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Abstract. In this paper, we propose the first two-round multi-signature
scheme that can guarantee 128-bit security under a standardized EC in
concrete security without using the Algebraic Group Model (AGM). To
construct our scheme, we introduce a new technique to tailor a certain
special homomorphic commitment scheme for the use with the Katz-
Wang DDH-based signature scheme. We prove that an EC with at least
a 321-bit order is sufficient for our scheme to have the standard 128-
bit security. This means that it is easy for our scheme to implement in
practice because we can use the NIST-standardized EC P-384 for 128-
bit security. The signature size of our proposed scheme under P-384 is
1152 bits, which is the smallest size among the existing schemes without
using the AGM. Our experiment on an ordinary machine shows that for
signing and verification, each can be completed in about 65 ms under 100
signers. This shows that our scheme has sufficiently reasonable running
time in practice.
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1 Introduction

In a multi-signature scheme [23], for a single common message m, multiple parties
cooperatively generate a signature, known as a multi-signature, which is basically
a combination of multiple individual signatures on m where each is created by
each party using its own signing key. An essential property of the multi-signature
is that its size is kept constant independently of the number of parties. Multi-
signature schemes based on several hardness problems are proposed so far, e.g.,
the DL (discrete logarithm)-based schemes [2, 6, 8, 16, 29, 33, 34, 37, 38], pairing-
based schemes [10,11,28,31,41], and lattice-based schemes [5, 12,15,19,32].

In this research, we focus on DL-based multi-signature schemes which can
be implemented under the elliptic curves used to implement standard digital
signature schemes, e.g., the ECDSA [36] and the Schnorr signature scheme [43],
used in cryptocurrencies, e.g., Bitcoin.

For multi-signatures, the primary desirable features are the followings. The
first one is the security in the plain public-key (PPK) model, which allows an
adversary to make cosigners’ public keys maliciously without knowing the signing
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keys. The second is key aggregation property, which allows aggregating a set of
public keys into a single short key when signatures are verified. The third is
a small number of rounds of communication for signing. Moreover, a scheme
achieving a small signature size (independent from the number of signers) while
achieving these three properties is desirable.

For DL-based multi-signature schemes, Bellare and Neven proposed the first
three-round scheme, which is the scheme with three rounds of communication for
signing, proven secure in the PPK model [8]. Moreover, Maxwell et al. proposed
the first three-round scheme with key aggregation [33]. In recent years, several
two-round schemes, achieving security in the PPK model and the support key
aggregation, are proposed [2, 6, 16,29,37,38].

1.1 Importance of Concrete Security for Parameter Choice

In theoretically, a security proof of a cryptosystem consists of a reduction from
solving some computational problem to breaking the cryptosystem under a de-
fined adversarial model. From the security proof, usually, we can derive a relation
between TA = tA/εA and TP = tP /εP , where tA and εA are the adversary’s run-
ning time and success probability for breaking the cryptosystem and tP and εP
are the algorithm’s running time and success probability for solving the computa-
tional problem. A typical relation between TP and TA is as follows: TA ≥ TP /Φ,
where Φ is often referred to as the reduction loss.

When we derive the size of parameters, e.g., an order of the underlying group
in a DL-based scheme, for guaranteeing the security of the cryptosystem in prac-
tice, Φ was often disregarded. However, this disregard sometimes makes schemes
vulnerable. An example of this vulnerability is shown by the recent work of
Kales and Zaverucha [24] which demonstrated an attack on the MQDSS signa-
ture scheme [42]. Their attack exploits the fact that the parameter of MQDSS
was derived without considering Φ. Therefore, it is important to derive the size
of parameters by considering Φ based on the security proof, and thus we should
implement cryptosystems with provable secure parameters.

A small Φ is preferable in practice because it does not let the problem men-
tioned above occur in the first place. Also, if Φ is large, we need to ensure that
TP is sufficiently large so that the derived lower bound of TA, i.e., TP /Φ, is not
too small to have a practical meaning. Usually, the only way to make TP larger
is by setting larger parameters, which means higher costs for implementation in
practice. If Φ is a relatively small constant value independent of the parameters
of the cryptosystem and the adversary, we say that the security proof is tight.

Also, it is difficult for a scheme with a large Φ to use the standardized crypto-
graphic tools. Specifically, for the DL-based schemes, a elliptic curve (EC) with
a 256-bit prime order is required to guarantee 128-bit security, but it is only
applied to tightly secure schemes. The scheme with a large Φ requires an EC
with an order larger than 256-bit. We have standardized ECs with such order,
e.g., NIST P-384 and P-521. However, for the scheme with very large Φ, such
ECs are not sufficient for 128-bit security, and then, we need to design a new
desireable EC. This makes the implementation difficult and less reliable.
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Table 1. Detailed Performance Comparison among Two-Round Multi-Signature
Schemes.4

Scheme Assumption Model Rewinding Sig. Size Com. Comp. |q|128 (bit) |σ̃|128 (bit) |CC|128 (bit) Key Agg.Curve |σ̃|EC (bit) |CC|EC (bit)

MuSig2 (ν = 2) [37] OMDL

AGM+ROM
Not Needed

|G|+ |Zq| 2|G|+ |Zq|
257 515 773

Yes

P-256 513 770

DWMS [2] OMDL |G|+ |Zq| 2|G|+ |Zq|
257 515 773

P-256 513 770

HBMS-AGM [6] DL |G|+ 2|Zq| |G|+ 2|Zq|
257 772 772

P-256 769 769

LK [29] DL AGM+NPROM 3|Zq| |G|+ 2|Zq|
258 774 775

P-256 768 769

MuSig-DN [38] DL, DDH, PRNG

ROM Used

|G|+ |Zq| 2|G|+ |Zq|+ |π|
740 1481 -

zk-SNARKs, PRF Not Exist - -

MuSig2 (ν ≥ 4) [37] OMDL |G|+ |Zq| ν|G|+ |Zq|
750 1501 3754

Not Exist - -

HBMS [6] DL |G|+ 2|Zq| |G|+ 2|Zq|
986 2959 2959

Not Exist - -

mBCJ [16] DL |G|+ 3|Zq| 2|G|+ 3|Zq|
544 2177 2722 NoNot Exist - -
321 963 1286Ours DDH ROM Not Needed 3|Zq| 2|G|+ 2|Zq| P-384 1152 1538 Yes

