
Adaptively Secure BLS Threshold Signatures
from DDH and co-CDH

Sourav Das Ling Ren

University of Illinois at Urbana Champaign
{souravd2, renling}@illinois.edu

Abstract. Threshold signature is one of the most important cryptographic primitives in distributed
systems. A popular choice of threshold signature scheme is the BLS threshold signature introduced
by Boldyreva (PKC’03). Some attractive properties of Boldyreva’s threshold signature are that the
signatures are unique and short, the signing process is non-interactive, and the verification process
is identical to that of non-threshold BLS. These properties have resulted in its practical adoption in
several decentralized systems. However, despite its popularity and wide adoption, up until recently, the
Boldyreva scheme has been proven secure only against a static adversary. Very recently, Bacho and
Loss (CCS’22) presented the first proof of adaptive security for Boldyreva’s threshold signature, but
they have to rely on strong and non-standard assumptions such as the hardness of one-more discrete
log (OMDL) and the Algebraic Group Model (AGM).
In this paper, we present the first adaptively secure threshold BLS signature scheme that relies on the
hardness of DDH and co-CDH in asymmetric pairing groups in the Random Oracle Model (ROM). Our
signature scheme also has non-interactive signing, compatibility with non-threshold BLS verification,
and practical efficiency like Boldyreva’s scheme. Moreover, to achieve static security, our scheme only
needs the hardness of CDH in the ROM, which is the same as the standard non-threshold BLS signature.
These properties make our protocol a suitable candidate for practical adoption with the added benefit
of provable adaptive security. We also present an efficient distributed key generation (DKG) protocol
to set up the signing keys for our signature scheme. We implement our scheme in Go and evaluate its
signing and aggregation costs.

1 Introduction

Threshold signatures schemes [Des88, GJKR07] protect the signing key by sharing it among a group of
signers so that an adversary must corrupt a threshold number of signers to be able to forge signatures. The
increasing demand for decentralized Byzantine Fault Tolerant (BFT) applications has resulted in large-scale
adoptions of threshold signature schemes. Many state-of-the-art BFT protocols utilize threshold signatures
to lower communication costs [MXC+16, YMR+19, AMS19, LLTW20, GKKS+22, GHM+17]. Efforts to
standardize threshold cryptosystems are already underway [BP23].

A popular choice of threshold signature is the BLS signature, introduced by Boldyreva [Bol03] building on
the work of Boneh–Lynn–Shacham [BLS01]. Boldyreva’s BLS threshold signature scheme is popular because
its verification is identical to standard non-threshold BLS signature, its signing process is non-interactive,
and the signatures are unique and small, i.e., a signature consists of a single elliptic curve group element. The
Boldyreva scheme is also very efficient in terms of both computation and communication. These properties
have resulted in several practical adoptions of Boldyreva’s BLS threshold signature for applications in the
decentralized setting [dra23, ic23, ska23, arp23].

Static vs. Adaptive Security.However, despite its popularity and wide adoption, until recently, Boldyreva’s
scheme has been proven secure only against a static adversary. A static adversary must decide the set of
signers to corrupt at the start of the protocol. In contrast, an adaptive adversary can decide which signers
to corrupt during the execution of the protocol based on its view of the execution. Clearly, an adaptive
adversary is a safer and more realistic assumption for the decentralized setting.

Designing an adaptively secure threshold signature scheme (BLS or otherwise) is challenging, let alone
keeping it compatible with a non-threshold signature scheme. The generic approach to transforming a stati-
cally secure protocol into an adaptive one by guessing the set of parties an adaptive adversary may corrupt

incurs an unacceptable exponential (in the number of parties) security loss. Existing adaptively secure
threshold signature schemes in the literature have to make major sacrifices such as relying on parties to
erase their internal states [CGJ+99, LY13], inefficient cryptographic primitives like non-committing encryp-
tions [JL00, LP01], or strong and non-standard assumptions such as one more discrete logarithm (OMDL)
in the algebraic group model (AGM) [BL22, CKM23]. To make matters worse, for Boldyreva’s variant of
BLS signatures in particular, the recent work of Bacho-Loss [BL22] proves that strong assumption such as
OMDL is necessary.

Our results. We present an adaptively secure threshold signature scheme for BLS signatures. Our scheme
retains the attractive properties of Boldyreva’s scheme: signing is non-interactive, verification is identical to
non-threshold BLS, and the scheme is simple and efficient.

The adaptive security proof of our signature scheme assumes the hardness of the decisional Diffie-
Hellman (DDH) problem in a source group and the hardness of the co-computational Diffie-Hellman (co-
CDH) problem in asymmetric pairing groups in the random oracle model (ROM). To put things into perspec-
tive, note that the standard non-threshold BLS signature assumes hardness of computational Diffie-Hellman
(CDH) in pairing groups in the ROM∗. In other words, our scheme only relies on DDH besides what standard
non-threshold BLS signature already relies on. In addition, our security reduction only incurs a very small
security loss over the original BLS signature. Moreover, if one is content with proving our scheme statically
secure, then we only need CDH in the ROM, similar to the standard BLS signature.

In terms of efficiency, our scheme is only slightly more expensive than the Boldyreva scheme [Bol03]. The
signing key of each signer consists of three field elements compared to one in Boldyreva. The threshold public
keys consists of n group elements in total, identical to Boldyreva. Here n is the total number of signers. Our
per-signer signing cost and partial signature verification cost of the aggregator are also small. We implement
our scheme in Go and compare its performance with Boldyreva’s scheme. Our evaluation confirms that our
scheme adds very small overheads. Hence, we believe our scheme provides a worthwhile trade-off for the
added benefit of provable adaptive security at modest performance cost.

We also describe a distributed key generation (DKG) protocol to secret share the signing key of our
signature scheme. Our DKG adds minimal overhead compared to existing DKG schemes.

All of the above properties combined make our scheme a suitable candidate for a drop-in replacement for
BLS signature in deployment systems.

Paper organization. We discuss the related work in §2 and present a technical overview of our scheme
in §3. In §4, we describe the required preliminaries. We then describe our threshold signature scheme in two
parts: First, in §5 we describe our threshold signature scheme assuming a trusted key generation functionality
to generate the signing keys. We then analyze its security in §6. Second, in §7, we describe a DKG protocol,
which signers can use to set up the signing keys for our scheme in a distributed manner. Then in §8, we
prove the adaptive security of our threshold signature when combined with our DKG protocol. We discuss
the implementation and evaluation details in §9, and conclude with a discussion in §10.

2 Related works

Threshold signature schemes were first introduced by Desmedt [Des88]. Since then, numerous threshold
signature schemes with various properties have been proposed. Most of the natural and popular threshold
signature schemes are proven secure only against a static adversary [Des88, GJKR96, GJKR07, Sho00,
Bol03, GG20, KG21, CKM21, BCK+22, RRJ+22, CGRS23, TZ23, Sho23, BHK+23, GS23]. The difficulty
in proving adaptive security usually lies in the reduction algorithm’s inability to generate consistent internal
states for all parties. As a result, the reduction algorithm needs to know which parties will be corrupt, making
the adversary static [BCK+22]. We will next review threshold signatures with adaptive security, where we
classify them into interactive and non-interactive schemes.

∗The standard non-threshold BLS signature scheme can also work with symmetric pairing groups and hence the
CDH assumption instead of co-CDH.

2

Interactive threshold signatures. In an interactive threshold signature, signers interact with each other
to compute the signature on a given message. The first adaptively secure threshold signatures were indepen-
dently described by Canetti et al. [CGJ+99] and Frankel et al. [FMY99a, FMY99b]. They prove adaptive
security of their threshold signature scheme by introducing the “single inconsistent player” (SIP) technique.
In the SIP approach, there exists only one signer whose internal state cannot be consistently revealed to the
adversary. Since this inconsistent signer is chosen at random, it is only corrupt with probability less than
1/2 for n > 2t. These schemes also rely on secure erasure.

Lysyanskaya-Peikert [LP01] and Abe and Fehr [AF04] use the SIP technique along with expensive crypto-
graphic primitives such as threshold homomorphic encryptions and non-committing encryptions, respectively,
to design adaptively secure threshold signatures without relying on erasures. Later works [ADN06, WQL09]
extend the SIP technique to Rabin’s threshold RSA signature [Rab98] and the Waters [Wat05] signatures. A
major downside of all these works is the high signing cost. For every message, signers need to run a protocol
similar to a DKG protocol.

Non-interactive threshold signatures. A non-interactive threshold signature requires each signer to
send a single message to sign. Practical, robust, non-interactive threshold signatures were described by
Shoup [Sho00] under the RSA assumption and by Katz and Yung [KY02] assuming the hardness of factoring.
Boldyreva [Bol03] presented a non-interactive threshold BLS signature scheme. Until recently, these schemes
were proven secure against static adversaries only.

Bacho and Loss [BL22] recently proved adaptive security for Boldyreva’s scheme based on the One More
Discrete Logarithm (OMDL) assumption in the Random Oracle Model (ROM) and Algebraic Group Model
(AGM). Their method addresses the challenge of revealing internal states of corrupt nodes to the adversary
by giving the reduction adversary limited access to discrete logarithm oracle. (This approach has since
been extended to the interactive threshold Schnorr signature [CKM23].) Bacho-Loss [BL22] also proves that
reliance on OMDL is necessary for proving Boldyreva’s BLS signature adaptively secure. This implies that
a new protocol is needed to prove adaptive security under more standard assumptions.

Libert et al., [LJY14] presented a pairing-based, non-interactive threshold signature scheme assuming the
hardness of the double-pairing assumption. However, their signature scheme is incompatible with standard
BLS signature verification and thus cannot be a drop-in replacement for BLS in deployment systems. The
signature size of their scheme is also twice as large as a BLS signature.

3 Technical Overview

We need to introduce several new ideas to design a new BLS threshold signature scheme and prove it
adaptively secure. First, we introduce a new way of embedding the co-CDH input into a simulation of
our scheme. Since we want our final signature to be a standard BLS signature, and BLS signatures are
deterministic, these changes are delicate. Moreover, we embed the co-CDH challenge in such a way that during
simulation, it remains indistinguishable from an honest execution of the protocol. This should hold, even if
we use a DKG to generate the signing keys. We address this as follows. In our security proof, the reduction
adversary can simulate the DKG and the threshold signature scheme to the adversary by faithfully running
the protocol on behalf of all but one honest signer, i.e., we work with the single inconsistent party (SIP)
technique. Second, we use a new approach to program two random oracles in a correlated way while ensuring
that it remains indistinguishable from uniformly random to a computationally bounded adversary. This step
is crucial for the reduction adversary to simulate signing queries.

Before we describe our techniques, we briefly recall the non-threshold BLS signature scheme.

3.1 Boneh-Lynn-Sacham (BLS) signature scheme [BLS01]

Let (G, Ĝ,GT) be a tuple of prime order pairing groups with scalar field F. Let M be the finite message

space of the signature scheme. Let g ∈ G be a uniformly random generator of G and H :M→ Ĝ be a hash
function modeled as a random oracle. The signing key sk = s ∈ F is a random field element, and pk = gs ∈ G
is the corresponding public verification key. The signature σ on a message m is then H(m)sk ∈ Ĝ. Any verifier

3

validates a signature σ′ on a message m by checking that e(pk,H(m)) = e(g, σ′), where e : G × Ĝ → GT

is the bilinear pairing operation. The BLS signature is proven secure assuming the hardness of CDH in the
ROM [BLS01].

3.2 Our Core Ideas

We will illustrate our core ideas using a simplified threshold signature scheme, which we do not know how
to prove adaptively secure. §5 and §6 describes our final protocol and proof of adaptive security.

Let (G, Ĝ,GT) be a tuple of prime order asymmetric pairing groups with scalar field F. Let g, h ∈ G be

two uniformly random generators of G and ĝ be a generator of Ĝ. As in the non-threshold BLS signature
scheme, let sk = s ∈ F be the secret signing key and pk = gs ∈ G be the public verification key. To get an
(n, t) threshold signature scheme, the secret signing key s is then shared among n signers using a degree t
polynomial s(x). Additionally, signers also receive a share on a uniformly random polynomial r(x) with the
constraint that r(0) = 0. Precisely, the signing key of signer i is ski = (s(i), r(i)) and the public verification
key of signer i is pki = gs(i)hr(i) ∈ G.

With this initial setup, signers sign any message m ∈ M, for finite message space M, as follows. Let
H0,H1 be two random oracles where Hb :M → Ĝ for b ∈ {0, 1}. The partial signature from signer i on a

message m is then σi = H0(m)s(i)H1(m)r(i) ∈ Ĝ. Upon receiving t+ 1 valid partial signatures from a set of
signers T , the aggregator computes the threshold signature by interpolating them in the exponent, i.e., it
computes the aggregated signature σ =

∏
i∈T σLi

i for appropriate Lagrange coefficients Li. It is easy to see
that since r(0) = 0, upon interpolating the partial signatures, the aggregator will obtain a standard BLS
signature σ = H0(m)sH1(m)0 = H0(m)s.

An avid reader will note that the partial signatures are no longer verifiable using a pairing check. This is
indeed the case. Instead, signers in our protocol use a “Σ”-protocol to prove the correctness of their partial
signatures.

Naturally, the important question is how this modified BLS threshold signature scheme helps us prove
adaptive security. (We reiterate that the goal of this section is to give intuition, and we do not know how to
prove this exact scheme adaptively secure.) At a very high level, the additional parameter h, the additional
polynomial r(x), and the additional random oracle H1(·) provide the reduction adversary with extra avenues
to embed the co-CDH input and extract a solution to the co-CDH input from a signature forgery. We will
elaborate on this next.

Let Aco-CDH be the reduction algorithm and A be the adversary that breaks the unforgeability of our
scheme. Aco-CDH will run our threshold signature scheme with a rigged public key pk = gshr ∈ G. Aco-CDH

will carefully interact with A so that A does not realize that the public key is rigged. Then, by definition, A
will forge a signature on some message m, which is a standard BLS signature, i.e., e(pk,H0(m)) = e(g, σ).
Now given a co-CDH input tuple (g, ĝ, ga, ĝa, ĝb), if we set h = ga and program the random oracle in a way
such that H0(m) = ĝb, then σ = ĝ(s+ar)b. This implies that if s, r ∈ F are known, then we can efficiently
compute ĝab given σ.

