
Don’t Forget Pairing-Friendly Curves with Odd
Prime Embedding Degrees

Yu Dai1,2, Fangguo Zhang3,4, and Chang-an Zhao2,4,�

1 School of Mathematics, Wuhan University, Wuhan, China.
2 School of Mathematics, Sun Yat-sen University, Guangzhou, China.

3 School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou,
China.

4 Guangdong Key Laboratory of Information Security, Guangzhou, China.
eccdaiy39@gmail.com,{isszhfg,zhaochan3}@mail.sysu.edu.cn

Abstract. Pairing-friendly curves with odd prime embedding degrees
at the 128-bit security level, such as BW13-310 and BW19-286, sparked
interest in the field of public-key cryptography as small sizes of the prime
fields. However, compared to mainstream pairing-friendly curves at the
same security level, i.e., BN446 and BLS12-446, the performance of pair-
ing computations on BW13-310 and BW19-286 is usually considered
inefficient. In this paper we investigate high performance software im-
plementations of pairing computation on BW13-310 and corresponding
building blocks used in pairing-based protocols, including hashing, group
exponentiations and membership testings. Firstly, we propose efficient
explicit formulas for pairing computation on this curve. Moreover, we
also exploit the state-of-art techniques to implement hashing in G1 and
G2, group exponentiations and membership testings. In particular, for
exponentiations in G2 and GT , we present new optimizations to speed
up computational efficiency. Our implementation results on a 64-bit pro-
cessor show that the gap in the performance of pairing computation be-
tween BW13-310 and BN446 (resp. BLS12-446) is only up to 4.9% (resp.
26%). More importantly, compared to BN446 and BLS12-446, BW13-
310 is about 109.1% − 227.3%, 100% − 192.6%, 24.5% − 108.5% and
68.2%− 145.5% faster in terms of hashing to G1, exponentiations in G1

and GT , and membership testing for GT , respectively. These results re-
veal that BW13-310 would be an interesting candidate in pairing-based
cryptographic protocols.

Keywords: Pairing-friendly curves · BW13-310 · high-performance
software implementations

1 Introduction

A pairing on an elliptic curve E defined over a prime field Fp is a non-degenerate
bilinear map of the form e : G1 × G2 → GT , where G1, G2 and GT are three
groups with the same order r. The two input groups G1 and G2 lie in E(Fpk)
and the output group GT is a subgroup of F∗

pk , where k is the smallest positive

integer such that r | pk−1. Taking advantage of the powerful bilinearity property
of pairings, a range of cryptographic protocols are designed, such as authenti-
cated key agreements [12, 47], direct anonymous attestation (DAA) [10, 50] and
Succinct Non-interactive ARguments of Knowledge (SNARKs) [2, 18, 19]. Very
recently, pairings were also used to speed up group membership testing on sev-
eral non-pairing-friendly curves [37].

The fundamental security of pairing-based protocols depends on the difficulty
of solving discrete logarithm problem (DLP) on the three pairing groups. The
best-known discrete logarithm algorithm on elliptic curves is the Pollard’s rho
algorithm [43], which requires around

√
r group operations. It means that the size

of r is at least 256-bit to reach the 128-bit security level. On finite fields side, the
best attack algorithm is derived from the Number Field Sieve (NFS) family (eg.
[44]). Before 2015, a 3072-bit full extension field Fpk was widely believed to be
128-bit secure under the attack of NFS. With a series of new variants of NFS
proposed [7,35,36], the asymptotic complexity of NFS has decreased significantly.
In particular, the special extension tower number field sieve (SexTNFS) [35] is
tailored to pairing-friendly fields, i.e., the characteristic p can be represented
as a tiny-coefficients polynomial of moderate degree. For example, according to
the estimate in [6, 32], the real security level of BN254 is around 100 ∼ 103-bit
under the attack of SexTNFS. As a result, parameters of many pairing-friendly
curves have to be re-evaluated for achieving the desired security level. In 2021,
Guillevic [31] recommended a list of curves at the updated 128-bit security level.
In the new estimation, the author found that BN446 and BLS12-446 are best
choices for achieving the 128-bit security level in the BN and BLS families,
respectively.

