
Polynomial IOPs for Memory Consistency
Checks in Zero-Knowledge Virtual Machines

Yuncong Zhang1[0000−0001−8826−5844], Shi-Feng Sun1[0000−0003−3742−5275]⋆,
Ren Zhang2[0000−0003−2063−1769], and Dawu Gu1[0000−0002−0504−9538]⋆

1 Shanghai Jiao Tong University, China
{shjdzhangyuncong,shifeng.sun,dwgu}@sjtu.edu.cn

2 Cryptape Co. Ltd. and Nervos, China
ren@nervos.org

Abstract. Zero-Knowledge Virtual Machines (ZKVMs) have gained trac-
tion in recent years due to their potential applications in a variety of ar-
eas, particularly blockchain ecosystems. Despite tremendous progress on
ZKVMs in the industry, no formal definitions or security proofs have
been established in the literature. Due to this lack of formalization,
existing protocols exhibit significant discrepancies in terms of problem
definitions and performance metrics, making it difficult to analyze and
compare these advancements, or to trust the security of the increasingly
complex ZKVM implementations.
In this work, we focus on random-access memory, an influential and ex-
pensive component of ZKVMs. Specifically, we investigate the state-of-
the-art protocols for validating the correct functioning of memory, which
we refer to as the memory consistency checks. Isolating these checks from
the rest of the system allows us to formalize their definition and secu-
rity notion. Furthermore, we summarize the state-of-the-art construc-
tions using the Polynomial IOP model and formally prove their security.
Observing that the bottleneck of existing designs lies in sorting the en-
tire memory trace, we break away from this paradigm and propose a
novel memory consistency check, dubbed Permem. Permem bypasses this
bottleneck by introducing a technique called the address cycle method,
which requires fewer building blocks and—after instantiating the build-
ing blocks with state-of-the-art constructions—fewer online polynomial
oracles and evaluation queries. In addition, we propose gcq, a new con-
struction for the lookup argument—a key building block of the memory
consistency check, which costs fewer online polynomial oracles than the
state-of-the-art construction cq.

Keywords: Proof System, SNARK, ZKVM, Random Access Memory

1 Introduction

Zero-Knowledge Virtual Machine (ZKVM) [zkS22, TV22, Pol22, Scr22, Mid22,
Ris22,GPR21] is a type of program execution system that can produce a proof
⋆ Corresponding author.



2 Yuncong Zhang et al.

of the validity of the execution without revealing any secret inputs. These proofs
can be verified quickly without re-executing the program. ZKVMs are considered
more user-friendly than traditional circuit-based SNARKs [Gro16, CHM+20,
GWC19] for programmers, because ZKVMs support instruction-based programs
that can be easily constructed from high-level languages. Some ZKVMs [zkS22,
Pol22, Scr22], often referred to as zkEVMs, are designed to be compatible with
the Ethereum Virtual Machine (EVM), and have the potential to improve the
scalability and privacy of Ethereum, a decentralized platform with the second-
largest market value as of 2023, the time of this writing. Other ZKVMs sup-
port various types of machine architectures, such as RISC-V [Ris22] for wider
applications, or SNARK-friendly machines [TV22, Scr22, GPR21] for increased
efficiency.

Constructing a ZKVM involves designing protocols for checking the consis-
tent functioning of all its components, including the instruction fetcher, register
file, arithmetic logic unit, and memory. The most technically challenging pro-
tocol among them is the memory consistency check (MCC), whose complexity
roots in the history-dependent nature of memory: the output of memory access
depends on the entire history of its inputs. This characteristic causes the MCC
to be more resource-intensive than other protocols. Consequently, many ZKVM
projects such as Scroll [Scr22] and Triton VM [TV22] devoted continuing efforts
to optimizing the MCC.

However, there is an absence of literature discussing recent advances in MCC,
as the constructions have mostly been developed in a haphazard manner and
tightly connected to their engineering projects. This leads to a lack of agreement
on the formal definition of the security goals, the context of protocol design,
and the performance metrics, rendering it challenging to analyze and compare
different constructions. Furthermore, it is uncertain whether they contain vul-
nerabilities due to their lack of formal security analysis. Although there is a
family of related works investigating RAM-based SNARKs [BCGT13,BCG+13,
BCTV13, BBC+17, BBHR18, BCG+18], recent implementations adopt a richer
and more advanced family of new techniques not covered in this literature. To
address the above issues, it is crucial to formalize the problem of MCC and to
conduct a systematic examination of existing solutions, which can help deepen
our understanding of the problem, eliminate potential security risks, and identify
and address the performance bottleneck.

1.1 Our Contributions

This work offers a formal analysis of the MCCs employed in popular ZKVMs
in the industry and improves their performance via a new design method and a
new building block. Specifically, we provide a formal definition of MCC and its
security, formulated within the Polynomial IOP (PIOP) model [BFS20], which is
a widely used SNARK construction model in the literature [GWC19,CHM+20,
CBBZ22,SZ22,ZSZ+22]. We also extract and formalize the underlying techniques
of existing MCCs in PIOPs and prove their security. Inspired by our formaliza-
tion, we propose (1) a more efficient construction method called the address



Polynomial IOPs for Memory Consistency Checks 3

Table 1. Comparing the MCCs, our Permem achieves the largest memory size with
fewer building blocks and online polynomials outside of the building blocks. The pro-
tocols are sorted by the address space, from the most limited contiguous memory to
the largest full space read-write memory. “Sort.” stands for the sorting paradigm, and
“AC.” stands for the address cycle method, which is extracted from Arya [BCG+18] and
formalized in this paper. The constant c ≥ 1 is a user-selected integer, but c = 1 usually
suffices as F’s size is usually 256-bit or larger. N is the number of execution steps, which
is usually orders of magnitude less than 232. Perm. is the number of permutation ar-
guments. Lookup is the number of lookup arguments (one “Double” lookup argument
achieves the same result as two “Single” lookup arguments with smaller amortized
cost). Poly. is the number of polynomial oracles sent to the verifier online excluding
those in the building blocks. Queries is the number of evaluation queries issued by the
verifier excluding those in the building blocks.

Protocol Method Address Writable Build blocks Poly. QueriesSpace Perm. Lookup
Cairo [GPR21] Sort. Contiguous × 1 0 4 0

AryaMem (optimized AC. [1..N ] ✓ 2 1 Single 4 0based on [BCG+18])
Miden [Mid22] etc. Sort. 32k-bit ✓ 1 2k Double 7 + 2k 0

Triton [TV22] Sort. Fc ✓ 1 1 Single 10 + c 2
Permem AC. Fc ✓ 1 1 Single 6 + c 2

cycle method, which instantiates into a novel MCC named Permem, and (2) a
new lookup argument called gcq. Our main contributions are as follows.

– We formally define the notion memory consistency check and its security
(Section 3), and formalize the state-of-the-art constructions in PIOPs with
security proofs under our definition (Section 4). Specifically, observing that
all these constructions follow a common pattern, which we refer to as the
sorting paradigm, we identify the key subprotocol (sorting check) that differ-
entiates these constructions. We summarize all the sorting checks into three
PIOPs, each for a different memory model, respectively: (a) contiguous read-
only memory (Section 4.1), used by Cairo [GPR21]; (b) memory with 32-
or 256-bit addresses (Section 4.2), used by Miden [Mid22], RiscZero [Ris22],
and all zkEVMs; and (c) memory with the full address space, i.e., Fc for
c ≥ 1 (Section 4.3), used by Triton VM [TV22], which supports memory
spaces larger than 32- or even 256-bit address with less cost.

– Next, observing the bottleneck of the sorting paradigm, we introduce a more
efficient method for constructing MCCs, named address cycle method (Sec-
tion 5.1). We extract the address-shifting permutation of Arya [BCG+18], a
zero-knowledge proof for TinyRAM [BCG+13], and develop it into a method
for constructing MCCs. This general method reduces the MCC construction
into designing a distinctness check, which is to prove that all entries in a
vector are distinct. This reduction not only simplifies the design workflow
but also improves the performance of MCC. Using our method, we propose
a new MCC, called Permem (Section 5.1); it supports the full address space



4 Yuncong Zhang et al.

Table 2. Comparing the MCCs with different instantiations of the lookup argument,
our new lookup argument gcq reduces the number of polynomials and queries by ≈ 3
compared to the state-of-the-art construction cq (the rows without the gcq mark). Here
double-gcq is the batched version of gcq with smaller amortized costs. The protocols
are sorted by the address space (column A. Space), from the most limited contiguous
memory to the largest full space read-write memory. The star “*” means the double-
gcq is alternatively constructed where the grand-sum vector ũ is split (see Section 6 for
details). N is the number of executed steps of the machine. Deg. is the maximal degree
of the polynomial oracles sent from the prover. Poly. is the number of polynomial
oracles sent to the verifier online. Queries is the number of evaluation queries. Dist.
is the number of distinct evaluation points.

Protocol A. Space Deg. Poly. Queries Dist.
Cairo [GPR21] Contiguous N 5 8 2

AryaMem (optimized based on [BCG+18]) [1..N ] 2N 13 20 2
AryaMem (gcq) [1..N ] 2N 10 18 2

Miden etc. [Mid22,Scr22,Pol22,Ris22, zkS22] 32k-bit 2N 14 + 4k 20 + 5k 2
Miden etc. (double-gcq) 32k-bit 5N 12 + 3k 19 + 4k 2
Miden etc. (double-gcq*) 32k-bit 3N 12 + 4k 19 + 5k 2

Triton [TV22] F 2N 18 26 3
Triton (gcq) F 2N 15 24 3
Permem F 2N 15 23 3

Permem (gcq) F 2N 12 21 3

as Triton VM does, by extracting the core of the contiguity check of Triton
VM and formalizing it into a distinctness check, which may also be useful in
constructing PIOPs other than MCC. As shown in Table 1 and 2, Permem
costs fewer building blocks, thus fewer online polynomial oracles and eval-
uation queries compared to Triton VM and 32k-bit ZKVMs. Note that, as
it is hard to compare Permem directly with Arya, which is constructed in
the ILC model [BCG+17], we adapt the memory component of Arya in the
PIOP model, named AryaMem, and include it in our tables along with the
recent ZKVMs.

– Finally, we propose a novel lookup argument, which is an essential building
block for most MCCs and is widely used in SNARKs [PFM+22, ABST22,
CBBZ22]. We name it gcq for grand-sum version of cq [EFG22]. The key
idea behind gcq is to replace the univariate sumcheck of cq with the grand-
sum check; this technique is simple but effective, because the grand-sum
check fits perfectly in the context of cq, especially when cq is used in MCC.
Table 2 and 3 show that when the lookup argument is instantiated with gcq,
the MCCs use fewer online polynomial oracles and evaluation queries (by 2
to 10), and has smaller proof sizes (by 2 to 10 group and field elements),
compared to using the state-of-the-art construction cq3.

3 Strictly speaking, the corresponding PIOP protocol behind cq is without the KZG-
specific optimizations.



Polynomial IOPs for Memory Consistency Checks 5

Table 3. Comparing the MCCs with the PIOP instantiated with KZG [KZG10], our
new lookup argument gcq reduces the proof sizes by 2 ∼ 10 group and field elements,
and the prover costs by 2 ∼ 10 FFTs/MSMs, compared to the state-of-the-art con-
struction cq (the rows without the gcq mark). Here double-gcq is the batched version
of gcq with smaller amortized costs. The protocols are sorted by the address space,
from the most limited contiguous memory to the largest full space read-write memory.
The star “*” means the double-gcq is alternatively constructed where the grand-sum
vector ũ is split (see Section 6 for details). N is the number of executed steps of the
machine. The prover is dominated by FFT (O(N logN)), MSM (O(N ·λ/ logN)), and
MPE (multi-point evaluation, O(S log2 S)), where the unit is field operations, and S
is the number of addresses touched by the program in the execution. In practice, S is
usually at least an order of magnitude smaller than N . For all protocols, the cost of
the verifier is dominated by one pairing, which is omitted from the table.

Protocol Address SRS Proof Prover
Space G1 G2 G1 F FFT MSM MPE

Cairo [GPR21] Contiguous N 2 7 8 5 7 0
AryaMem (optimized

[1..N ] 2N 2 15 20 13 15 0based on [BCG+18])
AryaMem (gcq) [1..N ] 2N 2 12 18 10 12 0

Miden [Mid22] etc. 32k-bit 2N 2 16 + 4k 20 + 5k 14 + 4k 16 + 4k 0
Miden etc. (double-gcq) 32k-bit 5N 2 14 + 3k 19 + 4k 12 + 3k 14 + 3k 0
Miden etc. (double-gcq*) 32k-bit 3N 2 14 + 4k 19 + 5k 12 + 4k 14 + 4k 0

Triton [TV22] F 2N 2 21 26 18 21 1
Triton (gcq) F 2N 2 18 24 15 18 1
Permem F 2N 2 18 23 15 18 1

Permem (gcq) F 2N 2 15 21 12 15 1

1.2 Technical Overview

To better understand the protocols presented in this work, we provide an overview
of the underlying intuitions. We start by introducing the necessary background
concepts.
PIOP. Almost all SNARKs, including ZKVMs, follow the PIOP pipeline, which
designs a PIOP and then compiles it into a non-interactive scheme via cryp-
tographic tools [BFS20]. A PIOP is an interactive protocol between two par-
ties, the prover and the verifier. The prover is able to send polynomials, e.g.,
f(X) ∈ F[X], which may be much larger than the verifier’s storage. The ver-
ifier, however, only has oracle access to f(X), meaning it is able to query for
y = f(z) for any given z ∈ F. This oracle access allows the verifier to check if
the polynomials satisfy certain relations, using the Swartz-Zippel Lemma. For
example, by checking f(z) + g(z) = h(z) for uniformly random z, the verifier
ensures f(X) + g(X) = h(X).

PIOPs can also be used to verify relations between vectors besides polynomi-
als, by exploiting the natural transformations between polynomials and vectors.
One popular transformation is the polynomial interpolation over a specific do-
main D of size N = 2µ. With this correspondence, the verifier can verify a



6 Yuncong Zhang et al.

vector equation, e.g., a + b ◦ c = 0, where “◦” is the entrywise product be-
tween vectors. This vector equation is equivalent to the polynomial equation
fa(X)+ fb(X) · fc(X) = q(X) ·Z(X) for some quotient polynomial q(X), where
Z(X) :=

∏
x∈D(X−x) is the vanishing polynomial over D. Apart from the above

vector equations, the verifiers can also check more complex relations such as:

– The permutation relation [GWC19], which states that two vectors are per-
mutations of each other. For example, a = (1, 2, 2, 3)T and b = (2, 3, 1, 2)T,
denoted by a ∼ b for convenience.

– The lookup relation [GW20], which states that all the elements in one vector
are contained in the other vector. For example, a = (1, 2, 2, 3)T and b =
(1, 2, 3, 4)T, denoted by a ⊂ b for convenience.

The protocols for checking these relations are referred to as permutation argu-
ments [GWC19] and lookup arguments [GW20], respectively. These arguments
can be extended to apply to tuples of vectors, also referred to as tables. For
example, (a,b, c) ∼ (a′,b′, c′) ∈ FN×3 means these two tables have the same
multiset of rows in potentially different orders, i.e., the multisets of tuples
{(a[i],b[i], c[i])}Ni=1 and {(a′[i],b

′
[i], c

′
[i])}

N
i=1 are equal to each other.

A PIOP can be compiled into a SNARK by standard techniques [BFS20],
i.e., instantiating the polynomial oracles with cryptographic constructions such
as polynomial commitment scheme (PCS) [KZG10]. The performance of the
resulting SNARK is determined by that of the PIOP in various aspects.

