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Abstract. Reducing the size of large dimensional data is a critical task
in machine learning (ML) that often involves using principal component
analysis (PCA). In privacy-preserving ML, data confidentiality is of
utmost importance, and reducing data size is a crucial way to cut overall
costs.
This work focuses on minimizing the number of normalization processes
in the PCA algorithm, which is a costly procedure in encrypted PCA.
By modifying Krasulina’s algorithm, non-polynomial operations were
eliminated, except for a single delayed normalization at the end.
Our PCA algorithm demonstrated similar performance to conventional
PCA algorithms in face recognition applications. We also implemented
it using the CKKS (Cheon-Kim-Kim-Song) homomorphic encryption
scheme and obtained the first 6 principal components of a 128×128 real
matrix in 7.85 minutes using 8 threads.

1 Introduction

Principal component analysis (PCA) is one of the most popular tools in machine
learning (ML) for dimensionality reduction. One can regard PCA as an orthogonal
linear transformation that converts the coordinate system of the data set to
the new coordinate system. The direction corresponds to the greatest variance
via projection to the direction on the first coordinate (called the first principal
component), the second greatest variance on the second coordinate, and so on [16].
Note that the components are related to the top k eigenvectors of the covariance
matrix. One can compress the data using the first several principal components
without losing the principal information.

PCA is applied in various fields, from neuroscience to quantitative finance, and
the most common application is facial recognition. As with other machine learning
techniques, personal private data may concern some personal information leakage.
Especially for neuroscience or face recognition, since the personal information
in the data cannot be discarded or changed, it is essential to consider data
protection.

⋆ This work was done while the author was affiliated with Seoul National University.
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Homomorphic encryption (HE) is an encryption scheme that supports
computations of encrypted messages without decrypting them. Due to the
property, HE is considered a valuable tool for privacy-preserving ML [1, 3,
5, 8, 14, 15, 17] in the computation delegation scenarios in the client-server model.
When applying HE to ML, the input data size should be reduced as in the plain
case. Hence, evaluating PCA over HE can be an essential problem for ML using
large-scale data.

However, most HE libraries [7, 10, 12, 24] mainly support arithmetic operations
only, such as additions and multiplications. Hence, linear and division operations
necessary for PCA cannot be directly applied. One can evaluate linear operations
efficiently using a particular packing method [15]. However, if the matrix-matrix
or matrix-vector multiplications were iteratively applied and if the size of the
matrix is large, it might be hard to keep the packing structure. One can evaluate
the division operation via a polynomial approximation of the division function
that minimizes the error in a particular interval. However, this can be more
problematic since several divisions are necessary for most PCA algorithms.

1.1 Our contribution.

Arithmetic PCA algorithm. In this work, we modified a PCA algorithm
called Krasulina’s method, reducing the number of divisions and maintaining only
one delayed division. We give the correctness proof of our arithmetic algorithm
that converges to an eigenvector corresponding to the maximal eigenvalue. The
delayed division in our algorithm can even be treated as post-processing in the
k-PCA scenario, which finds the k eigenvectors correspond to the k maximum
eigenvalues. With no divisions during the computation, the client can obtain the
eigenvectors by normalizing them after decryption.

We applied our PCA algorithm to face recognition using the Yale face data [13].
We compare the face recognition accuracy based on our PCA algorithm with
other PCA algorithms, such as Krasulina’s and the power methods. Compared
to the state-of-the-art PCA algorithms, ours achieved almost the same R2 score
and accuracy for face recognition.

HE evaluation of k-PCA for large matrix. We implemented our PCA
algorithm for top k principal components on encrypted data with the CKKS
homomorphic encryption scheme. Our algorithm can deal with much larger data
than the prior works using power methods using maximum 20× 20 matrices; we
implemented it for 128× 128 size positive semi-definite matrix. We get the first 6
principal components within 12.1 minutes, with numerically accurate eigenvectors
satisfying ∥Av − λv∥∞ < 0.012. The run-time of our implementation is at least
1.2 times faster than the estimated time of Panda’s implementation [21] on the
Yale face data4.
4 Note that their run-time is 19.9 minutes, but the 168 bootstrappings are excluded,
and the estimated run-time of their implementation is at least 9.2 minutes, including
the bootstrappings. However, it is more likely to be close to 13 minutes since they
use non-bootstrapable parameters.
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1.2 Prior works.

Homomorphic PCA based on power method. Pereira and Aranha [22]
proposed an algorithm for performing PCA on encrypted data. Compared to the
original power method updating the vector v as v ← Av/∥v∥, they modified
it by reducing the normalizations and divide with predetermined constants as
v← Av/ci for i th iteration. However, finding the proper constants c is another
eigenvalue problem, ironically, since if they are not close to the eigenvalues λ,
the size of v will diverge or converge to 0. They also modified the algorithm for
updating A to find the next principal component by reducing the normalization.

Several works [20, 23] improved the power method approach. Notably, Rathee
et al. [23] very efficiently implemented it with HElib, resulting in 6.5 seconds
with 8 threads but only for a very small matrix of size 20× 20. Moreover, since
the size of the eigenvector increases exponentially on the number of iterations
(a.k.a. epoch), they could only perform a maximum of 5 iterations and only for
the first principal component.

