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Abstract. Cheater identification in secure multi-party computation
(MPC) allows the honest parties to agree upon the identity of a cheating
party, in case the protocol aborts. In the context of a dishonest majority,
this becomes especially critical, as it serves to thwart denial-of-service
attacks and mitigate known impossibility results on ensuring fairness and
guaranteed output delivery.

In this work, we present a new, lightweight approach to achieving identi-
fiable abort in dishonest majority MPC. We avoid all of the heavy ma-
chinery used in previous works, instead relying on a careful combination
of lightweight detection mechanisms and techniques from state-of-the-art
protocols secure with (non-identifiable) abort.

At the core of our construction is a homomorphic, multi-receiver commit-
ment scheme secure with identifiable abort. This commitment scheme can
be constructed from cheap vector oblivious linear evaluation protocols
based on learning parity with noise. To support cheater identification, we
design a general compilation technique, similar to a compiler of Ishai et
al. (Crypto 2014), but avoid its requirement for adaptive security of the
underlying protocol. Instead, we rely on a different (and seemingly easier
to achieve) property we call online extractability, which may be of inde-
pendent interest. Our MPC protocol can be viewed as a version of the
BDOZ MPC scheme (Bendlin et al., Eurocrypt 2011) based on pairwise
information-theoretic MACs, enhanced to support cheater identification
and a highly efficient preprocessing phase, essentially as efficient as the
non-identifiable protocol of Le Mans (Rachuri & Scholl, Crypto 2022).

1 Introduction

Secure multiparty computation (MPC) is a class of cryptographic protocols
allowing a group of distrusting parties to jointly compute a function over their
private inputs, without revealing anything beyond the output of the computation.
While many different factors impact the usability of MPC protocols, one of
the most important security-wise is the corruption threshold. It provides a
limit on how many of the participants can collude and share their information,
without losing the privacy guarantees of MPC. Many popular protocols, such
as SPDZ [DPSZ12], BDOZ [BDOZ11] and their follow-up works ensure privacy,
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even if n− 1 out of the n participants are corrupted, and even when attackers
may actively deviate from the protocol.

Nevertheless, privacy is not the only security guarantee that an MPC protocol
may have to achieve. Fairness requires that if the corrupted parties obtain the
output, then so do the honest parties. It is known [Cle86] that in the dishonest
majority setting (i.e. when ≥ n/2 parties are corrupted) we cannot achieve
fairness, or the even stronger notion of guaranteed output delivery. Therefore,
current highly efficient protocols settle for a weaker notion of security: security
with abort. This typically means that a corrupt party can force the protocol to
abort, so that some (or all) of the honest parties will abort instead of learning
the correct output.4

Identifiable Abort for MPC. Since fairness is impossible in the dishonest
majority setting, the next best property would be if, in the case that the protocol
aborts, the honest parties agree that the protocol aborted and also agree on
the identity of at least one corrupt party. This can work as a deterrent since
honest parties can exclude said corrupt party if they restart the computation.
This property is called identifiable abort.

Cheater identification in dishonest-majority MPC (ID-MPC) was first for-
mally studied by Ishai, Ostrovsky and Seyalioglu [IOS12], who showed that it
is impossible to build unconditionally secure ID-MPC in a model with a broad-
cast channel and any pairwise ideal functionality, such as oblivious transfer (OT).
This is in contrast to the secure-with-abort model, where pairwise OT suffices.
Later, Ishai, Ostrovsky and Zikas [IOZ14] constructed a compiler that takes any
semi-honest protocol that uses a source of correlated randomness, and transforms
it into a protocol with security against malicious parties and with identifiable
abort (in the correlated randomness model). The compiler can be seen as an
information-theoretic version of the GMW compiler [GMW87]: each party com-
mits to its input and randomness that they intend to use for the semi-honest
protocol and then runs the semi-honest protocol by broadcasting their messages
in each round and using zero-knowledge to prove that their messages are correct.
To generate the correlated randomness needed for this protocol, [IOZ14] also de-
scribed a compiler that transforms any cryptographic preprocessing phase that
is secure-with-abort into one that has identifiable abort.5 Overall, this yields the
first construction with identifiable abort that makes only black-box use of crypto-
graphic primitives, namely an adaptively secure oblivious transfer protocol and
a broadcast channel. The main downsides of this construction are the need for
adaptively secure OT in the preprocessing phase, and the overall complexity of
proving that each protocol step was executed correctly in the online phase.

To resolve this, multiple works [BOS16, SF16, CFY17, BOSS20] have given
more “practical” constructions of ID-MPC. Baum et al [BOS16] construct an

4 This is called selective abort, in contrast to unanimous abort, where the honest parties
must all agree that the protocol aborted.

5 This result bypasses the impossibility of [IOS12] by relying on black-box use of an
OT protocol rather than an ideal OT functionality.
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identifiable abort protocol for arithmetic circuits in the preprocessing model
where the online phase is a variant of BDOZ [BDOZ11] that permits cheater
identification. While avoiding adaptively secure OTs, their preprocessing phase
needs to perform at least n times as much computation as non-identifiable
protocols, and also relies on cheater identification for lattice-based cryptography
which is far from being practically efficient. [SF16] modify the SPDZ protocol to
identify cheating by ensuring that correct shares are opened. Their preprocessing
would, in order to be identifiable, have to rely on the same expensive mechanisms
as [BOS16] (such as verifiable decryption). Cunningham et al. [CFY17] used
Pedersen commitments to identify cheaters in the online phase, which limits the
finite field over which the computation can happen and makes preprocessing
costly as all these commitments have to be generated during preprocessing.
Finally, Baum et al.[BOSS20] construct an ID-MPC protocol for boolean circuits
which runs in a constant number of rounds and uses cryptographic primitives
in a black box away. While in their work, public key operations after the setup
phase and zero knowledge (ZK) machinery (as well as adaptive OTs) are avoided,
their construction is limited to the binary setting and their use of multiparty
BMR [BMR90] has a substantial overhead from reconstructing a large garbled
circuit.

Challenge of adaptive security and identifiable abort. When considering
solely a preprocessing protocol, the [IOZ14] compiler offers a simple and attractive
approach to obtaining identifiable abort. At a high level, their idea is to have
every party first commit to a random tape, and then run a standard, secure-with-
abort protocol; if the protocol aborts, every party will open the commitments to
their random tapes. This allows all other parties to detect which party cheated by
re-running a local copy of the protocol. Furthermore, intuitively, opening random
tapes in case of abort does not pose a privacy issue, since the preprocessing phase
is independent of all parties’ inputs. What is needed for this to work is that any
deviation from the honest protocol can be consistently detected by every party
using the randomness that they committed to (called P-verifiability in [IOZ14]).

The challenge with this approach lies in simulating the view of the corrupted
parties. If the protocol aborts, the simulator needs to be able to open the honest
parties’ random tapes to the adversary, in a way that is consistent with the
previous (simulated) transcript. One way to do this is if the preprocessing protocol
is adaptively secure, so that honest random tapes can be ‘explained’ by the
simulator as if that party had just been adaptively corrupted. This is where the
reliance of [IOZ14] on adaptive OT comes from, and it seems inherent to this
commit-and-open paradigm6. While some works have attempted to circumvent

6 [BOSS20] manages to avoid the use of adaptively secure primitives by making use of a
homomorphic commitment scheme and redefinitions of the offline ideal functionality.
Specifically, in case of an abort of the offline phase their ideal functionality at this
point did not yet output any values to the environment, so the original random
tapes can safely be opened. Moreover, their preprocessing protocol uses homomorphic
commitments for shares and require that all parties commit to the values they used

3



the adaptivity problem [BDD20, BOSS20], no efficient UC-secure solution for
ID-MPC over arbitrary finite fields is known.

1.1 Our Contribution

In this work, we construct an efficient MPC protocol with identifiable abort for
arithmetic circuits over large fields, with UC security [Can01]. A key feature of
our protocol is an online phase based on simple, pairwise information-theoretic
MACs, just as in the (secure-with-abort) BDOZ protocol [BDOZ11]. Thanks to
this simple online phase, the correlated randomness that must be produced by
the preprocessing phase is just standard, authenticated multiplication triples,
the same as in secure-with-abort protocols. To allow identifiable abort in the
online phase, our main tool is a new compiler that transforms certain classes
of sender-receiver protocols, where one party has private input, into ones that
support cheater identification. Our compiler overcomes some limitations of the
related compiler from [IOZ14], which only works for preprocessing protocols, and
also requires adaptive security of the original protocol.

1.2 Technical Overview

Online Phase. A natural approach to achieving identifiable abort in MPC is
to use a form of linear secret sharing where the parties are committed to their
shares via linearly homomorphic commitments. If the commitments support mul-
tiple receivers and identifiable abort, then secret-shared values can be reliably
opened, by checking commitments on the shares. Given a preprocessing phase
that generates random multiplication triples, where each share is authenticated
to all other parties using the homomorphic commitments, one can construct
a standard MPC protocol by exploiting linearity of the commitments and us-
ing Beaver multiplication. This was done, for instance, in [BOS16], using an
information-theoretic identifiable commitment scheme; however, the structure
of the commitments is more complex than information-theoretic MACs used in
secure-with-abort MPC [BDOZ11, DPSZ12], which led to a much more costly
preprocessing protocol in [BOS16].

In this work, our online phase follows the same general approach, using pre-
processed triples and identifiable linear commitments. The key differences com-
pared with prior work are how we instantiate the preprocessing to generate mul-
tiplication triples with identifiable abort, and how we instantiate the identifiable,
linearly homomorphic commitments.

Preprocessing Phase. The goal of our preprocessing phase is to create addi-
tive secret shares of random multiplication triples over a large field, which are

in the preprocessing. The consistency is then ensured by opening random linear
combinations of the commitments, and in the online phase these commitments can
be used for cheater detection.
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committed to using linearly homomorphic commitments. To do this, the par-
ties will first run a secure-with-abort protocol, ΠTrip, to create unauthenticated
triples (for instance, using pairwise OLE), and then commit to their shares with
the homomorphic commitments. To guarantee that parties have committed to
the correct shares, we then run a sacrificing-based correctness check, where one
triple is sacrificed to check another, similarly to [DPSZ12].

To identify cheaters in this approach, we must make two important changes.
First, following the IOZ compiler [IOZ14] and other similar approaches [BOSS20,
SSS22], we have the parties commit to their random tapes of the secure-with-
abort protocol ΠTrip before running it. If ΠTrip aborts, the parties then open their
random tapes and reconstruct the protocol transcript to identify who cheated.
This stage requires the original protocol to have a form of verifiable transcripts,
meaning that it is always possible to identify who cheated, when given the
(alleged) views of all parties together with their random tapes. We formalize this
property, which we call identifiable cheating, and show that it can be cheaply
added to any secure-with-abort protocol by adding digital signatures to all
pairwise communication. Signatures guarantee that if some party cheats, there is
a signed record of the messages it sent that can later be used to help prove this.

It remains to discuss how we can still simulate the execution of ΠTrip, without
running into the aforementioned adaptive security issue. Following [BOSS20], we
have the simulator run an honest copy of ΠTrip, to generate the honest parties’
messages seen by the adversary. Now, it is easy to simulate the opening of random
tapes in case of abort, the only problem is that the simulator no longer has any
power to extract the corrupt parties’ inputs. In this case, however, the only inputs
that need to be extracted are the corrupted parties’ shares of multiplication
triples, which were already committed to via the homomorphic commitment
scheme. By relying on a UC secure homomorphic commitment functionality,
these shares can easily be extracted without having to use the ΠTrip simulator7.

The last issue is that even if the triple protocol ΠTrip runs correctly, the
overall protocol may still abort if the triple sacrifice fails, due to a corrupted
party committing to the wrong share. To recover from this, we again have the
parties open their random tapes from ΠTrip, so that all parties’ shares can be
recovered, and then compare these with the shares that were committed to in
the homomorphic commitment scheme by opening all the committed shares.

Building Identifiable, Homomorphic Commitments. To instantiate the
homomorphic commitment scheme, we design a scheme based on pairwise
information-theoretic MACs, where the committed value is authenticated to ev-
ery other party with a MAC, as in BDOZ. An advantage of such MACs is that
they can be generated very efficiently using vector oblivious linear evaluation
(VOLE) protocols based on variants of the learning parity with noise assumption,
such as [BCGI18, WYKW21, BCG+19]. However, the problem is that MACs
do not provide a way for parties to agree upon who cheated in the event that

7 We still rely on the existence of the ΠTrip simulator in the proof, to argue that the
simulated view is indistinguishable from the real protocol
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an opening fails. Indeed, the impossibility result of [IOS12] implies that this is
impossible to do with black-box use of pairwise information-theoretic MACs.

At a high level, our approach is to follow the same commit-and-open approach
as for the triple generation: if an opening fails, the parties will open their
random tapes for the VOLE protocols used to generate the MACs, and use the
reconstructed VOLE outputs to help identify who cheated. However, we are now
met with two new challenges. Firstly, the commit-and-open paradigm only works
for preprocessing protocols, since all parties need to open their random tapes in
case of an abort — when using homomorphic commitments in the online phase,
this would leak any private, committed inputs. Secondly, we again have to deal
with the adaptivity problem, which was essentially deferred in the preprocessing
stage, by relying on the security of the homomorphic commitment scheme.

Compiling Sender-Receiver Protocols to Identifiable Abort. We present
a new identifiable abort compiler that works for a general class of sender-receiver
protocols, where only one party (the sender) has private input. Like IOZ, our
compiler makes black-box use of the underlying secure-with-abort protocol. Unlike
IOZ, however, we are not restricted to preprocessing protocols where no party
has private input — this allows us to apply our compiler to an arbitrary, linearly
homomorphic commitment scheme with multiple receivers, which we instantiate
with a VOLE-based protocol for setting up information-theoretic MACs.

At a high level, our compiler follows the same strategy as our preprocessing
phase, except that to prevent leakage of the sender’s private inputs, we only
require the receivers to commit to and open their random tapes, and not the
sender. Under a mild assumption on the communication pattern in the sender-
receiver protocol, we show that the receivers will still be able to identify a cheating
sender, since in this case there will always be at least one honest receiver, who
can prove that they followed the protocol and aborted due to the cheating sender.
There is one issue with this approach, however. Even though receivers do not
have private inputs, they may have private outputs that can’t be revealed. To
remedy this, we use two different types of recovery mechanisms, depending on
whether a sender or receiver is claiming an abort. In the first case, the receivers
will all privately send their evidence to the sender, who will select and publish a
proof. In the second case, the aborting receiver must instead immediately open
its view for all parties to inspect and confirm that it aborted; because of the
restricted communication pattern of sender-receiver protocols, this would imply
that the sender has cheated (and so it is not a problem to leak the receiver’s
output, which only depends on the corrupt sender’s input).

