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Abstract. Mitaka is a lattice-based signature proposed at Eurocrypt
2022. A key advertised feature of Mitaka is that it can be masked at high
orders efficiently, making it attractive in scenarios where side-channel
attacks are a concern. Mitaka comes with a claimed security proof in
the t-probing model.
We uncover a flaw in the security proof of Mitaka, and subsequently
show that it is not secure in the t-probing model. For any number of
shares d ≥ 4, probing t < d variables per execution allows an attacker to
recover the private key efficiently with approximately 221 executions. Our
analysis shows that even a constant number of probes suffices (t = 3), as
long as the attacker has access to a number of executions that is linear
in d/t.
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1 Introduction

In the last decade, post-quantum cryptography has been an extremely dynamic
research and engineering field. One of the main catalysts of this dynamism is the
NIST post-quantum cryptography standardization project, which in July 2022
has announced its first standards for key establishment and stateless digital
signatures [NIS22]. Two of the three selected standards for signatures are based
on lattices: Dilithium [LDK+22] and Falcon [PFH+22]. Dilithium and Falcon
are both based on structured lattices. They achieve good computational and
bandwidth efficiency, and the underlying mathematical assumptions are well-
understood.

When considering concrete security, it becomes important to consider side-
channel attacks, in which adversaries may learn information about the behavior
of the device executing the algorithm. Side-channel attacks based on power con-
sumption [KJJ99], running time [Koc96], electromagnetic emissions [GMO01]
and even acoustic emissions [AA04,GST14] have shown to be relevant.

The main countermeasure against side-channel attacks is masking [ISW03].
It consists of splitting sensitive information in d shares (concretely: x = x0 +
· · ·+xd−1), and of performing secure computation using MPC-based techniques.
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In practice, the cost of a side-channel attack is expected to grow exponentially
in the number of shares d [DFS19].

In parallel, leakage models have been developed in order to reason and prove
statements about side-channel countermeasures. The most standard model is the
t-probing model [ISW03], in which an attacker is allowed to learn the value of
t variables during each execution of the protected algorithm. While not being
the most realistic leakage model, the t-probing model is arguably the easiest to
work in, especially when considering masking. In addition, proving security in
this model is usually a good indicator of security, especially when augmenting
the t-probing model with proof frameworks such as the SNI, PINI or IOS models.

Unfortunately, Dilithium and Falcon are not straightforward to mask. In the
case of Dilithium, sampling from specific distributions and rejection sampling
are two examples of operations that require conversions between Boolean and
arithmetic representations (called A2B and B2A conversions), which is expensive
when operating on masked values. Falcon seems even more challenging to mask,
due to its intricate use of floating-point operations.

Mitaka [EFG+22] is a variant of Falcon that was proposed in order to
address these caveats. One of the main advertised features of Mitaka is that
it is easy to mask. This was done by proposing new algorithms for performing
masked operations. One such algorithm is GaussShareByShare (Algorithm 3),
which performs Gaussian sampling over the integers efficiently and with no A2B
or B2A conversion. Mitaka comes complete with a claimed security proof in
the t-probing model [EFG+22, Theorems 4 and 5], for t < d.

1.1 Our contribution

We show that Mitaka is insecure in the t-probing model. More precisely, by
targeting one specific call to GaussShareByShare, and probing t < d specific
values inside that execution, a t-probing attacker can compute a vector that is
correlated to the private key b0. By combining sufficiently many of these vectors,
the attacker can compute an estimator b̂0 that is a noisy version of the b0, which
can then be recovered by lattice reduction attacks, or simple rounding, depending
on the number of probes t, masking order d and number of executions N .

Concretely, we are able to recover the private key with N = 221 executions of
the signing algorithm and, for each execution, the values of the probed variables,
which we call traces. The efficiency behavior of our attack is illustrated in Fig. 1.

More worryingly, our attack remains feasible even if d is polynomially large
and t is constant, since we only need the number of traces N to be linear in d/t.
A generic countermeasure against our attack is to replace GaussShareByShare
by more classical conversion-based techniques, but we expect this to incur a
significant overhead on the computational cost of Mitaka.