Panda [21] and Lu et al. [19] also implemented the HE-friendly PCA algorithm
based on the power method; however, they need extra communications between
the client and the server. In a general client-server scenario for computation
delegation, the client encrypts the data and sends it to the server once. Then,
the server computes homomorphically and sends it back to the client. However,
Panda and Lu et al. make the server send an intermediate ciphertext to the
client, and the client decrypt-then-encrypt it and sends it back. This was to
bypass the expensive bootstrapping procedure; however, security concerns may
occur due to the increased communications, and the communication cost becomes
huge due to the size of the ciphertexts. Panda’s implementation with the CKKS
scheme achieved 6 eigenvectors with an R2 score of 0.579 within 19.9 minutes,
but 168 bootstrappings were replaced with decrypt-then-encrypt. The total time,
including the bootstrapping, is estimated as at least 13.59 minutes with 8 threads.
We note that this is a rough lower bound driven by adding the bootstrapping
time. Since their HE parameters were not bootstrapable, the actual run-time of
all the operations will likely blow up significantly.

2 Preliminaries

Notations. Define the polynomial rings R = Z[X]/(XN + 1) and Rq = R/qR
for positive integer N and q, where N is a power of 2. Also, we define an

isomorphism Φ : R[X]/(XN+1)→ CN/2 which mapsm(X) 7→
(
m(ζ5

j

)
)
0≤j<N/2

,

where m ∈ R[X] and ζ = e
πi
2N is a primitive 2N -th root of unity. All the vectors

are column vectors and are denoted as bold lowercase alphabets unless they are
the columns of some predetermined matrix.
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2.1 Homomorphic encryption

Homomorphic encryption (HE) is an encryption scheme that allows algebraic
calculations on encrypted ciphertexts. Homomorphic evaluation of an operation
on the ciphertexts produces a new ciphertext, which encrypts the result plaintexts
of the operation. That is, for ciphertexts ct1, · · · , ctn ∈ C encrypting the messages
m1, · · · ,mn ∈M and a circuit C :Mn →M, the following relation holds:

Dec(Eval(C, ct1, · · · , ctn)) = C(m1, · · · ,mn).

In general, the ciphertext has an essential noisy term (error) that grows according
to the depth of the circuit C. If the magnitude of the error becomes bigger
than some threshold, the homomorphic property is not guaranteed. However,
by using a special operation called bootstrapping, the size of the error can be
decreased. Thus, bootstrapable HE can support arbitrary computations, and we
call it Fully Homomorphic Encryption (FHE). Craig Gentry first proposed the
concrete construction of HE, and after that, various HE schemes and libraries
were proposed [4, 7, 9, 11].

CKKS scheme. CKKS scheme is an approximate HE scheme that can handle
real-valued data [7, 6]. Since all the current exact HE schemes can only deal with
finite field elements, the approximate HE scheme is used popularly for practical
computations, including machine learning. The simplified schematic diagram of
the CKKS scheme is given as follows:

M Encode−−−−⇀↽−−−−
Decode

P Enc−−⇀↽−−
Dec

C

C
N
2 (or RN )

∆,Φ←−→ R[X]/(XN + 1)
⌊·⌉←→ Z[X]/(XN + 1) ←→ R2

q

The data z is in CN/2 (or can be viewed as RN ) and ∥z∥∞ ≤ 1. Then z can
be scaled by a scaling factor ∆, and let m be the corresponding polynomial in
R[X]/(XN + 1) by the isomorphism Φ. Then, this can be rounded to a plaintext
m ∈ Z[X]/(XN + 1). We call this mapping and its approximate inverse as an
encoding (Encode) and decoding (Decode) and define as follows:

Encode(z;∆): For z ∈ CN/2, compute pt = ⌊Φ−1(∆ · z)⌉R ∈ R.
Decode(pt;∆): For pt ∈ R, compute z = ∆−1 · Φ(pt) ∈ CN/2.

Then, the encryption can be applied to the plaintext. Algorithms in the CKKS
scheme are described as follows:

KeyGen(1λ): Sample s uniformly from {0,±1}N with Hamming weight h (i.e.,
∥s∥1 = h), and set secret key sk ← (1, s) ∈ R2. Sample u, u′ and ui’s
uniformly from Rq and e, e′ and ei’s from an error distribution χ and set
public key pk ← (−u · s+ e, u) ∈ R2

q. For an integer P , set evaluation key
evk← (−u′ · s+ e′ +Ps2, u′) ∈ R2

Pq and rotation keys rotki ← (−ui · s+ ei +

Ps5
i

, ui) ∈ R2
Pq.
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Enc(pt; pk): First sample v ← Rq uniformly and compute ct = v · pk + (pt +
e0, e1) ∈ R2

q, where the error e0 and e1 are sampled from χ.

Dec(ct; sk) : For ct = (c0, c1) and sk = (1, s), compute pt = c0 + c1 · s.
Add(ct1, ct2): For two ciphertexts ct1, ct2, compute ctadd = ct1 + ct2 mod q.