Let s(x), r(x) be degree t polynomials for Shamir secret sharing of s = s(0) and r = r(0). We will discuss
in §6 how Aco-CDH interacts with A while ensuring that it learns s(x) and r(x), and rigging the public key
using just a single inconsistent party. Since Aco-CDH knows both s(x), r(x), it can reveal the internal state of
any party except the inconsistent party to A. Unless A corrupts the inconsistent party, A’s view is identically
distributed in a real protocol instance and in an instance rigged by Aco-CDH.

The final part of our protocol is how Aco-CDH simulates the signing queries under the rigged public
key. Consider a naive approach where we use the signing procedure of Boldyreva’s scheme, i.e., the partial
signature of signer i is H0(m)s(i). Then, the unique aggregated signature is σ = H0(m)s. However, since r ̸= 0,
it will always be the case that e(pk,H0(m)) ̸= e(g, σ), so A realizes that it is in a rigged instance. This is
why we bring in an additional random oracle H1 and have the partial signatures as σi = H0(m)s(i)H1(m)r(i).
With this new partial signature, the final aggregated signature is σ = H0(m)sH1(m)r. If Aco-CDH programs
the two random oracles in a correlated manner, the pairing check e(pk,H0(m)) = e(g, σ) will pass. Crucially,
the correlated programming of the two random oracles must be undetectable to A. In §6, we will show this
is indeed the case for our final scheme, assuming the hardness of DDH in Ĝ.

4

4 Preliminaries

Notations. For any integer a, we use [a] to denote the ordered set {1, 2, . . . , a}. For any set S, we use s←$ S
to indicate that s is sampled uniformly randomly from S. We use |S| to denote the size of set S. Throughout
the paper, we will use “←” for probabilistic assignment and “:=” for deterministic assignment. We use λ
to denote the security parameter. A machine is probabilistic polynomial time (PPT) if it is a probabilistic
algorithm that runs in poly(λ) time. We also use negl(λ) to denote functions negligible in λ. We use the
terms party (resp. parties) and signer (resp. signers) interchangeably.

4.1 Model

We consider a set of n signers denoted by {1, 2, . . . , n}. We consider a PPT adversary A who can corrupt
up to t < n out of the n signers. Corrupted signers can deviate arbitrarily from the protocol specification.
Note that with t ≥ n/2, i.e., with a dishonest majority, it is impossible to achieve both unforgeability
and guaranteed output delivery [KL07]. We focus on unforgeability over guaranteed output delivery for the
dishonest majority case.

When the signing keys of our signature scheme are generated by a trusted setup, we assume the network
is asynchronous. However, for simplicity, we will assume lock-step synchrony for our DKG protocol, i.e.,
parties execute the protocol in synchronized rounds, and a message sent at the start of a round arrives by
the end of that round. Moreover, our DKG assumes an honest majority, i.e., t < n/2. Furthermore, during
DKG, we let signers access a broadcast channel to send a value to all signers. We can efficiently realize such a
broadcast channel by running a Byzantine broadcast protocol [LSP82, DS83, BGP92, MR21]. We note that
the synchrony assumption is not necessary since asynchronous DKG protocols exist [KKMS20, DYX+22].
Similarly, we can remove the honest majority assumption using ideas from [CL24].

4.2 Shamir Secret Sharing, Bilinear Pairing, and Assumptions

Shamir secret sharing. The Shamir secret sharing [Sha79] embeds the secret s in the constant term of
a polynomial p(x) = s + a1x + a2x

2 + · · · + adx
d, where other coefficients a1, · · · , ad are chosen uniformly

randomly from a field F. The i-th share of the secret is p(i), i.e., the polynomial evaluated at i. Given d+ 1
distinct shares, one can efficiently reconstruct the polynomial and the secret s using Lagrange interpolation.
Also, s is information-theoretically hidden from an adversary that knows d or fewer shares.

Definition 1 (Bilinear Pairing). Let G, Ĝ and GT be three prime order cyclic groups with scalar field F.
Let g ∈ G and ĝ ∈ Ĝ be generators. A pairing is an efficiently computable function e : G×Ĝ→ GT satisfying
the following properties.

1. bilinear: For all u, u′ ∈ G and v̂, v̂′ ∈ Ĝ we have

e(u · u′, v̂) = e(u, v̂) · e(u′, v̂), and

e(u, v̂ · v̂′) = e(u, v̂) · e(u, v̂′)

2. non-degenerate: gT := e(g, ĝ) is a generator of GT .

We refer to G and Ĝ as the source groups and refer to GT as the target group.

We require that the decisional Diffie-Hellman (DDH) assumption holds for Ĝ and co-computational

Diffie-Hellman (co-CDH) holds for (G, Ĝ).

Assumption 1 (DDH) Let Ĝ be a cyclic group with scalar field F. For security parameter λ, any PPT
adversary A and uniformly random a, b, z ←$ F, let εDDH be the advantage of A as defined below:

εDDH :=
∣∣Pr[A(ĝ, ĝa, ĝb, ĝz) = 1]− Pr[A(ĝ, ĝa, ĝb, ĝab) = 1]

∣∣ . (1)

Here, the probability is over the choice a, b, z and A’s randomness. The group Ĝ satisfies the Decisional
Diffie-Hellman (DDH) assumption if, it holds that εDDH = negl(λ).

5

Assumption 2 (co-CDH) Let (G, Ĝ,GT) be a pairing group with scalar field F, generators g ∈ G, ĝ ∈ Ĝ,

and a bilinear pairing e : G × Ĝ → GT . For security parameter λ, any PPT adversary A and uniformly
random a, b←$ F, let εCDH be the advantage of A as defined below:

εCDH := Pr[A(g, ĝ, ga, ĝa, ĝb) = ĝab]. (2)

Here, the probability is over the choice a, b and A’s randomness. The paring group (Ĝ, Ĝ,GT) satisfies the
the co-Computational Diffie-Hellman (co-DDH) assumption if, it holds that εCDH = negl(λ).

Remark on pairing group types. Looking ahead, the final threshold signatures in our schemes are in
Ĝ, and hence, we require DDH to be hard in Ĝ. This implies that the pairing groups must be asymmetric,
i.e., G ̸= Ĝ. There are two types of asymmetric pairing groups: type-II and type-III [GPS08]. A type-II
pairing group supports one-directional efficient homomorphism. In our context, we can work with a type-II
group (G, Ĝ,GT) with bilinear pairing operation e : G× Ĝ→ GT that supports an efficient homomorphism

Φ : G→ Ĝ, but not the other way around. Note that even with such one-directional efficient homomorphism,
DDH can still be hard in Ĝ. Thus, we can use both type-II and type-III pairing groups for our threshold
signature scheme.

4.3 Threshold Signature

In this section, we introduce the syntax and security definitions for threshold signature schemes. We focus on
schemes that have non-interactive signing and deterministic verification. Our security definitions are based
on those of [BS23].

Definition 2 (Non-Interactive Threshold Signature). A non-interactive (n, t)-threshold signature
scheme with a finite message spaceM is a tuple of polynomial time computable algorithms Σ = (KGen,PSign,
PVer,Comb,Ver) with the following properties. (All algorithms implicitly take the public parameters pp as
input.)

1. KGen(n, t) → pk, {pki}i∈[n], {ski}i∈[n]. The key generation algorithm takes as input the total number of
signers n, and the threshold t. The algorithm then outputs a public key pk, a vector of threshold public
keys {pk1, . . . , pkn}, and a vector of secret signing keys {sk1, . . . , skn}. The j-th signer receives its own
secret key and all the public keys, i.e., (pk, {pki}i∈[n], skj).

2. PSign(m, ski)→ σi. The partial signing algorithm is a possibly randomized algorithm that takes as input
a message m ∈M and a secret key share ski. It outputs a signature share σi.

3. PVer(m,σi, pki)→ 0/1. The signature share verification algorithm takes as input a message m, a thresh-
old public key share pki, and a signature share σi. It outputs 1 (accept) or 0 (reject).

4. Comb(S, {(σi, i)}i∈S) → σ/⊥. The signature share combining algorithm takes as input a public key pk,
a vector of public key shares (pk1, . . . , pkn), a message m, and a set S of t + 1 signature shares (σi, i)
(with corresponding indices). It outputs either a signature σ or ⊥.

5. Ver(m, pk, σ). The signature verification algorithm is a deterministic algorithm that takes as input a
public key pk, a message m, and a signature σ. It outputs 1 (accept) or 0 (reject).

We require any non-interactive threshold signature scheme to satisfy Correctness and Unforgeability as
defined below.

Intuitively, correctness ensures that the protocol should behave as expected for honest parties. More
precisely, it says that: (i) PVer should always accept honestly generated partial signatures; and (ii) if we
combine t + 1 valid partial signatures (accepted by PVer) using the Comb algorithm, the output of Comb
should be always accepted by Ver, except with a negligible probability. The latter requirement ensures that
maliciously generated partial signatures cannot prevent an honest aggregator from efficiently computing a
threshold signature (except with a negligible probability). Note that we allow A to generate partial signatures
in an arbitrary manner. Also, we can achieve correctness even if A learns all signing keys.

6

Game UF-CMAA
Σ :

// Setup and initialization
1: pp,H0,H1,HF ← Setup(1λ) // pp is the public pa-

rameters of the scheme
2: n, t, C, stA ← AOH,OHF

(pp). // C is the growing set
of corrupt signers, and stA is some auxiliary infor-
mation output by A

3: H := [n] \ C // set of honest signers
4: Let sti := {}, ∀ i ∈ H be signer i’s internal state.

// Key generation
5: pk, {pki, ski} ← KGen(n, t)
6: Send (pk, {pkj}j∈[n], ski) to each signer i ∈ [n]
7: Send (pk, {pkj}j∈[n], {skj}j∈C) to A

// Forgery and output determination
8: Let input := (pk, {pki}i∈[n], {ski}i∈C , stA)

9: (m,σ)← AOCorrupt,OPSign,OH,OHF
(input)

// Q[m], initially {}, denotes the set of signers A
queries for the partial signatures on m

10: if |Q[m] ∪ C| ≤ t ∧ Ver(m, pk, σ) = 1 then
11: return 1
12: return 0

OCorrupt(i):

9: if i ∈ H then
10: H := H \ {i}; C := C ∪ {i}
11: return (ski, sti)

12: return ⊥

OPSign(i,m):

// Only honest signer query allowed
13: if i ∈ H then
14: Q[m] := Q[m] ∪ {i}
15: Let σi ← PSign(m, ski)
16: Update sti with internal states used by signer i

during PSign(m, ski)
17: return σi

18: return ⊥

OH(b,m):

17: return Hb(m)

OHF(x):

17: return HF(x)

Fig. 1: UF-CMAAΣ game for non-interactive threshold signature with an adaptive adversary A.

Definition 3 (Correctness). A non-interactive threshold signature scheme Σ for a finite message space
M is correct, if for all security parameters λ, all allowable 1 ≤ t+1 ≤ n, all subset S ⊆ [n] with t+1 ≤ |S|,
and all messages m ∈M, and for all PPT adversary A = (A0,A1) the following holds:

(1) Pr
[
PVer(m,σi, pki) = 1 pk, {pki}i∈[n], {ski}i∈[n] ← KGen(n, t);σi = PSign(m, ski) ∀i ∈ S

]
= 1

(2) Pr

Ver(m,Comb({(σi, i)}i∈S), pk) = 1

(n, t)← A0(1
λ) where t+ 1 ≤ n

pk, {pki}i∈[n], {ski}i∈[n] ← KGen(n, t)

m,S, {σi}i∈S ← A1

(
pk, {pki}i∈[n], {ski}i∈[n]

)
|S|≥ t+ 1 ∧ PVer(m,σi, pki) = 1,∀i ∈ S

 ≥ 1− negl(λ)

Here, the probability is over the choice of randomness of the KGen and A’s internal randomness.

We next define the Unforgeability requirement for our non-interactive threshold signature scheme with
adaptive corruption. Let Hb :M→ Ĝ (b ∈ {0, 1}) and HF : {0, 1}∗ → F be three hash functions (modeled as
random oracles). We use qH to denote the sum of the number of queries made to H0 and H1, qHF to denote the
upper-bound on the number of queries to HF. We formally define the unforgeability attack game in Figure 1,
and summarize it below.

Game 3 (UF-CMAAΣ) Let Σ = (KGen,PSign,PVer,Comb,Ver) be a non-interactive (n, t)-threshold signa-
ture scheme for a finite message spaceM. For an algorithm A, define game UF-CMAAΣ as:

– Setup and initialization. The setup and initialization consists of the of the following steps:
1. Run Setup(1λ) to get the pubic parameters pp and the descriptions of hash functions H0,H1,HF.
2. For any message m ∈ M, let Q[m] be the set of honest signers A queries for partial signatures on

message m. Q[m] is initialized to the empty set {} for each m ∈M .

3. Run A on the public parameters while giving A oracle access to OH. Let (n, t, C, stA) ← AO
H

(pp) be
the output of A. Here C denotes the (growing) set of signers A corrupts, and stA is some auxiliary
information output by A.

7

4. Let H = [n] \ C be the set of honest signers. For each i ∈ H, let sti be the internal state of signer i.
– Key Generation. Run KGen(n, t) to generate the keys. Each signer i ∈ [n] outputs its signing key ski,

along with the public key pk, and threshold public key {pk1, . . . , pkn}. Also, A learns ski for each i ∈ C.
– Simulating corruption oracle OCorrupt. At any point during the experiment, A may corrupt a signer i

using OCorrupt. Upon corrupting signer i, return internal state sti and update H := H \ {i}, C := C ∪ {i}.
– Simulating signing oracle OPSign. A queries OPSign on input (i,m) to get partial signatures of signer

i ∈ H on message m ∈ M. Upon such a query, return PSign(ski,m), update the internal state sti, and
update Q[m] as Q[m] := Q[m] ∪ {i}.

– Simulating random oracle query OH. When A submits a query (b,m) to OH for m ∈ M and either
b ∈ {0, 1}, return Hb(m). Similarly, when A submits query x ∈ {0, 1}∗ to OHF , return HF(x).