As part of our attack, we propose in Section 5.4 a simple trick which speeds
up considerably the recovery of b0 from the estimator b̂0 in many relevant
regimes. This trick also applies to a recently proposed power analysis on Falcon
[GMRR22], and may have other applications as well.
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Fig. 1: Distance of the estimator b̂0 to the private key b0 as a function of the
number of traces (x-axis) and the ratio t−1

2d . The marks {λ = x} on the right side
indicate the core-SVP hardness of the lattice problem we need to solve. Under
the line { }, b0 can be recovered in polynomial time (Section 5.4).

2 Preliminaries

Given n ∈ N, n > 0, we may note [n] = {0, . . . , n− 1}.

2.1 Operators and relations

As a mnemonic device, we note out := f(in) (resp. out← f(in) and f(in)→ out)
to indicate that out is a deterministic (resp. randomized) function of in.

We assume familiarity with the asymptotic notation: O(·), o(·), Θ(·), Knuth’s
Ω(·) and so on. We use the notation x ∼ y as shorthand for x− y = o(x).

We employ the notation x
s∼ X to indicate that the distribution of x is

statistically close to X. Finally, F ' G indicates that F and G are isomorphic.

2.2 Cyclotomic fields

For efficiency reasons, schemes such as Falcon and Mitaka work over cyclotomic
number fields. Given n ∈ N a fixed power-of-two and ζ ∈ C a primitive 2n-root
of unity, we define the cyclotomic field K and its corresponding ring of integers
R ⊂ K:

K = Q(ζ) ' Q[x]/(xn + 1)

R = Z[ζ] ' Z[x]/(xn + 1)
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It is often convenient to think of and represent elements of K and R as polyno-
mials modulo (xn + 1). We can embed K (and thus R) with an inner product:

〈a, b〉K = a∗ · b,

where a∗ is the adjoint of a, that is the unique a∗ ∈ K such that a∗(ζk) := a(ζk)
for all odd values of k, where · denotes the complex conjugation in C. We note
R++ = {x ∈ R|x > 0}, and a ∈ K++ if a∗(ζk) ∈ R++ for all odd values of k.

The polynomial representation of elements in K naturally entails a mapping
K → Rn, which allows to define, for a, b ∈ K, the dot product 〈a, b〉R as the usual
dot product of their vectors of coefficients. We note that 〈a, a〉R > 0, so we can
likewise define the norm ‖a‖R =

√
〈a, a〉Q.

2.3 Vectors and matrices

We note vectors (resp. matrices) with entries in Q or K using lowercase (resp.
uppercase) bold letters, for example v (resp. M). We use the column convention
for matrices.

We also note x∗ the transposition of the coefficient-wise adjoint of x. We
extend the inner product 〈·, ·〉K to vectors a = (ai),b = (bi) ∈ Km:

〈a,b〉K =
∑
i

〈ai, bi〉K

Likewise, we extend the notations 〈·, ·〉R, ‖ ·‖R, and the notion of self-adjointness
to vectors. We say that a and b are K-orthogonal if 〈a,b〉K = 0K. Given a full-
rank matrix B ∈ Kk×ℓ, the Gram-Schmidt orthogonalization of B is the unique
pair (U, B̃) such that U ∈ Kℓ×ℓ is upper triangular with 1’s on the diagonal,
the columns of B̃ ∈ Kk×ℓ are pairwise orthogonal and:

B = B̃ ·U. (1)

We say that M ∈ Km×m is self-adjoint if the matrix obtained by transposing M,
followed by entry-wise application of the adjoint operator, is M. M is positive
definite if (i) it is self-adjoint, and (ii) 〈a,M · a〉K ∈ K++ for any non-zero
a ∈ Km.

2.4 Lattices and Gaussians

A lattice L is a discrete subgroup of Rm. Given a full-rank matrix B ∈ Rm×n,
the set L(B) := B · Zn is a lattice. This representation is useful for algorithmic
purposes. We can generalize this definition and define structured lattices by
replacing (R,Z) in the definitions above with (K,R).