Mult(ct1, ct2; evk): For two ciphertexts ct1 = (c0, c1) and ct2 = (c′0, c
′
1), compute

ctmult = (c0 · c′0, c′0 · c1 + c0 · c′1) + ⌊
c1 · c′1 · evk

P
⌉ ∈ R2

q.

Roti(ct; rotki): For ct = (c0, c1) ∈ R2
q , compute ctrot,i = (c0, 0)+⌊

c1 · rotki
P

⌉ ∈ R2
q.

Note that the corresponding message vector z = (z1, z2, · · · , zN/2) will be
permuted into zrot,i = (zi+1, zi+2, · · · , zN/2, z1, · · · , zi) via Roti operation.

2.2 Principal component analysis

Principal component analysis (PCA) is one of the methods of statistical techniques
of dimensionality reduction and feature extraction, which converts the high-
dimensional space of the data to a low-dimensional one while preserving the
distribution of existing data, i.e., the variance as much as possible. PCA converts
the previous variables into new variables by using a linear combination.

Suppose the data to be analyzed has d variables and N samples. We can
present the data as a matrix A, where A ∈ Rd×N . Now, let p1,p2, · · · ,pd ∈ Rd×1

be coefficient vectors, and P = (p1|p2| · · · |pd) be a d× d matrix. Suppose the
result of the projection of A on P is represented as follows:

Z = P tA =


p1

t

p2
t

...
pd

t

A.

Since we need to preserve the variance as much as possible, we need to maximize
the variance of each row of the matrix Z, i.e.,

z1 = p1
tA, z2 = p2

tA, · · · , zd = pd
tA.

Let Σ be the covariance matrix of the data matrix A. Then we need to find the
coefficient vectors pi for i = 1, 2, · · · , d which satisfy the following:

max
pi

Var(zi) = max
pi

pi
tΣpi, ∥pi∥ = pi

tpi = 1.

To solve the equation above, let Li = pi
tΣpi − λ (pi

tpi − 1). Then the pi

maximizing Var(zi) satisfies

∂Li

∂pi
= Σpi − λpi = (Σ − λ)pi = 0.
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By the definition of the eigenvalue and the eigenvector, pi should be the
eigenvector of Σ. We call the eigenvector of the Σ principal component, and by
using these principal components in each column of matrix P , we can get the
maximal variance. It is well known that every covariance matrix is a non-singular
matrix, and the number of eigenvectors exists as the number of dimensions d, so
the value of pi’s are valid. Then we extract k-maximal eigenvalues (k ≤ d) and
the eigenvectors correspond to each eigenvalue.

Krasulina’s algorithm. Krasulina’s algorithm is one of the methods for
stochastic approximation, which is an iterative process to find the minimum
eigenvalue of a symmetrical matrix [18]. For a symmetric matrix A ∈ Rm×m, let
the eigenvalues as λ1 < · · · < λs and the corresponding eigenspaces as Eλi

for
1 ≤ i ≤ s. For an initial random vector v0 ∈ Rm, Krasulina’s algorithm updates
the vector as follows:

vn+1 = vn −
γn
m

{
A− (Avn,vn)

∥vn∥2
I

}
vn,

where γn > 0 is a sequence of constants. It is known that vn converges to an
eigenvector in Eλ1

, if the following conditions hold:

i) ∥π1(v0)∥ ≠ 0 via the projection map π1 : Rd → Eλ1
,

ii)
∑∞

n=1 γn =∞ and
∑∞

n=1 γ
2
n <∞.

Face recognition. Face recognition is a supported application program to
identify and classify each person with a digital image. It is done by comparing
the database of faces and the selected features of the person. [26]

Suppose the image file of the face has k × l size. The images are saved
as a flattened vector, and each image pixel has a particular numerical value.
Suppose the image is now a d × 1 vector, say xi (i = 1, 2, · · · , N), where
d = k · l and N is the number of samples. Then we concatenate the vectors as
X = (x1|x2| · · · |xN ) where X ∈ Rd×N . We first center the samples by computing
X ← X − (x̄ | x̄ | · · · | x̄), where x̄ ∈ Rd is the mean vector of the vector

x1,x2, · · · ,xN , i.e. x̄ = 1
N

∑N
i=1 xi. Then, we can write the covariance matrix

of X as XXt. For the eigenvalues λ1 < λ2 < · · · < λs of the covariance matrix
XXt, we find k-maximal eigenvalues and eigenvectors that correspond to the
eigenvalues. It is well known that when d ≫ N , we can use XtX rather than
XXt to get a meaningful eigenvectors, since XXt(Xvi) = X(XtXvi) = λi(Xvi),
when letting v1,v2, · · · ,vN be the eigenvectors of XtX [25, 26].

Following the analysis above, one can reconstruct the eigenfaces f1, f2, · · · , fk ∈
Rd such that

fi =

N∑
j=1

vijxj , i = 1, 2, · · · , k,
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where v1,v2, · · · ,vk are the eigenvectors of the matrix XtX which correspond
to k-maximal eigenvalues.

Then, we can use the eigenfaces to classify a new face image. Suppose a new
face image y ∈ Rd is given. Then, for i = 1, 2, · · · , k (k ≤ N), its i-th eigenface
component is represented as wi = fi

t (y − x̄). Now, we obtain an eigenface
representation w(y) := (w1, w2, · · · , wk)

t of the input face y. Let wi = w(xi) for
i = 1, 2, · · · , N [26].