1.1 Pairing-friendly curves with fast exponentiation in G1

The development of NFS also affects the selection of pairing-friendly curves in
many pairing-based cryptographic protocols. A common scenario is that a pro-
tocol is designed to minimize the workload of one party equipped with resource-
constrained devices. For example, in the pairing-based DAA scheme the Trusted
Platform Module (TPM) is a small discrete chip that is required to perform a
few exponentiations in G1. One of challenges in the design of the DAA scheme is
to minimize the computational cost of the TPM [50]. In this situation, pairing-
friendly curves with fast exponentiation in G1 are very attractive. Or equiv-
alently, curves equipped with small size of prime field are well-suited for the
DAA scheme. To this aim, Clarisse et al. [13] recommended two 128-bit secure
curves: BW13-310 with embedding degree 13 over a 310-bit field, and BW19-286
with embedding degree 19 over a 286-bit field. Besides these, there actually exist
other candidates: BLS24-315 and BLS48-286. For these curves, their character-
istic p can be represented by five computer words on a 64-bit processor. Among
these curves, BW13-310 is competitive because of the small size of the full exten-
sion field Fpk . It is worth noting that even compared to BN446 and BLS12-446,
BW13-310 also has advantage in terms of the efficiency of full extension field
arithmetic. Moreover, the odd prime embedding degree k on BW13-310 also

leads to a large value of φ(k), which induces a small number of iterations for
both Miller loop of the optimal pairings [49] and the group exponentiations in
G2 and GT [27].

1.2 Contributions

In this paper, we give a detailed study of BW13-310. We show that this curve is
a powerful candidate in pairing-based protocols at the updated 128-bit security
level. Our contributions are summarized as follows:

• In Section 3, we propose a new formula for computing the optimal pairing on
BW13-310. We show that the computational cost of the Miller loop comes
mostly from two evaluations at the same Miller function of bit length around
log r/(2φ(k)). On this basis, we propose a shared Miller loop such that the
two function evaluations can be accomplished simultaneously. In addition,
we also give a slight optimization for the final exponentiation. By using these
techniques, we also discuss how to compute the products of pairings on this
curve in Section 4.

• In Section 5, we focus on optimizing group exponentiations in G2 and GT on
BW13-310. In the case of G2, we show that GLV [28] and GLS [26] methods
can be combined to build a 2φ(k)-dimensional decomposition, which means
that the number of point doublings is only around log r/(2φ(k)) (≈ 12). In
the case of GT , we develop an all-positive decomposition such that group
inversion operation can be avoided.

• In Section 6, we provide high performance software implementations of pair-
ing computation, hashing (to G1 and G2), group exponentiations and mem-
bership testings over BW13-310 on a 64-bit processor. By means of the
RELIC cryptographic toolkit [1], detailed performance comparisons of all
building blocks on BW13-310, BN446 and BLS12-446 are presented.

- It is surprising to observe that the single pairing computation on BW13-
310 is only up to 4.9% and 26% slower than that on BN446 and BLS12-
446, respectively. In particular, the computation of the Miller loop on
BW13-310 is even up to 48.2% faster than that on BN446. As a result, for
the computation of the pairings products, BW13-310 gains an advantage
over BN446, while is still slower than BLS12-446.

- More importantly, compared to BN446 and BLS12-446, BW13-310 is
about 109.1% − 227.3%, 100% − 192.6%, 24.5% − 108.5% and 68.2% −
145.5% faster in terms of hashing to G1, exponentiations in G1 and GT ,
and membership testing for GT , respectively.

- On the negative side, BW13-310 also pays a penalty in terms of hashing
to G2 and exponentiation in G2.

• In Section 7, we estimate the performance of the Boneh-Lynn-Shacham (BLS)
signature scheme [8] and the unbalanced Chen-Kudla (UCK) key agreement
protocol [47] built on different pairing-friendly curves, including BN446,
BLS12-446 and BW13-310. The results show that

- the UCK protocol built on BW13-310 is about 125.6% and 40.6% faster
than that on BN446 and BLS12-446 for the resource-constrained party (Client),
respectively;

- the BLS signature scheme built on BW13-310 is about both 150% faster
than that on BN446 and BLS12-446 for the signer, respectively.