– Output Determination. When A outputs a message m∗ and a signature σ∗, output 1 if |Q[m∗]∪ C|≤ t
and Ver(pk,m∗, σ∗) = 1. Otherwise, output 0.

With the UF-CMAAΣ game as defined in Figure 1, we define the unforgeability under chosen message
attack property of a non-interactive threshold signature scheme as follows.

Definition 4 (Unforgeability Under Chosen Message Attack). We say that Σ is a (ε, T, qH, qHF , qs)-
unforgeable under chosen message attacks (UF-CMA) if for all PPT adversaries A running in time at
most T , making at most qH queries to OH, at most qHF queries to OHF , and at most qs queries to OPSign,
Pr[UF-CMAAΣ = 1] ≤ ε for the UF-CMAAΣ game.

4.4 Boldyreva’s BLS threshold signature scheme

We now describe Boldyreva’s BLS-based threshold signature scheme. The public parameters of Boldyerva’s
BLS signature scheme is a prime order bilinear pairing group (G, Ĝ,GT) with generator g ∈ G. For any
(n, t), the signature scheme works as follows where we use H = H0.

– KGen : On input (n, t), sample a uniformly random polynomial s(x) ∈ F[X] of degree t. Then, the signing
key of i-th signer is ski := s(i), the public key pk := gs(0), and the threshold public key {pki := gski}i∈[n].

– PSign: On input the message m ∈M, signer i with signing key ski ∈ F computes its partial signature as
σi := H(m)ski ∈ Ĝ.

– PVer: On input the public key pki ∈ G, a signature share σi, and a message m, return 1 if e(pki,H(m)) =
e(g, σi), and 0 otherwise.

– Comb: On input a vector of threshold public keys (pk1, . . . , pkn), a set S of t + 1 signature shares (and
corresponding indices) (σi, i), and a message m, run PVer(σi, pki) for all i ∈ S0 := {i ∈ [n]∥(σi, i) ∈ S}. If
any of these calls return 0, return ⊥. Otherwise, return σ :=

∏
i∈S0\{i} σ

Li
i , where Li :=

∏
j∈S0\{i}

(
j

j−i

)
denotes the i-th Lagrange coefficient for the set S0.

– Ver: On input a public key pk, a signature σ, and a message m, return 1 if e(pk,H(m)) = e(g, σ), and 0
otherwise.

5 Adaptively Secure BLS Threshold Signature

In this section, we will describe our adaptively secure threshold signature scheme assuming that KGen is run
by a trusted party. Let (G, Ĝ,GT , g, h, v) and the descriptions of H0,H1 and HF be the public parameters of

our scheme. Here g, h, v ∈ G are three uniformly random independent generators of G. H0,H1 :M→ Ĝ and
HF : {0, 1}∗ → F are three distinct hash functions modelled as random oracles. We summarize our threshold
signature scheme in Figure 2, and describe it next.

KGen(n, t): Given (n, t) and the public parameters, the KGen algorithm samples three uniformly random
polynomials s(x), r(x) and u(x) of degree t with the constraint that r(0) = u(0) = 0. The signing key of
signer i is then ski := (s(i), r(i), u(i)). Let pk := gs(0) be the public verification key, and pki := gs(i)hr(i)vu(i)

be party i’s threshold public key.

8

Setup(1λ):

1: Let pp := (F,G, Ĝ,GT , g, h, v)
2: Let H0,H1 :M→ Ĝ and HF : {0, 1}∗ → F be three

hash functions modeled as random oracle.
3: return (pp,H0,H1,HF)

// We assume that all algorithms implicitly take the
output of the Setup algorithms as input. We use HF in
SigmaProve and SigmaVer.

KGen(n, t):

4: Let s(·), r(·), u(·) ←$ F[x] be three polynomials of
degree t with r(0) = u(0) = 0.

5: Let pk := gs(0)

6: for each i ∈ [n] do
7: Let ski := (s(i), r(i), u(i))
8: Let pki := gs(i)hr(i)vu(i)

9: return (pk, {pki}i∈[n], skj) to each signer j ∈ [n]

PSign(m, ski = (si, ri, ui)):

11: Let σi := H0(m)siH1(m)ri

12: Let πi := SigmaProve(pki,m, σi, ski)
13: return σi, πi

PVer(m, pki, (σi, πi)):

16: return SigmaVer(pki,m, σi, πi)

Comb(m,S, {(σi, πi, i)}i∈S):

20: Let T := {}
21: for each i ∈ S do
22: if PVer(m, pki, (σi, πi)) then
23: T := T ∪ {(σi, i)}
24: assert |T |≥ t + 1
25: Let ℓi be the i-th Lagrange coefficients for S
26: return σ :=

∏
i∈S σℓi

i

Ver(m, pk, σ):

20: return 1, if e(pk,H0(m)) = e(g, σ)
21: Otherwise return 0

Fig. 2: Adaptively secure BLS threshold signature scheme with trusted key generation

Input: (g, h, v, pk) ∈ G4, (g0, g1) = (H0(m),H1(m)) for some fixed m ∈M, and σ ∈ Ĝ
Witness: (s, r, u) ∈ F3

The prover P wants to convince the verifier V that it knows s, r, u ∈ F such that pk = gshrvu and σ = gs0g
r
1 .

// We assume that both algorithms implicitly take descriptions of g, h, v,H0,H1 as input

SigmaProve((pk,m, σ), (s, r, u)):

1: Let g0 := H0(m) and g1 := H1(m)
2: Sample ŝ, r̂, û←$ F. Let x := gŝhr̂vû, and y := H0(m)ŝH1(m)r̂.
3: Let c := HF(x, y, pk, σ, g0, g1), where H is a hash function modeled as a random oracle.
4: Let zs := ŝ + s · c, zr := r̂ + r · c and zu := û + u · c.
5: Output π := (x, y, zs, zr, zu).

SigmaVer((pk,m, σ), π = (x, y, zs, zr, zu)):

5: Let g0 := H0(m) and g1 := H1(m)
6: Let c := HF(x, y, pk, σ, g0, g1)
7: if gzshzrvzu = xpkc and gzs0 gzr1 = yσc then
8: return 1
9: return 0

Fig. 3: Protocol for computing and verifying the the correctness proof for partial signatures.

PSign: The partial signature of signer i on a message m is the tuple (σi, πi), where σi := H0(m)s(i)H1(m)r(i),
and πi is a non-interactive zero-knowledge (NIZK) proof of the correctness of σi with respect to pki. Signer i
computes πi using the Σ-protocol in Figure 3. We use the Fiat-Shamir heuristic to make the signing phase
non-interactive.

PVer: On input the threshold public key pki and the partial signature tuple (σi, πi), validates σi by running
the Σ-protocol verifier V, and accepts if and only if V accepts.

9

Comb: Upon receiving a set of the partial signatures {σi, πi}, an aggregator validates them individually using
PVer. Let T be the set of indices of parties with valid partial signatures. It then computes the threshold
signature σ as:

σ :=
∏
i∈T

σLi
i (3)

where Li is the i-th Lagrange coefficient with respect to the set T .

Ver: The verification procedure of our aggregated threshold signature is identical to the verification procedure
of the standard BLS signature: on input the public key pk and the signature σ on a message m, a verifier
accepts if e(pk,H0(m)) = e(g, σ).

Remark. Note that u(i) is not used in computing σi. It is in the public verification key (and hence used in
computing πi) as an artifact to make our adaptive security proof go through.

6 Proofs of Adaptive Security

We first analyze the properties of the Σ-protocol in Figure 3, which we then use to prove the correctness
and adaptive security of our threshold signature scheme.

6.1 Properties of the Σ-protocol

We require the Σ-protocol satisfy the standard completeness, knowledge-soundness, and zero-knowledge prop-
erty [Dam02]. Briefly, the completeness property guarantees that an honest prover will always be able to
convince an honest verifier about true statements. The knowledge soundness property ensures that, for every
prover who convinces an honest verifier about a statement with a non-negligible probability, there exists an
efficient extractor who interacts with the prover to compute the witness. Finally, the zero-knowledge property
ensures that the proof reveals no information other than the statement’s truth. We prove our Σ protocol
to be zero-knowledge against honest verifiers, which is sufficient for our purposes. The completeness of our
Σ-protocol is straightforward. The knowledge soundness and honest-verifier zero-knowledge properties also
follow from standard Σ-protocol analysis, which we describe below.

Knowledge soundness. We prove knowledge soundness by extractability. For any PPT prover P, let E be
the extractor. Then E interacts with P with two different challenges c and ĉ on the same first message, to
receive two pairs of valid responses (zs, zr, zu) and (ẑs, ẑr, ẑu). Then, we have:

gzs−ẑshzr−ẑrvzu−ẑu = pkc−ĉ and H0(m)zs−ẑsH1(m)zr−ẑr = σc−ĉ

=⇒ s =
zs − ẑs
c− ĉ

; r =
zr − ẑr
c− ĉ

; u =
zu − ẑu
c− ĉ

Honest verifier zero-knowledge (HVZK). Let S be the simulator. S samples uniformly random (c, zs, zr, zu) ∈
F4 and computes x and y as

x = gzshzrvzu · pk−c and y = H0(m)zsH1(m)zr · σ−c (4)

S then programs the random oracle such that HF(x, y, pk, σ,m) = c and outputs π = (c, zs, zr, zu) as the
proof. Clearly, the simulated transcript is identically distributed to the real-protocol transcript.

6.2 Correctness

Recall from §4.3 the two requirements for correctness: (1) honestly generated partial signatures are accepted
by the PVer algorithm, and (2) an honest aggregator combines valid partial signatures into a valid threshold
signature.

The first property follows from the completeness property of our Σ-protocol. To prove the second property,
we will first argue that assuming hardness of discrete logarithm, if for any i, PVer(m,σi, pki) = 1, then σi

has been computed correctly.

10

Lemma 1. If any signer i with threshold public key pki = gs(i)hr(i)vu(i) outputs a partial signature σi

along with a valid proof πi, then assuming hardness of discrete logarithm in G, σi is well formed, i.e.,
σi = H0(m)s(i)H1(m)r(i).

Proof. For valid Σ-protocol proof πi, let E be the extractor we describe in §6.1. Also, let s′, r′, u′ be the
extracted witness where σi = H(m)s(i)H(m)r(i). We need to prove (s′, r′, u′) = (s(i), r(i), u(i)).

For the sake of contradiction, assume this is not the case. Then, we can construct an adversary ADL

that breaks the discrete logarithm in G as follows. On input a discrete logarithm instance (g, y) ∈ G2, ADL

samples θ ∈ {0, 1} and sets either h = y or v = y depending on the value of θ. ADL picks the other parameter
as gα for some known uniform random α ∈ F. ADL next faithfully emulates the trusted key generation with
A with some chosen polynomials s(·), r(·), v(·).

Now (s′, r′, u′) ̸= (s(i), r(i), u(i)) for any signer i implies that

gs
′−s(i)hr−r(i)vu

′−u(i) = 1G (5)

where 1G is the identity element of G.
Let h = gα1 and v = gα2 , and let δs := s′ − s(i), δr := r′ − r(i), and δu := u′ − u(i). Then, equation (5),

implies that δs + δrα1 + δuα2 = 0. Now, if either δr or δu is non-zero, then we can compute α1 or α2,
respectively as:

δr ̸= 0 =⇒ α1 = (−δs − α2δu) · δ−1r ; δu ̸= 0 =⇒ α2 = (−δs − α1δr) · δ−1u (6)

Finally, (δr, δu) = (0, 0), implies that δs = 0. Since ADL uses y as either h or v uniformly at random, it
implies that if A outputs (s′, r′, u′) ̸= (s(i), r(i), u(i)) with probability ε, then ADL outputs the discrete
logarithm of y with respect to g, with probability at least ε/2. ⊓⊔

Theorem 4 (Correctness). Our threshold signature scheme is correct as per Definition 3.

Proof. The completeness property of our Σ-protocol ensures that honestly generated partial signatures are al-
ways accepted by PVer. Lemma 1 ensures that the aggregator only aggregates well-formed partial signatures.
Thus, the final aggregated signature is:

σ =
∏
i∈T

σLi =
∏
i∈T

H0(m)s(i)LiH1(m)r(i)Li

= H0(m)
∑

i∈T s(i)LiH1(m)
∑

i∈T r(i)Li

= H0(m)sH1(m)0 = H0(m)s

6.3 Helper Lemmas for Unforgeability

Before we formally prove the unforgeability of our scheme, we prove the following two helper lemmas. We
note that Lemma 2 appears as an exercise in the book [BS23, Exercise 10.8].

Lemma 2. Let Ĝ be a cyclic group of prime order q with scalar field F and ĝ ∈ Ĝ as its generator. Let DH
be the set of all Diffie-Hellman triples in Ĝ, i.e.,

DH := {(ĝa, ĝb, ĝab) ∈ Ĝ3 : a, b ∈ F}

For fixed a ∈ F, let Ta be the subset of Ĝ3 whose first coordinate is ĝa. Consider the randomized mapping
from Ĝ3 to Ĝ3 that sends (ĝa, ĝb, ĝz) to (ĝa, ĝb

′
, ĝz

′
) where

γ, δ ←$ F, ĝb
′
← ĝδ ĝbγ , ĝz

′
← ĝaδ ĝzγ

Then the following holds.

11

(1) if (ĝa, ĝb, ĝz) ∈ DH, then (ĝa, ĝb
′
, ĝz

′
) is uniformly distributed over DH ∩Ta;

(2) if (ĝa, ĝb, ĝz) ̸∈ DH, then (ĝa, ĝb
′
, ĝz

′
) is uniformly distributed over Ta.

