - 0

XMSS
-O2

No 6 2 1 17 13 12
Yes 5 1 0 5 1 0

-Os
No 13 10 0 21 18 8
Yes 13 10 0 13 10 0

SPHINCS+
-O2

No 2 1 1 7 6 6
Yes 1 0 0 1 0 0

-Os
No 5 4 0 10 5 5
Yes 5 4 0 5 4 0

ing piece is to inject a fault to circumvent the signature verification. To assess
the possibility of a successful fault attack we search for weak spots within the
reference implementations of LMS, XMSS, and SPHINCS+. We base our analy-
sis on an extensive emulation of all possible faults based on the instruction skip
fault model using ARCHIE [HGA+21]. The emulation is performed for the ARM
Cortex-M4 processor. We analyse two different scenarios reflecting the two differ-
ent approaches to optimising for performance or size and their impact on fault
injection resilience. Therefore, the firmware is compiled for the two scenarios
with either of the two optimisation levels: -O2 and -Os.

We include both generic and WOTS-specific fault attacks in the analysis.
Generic fault attacks are more straightforward for an attacker, as no brute-force
phase is required. However, systems that require physical security can easily
be protected against such attacks, without a detailed understanding of the un-
derlying algorithms. In the following, we will demonstrate this by hardening a
reference implementation with generic countermeasures. In contrast, we show
that mitigating WOTS-specific attacks is not as straightforward. One needs to
be aware of them and the vulnerable points they cause during execution. We
demonstrate that generic countermeasures do not consider these points and that
WOTS-specific attacks require a more thorough understanding in order to de-
sign integrated countermeasures. We apply the countermeasures proposed in
Section 5 and evaluate their effectiveness and efficiency. The comparison of both
types of attacks allows to understand their different leverage points. Further-
more, this analysis demonstrates the severity of an unprotected implementation
and shows that countermeasures are feasible.

24 A. Wagner et al.

Table 5: Code size [B] of the signature verification routine for the different HBS
schemes, optimisation levels, and CM tiers.

Optimization
Code Code size increase by CMs
size (1) (2) (3)

LMS -O2 2650 +206 - +258

SHA2 10 256 -Os 2380 +164 - +216

XMSS -O2 4380 +126 +138 +162

SHA2 10 192 -Os 3870 +98 +114 +134

SPHINCS+-s -O2 10400 +106 +118 +134

sha2-128s -Os 9550 +84 +100 +112

Table 6: Cycle count [cc] of the signature verification for the different HBS
schemes, optimisation levels, and CM tiers.

Optimization
Cycle Cycle count increase by CMs
count (1) (2) (3)

LMS -O2 8.5M +3.94k - +5.15k

SHA2 10 256 -Os 8.7M +3.80k - +5.02k

XMSS -O2 31.6M +3.93k +3.93k +4.10k

SHA2 10 192 -Os 32.3M +4.11k +4.11k +4.27k

SPHINCS+-s -O2 17.9M +15.3k +15.3k +15.4k

sha2-128s -Os 18.3M +17.8k +17.8k +17.9k

The XMSS and SPHINCS+ APIs provide a device with several ways to eval-
uate the result of the signature verification. As is common practice, the return
value of the signature verification routine indicates whether an error has oc-
curred or not. In addition, two other values, the message and its length, can
be used to evaluate the result. In the event of an error, the message points to
a array initialized with zeros and the corresponding length is set to zero. In
the following, we will outline how these variants significantly increase the fault
injection resilience. Hence, making fault attacks more difficult to execute. For
this purpose, we group these variants into three enumerated categories with in-
creased cost to the verifier: the verifier checks (1) the return code, (2) the return
code and the message length, or (3) the return code, the message length, and
the message. The original implementation of LMS does not support this func-
tionality. To allow for a similar analysis, we add the ability to check the return
code as well as the message. In the following this variant is labeled as (3).

Note that none of the reference implementations claim to be fault injection
resilient. At the time of writing, there are no other HBS implementations avail-

Faulting Winternitz One-Time Signatures 25

able stating any countermeasures against fault attacks. Table 4 shows the overall
fault injection resilience for the different scenarios. The count is the number of
instructions where skipping one is sufficient to bypass the signature check. There-
fore, a higher count corresponds to a lower resilience. Table 5 and Table 6 list
the increased code size and execution time of the signature verification routine
introduced by the variants for checking the returned values and the countermea-
sures.