Now, one can classify the face image y to one of the N faces by finding the
index i that minimizes the distance between the eigenface representations w and
wi as

idx = argmin
1≤i≤N

∥w −wi∥.

3 Arithmetic PCA algorithm

Original PCA algorithms require many divisions or normalizations during the
iterations. However, in terms of homomorphic evaluation, a division is expensive
compared to additions and multiplications. Thus, reducing the number of
divisions is crucial for the algorithm’s efficiency. We, therefore, modify Krasulina’s
algorithm to a HE-friendly algorithm by reducing the number of divisions. As a
result, it only requires one delayed division at the end. In this section, we first
introduce the modified Krasulina’s algorithm, which we call the Division-free
Krasulina algorithm. Since the convergence of the iterative PCA algorithms
significantly depends on the size of the vectors, we provide a convergence proof
of our algorithm.

3.1 Division-free Krasulina algorithm

We here introduce the modified division-free variant of Krasulina’s algorithm,
which has no normalization in each iteration process. We change the updating
equation of each iteration by multiplying ξn by ∥vn∥2, which is shown as follows:

vn+1 = vn −
γn
N
{∥vn∥2A− (Avn,vn)I}vn, (3.1)

or equivalently,

ξn = ∥vn∥2Avn − (Avn,vn)vn, (3.2)

vn+1 = vn −
γn
N

ξn. (3.3)

The original Krasulina’s algorithm provides a method for determining the
minimum eigenvalue of a symmetric matrix. However, PCA requires finding
k-maximal eigenvalues of the covariance matrix. So, we first modify the algorithm
to find an eigenvector that corresponds to the largest eigenvalue as

ξn = ∥vn∥2Avn − (Avn,vn)vn, (3.4)

vn+1 = vn +
γn
N

ξn. (3.5)
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Then, to find the eigenvectors that correspond to the top k eigenvalues, we update
the covariance matrix after finding each eigenvector v, as

A← ∥v∥2A−Avvt. (3.6)

Note that the update of A is just orthogonalizing against the eigenvector v
to eliminate the v-direction component. The algorithm can be applied to the
covariance matrix XXt or XtX to find its top k eigenvectors.

vn

∥vn∥2XXtvn

ξn

(XXtvn,vn)vn

vn+1

γn
N

ξn

Fig. 1: Update policy of the modified method

3.2 Convergence proof

It is well known that any positive semi-definite matrix A can be represented as
A = XXt, so we consider the matrix XXt in the convergence of the Division-free

Krasulina algorithm. For X ∈ Rd×N , we define µ(V ) := vtAv
∥v∥2 = ∥Xtv∥2

∥v∥2 for

column vector v ∈ Rd. Also, let λ1 < λ2 < · · · < λs be the distinct eigenvalues
of XXt. Now, we state the main theorem and a corollary.

Theorem 1. Let A ∈ Rd×d be the positive semi-definite matrix and λ1 < λ2 <
· · · < λs be the distinct eigenvalues of A. Assume dim(Eλs

) = 1, v0 /∈ ∪i ̸=sEλi

and γn > 0 is Θ(1/n). Then vn → u for some u ∈ Eλs
as n→∞.

Corollary 1. Under the same condition of Theorem 1, µ(vn)→ λs as n→∞,

where µ(v) :=
vtAv

∥v∥2
.

Proof. This is proven immediately by Theorem 1, since

µ(vn) =
∥Xtvn∥2

∥vn∥2
→ ∥X

tu∥2

∥u∥2
=

(XXtu,u)

∥u∥2
= λs

for some u ∈ Eλs
as n→∞. ⊓⊔
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We first see some properties we need before starting the proof of Theorem 1.

Lemma 1. For every n ∈ N, ξn is orthogonal to vn and ∥vn+1∥ ≥ ∥vn∥ holds.

Proof. Since

ξn = ∥vn∥2XXtvn − (XXtvn,vn)vn

= ∥vn∥2
(
XXtvn −

(XXtvn,vn)

(vn,vn)
vn

)
holds for every n ∈ N, (ξn,vn) = 0 holds. Hence ξn is orthogonal to vn and thus
by Pythagoras theorem, ∥vn+1∥ ≥ ∥vn∥ holds. ⊓⊔

Lemma 2. If γn > 0 is O(1/n), then ∥vn∥ < c · n1/5 for every sufficiently large
n where c > 0 is a constant.