∗ Column 2 shows the security assumptions. Column 3 shows whether idealized models are used for
a cyclic group and hash functions. Column 4 shows whether the reduction in the security proof uses
the rewinding technique. Columns 5 and 6 show the size of the multi-signature and elements sent in
the signing protocol per a signer, respectively. Column 7 shows the required underlying group size
|q|128 and the NIST standardized EC that enables a parameter choice with 128-bit security, which
is called the recommended EC hereafter. Column 8 shows the signature sizes |σ̃|128 and |σ̃|EC under
the |q|128-bit EC group and the recommended EC, respectively. Column 9 shows the communication
complexities |CC|128 and |CC|EC under the |q|128-bit EC group and the recommended EC. Column
10 shows whether each scheme allows key aggregation. G and Zq indicate the underlying group G of
a prime order q and the ring of integers modulo q, respectively. We assume that the sizes of |G| and
|Zq| over a q-bit EC are q+1 and q bits, respectively. ROM and NPROM indicate the random oracle
model and the non-programmable random oracle model. |π| is the size of the zk-SNARK proof. For
MuSig-DN, we write “-” in Column 9 because the size of |π| considering concrete security is explicitly
unknown.

For schemes with a small Φ, it is easy to use the standardized tools because
we do not have to care about the above-mentioned problems. Specifically, for
the DL-based schemes, we can use the standardized ECs, e.g., NIST P-256 and
Secp256k1, for 128-bit security. Also if Φ is small, even though Φ is not constant,
we may be able to avoid the inconvenient situation where there is no suitable
standardized tool.

1.2 Concrete Security of Existing Multi-Signature Schemes

Tightness of Multi-Signature Schemes. Here, we review the existing two-
round multi-signature schemes in terms of the tightness of a reduction.

The existing two-round multi-signature schemes can be categorized into two
types: The first type is the schemes with a non-tight reduction (namely, having
a large reduction loss) and the second type is the schemes with a tight reduc-
tion. The schemes of the first type include MuSig-DN [38], MuSig2 (ν ≥ 4) [37],
HBMS [6], and mBCJ [16], while the schemes of the second type include MuSig2
(ν = 2) [37], DWMS [2], HBMS-AGM [6], and LK [29].
4 For MuSig2, ν is a unique parameter. In this comparison, mBCJ is a variant that is

secure in the plain public-key model, not the original one proposed in [16].
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When taking tightness into consideration, even for 128-bit security, the first-
type schemes require an elliptic curve (EC) with an order larger than 256-bit.
This is because a non-tight proof leaves a gap between the hardness of the
discrete logarithm (DL) problem (or some hard problem) in the underlying group
and the (proven) hardness of breaking the signature scheme in question. Thus,
there may be an attack against the scheme which falls into this gap. To make
such an attack inefficient provably, one needs to set the order of the group to
be larger than 256 bits, even for 128-bit security. Table 1 shows how large the
order of the group should be in order to provably ensure 128-bit security for the
above-mentioned schemes.

As Table 1 shows, each scheme of the first type requires a very large order of a
group. MuSig-DN, MuSig2 (ν ≥ 4), HBMS, and mBCJ, respectively, require 740-
bit, 750-bit, 986-bit, and 544-bit groups. Importantly, these schemes no longer
have standardized curves that provably ensure 128-bit security.

The cause of the large reduction losses of these schemes is that to prove the
security based on the DL assumption, the reduction performs the rewinding of
the adversary, like the security proof of the Schnorr signature scheme. Moreover,
in schemes with key aggregation, the number of rewindings has to be increased.
Thus, these schemes have larger reduction losses than that of the Schnorr signa-
ture scheme.

The schemes of the second type achieve tight security by using the Algebraic
Group Model (AGM) [17], which is a very idealized model of computation. The
schemes allow us to use an EC of a small order, e.g., 256-bit. However, the
reliance on the AGM needs more care because recent research [25,44] shows that
the reliability of the AGM is still not well-understood. Indeed, Zhandry showed
the one-time message authentication code that is secure in the AGM but insecure
in the standard model [44].

The random oracle model is also an idealized model of hash functions, but
the situation is rather different from the AGM. Much cryptanalytic literature
investigates the possibility of distinguishing a concrete hash function from a
random oracle by finding a dedicated input-output correlation beyond (target)
collision resistance or preimage resistance [3, 21, 26, 27]. These lines of research
provide a more fine-grained understanding of how far (or near) concrete hash
functions are from a random oracle.

1.3 Our Contribution

In this paper, we propose a two-round multi-signature scheme from the decisional
Diffie-Hellman (DDH) assumption and the random oracle model, without using
the AGM. This scheme guarantees 128-bit security under a standardized EC,
e.g., NIST P-384. Thus, Our scheme is the first scheme that can guarantee 128-
bit security under a standardized EC without using AGM. Moreover, our scheme
is proven secure in the PPK model and supports key aggregation.