Generic fault attack. Comparing the two stateful reference implementations,
the XMSS implementation is more resilient to generic FI attacks. The main rea-
son for this is the return of multiple values as described above and its internal
structure. Most importantly, the comparison of the public key and the com-
puted candidate directly triggers the writing of the return values. Furthermore,
XMSS does not contain any bridging functions that may introduce exploitable
weaknesses. However, despite the relatively high level of resilience, we still found
vulnerable spots in XMSS that could be exploited with a generic FI attack. The
existence of vulnerabilities depends on the level of compiler optimisation chosen.
For the speed optimisation a countermeasure is needed to harden the comparison
of the public key with its computed candidate. For all the experiments carried
out, two measures were sufficient to protect this potentially fragile point. The
first is to check that the length which is an input to the memcmp function is
equal to zero. If this condition is met, an error is thrown and the execution is
aborted. This is necessary because the memcmp function will always return zero
for a length of zero despite the values contained in the two pointers. And the
second part is to mark the returned value as volatile to allow for a repeated com-
parison of the returned value. The combination of these two measures effectively
prevents tampering with this operation.

The LMS implementation differs fundamentally from the XMSS implemen-
tation. The major difference in terms of the fault injection resilience is that it
only returns a single value to check the status of the signature verification. In
general, the implementation contains more bridging functions, which has the ef-
fect that more measures to harden the implementation are required. As a result
the required code size for the countermeasures listed in Table 5 is larger than
for the other two implementations. The countermeasures required are similar to
the hardening of the memcmp routine described above. As with the other two
implementations, the comparison of the public key and the computed candidate
must be hardened. In addition, for each returning bridging function, the check
on the return value must be hardened by duplicated checks, and if it returns
a Boolean value, it must be cast to an integer. The integer casting is required
because we have experienced that for Boolean return values the compiler most
often compares if the value is not equal to zero, resulting in false positives. An-
other necessary countermeasure is to initialise the error state with an initial error
code. This way, any premature return will return the uncleared error statement
and allow potential malicious tampering to be detected.

The SPHINCS+ reference implementation is very similar to the XMSS imple-
mentation. The analysis showed a fairly resilient implementation. Nevertheless,

26 A. Wagner et al.

SPHINCS+ also requires a hardening of the public key comparison with its com-
puted candidate. The hardening of this operation can be done with the same
countermeasures as described above.

In conclusion, all three reference implementations of the HBS schemes can
be hardened with simple measures so that there are no vulnerable instructions
that could be skipped to lead to a successful verification of an invalid signature
using a generic fault attack. This is reflected within the results in Table 4 show-
ing that there are non weak spots left for a generic fault attack, if the proposed
countermeasures are applied. Neither executing the generic attack nor designing
countermeasures against it required any special knowledge of the running algo-
rithms. The weak spots targeted by a generic fault attack are easy to spot for
an attacker as well as the defender. Hence, an implementation is more likely to
be resilient against a generic fault attack.

WOTS-specific fault attack. The results in Table 4 demonstrate that while an
implementation can be hardened, there may still be potential vulnerabilities to
a specific attack. In the worst case, including a WOTS-specific attack triples
the number of vulnerable locations. Even worse, some implementations, such
as the size-optimised XMSS with three return values, appear to be resistant to
fault injection, but are not when a WOTS-specific attack is executed. We can
therefore conclude that the generic countermeasures are effective, but do not
protect against WOTS-specific attacks. However, this is different for the WOTS-
specific countermeasures proposed in Section 5. When the countermeasures are
used together with the three return value variant, all implementations for all
scenarios are resilient against each of the two types of attack. In spite of the
different code bases of the three reference implementations, all of them allow for
similar countermeasure approaches without any loss of effectiveness. This is, of
course, mainly due to the high degree of similarity between the three algorithms,
which is also reflected in their implementations.