Avoiding Adaptive Security via Online Extractability. The final challenge
in our compiler is ensuring that all of the identification stages, where honest
receivers open their random tapes, can be simulated. Instead of relying on
adaptive security, we observe that a weaker property suffices, which we call
online extractability. In the UC security proof, there are two cases, depending on
whether the adversary corrupts the sender, or only (a subset of) the receivers.
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In the first case, the main job of the simulator is to simulate messages from the
honest receivers in such a way that it can extract the inputs of the corrupted
sender.8 If the simulator later has to open the honest receivers’ random tapes,
due to the malicious sender causing an abort, the natural approach relying on
adaptive security is for the simulator to adaptively corrupt the honest receivers,
so that it learns randomness that explains the previously simulated messages.
Online extractability instead defines a special type of simulation, where the
normal protocol execution suffices to extract adversarial inputs, if one does only
imperceptible changes to the CRS or other hybrid functionalities. While this is
already how many UC protocol simulators work, we define this property formally
and show that it is composable. Having online extractability, the task of the
simulator in our IA compiler is now much easier: it can simulate messages of the
honest receivers by simply running an honest copy of the protocol, except for
the interaction with a setup functionality like a CRS. This makes it trivial to
open the random tape to identify a cheater, since the simulator has followed the
protocol honestly. 9

Efficiency. We now briefly discuss our efficiency gains, as summarized in Table 1.
Due to space constraints, we give a more detailed analysis in Appendix B.

To investigate the overhead of obtaining identifiable abort, we compare
our protocol with two versions of the preprocessing and online phases from
Le Mans [RS22], which is secure with abort. Le Mans v1 (called Dynamic SPDZ
in [RS22]) has lower preprocessing requirements in exchange for a slower online
phase, while Le Mans v2 costs more in the preprocessing phase, but gets the fastest
online phase. Both versions of Le Mans, as well as our preprocessing, require ≈ n2

OLE and VOLE correlations for each multiplication gate, to build authenticated
multiplication triples. Asymptotically, if state-of-the-art PCG techniques are
used, producing the OLE/VOLEs can be done with a total of O(n2 log(|C|))
communication, where |C| is the circuit size, and O(n2|C|) computation. Our
preprocessing has the same base cost as Le Mans, plus sending an additional
2(n− 1)|C| field elements per party to authenticate and check triples.

When it comes to the online phase, we use the standard BDOZ online phase
with authenticated triples and signatures added to the messages, which increases
the cost by O(n). Overall, our communication cost per party is dominated by
2(n− 1)|C| field elements for an honest execution. Dynamic SPDZ has an online
cost of only 12|C| field elements per party, achieving only security with abort.

Compared to other ID-MPC protocols like [BOS16, BOSS20], in the prepro-
cessing phase, [BOS16] requires O(n3) broadcast messages per multiplication

8 In this case, note that the simulator does not need to equivocate the corrupted
receivers’ outputs to match those of the ideal functionality, because of the structure
of the sender-receiver protocol: these outputs only depend on the corrupted sender’s
input, so there is nothing to simulate.

9 Of course, one still has to prove that a protocol is online-extractable, but this is
seemingly simpler than a security proof for adaptive security. Indeed, we observe that
many protocols in the literature are already online-extractable.
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Protocol Building blocks IA Preprocessing cost Online cost

Le Mans, v1 (V)OLE 7 n2 ×OLE∗ 12n
Le Mans, v2 (V)OLE 7 n2 ×OLE∗+O(n) 4n

[BOS16] depth-1 HE 3 O(n3)† O(n2)‡

Ours (V)OLE 3 n2 ×OLE∗+O(n2) ‡ O(n2)‡

∗ Random, pairwise OLE and VOLE correlations. Can be generated with O(n log |C|)
communication per party using variants of LPN [BCG+19, BCG+20].
† Must be broadcast
‡ Corrupted party can force to be broadcast

Table 1: Comparing efficient MPC protocols with and without identifiable abort.
Preprocessing cost reflects the cost per multiplication in the preprocessing phase,
in terms of building blocks (OLE/VOLE) plus total communication in field
elements.

gate, whereas we only need O(n2) broadcasts even in the worst-case scenario. In
the online phase, both [BOS16] and our protocol have O(n2) complexity.

Our protocol is expected to perform faster than [BOS16], primarily due to
the use of pseudorandom correlation generator (PCG) techniques, which are
estimated in [BCG+20] to have much lower communication overhead compared
to homomorphic encryption-based (HE) approach of [BOS16].

The protocol of [BOSS20] is incomparable to ours as it is a garbled circuit-
based (GC) construction that works for Boolean circuits. In comparison, our
construction allows the evaluation of circuits over Fp for large p with a round
complexity that depends on the circuit depth.

1.3 Related work

Interest in the area of MPC with Identifiable Abort has increased recently, leading
to many exciting research directions.

Brandt et al. [BMMM20] and independently Simkin et al. [SSY22] investigated
how to realize dishonest-majority MPC with identifiable abort from correlations
among less than all n parties.

Cohen et al. [CGZ20] investigated the two-round MPC setting with dishonest
majority and broadcast. They showed in which cases identifiable abort is achiev-
able, depending on the broadcast use. This was extended to the honest majority
setting by Damg̊ard et al. [DMR+21]. In follow-up work, [DRSY23] investigated
which setup is necessary for the two-round setting to achieve identifiable abort.
In the plain model, Ciampi et al.[CRSW22] showed how to construct ID-MPC in
the optimal 4 rounds.

When considering covert instead of malicious security, Faust et al. [FHKS21]
as well as Scholl et al. [SSS22] constructed compilers from passively secure MPC
to covertly [AL07] secure MPC with security against n−1 corruptions using time-
lock puzzles. Later, Attema et al. [ADEL22] showed how to realize this without
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time-lock puzzles, although requiring an honest majority. All these constructions
actually achieve a stronger property called publicly verifiable MPC which implies
identifiable abort.

Hazay et al. [HVW22] used framing-free designated-verifier Zero-Knowledge
proofs to construct an alternative to the IOZ14 compiler. Their construction only
works for honest majority protocols.

More concretely, Chen et al [CHI+21] constructed a dedicated RSA key
generation protocol with Identifiable Abort and security against a dishonest
majority. The efficiency of their construction comes from a communication model
that uses a centralized “coordinator” which realizes broadcast.

Concurrent Work. Recently, Cohen et al. [CDKs23] presented another approach
to identifiable abort, which also manages to avoid the need for adaptively secure
OT in the [IOZ14] compiler. Their method is based on revealing committed
input values in case of cheating; in contrast to our approach of revealing random
tapes to verify protocol messages, [CDKs23] do not make use of the underlying
protocol messages in this way, instead relying on a special form of committed
OT functionality.

We believe that our work has a couple of advantages over [CDKs23]:

1. We directly support MPC for computing arithmetic circuits on private inputs,
instead of just correlated randomness functionalities. While [CDKs23] could
be used to instantiate the correlated randomness for, say, the [IOZ14] online
phase, the amount of correlated randomness needed would be at least n
times more than what’s used by our protocol, due to the use of O(n) sized
information-theoretic signatures used in [IOZ14] to authenticate the correlated
randomness.

2. Even for computing correlated randomness, our protocol seems to be more
efficient. [CDKs23] gives an instantiation of MASCOT-like preprocessing,
with roughly a 50% overhead on top of the secure-with-abort protocol. Our
protocol can be instantiated using VOLE based on SoftSpokenOT and triple
generation using OT, to obtain a similar result but with essentially no extra
communication cost for achieving identifiable abort.10

Roadmap. In contrast to the “top-down” presentation in the technical overview
in Section 1.2, the remainder of the paper proceeds in a “bottom-up” fashion.
We start with our notion of online extractability in Section 3, followed by a
construction of homomorphic commitments in Section 4, which are compiled
to support identifiable abort in Section 5. Section 6 then describes our triple
generation protocol, which uses the previous building blocks. In the Supplementary
Material, we describe the online phase, as well as various additional technical
details.

10 The main overhead incurred in our protocol is that, in the worst case, an adversary
can force all all point-to-point messages to be broadcast. This broadcast is done by
default in [CDKs23]
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2 Preliminaries and Notation

We use κ as the security parameter and ρ as the statistical security parameter.
Bold letters such as a are used to indicate vectors, and a[i] refers to the i-
th element of the vector. We write [a, b] to denote the set of natural numbers
{a, . . . , b} and [a, b) = {a, . . . , b− 1}. We use a� b to indicate the component-
wise product of vectors.

2.1 Modeling Security

We work in the universal composability (UC) framework [Can01] for analyzing
security and assume some familiarity with this. In UC, protocols are run by
interactive Turing Machines (iTMs) called parties. We make the simplifying
assumption that any protocol π runs between a fixed set of parties, typically
denoted P = {P1, . . . , Pn}. The adversary A, which is also an iTM, can actively
corrupt a subset PA ⊂ P and gains control over these parties. We denote the set
of honest parties by PH = P \ PA. We focus on static corruptions, so these sets
are fixed from the beginning. The parties can exchange messages via resources,
called ideal functionalities (which themselves are iTMs) and which are denoted by
F . We assume that all parties can communicate via authenticated channels, and
sometimes also use secure point-to-point channels and a reliable broadcast channel.
These are all modelled as ideal functionalities that can be realized on top of
authenticated channels using standard methods. In protocol descriptions, instead
of referring to the specific functionalities, we typically write e.g. Pi privately
sends x to Pj or Pi broadcasts x. Moreover, we work in the synchronous model,
where protocols proceed in a sequence of rounds, such that every message sent in
one round is guaranteed to be delivered before the start of the next round. Such
synchronous communication channels can also be modelled in UC [KMTZ13].

As usual, we define security with respect to an iTM Z called the environment.
The environment provides inputs to and receives outputs from the parties in P.
To define security, let πF1,... ◦ A be the distribution of the output of an arbitrary
Z when interacting with A in a real protocol instance π using resources F1, . . . .
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of π
and where S takes care of adversarial behavior.

Definition 1. We say that π UC-securely implements F if for every iTM A
there exists an iTM S (with black-box access to A) such that for every environment
Z, the outputs of Z ◦ πF1,... ◦A and Z ◦F ◦ S are identical except with negligible
probability.

In the security experiment Z may arbitrarily activate parties or A, though only
one iTM (including Z) is active at each point of time.

Definition 2 (Identifiable Abort). Let F be a functionality running with
a set of parties P. We define [F ]IA to be the corresponding functionality with
identifiable abort, where at any time, if A sends a message (Abort,J ) for some
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non-empty set J ⊂ PA, [F ]IA sends (Abort,J ) to all parties and terminates.
Additionally, if F would at any point send a message Abort to P, it first waits to
receive a non-empty J ⊂ PA from A, and then sends (Abort,J ) instead.

2.2 VOLE and Information-Theoretic MACs

Functionality Fprog
VOLE

Parameters: Finite field Fpr , and expansion function Expand : S → Fmp with
seed space S and output length m.
The functionality runs between parties PA and PB .

Initialize: On receiving Init from PA and PB , sample ∆B ← Fpr for PB , and
ignore all subsequent Init commands. Store ∆B and send it to PB .

Extend: On receiving Extend from PB and (Extend, seed) from PA, where
seed ∈ S:

1. Compute u = Expand(seed).
2. Sample v ← Fmpr and compute w = u ·∆B + v.
3. Send w to PA and v to PB .

Corrupt Parties: If PB is corrupt, ∆B and v may be chosen by A. For a
corrupt PA, A can choose w (and then v is recomputed accordingly).

Key Query: If PA is corrupted,Amay send a message (guess,∆′) with ∆′ ∈ Fpr .
If ∆′ = ∆, send success to PA. Else, send abort to both parties and abort.

Fig. 1: Functionality for Programmable VOLE

The VOLE11 functionality Fprog
VOLE (Fig. 1) generates a batch of m random

VOLE correlations between two parties PA and PB, usually called sender and
receiver.

A VOLE correlation consists of two vectors u ∈ Fmp ,w ∈ Fmpr held by PA, and

the element ∆B ∈ Fpr and a vector v ∈ Fmpr held by PB , such that w = u ·∆B+v.

∆B and v are chosen uniformly at random, while the Fprog
VOLE functionality allows

the sender to program its share u of the correlation by providing a seed. Hence,
when running two instances of Fprog

VOLE with different receivers PB , P
′
B but the

same seed, the sender PA ends up with the same values u as part of its VOLE
correlations. The Expand function in Fprog

VOLE should be a pseudorandom generator,
whose precise implementation depends on how the protocol is instantiated (for
instance, when using LPN-based VOLE [BCGI18, WYKW21], Expand is an LPN-
based PRG).

11 More precisely, this is actually a so-called subfield VOLE.
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One can view a VOLE correlation as an information-theoretic MAC on the
vector u of PA. This is because: Fprog

VOLE does not reveal ∆B to the sender. Assume
that PA could produce a pair of vectors u′ ∈ Fmp ,w′ ∈ Fmpr with u′ 6= u such
that the VOLE correlation holds, along with the original u,w. Therefore,

w = u ·∆B + v, w′ = u′ ·∆B + v (1)

That means for the pairs, it needs to hold that (w[i]−w′[i])/(u[i]−u′[i]) = ∆B

(where the index i ∈ [1,m] is such that u[i] 6= u′[i]). In order for this to hold,
PA needs to know the secret ∆B if it can forge a MAC on a different value u′.
However, ∆B is chosen randomly from a set of size pr so the probability of a
correct guess is negligible if pr is exponential in the security parameter.

In Fprog
VOLE, PB only obtains ∆B ,v which are chosen uniformly at random and

independent of u. Therefore, PB learns no information about u from its share of
the correlation. The MAC scheme implied by VOLE is also linearly homomorphic.
Details can be found e.g. in [BDSW23].

2.3 Signatures

In this work, we crucially rely on digital signatures and we use the standard
security notion for digital signature schemes, namely, existential unforgeability
under adaptive chosen-message attacks (EUF-CMA). The definitions can be
found in Appendix A.1.

2.4 Basic Functionalities

We additionally use a one-to-many commitment functionality FCommit, shown in
Fig. 15, as well as a coin-tossing functionality, FRand, in Fig. 16. These functionali-
ties should have identifiable abort. UC commitments (with identifiable abort) can
be easily realized with a random oracle or CRS and a broadcast channel, while coin-
tossing can be realized using FCommit with a standard commit-and-open approach.

3 Online-Extractable Protocols

We now define a new subclass of UC-secure protocols, which we call online-
extractable. For such a protocol π we define a special experiment called the
extractor execution, that runs with a PPT iTM called the extractor, E , which
must extract the inputs of the adversary during a real execution of the protocol.
The extractor is allowed to manipulate any CRS-like functionalities used in π, or
observe any random oracle queries, as well as see all communication between the
adversary and any hybrid functionalities or honest parties. Otherwise, the protocol
π is run as in the real world experiment. This manipulation done by E should
not be noticeable to the environment, while the inputs extracted by E should be
indistinguishable from those that the simulator S obtains in the ideal world.

The definition is inspired by many security proofs of UC protocols, where the
simulator S in the ideal setting simulates by running the actual protocol π with
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dummy inputs for honest parties. At the same time, S can extract the actual inputs
of the dishonest parties that are controlled by A without actually deviating from
the protocol12. This means that many protocols have this extractability property
already, and constructing E for them will be simple by manipulating S (removing
equivocation etc). We will later see that such E comes in handy when simulating
protocols that have identifiable abort without relying on adaptive security.