To achieve a scheme with the following both properties: two rounds of com-
munication for signing and a small reduction loss, we construct our scheme based
on the Katz-Wang signature scheme [22] by applying the technique of HBMS.
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HBMS uses a certain special homomorphic commitment scheme to achieve a
two-round signing protocol. However, this commitment scheme is specialized to
use together with the Schnorr signature scheme. Therefore, we cannot apply this
commitment scheme to our case. To overcome this, we introduce a new technique
to tailor a certain special homomorphic commitment scheme for the use with the
Katz-Wang DDH-based signature scheme.

We describe the features of our proposed scheme by comparing with the
existing schemes without using the AGM in below.

Although ours does not achieve tight security, i.e., a constant reduction loss,
ours can reduce the reduction loss compared to the other schemes. Specifically,
we prove that our scheme only needs an EC with at least 321-bit order to ensure
128-bit security. Therefore, the curve P-384 is sufficient. Using an EC with a
smaller order makes several computations faster and hardware implementations
easier. Existing schemes in Table 1 cannot use a standardized EC for 128-bit
security. As previously described, such a situation makes implementation difficult
and reduces the reliability of the parameter choice. Thus, we can conclude that
the advantage of our scheme removes several obstacles to implementation.

The signature size and the communication complexity of ours are the short-
est among the existing schemes. Under P-384, the size of the multi-signature is
1152 bits. Compared to MuSig-DN, MuSig2 (ν ≥ 4), HBMS, and mBCJ, this size
is reduced by more than 22%, 23%, 60%, and 47%, respectively. Moreover, the
communication complexity of ours is the shortest among them. The communica-
tion completely is 1538 bits under P-384. Compared to MuSig2 (ν ≥ 4), HBMS,
and mBCJ, this size is reduced by more than 59%, 48%, and 43%.

We implement our scheme on an ordinary machine and measure the running
time of our implementation.5 We set the number of signers N = 3, 5, 10, and 15,
as typical numbers of signers in a real-world Multi-Sig Wallet, and N = 50 and
100 as large-scale settings. For more details of the setting and the environment,
see Section 5. Both the running time of the signing protocol and that of the
verification under N = 15 are less than 10 ms. For large-scale settings, both
the running time of the signing protocol and that of the verification are about
30 ms under N = 50, and those are about 65 ms under N = 100. Moreover,
since our proposed scheme also supports key aggregation, by precomputing the
aggregated key, both the running time of signing and that of verification can be
shortened to less than 2 ms irrelevantly to N . Thus, we can consider that our
scheme has a realistic running time in practice.

1.4 Related Works

Bellare and Neven proposed the first Schnorr-based three-round multi-signature
scheme [8] which is secure in the PPK model. In the document [7], they also
proposed a DDH-based scheme which is built from the Katz-Wang signature
scheme. Maxwell et al. proposed a variant of the Bellare-Neven scheme that
5 We do not take into account the communication time between parties because it

varies largely depending on the network environment.
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supports key aggregation [33]. Fukumitsu and Hasegawa proposed a DDH-based
scheme with key aggregation [18].

Drijvers et al. proposed a secure Schnorr-based two-round multi-signature
scheme mBCJ [16]. They constructed this scheme by applying a patch to the
insecure two-round scheme BCJ [4] which uses the homomorphic (special) equiv-
ocal commitment scheme. Bellare and Dai proposed the improvement of mBCJ
as HBMS [6]. Recently, Lee and Kim proposed a two-round scheme LK [29]
based on HBMS and the Okamoto identification scheme [39]. The security of
these schemes is proven under the DL assumption. The approach to construct-
ing our proposed scheme based on the DDH assumption is a similar direction to
mBCJ’s approach. MuSig-DN [38] is the two-round multi-signature scheme with
the different approach from the above schemes. Specifically, this scheme achieves
a two-round signing protocol by using the pseudorandom functions (PRF), the
pseudorandom number generators (PRNG), and the succinct non-interactive ar-
guments of knowledge (SNARKs) [13] to make the signing protocol deterministic.
MuSig2 [37] and DWMS [2] are also two-round schemes with different approaches
from the above-mentioned schemes. They are proven secure under the one-more
DL assumption.

2 Preliminaries

2.1 Notation

Unless noted otherwise, any algorithm is probabilistic. For an algorithm A, we
write b ←$ A(α1, . . .) to mean that A on inputs α1, . . . and a uniformly chosen
random tape outputs b. For algorithms A1, . . . ,An, we write b ←$ ⟨{Ai(αi1,
. . .)}ni=1⟩ to mean that each algorithm Ai on inputs αi1, . . . and a uniformly
chosen random tape executes a protocol with the others, and eventually all
algorithms obtain b. For a list L, we write the i-th element in L as L[i]. For any
value a, we write a← b means the assignment of a into b.

2.2 Hardness Assumption

For a prime integer q, we denote the ring of integers modulo q by Zq. Let G be
an additive cyclic group of order q and let G be a generator of G. We denote the
identity element of G by O.

In this paper, we use the following notations. For A, B, G, H ∈ G and
x ∈ Zq, we write (A,B)T ← x(G,H)T to mean that A and B are computed
by xG and xH, respectively. Also, for A, B, G, H, Y, Z ∈ G, we write
(A,B)T ← (G,H)T + (Y, Z)T to mean that A and B are computed by G + Y
and H + Z, respectively.

Below, we recall the definition of the decisional Diffie-Hellman (DDH) as-
sumption.
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Definition 1. The advantage AdvddhG (A) of an algorithm A is defined as

AdvddhG (A) = |Pr[A(G, xG, yG, xyG) = 1 : x, y ←$ Zq]

−Pr[A(G, xG, yG, zG) = 1 : x, y ←$ Zq, z ←$ Zq\{xy}]| .

We say that an algorithm A (t, ε)-solves the DDH problem in G if A runs in
time at most t and satisfies AdvddhG (A) ≥ ε. We also say that G is a (t, ε)-DDH
group if there is no algorithm that (t, ε)-solves the DDH problem in G.