2 Preliminaries

Let p be a large prime, and E an ordinary elliptic curve defined by an equation of
the form y2 = x3 + ax+ b where a, b ∈ Fp are selected such that 4a3 +27b2 ̸= 0.
The group E(Fp) consists of points (x, y) satisfying the above equation with
x, y ∈ Fp, together with a point at infinity O. Denote by #E(Fp) the order
of E(Fp). Then #E(Fp) is precisely p + 1 − t, where t is the trace of the p-
power Frobenius endomorphism π : (x, y) → (xp, yp). Let r be a large prime
such that r | #E(Fp). The embedding degree k with respect to r is the smallest
positive integer such that r | pk − 1. We use GT to denote the subgroup of
order r in F∗

pk . If k > 1, then the r-torsion group E[r] = {R ∈ E | [r]R = O}
is contained in E(Fpk). Define G1 and G2 are eigenspaces of π acting on E[r]
with eigenvalues 1 and p, respectively. Or equivalently, G1 = E(Fp)[r] and G2 =
E(Fpk)[r] ∩Ker(π-[p]).

2.1 Optimal pairing

For any point R ∈ E and n ∈ Z+, we denote fn,R as a normalized rational
function with divisor

(fn,R) = n(R)− ([n]R)− (n− 1)(O). (1)

For any i, j ∈ Z+, the functions fi,R, fj,R and fi+j,R satisfy the following rela-
tions:

fi+j,R = fi,R · fj,R ·
ℓ[i]R,[j]R

ν[i+j]R
, (2)

where ℓ[i]R,[j]R represents the straight line through [i]R and [j]R, and ν[i+j]R
is the vertical line through [i + j]R. Based on Eq.(2), Miller [41] proposed a
polynomial time algorithm for computing fn,Q(P) for any n ∈ Z+, P ∈ G1 and
Q ∈ G2, which is described in Alg. 1. Throughout this paper, we call fn,R as
Miller function and one execution of the main loop in Alg. 1 as a basic Miller
iteration.

Let m be a multiple of r with m ∤ r2, and write m as
∑ω
j=0 cip

i. An optimal
pairing [49] on E is defined by

e : G1 ×G2 → GT , (P,Q)→
(ω∏

i=0

fp
i

ci,Q
(P) ·

ω−1∏
i=0

ℓ[si+1]Q,[cipi]Q(P)

ν[si]Q(P)

)(pk−1)/r

,

(3)

where si =
∑ω
j=i cjp

j . Eq. (3) allows pairing evaluation to be accomplished
by using around log r/(φ(k)) basic Miller iterations and one exponentiation by
(pk − 1)/r.

Algorithm 1 Miller’s Algorithm

Input: P ∈ G1, Q ∈ G2, n =
L∑
i=0

ni2
i with ni ∈ {−1, 0, 1}

Output: fn,Q(P)
1: T ← Q, f ← 1
2: for i = L− 1 down to 0 do
3: f ← f2 · ℓT,T (P)

ν[2]T (P) , T ←− 2T

4: if ni = 1 then
5: f ← f · ℓT,Q(P)

νT+Q(P) , T ← T +Q

6: end if
7: if ni = −1 then
8: f ← f · ℓT,−Q(P)

νT−Q(P) , T ← T −Q
9: end if

10: end for
11: return f

For curves with even embedding degrees, pairing computation benefits from
the denominator elimination optimization so that the vertical line in Alg. 1 can
be ignored. Unfortunately, this technique does not apply to curves with odd
prime embedding degrees. The penalty is slightly made up for by a modified
Miller function gm,Q with divisor

(gm,Q) = m(Q) + (−mQ)− (m+ 1)(O). (4)

Comparing Eqs. (1) and (4), it is easy to deduce the following relations:

gm,Q = fm,Q · ν[m]Q, (5)

gm+1,Q = gm,Q ·
ℓ[m]Q,Q

ν[m]Q
, (6)

g2m+1,Q = g2m,Q
ℓ[2m]Q,Q

ℓ[−m]Q,[−m]Q
, (7)

g4m,Q = g4m,Q
ℓ[2m]Q,[2m]Q

ℓ2[−m]Q,[−m]Q

. (8)

Exploiting Eqs. (5)-(8), Dai et al. [17] found that the optimal strategy for per-
forming Miller loop is as follows: (1) combining two consecutive doubling steps
into one quadrupling step; (2) combining one doubling and one addition steps
into one doubling-addition step.