Effectiveness and efficiency of CMs. Due to the countermeasures applied, the
implementations suffer in terms of performance and increased code size. The
increase in execution time is listed in Table 6. Surprisingly, the performance is
hardly changed by the countermeasures. Due to the adapted design of the coun-
termeasures, a small impact was expected. But for all three implementations,
the impact of the changed execution time is only about one permille or less. The
impact on code size, listed in Table 5, is much more significant. The increase
is in the range of one to ten percent. The additional size of the countermea-
sures is about 100 to 250 bytes, depending on the reference implementation, the
level of optimisation and the number of return values. Due to the similarity of
XMSS and SPHINCS+, the implemented countermeasures are very similar and
therefore the absolute impact on code size is comparable. The relative difference
varies mostly due to a different implementation of the underlying hash function.
In both relative and absolute terms, the LMS reference implementation has the
largest code size increase due to the countermeasures. This is because this imple-
mentation has the smallest initial code size, but also required the most changes

Faulting Winternitz One-Time Signatures 27

to be resilient. Overall, the proposed countermeasures, both generic and specif-
ic, make the reference implementations resilient to fault attacks with minimal
impact on performance and size.

7 Conclusion

In this paper we present the first fault attack that directly targets the WOTS
schema, which is an integral part of all currently standardised HBS schemes.
Therefore, it affects LMS, XMSS and SPHINCS+. Furthermore, our attack af-
fects both signature generation and signature verification. Although the attack
requires brute-force computation of an appropriate digest, we have demonstrat-
ed its feasibility. Our research shows that for a Winternitz parameter w = 16,
signatures are forgeable for all algorithms with a NIST security level up to 3.
For w = 256, signatures generated by all algorithms considered are forgeable,
regardless of the chosen security level. The complexity of the attack is at most
affected by the choice of the Winternitz parameter and the internal tree struc-
ture. Choosing a larger value for w combined with a multi-tree structure leads to
parameter sets that can be broken within seconds with a single GPU. To defend
against this attack, appropriate countermeasures must be in place. The analysis
of the proposed countermeasures shows their effectiveness and efficiency against
the WOTS-specific attack. Furthermore, our proposed generic countermeasures
harden the implementations so that a fault attack is no longer feasible within
this scenario. However, despite the advanced progress in standardisation, our
research has shown that the analysis of the implementation security of HBS al-
gorithms is still an ongoing task. With our work, we aim to stimulate further
research in this area. The recent selection of SPHINCS+ for standardisation
makes this particularly important, as this will lead to more vendors looking to
incorporate HBS schemes into their products. We also see a need for a more
thorough analysis of implementation security in general. A combination of algo-
rithmically formalised knowledge and automated analysis could ensure a higher
probability of early detection of vulnerabilities in implementations. Efforts in
this direction will allow the development of hardened PQC implementations in
a secure and rapid manner.

Acknowledgements This work was partly funded by the German Federal Min-
istry of Education and Research (BMBF) in the project APRIORI under grant
number 16KIS1390.

Bibliography

[AdGHB] Ever Atilano, Arnaud de Grandmaison, Karine Heydemann, and
Guillaume Bouffard. Assessing the effectiveness of MCUboot pro-
tections against fault injection attacks.

[ALCZ20] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul
Zbinden. FPGA-based SPHINCS+ Implementations: Mind the
Glitch. In 2020 23rd Euromicro Conference on Digital System De-
sign (DSD), pages 229–237, 2020.

[ANS22] ANSSI. ANSSI views on the Post-Quantum Cryptography
transition. https://www.ssi.gouv.fr/en/publication/anssi-
views-on-the-post-quantum-cryptography-transition/, Jan-
uary 2022.

[Aum19] Jean-Philippe Aumasson. Too Much Crypto. https://

eprint.iacr.org/2019/1492.pdf, 2019.
[Ban] Tamas Ban. HW Fault Injection Mitigation - Trusted

Firmware M. https://www.trustedfirmware.org/docs/TF-
M fault injection mitigation.pdf.

[BDE+11] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing,
and Markus Rückert. On the Security of the Winternitz One-Time
Signature Scheme. Cryptology ePrint Archive, Paper 2011/191,
2011. https://eprint.iacr.org/2011/191.

[BDK+] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki
Okeya, and Camille Vuillaume. Merkle Signatures with Virtually
Unlimited Signature Capacity. In Jonathan Katz and Moti Yung,
editors, Applied Cryptography and Network Security, volume 4521,
pages 31–45. Springer Berlin Heidelberg. Series Title: Lecture Notes
in Computer Science.