Structured lattices are convenient due to their compact representation, how-
ever they can also be interpreted as standard lattices since R is a Z-module
of rank n. More concretely, given a ∈ K, we note A(a) the matrix A(a) =
[a0, . . . , an−1] where each column ai is the vector of coefficients of x · a. Note
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that A(a) is the matrix representation of the endomorphism f 7→ a · f in the
canonical basis of K. In addition, A : a ∈ K 7→ A(a) ∈ Qn×n is a ring morphism.

Given a positive definite Σ ∈ Km×m, we note ρ√Σ the Gaussian function
defined over Km as

ρ√Σ(x) = exp

(
−‖x

∗ ·Σ−1 · x‖2R
2

)
. (2)

We may note ρ√Σ,c(x) = ρ√Σ(x − c). When Σ is of the form σ · Im, where
σ ∈ K++ and Im is the identity matrix, we note ρσ,c as shorthand for ρ√Σ,c.
For any countable set S ⊂ Km, we note ρ√Σ,c(S) =

∑
x∈Km ρ√Σ,c(x) whenever

this sum converges. Finally, when ρ√Σ,c(S) converges, the discrete Gaussian
distribution DS,c,

√
Σ is defined over S by its probability distribution function:

DS,
√
Σ,c(x) =

ρ√Σ,c(x)

ρ√Σ,c(S)
. (3)

We may also work with continuous Gaussians. Given σ ∈ K++, we note NK,σ

the unique distribution over K which probability distribution function is propor-
tional to ρσ(x). When σ = 1, we may omit it from the subscript. We note that
σ2 · NK,σ1

∼ NK,σ1·σ2
.

2.5 Masking

Given a finite field F, masking a value x ∈ F consists of splitting it as:

x =
∑
j∈[d]

xj (4)

We say that (xj)j∈[d] is a valid d-sharing of x, and note it JxK, if x and (xj)j∈[d]

satisfy (4). Note that for all x ∈ F, there exist |F|d−1 valid d-sharings of x. We
also note Decode the algorithm that maps a valid sharing (xj)j∈[d] ∈ Fd of x to
the plain value x =

∑
j∈[d] xj .

The t-probing model stipulates that for each execution of an algorithm Alg,
the adversary can select t intermediate variables (vi)i∈[t] inside Alg and is able
to learn the values of (vi)i∈[t] during this execution. Masked security proofs
for Mitaka are realized in the t-probing model, using a modular proof frame-
work which we informally refer to the SNI (strong non-interference) model. For
the purpose of this paper, it suffices to focus on one notion of the SNI framework
called t-NIo, which we recall in Definition 1.

Definition 1 (t-NIo, [BBE+18]). A masked algorithm (gadget) with public
outputs X is t-NIo (Non-Interfering with public outputs) if and only if every
set of at most t intermediate variables can be perfectly simulated with the public
outputs and at most t shares of each input.
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3 Description of Mitaka

The GPV framework [GPV08] proposed a blueprint for obtaining lattice-based
signatures in the hash-then-sign paradigm. Mitaka instantiates the GPV frame-
work with NTRU lattices.

3.1 Private and public keys

In Mitaka, the private key is a structured matrix:

B =
[
b0 b1

]
=

[
f F
g G

]
(5)

where f, g, F,G ∈ R satisfy the NTRU equation in R:

f ·G− g · F = q (6)

Concretely, this quadruple can be generated by first sampling b0 =

[
f
g

]
, then

resolving (6), which can be done efficiently [PP19]. For security, f, g, F,G are
required to have small coefficients.

The public key is h = g · f−1 mod q. If we note A =
[
−h 1

]
, we can see that

A ·B = 0 mod q.

3.2 Signing procedure

Algorithm 1 describes the signing procedure of Mitaka. In practice, only the
first half s1 of the short vector s = (s1, s2) is actually output by Algorithm 1.
However, s2 can be re-computed from a valid signature, so we can assume without
loss of generality that s is output entirely.