2.3 Multi-Signatures

In this section, we show the definition and security model of the multi-signature
scheme.

Definition 2. A multi-signature scheme consists of the following three algo-
rithms and an interactive protocol. Let n be the number of signers.

Pg()→ pp. On no input, the public parameter generation algorithm outputs a
public parameter pp.

Kg(pp)→ (pk , sk). On an input pp, the key generation algorithm outputs a pub-
lic key pk and a secret key sk .

⟨{S(pp, i, sk i, L,m)}ni=1⟩ → σ̃. The signing protocol is executed by multiple sign-
ers who intend to sign on the common message m. On inputs pp, an index of
signers i, sk i, a public-key list L = {pk1, . . . , pkn}, and m, each signer exe-
cutes the signing protocol with cosigners. Finally, it outputs a multi-signature
σ̃ on m.

Vf(pp, L, σ̃,m)→ {0, 1}. On inputs pp, L, σ̃, and m, the verification algorithm
deterministically outputs 1 (Accept) or 0 (Reject).

A multi-signature scheme must satisfy the following completeness property: For
any message m and any n,

Pr

Vf(pp, L, σ̃,m) = 1 :

pp ←$ Pg(),
∀i ∈ {1, n}, (pk i, sk i)←$ Kg(pp),
L← {pk i}ni=1,
σ̃ ←$ ⟨{S(pp, i, sk i, L,m)}ni=1⟩

 = 1.

Security Definition of Multi-Signatures. Here, we show the security defi-
nition of multi-signatures. Our security model is very similar to Bellare-Neven’s
model [8].

Our security model is formally defined by the following three-phase game.

Setup. The challenger generates a public parameter pp by Pg() and a key pair
(pk , sk) by Kg(pp). It initializes tables TM [·] and TΣ [·] to ∅. It sends pp and
pk to a forger F . F is allowed to access random oracles and a signing oracle.
F can corrupt all signers who have different public keys from pk .
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Signing Oracle. The challenger receives a message m, a session number Is,
and a public-key list L as a signing query from F . Let nh = {i|L[i] = pk}.
The challenger responses as follows.
Case |nh| = 0. The challenger returns ⊥ to F .
Case |nh| ≥ 1. The challenger executes the signing protocol by behaving as

any honest signer corresponding to indices in nh. Note that it behaves as
each honest signer by maintaining its state and using its random tape.
Let stℓ be the state information, kept during the protocol, of the honest
signer corresponding to ℓ ∈ nh. At the end of each round of the protocol,
the challenger stores TΣ [Is]← {stℓ}ℓ∈nh

.
F is allowed to make multiple signing queries concurrently. Note that, under
the same session number, F is not allowed to make multiple signing queries
in the same round of the signing protocol. If the signing protocol for queried
m is completed, the challenger assigns TM [m]← 1.

Check. Finally, F outputs a public-key list L∗, a message m∗, and a forgery σ̃∗.
F is said to win the game if F ’s output satisfies that pk ∈ L∗, TM [m∗] ̸= 1,
and Vf(pp, L∗, σ̃∗,m∗) = 1.

Definition 3. For a multi-signature scheme MS, let AdvMS(F) be the proba-
bility that F wins the above game. We say that F (t, qS , qH , N, ε)-breaks multi-
signature scheme MS if F runs in at most t time, it makes at most qS signing
queries and qH random oracle queries, the numbers of public keys included in L
for any signing queries and a forgery are at most N , and AdvMS(F) ≥ ε. We
say a multi-signature scheme MS is (t, qS , qH , N, ε)-secure if there is no F that
(t, qS , qH , N, ε)-breaks MS.

3 Proposed Scheme

We show the construction of our proposed two-round multi-signature scheme
and its security. We construct our scheme by combining the Katz-Wang DDH-
based signature scheme [22] to avoid rewinding and the technique of HBMS [6],
a Schnorr-based two-round multi-signature scheme.

3.1 Overview of Our Proposed Scheme

Below, we describe the intuition of the construction.
Towards constructing a tightly secure two-round multi-signature scheme, we

begin with the Katz-Wang (standard) signature scheme and a three-round multi-
signature version of this by Bellare and Neven [7].

Recall that the Katz-Wang signature scheme employs a lossy identification
protocol [1] based on the DDH assumption. The public key of this signature
scheme is a Diffie-Hellman (DH) tuple. The unforgeability is proven under the
DDH assumption as follows: First, we prove that when the public key is replaced
with a non-DH tuple, which is called the lossy key, forgery is statistically hard
using the (simulation) soundness of the Fiat-Shamir transformation of the lossy
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identification protocol. Namely, under the lossy key, even for a computationally
unbounded adversary, the success probability of an adversary is negligible. Next,
assume that there is an adversary that can perform forgery with a non-negligible
probability under the real public key, i.e., a DH tuple. Notice that this assump-
tion induces a non-negligible gap between the adversary’s success probability
under the lossy key and that under the real public key. Based on this, we can
construct an algorithm that can solve the DDH problem by internally running
(without rewinding) the adversary given an instance of the problem as the public
key.

The Bellare-Neven three-round multi-signature scheme based on the DDH
assumption [7] uses a random oracle as a commitment scheme. Due to this use
of a random oracle, the signing protocol requires three rounds. Specifically, in
the first round, each signer generates a commitment value t of a commitment R
of the Schnorr protocol by using a random oracle and shares t with all cosigners.
In the second round, they open their commitment R. Finally, in the third round,
each signer sends his response s of the Schnorr protocol to each other and then
generates a multi-signature. To generate s, each signer generates a challenge c
by another random oracle Hc(R̃,m,L, pk), where R̃ is an aggregated value of all
the signers’ R, m is the message, L is the list of the public keys, and pk is his
own public key. Indeed, in this signing protocol, signers need to share t before
they share R, and thus this protocol has three rounds.