Defining Online Extractability. Towards formalizing online extractability,
let π be a protocol that UC-implements a functionality F , possibly using some
other hybrid functionalities. For simplicity, we assume that parties in π either
communicate directly or access hybrid functionalities. We call certain hybrid
functionalities “CRS-like functionalities” if their input/output behavior towards
parties is independent of which party called it:

Definition 3 (CRS-like Functionality). A functionality F is a CRS-like
functionality if, on receiving an input (sid, x) from party Pi, the functionality
will give the same response that it would also give (i) upon later query (sid, x) by
Pi; and (ii) upon query (sid, x) by any other party Pj at any point.

Some examples of CRS-like functionalities are the standard CRS functionality
FCRS (where x = ⊥) or a random oracle. Definition 3 essentially rules out that
F has an updatable memory that would change query results over time, unless
the update is provably undetectable to protocol parties.

Let us denote by F̂ a version of the ideal functionality F which immediately
outputs any inputs from A to F onto a special tape. We call this special tape
the ideal input tape. It can neither be seen by parties nor A or the environment
in any security experiment.

We also denote by [π]E the extractor execution of protocol π, which is a
modified execution of a protocol π with the extractor E , where:

1. E is allowed to observe the inputs sent to any CRS-like functionality and
freely program the output which is given in response to any input;

2. Every message sent between two parties Pi, Pj , where Pi is honest and Pj
corrupt, is first given to E and then forwarded to the receiver;

3. Every (non-CRS-like) hybrid functionality FH in π is modified to F̂H , with
an ideal input tape only accessible to E , on which the inputs from A to FH
are placed.

4. E continuously outputs certain values, whenever they are available, on a
special tape of its own, called the extractor tape.

As with the ideal input tape of F̂ , we assume that in the extractor execution
[π]E , the extractor tape cannot be accessed by any party, functionality, adversary
or environment unless mentioned otherwise. The only difference between [π]E
and π that may be noticeable to the environment is the change to the CRS-like
functionalities.

We now formally define online extractability.

12 A similar idea, although in the context of public verifiability, was used previously,
e.g. in [BDD20].

13



Definition 4. Let π be a protocol that UC-securely implements an ideal func-
tionality F with a fixed set of parties P and corrupted parties PA ⊂ P. Then, we
say that π is online-extractable for corrupt PA if there exists a PPT iTM E, and
a UC simulator S for π, such that, for all environments Z and adversaries A
who statically corrupt the parties in PA:

1. Z cannot distinguish π ◦ A from [π]E ◦ A (where the extractor tape of E is
not available to Z or A).

2. The distribution of the ideal input tape of F̂ in F̂ ◦ S is indistinguishable
from that of the extractor tape of E in [π]E ◦ A.

UC Security vs. Online Extractability. The motivation for Definition 4 is that
many existing UC-secure protocols can easily have such an online extractor E .
On the other hand, we highlight that this does not imply that the extractor E is
a good UC simulator for π. Indeed, while E is required to successfully extract
the corrupted parties’ inputs, it does not (and cannot) equivocate by simulating
protocol messages to be consistent with outputs of an ideal functionality. Later,
when we use the definition, we will restrict ourselves to a class of protocols where
such equivocation is not needed.

We also observe that online extractability is not implied by UC security.
Consider a UC-secure protocol π that uses a trapdoor in the CRS for extraction,
such as the oblivious transfer protocol of [PVW08]. Moreover, let FMPC be a
general MPC functionality. We construct a protocol π′ as follows:

1. Generate a CRS crs′ for π, using FMPC, by running a sampling algorithm for
the CRS distribution inside FMPC, seeded using secret randomness.

2. After crs′ is output by FMPC, run π using crs′.

Assuming that FMPC is UC-secure, π′ is also UC-secure. To construct a
simulator for π′, one uses the simulator of π to generate a CRS crs that can be
used for equivocation. Then, the simulator for π′ programs FMPC’s output to be
crs and otherwise runs the simulator of π as before. Indistinguishability of the
new simulator follows because of the indistinguishability of the simulator of π, as
crs must be indistinguishable from crs′ by assumption.

At the same time, π′ is clearly not online-extractable because no E can change
the outputs of FMPC, which would be necessary in order to extract inputs of the
adversary as in π.

Remark 1. Clearly, if FMPC was replaced with a normal CRS functionality then
its output could be programmed. Hence, this makes the above counter-example
somewhat contrived, and it might be that all “natural” UC protocols are indeed
online-extractable. Unfortunately, a broader definition which may be implied by
UC security13 seems tricky to formalize, since there are always more convoluted
counter-examples that can evade Definition 3 or similar requirements: for example,
a protocol might use FMPC both to perform some useful computation, and
simultaneously to generate a CRS used in a subsequent protocol.
13 We believe that this is unsurprising: while our definition captures an observation of

many known UC simulators, given the nature of the UC framework it seems hard to
prove that all simulators must follow this simulation strategy.
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Composition of Online Extractability. We now provide a lemma which shows
under which conditions the online extractability property composes. For this,
for protocols ρ, π and a functionality F we define ρF→π to be the protocol that
replaces the functionality F in ρ with an instance of π as usual in UC composition.
We show that in such a case the composed protocol is online-extractable if ρ as
well as π are online-extractable. The proof is provided in Appendix C.1 and simply
embeds online extractability into the standard universal composition argument.

Lemma 1. Let ρ be a protocol that UC-securely implements Fρ in the F-hybrid
model and is online-extractable for a corrupt set PA ⊂ P. Let π be a protocol
that UC-securely implements F and is online-extractable for corrupt PA. Then
ρF→π is online-extractable with the same Fρ and PA.

The computational overhead from this composition is additive for each func-
tionality that gets replaced as we only run the new Eπ parallel to π. We can
therefore apply the lemma a polynomial number of times.

2-Message OT is Online-Extractable. To give an example of an online-
extractable protocol, we observe that any 2-message OT protocol in the CRS
model, such as [PVW08], is online-extractable against a corrupted receiver. We
will later build on this for showing that VOLE can be realised with online-
extractable protocols, in Appendix C.2. We assume a standard OT functionality
FOT, for instance, as in [PVW08].

Lemma 2. Let Π be any 2-message protocol that securely realizes the FOT func-
tionality in the FCRS-hybrid model. Then, Π is online-extractable for a corrupted
receiver.

Proof. Recall that in 2-message OT, the receiver must always send the first
message. Without loss of generality, any simulator for a corrupted receiver can
then be defined in terms of the randomized algorithms:

– crsSim: On input the security parameter, it outputs a crs together with a
trapdoor τ .

– ExtA: On input crs, τ and a receiver message msgA, it outputs an extracted
input σ ∈ {0, 1}.

– SimA: On input crs, τ , a message msgA and the receiver’s output xσ, it outputs
a simulated sender message msgB .

The UC simulator uses crsSim to emulate FCRS, and then, on receiving the
adversary’s message msgA, extracts its input σ using ExtA and the trapdoor,
before receiving xσ from the ideal functionality and simulating the sender’s
response using SimA.

We define the extractor E , which starts by emulating FCRS using crsSim, and
then uses the trapdoor τ and the intercepted msgA from the honest receiver
to extract an input σ with ExtA, which it writes to the special extractor tape.
The only difference between the two executions [π]E ◦ A and π ◦ A to any Z is
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the way the CRS is sampled; but since Π is a secure protocol, these must be
indistinguishable. Furthermore, since the extractor tape is defined using ExtA, it
is distributed identically to the extracted input in the UC simulation, as required.

4 Homomorphic Commitments Based on VOLE

Functionality FHCom

Parameters: Finite field Fp. The functionality runs between a sender PS and
a set of receiver parties PR = {P1, . . . , Pn}. We assume all parties have agreed
upon public identifiers idx, for each variable x used in the computation. For a
vector x = (x1, . . . , xm), we write idx = (idx1 , . . . , idxm).

Input: On receiving (Input, idx,x) from PS , where x ∈ Flp, where l is the
length of the vector, and (Input, idx) from all the other parties, store the pair
(idx,x), and send InputReceived to A.

Linear Operation: On receiving (LinComb, idz, idx, idy,α,β,γ) from every
Pi, compute z = α� x+ β � y + γ and store (idz,z).

Random: On receiving (Random, idr,m) from all parties:

1. Sample r ← Fmp . If PS ∈ PA, instead receive r from A.
2. Store (idr, r) and send r to PS .

Private Opening: On receiving (PrivOpen, idx, Pj) from PS and if (idx,x) is
stored, send x to Pj .

Output: On receiving (Output, idz) from every Pi, where idz has been stored
previously, if PS ∈ PA, send Abort to the parties A chooses, and deliver z to
the rest. If PS ∈ PH , deliver z to all parties.

Fig. 2: Functionality for a Homomorphic Commitment

In this section, we first define a functionality for homomorphic commitment,
FHCom, which will be used as a building block in our preprocessing phase. We
then show how to efficiently instantiate this with a sender-receiver protocol based
on VOLE, giving security with abort. Using the compiler of Section 5, this can
be directly upgraded to achieve identifiable abort.

The functionality, shown in Fig. 2, allows a sender to input values that will be
committed, as well as have random committed values sampled by the functionality.
FHCom allows linear operations to be performed on the commitments, and for
values to be opened privately to any one receiver, as well as publicly to all receivers.
Note that FHCom only supports selective abort, and not unanimous abort. However,
our compiler to identifiable abort only requires a protocol with selective abort.
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Protocol ΠHCom

Parameters: Extension field Fpr , a sender PS and receivers PR = {P1, . . . , Pn}.

Initialize: Every pair of parties (PS , Pi), for Pi ∈ PR, calls an instance of
Fprog

VOLE with Init, so Pi receives ∆i ∈ Fpr .

Input: PS commits to an input x ∈ Fp:
1. PS broadcasts x− lj , where lj is the next available random value, to

all the parties. If no such lj is available, run the Random procedure.
2. Each Pi ∈ PR, locally updates its key as Ki

SJxK = Ki
SJljK−∆i · (x− lj).

PS sets MS
i JxK = MS

i JljK.
3. Pi ∈ PR sets 〈x〉i = Ki

SJxK and PS sets 〈x〉S = (x, {MS
i JxK}i∈[1,n]), for

Pi ∈ PR.
Linear Operation: To compute z = α · x+ β · y + γ, for public α, β, γ ∈ Fpr ,

where 〈x〉, 〈y〉 have been committed, the parties locally compute
〈z〉 = α · 〈x〉+ β · 〈y〉+ γ.

Random: To generate m random commitments 〈l1〉 , . . . , 〈lm〉:
1. PS samples a seed s.
2. Each pair of parties (PS , Pi), for Pi ∈ PR, calls Fprog

VOLE, with PS sending
(Extend, s) and Pi sending Extend. PS obtains {uS ,MS

i } and Pi receives
Ki
S = MS

i − uS ·∆i.
3. Each Pi ∈ PR sets 〈lj〉i = Ki

S,j and PS sets 〈lj〉S = (uSj , {MS
i,j}i∈[1,n]),

for j ∈ [1,m+ 1].
4. The parties do the following to check the consistency of inputs to Fprog

VOLE:
(a) Call FRand to get random values χ1, . . . , χm ∈ Fpr .

(b) Locally compute 〈C〉 =
m∑
j=1

χj · 〈lj〉+ 〈lm+1〉

(c) Write 〈C〉S = (C, {MS
i }i∈[n]) and 〈C〉i = Ki

S .
(d) PS broadcasts C, and privately sends MS

i to each Pi.
(e) Each Pi checks that MS

i = C ·∆i +Ki
S , for i ∈ [1, n]. If the check

fails, abort.
Private Output: To open a value 〈x〉 to a receiver Pi, PS privately sends x,

MS
i JxK to Pi. Pi checks that MS

i JxK = ∆i · x+Ki
SJxK and aborts if it fails.

Output: To open a vector of values 〈z〉, PS sends z, MS
i JzK to Pi. Each Pi

checks that MS
i JzK = ∆i · z +Ki

SJzK. If the checks fail, Pi outputs abort.
Otherwise, Pi outputs z.

Fig. 3: Protocol for a Homomorphic Commitment

Information-theoretic MACs. We now introduce the notation for information-
theoretic MACs as we use it in the protocol, building on Section 2.2. In the
protocol, the sender PS will be committed to values in Fp by holding a MAC
on x ∈ Fp for each receiver, under keys known only to the receivers. The linear
MAC with a receiver Pi is defined as,
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MS
i JxK = x ·∆i +Ki

SJxK

where ∆i ∈ Fpr is a long-term or global key and Ki
SJxK ∈ Fpr is a local key, used

only for the MAC on x. Both keys are held by receiver Pi, while PS holds x and
MS
i JxK (for each i ∈ [n]).14 We occasionally write MS

i ,K
i
S when it is clear from

context which value is being MACed.
When x is MACed with every other receiver, we use the notation

〈x〉 = {(x, {MS
i JxK}i∈[n]),K

1
SJxK, . . . ,Kn

S JxK}

We write 〈x〉i to denote the parts of 〈x〉 known to Pi, that is, 〈x〉i = Ki
SJxK

if i ∈ [n] and 〈x〉S = (x, {MS
i JxK}i∈[n]) for the sender PS .

We write 〈x〉+ 〈y〉 to denote addition of each party’s respective components,
which gives a valid set of MACs 〈x+ y〉, thanks to the linearity of the MACs. We
also write 〈x〉+ γ to denote adding a public constant γ to 〈x〉, which is done by
having PS add γ to x, while each receiver Pi subtracts γ ·∆i from Ki

SJxK, giving
〈x+ γ〉.

4.1 Protocol with Abort

Our protocol (Fig. 3) is based on a similar MAC generation protocol from [RS22],
with the difference that we only have a single sender instead of n senders, which
allows us to simplify the protocol. MACs are set up using the VOLE functionality
Fprog

VOLE (Fig. 1) introduced in Section 2.2, which generates a batch of random
MACed values between two parties. Importantly, even though the authenticated
values are random, the Fprog

VOLE functionality allows the sender to program these by
providing a seed, such that when running two instances of Fprog

VOLE among different
receivers, it ends up committed to the same set of random values.

Consistency Check. Since Fprog
VOLE does not guarantee that in each pair (PS , Pi)

for i ∈ PR, PS inputs the same seed s, we use a consistency check in ΠHCom. In
the check, the receivers challenge the sender to open a linear combination of all
the committed values, with an extra random mask (lm+1) to ensure privacy of
the opened combination. We formalise the security of the check by modelling the
errors introduced by a corrupt PS as follows.

Suppose that PS used inconsistent seeds with two receivers P1 and P2. Since
the seeds are used to compute the u values using the Expand function, this will
result in two different u values, say, u1 and u2, and hence, different commitments〈
l1j
〉
,
〈
l2j
〉
. Without loss of generality, define the seed used with party P1 to be the

correct seed. In the security proof, the simulator can extract all seeds and then
compute the errors δ2

j = l2j−l1j , for j ∈ [1,m+1]. If both PS and the receiver party
are corrupt, we set the errors to be 0. We prove that an adversary cannot pass the
check with inconsistent seeds except with negligible probability via the following
lemma. Proofs for the lemma as well as the theorem are given in Appendix D.