Algorithm 1 Signing(sk,msg)→ sig

Require: A message msg, a signing key sk, a bound γ
Ensure: A signature sig of msg under sk
1: repeat
2: salt← {0, 1}k
3: c := (0, H(salt∥msg))
4: v← HybridSampler(sk, c) ▷ Algorithm 2
5: s := c− v ▷ By construction, s is short
6: until ∥s∥ ≤ γ
7: return sig := (salt, s)

Algorithm 2 (HybridSampler) is at the core of the signing procedure. Given
a target vector c and a short basis B of a lattice L, it outputs a lattice point
v ∈ L close to c.
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Algorithm 2 is designed so that v is distributed statistically close to DL,c,σ.
This ensures that v leaks no information about the short basis B. In order to
achieve this, continuous Gaussians (Line 3) and discrete Gaussians (Line 4) are
employed in a careful manner. Our attack will learn some intermediate variables
such that, conditioned on the values of these variables , the distribution of v is
no longer independent of B.

Algorithm 2 HybridSampler(B, r, c)→ v

Require: A target center c ∈ K2, a matrix B = [b0,b1]
Precompute: The Gram-Schmidt orthogonalization B̃ = [b̃0, b̃1] of B. Standard de-

viations σi =
√

σ2

⟨b̃i,b̃i⟩K
− r2 ∈ K++ for i ∈ {0, 1} and a fixed parameter σ

Ensure: v
s∼ DL(B),c,σ

1: (c2,v2) := (c,0)
2: for i ∈ {1, 0} do
3: di ← ⟨b̃i,ci+1⟩K

⟨b̃i,b̃i⟩K
− σi · NK

4: zi ← DZ,di,r ▷ When masked, use Algorithm 3
5: (ci,vi) := (ci+1,vi+1) + zi · (−bi,bi)
6: end for
7: return v0

In a masked setting, the masked generation of JziK from JdiK in Line 4 of Al-
gorithm 2 is performed by Algorithm 3 (GaussShareByShare). Whereas a generic
approach would perform this step by leveraging costly A2B and B2A conver-
sions, Algorithm 3 foregoes this approach in favor of a more efficient one, by
sampling each share of JziK independently and in parallel.

Algorithm 3 GaussShareByShare(JcK , r)→ JzK
Require: A standard deviation r, an arithmetic masking JcK for c ∈ 1

C
·Z, B =

⌈√
2d

⌉
.

Ensure: An arithmetic masking JzK, where z
s∼ DZ,c,r

1: repeat
2: for j ∈ [d] do
3: zj ← D 1

B
·Z,cj , r√

d

4: end for
5: acc := Decode

(
(zj mod 1)j∈[d]

)
6: until acc = 0
7: return JzK := (zj)j∈[d]
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3.3 The proof outline of Mitaka and its flaw

We refer to [EFG+22] for the full security proof of Mitaka, which is quite
extensive due to the constraints of the t-probing model. The relevant part for us
is [EFG+22, Lemma 3], which claims that Algorithm 3 is t-NIo (Definition 1).
While no formal proof for [EFG+22, Lemma 3] is given, [EFG+22] informally
argues that it follows from the fact that the input JcK = (ci)i∈[d] is uniform
and each share is processed independently and in parallel. We illustrate this
reasoning in Fig. 2; any subset (ci)i∈S is perfectly uniform as long as |S| < d,
and similarly for (zi)i∈S .

c0 c1 c2 c3 c4 c5 c6 c7

z0 z1 z2 z3 z4 z5 z6 z7

Uniform

Uniform

Not uniform

Fig. 2: Illustrating Algorithm 3 (Lines 2 to 4). Probing exclusively the input
or output values yields a perfectly uniform subset (Green), but probing them
conjointly does not (Red).

Unfortunately, there is a flaw in this reasoning: while it is true that any set
of t < d shares of JcK or JzK would look uniform, the joint distribution of any
subset of input values (ci)i∈S and the corresponding output values (zi)i∈S is
not uniform. Indeed, for any j ∈ [d], cj − zj follows a Gaussian distribution.
Moreover, we show in the next section that the observed value of this Gaussian
is statistically correlated to the private key, and turn this observation into an
attack.