Proof. From figure 1, we can deduce

∥vn+1∥2 = ∥vn∥2 +
γ2
n

N2
∥ξn∥2, (3.7)

∥ξn∥2 = ∥vn∥4 · ∥XXtvn∥2 − ∥Xtvn∥4 · ∥vn∥2, (3.8)

and since ∥XXtvn∥ ≤ ∥XXt∥sup · ∥vn∥, we get

∥vn+1∥2 ≤ ∥vn∥2
(
1 +

γ2
n

N2
∥vn∥2 · ∥XXtvn∥2

)
≤ ∥vn∥2

(
1 +

γ2
n

N2
∥XXt∥2sup · ∥vn∥4

)
= ∥vn∥2

(
1 + c0γ

2
n∥vn∥4

)
,

where c0 = ∥ 1
NXXt∥2sup be a constant. Since γn = O(1/n), there is a constant

c1 > 0 such that γn < c1
n for every sufficiently large n. If we assume ∥vn∥ < c·n1/5

for sufficiently large n and c > 0,

∥vn+1∥2 ≤ ∥vn∥2
(
1 + c0γ

2
n∥vn∥4

)
< c2n2/5

(
1 + c0 ·

c21
n2
· c4 · n4/5

)
= c2(n+ 1)2/5 ·

(
n

n+ 1

)2/5

·
(
1 + c0c

2
1c

4 · n−6/5
)
.

Let h(n) = 2
5n

1/5 − 3
25n

−4/5, then h(n) strictly increases for positive n, and
diverges to∞ when n→∞. Thus for sufficiently large n, h(n) > c0c

2
1c

4 and thus

1 + c0c
2
1c

4 · n−6/5 < 1 +
2

5
n−1 − 3

25
n−2 <

(
1 +

1

n

)2/5

,

which implies ∥vn+1∥2 < c · (n+ 1)2/5. Hence, inductively, the lemma holds. ⊓⊔
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Lemma 3. Under the same conditions as in Lemma 2, ∥vn∥ converges to a
positive real value.

Proof. Recall that ∥vn+1∥2 ≤ ∥vn∥2
(
1 + c0γ

2
n∥vn∥4

)
. By Lemma 2, for a

sufficiently large n,

∥vn+1∥2 ≤ ∥vn∥2
(
1 + c2 · n−6/5

)
,

for some c2 > 0. Note that
∏

n

(
1 + c2 · n−6/5

)
converges since

log
∏
n

(
1 + c2 · n−6/5

)
=

∑
n

log
(
1 + c2 · n−6/5

)
< c2

∑
n

n−6/5 <∞,

and hence ∥vn∥ is bounded. From Lemma 1, ∥vn∥ increases and thus converges
to a positive real value. ⊓⊔

Lemma 4. Under the same conditions as in Lemma 2, αn := (u,vn) converges
for every eigenvector u ∈ Eλs

.

Proof. Let u ∈ Eλs
be an eigenvector corresponds to λs and assume α1 ≥ 0. By

the definition, XXtu = λsu holds, and we have

αn+1 = (u,vn +
γn
N

ξn) = αn +
γn
N

(u, ξn)

= αn +
γn
N

(
u, ∥vn∥2XXtvn − ∥Xtvn∥2vn

)
= αn +

γn
N

{
∥vn∥2(λsu,vn)− ∥Xtvn∥2αn

}
= αn

{
1 +

γn
N

(
λs∥vn∥2 − ∥Xtvn∥2

)}
. (3.9)

Since λs is the largest eigenvalue of XXt, it holds that ∥Xtvn∥2 ≤ λs∥vn∥2 and
thus αn increases. Moreover, αn = (u,vn) ≤ ∥u∥ · ∥vn∥ is bounded, and thus αn

converges. ⊓⊔

We now prove Theorem 1 using the abovementioned lemmas.

Proof (Proof of Theorem 1). Let u ∈ Eλs be an eigenvector corresponds to λs.
By the result of Lemma 4, αn = (u,vn) converges. Without loss of generality, we
assume that α1 ≥ 0. Since (u,vn) = ∥u∥ · ∥vn∥ · cos θn and ∥vn∥ both converge,
cos θn also converges.

Suppose limn→∞ cos θn < 1. Then there exists M0 > 0 such that if n > M0

then there exist a constant kn > 0 and a vector wn ∈ Rd which satisfy the
following:

wn ⊥ u, vn = knu+wn, ∥wn∥ ≠ 0, wn /∈ Eλs . (3.10)
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θn knu

vn

wn

Fig. 2: Classification of the vector wn

Note that kn → k for some k > 0 as n→∞, since

αn = (u,vn) = (u, knu+wn) = kn∥u∥2

converges. Then, we have

µ(vn) =
∥Xtvn∥2

∥vn∥2

=
∥knXtu+Xtwn∥2

∥knu+wn∥2

=
k2n∥Xtu∥2 + ∥Xtwn∥2

k2n∥u∥2 + ∥wn∥2
, (3.11)

since (Xtu, Xtwn) = (XXtu,wn) = λs(u,wn) = 0. Also, we obtain that

µ(vn) =
1

k2n + ∥wn∥2

∥u∥2

·
(
k2nλs +

∥wn∥2

∥u∥2
· ∥X

twn∥2

∥wn∥2

)

<
1

k2n + ∥wn∥2

∥u∥2

· λs

(
k2n +

∥wn∥2

∥u∥2

)
= λs, (3.12)

since dimEλs
= 1 and wn /∈ Eλs

. So, there exist ϵ0 > 0 such that if n > M0 then
µ(vn) < λs − ϵ0. From (3.9), we have

αn+1 = αn

{
1 +

γn
N

(
λs∥vn∥2 − ∥Xtvn∥2

)}
= αn

{
1 +

γn
N
∥vn∥2 (λs − µ(vn))