Next, we present a high-level overview of ZKVMs and our systemization over
the current state of MCCs.
Workflow of ZKVM. On input x, a machine M executes for T steps and produces
an output y := M(x). For simplicity, throughout this work, we assume T = N ,
the size of interpolation domain D4. Assume the machine has m field elements as
the internal state. The execution trace of the machine is a table (v(1), · · · , v(m)) ∈
FT×m where the t-th row represents the state values at step t. Given the pair
x and y, proving that y = M(x) is equivalent to proving the existence of an
execution trace that is consistent with x, y and the architecture of the machine.
Since we are in the PIOP model, the prover, after executing the program, may
directly send the execution trace to the verifier, without exhausting the verifier’s
storage and computational resources.

After sending the execution trace, the prover tries to convince the verifier that
these vectors are consistent with the machine. In practice, the machine is broken
down into smaller components, such as instruction fetching, decoding, arithmetic
logic unit, and memory access. Each component’s consistency is formalized using
building blocks including vector equations, permutation relation, and lookup
relation. We focus on the memory component, whose checking protocol is the
most challenging to design for reasons that will be explained later.

4 For example, the machine can be designed such that executing the last instruction
(e.g., a STOP instruction) does not change the state of the machine, so that this
instruction can be repeated as many times as needed until T reaches N .



Polynomial IOPs for Memory Consistency Checks 7

Memory consistency check. Although the memory is typically modeled as a dic-
tionary that maps from the address space to the value space, we describe its
functionality via an alternative approach that matches our definition of memory
consistency. This model involves three variables op[t], addr[t], val[t] representing
the operator, the address, and the value, respectively. For step t from 1 to N , the
machine computes two state variables op[t] and addr[t] from the current instruc-
tion or other internal states of the machine. The variable op[t] is either Read or
Write, which are constant field elements specified by the machine. The machine
then computes another variable val[t] as follows:

– If op[t] = Read, find the maximal t′ < t such that addr[t′] = addr[t], then set
val[t] = val[t′]. If no satisfying t′ is found, set val[t] arbitrarily.

– If op[t] = Write, compute val[t] from the other internal states of the machine
by a specified procedure. However, to decouple the memory from this poten-
tially complex procedure, we consider val[t] to be an arbitrary value set by
the machine executor.

Given the traces of these variables, namely the vectors op, addr, val of size N ,
the memory consistency check should ensure that they represent a consistent
execution trace of the memory, where the consistency can be informally defined
as follows: for every t, val[t] is honestly computed from op[t], addr[1], · · · , addr[t],
val[1], · · · , val[t−1] by the above procedure.

Among all the components of the machine, memory is the only one that is
history-dependent5: the next state depends on the entire history of the machine
states, instead of only on the previous state. This characteristic complicates the
consistency checking protocol for the following reason. Without history depen-
dency, the consistency of the entire trace can be decomposed into a sequence
of local relations between adjacent rows in the trace. These local relations can
be captured by one or more low-degree multivariate polynomials that verify the
transition between adjacent states. The number of variables in these polynomi-
als has only the size of two states. This allows efficient verification using the
vector equation checks. However, if the current state of the machine depends
on the entire history, capturing the relations between dependent states would
require multivariate polynomials with O(N) variables, which renders the vector
equation check infeasible.
The sorting paradigm. The reason for memory consistency being history-dependent
is that different memory addresses are accessed in an interleaved manner. This
observation inspires the idea of sorting the memory execution trace by address.
After sorting the table (op, addr, val) into (õp, ãddr, ṽal) using the column ãddr
as the key, accesses to identical addresses are grouped together, and as a result,
ṽal[t] depends only on õp[t], ãddr[t], ãddr[t−1] and ṽal[t−1].
5 Except for some special-purpose components designed particularly for ZKVMs, e.g.,
the hash table in Triton VM and some builtins in Cairo, that are not in a traditional
CPU architecture. The stack in stack-based architectures like EVM can be considered
as a simpler version of random-access memory, whose consistency checks are similar
to those for memories.



8 Yuncong Zhang et al.

The above idea is formalized as the sorting paradigm, which captures the
MCCs in all ZKVMs as of 2023, the time of this writing. This paradigm is
described by the following procedure:

1. The prover sorts op, addr, val by the entries in addr and obtains õp, ãddr, ṽal.
These sorted vectors are sent to the verifier.

2. The verifier confirms that op, addr, val and õp, ãddr, ṽal are permutations of
each other.

3. The verifier ensures the expected local property of the sorted memory trace
using one or more vector equations.

4. The final step varies in different ZKVMs, but all involve proving that õp,

ãddr, ṽal is the sorting of op, addr, val by addr.

In current ZKVMs, step 4—the sorting check—is accomplished using one of
the following three protocols, each for a different memory model:

1. Contiguous read-only memory. This model requires that the values in the
vector addr span a contiguous region in F and that op[t] is always Read. With
these requirements, ãddr[t−1] ≤ ãddr[t] is equivalent to ãddr[t] − ãddr[t−1] ∈
{0, 1}, which is captured by the vector equation (ãddr[t]−ãddr[t−1])·(ãddr[t]−
ãddr[t−1] − 1) = 0.

2. Read-write memory with 32k-bit addresses. For this memory model, the con-
straint ãddr[t−1] ≤ ãddr[t] is checked by a 32k-bit range check over the vector
ãddr

←1
− ãddr, where ãddr

←1
is the cyclic left-shifting of ãddr by one posi-

tion.
3. Read-write memory with full address space: Fc for c ≥ 1. Since the case

c > 1 can be reduced to c = 1 by random linear combination, we proceed
assuming that c = 1. The statement that ãddr is sorted is proved by the
contiguity check, designed by Triton VM [TV22], explained as follows. Given
the vector ãddr, initialize the polynomial f(X) = X − ãddr[1], then for each
t from 2 to N , if ãddr[t] ̸= ãddr[t−1], multiply f(X) by X− ãddr[t], otherwise
do nothing. Obviously, the vector ãddr is contiguous (which means repeated
elements fall in contiguous regions; this is equivalent to ãddr being sorted
by some custom order over F) if and only if no monomial X − ãddr[t] is
multiplied to f(X) more than once, if and only if f(X) has no multiple
roots. The prover sends the polynomial f(X) to the verifier, who checks
that f(X) is correctly computed and that gcd(f(X), Df(X)) = 1, where
Df(X) is the formal derivative of f(X).

For read-write memories, there is an additional issue: as addr may contain
duplicate elements, multiple permutations exist for sorting the memory execution
trace. However, the sorting technique works only if the permutation is the unique
one that preserves the order of rows with identical addresses as in the original
table. This unique permutation is referred to as the canonical sorting. To ensure
that the sorting is canonical, the following modifications should be applied to



Polynomial IOPs for Memory Consistency Checks 9

the second and third protocols: the memory execution trace is sorted together
with the incrementing vector incs = (1, 2, · · · , N). The verifier then ensures
that if ãddr[t] = ãddr[t−1], the difference ĩncs[t] − ĩncs[t−1] must be in the range
1, 2, · · · , N , by a lookup relation.

Our improvement: address cycle method. Note that in the sorting paradigm, the
prover sends at least four vectors to the verifier, each for a column in the sorted
memory trace. This is somewhat wasteful because, compared to the unsorted
memory trace, the additional information conveyed in these four vectors is no
more than a single permutation. We propose an alternative way that saves these
costs. Instead of reordering the memory execution trace, we redefine the meaning
of adjacency such that identical addresses become adjacent under this new defi-
nition. This insight is extracted from Arya [BCG+18], a zero-knowledge protocol
for TinyRAM [BCG+13]. We name this technique the address cycle method.

This method involves defining a permutation σ over the index set {1, · · · , N}.
The permutation σ maps each index t to the previous time when addr[t] was
accessed, i.e. σ(t) = max{j < t|addr[j] = addr[t]}, if such maximal value is well-
defined. If otherwise, this maximal value does not exist, i.e., addr[t] is accessed
for the first time, σ(t) maps it to the last time the same address was accessed, i.e.,
in this case, σ(t) = max{j ≤ N |addr[j] = addr[t]}. This way, for each distinct
address, all the positions where it appears are linked into a cycle by σ. Obviously,
addr is invariant under the permutation σ.

Now we observe the behavior of val as it is permuted by σ. By definition, if the
memory trace is consistent, then val is almost invariant under the permutation.
Specifically, val[σ(t)] = val[t] for every t except for those with op[t] = Write or
addr[t] is accessed the first time.

It turns out that the aforementioned behaviors of addr and val when per-
muted by σ suffice to guarantee memory consistency, as shown in Theorem 7.
To summarize, the MCC can be accomplished by proving the existence of a
permutation σ with the following properties:

1. There exists a vector first ∈ {0, 1}N such that t > σ(t) for every t except for
those t where first[t] = 1.

2. addr is invariant under σ and val is almost invariant: val[σ(t)] = val[t] for
every t except for those with op[t] = Write or first[t] = 1.

3. For every address a, all the positions where a appears in addr fall in the
same cycle of σ.

The first two properties are simple to check, as they are captured by vector
equations, permutation relations, and lookup relations. See Section 5.1 for de-
tails. Checking the last property is the most challenging part of this method. We
proved in Lemma 5 (Section 5.1) that this property can be ensured by showing
that the elements {addr[t]|1 ≤ t ≤ N,first[t] = 1} are distinct. Therefore, our
address cycle method reduces the MCC problem to the distinctness check prob-
lem, which is the key component of different constructions. Here we present two
constructions for this component.



10 Yuncong Zhang et al.

1. Permem. We note that the contiguity check of Triton VM can be gener-
alized into a distinctness check that does not pose any restriction on the
address space. This distinctness check protocol produces a new MCC with
full address space, i.e., A = Fc for any c ≥ 1. We name this new MCC
Permem.

2. AryaMem. For a clear comparison between Permem and Arya, which is orig-
inally described in the ILC model [BCG+17], we adapt the memory com-
ponent of Arya into a PIOP, called AryaMem, which is optimized with the
standard PIOP techniques. We remark that the memory component of the
original Arya does not strictly follow the pattern of our address cycle method,
whereas AryaMem is adapted to follow this method strictly. In particular,
in Arya, the last property of σ is not verified via distinctness check, but
instead by a protocol called blookup, which is constructed with two lookup
arguments. We replace this blookup protocol with a distinctness check, which
is much simpler thanks to Arya’s limited memory address space (the set
{1, 2, · · · ,M} for M ≈ N). Specifically, to prove that addr satisfies the
distinctness condition, it suffices to show that there exists a vector that is
both a permutation of (1, 2, · · · ,M) and is identical to addr in places where
first[t] = 1. This can be implemented using a single permutation argument.

Lookup argument. The lookup argument is an influential building block in most
MCCs. We construct a new lookup argument, named gcq for grand-sum version
of cq [EFG22], based on the logarithmic derivative technique. The insight of
logarithmic derivative is that every element in A = {a1, · · · , an} appears in B =

{b1, · · · , bn} if and only if
∑(

1
X−ai

− mi

X−bi

)
= 0, where mi ≥ 0 is the number of

times bi appears in A. Proving that this sum is zero is the core of the logarithmic
derivative technique. In cq, this is accomplished by the popular univariate sum-
check protocol [BCR+19], which is also extensively used in building general-
purpose SNARKs [BCR+19,CHM+20,COS20,RZ21].

However, we notice that a simpler technique, called grand-sum check, has mul-
tiple benefits which are, somewhat surprisingly, undervalued in the literature6.
Compared to the univariate sumcheck, the grand-sum check has the following
three advantages: (1) it works in both monomial basis and Lagrange basis; (2)
it does not require an individual degree bound of the PIOP; and (3) most im-
portantly, the grand-sum check contributes (almost) no additional cost at all,
in terms of the number of online polynomials and evaluation queries, which is
explained as follows. Note that: (1) for any vector u, the vector u←1−u+s ·e1 is
guaranteed to have sum s, where u←1 is u circularly left-shifted by one position;
and (2) for any vector v, we can always find ṽ such that v = ṽ←1− ṽ+s ·e1, e.g.,
ṽ := (v1, v1 + v2, · · · ,

∑
vi), the grand-sum vector of v. Therefore, the prover

could have directly sent ṽ, without sending v in the first place, and the verifier
simulates the polynomial oracle for v using that of ṽ wherever v appears.

6 It is indeed used in some works, but very rarely, e.g., in Flookup [GK22]. It is used
only in a small component of Flookup, where univariate sumcheck is unusable.



Polynomial IOPs for Memory Consistency Checks 11

Although the grand-sum check has some disadvantages compared to the uni-
variate check, which may partially explain the rare usage of grand-sum check,
these disadvantages are avoided in the context of MCCs:

– Grand-sum check involves shifting the vector ṽ by one position, which re-
quires simulating the polynomial oracle fṽ(ωX), causing one additional dis-
tinct evaluation point ωz in the PIOP. However, this is not a problem in
MCC, as ωz is already required by the permutation check.

– It is unclear how to exploit the KZG-specific optimizations in grand-sum
check, which is interesting for future research. In particular, cq exploits these
techniques to allow the prover cost to depend only on the size N of the exe-
cution trace and independent of the lookup table size. However, in Permem,
the lookup table also has size N , rendering the table-size-independence un-
necessary.

– The grand-sum check does not look intuitive when the polynomial oracle
fv(X) has a degree greater than N , in which case the simulation additionally
involves the quotient polynomial q(X). However, the grand-sum check still
saves one polynomial oracle compared to the univariate sumcheck in this
scenario. Moreover, in cq or gcq, the target polynomials of the sumcheck
have degrees bounded by the domain size, so the quotient polynomials are
unnecessary.

For the above reasons, grand-sum check fits perfectly in MCC, especially in our
Permem. Table 2 shows that the MCCs use three fewer online polynomials and
two fewer evaluation queries by replacing cq (that uses univariate sum-check)
with gcq (that uses grand-sum check).
Zero knowledge. We will not address the zero-knowledge aspect in this work
for the following two reasons. First, despite the “ZK” in the name, ZKVMs
are more valued for their succinctness than their zero-knowledge property. This
preference is evident from the fact that currently ZKVMs are mainly used in
zkRollups [zkS22, Azt22, Pol22, Loo22], which prioritize scalability over privacy.
Second, zero-knowledge can be achieved as an added property in SNARKs using
standard techniques such as adding a masking polynomial δ(X) · Z(X) to the
interpolated polynomials, where δ(X) is a uniformly random small polynomial.
It is unnecessary to repeat these standard techniques, so we omit them for clarity
and simplicity.

1.3 Related Works

Although there is a lack of literature discussing the recent developments in
ZKVMs [zkS22, TV22, Pol22, Scr22, Mid22, Ris22, GPR21], these ZKVMs are
the result of more than ten years of progress in the field of verifiable com-
putations (VC) [GGP10]. VC constructions can be categorized based on their
model of computation, primarily the circuit model and the RAM model. Circuit-
based VCs, particularly SNARKs, have gained greater attention and undergone
active research since 2018 [PHGR13, Gro16, CHM+20, GWC19, Set20, XZZ+19,



12 Yuncong Zhang et al.

BDFG20,BBB+18,Eag22,SL20,BFS20,ZSZ+22,SZ22,ZXZS20,BFH+20,COS20,
BCR+19,WTS+18]. Nonetheless, they have a significant drawback as circuits are
inconvenient to program for, especially when branching and loops are involved.

Although RAM-based VCs potentially support more intuitive programming
interfaces like high-level programming languages, they are more inefficient than
the circuit-based ones, with MCC being a major bottleneck. The Merkle-tree-
based memory check [BFR+13] is barely practical, and outperformed by the sort-
ing technique, which is initially based on routing networks [BCGT13,BCG+13,
BCTV13,BBC+17,BBHR18] and later adopts the more efficient permutation ar-
gument developed in circuit-based SNARKs [GWC19], as in [ZGK+18,BCG+18].
Many works only support memory space as small as {1, · · · ,M} for M = O(T ),
and those supporting 32-bit memory addresses tend to be quite slow.