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shap-
ing the Glitch: Optimizing Voltage Fault Injection Attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems,
2019(2):199–224, Feb. 2019.

[BHRVV] Joppe W. Bos, Andreas Hülsing, Joost Renes, and Christine Van Vre-
dendaal. Rapidly Verifiable XMSS Signatures. pages 137–168.

[Bit22] Bitmain Antminer S19 XP (140Th) profitability.
https://www.asicminervalue.com/miners/bitmain/antminer-s19-
xp-140th, July 2022.

[Bro] David Brown. Post-quantum cryptography. https://github.com/
mcu-tools/mcuboot/discussions/1099?sort=top.

[BSI22] BSI. BSI – Technische Richtlinie: Kryptographis-
che Verfahren: Empfehlungen und Schluessellaengen.
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-

02102.pdf? blob=publicationFile, January 2022.

https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/
https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/
https://eprint.iacr.org/2019/1492.pdf
https://eprint.iacr.org/2019/1492.pdf
https://www.trustedfirmware.org/docs/TF-M_fault_injection_mitigation.pdf
https://www.trustedfirmware.org/docs/TF-M_fault_injection_mitigation.pdf
https://eprint.iacr.org/2011/191
https://github.com/mcu-tools/mcuboot/discussions/1099?sort=top
https://github.com/mcu-tools/mcuboot/discussions/1099?sort=top
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile

Faulting Winternitz One-Time Signatures 29

[CAD+] David A. Cooper, Daniel C. Apon, Quynh H. Dang, Michael S.
Davidson, Morris J. Dworkin, and Carl A. Miller. Recommendation
for Stateful Hash-Based Signature Schemes.

[Cis19] Cisco. Post quantum trust anchors. https://www.cisco.com/c/
dam/en us/about/doing business/trust-center/docs/post-

quantum-trust-anchors-wp.pdf, 2019.
[CMP18] Laurent Castelnovi, Ange Martinelli, and Thomas Prest. Grafting

Trees: A Fault Attack Against the SPHINCS Framework. In Tan-
ja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptogra-
phy, volume 10786, pages 165–184. Springer International Publish-
ing, Cham, 2018. Series Title: Lecture Notes in Computer Science.

[Cro20] Sam Croley. Hashcat v6.1.1 benchmark on the Nvidi-
a RTX 3090. https://gist.github.com/Chick3nman/
32e662a5bb63bc4f51b847bb422222fd, September 2020.

[Cro22] Sam Croley. Hashcat v6.2.6 benchmark on the Nvidi-
a RTX 4090. https://gist.github.com/Chick3nman/
32e662a5bb63bc4f51b847bb422222fd, October 2022.

[FKK+22] Michael Fahr, Hunter Kippen, Andrew Kwong, Thinh Dang, Jacob
Lichtinger, Dana Dachman-Soled, Daniel Genkin, Alexander Nelson,
Ray Perlner, Arkady Yerukhimovich, and Daniel Apon. When Frodo
Flips: End-to-End Key Recovery on FrodoKEM via Rowhammer.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 979–993, Los Angeles CA USA,
November 2022. ACM.

[GBH18] Leon Groot Bruinderink and Andreas Hülsing. “Oops, I Did It A-
gain” – Security of One-Time Signatures Under Two-Message At-
tacks. In Carlisle Adams and Jan Camenisch, editors, Selected Areas
in Cryptography – SAC 2017, volume 10719, pages 299–322. Springer
International Publishing, Cham, 2018.

[gen20] IT Security Solutions From genua Withstand Attacks With Quan-
tum Computers. https://www.genua.eu/knowledge-base/it-
security-solutions-from-genua-withstand-attacks-with-

quantum-computers, 2020.
[Gen23] Aymeric Genêt. On Protecting SPHINCS+ Against Fault Attack-

s. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 80–114, March 2023.

[GKPM18] Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and An-
drew McLauchlan. Practical Fault Injection Attacks on SPHINCS.
2018. https://eprint.iacr.org/2018/674.

[goo] https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/
LUczQNCw7HA/m/f50WvA3RBAAJ.

[GTSC] James Gratchoff, Niek Timmers, Albert Spruyt, and Lukasz
Chmielewski. Proving the wild jungle jump. Technical report, U-
niversity of Amsterdam, Tech. Rep.