The technique of HBMS [6] which is based on the Schnorr signature, is known
as one of the ways to reduce the round complexity. Instead of using the ran-
dom oracle to commit R, this scheme uses a special homomorphic commitment
scheme. Specifically, in the first round, each signer generates a commitment
key ck by a random oracle Hck(m) and sends a homomorphic commitment T
of a commitment R to each other. In the second round, each signer sends the
decommitment d of the homomorphic commitment and the response s simul-
taneously. In this case, the challenge c is generated by another random oracle
Hc(T̃ ,m,L, pk), where T̃ is an aggregated value of all signers’ T .

Next, we try to construct a new scheme based on the DDH assumption which
has a two-round signing protocol by combining the Katz-Wang signature scheme
and the technique of HBMS.

Note that in contrast to the Schnorr signature Scheme, the Katz-Wang sig-
nature scheme has the commitment R consisting of two elements instead of one
in the underlying group G. Thus, we can not just apply the commitment scheme
of HBMS to the R of the Katz-Wang signature scheme. However, one may think
that the following naive way is sufficient. First, one generates ck using a random
oracle of the two elements in G and uses each of the two elements as the individ-
ual commitment key of a single commitment scheme of HBMS. Then, one applies
each of the two separated commitment schemes of HBMS to each element of R.

Unfortunately, this naive approach is not sufficient to prove that forgery
is statistically hard when the public key is the lossy key (i.e., a non-DH tu-
ple). In the verification equation of our scheme, a verifier computes a linear
combination of a commitment key ck , a public key pk (which is also an ele-
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ment of G2), and another DH tuple. Specifically, the verification equation is
T = d(ck1, ck2)

T + s(G,H)T − c(Y,Z)T where c = Hc(T,m, pk), d, s, c ∈ Zq,
(ck1, ck2) ∈ G2 produced by Hck(m), and (Y, Z)T is the public key.6 Now we
consider a situation where (ck1, ck2)

T is a DH-tuple and thus the only vector
outside the space of the DH tuples is (Y,Z)T . Then, we can rewrite (ck1, ck2)

T =
a(G,H)T where a ∈ Zq, and we obtain T = (ad + s)(G,H)T − c(Y,Z)T . No-
tice that because (G,H)T and (Y,Z)T are linearly independent, c satisfying the
equation is determined uniquely at the point when T is determined. Therefore,
when (ck1, ck2)

T is a DH tuple, we can prove that forgery is statistically hard.
However, since the naive approach chooses ck uniformly from G2, ck is a random
element in G2, and thus with an overwhelming probability, it is outside the space
of the DH tuples.

Fortunately, this issue can be addressed by relying on again the DDH as-
sumption: a random DH tuple is indistinguishable from a random tuple in G2.
Remind that ck is generated as an output of a random oracle. Thus, we can
program the random oracle to output a random DH tuple in G2 instead of a
random tuple in G2. By this, we can ensure that ck is a DH tuple in the verifi-
cation equation. Moreover, we can also replace pk with a non-DH tuple by using
the DDH assumption. This way, we can ensure that the only non-DH tuple in
the verification equation is pk . Thus, we can prove that forgery is statistically
hard under a lossy key, and then the unforgeability is proven under the DDH
assumption as in the Katz-Wang signature scheme.

3.2 Our Proposed Scheme

Below, we show the construction of our two-round multi-signature scheme.

Pg()→ pp. On no input, the public parameter generation algorithm sets up
(G, q, G). It chooses a random element H ∈ G, hash functions Hc : {0, 1}∗ →
Zq, Hck : {0, 1}∗ → G2, and Hagg : {0, 1}∗ → Zq, and then it outputs
pp = (G, q, G,H,Hc, Hck, Hagg).

Kg(pp)→ (pk , sk). On an input pp, the key generation algorithm chooses x
←$ Zq, computes (Y, Z)T ← x(G,H)T and outputs a public key pk = (Y, Z)
and a secret key sk = x.

⟨{S(pp, i, sk i, L,m)}ni=1⟩ → σ̃. Each signer proceeds with the signing protocol
as follows.
Round 1: Each signer computes tj ← Hagg((Yj , Zj), L) for all j ∈ [1, n]

and p̃k ←
∑n

j=1 tj(Yj , Zj)
T . It computes (U1, U2) ← Hck(m), chooses

ri, zi ←$ Zq and computes Ti ← zi(U1, U2)
T + ri(G,H)T . It broadcasts

Ti to the cosigners.
Round 2: Each signer receives {Tj}j∈{1,...,n}\{i} from the cosigners. It com-

putes T̃ ←
∑n

i=1 Ti, c ← Hc(T̃ , p̃k ,m), and si ← xitic + ri mod q. It
broadcasts (zi, si) to the cosigners.

6 For simplicity, we consider the case where there is only one signer and key aggregation
is not supported.
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Aggregate: Each signer receives {(zj , sj)}j∈{1,...,n}\{i} from the cosigners.
It computes z̃ ←

∑n
j=1 zj mod q and s̃←

∑n
j=1 sj mod q and outputs

σ̃ = (c, z̃, s̃).
Vf(pp, L, σ̃,m)→ {0, 1}. On inputs pp, L, σ̃, and m, the verification algorithm

computes tj ← Hagg((Yj , Zj), L) for all j ∈ [1, n] and p̃k ←
∑n

j=1 tj(Yj , Zj)
T .

It computes (U1, U2)← Hck(m) and T̃ ← z̃(U1, U2)
T + s̃(G,H)T − c · p̃k . It

outputs 1 if c = Hc(T̃ , p̃k ,m) holds. Otherwise, it outputs 0.