The recent rapid development of ZKVMs has been largely aided by the in-
troduction of lookup arguments [GW20,ZBK+22,PK22,GK22,ZGK+22,EFG22,
Hab22,CBBZ22,SLST23], which have significantly boosted the efficiency of 32-
and 64-bit MCCs. However, 256-bit memory checks remain very expensive. Tri-
ton VM [TV22] mitigates this issue by its MCC with full address space, which is
sufficiently large to cover the functionality of 256-bit memory. Our new protocol,
Permem, further reduces the number of online polynomials of Triton VM.

Recent lookup arguments based on logarithmic derivatives [Hab22, EFG22,
SLST23] are a promising new approach, offering both high performance and ap-
pealing properties such as homomorphic additions. Our new lookup argument
gcq improves the state-of-the-art construction cq, costing fewer online polyno-
mials and evaluation queries.

2 Preliminaries

Let λ be the security parameter. For n ∈ N, [n] denotes the set {1, 2, · · · , n}.
For i ≤ j, [i..j] denotes {i, · · · , j}. Throughout the paper, we use a unique finite
field F = Fp where p is a prime of O(λ) bits. When the context is clear, we
use integers and field elements interchangeably, so the sets [n], [i..j] may also
represent the corresponding F elements after reducing modulo p. For algorithm
A, A→ c means the algorithm outputs c.

An indexed relation R is a set of triples (i,x,w), where i is called the index,
x is the instance, and w is the witness. The language induced from R is L(R) :=
{(i,x) : ∃ w, s.t. (i,x,w) ∈ R}.

2.1 Vectors and Polynomials

A vector of length N over F is denoted by v ∈ FN . The length of v is |v|. The
i-th entry of the vector v is denoted by v[i]. The subvector of v from index i
to j is denoted by v[i..j]. Let Elems(v) be the set of distinct elements in v, and
MultiElems(v) be the multiset of the elements in v. We write a ∈ v if a ∈ Elems(v)
and u ⊂ v if Elems(u) ⊆ Elems(v). We say u and v are permutations of each other
if MultiElems(u) = MultiElems(v). For permutation σ over [N ] and v ∈ FN ,



Polynomial IOPs for Memory Consistency Checks 13

define σ(v) := (v[σ(t)])
N
t=1. For vectors u, v with |u| = |v|, u◦v is their Hadamard

product (entry-wise product). u∥v is the concatenation of two vectors. v←k :=
v[k+1..N ]∥v[1..k] is the circular shift of v by k positions to the left or −k positions
to the right if k < 0. Let v1, · · · , vc ∈ FN , then the tuple (v1, · · · , vc) is a table
with N rows and c columns. The notations for tables, including σ(v1, · · · , vc),
(a1, · · · , ac) ∈ (v1, · · · , vc) and (u1, · · · ,uc) ⊂ (v1, · · · , vc), are defined similarly
as for vectors. Particularly, let Rows(v1, · · · , vc) denote the set of distinct tuples
{(a1, · · · , ac) ∈ (v1, · · · , vc)}, and MultiRows(v1, · · · , vc) be the multiset of the
tuples {(a1, · · · , ac) ∈ (v1, · · · , vc)}.

For any constant C ∈ F, let CN be a shorthand of the size-N vector consisting
of only C. In particular, 0N , 1N are the vectors consisting of N zeros or ones.
Let eNi := 0i−1∥1∥0N−i be the i-th unit vector. The superscript may be omitted
if the length is clear from the context.

Let f(X) ∈ F[X] denote a polynomial over F. We call a subset D ⊂ F a do-
main. Given a domain D of size N where the elements are ordered by a1, · · · , aN ,
let f(D) be the vector (f(a1), · · · , f(aN )). Given a vector v of size |D|, we can find
at least one polynomial fv(X) such that fv(D) = v, and call it an interpolation
of v over D. We usually take D = {1, ω, · · · , ωN−1} where ω is the N -th root of
unity. In this setting, the polynomial interpolation of ei is fei(X) = ωi−1·(XN−1)

N ·(X−ωi−1)

and can be evaluated by O(log(N)) field operations. The identity polynomial
fid(X) := X corresponds to the vector id := (1, ω, · · · , ωN−1).

2.2 Interactive Proof System

An interactive proof system [GMR85] is a protocol between two parties, the
prover P and the verifier V. The prover tries to convince the verifier of a statement
(i,x) ∈ L. In this work, we consider arguments of knowledge with preprocessing.
That is, before the protocol starts, the index i is preprocessed offline by the
indexer I, which produces helpful information for both the prover and the verifier,
such that the verifier does not need to learn the entire index, but only the
preprocessed information.

Definition 1 (Preprocessing Proof System). A preprocessing proof system
for indexed relation R is a triple of PPT algorithms (I,P,V). For any triple
(i,x,w), the indexer I takes as input i, and outputs iP and iV . The prover P
takes as input iP ,x,w, and the verifier V takes as input iV ,x, and they interact
with each other. At the end of the interaction, the verifier outputs b ∈ {0, 1},
indicating if it accepts (b = 1) or rejects (b = 0). Denote this procedure by
⟨I(i),P(x,w),V(x)⟩ → b.

The protocols should satisfy the following properties:

– Completeness. For any (i, x, w) ∈ R,

Pr[b = 0|⟨I(i),P(x,w),V(x)⟩ → b] ≤ ec

where ec is a negligible value called the completeness error. If ec is zero, then
we say this protocol has perfect completeness.



14 Yuncong Zhang et al.

– Soundness. For any (i,x) ̸∈ L(R) and unbounded algorithm P∗,

Pr[b = 1|⟨I(i),P∗,V(x)⟩ → b] ≤ es

where es is a negligible value called the soundness error. If es is zero, then
we say this protocol has perfect soundness.

Moreover, a proof system may also enjoy other properties:

– public coin, if all the verifier messages are fresh random coins;
– statistical honest-verifier zero-knowledge, if there exists a simulator S such

that for any (i,x,w) ∈ R and any unbounded distinguisher D

|Pr[D(View(i,x,w))]− Pr[D(S(i,x))]| = negl

where View(i,x,w) is the view of the verifier during the execution.
– succinctness, if the verification time and/or the online communication cost

is sublinear with respect to the size of the witness;
– proof (resp. argument 7) of knowledge, if for any i and (resp. PPT) prover

P∗, there exists a PPT extractor E, which has access to the same input and
random tape of P∗, such that for any efficient adversary A

Pr[b = 1 ∧ (i,x,w) ̸∈ R|A→ x, ⟨I(i),P∗,V(x)⟩ → b,EP∗
(i)→ w] ≤ es.

A public coin argument of knowledge can be transformed into a non-interactive
argument of knowledge via the Fiat-Shamir heuristic [FS86]. If the protocol is
also succinct (and zero-knowledge), then the resulting non-interactive scheme is
called a SNARK (or zkSNARK).

2.3 Polynomial IOP

A Polynomial Interactive Oracle Proof (PIOP) [BFS20] is a type of interactive
proof system where the prover’s messages sent to the verifier are restricted to be
polynomial oracles or field elements. PIOPs can be converted into conventional
interactive proofs through cryptographic compilers [BFS20] based on polynomial
comitments [KZG10,BFS20].

Definition 2 (Polynomial IOP). Given a finite field F, a preprocessing PIOP
of degree bound D for indexed relation R is a triple of PPT algorithms (I,P,V)
such that:

– (I,P,V) is a public coin preprocessing interactive proof system for R with
completeness error ec and soundness error es;

– I,P sends polynomials fi(X) ∈ F[X] of degree at most D to V;
– V sends challenges αk ∈ F to P;

7 If soundness holds only against a polynomial-bounded prover, then we say this pro-
tocol is an argument.



Polynomial IOPs for Memory Consistency Checks 15

– V is an oracle machine with access to a list of oracles, which contains one
oracle for each polynomial received from I and P;

– on receiving a query z ∈ F, the oracle for fi(X) responds with fi(z).

Having oracle access to f(X) gives the verifier the ability to evaluate f(X)
at arbitrary point z without learning the content of f(X) itself. Moreover, given
oracle access to f(X) and g(X), the verifier also gains the ability to evaluate
other polynomials, e.g., a · f(X) + b · g(X) and f(c · X). We say the verifier
simulates the oracle access to these polynomials. The verifier may also simulate
the oracle access to polynomials that admit fast evaluation. For example, the
constant polynomial f(X) = C, the identity polynomial fid(X) = X, and the
polynomial ωi−1·(XN−1)

N ·(X−ωi−1) , i.e., the polynomial obtained from interpolating ei over
D.

We adopt the following notations for describing a PIOP:

– “I sends f(X)” means the indexer sends f(X) to the prover and the oracle
access of f(X) to the verifier, and “P sends f(X)” means the prover sends
the oracle access of f(X) to the verifier.

– “V samples α
$← F” implies that V sends a uniformly random α to P.

– “V checks f(z) ·g(z) = h(z)” (or similar equations) means the verifier queries
the oracles for f(X), g(X), h(X) at point z, receives yf , yg, yh respectively,
and checks if yf · yg = yh.

2.4 PIOP for Vector Languages

Exploiting the polynomial interpolation, we may describe a PIOP as if the parties
are communicating with vectors instead of polynomials. We adopt the following
change of notations for ease of description:

– We say “I sends v” or “P sends v” in place of “I sends fv(X)” or “P sends
fv(X)”, where fv(X) is an interpolation of v over D.

– Vector expressions stand for polynomials: u ◦ v for fu(X) · fv(X), a · u+ b · v
for a · fu(X) + b · fv(X), and v←k for fv(ω

kX).
– We say “V checks u+v◦w←k = 0” (or other vector equations) when the ver-

ifier samples z ∈ F uniformly, the prover sends q(X) = fu(X)+fv(X)·fw(ωkX)
Z(X) ,

and the verifier checks fu(z) + fv(z) · fw(ωkz) = q(z) · Z(z), where Z(X) =
XN − 1 is the vanishing polynomial over D. When a protocol contains more
than one such checks, say Fi = 0 for i from 1 to m, where Fi is a vec-
tor expression, the verifier samples β ∈ F and checks

∑m
i=1 β

i−1Fi = 0
instead. By Schwartz-Zippel Lemma, this check incurs a soundness error of
(d+m− 1)/|F|, where d is the degree of the polynomial divided by Z(X).

Although a PIOP may involve polynomial oracles in its execution, the parties
of a PIOP cannot take polynomial oracles as inputs, because the relation R is
not well-defined when oracles are involved. However, in constructing a PIOP,
we frequently encounter situations where it would be convenient to design a



16 Yuncong Zhang et al.

building-block subprotocol for proving statements that involve polynomial ora-
cles, e.g., “given the oracle access to f(X) that was previously sent from the
prover, f(X) satisfies certain property”. In fact, all the PIOPs presented in this
work are such subprotocols, including the MCC, which works as a building block
of the entire ZKVM protocol. To formally define such subprotocols in the PIOP
model, we introduce the notion vector languages.

Definition 3 (Vector Language). Let m,N be positive integers. A vector
language R of width m and length N is a set of vector tuples, where each tuple
contains m vectors and each vector has length N .

Definition 4 (PIOP for Vector Language). Let R be a vector language
of width m and length N . We say a PIOP Π = (I,P,V) is a PIOP for R if
I takes inputs the description of R, and for any vectors v1, · · · , vm, P takes
inputs v1, · · · , vm, and V has oracle access to fv1(X), · · · , fvm(X) at the start.
The PIOP is complete if for any tuple (v1, · · · , vm) ∈ R, V accepts except with
probability at most ec. The PIOP is sound if for any (v1, · · · , vm) ̸∈ R, V accepts
with probability no more than es.

2.5 Building Blocks

MCCs have two key building blocks: the permutation argument and the lookup
argument. Given u1, · · · ,um and v1, · · · , vm, the permutation argument [GWC19]
(also referred to as the multi-set check [CBBZ22]) allows the verifier to check
that the tables (u1, · · · ,um) and (v1, · · · , vm) have the same multi-set of rows,
potentially in different orders. Formally, a permutation argument is a PIOP,
referred to as Perm, for the vector language

RPerm :=

{
({ui ∈ FN}mi=1, {vi ∈ FN}mi=1)

∣∣∣∣MultiRows(u1, · · · ,um) =
MultiRows(v1, · · · , vm)

}
with completeness error ec,Perm and soundness error es,Perm. PLONK [GWC19]
provides an example construction of the permutation argument. The idea of the
PLONK construction is to prove that for given random values α0, · · · , αm, the
two grand products

∏
i(α0+α1·u1,[i]+· · ·+αm·um,[i]) and

∏
i(α0+α1·v1,[i]+· · ·+

αm·vm,[i]) are equal. We denote the vectors satisfying the permutation relation by
(u1, · · · ,um) ∼ (v1, · · · , vm), and we say “V checks (u1, · · · ,um) ∼ (v1, · · · , vm)”
when the parties run the Perm protocol with inputs u1, · · · , um, v1, · · · , vm.

The lookup argument [GW20] allows the verifier to confirm that the set
of rows of the table (u1, · · · ,um) is contained in the set of rows of the table
(v1, · · · , vm). In ZKVM design, it is often necessary to prove this relationship
for only a selected subset of the rows in (u1, · · · ,um). To deal with this, we mod-
ify the traditional lookup relation by introducing a selector vector b with values
of either 0 or 1. This selector vector is used to specify the positions of the rows
to be selected. Formally, for any table (u1, · · · ,um) and vector b ∈ {0, 1}N , let
Rowsb(u1, · · · ,um) denote the set of tuples {(u1,[j], · · · ,um,[j])|j ∈ [N ],b[j] = 1}.



Polynomial IOPs for Memory Consistency Checks 17

Then a lookup argument is a PIOP for the vector language

RLookup :=

{(
{ui ∈ FN}mi=1, {vi ∈ FN}mi=1,

b ∈ {0, 1}N
) ∣∣∣∣Rowsb(u1, · · · ,um) ⊆

Rows(v1, · · · , vm)

}
with completeness error ec,Lookup and soundness error es,Lookup. We denote the
vectors satisfying the lookup relation by (u1, · · · ,um) ⊂b (v1, · · · , vm), and we
say “V checks (u1, · · · ,um) ⊂b (v1, · · · , vm)” when the parties run the Lookup
protocol with inputs u1, · · · , um, v1, · · · , vm, b. We omit b when b = 1.

Although existing lookup argument constructions [GW20, ZBK+22, PK22,
GK22, ZGK+22, EFG22, Hab22, CBBZ22, SLST23] do not involve the selector
vector b, they can be adapted to take b into consideration. We will present our
construction in Section 5.2.

A widely used application of the lookup argument is the range check, partic-
ularly 32-bit range checks in ZKVMs. Formally, a 32-bit range check is a PIOP,
referred to as Range32, for the vector language

RR32 =
{
(v ∈ FN ,b ∈ {0, 1}N )|∀t ∈ [N ],b[t] = 0 ∨ v[t] ∈ [0..232 − 1]

}
with completeness error ec,Range32 and soundness error es,Range32.

3 The Memory Consistency Check Problem

We start from defining the problem of memory consistency check (MCC). We
call a table (op, addr, val) ∈ FN×3 a consistent memory trace if the value val[t]
for each row with op[t] = Read is equal to the value associated with the address
addr[t] the last time it was accessed. This concept is formalized in Definition 5,
where we set Read = 0 and Write = 1 for simplicity and without loss of generality.

Definition 5 (Memory Consistency Check). Let N be an integer and A ⊂
F. A memory consistency check for memory address space A is a PIOP Π =
(I,P,V) for the following vector language:

RAMem :=

op ∈ {0, 1}N ,
addr ∈ AN ,
val ∈ FN

∣∣∣∣∣∣
∀t ∈ [N ], either op[t] = 1 or

prev(t; addr) =⊥ or
val[t] = val[prev(t;addr)]

 where

prev(t; addr) :=

{
max J :=

{
t′
∣∣t′ < t ∧ addr[t′] = addr[t]

}
, if J ̸= ∅

⊥, otherwise .