14 Note that the index in superscript denotes the party who holds a value.
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Lemma 3. Suppose PS ∈ A introduces errors of the form δij with party Pi, for
j ∈ [m+ 1], in the Random command in ΠHCom (Fig. 3). If the consistency check
passes, then every pair of parties (PS , Pi), for i ∈ [1, n] hold a secret sharing of
lj ·∆i, for j ∈ [m]. In other words, δij = 0, for every i and j ∈ [m], except with
probability 1/|F|.

Theorem 1. Protocol ΠHCom UC-securely realises the functionality FHCom as-
suming a broadcast channel in the presence of a malicious adversary that can
statically corrupt up to n− 1 parties, in the (Fprog

VOLE,FRand)-hybrid model.

4.2 Online Extractibility of ΠHCom

Lemma 4. Protocol ΠHCom in Fig. 3 is online-extractable, for any adversary
corrupting the sender and any subset of receivers.

Proof. Let S be the simulator for ΠHCom given in the proof of Theorem 1, for the
case when the sender and a subset of the receivers are corrupted. In ΠHCom, there
is never any communication from a receiver to the sender, so the only task of S
is to emulate the hybrid functionalities Fprog

VOLE and FRand towards the adversary,
while interacting with the FHCom functionality. We can therefore use S to define
the extractor E , running in the execution [π]E , as follows:

– E runs an internal copy of S; since E receives any message sent from the
corrupt sender to an honest receiver, it can forward these messages to S,
acting as the adversary.

– Whenever A sends a message to a hybrid functionality Fprog
VOLE, E forwards

the message to S.
– Whenever S calls FHCom with some message msg, E outputs msg on its special

extractor tape. E responds to S exactly as FHCom would; this is possible
because PS is corrupted, so E knows all of the committed inputs and can
correctly open them as needed. If FHCom aborts, then E aborts.

To show that E is a good extractor, we first require that the executions
π ◦ A and [π]E ◦ A are indistinguishable. The only difference between the two
executions is that E is simulating the Fprog

VOLE instances, and also may abort in
case the underlying simulator S aborts. However, it follows from the proof of
Theorem 1 that these differences are negligible.

Secondly, we must show that the special extractor tape in [π]E is indistinguish-
able from the special functionality tape of F̂HCom in F̂HCom ◦S to any environment
Z. This is trivially true, because E is running S the same way as in an ideal execu-
tion, and the extractor tape of E contains exactly the messages S sends to FHCom.

Online Extractability of VOLE Protocol. To use ΠHCom in our compiler
for identifiable abort, it is not enough that ΠHCom is online-extractable on its
own, since the compiler from Section 5 requires that ΠHCom only uses FRand

and/or FCRS as its hybrid functionalities. In Appendix C.2, we show that Fprog
VOLE
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can be replaced with a VOLE protocol in the FOT-hybrid model, where the
sender plays the OT receiver, and this protocol is online-extractable when the
sender is corrupted. Since we showed in Lemma 2 how to realize FOT in an
online-extractable way, by applying composition (Lemma 1), this gives an online-
extractable protocol for Fprog

VOLE in the FCRS-hybrid model.
The identifiable abort version of FHCom, F IA

HCom appears in Fig. 17.

5 Compiling to Identifiable Abort

In this section, we show how to compile a protocol with active security with
selective abort, and online extractibility, into a protocol that achieves identifiable
abort. More specifically, we handle any class of protocols that are in the CRS
model and are sender-receiver protocols, where the receivers do not have any
private inputs and do not have any communication between them. This is defined
formally below.

Definition 5. Let Π be a protocol realizing a functionality F in the (FCRS,FRand)-
hybrid model. We say that Π is a sender-receiver protocol if (1) No receiver has
private inputs and only interacts with the sender, except when communicating
with FCRS or FRand; and (2) Whenever the sender PS, with random tape ρS, has
an input inp and sends a message to a receiver, this is done with either:

– A broadcast channel, using a function NextBC(ρS , inp, state), which outputs
an updated state and the message msg to be broadcast. The viewS may contain
any outputs from FCRS or FRand, but is otherwise only used by NextBC.

– Private communication to receiver Pi, using a function NextMsg(ρS , Pi,msgsi, state),
where msgsi contains the set of messages previously received from Pi.

In particular, this definition implies that any messages sent from the sender
to a receiver, including via the broadcast channel, cannot depend on any previous
message sent from another receiver to the sender.

It is straightforward to see that if we take ΠHCom (Fig. 3), and replace Fprog
VOLE

with any secure 2-party protocol in the CRS model, we obtain a sender-receiver
protocol. In Input, Private Output, Batch Output, and Output, PS is the
only party sending messages to the receivers in ΠHCom. In Random, it is clear that
the messages sent from PS to the receivers, and as input to Fprog

VOLE, only depend
on PS ’s random tape and the messages received from FRand. Since Fprog

VOLE is a two-
party functionality, replacing it with a secure two-party protocol ensures that the
protocol messages to Pi still cannot depend on the view of any other receiver Pj .

5.1 The Compiler

In the protocol (Fig. 6), the parties start by picking a public and secret key pair
for a signature scheme, and broadcast the public key. We use an EUF-CMA secure
signature scheme (Gen,Sig,Ver). The compiler runs the original protocol Π, and
in each round, the parties add signatures to every message they are supposed to
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send. If any signature does not verify, or a message was not received, the receiving
party Pi initiates the complaint procedure in Fig. 4, which forces the sending
party to broadcast the message to all parties (or be identified as a cheater).

Subroutine Complain(Pi, Pj)

1. Pi broadcasts (Complain, Pj).
2. Let (m,σ) be the last message sent from Pj to Pi in round r (if Pj was

honest). Pj broadcasts (m,σ).
3. All parties check that Ver(pkj , σ, (r‖Pj‖Pi‖m)) = 1. If not, or if Pj does

not broadcast the message, the parties output abortj .

Fig. 4: Complaint procedure for a missing message from Pj to Pi

Algorithm VerifyAbort (pki, viewi, ρi, r)

1. Using pki, check all (mr
S,i, σ

r
S,i) pairs in viewi. If any check fails, output fail.a

2. Use viewi and ρi, and the round number r to reconstruct what the messages
of the receiver should have been according to NextMsgΠ. If the output of
the receiver is abort, output good. Else, output fail.

a
An honest receiver would not have an invalid signature in their view without having
entered the Complaint procedure which would have either identified the cheater or returned
a valid signature.

Fig. 5: Algorithm for verifying whether a receiver should have aborted.

The main challenge is to handle the case where Π aborts, and we use different
strategies based on the party which aborts. If there was an abort in Π, the
aborting party starts the Abort phase of the protocol, where the parties identify
the cheater as follows. If a receiver party, say Pi, aborts, then since Π is a sender-
receiver protocol, it must be the case that either PS or Pi is a cheater, so the
parties just need to establish which. We therefore have Pi broadcast its view, and
open its random tape to all the parties. The rest of the parties can locally check
if Pi cheated by running the VerifyAbort algorithm, which verifies the correctness
of the messages it sent by recomputing the actual messages using the NextMsg
function. VerifyAbort has the guarantee that if run with an honest Pi’s view and
random tape, it always outputs good, and that it is not possible to frame an
honest Pi by making it output fail because that would require forging a signature.
Parties abort with either aborti or with abortS depending on who cheated.

On the other hand, if PS was the party that aborted, the natural approach
would be to have PS broadcast its view and random tape as in the earlier case.
However, we do not want to reveal the sender’s random tape. We do not want
the sender broadcasting even its view with all the receiver parties, as this poses a
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Compiler ΠIA
Cmp

Let Π be a sender-receiver protocol that realises F, is actively secure with
selective abort and supports online extractability. Π uses a CRS. We assume
that Π is a protocol with one sender PS and a set of receivers Pj ∈ [1, n]. All the
calls to functionalities inside of Π are replaced by their corresponding protocols.

1. Before any step of the protocol is executed, each Pi sends (Commit, Pi, ρi)
to FCommit, where ρi is the random tape.

2. Each party Pi also samples a (pki, ski) pair, and broadcasts pki.
3. Run the Π protocol as follows. In each round r of the protocol,

(a) Let mr
i,j be the message that Pi should have sent to Pj , according to

NextMsgΠ. Note that either Pi or Pj must be PS .
(b) Pi sends (mr

i,j , σ
k
i,j) to Pj , where σri,j = Sig(ski, r||Pi||Pj ||mr

i,j).
(c) Pj checks Ver(pki, σ

r
i,j , (r||Pi||Pj ||mr

i,j)) = 1. If not, or if Pi did not
send a message at all, Pj calls Complain(Pj , Pi) (Fig. 4)

(d) If any party Pi terminates with output abort then it initiates the Abort
procedure.

Abort:

1. If a receiver Pi aborted in round r:
(a) Pi broadcasts (abort, viewi) and opens ρi publicly using FCommit.
(b) All parties run VerifyAbort (pki, viewi, ρi, r) (Fig. 5) to establish if Pi

cheated.
(c) If VerifyAbort returns fail, the parties output aborti, else output abortS .

2. If the sender PS aborted:
(a) PS broadcasts abort.
(b) All receivers Pi send viewi to PS and privately open ρi to PS using
FCommit.

i. If PS does not receive the view of some Pi, it broadcasts a complaint
message for Pi. Pi is forced to broadcast (viewi)

a and publicly open
ρi by calling FCommit with Open.

ii. If Pi does not broadcast, then everyone outputs aborti.
(c) PS runs IA.Identify (pki, viewi, ρi, pkS , viewS,i) (Fig. 7) for all receivers

Pi to establish who cheated. viewS,i is the view of the the sender PS
that contains only the messages from one particular party Pi.

(d) PS broadcasts viewS,i for the cheating party Pi. Pi broadcasts viewi
and publicly opens ρi using FCommit.

(e) All honest parties run IA.Identify (pki, viewi, ρi, pkS , viewS,i) and output
aborti. If PS never broadcast the views, then they identify PS as the
cheater.

a This is ok because in this case either the receiver or the sender is corrupt.

Fig. 6: Compiler for identifiable abort

problem for simulation. In this case, we are operating with an honest sender, and
a subset of receivers that are corrupt. Because this is a sender-receiver protocol,
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the honest receivers may have private outputs from the sender. This means the
simulator cannot forge a view for the honest sender to give to the adversary.

Instead, we have all the receivers send their views and random tapes to the
sender. The sender locally runs Identify (Fig. 7) on all the views and random
tapes, including its own view, to identify the receiver party that cheated. If a
receiver Pi does not send its view to the sender then the sender broadcasts a
complaint message for Pi who is then forced to broadcast its view and its random
tape. Identify can reconstruct what an honest receiver should have sent, based
on the random tape of the receiver and the NextMsg function. Then it compares
these messages to the messages from the sender’s view, which allows it to always
identify if the receiver cheated. PS then broadcasts its view only with respect to
the cheating party, along with that party’s view and random tape. The other
honest parties can locally run Identify on these to be convinced that Pi was the
cheater. This avoids the problem of the simulator having to send the full view of
the honest sender. A formal description of the compiler appears in Fig. 6.

Algorithm IA.Identify (pki, viewi, ρi, pkS , viewS)

1. Using the random tape ρi and viewi, first check if the ρi is the one that was
committed to and then compute what the messages of Pi in each round
should be. Let those be mr

i,S .
2. Check if mr

i,S 6= m̂r
i,S , where m̂r

i,S are Pi’s messages in viewS , for all rounds
r of the protocol so far. If any of them are inconsistent, output Pi as the
cheater.

3. Else if any of the signatures from viewS fail the check
Ver

(
pki, σS , (rS ||PS ||Pi||m̂r

i,S)
)

= 1, output Pi as the cheater.
4. Else, verify signatures sent by PS . If any of them are not valid, output PS

as the cheater.

Fig. 7: Algorithm for identifying a cheater.

Theorem 2. Let Π be a perfectly correct, sender-receiver protocol that UC-
securely realises a functionality F with active security and dishonest majority, and
supports online extractability when the sender and a subset of receivers are corrupt.
Let (Gen,Sig,Ver) be a EUF-CMA secure signature scheme. Then the compiled
protocol ΠIA

Cmp securely realizes F with active security in the FCRS,FCommit-hybrid
model, and achieves identifiable abort.

Due to space constraints, we defer the full proof of the theorem to Appendix E
and provide a proof sketch.

Proof (Sketch). First, whenever A communicates with FCRS, S calls the extractor
E which picks whichever CRS it wants and S forwards it to A. We have two
cases of corruption:

1. The sender and a subset of the receivers are corrupt. In this case, S can
use E and an honest execution of the protocol to forward A’s inputs to
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F IA
HCom. The two interesting cases of abort are: a corrupt receiver or a corrupt

sender. Those cases are taken care of by running VerifyAbort and IA.Identify
respectively on the random tapes that S received.

2. A subset of receivers is corrupt. In this case S uses the UC simulator SΠ of the
original protocol and whenever SΠ communicates with FHCom, S forwards all
the messages to F IA

HCom. The abort here can happen either by a corrupt receiver
or an honest sender. As before, they are taken care of by running VerifyAbort
and IA.Identify on the random tapes of the corrupt parties that it received.

In both cases, the correctness of the identified cheaters follows from the EUF-
CMA property of the signature scheme and the binding property of FCommit.

5.2 Identifiable Cheating

We now present another transformation, which does not directly yield identifiable
abort, but on the other hand, is not restricted to sender-receiver protocols.
Similarly to the previous compiler, we use signatures to verify point-to-point
communication. This ensures that a protocol transcript is verifiable, in the sense
that, in an execution where an honest party aborts, a cheater can be identified
given the views of all parties, even if a corrupt party may lie about its view. We
will use this transformation as part of our preprocessing protocol in Section 6, to
ensure that the triple generation subprotocol can be verified in case of an abort.

Protocol assumptions. We let NextMsg denote a component of each party’s
state transition function that, on input the party identifier Pi, random tape ρi,
the view of Pi, and round r, outputs the next message m that Pi is supposed
to send. We assume that the protocol Π realizes a functionality F, and is in the
(FCRS,FRand)-hybrid model.

Definition 6 (Dishonest execution). Consider a non-aborting execution of
protocol Π between parties P1, . . . , Pn wit h random tapes (ρ1, . . . , ρn), and a set
PA of corrupted parties. We say that the execution was dishonest with respect to
PA, if there exists at least one honest party whose view in the execution is different
compared to the view of the same party in an honest execution of Π on (ρ1, . . . , ρn).

The notion is defined via a game and a polynomial time algorithm Identify.
The idea of the definition is as follows, we first run the protocol Π with a set
of parties P1, . . . , Pn. The protocol generates the set of views {viewi}i∈[1,n]. The
adversary is allowed to replace up to n− 1 views with corrupted ones. We show
that the identifiable cheating compiler guarantees that, except with negligible
probability, given all the views, the random tapes of the parties, and public keys
of all the parties, the Identify algorithm successfully identifies the cheating party.
Formally, the definitions are as follows:

Definition 7 (Identifiable cheating). Let Π be an actively secure protocol
that UC-securely realises F and in the FCRS-hybrid model. Let Identify be a
deterministic polynomial-time algorithm with the syntax:
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Compiler ΠIC
Cmp

Let Π be a maliciously secure protocol with abort that realizes F and is in the
(FCRS,FRand)-hybrid model. Let (Gen, Sig,Ver) be a signature scheme.