Proof. For (1), if (ĝa, ĝb, ĝz) ∈ DH, then:

ĝb
′
= ĝbγ+δ; and ĝz

′
= ĝabγ · ĝaδ = ĝa(bγ+δ); =⇒ (ĝa, ĝb

′
, ĝz

′
) ∈ DH. (7)

Next, we will prove that ĝb
′
is an uniformly random element in Ĝ, which implies that (ĝa, ĝb

′
, ĝz

′
) is an

uniformly random element in DH ∩Ta. Note that ĝb′ being a uniformly random element in Ĝ is equivalent
to b′ = bγ + δ being a uniformly random element in F. This clearly holds since for any fixed b and x ∈ F:

Pr
γ,δ←$F

[bγ + δ = x] = Pr
δ←$F

[δ = x− bγ] = 1/q

For (2), for (ĝa, ĝb
′
, ĝz

′
) we have that b′ = bγ + δ and z′ = zγ + aδ. Then, for any (x, y) ∈ F2, we will

compute the probability that b′ = x and z′ = y. We can re-write these constraints as:

γ =
y − ax

z − ab
; and δ =

zx− by

z − ab
(8)

Since z − ab ̸= 0 in (2), eq. (8) is well defined and

Pr
γ,δ←$F

[bγ + δ = x ∧ zγ + aδ = y] = Pr
γ,δ←$F

[γ =
y − ax

z − ab
∧ δ =

zx− by

z − ab
] =

1

q2
⊓⊔

Lemma 3. Let Ĝ be an elliptic curve group with scalar field F, ĝ ∈ Ĝ be a generator in Ĝ, λ be the security
parameter, qH := poly(λ) be an integer. For a fixed a, b←$ F2, let (ga, gb, gz) ∈ Ĝ3 for some z ∈ F. Also, for
the same a, let Ta be defined as in Lemma 2. For any fixed k ∈ [qH], let the distributions D1,k and D2 be
defined as follows:

D1,k := {(ĝa, ĝbi , ĝzi)}i∈[qH] where ∀i ̸= k, (ĝa, ĝbi , ĝzi)←$ Ta ∩DH; bk, zk ←$ F (9)

D2 := {(ĝa, ĝbi , ĝzi)}i∈[qH] where ∀i ∈ [qH], (ĝa, ĝbi , ĝzi)←$ Ta (10)

Given the tuple (ĝa, ĝb, ĝz) and k ∈ [qH], now consider the distribution D as defined belwo:

D := {(ĝa, ĝbi , ĝzi)}i∈[qH] where

{
∀i ̸= k, ĝbi := ĝδi ĝbγi , ĝzi := ĝaδi ĝzγi for γi, δi ←$ F
i = k, (ĝbk , ĝzk)←$ Ĝ2

(11)

With the distributions D1,k,D2 and D as defined above, we have:

(1) if z = ab, then D = D1,k

(2) if z ←$ F \ {ab}, then D = D2

Proof. For (1), when z = ab, i.e., (ĝa, ĝb, ĝz) ∈ DH, then by Lemma 2, for all i ∈ [qH] and i ̸= k, (ĝa, ĝbi , ĝzi) ∈
D is uniformly distributed in Ta ∩DH, and hence are identically distributed as in D1,k. By definition, the
k-th tuple (ĝa, ĝbk , ĝzk) in both D and D1,k is a uniformly random element in Ta, and hence are identically
distributed. This implies that, when z = ab, D is identically distributed as D1,k.

Similarly, for (2), when z ←$ F \ {ab}, (ĝa, ĝb, ĝz) ̸∈ DH. By Lemma 2, for all i ∈ [qH] and i ̸= k,
(ĝa, ĝbi , ĝzi) ∈ D is uniformly distributed in Ta. Also, by definition, (ĝa, ĝbk , ĝzk) ∈ D is an uniformly
random element in Ta. This implies that, when z ←$ F \ {ab}, D is identically distributed as D2. ⊓⊔

An immediate corollary of Lemma 3 is that assuming hardness of DDH in Ĝ the distributions D1,k and
D2 as defined above are computationally indistinguishable.

12

Corollary 1. Let Ĝ be an elliptic curve group with scalar field F and generator ĝ ∈ Ĝ. Let λ be the security
parameter, qH := poly(λ) be an integer, and for a ←$ F, let Ta be defined as in Lemma 2. Then, for any

fixed k ∈ [qH], assuming the hardness of DDH in Ĝ, the distributions D1,k and D2 as defined in Lemma 2
are computationally indistinguishable.

Proof. Let A be the adversary that distinguishes between a sample from D1,k and D2 with probability ε, then
we can build a DDH adversary ADDH with advantage ε as follows. ADDH on given a DDH input (ĝ, ĝa, ĝb, ĝz),
uses the randomization in equation (11) to sample a vector of tuples from distribution D. ADDH then runs
A on the sampled vector and outputs what A outputs.

Now, from Lemma 3, depending upon whether z = ab or z ←$ F\{ab}, the sampled vector is either from
distribution D1,k, or from distribution D2. This implies that for a DDH input (g, ga, gb, gz) with z = ab,
ADDH always outputs a sample from D1,k. Alternatively, when z ←$ F, except for the rare event where
z = ab, ADDH outputs a sample from D2. Since Prz←$F[z = ab] = 1/|F|, which is negligible, this implies that

the distinguishing advantage of ADDH is at least ε − ε/|F|. Since we assume DDH is hard in Ĝ, it implies
ε− ε/|F|≤ εDDH. So ε ≤ εDDH + ε/|F|, and the two distributions D1,k and D2 are indistinguishable.

Since ε/|F| is negligible, we will ignore this term for brevity, and simply say that the distinguishing
advantage of A is at most εDDH.

6.4 Unforgeability with an Adaptive Adversary

We will prove the unforgeability assuming the hardness of the DDH in Ĝ and the hardness of co-CDH in
G, Ĝ. Let Aco-CDH be the reduction adversary. Upon input a co-CDH instance (g, ĝ, ga, ĝa, ĝb), Aco-CDH

simulates the trusted key generation functionality and the threshold signature protocol for a PPT adversary
A, such that when A forges a signature, Aco-CDH uses the forgery to compute ĝab. We summarize Aco-CDH’s
interaction with A in Figure 4, and describe it next.

Simulating the KGen functionality. Aco-CDH samples α2 ←$ F and sets h := ga and v := gα2 . Aco-CDH

samples three uniformly random polynomials s(·), r(·), u(·) ∈ F[x] of degree t each, but crucially with the
constraints that r := r(0) ̸= 0. Let H and C be the set of honest and malicious parties, respectively. Aco-CDH

then computes the public and threshold public keys as follows:

pk := gshrvu; and
{
pki := gs(i)hr(i)vu(i)

}
i∈[n]

(14)

To each honest node i ∈ H, Aco-CDH sends ski along with pk, {pkj}j∈[n]. Aco-CDH sends {ski}i∈C along with
pk, {pkj}j∈[n] to A.
Simulating threshold signature. Anytime during the signing phase, if A corrupts node i ∈ H, then
Aco-CDH faithfully reveals the internal state of party i, including its secret signing key ski := (s(i), r(i), u(i)),
and updates C := C ∪ {i} and H := H \ {i}.
Aco-CDH simulates the signing queries by programming the random oracles as follows. At the start of the

signing phase, Aco-CDH samples a random β ∈ F. Let α = a+ α2 · (u/r). Note that H0 is always queried on
the forged message, at least by Aco-CDH during the signature verification. Moreover, whenever A queries Hθ

for either θ ∈ {0, 1} on any message, Aco-CDH internally queries H1−θ on the same message. Let qH be an

upper bound on the number of queries by A to H0 and H1 combined. Aco-CDH samples k̂ ←$ [qH]. On the
k-th random oracle query on message mk, depending upon the value of k, Aco-CDH programs the random
oracles as follows.

k ̸= k̂ =⇒ H0(mk) := ĝβγk+δk ; H1(mk) := ĝα·(βγk+δk) for γk, δk ←$ F (15)

k = k̂ =⇒ H0(mk) := ĝb; H1(mk) := ĝ′ for ĝ′ ←$ Ĝ (16)

Let mk̂ be the queried message for k = k̂. Then, except for message mk̂, Aco-CDH always responds to
partial signing queries as per the honest protocol. For message mk̂, Aco-CDH faithfully responds to up to
t− |C| partial signing queries and aborts if A queries for more partial signatures on mk̂.

13

Input: co-CDH tuple (g, ga, ĝ, ĝa, ĝb) ∈ G3 × Ĝ.

KGen simulation:
1. Sample α2 ←$ F. Let h := ga and v := gα2 .
2. Sample three degree t uniformly random polynomial s(x), r(x), u(x) ∈ F[x] with r(0) ̸= 0.
3. Let H and C be the set of honest and malicious parties, respectively.
4. Let s := s(0), r := r(0) and u := u(0). Compute pk := gshrvu, and for each i ∈ [n], pki := gs(i)hr(i)vu(i)

5. For each i ∈ [n], let ski := (s(i), r(i), u(i)). Send to ski, pk, {pkj}j∈[n] to each honest signer i ∈ H. Send
{ski}i∈C along with pk, {pkj}j∈[n] to A.

Corruption simulation:
6. If A corrupts a signer i ∈ H, send the internal state of signer i including ski to A. Update H := H\{i} and
C := C ∪ {i}.

Threshold signature simulation:
7. On a query to random oracle HF on input x, if HF(x) ̸= ⊥, set HF(x)←$ F. Output HF(x).
8. Sample β ←$ F and let α := a + α2 · (u/r).
9. Let qH be an upper bound on the total number of random oracle queries to H0 and H1,

10. Sample k̂ ←$ [qH].
11. On k-th random oracle query to Hθ for either θ ∈ {0, 1} on message mk:

(a) If Hθ(mk) ̸= ⊥, return Hθ(mk). Otherwise,
(b) If k ̸= k̂, program the random oracles as follows and return Hθ(mk).

H0(mk) := ĝβγk+δk ; H1(mk) := ĝα·(βγk+δk) for γk, δk ←$ F (12)

(c) If k = k̂, set the random oracles as follows and return Hθ(mk).

H0(mk) := ĝb; H1(mk) := ĝ′ for ĝ′ ←$ Ĝ (13)

12. Let mk̂ be the queried message for k = k̂. Then, except for message mk̂, respond to partial signing queries
as per the honest protocol.

13. For message mk̂, faithfully respond to up to t− |C| partial signing queries and abort if A queries for more
partial signatures on mk̂.

Compute co-CDH output:

13. Let σ be the valid forgery on mk̂, then output σr−1

· ĝ−br−1(s+α2u) as the co-CDH output.

Fig. 4: Aco-CDH’s interaction with A to compute the co-CDH output, when signers use the KGen functionality
to generate the signing keys.

Breaking the co-CDH assumption. Let (mk̂, σ) be a forgery output by A. Recall that the public key
in the simulated protocol is gshrvu where Aco-CDH knows (s, r, u). Then, Aco-CDH computes the co-CDH
output ĝcdh as

ĝcdh := σr−1

· ĝ−br
−1(s+α2u) (17)

Lemma 4. If σ is a valid forgery on message mk̂, then ĝcdh is a valid co-CDH output.

Proof. Since σ is a valid forgery on mk̂, the following holds.

e(pk,H0(mk̂)) = e(g, σ) =⇒ e(gshrvu, gb) = e(g, σ) (18)

Let ĥ = ĝa and v̂ = ĝα2 . Then, from equation (18), we get that:

σ =
(
ĝsĥrv̂u

)b

=⇒ σ · ĝ−b(s+α2u) = ĥbr

=⇒ σr−1

· ĝ−br
−1(s+α2u) = ĥb = ĝab ⊓⊔

14

Next, we prove that assuming the hardness of DDH in Ĝ, if A forges a signature in the real protocol with
probability εσ, then A also forges a signature in the simulated protocol with probability at least εσ − εDDH.
Here, εDDH is the advantage of any adversary in breaking DDH in Ĝ.

Lemma 5. Given pairing groups (G, Ĝ,GT), if a PPT adversary A forges a signature in the real protocol
with probability εσ, then A also forges a signature in the simulated protocol with probability at least εσ−εDDH.
Here εDDH is the advantage of A in breaking the DDH assumption in Ĝ.

We will prove this lemma via a sequence of games. Game G0 is the real protocol execution, and game
G8 is the interaction of A with Aco-CDH.

Game G0: This is the real execution of the protocol, as described in Figure 2. Then by definition, A outputs
a forgery in G0 with probability Pr[G0 = 1] = εσ.

Game G1: This game is identical to G0, except that we sample α1, α2 ←$ F and set h = gα1 and v = gα2 .
Clearly, the view of A in G0 is identical to its view in G1, hence Pr[G0 = 1] = Pr[G1 = 1].

Game G2: This game is identical to G1, except that we program the random oracles H0 and H1 as in steps 7
to 10 in Figure 4. In particular, we sample β, ϕ←$ F2 and compute α := α1+α2ϕ. Let qH be the upper-bound
on the total number of random oracle queries to H0 and H1. We then sample k̂ ←$ [qH] and program the
random oracles on the k-th query as in equation (16) or equation (15) with a := α1, depending on whether

k = k̂. We next bound the probability Pr[G2 = 1] assuming the hardness of DDH in Ĝ.

Lemma 6. Let εDDH be the advantage of breaking DDH in Ĝ as defined in Assumption 1, then

|Pr[G1 = 1]− Pr[G2 = 1]|≤ εDDH (19)

Proof. Observe that in the game G2, we program the random oracles H0 and H1 exactly with a sample from
the distribution D1,k̂ as we define in Lemma 3. Similarly, in G2, we program the random random oracles H0

and H1 with a sample from D2, we define in Lemma 3. Apart from the output of the random oracles H0 and
H1, the rest of the view is identically distributed in G1 and G2.

We will prove this lemma by showing that if any adversary A can distinguish between its views in G1 and
G2 with probability ε, then we can build a DDH adversary ADDH who uses A to break the DDH assumption
with advantage ε. This implies, by assumption 1, that ε ≤ εDDH.

Let ADDH be the DDH adversary. ADDH on input (ĝ, ĝa, ĝb, ĝz) interacts with A as follows. ADDH samples
g ←$ G, α1, α2 ←$ F and sets h = gα1 and v = gα2 . ADDH then generates the signing and public keys by
running the KGen functionality as in Figure 2. ADDH then faithfully follows the rest of the protocol, except
programming the random oracle as follows.

Let a = α1+α2ϕ for some ϕ ∈ F unknown to ADDH. ADDH samples k̂ ←$ [qH], and programs the random
oracle as follows. On the k-th query to Hθ for θ ∈ {0, 1} on message mk, if Hθ(mk) ̸= ⊥, then output Hθ(mk).