We may write prev(t) instead of prev(t; addr) for simplicity when the choice
of addr is unambiguous. Intuitively, prev(t) maps t to the previous time t′ when
the same address appeared. The memory consistency requires that val[t] is equal
to val[t′], unless the current instruction is writing (op[t] = 1) or this address was
never accessed before (t′ =⊥).

Next, we will explain the mainstream approach for constructing MCCs, which
is referred to as the sorting paradigm and is used in all of the ZKVM projects
discussed in this work.



18 Yuncong Zhang et al.

4 The Sorting Paradigm

The main challenge in MCCs is handling the history-dependency of the memory:
the value retrieved from a memory operation is dependent on previous oper-
ations that may be far ahead. A natural solution to this challenge is to sort
the table (op, addr, val) to group related operations together. To avoid affecting
the consistency of this trace, the sorting should satisfy the following criterion:
it should never swap the order between two rows with the same address. The
sortings that follow this criterion are formalized by the following definitions.

Definition 6 (Sorting). Let (v(1), · · · , v(m)) ∈ FN×m and (ṽ(1), · · · , ṽ(m)) ∈
FN×m be two tables with m columns and N rows. Let k1, k2, · · · , kℓ be ℓ distinct
integers in [m], and ⪯1, · · · ,⪯ℓ be ℓ total orders respectively over Elems(v(k1)), · · · ,
Elems(v(kℓ)). We say (ṽ(1), · · · , ṽ(m)) is a sorting of (v(1), · · · , v(m)) by v

(k1)
[t] , · · · , vkℓ

[t]

if:

– (v(1), · · · , v(m)) ∼ (ṽ(1), · · · , ṽ(m)), i.e., there exists a permutation σ over
[N ] such that (ṽ(1), · · · , ṽ(m)) = σ(v(1), · · · , v(m)); and

– for every t ∈ [N − 1], (ṽ
(k1)
[t] , · · · , ṽ(kℓ)

[t] ) ⪯ (ṽ
(k1)
[t+1], · · · , ṽ

(kℓ)
[t+1]), where ⪯ is

defined lexigraphically from ⪯1, · · · ,⪯ℓ.

We say (ṽ(1), · · · , ṽ(m)) is sorted by keys v(k1), · · · , v(kℓ) with total orders ⪯1

, · · · ,⪯ℓ, and v(ki) is the i-th key of this sorting.

Definition 7 (Canonical Sorting). Given the two tables (v(1), · · · , v(m)) ∈
FN×m and (ṽ(1), · · · , ṽ(m)) ∈ FN×m satisfying Definition 6, we say (ṽ(1), · · · , ṽ(m))
is the canonical sorting of (v(1), · · · , v(m)) if there exists a permutation σ such
that (ṽ(1), · · · , ṽ(m)) = σ(v(1), · · · , v(m)) and for every t ∈ [N − 1], if (ṽ(k1)

[t] , · · · ,
ṽ
(kℓ)
[t] ) = (ṽ

(k1)
[t+1], · · · , ṽ

(kℓ)
[t+1]) then σ−1(t) < σ−1(t+ 1).

For convenience, we denote the set of vector tuples satisfying the above defi-
nition by the vector relation (v(1), · · · , v(m), ṽ(1), · · · , ṽ(m)) ∈ Rm

CN(k1, · · · , kℓ,⪯1

, · · · ,⪯ℓ).
Let Rm

CN(k1, · · · , kℓ) :=
⋃
⪯1,··· ,⪯ℓ

Rm
CN(k1, · · · , kℓ,⪯1, · · · ,⪯ℓ) be the vector

relation of all such vector tuples for arbitrary total order. We may writeRm
CN(⪯vk1

, · · · ,⪯vkℓ ) and Rm
CN(v

k1 , · · · , vkℓ), respectively, for ease of description.

With the above definition of sorted tables, we now describe how to sort
the memory trace. Let ⪯addr be any total order over the address space A and
RACN(⪯addr) denote the vector language that consists of all the vector tuples (op,
addr, val, õp, ãddr, ṽal) such that (õp, ãddr, ṽal) is the canonical sorting of
(op, addr, val) by the key addr with total order ⪯addr. Let RACN(addr) be the
union of all these vector languages, i.e., RACN(addr) :=

⋃
⪯addr
RACN(⪯addr). The

following theorem is the central idea behind the sorting technique for MCCs.

Theorem 1. Given any A ⊂ F and tuple ((op, addr, val), (õp, ãddr, ṽal)) ∈
RACN(addr), (op, addr, val) ∈ RAMem if and only if (õp, ãddr, ṽal) ∈ RAMem.



Polynomial IOPs for Memory Consistency Checks 19

To prove Theorem 1, we first introduce the following lemma, which essentially
claims that the permutation for the canonical sorting can be decomposed into
a sequence of transpositions such that each transposition swaps two rows with
different keys.

Lemma 1. Given two tables (v(1), · · · , v(m)) ∈ FN×m and (ṽ(1), · · · , ṽ(m)) ∈
FN×m satisfying the definition of Definition 6 with total orders ⪯1, · · · ,⪯ℓ. Then
(ṽ(1), · · · , ṽ(m)) is the canonical sorting of (v(1), · · · , v(m)) by keys v(k1), · · · , v(kℓ)

if and only if there exists a sequence of transpositions σ1, · · · , σs, where σi swaps
ti and ti+1, such that (ṽ(1), · · · , ṽ(m)) = σs(σs−1(· · ·σ1(v(1), · · · , v(m)) · · · )) and
that for each i ∈ [s],(

v
(k1)
[σ1(σ2(···σi−1(ti+1)··· ))], · · · , v

(kℓ)
[σ1(σ2(···σi−1(ti+1)··· ))]

)
≺
(
v
(k1)

[σ1(σ2(···σ−1
i−1(ti)··· ))]

, · · · , v(kℓ

[σ1(σ2(···σi−1(ti)··· ))]

)
.

Proof. Sufficiency. Let σ(·) := σs(σs−1(· · ·σ1(·) · · · )). Then we have (ṽ(1), · · · ,
ṽ(m)) = σ(v(1), · · · , v(m)). It remains to show that for every t ∈ [N − 1], if
(ṽ

(k1)
[t] , · · · , ṽ(kℓ)

[t] ) = (ṽ
(k1)
[t+1], · · · , ṽ

(kℓ)
[t+1]) then σ(t) < σ(t+ 1). Suppose t∗ satisfies

(ṽ
(k1)
[t∗] , · · · , ṽ

(kℓ)
[t∗] ) = (ṽ

(k1)
[t∗+1], · · · , ṽ

(kℓ)
[t∗+1]). Since for each i ∈ [s], (v(k1)

[σ1(σ2(···σi−1(ti+1)··· ))],

· · · , v(kℓ)
[σ1(σ2(···σi−1(ti+1)··· ))]) is different from (v

(k1)
[σ1(σ2(···σi−1(ti)··· ))], · · · , v

(kℓ)
[σ1(σ2(···σi−1(ti)··· ))]),

we have for each i ∈ [s], {ti, ti + 1} ̸= {σi(· · ·σs(t
∗) · · · ), σi(· · ·σs(t

∗ + 1) · · · )}.
In particular, {ts, ts + 1} ̸= {σs(t

∗), σs(t
∗ + 1)}, i.e., ts ̸= t∗, which implies

that either σs(t
∗) = t∗ − 1, σs(t

∗ + 1) = t∗ + 1 (in case ts = t∗ − 1), or
σs(t

∗) = t∗, σs(t
∗ + 1) = t∗ + 2 (in case ts = t∗ + 1), or σs(t

∗) = t∗, σs(t
∗ + 1) =

t∗ + 1 (otherwise). In all cases, σs(t
∗) < σs(t

∗ + 1). Similarly, we rule out
the possibility that σs(t

∗) = ts−1, σs(t
∗ + 1) = ts−1 + 1 (which would imply

{σs−1(σs(t
∗)), σs−1(σs(t

∗ + 1))} = {ts−1, ts−1 + 1}), and by similar case studies
we can conclude that σs−1(σs(t

∗)) < σs−1(σs(t
∗ + 1)). Continuing this process,

we finally get σ1(· · ·σs−1(σs(t
∗)) · · · ) < σ1(· · ·σs−1(σs(t

∗+1)) · · · ), which is ex-
actly σ−1(t∗) < σ(t∗ + 1) (note that transpositions are inverses of themselves).

Necessity. Suppose (ṽ(1), · · · , ṽ(m)) is the canonical sorting of (v(1), · · · , v(m))
by keys v(k1), · · · , v(kℓ), we construct the sequence σ1, · · · , σs as follows. Start-
ing from the table (v(1), · · · , v(m)), and initialize i = 1, then repeat the fol-
lowing steps until we cannot proceed any further: find the first t such that
(v

(k1)
[t] , · · · , v(kℓ)

[t+1]) ≺ (v
(k1)
[t] , · · · , v(kℓ)

[t] ), set ti = t, swap the rows t and t+ 1, i.e.,
apply the swap σi to the current table, and increment i.

Since ⪯ is a total order over the tuples (v(k1)
[t] , · · · , v(kℓ)

[t] ), the above procedure
will terminate. Obviously, by construction, we have for each i ∈ [s],(

v
(k1)
[σ1(σ2(···σi−1(ti+1)··· ))], · · · , v

(kℓ)
[σ1(σ2(···σi−1(ti+1)··· ))]

)
≺
(
v
(k1)

[σ1(σ2(···σ−1
i−1(ti)··· ))]

, · · · , v(kℓ

[σ1(σ2(···σi−1(ti)··· ))]

)
.



20 Yuncong Zhang et al.

Moreover, for each t ∈ [N−1], we have (v(k1)
[σ1(σ2(···σs(t)··· ))], · · · , v

(kℓ)
[σ1(σ2(···σs(t)··· ))]) ⪯

(v
(k1)
[σ1(σ2(···σs(t+1)··· ))], · · · , v

(kℓ)
[σ1(σ2(···σs(t+1)··· ))]), since otherwise the procedure would

not have stopped. Let σ = σs(· · ·σ1(·)). By the same argument as in the previ-
ous part, we conclude that σ−1(σ(t)) < σ−1(σ(t) + 1) for every σ(t) ∈ [N − 1]

where (v
(k1)
[σ(t)], · · · , v

(k1)
[σ(t)]) = (v

(k1)
[σ(t)+1], · · · , v

(k1)
[σ(t)+1]), i.e., σ(v(1), · · · , v(m)) is the

canonical sorting of (v(1), · · · , v(m)). ⊓⊔

Proof (of Theorem 1). Let ⪯ be any total order over Elems(addr). By Lemma 1,
we can find a sequence of transpositions σ1, · · · , σs with the desired properties.
It suffices to show that the memory consistency is preserved by each trans-
position, i.e., for each i ∈ [s], σi(· · ·σ1(op, addr, val) · · · ) ∈ RAMem if and only
if σi−1(· · ·σ1(op, addr, val) · · · ) ∈ RAMem. The proof of Lemma 1 demonstrates
that we can find the sequence σ1, · · · , σs by repeatedly swapping adjacent rows
of (op, addr, val) where addr[t+1] ≺ addr[t] until addr is completely sorted.
We only need to show that each operation in this procedure preserves con-
sistency. Obviously, the properties op ∈ {0, 1}N and addr ∈ AN are not af-
fected by swapping, so we only need to show that the property ∀t ∈ [N ], op[t] =
1 ∨ prev(t; addr) ∨ val[t] = val[prev(t;addr)] is not affected. Assume the operation
swaps the rows t∗ and t∗ + 1. Obviously, the property still holds for t ∈ [t∗ − 2].
Since addr[t∗] ̸= addr[t∗+1], after the swapping, we simultaneously swap op[t∗]
with op[t∗+1], prev(t∗; addr) with prev(t∗ + 1; addr), and val[t∗] with val[t∗+1].
Therefore, the consistencies of these two positions are still preserved. Finally,
for t > t∗ + 1, if prev(t; addr) is t∗ (or t∗ + 1), then after the swap prev(t; addr)
becomes t∗ + 1 (or t∗). However, since val[t∗] and val[t∗+1] are also swapped,
the value val[prev(t;addr)] stays unchanged. Otherwise, prev(t; addr) ̸∈ {t∗, t∗ + 1},
then prev(t; addr) is not affected and val[prev(t;addr)] also stays unchanged. This
finishes the proof. ⊓⊔

Based on Theorem 1, Algorithm 1 presents the common workflow of all the
MCCs using the sorting technique, where the CSortA protocol is decided by
the concrete constructions. We call this workflow the sorting paradigm. In Al-
gorithm 1, we use the following trick for proving a statement of the form “if
r = 0 ∧ s = t then u = v”. We note that this statement is equivalent to “∃a, b
such that a · r+ b · (s− t) = u− v”. We use this trick to prove the statement that
whenever op is 0 for reading and the sorted address matches with the previous
one, then the value should also match.

Theorem 2. If CSortA is a PIOP for the vector language RACN(⪯addr) with
completeness error ec and soundness error es, where ⪯addr is any total order
over A, then the CSortMCCA protocol in Algorithm 1 is an MCC for A with
completeness error ec and soundness error es + (2N + 1)/|F|.

Proof. Consider the following sequence of statements:

(op, addr, val) ∈ RAMem (1)

addr ∈ AN (2)



Polynomial IOPs for Memory Consistency Checks 21

Algorithm 1 Sorting Paradigm
procedure CSortMCCA(op, addr, val)

P sends õp, ãddr, ṽal, the canonical sorting of (op, addr, val);
P sends a, b such that ∀t ∈ [N − 1], a[t] · õp[t+1] + b[t] · (ãddr[t+1] − ãddr[t]) =

ṽal[t+1] − ṽal[t];
V checks op ◦ op = op;
V checks (id − 1) ◦ (a ◦ õp←1

+ b ◦ (ãddr
←1
− ãddr) − (ṽal

←1
− ṽal)) = 0 where

id = {1, ω, · · · , ωN−1} is the evaluation of f(X) := X over D;
P and V run the CSortA protocol with inputs op, addr, val, õp, ãddr, ṽal.

(op, addr, val, õp, ˜addr, ṽal) ∈ RACN(⪯addr) (3)
(õp, ˜addr, ṽal) ∈ RAMem (4)

op ∈ {0, 1}N (5)
V accepts op ◦ op = op (6)

∀t ∈ [N ], prev(t; ˜addr) =

{
⊥, if t = 1 ∨ addr[t−1] ̸= addr[t]
t− 1, otherwise (7)

∀t ∈ [N − 1], õp[t+1] = 1 ∨ ˜addr[t+1] ̸= ˜addr[t] ∨ ṽal[t+1] = ṽal[t] (8)

∀t ∈ [N − 1], a[t] · õp[t+1] + b[t] · ( ˜addr[t+1] − ˜addr[t]) = ṽal[t+1] − ṽal[t] (9)

V accepts (id− 1) ◦ (a ◦ õp←1 + b ◦ ( ˜addr
←1
− ˜addr)− (ṽal

←1
− ṽal)) = 0 (10)

V accepts in CanonicalSortA (11)
Completeness follows from the inductions

– (1) (3) ⇒ (4) (7) ⇒ (8) ⇒ (9) ⇒ (10), where where (1) (3) ⇒ (4) follows
from Theorem 1;

– (5) ⇒ (6);
– (1) ⇒ (2);
– (2) (3) ⇒ (11) fails with probability ec.