1. Each Pi, for i ∈ [1, n], samples (pki, ski)← Gen(1λ) and broadcasts pki.
2. The parties run Π. Let ρi be the random tape of each party Pi. When Pi

receives a message, inp, in round r:
(a) If inp is a message from Pj of the form (m,σ), Pi checks that

Ver(pkj , σ, (Pj‖Pi‖m‖r−1) = 1. If the check fails, run Complain(Pi, Pj).
(b) If Pi is next instructed to send a message to some party Pj :

i. Let (mi,j , state) = NextMsg(Pi, ρi, viewi, r).
ii. Let σi,j = Sig(ski, Pi||Pj ||mi,j‖r)

iii. Send (mi,j , σi,j) to Pj
Otherwise, Pi executes its next instruction as usual.

Fig. 8: Compiler for identifiable cheating

Algorithm Identify
(
(pki, viewi, ρi)i∈[1,n]

)
1. Emulate an execution of Π with virtual parties P1, . . . , Pn and random

tapes ρ1, . . . , ρn.
2. At each step where Pi sends a message mi,j to Pj in round r:

(a) Retrieve the next message (m̂i,j , σ) from viewj .
(b) Check whether mi,j = m̂i,j , where mi,j = NextMsg(Pi, ρi, viewi, r). If

not, output Pi as a cheater. If mi,j = m̂i,j , check if there was a Complain
procedure initiated in the list of broadcasted messages. If there was
one, output Pj as a cheater.

(c) Check whether Ver(pki, σ, (Pi‖Pj‖m̂i,j‖r)) = 1. If not, output Pj as a
cheater.

3. If Π ends successfully without identifying a cheater, output ⊥.

Fig. 9: Algorithm for identifying a cheater.

- Identify
(
(pki, ρi, viewi)i∈[n]

)
: On input the public keys, random tapes and

views of all the parties, Identify either outputs a corrupt party Pi or an honest
execution symbol ⊥.

A protocol Π supports identifiable cheating if for any P.P.T adversary A it
holds that:

Pr[Expic
A,Π(λ) = 1] ≤ v(λ)

where λ ∈ N, v is a negligible function and Expic
A,Π(λ) is defined as in Fig. 10.

The idea of our compiler ΠIC
Cmp that ensures identifiable cheating is to have

parties add signatures to their messages. In order for parties to sign and verify
messages, each party chooses a public key and a secret key for a signature scheme,
and broadcasts the public key before running the compiled protocol. If a party in
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Experiment ExpicA,Π(λ)

1. A corrupts a set of parties PA ⊂ P. Let PH be the set of honest parties.
2. For each i ∈ PH , sample a random tape ρi.
3. For each j ∈ PA, A chooses a random tape ρj .
4. The parties run Π, where Pi uses ρi as its random tape. Let viewi denote

the list of messages received by Pi.
5. If all honest parties output abortj for some j ∈ PA, then output 0.
6. A receives (ρi, viewi), for i ∈ PH .

7. A outputs {ṽiewj} for j ∈ PA. Redefine viewj := ṽiewj .
8. Output 1 if one of the following holds:

– The execution of Π is dishonest with respect to PA, and
Identify ((pki, ρi, viewi)

n
i=1) = ⊥

– Identify ((pki, ρi, viewi)
n
i=1) ∈ {Pi}i∈PH .

Else, output 0.

Fig. 10: Experiment for Identifiable Cheating

the protocol thinks a message or the signature it received is invalid, it broadcasts
a complaint message, upon which the sender of the message must broadcast
the message and the signature to all the parties. The formal protocol for the
identifiable cheating compiler appears in Fig. 8.

We prove that using this compiler with any protocol that is actively secure
in the dishonest majority with abort, gives a protocol that has the identifiable
cheating property.

Theorem 3. Let Π be a protocol that UC-securely realises a functionality F with
active security and dishonest majority. Let (Gen,Sig,Ver) be a EUF-CMA secure
signature scheme. Then the compiled protocol ΠCmp securely realises F with active
security in the CRS model and using broadcast, and achieves the identifiable
cheating property.

Due to space constraints, we defer the full proof of the theorem to Appendix E.

6 Preprocessing

In this section, we build our preprocessing protocol with identifiable abort, using
the homomorphic commitments with identifiable abort from the previous section.
The preprocessing protocol allows parties to secret-share random values such
that the secret is known to one party only, as well as to create sharings of
multiplication triples, that is, two random values together with a sharing of
their product. In both cases, all shares are homomorphically committed. Parties
can also apply linear operations to these sharings without interaction, or open
them with identifiable abort. The preprocessing functionality, abstracting this, is
formally described in Fig. 11.

In the preprocessing protocol ΠIA
Prep, we will use (amongst other functionalities)

n sessions of F IA
HCom, where we denote by F IA,i

HCom the session where party Pi is sender
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Functionality F IA
Prep

Parameters: Finite field Fp, parties P1, . . . , Pn. The adversary is allowed to
corrupt a subset of parties, denoted by I.

Random Input: On receiving (RandInput, Pi, l) for some i ∈ [1, n] from all
parties:

1. Sample r ← Flp.
2. Store (idr, r) for a fresh idr and send (idr, r) to Pi and idr to everyone else.

Linear Operation: On receiving (LinComb, idz, idx, idy, α, β, γ) from every Pi
where idx, idy are assigned, idz is unassigned and where α, β, γ ∈ Fp, compute
z = α · x+ β · y + γ and store (idz, z).

Triple Generation: On receiving (TripGen, l) from all parties:

1. Sample a, b ∈ Fp of length l and let c = a� b.
2. Store (ida,a), (idb, b), (idc, c) for unused ida, idb, idc.
3. Send (ida, idb, idc) to all parties.

Output: Upon receiving (Output, idx) from all parties and where idx is assigned:

1. Send x to A.
2. If A sends (Abort,J ), where J ⊆ I,J 6= ∅, then send (Abort,J ) to all the

parties and terminate.
3. If A sends Deliver then output x to all parties.

Corrupt Party Behaviour: Whenever the adversary is supposed to send
a value, it can choose to not send a value at all, triggering an abort. The
functionality receives (Abort,J ), where J ⊆ I from A and J 6= ∅, sends it to
all the parties and terminates.

Fig. 11: Functionality for Preprocessing

and all other parties are receivers, and refer to this as Pi’s session of F IA
HCom. We

use the notation 〈·〉C to denote values that are additively shared and where each

party Pi’s share is committed using F IA,i
HCom where it is the sender. For a value 〈x〉C ,

each party Pi holds (xi, id1, . . . , idn), where idi is the identifier where F IA,i
HCom stores

the share xi. Any linear operation performed on 〈x〉 can also be performed on the
commitments, by calling LinComb with each F IA

HCom session. To open 〈x〉C , each Pi
calls F IA,i

HCom with (Output, idi), for i ∈ [1, n], and all receivers now either receive x
or (Abort,J ), where J indicates the set of cheating parties. [x] denotes that x ∈ Fp
is additively shared between the parties, that is, x = x1+. . .+xn where Pi holds xi.

The preprocessing protocol is described in Fig. 13 and Fig. 14. To generate
a random input towards a party, say Pi, each Pj generates a private random

value, committed using F IA,j
HCom, and then privately opens this to Pi. Pi sets its

random input to be the sum of all the random values it receives across the n
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Functionality FTriple

Parameters: Finite field Fp. Parties P1, . . . , Pn. The adversary is allowed to
corrupt a subset of parties, denoted by I. Denote the honest parties as PH .

Generate Triples: On receiving (Trip, l) from all the parties, sample a fresh
set of l triples (aj , bj , cj) ∈ F3

p for j ∈ [1, l]. Output additive shares [aj ], [bj ], [cj ]
of the triple to each party.

Corrupt Parties: The adversary is allowed to choose its shares of the triples,
as well as additive errors for the triples. If the errors are δia, δ

i
b for i ∈ PH for a

triple, the triple will now be computed as c = a · b+ Σi∈PH

(
ai · δib + bi · δia

)
.

Fig. 12: Functionality for unauthenticated triples

sessions of F IA
HCom. Since the parties only use F IA

HCom functionalities here, cheater
identification is trivial.

To generate triples, we rely on a secure-with-abort triple generation protocol,
ΠTrip, that securely realizes the FTriple functionality (Fig. 12); this can be efficiently
realized, for instance, using pairwise OLE correlations as in the preprocessing
protocol of Le Mans [RS22]. We then compile ΠTrip to support identifiable cheating,
using our compiler from Fig. 8, to obtain a protocol ΠIC

Trip.

After running ΠIC
Trip, each party gets unauthenticated shares of a batch of

triples. These triples are then authenticated, by having parties commit to their
shares using the respective sessions of F IA

HCom, and then checked for correctness,
using random challenges and a standard triple sacrifice protocol.

Notice that there can two types of errors when creating triples. Firstly, the
triple generation protocol ΠIC

Trip might abort. The other kind of error is when

ΠIC
Trip results in consistent shares of triples, but the adversary inputs inconsistent

shares into F IA
HCom. This would lead to the triple sacrifice failing. If there is an

abort in ΠIC
Trip, parties open their random tapes using FCommit and broadcast their

views from ΠIC
Trip. Since ΠIC

Trip has identifiable cheating, parties can now run the
Identify algorithm locally on input (pki, viewi, ρi)

n
i=1 to identify a corrupt party. If

there is an abort in the sacrifice check, on the other hand, in addition to running
Identify, they also need to check consistency of the inputs to F IA

HCom to outputs
of ΠIC

Trip. In order to do this, they call F IA
HCom with Output across all sessions of

F IA
HCom and check that the inputs to F IA

HCom match with the outputs of ΠIC
Trip. Here,

any deviation allows to directly identify a cheater.

Theorem 4. Suppose that protocol ΠTrip UC-securely implements FTriple against
an active adversary corrupting at most n− 1 parties.

Then, the protocol ΠIA
Prep (using the compiled protocol ΠIC

Trip) UC-securely

implements the functionality F IA
Prep in the presence of a malicious adversary that

statically corrupts up to n−1 parties, in the (FRand,F IA
HCom,FCommit)-hybrid model.

28



Protocol ΠIA
Prep (Part 1)

Parameters: Finite field Fp. Parties P1, . . . , Pn.

Initialize: Each Pi samples a random tape Rndi. Pi sends (Commit, Pi,Rndi)
while every other party receives Pi from FCommit. Parties repeat this process
with every Pi committing to its random tape. Parties also run the first step of
the compiled ΠIC

Trip and each party obtains the verification keys pk1, . . . , pkn.

Random Input: Pi uses the next available random input sharing idi. If it has
no random inputs left, generate a batch of l as follows:

1. Each Pj calls F IA,j
HCom with (Random, idj , l), while the other parties call F IA,j

HCom

acting as receivers. Pj receives rj of length l.
2. Each Pj then calls each instance of F IA

HCom with (PrivOpen, idj, Pi). Pi receives
rj for j ∈ [1, n] and sets its random input as xi = Σnj=1rj . It considers the
value of idi as the first unused element of xi.

Linear Operation: To compute z = α · x + β · y + γ, parties set
〈z〉C = α · 〈x〉C + β · 〈y〉C + γ.

Output: To output a value 〈x〉C , each party calls all instances of F IA
HCom with

(Output, idx).

Fig. 13: Protocol for preprocessing

In the proof, we construct a simulator S which simulates honest parties and the
ideal functionalities towards the adversary. For Random Input S just runs
the protocol, except for a malicious receiver Pi where S equivocates an honest
party’s commitment in F IA

HCom to open to the output provided F IA
Prep. For Output,

it does exactly the same. Linear Operation is entirely local, so simulation is
trivial. For Triple Generation S runs the protocol, but will always abort if the
F IA

HCom sessions contain values that are not consistent multiplication triples.
To show that S’s output can only be distinguished from ΠIA

Prep with the given
probability, the main difference lies in the occurrence of aborts and the identified
cheaters. The 1/(p− 1) term comes from aborts that also happen in S if d = 0
(while the protocol never aborts). Concerning identified cheaters, we have that
Identify identifies no or an honest party (i.e. the wrong party) with probability at
most negl(λ) due to the Identifiable Cheating property of ΠTrip, while S always
identifies corrupt dishonest parties.

Due to space constraints, we defer the full proof of the theorem to Appendix F.
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Protocol ΠIA
Prep (Part 2)

Triple Generation:

1. Parties run ΠIC
Trip using the random tapes Rndi for Pi. They receive additive

shares of 2l triples – [aj ], [bj ], [cj ], for j ∈ [1, 2l]. If any party notices an abort
while running ΠIC

Trip, then it broadcasts Abort and all parties go to Abort 1.

2. Each Pi calls F IA,i
HCom, where it acts as the sender, with

(Input, ida-j , idb-j , idc-j , [aj ], [bj ], [cj ]) for j ∈ [1, 2l]. Using the identifiers,
parties form 〈a〉C , 〈b〉C , 〈c〉C .

3. Parties call FRand to receive public random values t ∈ (F∗p)l and a set of
random combiners χ1, . . . , χl ∈ Fp.

4. For i = 1, . . . , l, the parties do the following (in parallel):
(a) For iteration i, parties select a pair of previously unused triples

(〈a〉C , 〈b〉C , 〈c〉C), (〈a′〉C , 〈b′〉C , 〈c′〉C).
(b) Compute 〈α〉C = 〈ti · a + a′〉C and 〈β〉C = 〈b + b′〉C . Open these

values using the Output command of each instance of F IA
HCom. If any

F IA
HCom instance sends (Abort,J ), parties abort with J being the set of

cheating parties.
(c) Locally compute 〈di〉C = ti · 〈c〉C − 〈c′〉C + α · 〈b〉C + β〈a′〉C − α · β.

5. Compute 〈σ〉C =
∑l
i=1 χi · 〈di〉C .

6. Open σ by calling each F IA
HCom with Output. If σ = 0, accept all

〈a〉C , 〈b〉C , 〈c〉C as good triples and discard all 〈a′〉C , 〈b′〉C , 〈c′〉C . If σ 6= 0,
parties abort and go to Abort 2.

Abort 1: If there is an abort in ΠIC
Trip in Step 1 of the Triple Generation,

1. Each Pi opens its commitment to Rndi to everyone, by sending Open
to FCommit.

2. Each Pi broadcasts viewi from ΠIC
Trip. Then each party runs

Identify((pki, viewi, ρi}i∈[n]) and output as cheater whatever the algo-
rithm outputs.

Abort 2: If there is an abort in the triple sacrifice in Step 4, parties first run
the same as in Abort 1, and in addition, parties call all instances of F IA

HCom

with Output to open their triple shares. Parties check that the inputs of
each Pi to F IA,i

HCom matched the triple shares Pi obtained as outputs from
ΠIC

Trip. If not, parties output (Abort,J ), where J is the set of parties with

inconsistent inputs to that instance of F IA
HCom.

Abort 3: If there is an abort in FRand or any instance of F IA
HCom, all parties

abort with (Abort,J ) received from the respective functionality.

Fig. 14: Protocol for preprocessing (Triple Generation)
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Supplementary Material

A Additional Preliminaries - Functionalities

A.1 Additional Preliminaries

Definition 8 (Signature Scheme). A signature scheme consists of the follow-
ing three PPT algorithms,

Gen(1λ): On input the security parameter λ, outputs a public key pk and signing
key sk.