3.3 Security

We show that our proposed scheme is secure under the DDH assumption in the
random oracle model.

Theorem 1. If G is a (t′, ε′)-DDH group, then our scheme is (tF , qS , qH , N, εF )-
secure s.t.

εF ≤ e(qS + 1)(2ε′ + (2qH + qS + 2)/q) and tF ≥ max(t1, t2)

where t1 = t′ − (4qH + 6qSN + 2N + 12)tmul −O(qH + qSN),

t2 = t′ − (3qH + 6qSN + 3qS + 2N + 6)tmul −O(qH + qSN),

e is the base of the natural logarithm, and tmul is the time of a scalar multipli-
cation in G.

Here we show a proof sketch. For the full proof, see the full version of this
paper.

As in the Katz-Wang signature scheme, we prove the unforgeability of our
scheme by replacing the public key with a non-DH tuple due to the DDH as-
sumption and proving that forgery is statistically hard under such the public
key. The main strategy is that we ensure an situation where we can statistically
evaluate the forger’s success probability εF . To enable this, we need to ensure
a situation where we can statistically evaluate the forger’s success probability
εF even if the forger is computationally unbounded when the public key is a
non-DH tuple. To ensure such a situation, we replace (U1, U2) generated by the
random oracle Hck(m) with a random DH tuple. The effect of this replacement
is guaranteed to be negligible by the DDH assumption. However, if we replace all
(U1, U2) with DH tuples, we cannot simulate the honest signer without the secret
key sk . To solve this issue, we provide another way to generate (U1, U2) which
allows simulating the honest signer without sk . Then, to make these two con-
trasting ways compatible, we use the technique of Coron [14], which is to prove
the security of the RSA Full Domain Hash (RSA-FDH) signature scheme [9], as
in mBCJ and HBMS.

Our proof is a game-hopping proof. We start with the game of the security
definition and sequentially change it into a game in which forgery is statistically
hard. Specifically, we consider the following game-hopping.

Game G1: We change the game of the security game as follows: The challenger
generates two types of (U1, U2) instead of uniformly choosing from G2 and
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assigns one of them to the random oracle table of Hck(m) according to
a biased coin which comes out heads with a certain probability, like the
technique of Coron [14]. The first type (Type1) is to statistically evaluate
the success probability of a forger in the final game. The other type (Type2)
is to simulate the honest signer without sk in the signing oracle.

Game G2: We change the above game as follows: The challenger simulates the
honest signer without sk by using the property of (U1, U2) of Type2.

Game G3: We change the above game as follows: The challenger embeds a non-
DH tuple into pk , like the security proof of the Katz-Wang signature scheme.

In a nutshell, we show our procedure to prove that Game G1 and Game G3 are
computationally indistinguishable under the DDH assumption. First, we prove
that Game G1 and Game G2 are perfectly indistinguishable by proving that the
distribution of responses of the signing oracle with sk and that of the response
of the signing oracle using the property of (U1, U2) of Type2 are perfectly indis-
tinguishable. Next, we prove that Game G2 and Game G3 are computationally
indistinguishable by proving that pk generated by Kg in Game G2 which is a
DH tuple and pk in Game G3 which is a non-DH tuple are indistinguishable
under the DDH assumption.

Using the property of (U1, U2) of Type1, in Game G3, we can statistically
evaluate εF and then prove that forgery is statistically hard. Then, to complete
the explanation of this proof sketch, it remains to show the construction of two
types of (U1, U2) and the indistinguishability between the game of the security
definition and Game G1. We explain these below.

First, we explain the way to generate (U1, U2) of Type1. The challenger gen-
erates it satisfying that it is uniformly distributed in the span of (G,H). Specif-
ically, the challenger chooses ρ ←$ Zq and computes (U1, U2)

T ← ρ(G,H)T . To
explain why this is necessary, we consider the simple case where there is only one
signer and key aggregation is not supported. Then, the verification equation is
T1 = z1(U1, U2)

T +s1(G,H)T −c(Y1, Z1)
T where c = Hc(T1, (Y1, Z1),m). Notice

that, when (G,H, Y, Z) is a non-DH tuple and (U1, U2) is in the span of (G,H),
c which makes the above equation hold is determined uniquely at the point when
T1 is determined. Because c is uniformly chosen from Zq by the random oracle,
the probability that c satisfies the above equation is at most 1/q.7

Next, we explain the way to generate (U1, U2) of Type2. The challenge
key (Y, Z) is embedded in this type of (U1, U2). More concretely, the challenger
chooses ρ←$ Zq and computes (U1, U2)

T ← ρ(G,H)T + (Y, Z)T . Then the chal-
lenger has ρ as the trapdoor. To use this trapdoor, the challenger can simulate
an honest signer without sk corresponding to (Y,Z). For more details of the way
to simulate and indistinguishability between the distinction of responses of the
signing oracle with sk and that of responses of the signing oracle using ρ, see
the full version of this paper.

Finally, we explain that the game of the security definition and Game G1 are
computationally indistinguishable under the DDH assumption. Notice that, for
7 Because our scheme supports the key aggregation, we need to consider a more com-

plex setting. For more details, see the full version of this paper.
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both types of (U1, U2), the challenger generates (U1, U2) by producing a random
DH tuple ρ(G,H)T . Then we can prove that the distribution of (U1, U2) uni-
formly chosen from G2 and the one of (U1, U2) generated by Hck(m) in Game
G1 are computationally indistinguishable under the DDH assumption. Therefore,
the game of the security definition and Game G1 are computationally indistin-
guishable under the DDH assumption.