[HBD+20] A. Hülsing, D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer,
S.-L. Gazdag, P. Kampanakis, S. Kolbl, T. Lange, M. M. Lau-

https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/post-quantum-trust-anchors-wp.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/post-quantum-trust-anchors-wp.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/post-quantum-trust-anchors-wp.pdf
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd
https://www.genua.eu/knowledge-base/it-security-solutions-from-genua-withstand-attacks-with-quantum-computers
https://www.genua.eu/knowledge-base/it-security-solutions-from-genua-withstand-attacks-with-quantum-computers
https://www.genua.eu/knowledge-base/it-security-solutions-from-genua-withstand-attacks-with-quantum-computers
https://eprint.iacr.org/2018/674
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA/m/f50WvA3RBAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA/m/f50WvA3RBAAJ

30 A. Wagner et al.

ridsen, F. Mendel, R. Niederhagen, C. Rechberger, J. Rijneveld,
P. Schwabe, J.-P. Aumasson, B. Westerbaan, , and W. Beul-
lens. SPHINCS+ - submission to the NIST post-quantum
project, v.3. https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions, 2020.

[HBG+18] A. Huelsing, D. Butin, S. Gazdag, J. Rijneveld, and A. Mo-
haisen. XMSS: eXtended Merkle Signature Scheme. https://

datatracker.ietf.org/doc/html/rfc8391, May 2018.
[HGA+21] Florian Hauschild, Kathrin Garb, Lukas Auer, Bodo Selmke, and

Johannes Obermaier. ARCHIE: A QEMU-Based Framework for
Architecture-Independent Evaluation of Faults. In 2021 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC), pages
20–30, September 2021.

[HK22] Andreas Hülsing and Mikhail Kudinov. Recovering the tight security
proof of SPHINCS+. Cryptology ePrint Archive, Paper 2022/346,
2022. https://eprint.iacr.org/2022/346.

[HMU+20] Johann Heyszl, Katja Miller, Florian Unterstein, Marc Schink,
Alexander Wagner, Horst Gieser, Sven Freud, Tobias Damm, Do-
minik Klein, and Dennis Kügler. Investigating Profiled Side-Channel
Attacks Against the DES Key Schedule. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 22–72, June
2020.

[Hü] Andreas Hülsing. W-OTS+ – Shorter Signatures for Hash-
Based Signature Schemes. In Amr Youssef, Abderrahmane Ni-
taj, and Aboul Ella Hassanien, editors, Progress in Cryptology –
AFRICACRYPT 2013, volume 7918, pages 173–188. Springer Berlin
Heidelberg. Series Title: Lecture Notes in Computer Science.

[KGC+20] Vinay B. Y. Kumar, Naina Gupta, Anupam Chattopadhyay, Michael
Kasper, Christoph Krauß, and Ruben Niederhagen. Post-quantum
secure boot. In 2020 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1582–1585, 2020.

[KHRY22] Mikhail Kudinov, Andreas Hülsing, Eyal Ronen, and Eylon Yo-
gev. SPHINCS+C: Compressing SPHINCS+ With (Almost) No
Cost. Cryptology ePrint Archive, Paper 2022/778, 2022. https:

//eprint.iacr.org/2022/778.
[KPC+] Panos Kampanakis, Peter Panburana, Michael Curcio, Chirag Shroff,

and Mahbub Alam. Post-quantum LMS and SPHINCS+ hash-based
signatures for UEFI secure boot. page 22.

[MAA+] Dustin Moody, Gorjan Alagic, Daniel C Apon, David A Cooper,
Quynh H Dang, John M Kelsey, Yi-Kai Liu, Carl A Miller, Rene C
Peralta, Ray A Perlner, Angela Y Robinson, Daniel C Smith-Tone,
and Jacob Alperin-Sheriff. Status report on the third round of the
NIST post-quantum cryptography standardization process.

[mcu] MCUboot documentation. https://docs.mcuboot.com/.
[Mer90] Ralph C. Merkle. A Certified Digital Signature. In Advances in

Cryptology — CRYPTO’ 89 Proceedings, volume 435, pages 218–

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://datatracker.ietf.org/doc/html/rfc8391
https://datatracker.ietf.org/doc/html/rfc8391
https://eprint.iacr.org/2022/346
https://eprint.iacr.org/2022/778
https://eprint.iacr.org/2022/778
https://docs.mcuboot.com/

Faulting Winternitz One-Time Signatures 31

238. Springer New York, New York, NY, 1990. Series Title: Lecture
Notes in Computer Science.

[MMC19] D. McGrew and S. Fluhrer M. Curcio. Leighton-Micali Hash-Based
Signatures. https://datatracker.ietf.org/doc/html/rfc8554,
April 2019.