Sig(sk,msg): On input the signing key sk and message msg ∈ {0, 1}∗ outputs a
string σ.

Ver(pk, σ,msg): On input a public key pk, signature σ and message msg ∈ {0, 1}∗
outputs a bit b.

We require that (Gen,Sig,Ver) is correct, namely that

Pr
msg∈{0,1}∗

[
Ver(pk, σ,msg) = 1

∣∣∣∣ (pk, sk)← Gen(1λ)
σ ← Sig(sk,msg)

]
= 1

Definition 9 (EUF-CMA security). Given a signature scheme (Gen,Sig,Ver)
and security parameter λ, we say that Sig is EUF-CMA-secure if any PPT
algorithm A has negligible advantage in the EUF-CMA game, defined as

AdvEUF-CMA
A = Pr

[
Ver(pk, σ∗,msg∗) = 1

∧msg∗ 6∈ Q

∣∣∣∣ (pk, sk)← Gen(1λ)
(msg∗, σ∗)← ASig(sk,·)(pk)

]
,

where ASig(sk,·) denotes A’s access to a signing oracle with private key sk and Q
denotes the set of messages msg that were queried to Sig(sk, ·) by A.

A.2 Additional Functionalities

Functionality FCommit

The functionality runs between a set of parties P and an adversary A.

Commit: On receiving (Commit, Pi, x) from Pi, store (Pi, x) and send Pi to
all parties.

Open: On receiving (Open, Pi, Pj) from Pi, retrieve x and send (x, Pi) to Pj .

Public Open: On receiving (Open, Pi) from Pi, retrieve x and send (x, Pi) to
all parties.

Fig. 15: Functionality for a Commitment
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Functionality FRand

The functionality runs between a set of parties P and an adversary A. The
adversary can corrupt a subset of the parties, denoted by I.

Upon receiving a description of a domain Fmpr from every party in P, uniformly
sample (x1, . . . , xm)← Fmpr and send this to A. If A responds with Deliver, send
x1, . . . , xm to all parties and terminate. Otherwise, if A sends (Abort,J ), where
J ⊂ PA, send (Abort,J ) to all parties and terminate.

Fig. 16: Functionality for Coin Tossing with Identifiable Abort

B Efficiency Analysis

Efficiency compared with MPC with abort. To investigate the overhead
of obtaining identifiable abort, we compare our protocol with the preprocessing
and online phases from Le Mans [RS22], which is secure with abort. There are
two ways to run the preprocessing in Le Mans. The first way, called Le Mans
1 in Table 1, is to generate what they call “partial triples”, and authenticate
the triples during the online phase. Asymptotically, the preprocessing cost in
this approach can have a total of O(n2 log|C|) communication, where |C| is
the circuit size, when using pseudorandom correlation generators for OLE and
VOLE correlations. The local computation of PCG approaches is still O(n2|C|),
however. If instead, “non-silent” OLE or VOLE protocols are used, such as from
homomorphic encryption or OT, the communication would also be O(n2|C|). The
online cost is 12n elements per party (by using the king approach). The second
version of Le Mans generate the partial triples in the preprocessing, but also
authenticates and checks them, costing an additional O(n2|C|) field elements,
but bringing the online cost down from 12n to 4n elements per party.

Our preprocessing has the same base cost as Le Mans 1, plus an additional
2(n − 1)|C| field elements per party, sent via point-to-point channels. When
it comes to the online phase, we use the standard BDOZ online phase with
authenticated triples and signatures added to the messages, which again, increases
the cost by O(n). Overall, our online communication cost per party is dominated
by 2(n− 1)|C| field elements, in an honest execution.

Note that an adversary can always increase the cost of our preprocessing
by forcing complaint procedures to be run (by sending invalid messages). This
increases our round complexity by a factor of 2, and forces the entire transcript
to go via a secure broadcast channel instead of point-to-point channels. The
adversary could also cause an abort at any point during the protocol, forcing
parties to open their views. However, resolving an abort in our protocol is fairly
cheap in terms of computation: once the parties receive the view(s), they only
need to locally compute the messages that should have been sent, with no need
for expensive ZK proofs.
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Efficiency compared to other ID-MPC protocols. We now compare our
construction to [BOS16] and [BOSS20].

In the preprocessing phase, [BOS16] requires O(n3) broadcast messages
per multiplication gate because the parties need to perform O(n2) verifiable
decryptions of RLWE ciphertexts. In our protocol, even in the worst case when
all messages between parties are forced to be broadcast, we only need O(n2)
broadcasts per multiplication. This asymptotic difference is due to the more
complex information-theoretic signatures used in [BOS16], which take more work
to set-up than our simple pairwise MACs. In the online phase, both [BOS16] and
our protocol have O(n2) complexity.

Concretely, while it is hard to estimate costs without an implementation, we
expect that our protocol will perform much faster than [BOS16]. Our protocol
is designed to use Pseudo-random Correlation Generator (PCG) techniques for
generating Oblivious Linear Evaluation (OLE) and Vector OLE correlations, and
prior works estimate [BCG+20] that concretely, these have orders of magnitude
less communication than homomorphic encryption-based (HE) approaches. In
[BOS16], the complexity of its preprocessing requirements makes it much harder
to employ practical PCG techniques instead of HE, and in particular, we do not
see an easy way to avoid their asymptotic O(n3) overhead.

The protocol of [BOSS20] is incomparable to ours as it is a garbled circuit-
based construction that works for Boolean circuits (with a constant-round online
phase). In comparison, our construction allows the evaluation of circuits over Fp
for large p with a round complexity that depends on the circuit depth. Both their
and our construction use homomorphic commitments during the offline phase:
[BOSS20] commits each party to its GC keys, while we let each party commit to
its shares. To achieve this, [BOSS20] uses a non-interactive vector commitment
while we use a VOLE-based construction. Adapting our commitments to their
setting might be interesting future work.

C Online Extractability - Composition and Examples

C.1 Proof of Universal Composability

In this section, for notation, we write ρ \ {F} to mean “all parts of the protocol
ρ that have neither in- nor output to F . We similarly write ρ \ π, if π is a
subprotocol used in ρ.

Proof (Proof of Lemma 1). To prove the statement, we have to construct a PPT
algorithm E that fulfills Definition 4 for ρF→π. We can assume that Eρ exists for
the protocol ρ and Eπ for π, and we use these to construct E .

Let [ρF→π]E be the [·]E transformation applied to the protocol but for a so-
far unspecified E . We define E as follows:

– Initially run an instance of Eρ and Eπ. Let both manipulate the CRS-like
functionalities for the respective protocols ρ \ π and π.

– Any messages sent between one honest party and a dishonest party in ρ \ π
are forwarded to Eρ. If the message is sent in π then we forward it to Eπ.
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– Any hybrid functionality in ρ\({F}∪π) has its ideal input tape be connected
to Eρ. Any wrapped hybrid functionality in π has its ideal input tape be
connected to Eπ.

– Any output written on the extractor tape of Eπ is given to Eρ as if it was
coming from the ideal input tape of the (non-existent) wrapped F .

– The extractor tape of E will be the extractor tape of Eρ.

For criterion 1 of Definition 4, we have to show that ρF→π and [ρF→π]E are
indistinguishable to any environment that does not have access to the extractor
tape of E .

The change due to wrapping functionalities and copying messages is not visible
to Z as the extractor tapes of Eρ, Eπ are not accessible to it. The only changes
are due to the changes to CRS-like functionalities. By first replacing the CRS-like
functionalities as done by Eρ and then as done by Eπ we get exactly the CRS-like
functionality behavior of E , and thereby indistinguishability by a hybrid argument.

For the second criterion, observe that by assumption, the extractor tape of Eπ
is indistinguishable from the ideal input tape of F̂ because π is online-extractable
using Eπ. But this in particular means that the extractor tape of Eρ must have
the same distribution, both when using F̂ or the output of Eπ, as we’d otherwise
have constructed a distinguisher for Eπ (since the only interaction that Eρ has
with Eπ is via its extractor tape). Therefore, E must have an extractor tape
distribution indistinguishable from F̂ρ. ut

C.2 Online Extractability of VOLE

We show that the VOLE protocol from Wolverine [WYKW21] can be used to
realise Fprog

VOLE (Fig. 1), and satisfies the online extractability property for a corrupt
PA. Although Wolverine was originally shown to realize a non-programmable
VOLE functionality FVOLE (where the output of an honest PA is sampled at
random by the functionality), as observed in [RS22], it can easily be extended to
be programmable. The analysis in this section is focused on the non-programmable
variant, but applies equally to the programmable one.

Single-Point VOLE. The main component of the VOLE construction is a
protocol for single-point VOLE, where PA’s vector u has a single non-zero
entry. This is modelled by a functionality FspVOLE, which is then used to build
FVOLE using the LPN assumption. The latter transformation is completely non-
interactive, so clearly online extractable in the FspVOLE-hybrid model. We now
analyze the protocol ΠspVOLE that realizes FspVOLE, which is significantly more
complex and also uses several setup functionalities.

Setup Functionalities: FOT, FEQ and FVOLE. ΠspVOLE uses three hybrid
functionalities: oblivious transfer (FOT), equality testing and a smaller FVOLE

functionality (which is essentially bootstrapped to the larger, more efficient one).
Using Lemma 2, we can replace FOT by a 2-round OT protocol in the FCRS

38



model, and preserve online extractability, since PA is always the OT receiver. FEQ

is a weak equality test functionality, which leaks PA’s input if the two parties’
inputs differ. It can be easily realized using random oracle based commitment, as
described in [WYKW21]. In the resulting protocol, after receiving a commitment
from PB , PA sends its input in the clear to PB ; this makes the protocol trivially
online extractable. Finally, the FVOLE functionality used as setup can be realised
with FOT using OT extension techniques [Roy22]. After analyzing ΠspVOLE, we
will argue that this setup VOLE protocol also satisfies online extractability.

Online Extractability of Single-Point VOLE. In the following, we refer to
the protocol and proof of ΠspVOLE, which realizes the functionality FspVOLE, in
Fig. 7 and Theorem 3 of [WYKW21].

Proposition 1. The protocol ΠspVOLE for single-point VOLE in [WYKW21, Fig.
7] is online-extractable for a corrupt PA.

Proof. To show online extractability, we need to show the existence of an extrac-
tor E , which can extract all inputs that are sent to FspVOLE in a way that is indis-
tinguishable from the inputs sent by the simulator in the ideal world. Before defin-
ing E , we briefly recap the simulator from the proof in [WYKW21, Theorem 3]
for a corrupt PA. Briefly, the view of PA in this protocol consists of the following:

– Interaction with hybrid functionalities FVOLE, FOT and FEQ

– A value d sent by PB , used to fix one of PB ’s outputs to the correct value

The simulator, S, emulates the hybrid functionalities and produces a value d,
while interacting with FspVOLE. These interactions happen as follows:

– The FVOLE functionality does not send any output to the adversary; the
simulator simply receives PA’s inputs.

– For the FOT invocations, where PA plays receiver, the simulator receives the
choice bits ᾱi and responds by sending random values Ki

ᾱi
to the adversary

(in the protocol, these are instead pseudorandom, derived using a GGM tree).
– The simulated d is sampled uniformly at random.
– In FEQ, S receives a value VA from the adversary, and compares this with
V ′A, which is computed based on previously extracted values known to S. If
they differ, it then defines a key guess ∆′ that is sent to FspVOLE. If the guess
is incorrect, then FspVOLE aborts and S also aborts. Otherwise, S sends a
response to the corrupt PA and sends PA’s extracted input to FspVOLE.

In [WYKW21], it is argued that when using S, the ideal execution is compu-
tationally indistinguishable from the real execution.

We now define the extractor E . Recall that E may observe all the inputs to
the hybrid functionalities FVOLE,FOT,FEQ, as well as all communication. Since
there are no CRS-like functionalities in use, the only task of E is to write to
its extractor tape the relevant inputs to FspVOLE. By observing the inputs to
the hybrid functionalities, E has all the same information that S uses to define
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PA’s inputs. In particular, when FEQ is called by PA, E can use the previously
extracted values to check VA, and if needed, define the key guess ∆′ and write
this to the tape. Then, if the protocol did not abort, E writes PA’s extracted
input, computed the same way as S, to its tape. Since the values E writes to its
extractor tape can be computed exactly the same way as the values sent by S to
FspVOLE, it follows that ΠspVOLE is online-extractable.

Online Extractability of the VOLE Setup. Since ΠspVOLE uses a smaller
VOLE functionality as setup, we need to show that this can also be implemented
with online extractability. We consider the main VOLE protocol from [Roy22],
which is in the FOT-hybrid model. In our case, the party PA translates to the
VOLE sender in [Roy22]. Most of the challenges in that security proof come
from extracting the sender’s input when it is corrupt; simulating the view of
the adversary is actually trivial, and done exactly as in the protocol. Online
extractability is therefore straightforward, as the extractor can simply run the
simulator to obtain the extracted inputs.

D Homomorphic Commitment

Lemma 5 (Lemma 3, restated). Suppose PS ∈ A introduces errors of the
form δij with party Pi, for j ∈ [m+1], in the Random command in ΠHCom (Fig. 3).
If the consistency check passes, then every pair of parties (PS , Pi), for i ∈ [1, n]
hold a secret sharing of lj ·∆i, for j ∈ [m]. In other words, δij = 0, for every i
and j ∈ [m], except with probability 1/|F|.

Proof. Let the seed used with party P1 be the “correct” seed, denoted by s. If a
corrupted sender PS used a different seed si in step 2 with a party Pi, this will
result in additive errors δij in the 〈`j〉 values that are committed to Pi.

In step 4d of the consistency check, A may send an incorrect MAC value it
sends to each Pi; let us denote this by M̃S

i , and by MS
i the actual MAC derived

from the authenticated values. Then, the following relation needs to hold in order
for the adversary to pass the check with party Pi,

M̃S
i = (C +

m∑
j=1

χj · δij + δim+1) ·∆i +Ki
S

= MS
i + (

m∑
j=1

χj · δij + δim+1) ·∆i

This gives M̃S
i −MS

i = (
∑m
j=1 χj · δij + δim+1) ·∆i. Since the χj values are

sampled after A picks the errors δij , and at least one value of δij , for j ∈ [m], is

non-zero, and A does not know ∆i for the honest parties, then the value on the
right of the equation is uniformly random to A. Therefore, the probability of A
passing the check is at most 1/|F|.
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Theorem 5 (Theorem 1, restated). Protocol ΠHCom UC-securely realises the
functionality FHCom assuming a broadcast channel in the presence of a malicious
adversary that can statically corrupt up to n− 1 parties, in the (Fprog

VOLE,FRand)-
hybrid model.

Proof. We have two cases of corruption. One is when the adversary corrupts the
sender and some of the receivers and the other is when the adversary corrupts a
set of only receivers.

For both cases, we construct a PPT Simulator (S) that runs the adversary
(A) as a subroutine, and is given access to FHCom. It internally emulates the
functionalities Fprog

VOLE,FRand and we implicitly assume that it passes all communi-
cation between A and the environment (Z).

The parties controlled by the A are indicated by PA and the honest parties
by PH. The sender is denoted by PS and receiver parties are denoted by PR. The
S also keeps track of a flag that is set to 0 initially, and set to 1 if the A cheats
in any of the steps.