4 Our attack

At its heart, our attack is a simple statistical, averaging-based attack.

In Section 4.1, we show in that by probing the appropriate values in Algo-
rithm 3, we are able, for each execution i of Algorithm 1, to compute a scalar
wi ∈ R such that wi · b0 correlates positively with the signature vector si.

Once sufficiently many pairs (si, wi)i are collected, we show in Section 4.2
how we can compute a noisy estimator of b0, then recover b0 exactly via lattice-
reduction (Section 5.3), pure rounding (Section 5.2), or guessing plus linear al-
gebra (Section 5.4), depending on the regime.
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4.1 Placing the probes

Suppose Algorithm 2 is used to sample v
s∼ DL(B),c,σ. Let us note v = B ·

[
z0
z1

]
,

and let c ∈ R the first coefficient of z0. We target the execution of Algorithm 3
when it is used in Algorithm 2 with JcK as input. We target c in particular because
the signature s contains c ·b0 as an additive term, so learning s plus information
about c provides information about b0. As illustrated in Fig. 2 (Red), during
that specific execution of Algorithm 3, we probe:
1. the first t1 coefficients (cj)j∈[t1] of JcK;
2. the first t1 coefficients (zj)j∈[t1] of JzK;
3. the Boolean value acc.

As long as t := 2 · t1 + 1 < d, this is consistent with what is allowed within the
t-probing model. Note that our choice of probes requires d ≥ 4. Once acc = 0,
we know that JzK = (zj)j∈[d] is output and incorporated in the signature. We
compute:

w =
∑
j∈[t1]

(cj − zj) (7)

We say that the trace associated to a given execution is trace = (s, w), where
s is the vector such that A · s = H(salt‖msg), which is output as part of the
signing procedure.

4.2 Recovering the signing key
We show how to exploit traces in order to recover the private key b0. Since the
product w · b0 is an additive component of the signature vector s, there is a
slight but exploitable correlation between s and w · b0, more precisely the dot
product 〈s, w · b0〉R = 〈w · s,b0〉R will tend to be slightly larger than zero. We
formalize this intuition by computing a real-valued estimator for b0 from a set
of N traces (tracei = (si, wi))i∈[N ]:

b̂0 =
1(∑

i∈[N ] w
2
i

) ·
∑

i∈[N ]

wi · si

 . (8)

We now study the distribution of signatures, conditioned on additional informa-
tion. A valid signature s satisfies s s∼ DL−c,σ. If we note V = SpanR(b0), we can
decompose s over V ⊕ V ⊥:

s = s̄+
⊥
s , where

{
s̄

s∼ DProj({L−c},V ),σ
⊥
s

s∼ DProj({L−c},V ⊥),σ

(9)

Since ⊥
s ⊥ b0, the distribution of ⊥

s is independent of w. On the other hand, we
use the following heuristic for the conditional distribution of s̄:

s̄|w s∼ w · b0 +DProj({L−c−w·b0},V ),σ∗ , where σ∗ =

√
σ2 − t1

d
· r2 (10)
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Let us note w = (wi)i∈[N ]. Summing the equation above for all traces, we obtain:∑
i∈[N ]

wi · si
s∼

∑
i∈[N ]

wi · s̄i +
∑
i∈[N ]

wi ·
⊥
s i (11)

s∼ ‖w‖2 · b0 (12)
+DProj({∑i wi(L−ci−wi·b0)},V ),σ∗∥w∥ (13)

+DProj({∑i wi(L−ci)},V ⊥),σ·∥w∥ (14)

Dividing everything by ‖w‖2 gives the distribution of our estimator b̂0:

b̂0
s∼ b0 +X, (15)

where X is the random variable corresponding to summing (13) and (14), then
dividing the result by ‖w‖2. X is subgaussian for the Gaussian parameter σ/‖w‖,
so we model X in a way that is simpler, more conservative for an attacker, and
essentially tight in our context:

X
s∼ D 1

∥w∥2 {
∑

i wi(L−ci−wi·b0)},σX
, (16)

where σX = σ/‖w‖. Since we modeled each wi as a Gaussian of standard devi-
ation r