2.2 A family of curves with embedding degrees k ≡ 1 mod 6

Freeman, Scott and Teske [24, Construction 6.6] constructed a family of cyclo-
tomic pairing-friendly curves with embedding degrees k ≡ 1 mod 6, k ≤ 1000
and 18 ∤ k. In particular, the characteristic p, the prime order r and the trace of
Frobenius t are parameterized by

r(z) = Φ6k(z),
p(z) = 1

3 (z + 1)2(z2k − zk + 1)− z2k+1,
t(z) = −zk+1 + z + 1,

where Φl(·) represents l-th cyclotomic polynomial. All members in this family
have j-invariant 0 and are defined by an equation of the form y2 = x3 + b for
some b ∈ F∗

p. Following [13], this family is named as the BW family. By the form
of r(z), we have r(z) | (z2k − zk + 1), which implies that

z2 − z · p(z) + p2(z) ≡ z2 + z · z2k+1 + z4k+2

≡ z2 · (1 + z2k + z4k)

≡ 0 mod r(z).

Thus, one of short vectors (c0, c1, · · · , cω) for the optimal pairing in this family is
given by (z2,−z, 1, 0, · · · , 0). Plugging this vector into Eq. (3), the corresponding
formula of the optimal pairing is

e(P,Q) = (fz2,Q(P) · fp−z,Q(P) · ℓπ2(Q),π([−z]Q)(P))
(pk−1)/r. (9)

It is known from [21, Lemma 3.5] that

fz2,Q = f−z−z,Q · f−z,[−z]Q.

Therefore, Eq. (9) can be rewritten as

e(P,Q) =
(
f−z+p−z,Q (P) · f−z,[−z]Q(P) · ℓπ2(Q),π([−z]Q)(P)

)(pk−1)/r
. (10)

BW13-310 and BW19-286: In the BW family, BW13-310 and BW19-286 are
the two curves defined by setting k = 13 and 19, z = −2224 and −145, b = −17
and 31, respectively. In particular, the selected prime p on BW13-310 satisfies
that p ≡ 1 mod 13, so that the full extension field Fp13 can be represented as
Fp[v]/(v13 − α) for some α ∈ F∗

p. Using Magma [9], it is easy to check that the
polynomial v13 − 2 is irreducible over Fp, which means that we can select the
value of α as 2. According to the estimation in [13, 31], both curves are 128-bit
secure even under the attack of the SexTNFS.

3 Single Pairing Computation on BW13-310

Notations. We denote by a, m, mu, s, su, i and r the computational costs
of addition, multiplication, multiplication without reduction, squaring, squaring

without reduction, inversion and modular reduction in Fp, respectively. It is ob-
vious that m = mu + r and s = su + r. Likewise, we use ã, m̃, m̃u s̃, s̃u, ĩ, f̃,
ẽ and r̃ to represent the computational costs of addition, multiplication, mul-
tiplication without reduction, squaring, squaring without reduction, inversion,
Frobenius, exponentiation by |z| and modular reduction in Fp13 , respectively.
The cyclotomic group GΦ13(p) is defined by GΦ13(p) = {β ∈ Fp13 | βΦ13(p) = 1}.
We denote by ĩc the cost of the inversion in GΦ13(p). The notation × is used to
denote field multiplication without reduction. For any point Q, we use (xQ, yQ)
to represent the point in affine coordinates, and (XQ, YQ, ZQ) in jacobian co-
ordinates, which means that xQ = XQ/Z

2
Q and yQ = YQ/Z

3
Q. Given a vector

n = (n0, n1, · · · , nm), the notation ∥n∥∞ represents max{|n0|, |n1|, · · · , |nm|}.
In this section, we propose a new formula for pairing computation in the BW

family, and discuss how to apply it to BW13-310 in detail. Since p ≡ 1 mod 3,
there exists an endomorphism ϕ : (x, y) → (ω · x, y) such that ϕ(Q) = [λ]Q for
any Q ∈ G2, where ω is a cube primitive root of unity in F∗

p and λ is a root of
the quadratic congruence equation x2 + x+ 1 ≡ 0 mod r. Recall that

z2k − zk + 1 ≡ 0 mod r,

which implies that λ is −zk or zk − 1. Fix the parameter ω such that λ = −zk
and define ψ = π ◦ ϕ. Then, we have

ψ(Q) = [λ]π(Q) = [λ · (t− 1) mod r]Q = [−z]Q. (11)

Based on this observation, we prove the following theorem.