}
> αn

{
1 +

ϵ0 · γn
N
∥vn∥2

}
,

and hence for any m > n > M0,

αm − αn >

m−1∑
i=n

ϵ0 · γi
N
∥vi∥2αi.
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From Lemma 3, limn→∞ ∥vn∥ > 0 implies that there exist ϵ1 > 0 and M1 > 0
such that if n > M1 then ∥vn∥ > ϵ1. Therefore for any m > n > max(M0,M1),

αm − αn >

m−1∑
i=n

ϵ0 · γi
N
∥vi∥2αi

>
ϵ0ϵ

2
1αn

N

m−1∑
i=n

γi,

and thus αm →∞ as m→∞ since γn = Θ(1/n), which is a contradiction. Hence
limn→∞ cos θn = 1 and limn→∞ wn = 0 ∈ Rd. Thus we get

lim
n→∞

(vn) = lim
n→∞

(knu+wn) = ku.

Therefore we conclude that limn→∞ vn = u for some u ∈ Eλs
. ⊓⊔

4 Implementation

In this section, we give the specific algorithms for HE implementation of the
division-free Krasulina algorithm and the results. We adopted the algorithms to
use SIMD operation on the HE scheme for efficiency. We first introduce some
basic algorithms for SIMD computation. Note that our experiment is two-folded:
i) we first implement PCA over encrypted data in Section 5.1, and ii) run the
face recognition part in plaintext in Section 5.2.

4.1 HE implementation

All the algorithms deal with length N vectors corresponding to N slots in each
ciphertext. The vectors v = (v0, · · · , vm−1) ∈ Rm are replicated N/m times in
the N slots as (v∥v∥ · · · ∥v) = (v0, · · · , vm−1, v0, · · · , vm−1, · · · · · · , v0, · · · , vm−1),
where m and N are power of 2. We first give some basic algorithms RotSum1, 2
and Replicate in Algorithms 1, 2 and 3.

Algorithm 1: Rotate and Sum 1 (RotSum1)

Input : a vector v = (v0, · · · , vN−1) ∈ RN and a power-of-two integer m|N .

Output : a vector (w∥w∥ · · · ∥w) ∈ RN for w ∈ Rm such that w[i] =
∑N/m−1

j=0

vi+mj for all i = 0, · · · ,m− 1.
1 w ← v
2 for 0 ≤ i < logN − logm do
3 w ← Add(w,Rotm×2i(w))
4 end
5 return w
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Algorithm 2: Rotate and Sum 2 (RotSum2)

Input : a vector v = (v0, · · · , vN−1) ∈ RN and a power-of-two integer m|N .
Output : a vector (w0, w1 · · ·wN−1) ∈ RN such that wi =

∑m−1
j=0 v(i+j)%N for

all i = 0, · · · ,m− 1.
1 w ← v
2 for 0 ≤ i < logm do
3 w ← Add(w,Rot2i(w))
4 end
5 return w

Algorithm 3: Replicate (Replicate)

Input : a vector v′ = (v∥v∥ · · · ∥v) ∈ RN for v = (v0, · · · , vm−1) ∈ Rm.
Output : a vector w = (v0, · · · , v0, v1, · · · , v1, · · · · · · , vm−1, · · · , vm−1) ∈ RN .

1 z ← v′

2 w ← 0
3 for 0 ≤ i < m do
4 z ← RotN−1(z)
5 w ← Add(w, e⃗N−im−1 · z) // e⃗t[i] = 1 if i = t, 0 otherwise

6 end
7 w ← RotSum2(w,m)
8 return w

Algorithm 4: Inner Product (InnProd)

Input : two vectors v, w ∈ Rn.
Output : z = (a, a, · · · , a) ∈ Rn where a = v · w.

1 z ← Mult(v, w)
2 z ← RotSum2(z, n)
3 return z

For computing the norm of the vector, or the inner product vt(Av), we here
give the algorithm for the inner product in Algorithm 4.

For the linear operations in the updating equation, we give two algorithms
matrix-vector multiplication (MatVecMult) for Av and vector-vector multiplica-
tion (VecVecTrsMult) for (Av)vt. It is important to maintain the structure of
the matrix A when updating it, and need to use the corresponding matrix-vector
multiplication algorithm.

Using the above building blocks, we now give a concrete k-PCA algorithm
using the division-free Krasulina algorithm in Algorithm 7.

4.2 Privacy-preserving face recognition scenario

In our scenario for face recognition, two main parties are involved - a client and
a server, as in general computation delegation scenarios. The client has some
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Algorithm 5: Matrix-Vector Multiplication (MatVecMult)

Input : a vector c = (c1∥ · · · ∥cm) ∈ RN for column vectors ci ∈ Rm of a
matrix A ∈ Rm×m and a vector v′ = (v∥ · · · ∥v) ∈ RN , where
N = m2.

Output : a vector (Av∥ · · · ∥Av) ∈ RN , where Av ∈ Rm.
1 z ← Mult(c,Replicate(v′))
2 z ← RotSum1(z,m)
3 return z

Algorithm 6: Vector-Vector Multiplication (VecVecTrsMult)

Input : two vectors v′ = (v∥ · · · ∥v), w′ = (w∥ · · · ∥w) ∈ RN for v, w ∈ Rm,
where m2 = N .