As a result, we can show that our scheme is secure under the DDH assumption
in the random oracle model and the PPK model.
Remark. Since we need to guarantee that the forger only produces forgery
which is valid under (U1, U2) of Type1, we need to add a condition that a forgery
is valid under (U1, U2) of Type1 into the winning condition of the forger in
Game G1. In the full proof, we consider intermediate games between the original
game of the security definition and Game G1 with the above additional winning
condition. Thus, our scheme has the reduction loss e(qS + 1), which is the same
as the reduction loss of the RSA-FDH signature scheme proven by Coron [14].

4 Performance Comparison

In this section, we compare our scheme with other related two-round multi-
signature schemes, which are proven secure in the PPK model based on the DL,
DDH, or OMDL assumptions, e.g., MuSig2 [37], DWMS [2], HBMS [6], LK [29],
MuSig-DN [38], and mBCJ [16]. We remark the followings on HBMS and mBCJ.
For HBMS, in [6], Bellare and Dai showed the security proof of HBMS under
and without the AGM. Especially, we call the former HBMS-AGM. For mBCJ,
instead of the original mBCJ, we use a modified mBCJ which is proven secure in
the PPK model. This is because the original mBCJ is proven secure in the key
verification model. For more details, see the full version of this paper.

We compare the underlying group sizes for 128-bit security. Thus, we need to
estimate the requirements of the sizes of the underlying groups considering the
reduction loss under 128-bit security for all schemes. We also compare whether
there exists the NIST standardized EC that enables a parameter choice with
128-bit security, which is called the recommended EC hereafter. The way to
estimate the size of the underlying group considering the reduction loss for 128-
bit security is described in Section 4.1. Table 1 summarizes the comparison.

4.1 Estimation of the Underlying Group Size

Here, we explain how to estimate |q|128 which is the size of the underlying group
G for 128-bit security.

We estimated |q|128 by the following steps:

Step 1. We obtained inequalities εP ≥ Bp(εF , qs, qH , N, q) and tP ≤ Bt(tF , qs,
qH , N, q) from the security proof, where Bp and Bt are functions derived by
the security proof, εP and tP are the success probability and the running
time of an algorithm for solving an underlying problem P respectively, and
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εF and tF are the success probability and the running time of a forger
respectively.

Step 2. We derived the inequality tP /εP ≤ Bt(tF , qs, qH , N, q)/Bp(εF , qs, qH ,
N, q) =: Bt/p(tF , εF , qs, qH , N, q) from the previous step.

Step 3. We solved √q = Bt/p(2
128, 1, 230, 280, 215, q) for q and set |q|128 ←

⌈log2 q⌉.8

In Step 3, we assumed tDL/εDL = tDDH/εDDH = tOMDL/εOMDL =
√
q.

This assumption is natural because of the following two facts. The first fact is
that the best-known attack for solving the DDH problem and the OMDL problem
is to solve the DL problem. The second one is that the known fastest algorithm
for solving the DL problem is Pollard’s ρ algorithm [40], which requires O(

√
q)

scalar multiplications in G. Also, in the same step, we consider the setting where
qH = 280, qs = 230, and N = 215. We set qH = 280 referring to a recent collision
attack [30] to SHA-1 with complexity 261.2 with a margin. We set qS = 230 for
a large scenario as in [20]. We set N = 215 for a large-scale setting.9

Remarks for Estimation. We estimate |q|128 according to the steps described
above and show the results of this estimation in Column 8 in Table 1. Here, we
should remark on the following points for this estimation.

For MuSig2 (ν ≥ 4), we suppose ν = 4 where ν is a unique parameter.
For MuSig2 and DWMS, we obtained Bp and Bt from [6, Appendix A]. For

HBMS-AGM, we obtained Bp and Bt from [6, Theorem 7.1]. For LK, we obtained
Bp and Bt from [29, Theorem 4.1]. For Bt of this, we suppose tP = tF because
there is no evaluation of the running time of the reduction and the fact that
the reduction runs a forger only one time. For MuSig-DN, we obtained Bp and
Bt from [6, Appendix A]. For Bp and Bt of this scheme, the terms except for
constants and the ones related to the DL assumption were ignored. For HBMS,
we obtained Bp and Bt from [6, Theorem 3.2, 3.4, and 7.2]. For mBCJ, we obtain
Bp and Bt by proving the security of this scheme in the PPK model. For more
details, see the full version of this paper.

For MuSig2 (ν = 2), DWMS, HBMS-AGM, and LK, the results of their esti-
mation are |q|128 = 257 (or 258). We chose the P-256 curve as the recommended
EC, even though the order of this curve is slightly smaller for 128-bit security.
We ignore the 1-bit (or 2-bit) exceedance of the group size, whose effects on
concrete security are small.

4.2 Comparison

We compare the efficiency of the related two-round multi-signature schemes in
Table 1 considering their concrete security.

First, we compare the schemes proven secure without using the AGM, i.e.,
MuSig2 (ν ≥ 4), MuSig-DN, HBMS, mBCJ, and our scheme. Among these schemes,

8 To simplify the calculation, we ignore non-dominant terms in Bt/p.
9 This large-scale setting had little effect on the estimation here because the terms

related to N in Bt/p are not dominant.
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our scheme has the most efficient signature size and communication complexity.
More concretely, |σ̃|128 of ours is reduced by about 22% from MuSig2 (ν ≥ 4) and
MuSig-DN, about 60% from HBMS, and 47% from mBCJ. Moreover, we can use
NIST standardized P-384 to ensure 128-bit security for our scheme, while other
schemes have no such standardized EC. These benefits are because the DDH
assumption enables us to prove the security without the rewinding technique.
However, remind that the DDH assumption is a stronger (not weaker) compu-
tational assumption than the DL assumption. For MuSig2 (ν ≥ 4), the OMDL
assumption is also stronger than the DL assumption and unfalsifiable. On the
other hand, multi-signatures of MuSig2 (ν ≥ 4) and MuSig-DN consist of only
an element in G and an element in Zq, whose form is the same as the ordinary
Schnorr signature. Thus, these schemes are more compatible with a currently
deployed scheme than the other schemes.