Theorem 1. Let notation as above. Then the formula of the optimal pairing in
the BW family can be expressed as

e(Q,P) =
(
f−z+p−z,Q (P) · fp−z,Q(ϕ̂(P)) · ℓπ2(Q),π2◦ϕ(Q)(P)

)(pk−1)/r
, (12)

where ϕ̂ = ϕ2.

Proof. By [33, Lemma 3] and Eq. (11), it is easy to see that

f−z,[−z]Q = f−z,π◦ϕ(Q) = fp−z,ϕ(Q). (13)

By Eq. (1), we obtain that

(f−z,ϕ(Q)) = −z(ϕ(Q))− (ϕ([−z]Q))− (−z − 1)(O).

Since ϕ is an automorphism on E, we have

ϕ∗(f−z,ϕ(Q)) = −z(Q)− ([−z]Q)− (−z − 1)(O) = (f−z,Q), (14)

where ϕ∗ is the pullback of ϕ [25, Definition 8.3.1]. Furthermore, since

ϕ∗(f−z,ϕ(Q)) = (f−z,ϕ(Q) ◦ ϕ),

Eq. (14) implies that

f−z,ϕ(Q) = f−z,ϕ(Q) ◦ ϕ ◦ ϕ̂ = f−z,Q ◦ ϕ̂. (15)

By the fact that p ≡ 1 mod 3 and ϕ̂3 = 1 we get

ϕ̂p = ϕ̂. (16)

Combining Eqs.(13), (15) and (16), it yields

f−z,[−z]Q = fp−z,ϕ(Q) = fp−z,Q ◦ ϕ̂
p = fp−z,Q ◦ ϕ̂. (17)

Inserting Eq. (17) into Eq. (10) and replacing [−z]Q by ψ(Q), we complete the
proof of this theorem.

In Theorem 1, we propose a new formula for computing the optimal pairing in the
BW family, which is suitable for BW13-310 and BW19-286. Using the new for-
mula, the number of basic Miller iterations is reduced to ⌊log|z|⌋ ≈ log r/(2φ(k)).
In detail, when performing Miller’s algorithm using Eq. (12), the computational
cost largely comes from two evaluations at the same Miller function of length
log|z|, i.e., f−z,Q(P) and f−z,Q(ϕ̂(P)). Recently, Fouotsa et al. [23] proposed the
x-superoptimal pairing on BW13-310 and BW19-286, which is expressed as

axsup(Q,P)=
((
f−z,Q(P) · f−1

−z,Q(ϕ̂(P))
)−z · (f−1

−z,Q(ϕ̂(P)) · f−z,Q(ϕ(P)
)p)(p13−1)/r

.

(18)

Clearly, Eqs. (12) and (18) require the same number of iterations when per-
forming Miller’s algorithm. But the latter requires three evaluations at the same
Miller function of length log|z|, i.e., f−z,Q(P), f−z,Q(ϕ(P)) and f−z,Q(ϕ̂(P)).
Therefore, compared to the x-superoptimal pairing, our proposed formula would
be more efficient. In the following, we investigate how to perform the pairing
computation on BW13-310 in detail.