Otherwise, depending on whether k = k̂ or not, set:

k ̸= k̂ =⇒ H0(mk) := ĝbγk+δk ; H1(mk) := ĝzγk+aδk for γk, δk ←$ F (20)

k = k̂ =⇒ H0(mk) := ĝ′; H1(mk) := ĝ′′ for ĝ′, ĝ′′ ←$ Ĝ (21)

ADDH then outputs 1 whenever A forges a signature, otherwise outputs 0.
It follows from Lemma 3, for DDH input (ĝ, ĝa, ĝb, ĝz), depending upon whether z = ab or z ←$ F \{ab},

ADDH either programs the random oracles with a sample from D1,k̂ or a sample from D2, respectively. Thus,
when z = ab, A’s view in interaction with ADDH is identically distributed as in G2. Alternatively, when
z ←$ F \ {ab}, A’s view is identically distributed as in G1. Recall from Corollary 1, assuming hardness of

DDH in Ĝ, samples from distributions D1,k̂ and D2 are computationally indistinguishable. Since games G1

and G2 only differ in whether we program the random oracles H0 and H1, using a sample from D1,k or D2,
we get that:

|Pr[G1 = 1]− Pr[G2 = 1]| = ε ≤ εDDH (22)

15

Game G3: This game is identical to G2, except that we sample r ←$ F\{0} and u←$ F. Compute ϕ := u/r,
instead of sampling it directly from F, and hence Pr[G2 = 1] = Pr[G3 = 1].

Game G4: This game is identical to G3, except that for each honest signer we use simulated proofs for
correctness of partial signatures instead of actual NIZK proofs. During NIZK simulation, we program the
random oracle HF on (x, y, pk, σ,m) at a choice of our challenge. This step will fail if the adversary has already
queried HF on this particular input. Let E be the event that at least one of our simulation queries collides
with A’s random oracle query. If event E occurs, then we abort. Otherwise, if no such collision occurs, then
A’s view in G3 is identically distributed as its view in G4. This implies that:

|Pr[G3 = 1]− Pr[G4 = 1]| = |Pr[G3 = 1|E]− Pr[G4 = 1|E]| · Pr[E] ≤ Pr[E] (23)

Here, we use the fact that Pr[G3 = 1|¬E] = Pr[G4 = 1|¬E] and |Pr[G3 = 1|E]− Pr[G4 = 1|E]| ≤ 1.
We now analyze the probability of event E. For each simulated proof, we need to program the random

oracle at a tuple (x, y, pk, σ, g0, g1). Since x and y are chosen uniformly at random from (G × G), and A
makes at most qHF queries to HF, the probability of colliding with an adversarial query during simulation of
a single partial signature is qHF/|F|2. Since A makes at most qs signing queries, and we need to simulate at
most n partial signatures per signing query, using a simple union bound, we get

Pr[E] ≤ qHF · qs · n
|F|2

= εnizk-fail. (24)

Hence, we get:

|Pr[G3 = 1]− Pr[G4 = 1]|≤ qHF · qs · n
|F|2

= εnizk-fail. (25)

Game G5: This game is identical to G4, except that during KGen, we use a polynomial s(x) such that

s(0) = s0 + rα1 + uα2, for s0 ←$ F (26)

Observe that for any fixed (α1, α2, r, u), since s0 is chosen uniformly at random, s0+rα1+uα2 is also uniformly
random. Hence, A’s view in game G5 is identical to its view in game G4, and Pr[G4 = 1] = Pr[G5 = 1].

Game G6: This game is identical to G5, except that we choose polynomials s(x), r(x) and u(x) such that

s(0) = s0, r(0) = r, u(0) = u (27)

The indistinguishability between A’s view in game G5 and game G6 is another crucial step of our proof.

Lemma 7. Pr[G5 = 1] = Pr[G6 = 1]

Proof. It is easy to see that the public key pk is identically distributed in G5 and G6. For any signer i, let
pki,G5

and pki,G6
, be its threshold public key in G5 and G6, respectively. Then, since h = gα1 and v = gα2 ,

we have:
pki,G5

= gs(i)+α1r+α2u · hr(i) · vu(i) = gs(i) · hr(i)+r · vu(i)+u = pki,G6
(28)

Similarly, for any signer i, for any message mk for k ̸= k̂, let σi,G5 and σi,G6 , be its partial signatures in G5

and G6, respectively. Recall from equation (15), for k ̸= k̂, we have that:

H0(mk) = ĝβk ; and H1(mk) = ĝα·βk , where βk := (βγk + δk) (29)

This implies that,

σi,G5 = H0(mk)
s(i)+rα1+uα2H1(mk)

r(i) = gβk·(s(i)+α1r+α2u) · gαβkr(i)

= gβks(i) · gβkr·(α1+α2u/r) · gαβkr(i)

= gβks(i) · gβkrα · gαβkr(i)

= gβks(i) · gαβk·(r(i)+r)

= H0(m)s(i)H1(m)r+r(i) = σi,G6 (30)

16

Equations (28) and (30) imply that the threshold public keys and the partial signatures are identically
distributed in gamesG5 andG6. Moreover, the simulated partial signature correctness NIZK proofs reveal no
additional information about the signing keys of the honest parties, except what is revealed by the threshold
public keys and the partial signatures.

Hence, it remains to show that the joint view of signing keys of the corrupt parties and the set of partial
signatures on the forged message mk̂ in games G5 and G6 are identically distributed. Let C be the set of
corrupt parties. Let Q[mk̂] ⊂ H be the subset of honest parties A queries for partial signatures on the
forged message mk̂. We have |Q(mk̂) ∪ C|≤ t. Also, let ĝ0 = H0(mk̂) and ĝ1 = H1(mk̂). Then, for any fixed
α1, α2, r, u, let D5 and D6 be the view of A in game G5 and G6, respectively, i.e.,

D5 =

({
ĝ
s(i)+rα1+uα2

0 · ĝr(i)1

}
i∈Q[mk̂]

, {s(i) + rα1 + uα2, r(i), u(i)}i∈C
)

D6 =

({
ĝ
s(i)
0 · ĝr(i)+r

1

}
i∈Q[mk̂]

, {s(i), r(i) + r, u(i) + u}k∈C
)

We argue that D5 and D6 are identically distributed based on the following. Consider the following two
distributions D5,t and D6,t as defined below:

D5,t =
(
{s(i) + rα1 + uα2, r(k), u(k)}k∈C∪Q[mk̂]

)
D6,t =

(
{s(k), r(k) + r, u(k) + u}k∈C∪Q[mk̂]

)
Observe that the distributionss D5,t and D6,t are Shamir’s secret shares of three secrets using independent

random polynomials. Since |C ∪ Q[mk̂]|≤ t, the perfect secrecy of Shamir’s secret sharing implies that D5,t

and D6,t are identically distributed. Observe that given a sample from either D5,t or D6,t, one can efficiently
compute a sample from D5 or D6, respectively. Hence, D5 and D6 are also identically distributed. Therefore,
A’s view in G5 and G6 are identically distributed, and hence Pr[G5 = 1] = Pr[G6 = 1]. ⊓⊔

Game G7: This game is identical to G6, except that we use h = ga, i.e., α = a from the co-CDH input,
and use ĝa to compute the random oracle outputs in step 10(b) in Figure 4. Clearly, A’s view in game G7

is identical to its view in game G6, and hence Pr[G6 = 1] = Pr[G7 = 1].

Game G8: This game is identical to G7, except that we use actual NIZK proofs for partial signatures. Thus,
using an argument similar as in the advantage of A between G3 and G4, we get that:

|Pr[G7 = 1]− Pr[G6 = 8]| ≤ εnizk-fail. (31)

Observe that game G8 is exactly the A’s interaction with Aco-CDH. Hence, from the above sequence of
games, we get that:

|Pr[G0 = 1]− Pr[G8 = 1]|≤ εDDH − 2εnizk-fail =⇒ Pr[G8 = 1] ≥ εσ − εDDH − 2εnizk-fail. (32)

This implies that any adversary A outputs a forgery in the real execution of our signature scheme (i.e., G0)
with probability εσ, then A outputs a forgery during its interaction with Aco-CDH (i.e., G8) with probability
at least εσ − εDDH − 2εnizk-fail. This allows us to prove the following main theorem.

Theorem 5 (Adaptively secure BLS threshold signature). Let G, Ĝ,GT be a pairing group of prime
order q. Let λ be the security parameter. For any n, t for n = poly(λ) and t < n, assuming hardness of

decisional diffie-hellman (DDH) in Ĝ, and hardness of co-computational diffie-hellman (co-CDH) in G, Ĝ in
the random oracle model, the threshold signature scheme in §5 is (εσ, T, qH, qHF , qs) unforgeable under chosen
message attack as per Definition 4 against an adaptive adversary A corrupting up to t signers where:

εσ ≤ εDDH + 2εnizk-fail + qH · εCDH,

εnizk-fail = (qHF · qs ·n)/|F|2, and εDDH and εCDH are the advantages of an adversary running in T ·poly(λ, n)
time in breaking DDH in Ĝ and co-CDH in G, Ĝ, respectively.

17

Proof. Aco-CDH successfully computes the co-CDH output whenver A forges a signature in game G8 on a
message m such that m = mk̂. Let E be the event where m = mk̂. Since Aco-CDH chooses mk̂ uniformly
at random among all messages A queries the random oracles with, Pr[E] is at least 1/qH. Moreover, E is
independent of the event G8 = 1. Combined with Lemma 5, we get

εCDH ≥ Pr[mk̂ = m ∧G8 = 1]

= Pr[mk̂ = m|G8 = 1] · Pr[G8 = 1]

≥ 1/qH · (εσ − εDDH − 2εnizk-fail) (33)

=⇒ εσ ≤ εDDH + 2εnizk-fail + qH · εCDH (34)

Remark. Note that the unforgeability property of our threshold signature scheme does not rely on the
soundness property of the NIZK scheme signers use to prove the correctness of the partial signatures. We
only rely on the soundness property to achieve robustness of our scheme (see §6.2).

6.5 Unforgeability with static adversary

We now briefly argue that our signature scheme is statically secure, assuming the hardness of CDH assump-
tion in a pairing group G, Ĝ in the ROM. For static security, we do not require asymmetric pairing groups.
Thus, we will assume that G = Ĝ in this analysis, and hence the CDH assumption instead of co-CDH. Our
security proof is similar to the static security proof of Boldyreva’s scheme.

Let Astatic be the static adversary that breaks the unforgeability of our signature scheme, and let ACDH

be the CDH adversary. Let C be the set of signers Astatic corrupts at the beginning of the protocol, and
H = [n] \ C be the set of honest signers. Also, let S ⊂ H be the subset of honest signers Astatic will query for
partial signatures on the forged message. By the definition of a static adversary, we require that |C ∪ S|≤ t
and Astatic declare the sets C,S to ACDH. ACDH on input a CDH input (g, ga, gb) ∈ G3 simulates the KGen
functionality and the signature scheme with Astatic as follows.

Simulating the KGen functionality. For simplicity let us assume that |C ∪S|= t ACDH samples h, v ←$ G.
Next, ACDH samples two random degree t polynomials r(x), u(x) with the constraint ri(0) = ui(0) = 0. To
compute the polynomial s(x), Astatic samples s(j)←$ F for each j ∈ C ∪S. ACDH then computes the public
key as pk = ga and threshold public keys {pki} = {gs(i)}i∈[n] using interpolation in the exponent. ACDH

then sends pk, {pki}i∈[n], {ski}i∈C to Astatic.

Simulating the signing queries. Throughout the simulation ACDH always faithfully responds to queries to
H1. Note that H0 is always queried on the forged message, at least by ACDH during the signature verification.
Let qH be an upper bound on the number of random oracle queries to H0, including the query during the
signature verification. For static security, the number of queries to H1 can be unbounded. ACDH samples
k̂ ←$ [qH]. On the k-th random oracle query on message mk, depending upon the value of k, ACDH programs
the random oracle as follows:

k ̸= k̂ =⇒ H0(mk) = gγk for γk ←$ F; and k = k̂ =⇒ H0(mk) = gb;

Let qs be the maximum number of signing queries made by Astatic. We have qs ≤ qH. Then, whenever
k ̸= k̂, ACDH uses its knowledge of γk and polynomial r(·) to respond to partial signing queries correctly.

Alternatively, when k = k̂ and let mk̂ be the corresponding message, ACDH correctly responds to partial
signing queries for each signer j ∈ C ∪ S, using its knowledge of s(j). If Astatic queries for partial signatures
on mk̂ from signers not in C ∪ S, ACDH aborts.

Now, whenever Astatic forges a signature on mk̂, i.e., outputs a valid signature σ∗, ACDH also outputs
σ∗. It is easy to see that σ∗ = gab.

7 Distributed Key Generation (DKG) Design and Analysis

In this section, we present a DKG protocol that signers can run to set up the signing keys of our threshold
signature scheme, instead of relying on the trusted KGen. It has the following interface.

18

DKG(n, t): For any (n, t), DKG is an interactive protocol among n parties, which all take as inputs some
public parameters, a security parameter λ ∈ N, as well as a pair of integers n, t ∈ poly(λ) with t < n/2.
At the end of the protocol, signers output a public key pk, a vector of threshold public keys {pk1, . . . , pkn}.
Each signer i additionally outputs a secret key share ski.

As in §5, concretely, at the end of the DKG protocol, each party i outputs ski = (s(i), r(i), u(i)), threshold
public keys {pkj = gs(j)hr(j)vu(j)}j∈[n], and the public verification key pk = gs(0). Here, s(·), r(·) and u(·)
are three degree t polynomials with r(0) = 0 and u(0) = 0.

We require the DKG protocol to satisfy correctness. Intuitively, the correctness property states that the
keys output by the DKG protocol are well-formed, even in the presence of an adaptive adversary that can
corrupt up to t out of n signers.