√
t1
d , ‖w‖2 is a χ2 distribution with N degrees of freedom, scaled by a

factor r2·t1
d . This implies that with probability Ω(1):

σX ≤ σ ·
√

d

r2 · t1 ·N
(17)

For a continuous 2n-dimensional Gaussian Z of parameter σX , the probability
that ‖Z‖∞ ≤ t is lower bounded as follows:

P[‖Z‖∞ ≤ t] ≥
(
1− 2e−t2/2σ2

X

)2n
(18)

While X is discretized, we assume for the rest of our analysis that it behaves
like a continuous Gaussian: X ∼ NR2n,σX

. In this case, (18) guarantees that
‖X‖∞ ≤ 1/2 with probability ≥ 1/2 if:

σX ≤
1√

8 · log2(4 · n)
. (19)

Combining (17) with (19) gives the following success condition:

N ≥ 8 · log2(4 · n) · d · σ2

t1 · r2
(20)

If (20) is satisfied, then with good probability bb̂0e = b0 and we can recover b0.
The second private basis vector b1 can be recovered by solving (6).

Note that (20) indicates that even if the masking order d is polynomially high
and the number of probes per execution t = 2 · t1 + 1 is constant, a polynomial
number of traces N suffices to ensure key recovery with Ω(1) probability.
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5 Concrete results

We tested the viability of our attack via experiments. To the best of our knowl-
edge, there is no masked implementation of Mitaka, including private ones. We
instead rely on an unmasked C implementation [Esp22] of Mitaka.

5.1 Simulating the leakage
The implementation of [Esp22] does not use Algorithm 3 to sample JziK. Instead,
it directly samples zi ← DZ,di,r. We can nevertheless simulate the computation
of the value w. Let X,Y be two independent Gaussians of center 0 and standard
deviation σX , σY . Given the sum Z = X+Y , it is well-known that the conditional
distribution of X given the realization Z = z is distributed as a Gaussian of
mean z · σ2

X

σ2
X+σ2

Y
and variance σ2

X ·σ2
Y

σ2
X+σ2

Y
. This provides a simple way to simulate

the computation of w in Algorithm 3:
1. Sample z ← DZ,d,r corresponding to the JzK output by Algorithm 3. This

sample is easily obtained from the C implementation.
2. Compute w = (c− z) · t1d + r

√
t1(d−t1)

d2 · NR.

One subtlety that this simulation does not capture is that each share of z belongs
to 1

B · Z, whereas our simulated w is not discretized in any way. This seems
unimportant as the discretization (or lack thereof) of w does not seem to have
an influence on the feasibility of our attack.

With this method of simulating the computation of w, we can now compute
our estimator b̂0 using (8). Following (15), the difference b̂0 − b0 follows an
isotropic continuous Gaussian distribution X of standard deviation σX given by
(17). We distinguish three regimes for X: low-, moderate- and high-noise, see
Fig. 3. We cover each regime in a distinct section (Sections 5.2 to 5.4), since we
employ (slightly) different strategies for each setting.

−2 −1 0 1 2

(a) Low-noise
(Section 5.2)

−2 −1 0 1 2

(b) Moderate-noise
(Section 5.4)

−2 −1 0 1 2

(c) High-noise
(Section 5.3)

Fig. 3: Three regimes for the coefficient-wise distribution of (b̂0 − b0)
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5.2 Low-noise regime: ∥b̂0 − b0∥∞ < 1/2

Following our analysis in Section 4.2, satisfying (20) guarantees with probability
Ω(1) that we fall into this regime. In this case, bb̂0e = b0.

Although the required number of samples N is polynomial, this number may
be moderately large in practice. In our experiments, we found that for Mitaka-
512 and for t1

d ≈
1
2 , setting N ≈ 222 provides a good chance of success.

5.3 High-noise regime: ∥b̂0 − b0∥ <
√
q

If N is large but does not satisfy (20), we can still recover b0 from the estimator
b̂0 via lattice reduction methods. We first recall the Gaussian Heuristic.