3.1 Shared Miller loop

Computing a single pairing by multiple Miller function evaluations were studied
in [3,45,52]. This inspires us to consider how to speed up pairing computation on
BW13-310 by using Eq. (12), i.e., computing f−z,Q(P) and f−z,Q(ϕ̂(P)). Since
the points P and ϕ̂(P) have the same y-coordinates, the two Miller function
evaluations share a large amount of intermediate values during Miller iteration.
Hence, it would be efficient to calculate f−z,Q(P) and f−z,Q(ϕ̂(P)) simultane-
ously. In other words, we can accomplish two Miller function evaluations at a
shared Miller loop. Recall from Section 2 that the seed z = −2224 on BW13-
310, and the Miller function f2224,Q can be obtained from f1,Q via the following
sequence:

f1,Q→g1,Q →g4,Q→g16,Q→g17,Q→g68,Q→g69,Q→g139,Q→g556,Q→g2224,Q→f2224,Q.
(19)

For any i ∈ Z, we denote by Ni,Q and Di,Q the numerator and denominator of
gi,Q, respectively. According to Eq. (5), we have

g1,Q(x, y) = f1,Q(x, y) · ν1,Q(x, y) = x− xQ

for any point (x, y) ∈ E. Therefore, it is natural to set

N1,Q(P) = xP − xQ, D1,Q(P) = 1, N1,Q(ϕ̂(P)) = x̃P − xQ, D1,Q(ϕ̂(P)) = 1,
(20)

where x̃P represents the x-coordinate of ϕ̂(P). In the following we will discuss
how to update the terms Nm,Q(P), Dm,Q(P), Nm,Q(ϕ̂(P)) and Dm,Q(ϕ̂(P)) in
a shared Miller loop for any m ∈ Z. Before that, we use T = (XT , YT , ZT) to
denote [m]Q in Jacobian coordinates.

Shared addition step(SADD) In this subsection we show how to obtain
Nm+1,Q(P),Dm+1,Q(P),Nm+1,Q(ϕ̂(P)) andDm+1,Q(ϕ̂(P)) fromNm,Q(P),Dm,Q(P),
Nm,Q(ϕ̂(P)) and Dm,Q(ϕ̂(P)), respectively. To this end, the point T +Q is first
calculated. Since T and Q are represented in Jacobian and affine coordinates
respectively, we adopt the mixed addition formula presented in [5, Section 4.3.2]
to compute T +Q, which is given by

αT+Q = yQ · Z3
T − YT , βT+Q = xQ · Z2

T −XT , XT+Q = α2
T+Q − 2XT · β2

T+Q − β3
T+Q,

YT+Q = αT+Q · (XT · β2
T+Q −XT+Q)− YT · β3

T+Q, ZT+Q = ZT · βT+Q.

It can be done by using the following sequence of operations:

A = Z2
T , B = A·ZT , C = B · yQ − YT , D = A · xQ −XT , E = D2, F = D · E,G = XT · E,

XT+Q = C2 − 2G− F,U0 = C × (G−XT+Q), U1 = YT × F, YT+Q = (U0 − U1) mod p,

ZT+Q = ZT ·D.

The above calculation comes at a cost of 6m̃+2m̃u+3s̃+ r̃+8ã, assuming that
computing U0 − U1 requires 2ã. For any point (x, y), it can be deduced from
Eq. (6) that

Nm+ 1, Q(x, y) = Nm,Q(x, y) · LT,a,1(x, y),
Dm+1,Q(x, y)=Dm,Q(x, y) · LT,a,2(x, y),

(21)

where LT,a,1(x, y) and LT,a,2(x, y) are given by

LT,a,1(x, y) = βT+Q · (y ·Z3
T−YT)−αT+Q · (x · Z2

T−XT),

LT,a,2(x, y) = ZT+Q · (x · Z2
T −XT).

Since αT+Q, βT+Q, ZT+Q, Z2
T and Z3

T have been obtained at the point addition
step, we perform the following sequence of operations to compute LT,a,1(P),

LT,a,2(P), LT,a,1(ϕ̂(P)) and LT,a,2(ϕ̂(P)) which requires 2m̃ + 3m̃u + 39m +
2r̃ + 7ã as

A = yP · Z3
T−YT , B = xP · Z2

T−XT , C = x̃P · Z2
T−XT , U0 = βT+Q ×A,U1 = αT+Q ×B,

U2 = αT+Q × C,La,1(P) = (U0−U1) mod p, LT,a,1(ϕ̂(P)) = (U0−U2) mod p,

LT,a,2(P) = ZT+Q ·B,LT,a,2(ϕ̂(P)) = ZT+Q · C.