Next, we compare our scheme to the schemes proven secure in the AGM, i.e.,
MuSig2 (ν = 2), DWMS, HBMS-AGM, and LK. The signature size and the com-
munication complexity of these schemes are more efficient than ours. Concretely,
ours is 2.2 times longer than MuSig2 (ν = 2) and DWMS and 1.5 times longer
than HBMS-AGM and LK. This is because these schemes are proven secure with-
out rewinding by using AGM and achieve tight security.10 Our scheme also does
not require rewinding to prove the security because of the DDH assumption,
while ours has the reduction loss yielded from the technique of the proof of the
RSA-FDH signature scheme by Coron. Thus, |q|128 of ours is larger than the
other schemes. Note that our scheme does not require the AGM. For MuSig2
(ν = 2) and DWMS, while the security is based on the unfalsifiable assumption,
e.g., the OMDL assumption, the signature size is most efficient among all the
two-round schemes.

Conclusion of Comparison. The above comparison shows a trade-off between
the efficiency and the strength of underlying assumptions and one between the
efficiency and the necessity of the AGM.

Among schemes that do not need the AGM to prove their security, in concrete
security, our scheme achieves the smallest signature size and the communication
complexity. Moreover, our scheme has a recommended EC, i.e., P-384, for 128-
bit security. This fact makes the implementation of our scheme easier because
we do not need to design a new suitable EC.

5 Implementation Results

In this section, we explain our machine implementation of the proposed scheme
and the evaluation of the running time of our implementation. The result of
our evaluation shows that our proposed scheme can be implemented easily in a
real-world environment with reasonable running time in practice. We show the
detailed results of our evaluation in Table 2.
10 HBMS-AGM can eliminate the reduction loss caused by the technique of Coron [14]

due to the AGM. For more details, see [6, Appendix I].
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Table 2. Execution Time Evaluation of Our Scheme under P-384 (in milliseconds).

N = 3 N = 5 N = 10 N = 15 N = 50 N = 100
Key Generation.

Kg 4.6× 10−1 4.7× 10−1 4.8× 10−1 4.9× 10−1 5.1× 10−1 5.2× 10−1

Signing Protocol.
Round 1 (Computing p̃k) 1.4 2.5 5.0 8.0 29 64

Round 1 (Others) 1.0 1.1 1.1 1.1 1.1 1.2
Round 2 1.7× 10−2 2.0× 10−2 2.7× 10−2 3.5× 10−2 9× 10−2 1.7× 10−1

Aggregate 1.8× 10−4 2.2× 10−4 3.0× 10−4 4.1× 10−4 1× 10−3 2× 10−3

Verification.
Vf without p̃k 3.0 4.1 6.9 9.6 31 66

Vf with p̃k 1.5 1.6 1.6 1.6 1.7 1.7

Environment. Our implementation is written in C++. We implemented our
scheme by using the mcl library [35] and P-384 for the EC. We used g++ version
9.4.0 for compilation. We evaluated the running time of algorithms of our scheme
on a computer provided with a 1.30GHz Intel(R) Core(TM) i7-1065G7 CPU and
16.0 GB of RAM and running WSL2 on Windows 10 Home version 21H2.

Settings. Here, we describe the details of the setting of the evaluation. In Ta-
ble 2, we show the average time of the 1000 loops of executions under a fixed
public parameter. As a message to be signed, we generated a random alphabet
string of 100 characters for each loop by using the command mt19937 in the
random library. We set the size of a message as above considering the size of the
hash value (256 bits) of a transaction to be signed in Bitcoin with a margin. We
evaluated the running time for the setting where N are 3, 5, 10, 15, 50, and 100.
The cases where N are 3, 5, 10, and 15 are the typical numbers of signers for
Multi-Sig Wallets, and the cases where N are 50 and 100 are larger-scale set-
tings, respectively. We do not take into account the communication time between
parties because it varies largely depending on the network environment.

We measured Round 1 of the signing protocol in two phases. Specifically,
one phase is computing the aggregated key p̃k from a public-key list L, and the
other phase is computing other computations. For the verification, we measured
the time for the verification algorithm without p̃k shown in Section 3.2 and for
the one given an aggregated key p̃k instead of a public-key list L.

Results. The key generation took about 0.5 ms. This can be regarded as the
time of two scalar multiplications in G.

The total running times of whole algorithms in the signing protocol are about
2.4, 3.6, 6.1, and 9.1 ms under the settings N = 3, 5, 10, and 15, respectively. For
the settings where N = 50 and N = 100, those are about 30.1 ms and 65.2 ms,
respectively. From these results, notice that the time of the scalar multiplication
in G is a dominant factor for running time. There are 2N scalar multiplications
in Round 1 of the signing protocol for the computation of an aggregated key
p̃k. By precomputing p̃k, Round 1 took only about 1 ms because it needs 4
scalar multiplications irrelevantly to N . Since there is no scalar multiplication
in Round 2 and Aggregate, they were completed within 0.2 ms even when
N = 100.
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For Vf without p̃k, which is the normal verification, it was completed within
10 ms when N = 15. Also, it took about 66 ms even when N = 100. Since the
verification needs 6 scalar multiplications by using p̃k, Vf with p̃k took about
1.6 ms irrelevantly to N .

The above result shows that each algorithm is completed within 100ms even
when N = 100. This can be regarded as sufficiently reasonable running time in
practice.
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