Definition 2. Let gh(L) be the expected first minimum of a lattice L according
to the Gaussian Heuristic. For a lattice L ⊂ Rm generated by a full-rank matrix
full-rank M ∈ Rm×m, it is given by:

gh(L) =
√

m

2πe
· det(M)1/m. (21)

Consider the rounded estimator: b̆0 = bb̂0e ∈ R2. If we note e = b̆0 − b0,
it holds that ‖e‖2 ≤ ‖b̂0 − b0‖2 + n2/2. On the other hand, in the parameter
regime of Mitaka, b0 is the shortest vector in the NTRU lattice: ‖b0‖ ≈ 2

√
q.1

Since ‖b̂0 − b0‖ <
√
q, we can expect e to be much shorter than the shortest

vector in the NTRU lattice. This allows us to use Kannan’s embedding; a good
reference for this technique is [AGVW17], which methodology we follow here.
We first generate the matrix M:

M =

 In
b̆0H qIn
1

 ∈ Zd×d (22)

where d = 2n + 1 and H = A(h). By construction, we expect
[
e
1

]
to be the

shortest vector of M. Therefore, we apply the BKZ lattice reduction algorithm to
M with blocksize β in order to recover e. Under the geometric series assumption,
e can be found if: √

β

d
·
√
‖e‖2 + 1 ≤ δ2·β−d

β · det(M)1/d, (23)

where δβ =
(

(πβ)1/β ·β
2πe

)1/(2(β−1))

[Che13, Eq. (4.2)]. The corresponding core-
SVP hardness λ for our key-recovery attack can be determined by computing λ =
b0.292 · βc for the minimal value of β such that (23) is satisfied. Alternatively,
one may also use the nearest-colattice algorithm of [EK20].
1 In [EFG+22], it is shown that ∥b0∥ ≤ α

√
q, with α ≈ 2.04 for Mitaka-512 and

α ≈ 2.33 for Mitaka-1024.
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5.4 Moderate-noise regime: ∥b̂0 − b0∥∞ < 1

If it is the case that:
1

2
< ‖b̂0 − b0‖∞ < 1,

then we are in an paradoxical situation: b̂0 is very close to b0, but rounding
its coefficients will return a different vector from b0. Worse, several dozens of
coefficients may be erroneous, and an exhaustive search of these coefficients may
be expensive in practice. Similarly, lattice reduction as in Section 5.3 may be
expensive. We now describe a simple trick that allows to recover b0 with high
probability and little to no computation effort.

Observation 1. By construction, when interpreted as a vector in Z2n, b0 satisfies:

A · b0 = 0 mod q, (24)

Recall that b̂0 is equal to b0 plus Gaussian noise of standard deviation σX . The
fact ‖b̂0−b0‖∞ < 1 implies that σX is small (concretely, σX ≤ 0.25 if n = 512).
This in turn implies that errors close to 1 in absolute value are likely to be rare,
which leads to our first key observation:

If a coefficient of b̂0 is close to an integer, then the corresponding coef-
ficient of b0 is highly likely to be equal to this integer.

Observation 2. We now observe that recovering half of the coefficients of b0 is
sufficient to recover it entirely. Suppose we have guessed n of the 2·n entries of b0.
We can rearrange the entries of b0 as

[
x
y

]
, where y corresponds to coefficients of

b0 that were successfully guessed, and x are the remaining ones. By rearranging
the columns of A in the same way, (24) becomes:

[
A1 A2

]
·
[
x
y

]
= 0 mod q, (25)

If A1 is invertible, then we can recover x by computing x = −A−1
1 ·A2 · y. In

practice, we observe that A1 is invertible more often than not.

Example 1. We illustrate this strategy with a toy example over Zq, q = 19. Let:

A =

[
12 9 10 5
9 7 5 15

]
∈ Z2×4

q and b =
[
7 6 1 18

]t
.

One can check that A·b = 0 mod q. Our estimator will be a noisy version of b, for
example b̂ =

[
7.1 6.4 1.6 18.1

]t. Naively rounding b̂ gives bb̂e =
[
7 6 2 18

]t 6= b.
In contrast, guessing half of the coefficients (precisely, the half which are closer
to an integer) gives b =

[
7 ∗ ∗ 18

]t, and which point the remaining half of b can
be computed by solving the linear system A · b = 0 mod q.