The completeness error is therefore ec.
Soundness follows from the inductions

– (6) ⇒ (5) and (10) ⇒ (9) fail with probability (2N + 1)/|F|;
– (11) ⇒ (3) (2) fails with probability es;
– (9) ⇒ (8);
– (3) ⇒ (7);
– (8) (7) (5) (2) ⇒ (4);
– (3) (4) ⇒ (1).

The soundness error is given by the union bound. ⊓⊔

In the following subsections, we will introduce three different constructions
of the CSort protocol, each for a different memory model.



22 Yuncong Zhang et al.

4.1 Contiguous Read-Only Memory

We start from the simplest case—the contiguous read-only memory setting,
which is adopted by Cairo [GPR21]. In this setting, there is no writing op-
eration, which means op is restricted to be the zero vector, hence “read-only”.
Moreover, all accessed memory addresses form a contiguous region, which means
Elems(addr) = {s, s + 1, · · · , s + S − 1} for some s ∈ F and S ∈ N. Formally,
all valid execution traces for contiguous read-only memory constitute the vector
language

RCROM :=
{
(addr, val)

∣∣ (0, addr, val) ∈ RF
Mem, addr ∈ RCONT

}
where RCONT =

{
addr

∣∣∃s ∈ F, S ∈ [N ],Elems(addr) = {s+ i}S−1i=0

}
.

Contiguous read-only memories are more restricted and have fewer capabil-
ities compared to read-write memories, thus the programming process is more
challenging for programmers. On the positive side, the contiguous read-only
memory model enables a much simpler protocol for checking memory consis-
tency. Being read-only, the vectors op, õp and a are eliminated from Algo-
rithm 1, and every sorting of (0, addr, val) is the canonical sorting. By conti-
guity, ãddr satisfies that adjacent addresses differ by at most one. These ob-
servations lead to Algorithm 2. In this protocol, the vector equation checked
by the verifier ensures that ãddr[t] − ãddr[t+1] is either 0 or 1, except for the
edge case t = N , which is eliminated by multiplying the vector id− ωN−1 · 1 =
(1− ωN−1, ω − ωN−1, · · · , ωN−1 − ωN−1), which is zero only at t = N .

Algorithm 2 Canonical Sort for Contiguous Read-Only Memory
procedure CROMSort(addr, val, ãddr, ṽal)

V checks (addr, val) ∼ (ãddr, ṽal);
V checks (id− ωN−1 · 1) ◦ (ãddr

←1
− ãddr) ◦ (ãddr

←1
− ãddr − 1) = 0.

Theorem 3. Assuming the input vectors satisfy ∀t ∈ [N−1], ãddr[t] ̸= ãddr[t+1]∨
ṽal[t] = ṽal[t+1], then the CROMSort protocol in Algorithm 2 is a PIOP for the
vector language

RCROM
CN :=

{
(addr, val, ãddr, ṽal)

∣∣∣∣addr ∈ RCONT

(0, addr, val, 0, ãddr, ṽal) ∈ RACN(⪯addr)

}
with completeness error ec,Perm and soundness error es,Perm+2N/|F|, where ⪯addr

is the total order over Elems(addr) = {s+i}Si=1 such that s+i ⪯addr s+j ⇔ i ≤ j
for every pair of (i, j) ∈ [0..S − 1]2.

Proof. Consider the following statements:

∀t ∈ [N − 1], ˜addr[t] ̸= ˜addr[t+1] ∨ ṽal[t] = ṽal[t+1] (12)



Polynomial IOPs for Memory Consistency Checks 23

(addr, val, ˜addr, ṽal) ∈ RCROM
CN (13)

(0, addr, val, 0, ˜addr, ṽal) ∈ RACN(⪯addr) (14)
Elems(addr) = {s+ i}S−1i=0 (15)
(addr, val) ∼ ( ˜addr, ṽal) (16)

V accepts (addr, val) ∼ ( ˜addr, ṽal) (17)
∀t ∈ [N − 1], ˜addr[t+1] − ˜addr[t] ∈ {0, 1} (18)

V accepts (id− ωN−1 · 1) ◦ (addr←1 − addr) ◦ (addr←1 − addr − 1) = 0 (19)
Completeness follows from the induction sequences

– (13) ⇒ (14) (15);
– (14) ⇒ (16) ⇒ (17) where (16) ⇒ (17) fails with probability ec,Perm;
– (14) (15) ⇒ (18) ⇒ (19).

The completeness error is then ec,Perm.
Soundness follows from the induction sequences

– (19)⇒ (18)⇒ (15) where (19)⇒ (18) fails with probability at most 2N/|F|;
– (18) (12) (16) ⇒ (14);
– (17) ⇒ (16) where (17) ⇒ (16) fails with probability at most es,Perm;
– (14) (15) ⇒ (13).

The soundness error is then given by union bound. ⊓⊔

Next, we handle the most popular case where the memory is writable and
the memory address space is the set of 32-bit integers.

4.2 Read-Write Memory with 32-bit Addresses
We explain how to construct CSort when A = [0..232 − 1]. This 32-bit address
space is adopted by Miden [Mid22] and 32-bit RiscZero [Ris22]. The techniques
can also be extended to 64- and 256-bit address spaces; the later is used in
zkEVMs, e.g., Scroll [Scr22], Polygon Hermez [Pol22], zkSync [zkS22].

In the 32-bit randomly accessible memory, the differences between adjacent
entries in the sorted addresses ãddr are no longer restricted to {0, 1}, but fall in
a larger range, namely [0..232 − 1]. Therefore, the boolean check in Algorithm 2
is replaced with the 32-bit range check. Moreover, without the read-only setting,
the canonicity of the sorting is no longer automatically guaranteed. Instead, the
prover sorts the memory trace together with the vector incs = (1, 2, · · · , N) and
the verifier ensures the sorted vector ĩncs satisfies certain properties, as detailed
in Algorithm 3. In this protocol, the vectors inv and diff are used to indicate the
positions where ãddr[t+1] differs from ãddr[t], i.e. ãddr[t+1]− ãddr[t] is invertible.
The second Range32 in Algorithm 3 uses the tricks from Hermez and Miden,
which applies the 32-bit range check simultaneously to two vectors, exploiting
the fact that we only need to ensure ĩncs[t+1]− ĩncs[t] ∈ [0, 232) for diff [t] = 0 and
ãddr[t+1] − ãddr[t] ∈ [0, 232) for diff [t] = 1. The masking vector 1− eN excludes
the case t = N from the range check.



24 Yuncong Zhang et al.

Algorithm 3 Canonical Sort for 32-bit Read-Write Memory
procedure RW32Sort(op, addr, val, õp, ãddr, ṽal)

I sends incs = (1, 2, · · · , N);
P sends ĩncs satisfying (incs, op, addr, val) ∼ (ĩncs, õp, ãddr, ṽal);
P sends inv such that for every t ∈ [N ], inv[t] = 0 if ãddr[t+1] = ãddr[t], and

inv[t] = (ãddr[t+1] − ãddr[t])
−1 elsewhere, where ãddr[N+1] is treated as ãddr[1];

P sends diff such that for every t ∈ [N ], diff [t] = 0 if ãddr[t+1] = ãddr[t], and
diff [t] = 1 elsewhere, where ãddr[N+1] is treated as ãddr[1];

V checks (incs, op, addr, val) ∼ (ĩncs, õp, ãddr, ṽal);
V checks (ãddr

←1
− ãddr)◦ inv = diff and diff ◦ (ãddr

←1
− ãddr) = ãddr

←1
− ãddr;

P and V run the Range32 protocol with inputs addr, 1;
P and V run the Range32 protocol with inputs (1− diff) ◦ (ĩncs

←1
− ĩncs) + diff ◦

(ãddr
←1
− ãddr) and 1− eN .

Theorem 4. The RW32Sort protocol in Algorithm 3 is a PIOP for the vector
language R[0..232−1]

CN (⪯addr) with completeness error ec,Perm + 2 · ec,Range32 and
soundness error (2N + 1)/|F|+ es,Perm + 2 · es,Range32, where ⪯addr is the natural
order over integers.

We use the following lemma for an equivalent condition for canonical sorting.

Lemma 2. Given two tables (v(1), · · · , v(m)) ∈ FN×m and (ṽ(1), · · · , ṽ(m)) ∈
FN×m. (ṽ(1), · · · , ṽ(m)) is the canonical sorting of (v(1), · · · , v(m)) by keys v(k1), · · · ,
v(kℓ) with total orders ⪯1, · · · ,⪯ℓ if and only if there exists ˜incs ∈ FN such that
(ṽ(1), · · · , ṽ(m), ˜incs) is a sorting of (v(1), · · · , v(m), incs) by keys v(k1), · · · , v(kℓ),
incs with total orders ⪯1, · · · ,⪯ℓ,⪯incs, where incs = (1, 2, · · · , N) and ⪯incs is
the natural order over 1, 2, · · · , N .

Proof. Sufficiency is obvious. Necessity follows from the observation that the
vector ˜incs = (σ(1), · · · , σ(N)) satisfies the requirement. ⊓⊔

Proof (Of Theorem 4). Consider the following statements

(op, addr, val, õp, ˜addr, ṽal) ∈ R[0..232−1]
CN (20)

(op, addr, val, õp, ˜addr, ṽal) ∈ R[0..232−1]
CN (⪯addr) (21)

addr ∈ [0..232 − 1]N (22)

V accepts in Range32 with inputs addr, 1 (23)

( ˜incs, õp, ˜addr, ṽal) is a sorting of (incs, op, addr, val) by addr, incs with ⪯addr

(24)
˜addr is sorted by ⪯addr (25)

∀t ∈ [N − 1], ˜addr[t+1] − ˜addr[t] ∈ [0..232 − 1] (26)



Polynomial IOPs for Memory Consistency Checks 25

∀t ∈ [N − 1], ˜incs[t+1] − ˜incs[t] ∈ [1..232] ∨ ˜addr[t+1] ̸= ˜addr[t] (27)

(incs, op, addr, val) ∼ ( ˜incs, õp, ˜addr, ṽal) (28)

V accepts (incs, op, addr, val) ∼ ( ˜incs, õp, ˜addr, ṽal) (29)

∀t ∈ [N ], inv[t] =

{
0, if ˜addr[t+1] = ˜addr[t]
( ˜addr[t+1] − ˜addr[t])

−1, otherwise (30)

∀t ∈ [N ],diff [t] =

{
0, if ˜addr[t+1] = ˜addr[t]
1, otherwise (31)

V accepts in Range32 with inputs

(1− diff) ◦ ( ˜incs
←1
− ˜incs) + diff ◦ ( ˜addr

←1
− ˜addr) (32)

and 1− eN

( ˜addr
←1
− ˜addr) ◦ inv = diff (33)

diff ◦ ( ˜addr
←1
− ˜addr) = ˜addr

←1
− ˜addr (34)

V accepts ( ˜addr
←1
− ˜addr) ◦ inv = diff (35)

V accepts diff ◦ ( ˜addr
←1
− ˜addr) = ˜addr

←1
− ˜addr (36)

Completeness follows from the sequence of inductions

– (20) ⇒ (21) (22);
– (22) ⇒ (23) fails with probability ec,Range32;
– (21) ⇒ (24) ⇒ (25) (28), where (21) ⇒ (24) follows from Lemma 2;
– (25) ⇒ (26);
– (28) ⇒ (29) fails with probability ec,Perm;
– (30) (31) ⇒ (33) (34);
– (31) (27) (26) ⇒ (32) fails with probability ec,Range32;
– (33) (34) ⇒ (35) (36).

The completeness error is the sum of these probabilities by union bound.
Soundness follows from the sequence of inductions

– (35) (36) ⇒ (33) (34) fails with probability (2N + 1)/|F|;
– (33) (34) ⇒ (31);
– (31) (32) ⇒ (27) (26) fails with probability es,Range32;
– (23) ⇒ (22) fails with probability es,Range32;
– (22) (26) ⇒ (25);
– (27) (25) ⇒ (24);
– (29) ⇒ (28) fails with probability es,Perm;
– (28) (24) ⇒ (21) by Lemma 2;
– (21) (22) ⇒ (20).

The soundness error is the sum of these probabilities by the union bound. ⊓⊔



26 Yuncong Zhang et al.

The above protocol can be extended to 32k-bit address space for arbitrary k,
as long as |F| > 232k+1. In practice, we are interested in cases where k = 1, 2, 4
and 8. However, the cost also grows linearly with k, particularly the number of
online polynomial oracles and queries. In comparison, an MCC protocol with the
full address space, i.e., A = F, provides a sufficiently large space with a smaller
cost. We introduce the related techniques next.

4.3 Read-Write Memory with the Full Address Space

We present the canonical sorting extracted from Triton VM [TV22], which, at the
time of writing, is the only ZKVM that adopts the setting with both full address
space (i.e., A = F) and a read-write memory. This address space covers the
functionalities of both 64-bit and 256-bit memories8. In cases where |F| < 2256,
one can use two or more field elements as a memory address, making A = Fc

for c > 1, and linearly combine the c address traces with random challenges
supplied by the verifier. Each extra address trace enlarges the memory space by
a factor of |F| with the cost of only one online polynomial oracle. For simplicity,
we assume c = 1 in the rest of this section.

WhenA = F, the greatest challenge is to define a total order over Elems(addr)
that is efficiently verifiable, since Elems(addr) is neither contiguous nor restricted
to a small subset. Triton VM overcomes this issue by designing a new technique
for showing that ãddr is sorted by any total order, which we summarize in
Algorithm 4. Algorithm 4 is slightly different from that of Triton VM, dropping
the engineering-related details. Moreover, we extract the core of the Triton VM
memory protocol, the contiguity check, and generalize and reformulate it as the
distinctness check, which will also be used in our construction in the next section.

The contiguity check of Triton VM relies on the following lemma, which
presents an equivalent condition for a vector being sorted.

Lemma 3. Given any vector v ∈ FN , the following two statements are equiva-
lent:

1. There exists a total order “⪯” over F such that v is sorted by “⪯”.
2. There exists a vector b ∈ {0, 1}N such that

– b[1] = 1, and for every t ∈ [N − 1], either v[t] = v[t+1] or b[t+1] = 1;
– the elements {v[t]|t ∈ [N ],b[t] = 1} are distinct.

Proof. Sufficiency. If there exists such a vector b satisfying both conditions,
we claim that for every pair of i < j, if v[i] = v[j] then for every k from i to
j, v[i] = v[k]. Assume for contradiction that there exist i < k < j such that
v[i] = v[j] ̸= v[k], then by the first condition, there exists i′ ≤ i such that
v[i′] = v[i] and b[i′] = 1, and exists k < j′ ≤ j such that v[j′] = v[j] and b[j′] = 1.
Then v[i′] = v[j′] but i′ ̸= j′, contradicting the second condition.
8 Unless for extremely special cases where the program relies on the memory check to
decide whether to abort or not.



Polynomial IOPs for Memory Consistency Checks 27

With the above claim, we define the total order “⪯” over the elements in v
as follows. For every pair of a, b ∈ v, a ⪯ b if and only if there exist i ≤ j such
that v[i] = a and v[j] = b. This total order is well-defined, since if both a ⪯ b
and b ⪯ a, then there exist i ≤ k ≤ j such that v[i] = v[j] = a and v[k] = b. By
the above claim, a = b.

Necessity. If v is sorted, we construct b as follows. Let b[1] = 1, and for every
t ∈ [N − 1], let b[t+1] = 1 if v[t+1] ̸= v[t], otherwise b[t+1] = 0. Obviously, b
satisfies the first condition. If the second condition is not satisfied, i.e., there are
v[i] = v[j] for i < j and b[i] = b[j] = 1, then by the first condition v[j] ̸= v[j−1],
and v[i] ≺ v[j−1] ≺ v[j] = v[i], contradicting the definition of the total order. ⊓⊔

Lemma 3 reduces the problem of proving that v is sorted to proving that the
elements in certain positions of v are distinct, where the positions are specified
by b. This problem is then handled by the following lemma.