On this basis, we can obtainNm+1,Q(P),Dm+1,Q(P),Nm+1,Q(ϕ̂(P)) andDm+1,Q(ϕ̂(P))
from Eq. (21) at a cost of 4m̃. In summary, the computational cost at the SADD
step is

6m̃ + 2m̃u + 3s̃ + r̃ + 8ã︸ ︷︷ ︸
point addition

+2m̃ + 3m̃u + 39m + 2r̃ + 7ã︸ ︷︷ ︸
LT,a,1 and LT,a,2

+ 4m̃︸︷︷︸
the final step

= 12m̃ + 5m̃u + 3s̃ + 39m + 3r̃ + 15ã.

Shared doubling-addition step(SDBLADD) By combining one doubling
and one addition steps in the shared Miller loop, we can efficiently obtain
N2m+1,Q(P), D2m+1,Q(P), N2m+1,Q(ϕ̂(P)) and D2m+1,Q(ϕ̂(P)) from Nm,Q(P),
Dm,Q(P), Nm,Q(ϕ̂(P)) and Dm,Q(ϕ̂(P)), respectively. Firstly, using the formula
presented in [5, Section 4.3.1], the point 2T = (X2T , Y2T , Z2T) is given by

X2T =
9

4
X4
T − 2XT · Y 2

T , Y2T =
3

2
X2
T · (XT · Y 2

T −X2T)− Y 4
T , Z2T = YT · ZT .

Thus the computation of point doubling requires 2m̃ + m̃u + 3s̃ + s̃u + r̃ + 7ã
using the following sequence of operations:

A=X2
T , B = A/2, C = A+B,D = C2, E = Y 2

T , F = XT · E,X2T = D − 2F,G = F −X2T ,

U0 = C ×G,U1 = E × E, Y2T = (U0 − U1) mod p, Z2T = YT · ZT .

On this basis, one can obtain the point 2T +Q via one mixed point addition:

α2T+Q = yQ ·Z3
2T−Y2T , β2T+Q = xQ ·Z2

2T−X2T , X2T+Q = α2
2T+Q−2X2T ·β2

2T+Q−β3
2T+Q,

Y2T+Q = α2T+Q · (X2T · β2
2T+Q −X2T+Q)− Y2T · β3

2T+Q, Z2T+Q = Z2T · β2T+Q.

From Eq. (7), we deduce that

N2m+1,Q(x, y) = N2
m,Q(x, y) · LT,d,1(x, y),

D2m+1,Q(x, y)=D
2
m,Q(x, y) · LT,d,2(x, y).

(22)

where LT,d,1(x, y) and LT,d,2(x, y) are given by

LT,d,1(x, y) = β2T+Q · (y · Z3
2T − Y2T)− α2T+Q · (x · Z2

2T −X2T),

LT,d,2(x, y) = β2T+Q · (y · Z3
2T − Y2T) +

3

2
X2
T · β2T+Q · (x · Z2

2T −X2T).

Since the values of 3
2X

2
T , Z2

2T , Z3
2T , α2T+Q and β2T+Q have been obtained, the

computation of LT,d,1(P), LT,d,2(P), LT,d,1(ϕ̂(P)) and LT,d,2(ϕ̂(P)) can be done
in m̃ + 5m̃u + 4r̃ + 39m + 11ã as follows:

A = yP · Z3
2T − Y2T , B = xP · Z2

2T −X2T , C = x̃P · Z2
2T −X2T , D =

3

2
X2
T · β2T+Q,

U0 = β2T+Q ×A,U1 = α2T+Q ×B,U2 = α2T+Q × C,U3 = D ×B,U4 = D × C,
LT,d,1(P) = (U0 − U1) mod p, LT,d,2(P) = (U0 + U3) mod p,

LT,d,1(ϕ̂(P)) = (U0 − U2) mod p, LT,d,2(ϕ̂(P)) = (U0 + U4) mod p.

Finally, it can be seen from Eq. (22) that the computation of N2m+1,Q(P),
D2m+1,Q(P), N2m+1,Q(ϕ̂(P)) and D2m+1,Q(ϕ̂(P)) requires 4m̃ + 4s̃. In total,
the computational cost at the SDBLADD step is

2m̃ + m̃u + 3s̃ + s̃u + r̃ + 7ã︸ ︷︷ ︸
point doubling

+6m̃ + 2m̃u + 3s̃ + r̃ + 8ã︸ ︷︷ ︸
point addition

+ m̃ + 5m̃u + 4r̃ + 39m + 11ã︸ ︷︷ ︸
LT,d,1 and LT,d,2

+ 4m̃ + 4s̃︸ ︷︷ ︸
the final step

= 13m̃ + 8m̃u + 10s̃ + s̃u + 6r̃ + 39m + 26ã.