Definition 5 (Correctness). A DKG protocol DKG is correct, if for all security parameters λ, all allowable
t < n/2, and all PPT adversary A that can adaptively corrupt up to t parties during the DKG protocol, the
following holds:

Pr

∃ s(x), r(x), u(x) ∈ F[x]tsuch that

r(0) = u(0) = 0 ∧
ski = (s(i), r(i), u(i)), ∀i ∈ [n] ∧
pki = gs(i)hr(i)vu(i), ∀i ∈ [n] ∧

pk = gs(0)

(n, t)← A(1λ);
pk, {pki}i∈[n], {ski}i∈[n] ← DKG(n, t)

 ≥ 1− negl(λ)

Here, the probability is over the choice of randomness of both A and the honest parties.

Additionally, we also require the DKG protocol to satisfy the single inconsistent party (SIP) simulatability.
Recall that the security proof of our threshold signature used a rigged public key with non-zero r(0). However,
with DKG, we do not have a trusted entity to set up the rigged public key. Instead, we will rely on the single
inconsistent party (SIP) technique [CGJ+99, FMY99a, FMY99b] to set up a rigged public key. In more detail,
we will let one honest party deviate from the specified DKG protocol so that the final DKG output has the
rigged structure we need. For this to go through, we need to ensure that A cannot distinguish between the
real execution of the protocol where all parties are honest and the execution with a single inconsistent party.
We capture this by requiring the DKG protocol to satisfy the SIP simulatability property we define below.

Definition 6 (SIP Simulatability). For security parameter λ, for all (n, t) with t < n/2 and all PPT
adversary A that adaptively corrupts up to t parties, let SDKG be an efficient simulator that runs a DKG
protocol with A with a single inconsistent party (SIP) such that the DKG output is rigged. A DKG protocol is
SIP simulatable if A’s view ViewAreal of the real protocol execution is indistinguishable from its view ViewAsim
in its interaction with SDKG.

We remark that the precise notion of rigged can vary depending upon the application. For our purpose,
we require the simulated protocol to output a public key pk = gshrvu for some r ←$ F \ {0}.

7.1 Design of our DKG protocol

We design our DKG protocol by augmenting the classic Pedersen DKG protocol, also referred to as the
JF-DKG protocol [GJKR07]. We pick JF-DKG due to its simplicity and popularity. We believe that we
can use many other DKG protocols using a similar modification (see our discussion towards the end of this
section). We summarize our protocol in Figure 5 and describe it next.

Let g, h, v ∈ G be three uniform random generators of G with Scalar field F. We will describe our DKG
protocol in three phases: Sharing, Agreement and Key Derivation.

Sharing phase. During the sharing phase, each party i, as a verifiable secret sharing (VSS) dealer, samples
three random degree-t polynomials si(x), ri(x), ui(x) with ri(0) = ui(0) = 0 such that

si(x) = si,0 + si,1x+ · · ·+ si,tx
t; ri(x) = ri,1x+ · · ·+ ri,tx

t; ui(x) = ui,1x+ · · ·+ ui,tx
t (38)

19

Public parameters: (g, h, v) ∈ G3,F

Sharing phase:
1. Each party i (as a dealer) chooses three random polynomials si(x), ri(x) and ui(x) over F of degree t each:

si(x) = si,0 + si,1x + · · ·+ si,tx
t; ri(x) = ri,1x + · · ·+ ri,tx

t; ui(x) = ui,1x + · · ·+ ui,tx
t (35)

2. Party i computes cmi = [gs0 , gs1hr1vu1 , . . . gsthrtvut].
3. Party i computes πi, the NIZK proof of knowledge of si,0 with respect to gsi,0 .
4. Party i broadcasts (cmi, πi) to all.
5. Party i privately sends si(j), ri(j), ui(j) to party j.

Agreement phase:
6. Each party j verifies the shares it receives from other parties by checking for i = 1, . . . , n:

gsi(j)hri(j)vui(j) =
∏

k∈[0,t]

cmi[k]j
k

(36)

7. If the check fails for an index i, party j broadcasts a complaint against Pi

8. Party i (as a dealer) reveals si(j), ri(j), ui(j) matching eq. (36). If any of the revealed shares fails this
equation, party i is disqualified. Let Q be the set of non-disqualified parties.

Key-derivation phase:
9. The public key pk is computed as pk =

∏
i∈Q cmi[0]. The threshold public keys pkj for each j ∈ [n] are

computed as:

pkj =
∏
i∈Q

∏
k∈[0,t]

cmi[k]j
k

(37)

10. Each party j sets its signing keys to be skj = (
∑

i∈Q si(j),
∑

i∈Q ri(j),
∑

i∈Q ui(j)).
11. The shared secret key is s =

∑
i∈Q si.

Fig. 5: Our DKG protocol which is a modification of the JF-DKG [GJKR07].

Party i then computes the commitment cmi ∈ Gt+1 to these polynomials as (step 2):

cmi = [gsi,0 , gsi,1hri,1vui,1 , · · · , gsi,thri,tvui,t] (39)

Party i then computes a proof of knowledge π (step 3) of discrete logarithm of cmi[0] = gsi,0 with respect
to the generator g using the Schnorr identification scheme [Sch90].

Party i then publishes (step 4), using a broadcast channel, (cmi, πi). Intuitively, the proof πi ensures
(except with a negligible probability) that the constant terms of ri(x) and ui(x) are zero. Also, party i sends
each party j, via a private channel, the tuple (si(j), ri(j), ui(j)).

Agreement phase. The purpose of the agreement phase is for parties to agree on a subset of dealers, also
referred to as the qualified set, who correctly participated in the sharing phase. To agree on the qualified
set, each party j, upon receiving from dealer i the tuple (s′, r′, u′) (via the private channel) and (cmi, πi)
(via the broadcast channel), accepts them as valid shares if πi is a valid proof and the following holds:

gs
′
hr′vu

′
=

∏
k∈[0,t]

cmi[k]
jk (40)

If either of the validation checks fails for any dealer i, the party broadcasts a complaint against the dealer
i (step 7). The dealer i then responds to all the complaints against it by publishing the shares of all the
complaining parties. All parties then locally validate all the revealed shares for all the complaints. If any
dealer i publishes an invalid response to any complaint or does not respond at all, then dealer i is disqualified
(step 8). Let Q be the set of qualified dealers. Note that all honest parties will always be part of Q.
Key-derivation phase. With a qualified set Q, the final public key is pk =

∏
i∈Q cmi[0]. The threshold

public key pkj of party j is computed as in equation (37). The signing key skj of each party j is the sum

20

Input: co-CDH tuple (g, ga, ĝ, ĝa, ĝb) ∈ G3 × Ĝ.

DKG simulation:
1. Sample α2 ←$ F. Let h = ga and v = gα2 .
2. Let C and H be the set of honest and malicious parties, respectively. Sample î←$ H, and let H−î = H\ {̂i}.
3. On behalf of each party i ∈ H−î, run the DKG protocol as per the specification.

4. On behalf of î, sample three degree t uniformly random polynomial sî(x), rî(x), uî(x) ∈ F[x] with rî(0) ̸= 0.
Compute the commitment cmî as:

cmî = [g
s
î,0h

r
î,0v

u
î,0 , g

s
î,1h

r
î,1v

u
î,1 , . . . , g

s
î,th

r
î,tv

u
î,t] (42)

here sî,j , rî,j , and uî,j for each j ∈ [0, t] is are the coefficient of xj in sî(x), rî(x), and uî(x), respectively.
5. Compute πî, the proof of knowledge of exponent cmî[0] with respect to g, by running the NIZK simulator.
6. Run the rest of the DKG protocol, follow the honest protocol specification on behalf of every honest party.
7. Let Q be the qualified set of parties for the DKG. Note that, since we are working in an synchronous

network, î ∈ Q. Let r(x) be the polynomial where r(x) =
∑

i∈Q ri(x). Abort, if r(0) = 0.

Corruption simulation.
6. If A corrupts a signer i ∈ H.

(a) If i = î, rewind A to step 2 and rerun.
(b) Otherwise, send the internal state of signer i including ski to A. Update H := H\ {i} and C := C ∪ {i}.

Fig. 6: Simulator SDKG for our DKG protocol in Figure 5.

of the j-th share of all dealers in Q as shown in step 11 of Figure 5. Let s(x), r(x), u(x) be the polynomials
defined as:

s(x) =
∑
i∈Q

si(x); r(x) =
∑
i∈Q

ri(x); u(x) =
∑
i∈Q

ui(x); (41)

Once the DKG protocol finishes, each party i outputs its signing key ski = (s(i), r(i), u(i)), the public key
pk = gs(0) = gs(0)hr(0)vu(0), and the per signer public keys {pki = gs(i)hr(i)vu(i)}i∈[n].
Using other DKG protocols. In Figure 5, we illustrate how to augment the JF-DKG protocol for our threshold
signature scheme. Our augmentation techniques are generic and can be used with many existing DKG
protocols, that follow the same three-phase structure [Ped91, CGJ+99, CS04, FS01, GJKR07, Gro21, KHG12,
KKMS20, DYX+22]. Specifically, we can augment any such DKG protocol to generate keys for our threshold
signature scheme by each VSS dealer to: (i) share two additional zero-polynomials r(·) and u(·); and (ii)
publish a NIZK proof π for the correctness of the zero-polynomial. Similarly, each VSS recipient will validate
the shares it receives with the updated check in Figure 5.

7.2 Analysis of our DKG

We now prove that our DKG protocol satisfy the correctness and SIP simulatibility property we define.

Lemma 8 (Correctness). Assuming the hardness of discrete logarithm in G, our DKG protocol in Fig-
ure 5, is correct as per Definition 5.

Proof. An argument similar to the correctness analysis of [GJKR07, Theorem 1] ensures that assuming
hardness of discrete logarithm in G, individual signing keys ski = (s(i), r(i), u(i)) output by honest parties
lies on some degree t polynomials s(x), r(x) and u(x). We will now argue that assuming hardness discrete
logarithm in G, r(0) = u(0) = 0.

Let ADL be the discrete logarithm adversary. On input a discrete logarithm instance (g, y) ∈ G2, ADL

samples θ ∈ {0, 1} and sets either h = y or v = y depending on the value of θ. ADL picks the other parameter
as gα for some known α ←$ F. Without loss of generality, let h = gα1 and v = gα2 for some (α1, α2) ∈ F2.
ADL next faithfully runs the DKG and signing protocol protocol with A.

21

Let C ⊂ [n] be the set of corrupt parties and Q be the set of qualified parties. For each i ∈ C ∩ Q,
let si(x), ri(x) and ui(x) be the degree t polynomials shared by party i. Let si := si(0), ri := ri(0) and
ui := ui(0). Then, we will prove that assuming hardness of discrete logarithm that if (r,ui) ̸= (0, 0) with
probability ε, then ADL will solve discrete logarithm with probability at least ε/2.

For the sake of contradiction, assuming it is not the case, i.e., there exists an i ∈ C ∩ Q such that
(ri, ui) ̸= (0, 0). Then, ADL solves the discrete logarithm for y as follows. Let cmi be the commitment vector
output by the malicious party i, along with a NIZK proof-of-knowledge πi. ADL also extracts using the NIZK
proof-of-knowledge extractor the witness w such that gw = cmi[0]. It is also the case that cmi[0] = gsihrivui .
Then, we have that:

w = si + α1ri + α2ui (43)

Now, depending upon whether ri ̸= 0 or ui ̸= 0, we can extract α1 or α2, respectively as:

ri ̸= 0 =⇒ α1 = (w − si − uiα2) · r−1i ; and ui ̸= 0 =⇒ α2 = (w − si − riα1) · u−1i (44)

Since ADL uses y as either h or v uniformly at random, it implies that if A successfully uses (ri, ui) ̸= (0, 0)
with probability ε, then ADL outputs the discrete logarithm of y with respect to g, with probability at least
ε/2. Hence, assuming the hardness of discrete logarithm r(0) = u(0) = 0.

Lemma 9 (SIP Simulatability). The DKG protocol in Figure 5 is SIP simulatable as per Definition 6,
except with a negligible probability.

Proof. We will prove this via a sequence of games, where game G0 is the real protocol execution and G4 is
the simulated protocol.

Game G0: This is the real execution of our DKG protocol. Hence, A’s view in this game is ViewAreal.

Game G1: This game is identical to G0, except that we compute the proof-of-knowledge πî for party î
using the NIZK simulator. Note that the statement we want to simulate is independent of A. Hence, we can
compute the simulated proof before A makes any random oracle query. This implies that we can output the
simulated NIZK proof, even if our random oracle query collides with A’s random oracle queries. Combining
this with the fact that Σ-protocols are perfect HVZK, we get that A’s view in game G0 is identical to its
view in game G1.

Game G2: This game is identical to G1, except that we use a polynomial sî(x) such that

sî(0) = sî,0 + rα1 + uα2, for s0 ←$ F (45)

Observe that for any fixed (α1, α2), r ←$ F \ {0} and u←$ F \ {0}. Since s0 is chosen uniformly at random,
s0 + rα1 + uα2 is also uniformly random. Hence, A’s view in game G2 is identical to its view in game G1.

Game G3: This game is identical to G2, except that we choose polynomials sî(x), rî(x) and uî(x) such that

sî(0) = sî,0, rî(0) = r, uî(0) = u, for sî,0 ←$ F (46)

Based on a similar argument as Lemma 7, A’s view in game G3 is identically distributed as its view in G2.

Game G4: This game is identical to G4, except abort if r(0) = 0 where r(x) =
∑

i∈Q ri(x) for the qualified
set Q. We now argue that in game G4, we will abort with probability at most εF := 1/(|F|−1). Note that
with uî(0) being uniformly random elements in F, the commitment cmî[0], perfectly hides s, r and u. This
implies that A’s choice of r′ and u′ is independent of r and u. Hence, the probability that r′ + r being 0 is
exactly:

Pr[r + r′ = 0] =
1

|F|−1
(47)

Combining all of these, we get that:

|Pr[G4 = 1]− Pr[G3 = 1]|≤ 1

|F|−1
= εF (48)

22

Note that game G4 is exactly as the simulated protocol, and hence A’s view in G3 is ViewAsim. This
implies that ViewAreal and ViewAsim are statistically indistinguishable, except with at most εF probability. ⊓⊔

Running time of SDKG. It is easy to see that, during each iteration of the simulation, SDKG runs in
polynomial time. We will now argue that SDKG runs for more than λ iterations with probability at most 2−λ.