Lemma 4 (Proposition 6.6 of [Mig92]). Let F be a finite field and f(X) =∑d
i=0 fiX

i ∈ F[X]. Then f(X) is squarefree if and only if gcd(f(X), Df(X)) =
1, where Df(X) is the shorthand for formal derivative of f(X), i.e., Df(X) :=
d(f(X))

dX =
∑d−1

i=0 (i+ 1)fi+1X
i.

Lemma 4 inspires the protocol DstFull in Algorithm 4, which proves that
given b ∈ {0, 1}N , the elements {v[i]|i ∈ [N ],b[i] = 1} are distinct. This protocol
exploits the formulae of logarithmic derivative Df(X) = f(X) · D(log(f(X)))
and D(log

∏
i(X − vi)) =

∑
i

1
X−vi from calculus. The vectors f and u in this

protocol are constructed so that their last entries are exactly f(β) and g(β)/f(β),
respectively. Based on the DstFull protocol, we construct the FullSort protocol,
as presented in Algorithm 4.

Theorem 5. The DstFull protocol in Algorithm 4 is a PIOP for the vector
language

RDistinct :=
{
(v ∈ FN ,b ∈ {0, 1}N )

∣∣∀(i, j) ∈ [N ]2, (b[i],b[j]) ̸= (1, 1) ∨ v[i] ̸= v[j]
}

with completeness error ec,DstFull = N/|F| and soundness error es,DstFull = (4N +
D + 4)/|F| where D is the degree bound of PIOP.

Proof. Consider the following statements

(v,b) ∈ RDistinct (37)

b ∈ {0, 1}N (38)

V accepts b ◦ b = b (39)

gcd(f(X), Df(X)) = 1 (40)

s(X)f(X) + t(X)Df(X) = 1 (41)

s(β)f(β) + t(β)Df(β) = 1 (42)



28 Yuncong Zhang et al.

∀i ∈ [N ], f [i] =

{
(β − v[1]) · b[1] + 1− b[1], i = 1
f [i−1] ·

(
(β − v[i]) · b[i] + 1− b[i]

)
, i > 1

(43)

∀i ∈ [N ],u[i] =

{ b[1]
β−v[1]

, i = 1

u[i−1] +
b[i]

β−v[i]
, i > 1

(44)

V accepts e1 ◦ ((β − v) ◦ b+ 1− b− f) = 0 (45)

V accepts (id− 1) ◦
(
f←−1 ◦ ((β − v) ◦ b+ 1− b)− f

)
= 0 (46)

V accepts (id− 1) ◦ ((u− u←−1) ◦ (β − v)− b) = 0 (47)

f [N ] = f(β) (48)

u[N ] = Df(β)/f(β) (49)

V accepts (f ◦ (s(β) · 1+ t(β) · u)− 1) ◦ eN = 0 (50)

Completeness follows from the sequence of inductions

– (37) ⇒ (40) (38);
– (38) ⇒ (39);
– (40) ⇒ (41) ⇒ (42);
– (43) (44) (38) ⇒ (45) (46) (47);
– (43) (44) (38) ⇒ (48) (49) where (44) ⇒ (49) follows from the identity

Df(X)/f(X) = D(log f(X)) =
∑n

i=1
b[i]

X−v[i]
, and (44) is valid if and only if

f(β) ̸= 0 which fails with probability bounded by N/|F|;
– (48) (49) (42) ⇒ (50).

The completeness error follows from the union bound.
Soundness follows from the sequence of inductions

– (39)⇒ (38), this and the following two implications together fail with prob-
ability bounded by (3N + 4)/|F|;

– (38) (45) (46) (47) ⇒ (38) (43) (44) ⇒ (48) (49);
– (50) (49) (48) ⇒ (42);
– (42) ⇒ (41) ⇒ (40) where (42) ⇒ (41) fails with probability bounded by

(N +D)/|F|;
– (40) (38) ⇒ (37).

The soundness error follows from the union bound. ⊓⊔

Theorem 6. The FullSort protocol in Algorithm 4 is a PIOP for the relation
RF

CN(addr) with completeness error ec,Perm + ec,Lookup + ec,DstFull and soundness
error (2N + 1)/|F|+ es,Perm + es,Lookup + es,DstFull.



Polynomial IOPs for Memory Consistency Checks 29

Algorithm 4 Canonical Sort for Full Address Space
procedure DstFull(v, b)

P locally computes f(X) =
∏

i∈[N ],b[i]=1(X − v[i]), g(X) = Df(X);
P sends s(X), t(X) such that s(X)f(X) + t(X)g(X) = 1 computed as follows:

– Let {r1, · · · , rk} = {v[i]|i ∈ [N ], b[i] = 1};
– Compute ti = 1/g(ri) for i ∈ [k] by multi-point evaluation and batched inversion;
– Interpolate t(X) such that t(ri) = ti, and compute s(X) = 1−t(X)g(X)

f(X)
;

V samples β $← F and queries for s(β), t(β);

P sends f, u where f [i] =

{
(β − v[1]) · b[1] + 1− b[1], i = 1
f [i−1] ·

(
(β − v[i]) · b[i] + 1− b[i]

)
, i > 1

and u[i] ={
b[1]

β−v[1]
, for i = 1 or u[i−1] +

b[i]
β−v[i]

, for i > 1 ;
V checks b ◦ b = b and (f ◦ (s(β) · 1+ t(β) · u)− 1) ◦ eN = 0;
V checks e1 ◦ ((β − v) ◦ b+ 1− b− f) = 0;
V checks (id− 1) ◦

(
f←−1 ◦ ((β − v) ◦ b+ 1− b)− f

)
= 0;

V checks (id− 1) ◦ ((u− u←−1) ◦ (β − v)− b) = 0.
procedure FullSort(op, addr, val, õp, ãddr, ṽal)

I sends incs = (1, 2, · · · , N);
P sends ĩncs as in Algorithm 3 and b computed from ãddr as in Lemma 3;
V checks b ◦ e1 = e1 and (ãddr − ãddr

←−1
) ◦ (1− b) = 0;

V checks (incs, op, addr, val) ∼ (ĩncs, õp, ãddr, ṽal) and ĩncs− ĩncs
←−1

⊂1−b incs;
P and V run the DstFull protocol with inputs ãddr, b.

Proof. Consider the following statements

(op, addr, val, õp, ˜addr, ṽal) ∈ RF
CN(addr) (51)

∃total order ⪯addr over Elems(addr) s.t.
( ˜incs, õp, ˜addr, ṽal) is a sorting of (incs, op, addr, val) with ⪯incs,⪯addr (52)

∃total order ⪯addr over Elems(addr) s.t. ˜addr is sorted by ⪯addr (53)

∀t ∈ [N ],b[t] =

{
1, if t = 1 ∨ ˜addr[t−1] ̸= ˜addr[t]
0, otherwise (54)

V accepts b ◦ e1 = e1 (55)

V accepts ( ˜addr − ˜addr
←−1

) ◦ (1− b) = 0 (56)

( ˜addr,b) ∈ RDistinct (57)

V accepts in DstFull with input ˜addr,b (58)

(incs, op, addr, val) ∼ ( ˜incs, õp, ˜addr, ṽal) (59)

V accepts (incs, op, addr, val) ∼ ( ˜incs, õp, ˜addr, ṽal) (60)

∀t ∈ [2..N ], ˜incs[t] − ˜incs[t−1] ∈ [N ] ∨ ˜addr[t] ̸= ˜addr[t−1] (61)



30 Yuncong Zhang et al.

V accepts ˜incs− ˜incs
←−1

⊂1−b incs (62)
Completeness follows from the sequence of inductions

– (51) ⇒ (52);
– (52) ⇒ (53) (61) (59);
– (53) (54) ⇒ (57) where (53) (54) ⇒ (57) follows from Lemma 3;
– (54) ⇒ (55) (56);
– (57) ⇒ (58) fails with probability ec,DstFull;
– (59) ⇒ (60) fails with probability ec,Perm;
– (54) (61) ⇒ (62) fails with probability ec,Lookup.

The completeness error is the sum of these probabilities by union bound.
Soundness follows from the sequence of inductions

– (58) ⇒ (57);
– (56) (55) (57) ⇒ (54) follows from the observation that if b[t] = 1 for some t

such that ˜addr[t−1] = ˜addr[t], we can find some t′ < t with ˜addr[t′] ̸= ˜addr[t]
but b[t′] = 1, which contradicts ( ˜addr,b) ∈ RDistinct. The two vector equation
checks together fail with probability (2N + 1)/|F|;

– (57) (54) ⇒ (53) fails with probability es,DstFull;
– (54) (62) ⇒ (61) fails with probability es,Lookup;
– (60) ⇒ (59) fails with probability es,Perm;
– (61) (53) (59) ⇒ (52) ⇒ (51).

The soundness error follows from the union bound. ⊓⊔

5 Permem: New Construction with the Full Address
Space

Inspired by our systemization of existing protocols, we propose several ways to
optimizing the performance of previous works. First, observing the bottleneck
of the sorting paradigm, in which the sorted vectors inevitably cost four on-
line polynomials, we propose an alternative method for addressing the history-
dependency of memory, called address cycle method, that avoids these costs.
Then, using this method, we propose Permem, a more efficient MCC that sup-
ports the full memory address space. Finally, observing the significant impact
of lookup arguments on the efficiency of MCCs, which is also an independently
important target of research [GW20,ZBK+22,PK22], we propose a more efficient
lookup argument gcq.

5.1 Address Cycle Method and Permem

As an alternative to the sorting paradigm, we propose a new method for ad-
dressing the history-dependency issue of MCC, which we call the address cycle
method. This method is extracted from Arya [BCG+18]. Using this method, we
construct a new MCC protocol, named Permem.



Polynomial IOPs for Memory Consistency Checks 31

The insight behind the address cycle method is the following observation
on the definition of RMem. The consistency of the memory trace op, addr, val is
equivalent to a series of equality checks over elements in val, where these equality
checks are determined by op and addr. The equality checks can be accomplished
using the technique of PLONK [GWC19] that checks if val remains invariant
under some permutation σ. However, unlike in PLONK, the permutation σ here
is kept secret from the verifier. As a result, the prover must demonstrate, in the
online phase, that the committed permutation is consistent with op and addr.

Multiple permutations exist that capture the equality checks induced by
RMem. We choose the following one that is conceptually simpler.

Definition 8 (Previous Access Permutation). The previous access permu-
tation of addr ∈ FN is the permutation over [N ] defined by

σaddr(t) =

{
prev(t; addr), if prev(t; addr) ̸=⊥
max{j ∈ [N ]|addr[j] = addr[t]}, otherwise ,

where prev(t; addr) is defined as in Definition 5.

Given this permutation, (op, addr, val) ∈ RMem is equivalent to the following
statement: the vector σaddr(val) − val should be zero except at positions where
prev(t; addr) ̸=⊥ or op[t] = 1, as demonstrated in the following theorem.

Theorem 7. Given op ∈ {0, 1}N , addr ∈ AN , val ∈ FN . Let first ∈ {0, 1}N be
defined as first[t] = 1 if and only if addr[t] ̸∈ addr[1..t−1]. Then (op, addr, val) ∈
RAMem if and only if (σaddr(val)− val) ◦ (1− first) ◦ (1− op) = 0, where σaddr is
the previous access permutation of addr.

Proof. Note that first[t] = 1 is equivalent to prev(t; addr) =⊥. Then according
to definitions of RAMem and σaddr, (op, addr, val) ∈ RAMem if and only if for every
t ∈ [N ], first[t] = 1 or op[t] = 1 or val[t] = val[σaddr(t)], which is equivalent to the
claimed vector equation. ⊓⊔

The following lemma shows the properties of σaddr with which the prover can
prove to the verifier that a committed permutation is indeed σaddr. Theorem 7
and Lemma 5 together leads to our new MCC, which we call the address cycle
method, in Algorithm 5, where the Distinct protocol is yet to instantiate. Note
that the notation “⊂1−first” flips “⊂first” in the sense that the lookup check is
only applied to the subset of positions where first[i] = 0 instead of first[i] = 1.

Lemma 5. Given addr ∈ FN , the previous access permutation σaddr of addr
is the unique permutation over [N ] that satisfies the following properties: (a)
σaddr(addr) = addr; and (b) for any pair t ̸= t′ such that σaddr(t) ≥ t and
σaddr(t

′) ≥ t′, addr[t] ̸= addr[t′].

Proof. If σaddr is the previous access permutation, then the first property is
satisfied by definition. For any t < t′ such that addr[t] = addr[t′], prev(t′; addr)
must be smaller than t′, which leads to the second property.



32 Yuncong Zhang et al.

Next, we show the uniqueness. Suppose σ satisfies the two properties. For
any a ∈ Elems(addr), let Ia = {t|addr[t] = a}, then by the first property, Ia is
closed under σ. Suppose Ia = {t1, t2, · · · , tk} such that t1 < t2 < · · · < tk. By
the second property, there is at most one t ∈ Ia such that σ(t) ≥ t. Obviously,
this t must be t1. Since σ(t2) < t2, σ(t2) can only be t1. Continuing this process,
we conclude that there is a unique choice of σ(t) for every t ∈ Ia. Since this
argument holds for every a ∈ Elems(addr), we conclude that σ is unique. ⊓⊔

Theorem 8. Let A ⊂ F be the set of addresses. Assume that DistinctA is a
PIOP for the vector language

RDistinct,A :=

{
(v ∈ FN ,b ∈ {0, 1}N )

∣∣∣∣∀(i, j) ∈ [N ]2, if b[i] = b[j] = 1
then (v[i], v[j]) ∈ A2 ∧ v[i] ̸= v[j]

}
with completeness error ec,Distinct and soundness error es,Distinct, then the ACMCCA
protocol in Algorithm 5 is a PIOP for RAMem with completeness error ec,Perm +
ec,Lookup+ec,Distinct and soundness error (3N+1)/|F|+es,Perm+es,Lookup+es,Distinct.

Proof. Consider the following statements

(op, addr, val) ∈ RAMem (63)
op ∈ {0, 1}N (64)

V accepts op ◦ op = op (65)
σaddr is previous access permutation of addr (66)

σaddr(addr) = addr (67)
σaddr(val) = sval (68)

∀t ∈ [N ], prev(t; addr) =⊥ ∨σaddr(t) < t (69)
(σaddr, addr, sval) ∼ (incs, addr, val) (70)

V accepts (σaddr, addr, sval) ∼ (incs, addr, val) (71)

first[t] =

{
1, addr[t] ̸∈ addr[1..t−1]
0, otherwise (72)

(1− op) ◦ (1− first) ◦ (sval− val) = 0 (73)
V accepts (1− op) ◦ (1− first) ◦ (sval− val) = 0 (74)

incs− σaddr ⊂1−first incs (75)
V accepts incs− σaddr ⊂1−first incs (76)

(addr,first) ∈ RDistinct,A (77)
V accepts in DistinctA with inputs addr,first (78)

Completeness follows from the sequence of inductions

– (63) ⇒ (64) ⇒ (65);



Polynomial IOPs for Memory Consistency Checks 33

– (66) ⇒ (67) (68) (69);
– (67) (68) ⇒ (70) ⇒ (71) where (70) ⇒ (71) fails with probability ec,Perm;
– (63) (72) ⇒ (73) ⇒ (74);
– (69) (72) ⇒ (75) (77);
– (75) ⇒ (76) fails with probability ec,Lookup;
– (77) ⇒ (78) fails with probability ec,Distinct.

The completeness error is the sum of these probabilities by the union bound.
Soundness follows from the sequence of inductions

– (71) ⇒ (70) ⇒ (67) (68) where (71) ⇒ (70) fails with probability es,Perm;
– (78) ⇒ (77) fails with probability es,Distinct;
– (76) ⇒ (75) fails with probability es,Lookup;
– (67) (75) (77) ⇒ (66);
– (74) ⇒ (73), which, together with the next induction, fails with probability

(3N + 1)/|F|;
– (65) ⇒ (64);
– (66) (68) (73) (64) ⇒ (63).