[O’F19] Colin O’Flynn. MIN()imum failure: EMFI attacks against US-
B stacks. In 13th USENIX Workshop on Offensive Technologies
(WOOT 19), Santa Clara, CA, August 2019. USENIX Association.

[OSS17] Johannes Obermaier, Robert Specht, and Georg Sigl. Fuzzy-glitch: A
practical ring oscillator based clock glitch attack. 2017 International
Conference on Applied Electronics (AE), pages 1–6, 2017.

[Phi22] Jade Philipoom. Request for feedback on possible SPHINCS+ vari-
ant. https://groups.google.com/a/list.nist.gov/g/pqc-forum/
c/LUczQNCw7HA/m/f50WvA3RBAAJ, December 2022.

[Rai22] Guillaume Raimbault. Welcome to a new genera-
tion of future-proof TPMs: OPTIGA TPM SLB 9672.
https://www.infineon.com/dgdl/Infineon-OPTIGA-TPM-
SLB9672.pdf?fileId=8ac78c8b7e7122d1017f071c3f6b00d2,
February 2022.

[Rot19] Thomas Roth. TrustZone-M(eh): Breaking ARMv8-M’s security,
2019.

[Son19] Sondero. Hashcat v5.1.0 benchmark on the Intel(R) Core(TM)
i7-9700K. https://hashcat.net/forum/thread-9042-post-
47927.html#pid47927, December 2019.

[SZK+18] Bodo Selmke, Kilian Zinnecker, Philipp Koppermann, Katja Miller,
Johann Heyszl, and Georg Sigl. Locked out by Latch-up? An Empir-
ical Study on Laser Fault Injection into Arm Cortex-M Processors.
In 2018 Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy (FDTC), pages 7–14, Amsterdam, Netherlands, September 2018.
IEEE.

[VCGS13] Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier S-
tandaert. Security Evaluations beyond Computing Power: How to
Analyze Side-Channel Attacks You Cannot Mount? In David Hutchi-
son, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann
Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pan-
du Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopou-
los, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Thomas Jo-
hansson, and Phong Q. Nguyen, editors, Advances in Cryptology –
EUROCRYPT 2013, volume 7881, pages 126–141. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013. Series Title: Lecture Notes in
Computer Science.

[WJW+] Wen Wang, Bernhard Jungk, Julian Wälde, Shuwen Deng, Naina
Gupta, Jakub Szefer, and Ruben Niederhagen. XMSS and embedded
systems: XMSS hardware accelerators for RISC-v. In Kenneth G. Pa-
terson and Douglas Stebila, editors, Selected Areas in Cryptography

https://datatracker.ietf.org/doc/html/rfc8554
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA/m/f50WvA3RBAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA/m/f50WvA3RBAAJ
https://www.infineon.com/dgdl/Infineon-OPTIGA-TPM-SLB9672.pdf?fileId=8ac78c8b7e7122d1017f071c3f6b00d2
https://www.infineon.com/dgdl/Infineon-OPTIGA-TPM-SLB9672.pdf?fileId=8ac78c8b7e7122d1017f071c3f6b00d2
https://hashcat.net/forum/thread-9042-post-47927.html#pid47927
https://hashcat.net/forum/thread-9042-post-47927.html#pid47927

32 A. Wagner et al.

– SAC 2019, volume 11959, pages 523–550. Springer International
Publishing. Series Title: Lecture Notes in Computer Science.

[WOS22] Alexander Wagner, Felix Oberhansl, and Marc Schink. To Be, or
Not to Be Stateful: Post-Quantum Secure Boot Using Hash-Based
Signatures. In Proceedings of the 2022 Workshop on Attacks and
Solutions in Hardware Security, ASHES’22, page 85–94, New York,
NY, USA, 2022. Association for Computing Machinery.

	Faulting Winternitz One-Time Signatures to forge lms, xmss, or SPHINCS+ signatures