During every iteration of the simulation, all honest dealers (including the SIP) will be part of the qualified
set. Then, the probability that A does not corrupt the SIP, i.e., î ̸∈ C is at least:

Pr[̂i ̸∈ C] ≥
(
n−1
t

)(
n
t

) =
n− t

n
≥ 1/2 (49)

where the last inequality follows from the fact that n > 2t.
Equation (49) implies that the simulator fails to successfully simulate the DKG protocol with probability

at most 1/2. Hence, SDKG will fail to simulate the DKG protocol after λ iterations with probability at most
2−λ, which is negligible.

7.3 Signature Scheme with DKG

Our threshold signature scheme with a DKG protocol is identical to Figure 2, except that signers generate
their signing keys by running the DKG protocol in Figure 5.

8 Proof of Adaptive Security with DKG

The correctness of our threshold signature scheme with DKG follows from the correctness property of the
DKG protocol. Hence, we will focus on unforgeability next.

Similar to §6, we prove the unforgeability assuming the hardness of the DDH in Ĝ and the hardness
of co-CDH in G, Ĝ. Let Aco-CDH be the reduction adversary. On input a co-CDH instance (g, ĝ, ga, ĝa, ĝb),
Aco-CDH simulates the DKG and threshold signature protocol for a PPT adversary A, such that when A
forges a signature, Aco-CDH uses the forgery to compute ĝab. As we mention earlier, our security reduction
will use the single inconsistent party (SIP) technique [CGJ+99, FMY99a, FMY99b] where there exists only
one signer whose internal state cannot be consistently revealed to A. We summarize Aco-CDH’s interaction
with A in Figure 7 and describe it next.

The main idea again is that Aco-CDH will set up a rigged public key during the DKG protocol by running
the simulator SDKG. Lemma 9 ensures that the simulated public is rigged, and at the same time A’s view of
the simulated protocol is statistically indistinguishable from its view of the real protocol. Finally, using the
same argument as Lemma 4, whenever A forges a signature with the rigged public key, Aco-CDH will solve
the co-CDH challenge.

Simulating the DKG. Aco-CDH simulates the DKG protocol with A by running the DKG simulator SDKG.
Let C be the set of parties A has corrupted so far, and let H := [n] \ C be the set of honest parties. Also, let
î ∈ H be the SIP chosen by SDKG during the simulation.

Let Q be the qualified set of parties during the DKG simulation. Since, H ⊆ Q, it is also the case that
î ∈ Q. Let s(·), r(·), u(·) be the degree t polynomials defined as in step 2 of Figure 7, where:

s(x) =
∑
i∈Q

si(x); r(x) =
∑
i∈Q

ri(x); u(x) =
∑
i∈Q

ui(x) (52)

Note that since 2t < n, Aco-CDH can extract the polynomials s(·), r(·) and u(·) in its entirety using a
straight-line extractor. Let s = s(0) and let r(0) = r+ r′ and u(0) = u+u′, where r′ and u′ are the constant
terms of polynomials chosen by signers in C ∩ Q. From Lemma 8, assuming hardness of discrete logarithm
in G, both r′ = u′ = 0, except with a negligible probability. Thus, we can safely ignore them from here on
without affecting our simulation much. Nevertheless, as we illustrate later, even non-zero r′ and u′ do not

23

Input: co-CDH tuple (g, ga, ĝ, ĝa, ĝb) ∈ G3 × Ĝ.

DKG simulation: // We use the notations from Figure 6.
1. Run the DKG simulator SDKG. Let î ∈ H be the SIP, and let rî(x) and uî(x) be the polynomial î chooses

during the DKG simulation, with r = rî(0) and u = uî(0).
2. Let Q be the resulting qualified set as a result of simulating the DKG. Let s(x), r(x), and u(x) be degree t

polynomials where:

s(x) =
∑
i∈Q

si(x); r(x) =
∑
i∈Q

ri(x); u(x) =
∑
i∈Q

ui(x); (50)

Then the resulting secret key ski of party i is ski = (s(i), r(i), u(i)). The public key pk = gs(0)hr(0), and the
threshold public key pki for each party i is pki = gs(i)hr(i)vu(i).

3. Let s = s(0), r + r′ = r(0) and u + u′ = u(0). Here r′, u are defined as:

r′ =
∑

i∈Q∩C

ri(0); u′ =
∑

i∈Q∩C

ui(0); (51)

Corruption simulation:
6. If A corrupts a signer i ∈ H.

(a) If i = î, rewind A to step 2 and rerun.
(b) Otherwise, send the internal state of signer i including ski to A. Update H := H\ {i} and C := C ∪ {i}.

Threshold signature simulation:
// Identical to the threshold signature simulation in steps 7 to 13 of Figure 4. Note that Aco-CDH does not use
r′ and u′ while simulating threshold signatures, and programs the random oracles only based on r and u.

Compute co-CDH output:

13. Let σ be the valid forgery on mk̂, then output σ(r+r′)−1

· ĝ−b(r+r′)−1(s+α2(u+u′)) as the co-CDH output.
Note that in Figure 6, SDKG ensures that (r + r′) ̸= 0, and hence (r + r′)−1 is well defined.

Fig. 7: Aco-CDH’s interaction with A to compute the co-CDH output, when signers use the DKG protocol to
generate the signing keys.

affect our unforgeability guarantees. Stated differently, this also implies that the soundness of the proof-of-
knowledge scheme we use in the DKG protocol is needed only for our threshold signature’s correctness and
not for its unforgeability.

Simulating threshold signature. Aco-CDH simulates the threshold signing phase exactly as in §6, except
how it responds to additional corruption queries. More precisely, if A corrupts any party i ∈ H−î\{̂i} anytime
during the signing phase, Aco-CDH reveals the internal state of i to A. Aco-CDH also updates C := C ∪ {i}
and H = H \ {i}. Alternatively, if A corrupts party î, Aco-CDH rewinds A to the start of the simulation and
restarts the simulation, including re-running SDKG with fresh randomness.

We want to note that while simulating the threshold signatures, Aco-CDH will program only based on r and
u and will not use r′ and u′. Nevertheless, when either r′ ̸= 0 and u′ ̸= 0, the final threshold signature will not
be accepted (except with a negligible probability) by the Ver algorithm in both the simulated protocol and
the real execution of the signature scheme. But this is an acceptable behavior while proving unforgeability,
as we only care about the indistinguishability of A’s view in the real execution and the simulated protocol.

Breaking the co-CDH assumption. Let (mk̂, σ) be a forgery output by A. Recall that the public key in

the simulated protocol is gshr+r′vu+u′
where Aco-CDH knows (s, r + r′, u + u′). Moreover, in the simulated

protocol we have that r + r′ ̸= 0. Aco-CDH computes the co-CDH output ĝcdh as

ĝcdh = σ(r+r′)−1

· ĝ−b(r+r′)−1(s+α2(u+u′)) (53)

The correctness of ĝcdh follows from a argument similar to Lemma 4.
We now prove that assuming the hardness of DDH in Ĝ, if A forges a signature in the real protocol

with probability εσ, then A also forges a signature in the simulated protocol with probability at least

24

εσ − εDDH − 2εnizk-fail − εF. Here εDDH is the advantage of any adversary in breaking the DDH in Ĝ,
εnizk-fail = (qHF · qs · n)/|F|2, and εF = 1/(|F|−1).

Lemma 10. Given pairing groups (G, Ĝ,GT), if a PPT adversary A forges a signature in the real protocol
with probability εσ, then A also forges a signature in the simulated protocol with probability at least at
least εσ − εDDH − 2εnizk-fail − εF. Here εDDH is the advantage of any adversary in breaking the DDH in Ĝ,
εnizk-fail = (qHF · qs · n)/|F|2, and εF = 1/(|F|−1).

We will prove this via a sequence of games. Game G0 being the real execution is the real protocol
execution, and game G8 being the interaction of A with Aco-CDH.

Game G0 to Game G4: Similar to game G0 to G4 in §6.4, except Aco-CDH runs the DKG protocol in
Figure 5 with A instead of the KGen functionality. Hence, by a similar argument as in §6.4, |Pr[G0 =
1]− Pr[G4 = 1]|≤ εDDH + εnizk-fail.

Game G5: This game is identical to G5 except that we run the DKG simulator SDKG to set up the signing
keys. Lemma 9 ensures that A’s interaction with SDKG is statistically indistinguishable from its view in the
real protocol execution, except with a negligible probability of εF. Moreover, an argument similar to Lemma 7
implies that A’s view of the rest of the signing phase is identically distributed in the game G4 and G5. Thus,
combining these, we get:

|Pr[G4 = 1]− Pr[G5 = 1]| ≤ εF (54)

Game G6: This game is identical to G6, except that we use h = ga, i.e., α = a, from the co-CDH input,
and use ĝa to compute the random oracle outputs in step 10.(b) in Figure 4. Clearly, A’s view in game G6

is identical to its view in game G7, and hence Pr[G5 = 1] = Pr[G6 = 1].

Game G7: This game is identical to G6, except that we use actual NIZK proofs for partial signatures. Thus,
using an argument similar as in the advantage of A between G3 and G4 in §6.4, we get that:

|Pr[G6 = 1]− Pr[G7 = 1]|≤ εnizk-fail (55)

Observe that game G7 is exactly the A’s interaction with Aco-CDH. Hence, from the above sequence of
games, we get that:

|Pr[G0 = 1]− Pr[G7 = 1]|≤ εDDH − 2εnizk-fail − εF =⇒ Pr[G7 = 1] ≥ εσ − εDDH − 2εnizk-fail − εF (56)

This implies that any adversary A outputs a forgery in the real execution of our signature scheme (i.e., G0)
with probability εσ, then A outputs a forgery during its interaction with Aco-CDH (i.e., G7) with probability
at least εσ − εDDH − 2εnizk-fail − εF. We use this to prove the following main theorem.

Theorem 6 (Adaptively secure BLS threshold signature with DKG). Let G, Ĝ,GT be a pairing
group of prime order q. Let λ be the security parameter. For any n, t for n = poly(λ) and t < n/2, let DKG be
a DKG protocol that satisfies the properties we describe in §7.1. Then, assuming hardness of decisional diffie-
hellman (DDH) in Ĝ, and co-computational diffie-hellman (co-CDH) in G, Ĝ in the random oracle model,
the threshold signature scheme in §5 where signers use DKG to generate the signing keys is (εσ, T, qH, qHF , qs)
unforgeable under chosen message attack as per Definition 4 against an adaptive adversary A corrupting up
to t signers, where

εσ ≤ εDDH + 2εnizk-fail + εF + qH · εCDH,

εnizk-fail = (qHF · qs ·n)/|F|2, εF = 1/(|F|−1), and εDDH and εCDH are the advantages of an adversary running

in T · poly(λ, n) time in breaking the DDH in Ĝ and co-CDH assumption in G, Ĝ, respectively.

Proof. Same as the proof of Theorem 5, except we now also have the additional additive security loss of εF.

25

8.1 Unforgeability with static adversary

We now briefly argue that our signature scheme is statically secure, assuming the hardness of CDH assump-
tion in a pairing group G, Ĝ in the ROM. Let Astatic be the static adversary that breaks the unforgeability
of our signature scheme, and let ACDH be the CDH adversary. Then, except for the DKG simulation, ACDH

interacts with Astatic exactly as in §6.5. ACDH simulates the DKG protocol as follows.

Simulating the DKG protocol. For simplicity, let us assume |C ∪ S|= t. ACDH samples h, v ←$ G.
Next, on behalf of each honest node i ∈ H, ACDH picks random degree t polynomials ri(x), ui(x) with
ri(0) = ui(0) = 0. To compute the polynomial si(x), Astatic samples αi ←$ F and si(j) ←$ F for each
j ∈ C ∪S. ACDH then uses si(0) = s ·αi as the secret of dealer i. Aco-CDH computes the DKG commitments
as: cmi[0] = gsi(0) and cmi[j] = gsi,j for each j ∈ [t], using interpolation in the exponent. ACDH then continue
the rest of the simulation as per the standard approach [GJKR07].

9 Implementation and Evaluation

9.1 Evaluation Setup

We implement our threshold signature scheme in Go. Our implementation is publicly available at https:

//github.com/sourav1547/adaptive-bls. We use the gnark-crypto library [BPH+23] for efficient finite
field and elliptic curve arithmetic for the BLS12-381 curve. We also use (for both our implementation and the
baselines) the multi-exponentiation of group elements using Pippenger’s method [BDLO12, §4] for efficiency.
We evaluate our scheme and baselines on a t3.2xlarge Amazon Web Service (AWS) instance with 32 GB
RAM, 8 virtual cores, and 2.50GHz CPU.

Baselines. We implement two variants of Boldyreva’s BLS threshold signatures as baselines. The variants
differ in how the aggregator validates the partial signatures. The Boldyreva-I variant is the standard variant
we describe in §4.4. In Boldyreva-II, along with the partial signatures, signers also attach a Σ-protocol proof
attesting to the correctness of the partial signatures. Instead of pairings, the aggregator uses the Σ-protocol
proof to check the validity of the partial signatures, resulting in faster verification time. We refer readers
to Burdges et al. [BCLS22] for more details on Boldyreva-II. For Σ-protocols in both Boldyreva-II and our
scheme, we use the standard optimization where the proof omits the first message of the prover and instead
includes the fiat-shamir challenge [CS97].

We evaluate the signing time and partial signature verification time of our scheme. The signing time
refers to the time a signer takes to sign a message and compute the associated proofs. The partial signature
verification time measures the time the aggregator takes to verify a single partial signature. Note that after
partial signature verification, the aggregation time of our threshold signature is identical to the aggregation
time of Boldyreva’s scheme, but for completeness, we also measure the total aggregation time. Our final
verification time is identical to Boldyreva’s scheme (and standard BLS).

9.2 Evaluation Results

We report our results in Table 1. Through our evaluation, we seek to illustrate that our scheme only adds a
small overhead compared to Boldyreva’s scheme [Bol03] to achieve adaptive security.

Signing time. As expected, the per signer signing time of Boldyreva-II is slightly higher than Boldyreva-I,
as a signer in Boldyreva-II also computes the Σ-protocol proof. Similarly, our per signer signing cost is 3.3×
higher than Boldyreva-II as our Σ-protocol involves more computation than Boldyreva-II.