Adversary corrupts a subset of receivers and PS (Case 1). The simulation
proceeds as follows:

Initialize: S receives Init and emulates Fprog
VOLE. It receives ∆i from Pi, where

Pi ∈ PA and Pi ∈ PR and stores it.

Input: S receives a message d from the adversary. S uses the next unused
lj that was generated in Random and sends (Input, idx, x), where x = d+ lj , to
FHCom, and stores (idx, x).

Linear Operation: These are local operations. S computes z = α·x+β·y+γ
(also the corresponding MAC), picks a new id idz, stores (z, {MS

i JzK}i∈PH
), and

sends (LinComb, idz, idx, idy, α, β, γ) to FHCom.

Random:
1. S receives (Extend, si) from PS for i ∈ PH . S also receives MS

i from a corrupt
PS , for all i ∈ PH , and stores them. If PS sends inconsistent seeds, S sets
flag = 1. We do not simulate the case when both the sender and receiver are
corrupt.

2. If flag = 0, S sets uS = Expand(s) and stores 〈lj〉 = {uSj , wSj } as PS ’s shares.
If flag = 1, S arbitrarily chooses one of the seeds received and computes 〈lj〉
with it.

3. S samples χ1, . . . , χn ∈ Fpr and sends them to A to emulate FRand.

4. S stores C̃S ,
(
M̃S
i

)
i∈[1,PH ]

it receives from PS .

5. If C̃S = CS and flag = 0, send (Random, idl, l, PS) to FHCom, along with s,
where s is the seed received in step 1.

6. If C̃S = CS and flag = 1, or C̃S 6= CS , send abort to FHCom and abort.
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Private Opening: S receives (z, M̃S
i JzK), where z is a previously stored

value and i is the index of the party to open to. It checks if M̃S
i JzK = MS

i JzK,
since the simulator knows what the MAC on z is supposed to be. If the MACs
are not consistent, it aborts.

Batch Opening: S receives (z, M̃S
i JzK), where z are a set of stored values,

for all i ∈ PH . It checks if M̃S
i JzK = MS

i JzK, since the simulator knows what the
MAC on z is supposed to be. If the MACs are not consistent, it aborts.

Output: S receives (z, M̃S
i JzK), where z is a previously stored value, for

party Pi. It checks if M̃S
i JzK = MS

i JzK, since the simulator knows what the MAC
on z is supposed to be. If the MACs are not consistent, it aborts.

We need to argue that an adversary A cannot distinguish whether it interacts
with ΠHCom or the simulator S equipped with FHCom. First we’ll prove indistin-
guishability of the simulator when PS ∈ PA along with a subset of the receivers.

During Initialize, in both worlds the adversary picks its own random values
∆i for the corrupt receivers. In Input, in the real world, A sends a message d,
which is supposed to be x − lj , where lj is unused random value generated in
Random. In the ideal world, the adversary sends a message d and the simulator
extracts the adversary’s input by computing d−lj since it knows lj , and sends it to
FHCom. For Random, in the ideal world, the S receives the seeds and adversary’s
MACs. Then the S decides to abort if it received inconsistent seeds. If A cheats
by sending inconsistent seeds, S always aborts where as in the real world the
A can pass the check with probability 1/pr, as proven in Lemma 3. Therefore,
Random is indistinguishable except with negligible probability. In the Output
phase, the simulator always aborts if the MAC sent by the adversary is incorrect,
as it knows what the correct MAC is supposed to be. In the real world, A can
send an inconsistent MAC and still pass the check, if it manages to guess the
honest parties’ ∆ values correctly, which happens with negligible probability. The
argument is similar for the Private Opening and Batch Opening commands.

Adversary corrupts only a subset of receivers (Case 2). The simulation
proceeds as follows:

Initialize: S receives Init from A and emulates Fprog
VOLE. It receives ∆i from

Pi, where Pi ∈ PA and stores it. S sends Init to FHCom.

Input: S samples d uniformly, sends it to the adversary, and sends (Input, idx)
to FHCom.

Linear Operation: These are local operations. S computes KS
i JzK = α ·

KS
i JxK + β ·KS

i JKy for all i ∈ PA. It sends (LinComb, idz, idx, idy, α, β) to FHCom.

Random:
1. S receives Extend from Pi for i ∈ PA and receives vi from A.
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2. S samples χ1, . . . , χn ∈ Fpr and sends them to A to emulate FRand.
3. S picks CS ,

(
MS
i

)
i∈[1,n]

such that the check in step 4e passes, and sends

them to PA.
Private Opening: S sends (PrivOpen, idz, Pi) on behalf of PA to FHCom to

privately open the value to Pi. It receives z from FHCom, and picks MS
i JzK such

that check passes and sends it to Pi.

Output: S sends (Output, idz) to FHCom to receive the output z. It computes
MS
i JzK = Ki

SJzK + ∆i · z and then outputs (z,MS
i JzK), for all i ∈ PH .

Now we’ll provide the indistinguishability argument for the case when PS /∈ PA.
During Initialize, in both worlds the adversary picks its own random values
∆i for the corrupt receivers. In Input, in the real world A receives a random
share of the senders input. In the ideal world, A receives a random message d.
For Random, in the real world S sends CS ,

(
MS
i

)
. The adversary will check

whether MS
i = CS ·∆i +Ki

SJCK but S knows ∆i and Ki
SJCK so it can pick CS ,(

MS
i

)
accordingly so that the check always passes. In the Output (and similarly

in Private Opening and Batch Opening, S receives the output z from FHCom

and computes the appropriate MAC which sends to A.

Functionality F IA
HCom

Parameters: Finite field Fp. The functionality runs between a sender PS and
a set of receiver parties PR = {P1, . . . , Pn}. We assume all parties have agreed
upon public identifiers idx, for each variable x used in the computation. For a
vector x = (x1, . . . , xm), we write idx = (idx1 , . . . , idxm).

Inherits Input, Linear Operation, Random, Output, and Private Open-
ing from FHCom.

Abort Behaviour: A may corrupt any subset I ⊂ PS ∪ {PR}. At any point
in the protocol, it may send (Abort,J ), where J 6= ∅ and J ⊆ I, upon which
the functionality will send (Abort,J ) to all parties and aborts.

Fig. 17: Functionality for a Homomorphic Commitment with Identifiable Abort

E Proofs of Theorems 2, 3

Theorem 6 (Theorem 2, restated). Let Π be a sender-receiver protocol that
UC-securely realises a functionality F with active security and dishonest majority,
and supports online extractability when the sender and a subset of receivers are
corrupt. Let (Gen,Sig,Ver) be a EUF-CMA secure signature scheme. Then the
compiled protocol ΠIA

Cmp securely realises F with active security in the CRS model,
and achieves identifiable abort.
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Proof. We have two cases of corruption. In the first case, the sender and a subset
of the receivers is corrupt and in the second case the sender is honest and only a
subset of receivers is corrupt. For both cases, we construct a PPT Simulator (S)
that runs the adversary (A) as a subroutine, and is given access to F IA

HCom.
Whenever A communicates with FCRS, S calls the extractor E which picks

whichever CRS it wants and S forwards it to A. The˜(tilde) symbol is used to
indicate the potentially inconsistent views received from A.

The adversary A corrupts a subset of receivers and PS (Case 1). The
simulation proceeds as follows.

1. S receives the random tapes that A picked.
2. S samples (pkH, skH) for the honest receivers, broadcasts pkH, and receives

the corresponding pkA from A.
3. S picks random tapes for the honest parties and runs the Π protocol honestly.

During the execution of Π, S sees all messages between the adversary and
the honest parties and forwards them to E who outputs A’s inputs on its
extractor tape. As E writes on its extractor tape, S forwards A’s inputs to
F IA

HCom for all the relevant commands. Additionally:
– S adds a signature to every message it sends, as in the compiled protocol.
– When S receives (mr

S,j , σ
r
S,j) it verifies the signature and if the check fails,

it broadcasts (Complain, PS). If PS fails to broadcast a valid signature
during Complain, S sends (Abort, PS) to F IA

HCom and aborts.

Abort. Depending on which party aborted in the execution of Π, S takes care
of each case as follows.

1. Abort by an honest receiver Pi:
(a) S broadcasts (abort, viewi, ρi) for the honest receiver Pi who aborted.
(b) S sends (Abort, PS) to F IA

HCom and aborts with output abortS .
2. Abort by corrupt receiver Pj :

(a) S receives (abort, viewi, ρi) from A for some Pi.
(b) S will run VerifyAbort (pki, viewi, ρi) to establish if Pi aborted.
(c) If Pi indeed aborted, S will send (Abort, PS) to F IA

HCom. Else it will send
(Abort, Pi) to F IA

HCom.
3. Abort by corrupt sender PS :

(a) S receives abort from A.
(b) S sends (viewi, ρi) to A for all honest Pi
(c) A broadcasts (ṽiewS,i, viewi, ρi) for some Pi.
(d) S runs IA.Identify (pki, viewi, ρi, pkS , viewS,i). If Pi aborted then send

(Abort, PS) to F IA
HCom. In the unusual case where Pi is also corrupt but

did not abort send (Abort, Pi) to F IA
HCom.

We will now prove why A cannot distinguish if it is interacting with ΠIA or
the simulator S equipped with F IA.

In step 1, in both worlds A chooses and broadcasts its own random tapes. In
step 2 in both worlds A receives public keys for the honest parties and broadcasts
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the keys that it picked. For step 3, because the honest parties have no input and
their messages only depend on what the corrupt sender sends so S can perfectly
match those messages. In step 5 if A has received a complaint message, it will
broadcast (mr

S,j , σ
r
S,j) in both worlds. In step 6, A receives an abort message in

both worlds. The abort in the real world will happen if the signature check fails.
Because of the security of the signature scheme the probability of A fooling an
honest party is negligible.

In the abort phase we have three cases:
Abort by honest receiver. In step 1(a) S broadcasts (abort, viewi, ρi). This is

identically distributed to the real world, again, because S ran the real protocol Π
using honestly generated random tapes, and because the receivers have no input.

Abort by corrupt receiver. The simulator doesn’t send anything in this case so
it’s straightforward to argue indistinguishability.

Abort by corrupt sender. In step 3(b) A receives viewi, ρi and the argument
is the same as in step 1(a). The only way a corrupt sender can frame an honest
receiver is by producing some incriminating view but that only happens with
negligible probability due to the security of the signature scheme.

Finally, we also consider the outputs of F IA
HCom seen by the environment. In

case of abort, we already argued above that a corrupt party will always be
identified. For the non-abort outputs of F IA

HCom, we rely on the online extractability
property, which guarantees that the inputs to F IA

HCom sent by S (from the extractor
tape) are indistinguishable from those in the original simulation of Π, for FHCom.
Therefore, the non-aborting outputs of F IA

HCom are distributed the same as those
in the original simulation, and indistinguishable from the real world.

The adversary A corrupts only a subset of receivers (Case 2). The
simulation proceeds as follows.

1. S receives the random tapes that A picked.
2. S samples and broadcasts (pkH, skH) for the honest parties and receives the

corresponding pkA from A.
3. S runs the simulator SΠ:

(a) Whenever SΠ sends messages to FHCom, S forwards these messages to
F IA

HCom for all the relevant commands.
(b) When S receives (mr

i,S , σ
r
i,S) it verifies the signature and if the check fails,

it broadcasts (Complain, Pi). If the check passes S sends (mr
i,S) to SΠ.

4. A either broadcasts (mr
i,S , σ

r
i,S) or sends nothing.

5. S sends (Abort, Pi) to F IA
HCom and aborts.

Abort. Depending on which party aborted during the execution of SΠ, S takes
care of each case as follows.

1. Abort by an honest receiver Pi:
- This will never happen since the sender is honest so we can ignore it.

2. Abort by a corrupt receiver Pj :
(a) S receives (abort, viewi, ρi) from A for some Pi.
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(b) S will run VerifyAbort (pki, viewi, ρi) to establish if Pi cheated. This is
not really necessary.

(c) S will send (Abort, Pi) to F IA
HCom and abort.

3. Abort by an honest sender PS :
(a) S broadcasts abort.

(b) A sends ṽiewj and the opening to the random tape ρj for all corrupt
parties Pj or sends nothing (in which case S launches a complaint and
the views need to be broadcast). If A doesn’t broadcast these for some
party Pi, then S sends aborti to the functionality.

(c) S runs IA.Identify
(
pkj , viewj , ρj , pkS , viewS,j

)
for all corrupt parties Pj

to establish who cheated.
(d) S broadcasts (viewS,j , viewj , ρj) for the particular Pj who cheated.
(e) S sends (Abort, Pj) to F IA

HCom and aborts.

We will now prove why A cannot distinguish if it is interacting with ΠIA or
the simulator S equipped with F IA.

In step 1, in both worlds A chooses and broadcasts its own random tapes. In
step 2 in both worlds A receives public keys for the honest parties and broadcasts
the keys that it picked. In step 3(b), we know that SΠ is a good simulator for Π
so the view it simulates is indistinguishable from the real world.

In the abort phase we have three cases. In 2(c) S aborts with the same
probability as in the real world. In step 3(d) S broadcasts (viewS,j , viewj , ρj). S
can reproduce viewS,j because it consists only of messages received from A. ut

Theorem 7 (Theorem 3, restated). Let Π be a protocol that UC-securely re-
alises a functionality F with active security and dishonest majority. Let (Gen,Sig,Ver)
be a EUF-CMA secure signature scheme. Then the compiled protocol ΠCmp se-
curely realises F with active security in the CRS model and using broadcast, and
achieves the identifiable cheating property.

Proof. UC-Security: If Π has any calls to hybrid functionalities, they are replaced
with the corresponding protocols in the CRS model. This is allowed according to
the UC theorem, so it does not break security. The transformed protocol securely
realises F in the CRS model. The simulator S for a static adversary A corrupting
up to n− 1 parties works as follows:

1. S emulates the CRS by picking it according to the simulator for Π and sends
it to the adversary.

2. S records pk from A, picks keys on behalf of the honest parties, and sends
the public keys to A.

3. Assume that Pi was supposed to send a message to Pj in a given round of
the protocol. There can be three different kinds of communication between
parties Pi, Pj :
(a) Pi is corrupt, but not Pj : S receives a message and the corresponding

signature from A. If the signature does not verify, S asks A to broadcast
the signature. If A does not broadcast the signature, or if it does and the
signature it broadcasted does not verify, parties abort with aborti.
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(b) Pi is honest, and Pj is corrupt: S runs the simulator for Π to get the
message m that Pi was supposed to send in the current round. S signs m
under the keys it picked for Pi. It sends m,Sig(m) to the receiver Pj and
waits for a response from A. It forwards A’s response to the functionality
F.

(c) Both parties are corrupt: This case is trivial to simulate.
4. Whenever S is supposed to send a message to the functionality, it does

whatever the simulator for Π does to compute the message to be sent and
forwards it to the functionality.

Indistinguishability is straightforward to argue as the protocol messages of Π
which the adversary sees (and the messages to F) are identically distributed as
in the regular simulation. In order to distinguish between the ideal world and
the real world, one must therefore break UC security of the underlying protocol.