13



Success probability. Recall that X = b̂0−b0. This attack succeeds if there exists
ϵ > 0 such that, with probability Ω(1):

1. No coefficient of X is larger in absolute norm than 1− ϵ.
2. At least half of the coefficients of X are in [−ϵ, ϵ];

Item 1 ensures that “guessing to the nearest integer” all coefficient of b̂0 that are
ϵ-close to an integer will indeed return the correct coefficient of b0, and is true if
P[‖X‖∞ < 1− ϵ] ≤ 1/2. Item 2 ensures there are n such coefficients. Following
our modelization of X as a (2 · n)-dimensional Gaussian of standard deviation
σX , the conditions above can be expressed, using Gaussian tail bounds, as:(

1− 2 · e
− (1−ϵ)2

2·σ2
X

)2n

<
1

2
, (26)

where ϵ = min

{
ϵ∗ | NR,σX

([−ϵ∗, ϵ∗]) ≥ 1

2

}
. (27)

For n = 512, our attack is effective when σX ≲ 0.214. In contrast, for this value
of σX , pure rounding (Section 5.2) succeeds with probability2 ≤ 2−29. Similarly,
we expect on average 21 coefficients of b̂0 to round incorrectly, so that a pure
lattice reduction approach (Section 5.3) would require a blocksize β = 196 and
be costly to carry out. In comparison, our guessing-based approach is inexpensive
and succeeds with high probability. Concretely, it allows us to decrease N to 221.

Refinement. This “smart guessing” technique can be refined to remain effective
even if we guess less than half of the coefficients of b0. Suppose that with prob-
ability 1/2, we can guess k of the 2n coefficients of b0. This is the case if (26) is
satisfied, and by replacing (27) by this relaxed condition:

ϵ = min

{
ϵ∗ | NR,σX

([−ϵ∗, ϵ∗]) ≥ k

2n

}
. (28)

We then rewrite (24) as (25), except that now A1 ∈ Zn×(2n−k)
q and A2 ∈ Zn×k

q .
We put A1 in systematic form (M×A1 =

[
In Ā1

]
) so that (25) becomes:

Ā1 · x2 + x1 = z, where
{
z = −M ·A2 · y ∈ Zn

q

(x2,x1) ∈ Zn−k × Zn
(29)

(29) can be interpreted as an LWE problem with a secret of dimension n − k,
which indeed becomes vacuous when k = n. Unfortunately, due to Gaussian cut-
off effects, this optimization does not seem to significantly increase the range of
σX covered by our technique. We still provide it here for reference.
2 Alternatively, (19) implies that pure rounding requires σX ≲ 0.1066 to be practical.

Hence it is applicable on a more narrow range than our guessing-based approach.
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Remark 1. We expect the guessing trick to also apply to a recent power analysis
attack on Falcon by Guerreau et al. [GMRR22]. Similarly to our attack, their
attack recovers a noisy estimator of b0, where the noise decreases with the
number of traces. It then recovers b0 either by rounding (as in Section 5.2) or via
lattice reduction (as in Section 5.3). Our guessing-based approach is applicable
in regimes that are out of reach for pure rounding, but for which the cost of
lattice reduction remains prohibitive.

Remark 2. After the initial completion of this work, we realized that a similar
guessing trick was described in [DDGR20, §6.1], although with a different per-
spective (the “LWE with side information” framework). We invite the interested
reader to read [DDGR20, §6.1] for a complementary point of view.

6 Conclusion

We have proposed a key-recovery attack against Mitaka in the t-probing model.
Given a masked implementation of Mitaka with d ≥ 4 shares, an attacker with
the capability of probing t < d variables per execution can recover the private
key efficiently with N = 221 executions of the signing algorithm. More generally,
our attack can be carried as long as N = Ω(d/t).

As part of our attack, we proposed a guessing-based trick which significantly
reduces the computational cost of our attack for many relevant regimes.
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