Partial signature verification time. The verification time of Boldyreva-II is less than Boldyreva-I, as
pairings operations are much slower than group exponentiations. As expected, our partial signature verifi-
cation time is 2.84× longer than Boldyreva-II due to more expensive Σ-protocol verification. Compared to
Boldyreva-I, our partial signature verification is 1.92× slower.

Partial signature size. The partial signature size only depends on the underlying elliptic curve group
we use. For the BLS12-381 elliptic curve, F,G and Ĝ elements are 32, 48, and 96 bytes, respectively. The

26

https://github.com/sourav1547/adaptive-bls
https://github.com/sourav1547/adaptive-bls

Table 1: Comparison of BLS threshold signatures using BLS12-381 elliptic curve. We assume that public
keys are in G and signatures are in Ĝ.

Scheme
Partial signing
time (in ms)

Parital signature
verification time (in ms)

Partial Signature
size (in bytes)

Aggregation time
for t = 64 (in ms)

Boldyreva-I 0.81 1.12 96 74.01
Boldyreva-II 1.20 0.76 160 55.43

Ours scheme 3.92 2.16 224 149.52

partial signature in Boldyreva-I is a single Ĝ element, which is 96 bytes. In Boldyreva-II, the partial signa-
ture also consists of a Σ-protocol proof, that, using the standard optimization of including the fiat-shamir
challenge [CS97] is (c, z) ∈ F2. Hence, the partial signatures in Boldyreva-II are 64 bytes longer compared to
Boldyreva-I. Finally, our partial signature includes a Σ-protocol proof (c, zs, zr, zu) ∈ F4, and hence in total
are 224 bytes long. If we assume that parties are semi-honest, then partial signatures of all three schemes
will be identical.

Total aggregation time. We measure the total signature aggregation time for t = 64. Recall during ag-
gregation, the aggregator, apart from verifying the partial signatures, performs O(t log2 t) field operations to
compute all the Lagrange coefficients and a multi-exponentiation of width t [TCZ+20]. Since field operations
are orders of magnitude faster than group exponentiations, for moderate values of t such as 64, the partial
signature verification costs dominate the total aggregation time. Thus, the aggregation time of all three
schemes we evaluate is approximately t times the single partial signature verification time.

10 Discussion and Conclusion

In this paper, we presented a new adaptively secure threshold BLS signature scheme and a distributed
key generation protocol for it. Our scheme is adaptively secure assuming the hardness of decisional Diffie
Helmann (DDH) and co-computational Diffie Hellmann assumption (co-CDH) in asymmetric pairing groups
in the random oracle model (ROM). The security of our scheme gracefully degenerates: in the presence of a
static adversary, our scheme relies only on the hardness of CDH in pairing groups in the ROM, which is the
same assumption as in the standard non-threshold BLS signature scheme.

Our scheme maintains the non-interactive signing, compatible verification, and practical efficiency of
Boldyreva’s BLS threshold signatures. We implemented our scheme in Go, and our evaluation illustrates
that it has a small overhead over the Boldyreva scheme.

Future research directions. Our scheme only works with type-II and type-III asymmetric pairing groups.
This is because the security of our signature scheme assumes the hardness of DDH. Removing the reliance on
the DDH assumption on a source group is a fascinating open problem. Another exciting research direction is
to extend our ideas to prove the adaptive security of other threshold signature or encryption schemes such
as threshold Schnorr, ECDSA, and RSA.

Acknowledgments

The authors would like to thank Dan Boneh for pointing us to the DDH rerandomization exercise in their
book. We thank Amit Agarwal, Renas Bacho, Julian Loss, Victor Shoup, and Alin Tomescu, and Zhoulun
Xiang for helpful discussions related to the paper. This work is funded in part by a Chainlink Labs Ph.D.
fellowship and the National Science Foundation award #2240976.

27

References

ADN06. Jesús F Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified threshold rsa with adaptive and
proactive security. In Advances in Cryptology-EUROCRYPT 2006: 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28-June 1,
2006. Proceedings 25, pages 593–611. Springer, 2006.

AF04. Masayuki Abe and Serge Fehr. Adaptively secure feldman vss and applications to universally-composable
threshold cryptography. In Annual International Cryptology Conference, pages 317–334. Springer, 2004.

AMS19. Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated asyn-
chronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 337–346, 2019.

arp23. Randcast-arpa network. https://docs.arpanetwork.io/randcast, 2023.
BCK+22. Mihir Bellare, Elizabeth Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu. Better

than advertised security for non-interactive threshold signatures. In Annual International Cryptology
Conference, pages 517–550. Springer, 2022.

BCLS22. Jeff Burdges, Oana Ciobotaru, Syed Lavasani, and Alistair Stewart. Efficient aggregatable bls signatures
with chaum-pedersen proofs. Cryptology ePrint Archive, 2022.

BDLO12. Daniel J Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. Faster batch forgery iden-
tification. In Progress in Cryptology-INDOCRYPT 2012: 13th International Conference on Cryptology
in India, Kolkata, India, December 9-12, 2012. Proceedings 13, pages 454–473. Springer, 2012.

BGP92. Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed consensus. In Computer
science, pages 313–321. Springer, 1992.

BHK+23. Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Yiping Ma, and Tal Rabin. Sprint: High-throughput
robust distributed schnorr signatures. Cryptology ePrint Archive, 2023.

BL22. Renas Bacho and Julian Loss. On the adaptive security of the threshold bls signature scheme. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pages
193–207, 2022.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Advances in
Cryptology—ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptol-
ogy and Information Security Gold Coast, Australia, December 9–13, 2001 Proceedings 7, pages 514–532.
Springer, 2001.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
diffie-hellman-group signature scheme. In Public Key Cryptography, volume 2567, pages 31–46. Springer,
2003.

BP23. Lúıs T. A. N. Brandão and Rene Peralta. Nist ir 8214c: First call for multi-party threshold schemes.
https://csrc.nist.gov/pubs/ir/8214/c/ipd, 2023.

BPH+23. Gautam Botrel, Thomas Piellard, Youssef El Housni, Arya Tabaie, Gus Gutoski, and Ivo Kubjas.
Consensys/gnark-crypto: v0.9.0, January 2023.

BS23. Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft 0.6, 2023.
CGJ+99. Ran Canetti, Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive security

for threshold cryptosystems. In Advances in Cryptology—CRYPTO’99: 19th Annual International Cryp-
tology Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19, pages 98–116.
Springer, 1999.

CGRS23. Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Practical schnorr threshold signatures
without the algebraic group model. Cryptology ePrint Archive, 2023.

CKM21. Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr assuming schnorr: security of
multi-and threshold signatures. Cryptology ePrint Archive, 2021.

CKM23. Elizabeth Crites, Chelsea Komlo, and Mary Maller. Fully adaptive schnorr threshold signatures. In
Annual International Cryptology Conference. Springer, 2023.

CL24. Yi-Hsiu Chen and Yehuda Lindell. Feldman’s verifiable secret sharing for a dishonest majority. Cryptology
ePrint Archive, 2024.

CS97. Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete logarithms.
Technical Report/ETH Zurich, Department of Computer Science, 260, 1997.

CS04. John Canny and Stephen Sorkin. Practical large-scale distributed key generation. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 138–152. Springer, 2004.

Dam02. Ivan Damg̊ard. On σ-protocols. Lecture Notes, University of Aarhus, Department for Computer Science,
page 84, 2002.

28

https://docs.arpanetwork.io/randcast
https://csrc.nist.gov/pubs/ir/8214/c/ipd

Des88. Yvo Desmedt. Society and group oriented cryptography: A new concept. In Advances in Cryptol-
ogy—CRYPTO’87: Proceedings 7, pages 120–127. Springer, 1988.

dra23. Distributed randomness beacon: Verifiable, unpredictable and unbiased random numbers as a service.
https://drand.love/docs/overview/, 2023.

DS83. Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM Journal
on Computing, 12(4):656–666, 1983.

DYX+22. Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, and Ling Ren.
Practical asynchronous distributed key generation. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 2518–2534. IEEE, 2022.

FMY99a. Yair Frankel, Philip MacKenzie, and Moti Yung. Adaptively-secure distributed public-key systems. In
European Symposium on Algorithms, pages 4–27. Springer, 1999.

FMY99b. Yair Frankel, Philip MacKenzie, and Moti Yung. Adaptively-secure optimal-resilience proactive rsa. In
International Conference on the Theory and Application of Cryptology and Information Security, pages
180–194. Springer, 1999.

FS01. Pierre-Alain Fouque and Jacques Stern. One round threshold discrete-log key generation without private
channels. In International Workshop on Public Key Cryptography, pages 300–316. Springer, 2001.

GG20. Rosario Gennaro and Steven Goldfeder. One round threshold ecdsa with identifiable abort. Cryptology
ePrint Archive, 2020.

GHM+17. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Proceedings of the 26th symposium on operating systems
principles, pages 51–68, 2017.

GJKR96. Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold dss signatures. In
Advances in Cryptology—EUROCRYPT’96: International Conference on the Theory and Application of
Cryptographic Techniques Saragossa, Spain, May 12–16, 1996 Proceedings 15, pages 354–371. Springer,
1996.

GJKR07. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation
for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, 2007.

GKKS+22. Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun Xiang.
Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback. In International
conference on financial cryptography and data security. Springer, 2022.

GPS08. Steven D Galbraith, Kenneth G Paterson, and Nigel P Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

Gro21. Jens Groth. Non-interactive distributed key generation and key resharing. IACR Cryptol. ePrint Arch.,
2021:339, 2021.

GS23. Jens Groth and Victor Shoup. Fast batched asynchronous distributed key generation. Cryptology ePrint
Archive, 2023.

ic23. Internet computer: Chain-key cryptography. https://internetcomputer.org/how-it-works/

chain-key-technology/, 2023.
JL00. Stanis law Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Introducing concur-

rency, removing erasures. In Advances in Cryptology—EUROCRYPT 2000: International Conference on
the Theory and Application of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings
19, pages 221–242. Springer, 2000.

KG21. Chelsea Komlo and Ian Goldberg. Frost: flexible round-optimized schnorr threshold signatures. In
Selected Areas in Cryptography: 27th International Conference, Halifax, NS, Canada (Virtual Event),
October 21-23, 2020, Revised Selected Papers 27, pages 34–65. Springer, 2021.

KHG12. Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation in the wild. IACR Cryptol.
ePrint Arch., 2012:377, 2012.

KKMS20. Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous distributed key
generation for computationally-secure randomness, consensus, and threshold signatures. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages 1751–1767,
2020.

KL07. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography: principles and protocols. Chap-
man and hall/CRC, 2007.

KY02. Jonathan Katz and Moti Yung. Threshold cryptosystems based on factoring. In Advances in Cryp-
tology—ASIACRYPT 2002: 8th International Conference on the Theory and Application of Cryptology
and Information Security Queenstown, New Zealand, December 1–5, 2002 Proceedings 8, pages 192–205.
Springer, 2002.

29

https://drand.love/docs/overview/
https://internetcomputer.org/how-it-works/chain-key-technology/
https://internetcomputer.org/how-it-works/chain-key-technology/

LJY14. Benôıt Libert, Marc Joye, and Moti Yung. Born and raised distributively: Fully distributed non-
interactive adaptively-secure threshold signatures with short shares. In Proceedings of the 2014 ACM
symposium on Principles of distributed computing, pages 303–312, 2014.

LLTW20. Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-mvba: Optimal multi-valued validated
asynchronous byzantine agreement, revisited. In Proceedings of the 39th Symposium on Principles of
Distributed Computing, pages 129–138, 2020.

LP01. Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold setting: From cryptosystems to
signature schemes. In Advances in Cryptology—ASIACRYPT 2001: 7th International Conference on the
Theory and Application of Cryptology and Information Security Gold Coast, Australia, December 9–13,
2001 Proceedings 7, pages 331–350. Springer, 2001.

LSP82. LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

LY13. Benôıt Libert and Moti Yung. Adaptively secure non-interactive threshold cryptosystems. Theoretical
Computer Science, 478:76–100, 2013.

MR21. Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated byzantine agreement.
In 35th International Symposium on Distributed Computing, DISC 2021, page 32. Schloss Dagstuhl-
Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2021.

MXC+16. Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft protocols.
In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages
31–42, 2016.

Ped91. Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. In Workshop on the Theory
and Application of of Cryptographic Techniques, pages 522–526. Springer, 1991.

Rab98. Tal Rabin. A simplified approach to threshold and proactive rsa. In Advances in Cryptol-
ogy—CRYPTO’98: 18th Annual International Cryptology Conference Santa Barbara, California, USA
August 23–27, 1998 Proceedings 18, pages 89–104. Springer, 1998.

RRJ+22. Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schröder. Roast:
Robust asynchronous schnorr threshold signatures. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 2551–2564, 2022.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptol-
ogy—CRYPTO’89 Proceedings 9, pages 239–252. Springer, 1990.

Sha79. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
Sho00. Victor Shoup. Practical threshold signatures. In Advances in Cryptology—EUROCRYPT 2000: Inter-

national Conference on the Theory and Application of Cryptographic Techniques Bruges, Belgium, May
14–18, 2000 Proceedings 19, pages 207–220. Springer, 2000.

Sho23. Victor Shoup. The many faces of schnorr. Cryptology ePrint Archive, 2023.
ska23. Skale network documentation: Distributed key generation (dkg). https://docs.skale.network/

technology/dkg-bls, 2023.
TCZ+20. Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan Gueta, and

Srinivas Devadas. Towards scalable threshold cryptosystems. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 877–893. IEEE, 2020.

TZ23. Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash functions.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages
628–658. Springer, 2023.

Wat05. Brent Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptology–
EUROCRYPT 2005: 24th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings 24, pages 114–127. Springer, 2005.

WQL09. Zecheng Wang, Haifeng Qian, and Zhibin Li. Adaptively secure threshold signature scheme in the
standard model. Informatica, 20(4):591–612, 2009.

YMR+19. Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 347–356. ACM, 2019.

30

https://docs.skale.network/technology/dkg-bls
https://docs.skale.network/technology/dkg-bls

	Adaptively Secure BLS Threshold Signatures from DDH and co-CDH