Output : a vector c = (c1∥ · · · ∥cm) ∈ RN for column vectors ci ∈ Rm of a
matrix vwt ∈ Rm×m.

1 v′ ← Mult(Replicate(v′), w′)
2 return v′

Algorithm 7: Division-free Krasulina algorithm for top k eigenvalues
(kPCA)

Input : the integer k > 0, a vector c = (c1∥ · · · ∥cm) ∈ RN for column vectors
ci ∈ Rm of a positive semi-definite matrix A ∈ Rm×m and learning
rates {γi,j}1≤i≤k.

Output : vectors (vi∥ · · · ∥vi) ∈ RN for the eigenvectors vi’s correspond to the k
maximal eigenvalues of A.

1 for 1 ≤ i ≤ k do

2 vi ← (vi∥ · · · ∥vi) for vi
$←− [0, 1]m // sample a random initial vector

3 for 1 ≤ j ≤ epochi do // for some estimated epochi
4 tmp1 ← InnProd(vi, vi)
5 w ← MatVecMult(c, vi)
6 tmp2 ← InnProd(vi, w)
7 ξ ← Mult(tmp1, w)−Mult(tmp2, vi)
8 vi ← vi + γi,j · ξ
9 end

10 if i ̸= k then
11 w ← MatVecMult(c, vi)
12 c′ ← VecVecTrsMult(w, vi)
13 tmp1 ← InnProd(vi, vi)
14 c← Mult(tmp1, c)− c′ // update A by orthogonalizing against vi
15 end

16 end
17 return {vi}1≤i≤k

face image data from a group of people, and for a given new face image, it wants
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to classify the new image as one of the people in the group. The client can then
use PCA to recognize the faces, while its computational power is somewhat
limited. Thus, the client wants to delegate PCA to the server with much stronger
computational power.

The problem is that the client needs to give all the private face data to the
server and may leak personal information. So, the client uses HE to encrypt the
face images and then sends the ciphertexts to the server. Then, the server will
homomorphically evaluate PCA on the encrypted data. The client will receive
the ciphertext of the eigenvectors and decrypt it. Now, the client can classify the
new image with just a few computations. The scenario is given below. Note that
the indices i and j are defined for 1 ≤ i ≤ k and 1 ≤ j ≤ N .

Training step.

Client: For given face data X ∈ Rd×N which is a concatenation of the N samples
xi ∈ Rd, it computes
1) X ← X − (x̄| · · · |x̄) where x̄ = 1

N

∑N
i=1 xi,

2) A← XtX ∈ RN×N ,
3) sk, pk, evk, rotkis← KeyGen,
4) ct← Enc(A; pk),
and sends ct with pk, evk, rotk to the Server. // ct includes training data

Server: For given ct and pk, evk, rotki’s, it computes ct′ ← Eval(kPCA, ct; evk, rotki’s)
and sends ct′ back to the client. // ct′ includes non-normalized eigenvectors

Client: For given ct, it computes
1) v1,v2, · · · ,vk ← Dec(ct′, sk),
2) vi ← vi/∥vi∥,
3) fi ←

∑N
j=1 vijxj ,

4) wji ← f ti (xj − x̄),
5) wj ← (wj1, · · · , wjk)

t.

Inference step. // y maybe encrypted w.r.t. owner’s HE key

Client: When a new face image y ∈ Rd is given, it computes
1) wi ← fi

t(y − x̄),
2) w← (w1, · · · , wk)

t,
3) find idx← argmin

1≤j≤N
∥w −wj∥,

and classify y to one of the N samples via index idx.

Fig. 3: Privacy-preserving face recognition scenario.

We note that the inference step of the face recognition can also be done in
a privacy=preserving manner by using HE. Each face image can be encrypted
using the image owner’s homomorphic encryption key, and the index can be
computed in an encrypted state.
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5 Experiment

In this section, we give two different experiments and their results. In Section 5.1,
we implement our PCA algorithm, the division-free Krasulina over encrypted
data. Then, in Section 5.2, we run the face recognition using the division-free
Krasulina algorithm in plaintext to guarantee the correctness and convergence of
our new k-PCA algorithm.

5.1 PCA over encrypted data

In this section, we implement the modified Krasulina algorithm (Algorithm 3)
using the CKKS scheme. We first perform the division-free Krasulina algorithm
on 128× 128 symmetric matrices with significant principal components.

We generate symmetric matrices with significant principal components for this
experiment and perform the division-free Krasulina algorithm. The symmetric
matrices with significant principal components are generated as follows. We
sample a random real orthonormal matrix Q, i.e., QQT = QTQ = I, and a
diagonal matrix D such that

D[i, j] =

{
0 if i ̸= j

λi otherwise
,

where λ1 > λ2 > · · · > λ6 > 0 are relatively big while λi = 0.01 for i > 6. Our
sample matrix, A = QDQT , is a symmetric matrix with eigenvalues λi’s.