The soundness error follows from the union bound. ⊓⊔

Algorithm 5 Address Cycle Method
procedure ACMCCA(op, addr, val)

I sends incs = (1, 2, · · · , N);
P computes σaddr as in Definition 8;
P sends σaddr := (σaddr(1), · · · , σaddr(N));
P sends sval := σaddr(val) (which is (val[σaddr(1)], · · · , val[σaddr(N)]))
P sends first where first[t] = 1 if addr[t] ̸∈ addr[1..t−1], otherwise first[t] = 0;
V checks (σaddr, addr, sval) ∼ (incs, addr, val) and incs− σaddr ⊂1−first incs;
V checks op ◦ op = op and (1− first) ◦ (1− op) ◦ (sval− val) = 0;
P and V run the DistinctA protocol (Theorem 8), with inputs addr and first.

We then provide two instantiations of the address cycle method.
Full memory address space. Note that RDistinct,A in Theorem 8 becomes the

same as RDistinct in Theorem 5 when A = F. Therefore, the DstFull protocol in
Algorithm 4 satisfies the requirement of DistinctF. Placing this protocol directly
into the address cycle method produces a new MCC which we name Permem.

Linear-size memory address space. When the memory address space A is the
set [M ] for memory size M ≈ N , as in Arya, there exists a simpler and more
efficient construction of DistinctA, denoted by DistLinear. Combining this dis-
tinctness check with the address cycle method gives us AryaMem, which roughly
follows the same pattern as the memory component of Arya but adopts many
PIOP-specific techniques. We summarize this distinctness check as the DistLinear
protocol in Algorithm 6.



34 Yuncong Zhang et al.

Algorithm 6 Distinctness Check of Arya
procedure DistLinear(v, b)

I sends incs = (1, 2, · · · , N);
P sends comp such that comp[t] = 0 for every t ∈ T := {t ∈ [N ] : b[t] = 1}, and

for those t ̸∈ T , comp[t] are distinct from each other and from all entries in v;
V checks b ◦ b = b and v ◦ b+ comp ◦ (1− b) ∼ incs.

Theorem 9. The DistLinear protocol in Algorithm 6 is a PIOP for the vector
relation RDistinct,[N ] (defined in Theorem 8) with completeness error ec,Perm and
soundness error 2N/|F|+ es,Perm.

Proof. Consider the following statements

(v,b) ∈ R[N ]
Distinct (79)

b ∈ {0, 1}N (80)

Verifier accepts (at random z) the polynomial identity corresponding to
b ◦ b = b (81)

{v[t] : b[t] = 1} ⊂ [M ] (82)

{v[t] : b[t] = 1} are distinct (83)

∃ṽ ∈ FN , v ∼ incs ∧ v[t] = ṽ[t]∀t where b[t] = 1 (84)

v + diff ◦ (1− b) ∼ incs (85)

Verifier accepts v + diff ◦ (1− b) ∼ incs (86)

Completeness follows from the sequence of inductions

– (79) ⇒ (80)(82)(83);
– (80) ⇒ (81);
– (82)(83) ⇒ (84) ⇒ (85) ⇒ (86) where the last step fails with probability at

most ec,Perm.

Therefore, the completeness error is ec,Perm.
Soundness follows from the sequence of inductions

– (86) ⇒ (85) ⇒ (84) ⇒ (82)(83) where the first step fails with probability at
most es,Perm;

– (81) ⇒ (80) which fails with probability at most 2N/|F|;
– (80)(82)(83) ⇒ (79).

The completeness error is given by the union bound. ⊓⊔



Polynomial IOPs for Memory Consistency Checks 35

5.2 Grand-Sum-based Lookup Argument

Observing that the lookup argument presents an influential factor in the effi-
ciency of most MCCs, we provide gcq, in Algorithm 7, a novel lookup argument
with improved performance. Our protocol takes inspiration from cq [EFG22] and
differs from cq by replacing the univariate sumcheck with the grand-sum check,
resulting in a smaller number of online polynomials. Our protocol assumes that
the invoker will ensure that the input vector b is a boolean vector, as is the case
in the MCCs. Our protocol exploits the following technique from the grand-sum
check: a vector a satisfies

∑N
i=1 a[i] = 0 if and only if there exists vector c such

that a = c→1 − c. Therefore, we can simply eliminate a from the protocol, and
simulate it using c→1 − c wherever a is needed.

Theorem 10. Assume that b ∈ {0, 1}N is guaranteed. The single-gcq protocol
in Algorithm 7 is a PIOP for R(m=1)

Lookup (defined in Section 2.5) with completeness
error 2N/|F| and soundness error 7N/|F|. The gcq protocol is a PIOP for RLookup

with completeness error 2N/|F| and soundness error (m+ 8N)/|F|.

Proof. Consider the following statements

(u, v,b) ∈ R(m=1)
Lookup (87)

∀i ∈ [N ],mi = |{j ∈ [N ]|u[j] = v[i],b[j] = 1}| (88)
N∏
j=1

(u[j] +X)b[j] =

N∏
j=1

(v[j] +X)m[j] (89)

N∑
j=1

b[j]
u[j] +X

=

N∑
j=1

m[j]

v[j] +X
(90)

N∑
j=1

b[j] ·
∏N

k=1(u[k] +X)(v[k] +X)

u[j] +X
=

N∑
j=1

m[j] ·
∏N

k=1(u[k] +X)(v[k] +X)

v[j] +X

(91)
N∑
j=1

b[j] ·
∏N

k=1(u[k] + β)(v[k] + β)

u[j] + β
=

N∑
j=1

m[j] ·
∏N

k=1(u[k] + β)(v[k] + β)

v[j] + β
(92)

N∑
j=1

b[j]
u[j] + β

=

N∑
j=1

m[j]

v[j] + β
(93)

∀i ∈ [N ], c[i] =
i∑

j=1

(
b[j]

u[j] + β
−

m[j]

v[j] + β

)
(94)

c[N ] = 0 (95)

∀i ∈ [N ], c[i] − c[i−1] =
b[i]

u[i] + β
−

m[i]

v[i] + β
(96)



36 Yuncong Zhang et al.

∀i ∈ [N ], (c[i]−c[i−1]) · (u[i]+β) · (v[i]+β) = b[i] · (v[i]+β)−m[i] · (u[i]−β) (97)

Verifier accepts (at random z) the polynomial identity corresponding to
(u+ β) ◦ (v + β) ◦ (c− c←−1) = b ◦ (v + β)−m ◦ (u+ β) (98)

Completeness of single-gcq follows from the sequences of inductions

– (87) ⇒ (89) ⇒ (90) ⇒ (93), where (90) ⇒ (93) fails when −β ∈ u∥v, which
happens with probability at most 2N/|F|;

– (93) (94) ⇒ (95);
– (95) (94) ⇒ (96) ⇒ (97) ⇒ (98).

Therefore, the completeness error is 2N/|F| by the union bound.
Soundness of single-gcq follows from the following sequences of inductions:

– (98) ⇒ (97) follows from Schwartz-Zippel Lemma and fails with probability
at most 3N/|F|;

– (97) ⇒ (96) fails with probability at most 2N/|F|;
– (96) ⇒ (93), which follows from summing up both sides of (96) over [N ];
– (93)⇒ (92)⇒ (91)⇒ (90), where (92)⇒ (91) follows from Schwartz-Zippel

Lemma and fails with probability at most 2N/|F|;
– (90) ⇒ (89) follows from the fact that the two sides of (90) are respectively

the derivative of the logarithm of the two sides of (89), so (90) implies that
the ratio between the two sides of (89) is a constant, which can only be one
because both sides are monic;

– (89) ⇒ (87) by the assumption that b ∈ {0, 1}N is guaranteed.

The soundness error is 7N/|F| by the union bound.
Completeness of gcq follows directly from that of single-gcq. Soundness of

gcq follows from that of single-gcq, the fact that ∃mi such that the polynomial
equation

∑m
i=1

∑N
j=1(Y − ui,[j])X

i−1 =
∑m

i=1

∑N
j=1(Y − vi,[j])

miXi−1 holds if
and only if (u1, · · · ,um, v1, · · · , vm) ∈ RLookup, and Schwartz-Zippel Lemma,
which fails with probability (m+N)/|F|, where m+N is the total degree of the
polynomials. ⊓⊔

Our protocol can be extended to achieve smaller amortized costs for k lookup
arguments with the same superset v. Specifically, the extended version requires
⌈k+1

2 ⌉ online polynomial oracles, compared to 2k for naïvely invoking single-gcq
by k times. The example for k = 2, called double-gcq, is presented in Algorithm 8.

Theorem 11. The double-gcq protocol in Algorithm 8 is a PIOP for Rdouble
Lookup ={

(u,u′, v,b,b′) | (u∥u′) ⊂b∥b′ v
}

with completeness error 3N/|F| and soundness
error (10N + 2)/|F|.

Proof. Consider the following statements

(u,u′, v,b,b′) ∈ R(double)
Lookup (99)



Polynomial IOPs for Memory Consistency Checks 37

Algorithm 7 Lookup Argument
procedure gcq(u1, · · · , um, v1, · · · , vm, b)

V samples α $← F;
P and V run the single-gcq protocol with inputs

∑m
i=1 α

i−1ui,
∑m

i=1 α
i−1vi, b.

procedure single-gcq(u, v, b)
P sends m = (mi)

N
i=1 where mi = |{j ∈ [N ]|u[j] = v[i], b[j] = 1}|;

V samples β $← F;
P sends c :=

(∑i
j=1

(
b[j]

u[j]+β
− m[j]

v[j]+β

))N

i=1
;

V checks (u+ β) ◦ (v + β) ◦ (c− c←−1) = b ◦ (v + β)−m ◦ (u+ β).

Algorithm 8 Double Lookup Argument
procedure double-gcq(u, u′, v, b, b′)

P sends m = (mi)
N
i=1 where mi = |{j}u[j]=v[i],b[j]=1|+ |{j}u′

[j]
=v[i],b

′
[j]

=1|;

V samples β $← F;

P sends ũ :=

(∑i
j=1

b[j]
u[j]+β

+
b′[j]

u′
[j]

+β

)N

i=1

and ṽ :=
(∑i

j=1

m[j]

v[j]+β

)N

i=1
;

V checks eN ◦ (ũ− ṽ) = 0;
V checks (u+ β) ◦ (u′ + β) ◦ (ũ− (1− e1) ◦ ũ←−1) = b′ ◦ u+ b ◦ u′ + β · (b+ b′);
V checks (v + β) ◦ (ṽ − (1− e1) ◦ ṽ←−1) = m.

∀i ∈ [N ],

mi = |{j ∈ [N ]|u[j] = v[i],b[j] = 1}|+ |{j ∈ [N ]|u′[j] = v[i],b
′
[j] = 1}| (100)

N∏
j=1

(u[j] +X)b[j] · (u′[j] +X)b
′
[j] =

N∏
j=1

(v[j] +X)m[j] (101)

N∑
j=1

(
b[j]

u[j] +X
+

b′[j]
u′[j] +X

)
=

N∑
j=1

m[j]

v[j] +X
(102)

N∑
j=1

(
b[j]

u[j] + β
+

b′[j]
u′[j] + β

)
=

N∑
j=1

m[j]

v[j] +X
(103)

∀i ∈ [N ], ũ[i] =
i∑

j=1

(
b[j]

u[j] + β
+

b′[j]
u′[j] + β

)
(104)

∀i ∈ [N ], ṽ[i] =
i∑

j=1

m[j]

v[j] + β
(105)

ũ[N ] = ṽ[N ] (106)

Verifier accepts (at random z) the polynomial identity corresponding to
eN ◦ (ũ− ṽ) = 0 (107)



38 Yuncong Zhang et al.

∀i ∈ [N ], ũ[i] − (1− e1,[i]) · u[i−1] =
b[j]

u[i] + β
+

b′[j]
u′[i] + β

(108)

∀i ∈ [N ], (u[i] + β) · (u′[i] + β) · (ũ[i] − (1− e1,[i]) · ũ[i−1]) =
b′[i] · (u[i] + β) + b[i] · (u′[i] + β) (109)

Verifier accepts (at random z) the polynomial identity corresponding to
(u+ β) ◦ (u′ + β) ◦ (ũ− (1− e1) ◦ ũ←−1) = b′ ◦ u+ b ◦ u′ + β ◦ (b+ b′)

(110)

∀i ∈ [N ], ṽ[i] − (1− e1,[i]) · ṽ[i−1] =
m[i]

v[i] + β
(111)

∀i ∈ [N ], (v[i] + β) · (ṽ[i] − (1− e1,[i]) · ṽ[i−1]) = m[i] (112)

Verifier accepts (at random z) the polynomial identity corresponding to
(v + β) ◦ (ṽ − (1− e1) ◦ v←−1) = m (113)

Completeness of double-gcq follows from the sequences of inductions
– (99) (100) ⇒ (101) ⇒ (102) ⇒ (103) where (102) ⇒ (103) fails when −β ∈

u∥u′∥v, which happens with probability at most 3N/|F|;
– (103) (104) (105) ⇒ (106) ⇒ (107);
– (104) ⇒ (108) ⇒ (109) ⇒ (110);
– (105) ⇒ (111) ⇒ (112) ⇒ (113).

Therefore, the completeness error is 3N/|F| by the union bound.
Soundness of double-gcq follows from the following sequences of inductions:

– (113) ⇒ (112), (110) ⇒ (109), and (107) ⇒ (106) follow from Schwartz-
Zippel Lemma and together fails with probability at most (4N + 2)/|F|;

– (112) ⇒ (111) fails with probability at most N/|F|;
– (109) ⇒ (108) fails with probability at most 2N/|F|;
– (111) ⇒ (105) and (108) ⇒ (104);
– (105) (104) (106) ⇒ (103);
– (103)⇒ (102) follows from Schwartz-Zippel Lemma and fails with probabil-

ity at most 3N/|F|, similarly as the induction (93) ⇒ (92) ⇒ (91) ⇒ (90)
in the proof of Theorem 10;

– (102) ⇒ (101) follows from the fact that the two sides of (102) are respec-
tively the derivative of the logarithm of the two sides of (101), so (102)
implies that the ratio between the two sides of (101) is a constant, which
can only be one because both sides are monic;

– (101) ⇒ (99).
The soundness error is (10N + 2)/|F| by the union bound. ⊓⊔

We write “V checks (u∥u′) ⊂b∥b′ v” when the parties run the double lookup
argument. An immediate application is the Range32 protocol for the 32-bit range
check, which can be directly extended to 64- or 256-bit ranges.



Polynomial IOPs for Memory Consistency Checks 39

6 Efficiency Analysis

We evaluate and compare the performance of the different MCCs. We measure
their performance based on two factors: the number of times building blocks
Perm and Lookup are used, and the number of online polynomial oracles and
evaluation queries outside of these building blocks. A summary of these costs is
presented in Table 1.

For more concrete comparisons, we instantiate the permutation argument
with the construction from PLONK [GWC19], and the lookup argument with
two constructions respectively: the state-of-the-art construction cq [EFG22] and
our gcq. See Appendix A of this paper for the PIOP version of cq after applying
the standard optimization techniques and adding the masking vector b. We also
analyze the performance of the 32k-bit memory with a different tradeoff between
the maximal degree and the number of online polynomials. This alternative
approach is characterized by not merging the grand-sum vectors in double-gcq.
The concrete performance results are summarized in Table 2.