Identifiable cheating: Consider an adversary A who wins the experiment
Expic
A,Π(λ) with some non-negligible probability. The adversary can win in one of

two ways. The first is when the adversary corrupts some party and misbehaves, but
Identify does not output any party as corrupt. The second is when the adversary
manages to make Identify output an honest party, say Pj , as the corrupt party.

Assume it wins due to the first scenario. In this case, no parties are in
conflict, meaning that none of the honest parties broadcasted a complain message
and the Identify algorithm did not identify any party as misbehaving. Let the
message that the adversary incorrectly generated be m̃l

i,j (according to ρi), and

m̃l
i,j 6= ml

i,j . However, Identify always identifies a party Pi as cheater if it produces
an inconsistent message. Therefore, it is a contradiction that the adversary can
misbehave with an inconsistent message and not get caught by Identify.

The other case can only happen if A has forged a signature of some honest
party. Assume that Pi was identified as the cheater in round l. Since round l was
when the party Pi was identified, all the messages until round l − 1 should have
been consistent. This means the messages Pi sent in round l will be correct and
have signatures on (Pi||Pj ||ml

i,j ||l). If A can instead produce a valid signature

on (Pi||Pj ||m̃l
i,j ||l) with m̃l

i,j 6= ml
i,j then a successful A can directly be used to

construct an attacker on the EUF-CMA property of the signature scheme with a
loss factor n in success probability as the reduction has to guess which simulated
honest party to use to embed the challenge pk in.

F Proof of Theorem 4

Proof. We construct a PPT simulator S that runs the adversary A as a sub-
routine, and is given access to F IA

Prep. It internally emulates the functionalities

FRand,F IA,1
HCom, . . . ,F

IA,n
HCom,FCommit and we implicitly assume that it passes all com-

munication between A and the environment Z.
Parties controlled by the adversary are indicated by PA and the honest par-

ties are denoted by PH .
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For simplicity, we specify behavior as if the adversary uses F IA
HCom,FCommit or

FRand truthfully as specified in the protocol. If any of the functionalities abort,
or a dishonest party does not send a command in a round to a functionality as
it was supposed in the protocol, then the simulator will simply collect the sets
of corrupted parties that are identified by the hybrid functionalities as J and
immediately send (Abort,J ) to F IA

Prep as parties would do in Abort 3 of the
protocol.

Initialize: A chooses its random tape ρi for each dishonest party Pi ∈ PA and
sends them to FCommit which is emulated by S. For each honest party Pi ∈ PH ,
the simulator emulates making a commitment via FCommit to A.

Random Input: Let Pi be the party to receive l inputs. If Pi ∈ PH then
the simulator just emulates running the protocol and sends (RandInput, Pi, l) in
the name of each dishonest party Pj to F IA

Prep whenever A sends PrivOpen to the

respective F IA,j
HCom . If Pi is dishonest:

1. For every Pj ∈ PA that sends (Random, idr, l) to F IA,j
HCom send (RandInput, Pi, l)

in its name to F IA
Prep and note the committed value as rj . For every honest

party Pj ∈ PH , simulate committing to these values via each simulated

session of F IA,j
HCom for a randomly chosen rj .

2. Let Pj∗ be a designated honest party. Once S obtains (idr, r) from F IA
Prep

the simulator emulates opening the random value rj to Pi by F IA,j
HCom of any

honest Pj 6= Pj∗ with (PrivOpen, idr). For Pj∗, it instead lets F IA,j∗
HCom send the

value δ = r −
∑
j∈[n],j 6=j∗ rj to Pi.

Linear Operation: These are a local operations so they need not be simu-
lated.

Triple Generation:

1. S runs ΠIC
Trip, which is secure with identifiable cheating, by picking dummy

random tapes for each Pi ∈ PH . If an abort occurs in ΠIC
Trip, the simulator

opens its commitment to the honest parties’ random tapes and receives the
opening from A for its tapes. Then, S sends {viewi}i∈PH

for each honest
party to A and receives {viewi}i∈PA for all the parties A controls. It runs
the Identify algorithm with input (pk1, . . . , pkn, ρ2, . . . , ρn, view1, . . . , viewn).
If Identify only identifies dishonest parties J , then S sends (Abort,J ) to
F IA

Prep and terminates. If Identify outputs ⊥ or also an honest party, then S
sends (Abort,PA) to F IA

Prep and terminates.

2. S emulates each session of F IA
HCom by receiving A’s shares of the triples it

obtains from ΠIC
Trip and storing them, and also consistently inputting its own

shares into F IA
HCom sessions consistent with the outputs it obtained from ΠIC

Trip.
3. S emulates FRand by picking a random value t and random combiners
χ1, . . . , χl, and sending them to A.

4. S receives commands to each F IA
HCom from A needed to compute 〈t · a− a′〉C

and 〈b− b′〉C for each triple. It honestly computes the corresponding shares
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for the honest parties. S then opens its shares via Output to A to open
t · a− a′ and b− b′ and waits for A to open its shares.

5. S honestly computes 〈σ〉C for the honest parties and sends the shares to A
via the opening of F IA

HCom. It receives A’s shares of 〈σ〉C and checks if σ = 0.
(a) If d = 0 and all multiplication triples are consistent, then S sends

(TripGen, l) in the name of each dishonest party to F IA
Prep.

(b) If d = 0 but there are inconsistent multiplication triples committed to,
then S simply sends (Abort,PA) to F IA

Prep and aborts.
(c) If d 6= 0, S broadcasts an Abort, opens the honest parties’ random tape

commitments as well as all triple shares it has committed to via F IA
HCom.

Then, it waits to receive A’s openings of its random tape commitments
and triple share commitments via F IA

HCom. S then broadcasts {viewi}i∈PH

and waits for the A’s views {viewi}i∈PA . Using all the views and the
random tapes, S can now run the Identify algorithm as in the protocol. As
above, if Identify identifies dishonest parties J , then S sends (Abort,J )
to F IA

Prep and terminates. If Identify outputs ⊥ or also an honest party,

then S sends (Abort,PA) to F IA
Prep and terminates. If no cheaters are

detected in ΠIC
Trip, S checks if the ΠIC

Trip output shares that A opened via

F IA
HCom are consistent with the shares ΠIC

Trip generated. If S then identifies

parties where these are different, then it sends (Abort,J ) to F IA
Prep, where

J is the set of parties with inconsistent triple commitments. If no such
party could be identified, then S sends (Abort,PA) to F IA

Prep.

Output: On receiving (Output, idx) from Pi ∈ PA to F IA,i
HCom, the simulator

forwards the message to F IA
Prep, from which it gets the value x. S knows A’s shares

of the output as they are committed in F IA,i
HCom, so it picks shares for one honest

party Pj∗ (as in the input phase) such that they add up to x and makes F IA,j∗
HCom

output the correct share to PA.
Indistinguishability: We argue that no computationally bounded environ-

ment can distinguish between the real world and ideal world executions, except
with probability 1/p+ negl(λ).

For all operations except Triple Generation, it is trivial to see that simula-
tion and real protocol are perfectly indistinguishable in its abort behavior and
in terms of consistency as S does the same as Abort 3 and each hybrid func-
tionality only identifies dishonest parties as cheaters. We can therefore focus on
Triple Generation.

First we look at the part running ΠIC
Trip or where it may abort. In the ideal

world, if we have an abort during ΠIC
Trip then the simulator will always abort

with dishonest parties only. In the real world, the algorithm Identify may identify
no cheater at all or even an honest party. But since ΠIC

Trip has the identifiable
cheating property, by Definition 7 this can only occur with probability negl(λ).

In the ideal world, the simulation of the triple check always aborts if a
committed triple is incorrect (i.e. even if d = 0). In the real protocol, this may
not be the case. By a standard argument (see e.g. [LN17, Lemma 3.5]), the
probability of this event happening to allow distinguishability is 1/(p− 1).
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Next, consider the case where d 6= 0 and the triple check turns to cheater
identification. There, if Identify identifies an honest party then this is distinguish-
able between real and ideal world as S always aborts in the ideal world, but this
can happen with only with probability negl(λ). The other abort that can happen
is if no cheater is identified from running Identify on ΠIC

Trip and from the opening

of all F IA
HCom sessions, i.e. each party consistently committed to the outputs of

ΠIC
Trip, but these did not form consistent multiplication triples. In this case, S al-

ways aborts with PA in the ideal world. In the real world, since ΠIC
Trip UC-securely

implements FTriple, and each party acted honestly during ΠIC
Trip (except with prob-

ability negl(λ) as otherwise Identify would have identified the party deviating
from the protocol as having cheated by the Identifiable Cheating of ΠIC

Trip), the

outputs of ΠIC
Trip in case of no abort must be valid multiplication triples except

with probability negl(λ) by assumption. ut

G Online Phase Protocol

In Fig. 19, we present the protocol ΠIA
MPC for the online phase with identifiable

abort. It allows to share inputs, perform linear operations on sharings, multiply
shared values and to reconstruct (output) a shared value. The protocol uses F IA

Prep

to realize the sharing of secrets and the individual MPC protocol steps as follows:

1. To share an input x, party Pi uses a random input r created by F IA
Prep via

RandInput. Pi broadcasts the value δ = x− r, whereupon all parties add δ to
the commitment to r held in F IA

Prep, thus generating a commitment to x.

2. Similarly, to output a shared value x, parties simply send Output to F IA
Prep.

3. To perform a linear operation on shared values, the parties simply call F IA
Prep

to perform the linear operation on the committed values.
4. Finally, to perform a multiplication between sharings of x, y, the parties use

a multiplicative random triple a, b, c generated also by F IA
Prep. To multiply,

they follow the following steps:
(a) The parties compute sharings of α = x − a, β = y − b using linear

operations with F IA
Prep.

(b) The parties use F IA
Prep to open α, β to all parties.

(c) The parties compute γ = α ·β and set z = a ·β+ b ·α+ c− γ using F IA
Prep,

which is a linear operation.

The only non-trivial step in the online phase is the multiplication, which
follows the so-called Beaver circuit randomization paradigm [Bea92]. Since both
F IA

Prep and the broadcast channel have identifiable abort, the overall protocol has
identifiable abort as well.

We now sketch a proof of security for the protocol outlined above:

Theorem 8. The protocol ΠIA
MPC UC-securely implements the functionality F IA

MPC

in the F IA
Prep-hybrid model and using a broadcast channel with perfect security

against any active attacker corrupting at most n− 1 of the n parties.
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Functionality F IA
MPC

Parameters: Finite field Fp, parties P1, . . . , Pn. The adversary is allowed to
corrupt a subset of parties, denoted by I. The computation happens over Fp.

Input: On receiving (Input, Pi, idx, x) from Pi and (Input, Pi, idx) from all other
parties:

1. Store (idx, x).
2. Send (Stored, idx) to every party.

Linear Operation: On receiving (LinComb, idz, idx, idy, α, β, γ) from every Pi
where idx, idy are assigned, idz is unassigned and where α, β, γ ∈ Fp, compute
z = α · x+ β · y + γ and store (idz, z).

Multiplication: On receiving (Mult, idz, idx, idy) from all parties where idx, idy
have been assigned and idz is unassigned:

1. Store (idz, x · y).
2. Send (Multiplied, idz) to all parties.

Output: Upon receiving (Output, idx) from all parties and where idx is assigned:

1. Send x to A.
2. If A sends (Abort,J ), where J ⊆ I,J 6= ∅, then send (Abort,J ) to all the

parties and terminate.
3. If A sends Deliver then output x to all parties.

Corrupt Party Behaviour: Whenever the adversary is supposed to send
a value, it can choose to not send a value at all, triggering an abort. The
functionality receives (Abort,J ), where J ⊆ I from A and J 6= ∅, sends it to
all the parties and terminates.

Fig. 18: Functionality for MPC

Proof. We only sketch the simulator here, as it directly follows from the observa-
tions above. For it, observe that the simulator simulates the hybrid functionality
F IA

Prep. If F IA
Prep aborts at any point or the adversary does not send any messages,

then S identifies the cheaters the same way as in the real protocol.

During Input for a dishonest Pi we extract the adversarial input x by
observing the difference between the privately opened value r from F IA

Prep and the

broadcast δ, which is then input in the name of Pi to F IA
MPC. For an honest Pi,

we simply broadcast a uniformly random δ.

No messages are sent during Linear Operation. For Multiplication, the
simulator sfollows the protocol but lets F IA

Prep open uniformly random values for
α, β.

During Output the simulator first obtains the output x from F IA
MPC. It then

makes F IA
Prep output x as well, and any abort is forwarded to F IA

MPC.
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Protocol ΠIA
MPC

Parameters: Finite field Fp, parties P1, . . . , Pn. The adversary is allowed to
corrupt a subset of parties, denoted by I. The computation happens over Fp.
We let l be a fixed constant for amortization.

The parties have access to a broadcast channel and an instance of F IA
Prep. If at

any point F IA
Prep outputs (Abort,J ) or a set of parties J did not send their

expected messages via the broadcast channel, then all parties abort with set J .

Input: Party Pi wants to input x ∈ Fp for an unused idx:

1. All parties check if there is an unused output of RandInput for party Pi. If
so, then let idr be the identifier of that output. If not, then all parties send
(RandInput, Pi, l) to F IA

Prep such that they get l identifiers. Then, let idr be
the first such fresh identifier.

2. Pi finds the value r ∈ Fp associated to idr.
3. Pi broadcasts δ = x− r.
4. Upon receiving δ, all parties send (LinComb, idx, idr,⊥, 1, 0, δ) to F IA

Prep.
5. All parties consider the random value idr as used.

Linear Operation: The parties directly forward the respective message to F IA
Prep.

Multiplication: To multiply two values represented by idx, idy obtaining a new
value represented by idz that so far is unassigned, the parties do the following:

1. The parties check if there is an unused triple generated by TripleGen of
F IA

Prep. If yes, then let ida, idb, idc be the identifiers of that triple. If not, then

all parties send (TripleGen, l) to F IA
Prep, wait for the outputs and use the first

fresh triple ida, idb, idc.
2. Each party sends (LinComp, idα, idx, ida, 1,−1, 0) and

(LinComp, idβ , idy, idb, 1,−1, 0) to F IA
Prep.

3. Each party sends (Output, idα) and (Output, idβ) to F IA
Prep, publicly recon-

structing α, β.
4. Each party locally computes γ = α · β and sends

(LinComb, idf , ida, idb, β, α,−γ) as well as (LinComb, idz, idf , idc, 1, 1, 0) to
F IA

Prep.
5. All parties consider the triple ida, idb, idc as used.

Output: To reveal a value idx that is defined, the parties send (Output, idx) to
F IA

Prep and obtain the value x.

Fig. 19: Online phase for MPC with Identifiable Abort

To see that the simulation is perfect, observe that the value δ in the real
protocol is uniformly random as the uniformly random r has been used to compute
it, while it is also uniformly random in the ideal world. The same argument can
be made for α and β, which are also perfectly indistinguishable. For Output
we also have perfect indistinguishability as F IA

Prep outputs the same correct value
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in the simulation and the real protocol. As no honest party is ever detected as
cheater in ΠIA

MPC by definition and F IA
MPC outputs the exact same aborting parties

as ΠIA
MPC, the statement follows. ut
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