To check the validity of our eigenvector v, we compute the error term as:

error = ∥Aṽ − (ṽtAṽ)ṽ∥∞

where ṽ is the normalized vector of v, i.e., ṽ = v/∥v∥2. Once v is an eigenvalue
of A, ṽtAṽ will be the corresponding eigenvalue, and the error term will vanish.
Conversely, if the error term is sufficiently small, v is almost an eigen vector of A
since Av ≈ λv where λ = ṽtAṽ.

Parameter Selection. We found the 6 largest principal components of given
128× 128 matrix A using the division-free Krasulina algorithm (Algorithm 7).
We used the learning rate of 0.05. We conducted two experiments with different
numbers of iterations. The first experiment iterates 40 to find the largest principal
component and 20 for the other 5 principal components. The second experiment
iterates 15 iterations for all 6 principal components.

For the CKKS implementation, we used the quotient polynomial ring
ZQ[X]/(XN + 1) with the dimension N = 215. The size of maximum modulus,
log(PQ) is 777. We sampled the ternary secret key with a hamming weight of
192. This parameter is 128-bit secure [2]. We note that the CKKS scheme with
the selected parameter has 9 precision bits.

All experiments were performed on an Intel Xeon Silver 4114 CPU at 2.20GHz
processor.
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Result. Our division-free Krasnulina algorithm found all 6 principal components
of the given encrypted 128 × 128 matrix, A. The experimental results are
reported in Table 1 and 2. Table 1 shows the results with more iterations,
while Table 2 shows the results with fewer iterations. More iterations provide a
better performance, but the result with fewer iterations also shows a reasonable
performance with a faster running time. To be more precise, with more iterations,
it takes 726.8 seconds (12.1 minutes) to find the 6 principal components with 8
threads and 52 minutes with a single thread. On the other hand, the experiment
with fewer iterations takes 471.62 seconds (7.85 minutes) with 8 threads, and it
shows a reasonable performance. Also, we point out that the precision bits of our
HE parameter are 9.

We stress that almost all previous works considered matrices with small sizes,
e.g., less than 20× 20. Compared to previous works, thanks to our modification,
we could successfully extract the principal components of a large-size encrypted
matrix (i.e., of size 128× 128).

Only one previous work by Panda [21] has implemented the PCA algorithm
for large matrix using HE. However, they make the server send an intermediate
ciphertext to the client, and the client decrypt then re-encrypt it and sends it
back. This is to bypass the expensive bootstrapping procedure; however, security
concerns may occur due to the increased communications, and the communication
cost becomes huge due to the size of the ciphertexts. Panda’s implementation
with the CKKS scheme achieved 6 eigenvectors with an R2 score of 0.579 within
19.9 minutes, excluding 168 bootstrappings. Including bootstrapping, the most
expensive procedure for HE implementation, we expect their total run-time to
be at least 9.2 minutes, but more likely to close near 12 minutes, regarding the
imperfect use of 8 threads.

Table 1: PCA over encrypted data with a significant number of iterations (1
thread).

Principal Eigen value Eigen value
Error

Time
component (exact) (computed) (sec)

1 15 15.000 0.002 856.2
2 10 10.000 0.001 442.0
3 5 4.998 0.008 442.7
4 4 4.002 0.012 442.8
5 3 3.000 0.004 440.0
6 2 2.000 0.006 409.7



18 Cheon et al.

Table 2: PCA over encrypted data with a practical number of iterations (8
threads).

Principal Eigen value Eigen value
Error

Time
component (exact) (computed) (sec)

1 15 14.992 0.044 84.25
2 10 10.019 0.067 78.91
3 5 4.961 0.041 78.92
4 4 4.059 0.047 78.91
5 3 2.998 0.010 78.57
6 2 2.005 0.021 72.06

5.2 Face Recognition.

The experiment is done with 128 plaintext samples, and a similar number of
samples are distributed for each person. For k = 4, 6, 8, 10, Table 3 shows the
k-PCA result.

Table 3: Face recognition accuracy for Yale Face (in plaintext)

Methods Ours Krasulina Power
score R2 / acc R2 / acc R2 / acc

k

4 0.451 ±0.009 / 0.719 0.451 ±0.004 / 0.681 0.452 ±0.003 / 0.692
6 0.581 ±0.010 / 0.870 0.589 ±0.001 / 0.868 0.588 ±0.002 / 0.868
8 0.655 ±0.008 / 0.881 0.666 ±0.002 / 0.889 0.668 ±0.003 / 0.892
10 0.703 ±0.011 / 0.892 0.716 ±0.001 / 0.892 0.718 ±0.001 / 0.892

We show the accuracy of our method (division-free Krasulina algorithm)
and compare it with other methods (original Krasulina’s algorithm and power
method) with limited epochs - 40 for the first component and 20 for the others.
R2 indicates the R2 score with variances of the eigenvectors, and acc indicates
the accuracy of the face recognition from the following scoring method: Let the
number of test sets t, and let y1, y2, · · · , yt be the images from the test set.
Also, define δ(y) as

δ(y) :=

{
1 if idx(y) = idxreal

0 if idx(y) ̸= idxreal

where idxreal denotes the actual index in the sample. We calculate the accuracy
in Table 3 as 1

t

∑t
i=1 δ(yi).
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