We present in Table 3 the estimated proof sizes and the costs of the prover and
the verifier after instantiating the PIOP with the KZG polynomial commitment
scheme. These numbers are the costs of the memory consistency checks when
they are compiled into a SNARK as a standalone PIOP. They can only partially
reflect the additional costs these protocols contribute to the entire ZKVM, as
batching is extensively used in the compilation. Specifically, MCC can share
the verifier-sampled evaluation point z with the other parts, and the proof for
opening polynomial commitments can be batched with those for the rest of
the PIOP, just like other building blocks like permutation/lookup arguments.
Therefore, the additional cost brought by MCC in practice would be smaller
than the numbers shown in Table 3.
Comparison among prior MCCs. As Table 2 shows, the simplest memory model,
contiguous read-only memory, has the most efficient MCC protocols with either
instantiation of the building blocks. For non-contiguous read-write memories,
the Triton VM MCC requires roughly the same number of online polynomial
oracles and evaluation queries as the check for 32-bit memory. However, for 256-
bit memory, the Triton VM check costs approximately 20 to 30 fewer online
polynomial oracles and evaluation queries. Although AryaMem has the fewest
polynomials and queries, its memory space is also the most limited among the
read-write memories.
Performance of Permem. Our new protocol costs three fewer online oracles and
three fewer evaluation queries compared to Triton VM. Both Permem and Tri-
ton VM cost one more distinct evaluation point—the β in the DstFull protocol
(Algorithm 4), compared to all other works. This additional evaluation point
and the O(S · log2 S) complexity of multi-point evaluation seems inevitable for
achieving the full address space.

Compared to all existing works with read-write memories, Permem is outper-
formed only by AryaMem, which is also based on the address cycle method. In
detail, Permem costs three more polynomials and two more evaluation queries,
in exchange for the larger memory address space.



40 Yuncong Zhang et al.

Comparison between lookup arguments. When used in MCCs, our new lookup
argument gcq reduces the number of online polynomial oracles by 2 to 10 and the
number of online queries by 1 to 9, compared to the state-of-the-art construction
cq. In particular, the performance of the MCCs with the full address space has
overall improvements when instantiated with gcq.

7 Conclusion

In this work, we have analyzed the current methods for performing MCCs, a
crucial and expensive component in ZKVMs, and formalized all of them as vari-
ants of the sorting paradigm. Our study provides a comprehensive overview of
the various techniques used to build MCCs. Inspired by the techniques covered
in this systemization, we suggest improvements to existing protocols in two as-
pects: a novel MCC protocol Permem that costs fewer building blocks, and a new
lookup argument also with improved efficiency.

We hope that our work will inspire further research that explores new com-
binations of these techniques or improves existing components. In particular, for
full address space, the DstFull protocol presents a bottleneck in terms of perfor-
mance. It requires four online polynomials, one distinct evaluation point, and
has a prover cost of O(S log2 S). Improving its performance or eliminating the
dependence on this protocol would be a valuable avenue for future work.

Acknowledgement

This work is partially supported by the National Key Research and Develop-
ment Project (Grant No. 2020YFA0712300) and the National Natural Science
Foundation of China (Grant No. 62272294). We thank Alan Szepieniec and the
anonymous reviewers for their valuable comments.

References

ABST22. Miguel Ambrona, Marc Beunardeau, Anne-Laure Schmitt, and Raphaël R.
Toledo. aPlonK : Aggregated PlonK from Multi-Polynomial Commitment
Schemes. https://eprint.iacr.org/2022/1352, 2022.

Azt22. Team of Aztec. Aztec. https://zk.money/, 2022.
BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter

Wuille, and Gregory Maxwell. Bulletproofs: Short Proofs for Confiden-
tial Transactions and More. In SP 2018, Proceedings, pages 315–334. IEEE
Computer Society, 2018.

BBC+17. Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel
Genkin, Matan Hamilis, Evgenya Pergament, Michael Riabzev, Mark Sil-
berstein, Eran Tromer, and Madars Virza. Computational Integrity with a
Public Random String from Quasi-Linear PCPs. In EUROCRYPT 2017,
volume 10212, pages 551–579. 2017. http://link.springer.com/10.1007/
978-3-319-56617-7_19.

https://eprint.iacr.org/2022/1352
https://zk.money/
http://link.springer.com/10.1007/978-3-319-56617-7_19
http://link.springer.com/10.1007/978-3-319-56617-7_19


Polynomial IOPs for Memory Consistency Checks 41

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scal-
able, transparent, and post-quantum secure computational integrity. IACR
Cryptol. ePrint Arch., 2018:46, 2018. http://eprint.iacr.org/2018/046.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying Program Executions Succinctly
and in Zero Knowledge. In CRYPTO 2013, volume 8043, pages 90–108.
Springer Berlin Heidelberg, 2013. http://link.springer.com/10.1007/
978-3-642-40084-1_6.

BCG+17. Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad
Hajiabadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for
arithmetic circuit satisfiability. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 336–365.
Springer, 2017.

BCG+18. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary
Maller. Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Pro-
gram Execution. In ASIACRYPT 2018, Lecture Notes in Computer Science,
pages 595–626, Cham, 2018.

BCGT13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer.
Fast reductions from RAMs to delegatable succinct constraint satisfaction
problems: Extended abstract. In ITCS ’13, page 401, Berkeley, Califor-
nia, USA, 2013. ACM Press. http://dl.acm.org/citation.cfm?doid=
2422436.2422481.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent Succinct Ar-
guments for R1CS. In EUROCRYPT 2019, volume 11476, pages 103–128.
2019. http://link.springer.com/10.1007/978-3-030-17653-2_4.

BCTV13. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct Non-Interactive Zero Knowledge for a von Neumann Architecture.
Technical Report 879, 2013. https://eprint.iacr.org/2013/879.

BDFG20. Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo Infinite:
Recursive zk-SNARKs from any Additive Polynomial Commitment Scheme.
Technical Report 1536, 2020. http://eprint.iacr.org/2020/1536.

BFH+20. Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan
Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang. Ligero++: A
new optimized sublinear IOP. In CCS 2020, pages 2025–2038, 2020.

BFR+13. Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J.
Blumberg, and Michael Walfish. Verifying computations with state. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 341–357, Farminton Pennsylvania, November 2013. ACM.
https://dl.acm.org/doi/10.1145/2517349.2522733.

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs
from DARK Compilers. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, pages 677–706, Cham, 2020.

CBBZ22. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk:
Plonk with Linear-Time Prover and High-Degree Custom Gates. https:
//eprint.iacr.org/2022/1355, 2022.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. Marlin: Preprocessing zkSNARKs with Uni-
versal and Updatable SRS. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Lecture Notes in Computer Science, pages 738–768,
Cham, 2020. Springer International Publishing.

http://eprint.iacr.org/2018/046
http://link.springer.com/10.1007/978-3-642-40084-1_6
http://link.springer.com/10.1007/978-3-642-40084-1_6
http://dl.acm.org/citation.cfm?doid=2422436.2422481
http://dl.acm.org/citation.cfm?doid=2422436.2422481
http://link.springer.com/10.1007/978-3-030-17653-2_4
https://eprint.iacr.org/2013/879
http://eprint.iacr.org/2020/1536
https://dl.acm.org/doi/10.1145/2517349.2522733
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355


42 Yuncong Zhang et al.

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum
and Transparent Recursive Proofs from Holography. In EUROCRYPT 2020,
Lecture Notes in Computer Science, pages 769–793, Cham, 2020.

Eag22. Liam Eagen. Bulletproofs++. Technical Report 510, 2022. https:
//eprint.iacr.org/2022/510.

EFG22. Liam Eagen, Dario Fiore, and Ariel Gabizon. Cq: Cached quotients for fast
lookups. https://eprint.iacr.org/2022/1763, 2022.

FS86. Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Andrew M. Odlyzko, editor,
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer, 1986. https://doi.org/10.1007/3-540-47721-7\_12.

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive Ver-
ifiable Computing: Outsourcing Computation to Untrusted Workers. In
CRYPTO 2010, pages 465–482, Berlin, Heidelberg, 2010. Springer.

GK22. Ariel Gabizon and Dmitry Khovratovich. Flookup: Fractional
decomposition-based lookups in quasi-linear time independent of table size.
https://eprint.iacr.org/2022/1447, 2022.

GMR85. S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of in-
teractive proof-systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing - STOC ’85, pages 291–304, Provi-
dence, Rhode Island, United States, 1985. ACM Press. http://portal.
acm.org/citation.cfm?doid=22145.22178.

GPR21. Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a Turing-
complete STARK-friendly CPU architecture. Technical Report 1063, 2021.
http://eprint.iacr.org/2021/1063.

Gro16. Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, vol-
ume 9666, pages 305–326. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016. http://link.springer.com/10.1007/978-3-662-49896-5_11.

GW20. Ariel Gabizon and Zachary J. Williamson. Plookup: A simplified polynomial
protocol for lookup tables. Technical Report 315, 2020. http://eprint.
iacr.org/2020/315.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over Lagrange-bases for Oecumenical Noninteractive arguments
of Knowledge. Technical Report 953, 2019. https://eprint.iacr.org/
2019/953.

Hab22. Ulrich Haböck. Multivariate lookups based on logarithmic derivatives.
https://eprint.iacr.org/2022/1530, 2022.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size Com-
mitments to Polynomials and Their Applications. In ASIACRYPT 2010,
volume 6477, pages 177–194. 2010. http://link.springer.com/10.1007/
978-3-642-17373-8_11.

Loo22. Team of Loopring. Loopring - zkRollup Layer2 for Trading and Payment.
https://loopring.org/#/, 2022.

Mid22. Team of Miden. Miden VM Documentation. https://maticnetwork.
github.io/miden/, 2022.

Mig92. Maurice Mignotte. Mathematics for Computer Algebra. Springer, 1992.
PFM+22. Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Mu

textasciitilde noz, and Jose Luis Mu
textasciitilde noz-Tapia. PlonKup: Reconciling PlonK with plookup. Tech-
nical Report 086, 2022. https://eprint.iacr.org/2022/086.

https://eprint.iacr.org/2022/510
https://eprint.iacr.org/2022/510
https://eprint.iacr.org/2022/1763
https://doi.org/10.1007/3-540-47721-7\_12
https://eprint.iacr.org/2022/1447
http://portal.acm.org/citation.cfm?doid=22145.22178
http://portal.acm.org/citation.cfm?doid=22145.22178
http://eprint.iacr.org/2021/1063
http://link.springer.com/10.1007/978-3-662-49896-5_11
http://eprint.iacr.org/2020/315
http://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1530
http://link.springer.com/10.1007/978-3-642-17373-8_11
http://link.springer.com/10.1007/978-3-642-17373-8_11
https://loopring.org/#/
https://maticnetwork.github.io/miden/
https://maticnetwork.github.io/miden/
https://eprint.iacr.org/2022/086


Polynomial IOPs for Memory Consistency Checks 43

PHGR13. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Practi-
cal Verifiable Computation. In SP 2013, pages 238–252, Berkeley, CA, May
2013. IEEE. http://ieeexplore.ieee.org/document/6547113/.

PK22. Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup
arguments. Cryptology ePrint Archive, 2022. https://eprint.iacr.org/
2022/957.

Pol22. Team of Polygon. Polygon Hermez. https://polygon.technology/
solutions/polygon-hermez/, 2022.

Ris22. Team of RiscZero. RISC Zero : General-Purpose Verifiable Computing.
https://risczero.com/, 2022.

RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and
updatable SNARKs. In Annual International Cryptology Conference, pages
774–804. Springer, 2021.

Scr22. Team of Scroll. Scroll. https://scroll.io/, 2022.
Set20. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without

trusted setup. In Annual International Cryptology Conference, pages 704–
737. Springer, 2020.

SL20. Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent
zkSNARKs. Technical Report 1275, 2020. http://eprint.iacr.org/2020/
1275.

SLST23. Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, and Bobbin
Threadbare. The Tip5 Hash Function for Recursive STARKs. https://
eprint.iacr.org/2023/107, 2023.

SZ22. Alan Szepieniec and Yuncong Zhang. Polynomial IOPs for Linear Alge-
bra Relations. In PKC 2022, volume 13177 of Lecture Notes in Com-
puter Science, pages 523–552. Springer, 2022. https://doi.org/10.1007/
978-3-030-97121-2_19.

TV22. Team of Triton VM. Triton VM. Triton VM, September 2022. https:
//github.com/TritonVM/triton-vm.

WTS+18. R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. Doubly-
Efficient zkSNARKs Without Trusted Setup. In SP 2018, pages 926–943,
May 2018.

XZZ+19. Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papaman-
thou, and Dawn Song. Libra: Succinct Zero-Knowledge Proofs with Optimal
Prover Computation. In CRYPTO 2019, pages 733–764, Cham, 2019.

ZBK+22. Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca
Nitulescu, and Mark Simkin. Caulk: Lookup Arguments in Sublinear Time.
Technical Report 621, 2022. https://eprint.iacr.org/2022/621.

ZGK+18. Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. vRAM: Faster verifiable RAM with
program-independent preprocessing. In SP 2018, pages 908–925. IEEE,
2018.

ZGK+22. Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and
Carla Ràfols. Baloo: Nearly Optimal Lookup Arguments. https://eprint.
iacr.org/2022/1565, 2022.

zkS22. Team of zkSync. zkSync. https://zksync.io/, 2022.
ZSZ+22. Yuncong Zhang, Alan Szepeniec, Ren Zhang, Shi-Feng Sun, Geng Wang,

and Dawu Gu. VOProof: Efficient zkSNARKs from Vector Oracle Com-
pilers. In CCS 2022, CCS ’22, pages 3195–3208, New York, NY, USA,
November 2022. https://doi.org/10.1145/3548606.3559387.

http://ieeexplore.ieee.org/document/6547113/
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957
https://polygon.technology/solutions/polygon-hermez/
https://polygon.technology/solutions/polygon-hermez/
https://risczero.com/
https://scroll.io/
http://eprint.iacr.org/2020/1275
http://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2023/107
https://doi.org/10.1007/978-3-030-97121-2_19
https://doi.org/10.1007/978-3-030-97121-2_19
https://github.com/TritonVM/triton-vm
https://github.com/TritonVM/triton-vm
https://eprint.iacr.org/2022/621
https://eprint.iacr.org/2022/1565
https://eprint.iacr.org/2022/1565
https://zksync.io/
https://doi.org/10.1145/3548606.3559387


44 Yuncong Zhang et al.

ZXZS20. Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transpar-
ent Polynomial Delegation and Its Applications to Zero Knowledge Proof.
In SP 2020, pages 859–876. IEEE, 2020.

A The PIOP version of cq

We present the PIOP underlying cq lookup argument [EFG22] in Algorithm 9.

Algorithm 9 PIOP underlying cq

procedure Lookupcq({ui}ki=1, v, {bi}ki=1)
P sends m = (mi)

N
i=1 where mi =

∑k
ℓ=1 |{j ∈ [N ]|uℓ[j] = v[i], bℓ[j] = 1}|;

V samples β $← F;
for ℓ from 1 to k do

P sends ũℓ :=
(

bℓ[i]
uℓ[i]+β

)N

i=1
;

P sends ṽ :=
(

m[i]

v[i]+β

)N

i=1
;

P sends r(X) ∈ FN−2[X] such that fṽ(X) −
∑k

ℓ=1 fũℓ(X) − r(X) · X is divided
by XN − 1 and r̃(X) = r(X) ·XD−N+2;

V checks fṽ(X) −
∑k

ℓ=1 fũℓ(X) − r(X) ·X is divided by XN − 1 by sending the
quotient polynomial q(X) and opening the polynomials at z;

for ℓ from 1 to k do
V checks (uℓ + β) ◦ ũ = bℓ;

V checks (v + β) ◦ ṽ = m;
V checks r̃(z) = r(z) · zD−N+2, where z can reuse the one used before.


	Polynomial IOPs for Memory Consistency Checks in Zero-Knowledge Virtual Machines    