Shared quadrupling step(SQPL) By combining two doubling steps into
one quadrupling step in the shared Miller loop, we can efficiently perform the
following four function updates:

N4m,Q(P)← Nm,Q(P), D4m,Q(P)← Dm,Q(P),

N4m,Q(ϕ̂(P))← Nm,Q(ϕ̂(P)), D4m,Q(ϕ̂(P))← Dm,Q(ϕ̂(P)).

We first perform two successive point doublings to calculate 4T = (X4T , Y4T , Z4T).
It can be seen from Section 3.1.2 that it costs 4m̃ + 2m̃u + 6s̃ + 2s̃u + 2r̃ + 14ã.
Then, straightforward computation using (8) reveals that

N4m,Q(x, y) = N4
m,Q · LT,q,1(x, y), D4m,Q(x, y) = D4

m,Q ·
(
LT,q,2(x, y)

)2
, (23)

where LT,q,1 and LT,q,2 are given by

LT,q,1(x, y) = Z4T · Z2
2T ·

(
y · Z4T · Z2

2T −
3

2
X2

2T · (x · Z2
2T −X2T)− Y 2

2T

)
,

LT,q,2(x, y) = y · Z4T · Z2
2T +

3

2
X2
T · Y2T · (x · Z2

2T −X2T)− Y 2
2T .

During the procedure of point quadrupling, the values of 3
2X

2
T ,

3
2X

2
2T and

Y 2
2T can be obtained. Then, we compute LT,q,1(P), LT,q,2(P), LT,q,1(ϕ̂(P)) and

LT,q,2(ϕ̂(P)) using the following sequence of operations:

A=Z2
2T , B=Z4T ·A,C=xP ·A−X2T , D= x̃P ·A−X2T , E=

3

2
X2
T · Y2T , U0=yP ×B,

U1 =
3

2
X2
T × C,U2 =

3

2
X2
T ×D,U3 = C × E,U4 = D × E,F = (U0 − U1) mod p,

G=(U0−U2) mod p,H=(U0+U3) mod p, I=(U0+U4) mod p, LT,q,1(P) = B · (F−Y 2
2T),

LT,q,2(P) = H − Y 2
2T , LT,q,1(ϕ̂(P)) = B · (G− Y 2

2T), LT,q,2(ϕ̂(P)) = I − Y 2
2T .

The above computation costs 4m̃+4m̃u+ s̃+4r̃+26m+13mu+14ã. At last, we
can obtain N4m,Q(P), D4m,Q(P), N4m,Q(ϕ̂(P)) and D4m,Q(ϕ̂(P)) from Eq. (23)
at a cost of 4m̃ + 8s̃. In total, the computational cost at the SQPL step is

4m̃ +2m̃u + 6s̃ + 2s̃u+ 2r̃ +14ã︸ ︷︷ ︸
point quadrupling

+4m̃ + 4m̃u + s̃ + 4r̃ + 26m + 13mu + 14ã︸ ︷︷ ︸
LT,q,1 and LT,q,2

+ 4m̃ + 8s̃︸ ︷︷ ︸
the final step

= 12m̃ + 6m̃u + 15s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã.

In addition, it can be seen from Eq. (20) that when m = 1, both Dm,Q(P)

and Dm,Q(ϕ̂(P)) are equal to 1, which indicates that two full extension field
squarings can be saved.

Function transformation According to the relation between f−z,Q and g−z,Q,
we immediately have

f−z,Q(P) =
g−z,Q(P)

νψ(Q)(P)
=

N−z,Q(P)

D−z,Q(P) · (xP − ω · xpQ)
,

f−z,Q(ϕ̂(P)) =
g−z,Q(ϕ̂(P))

νψ(Q)(ϕ̂(P))
=

N−z,Q(ϕ̂(P))

D−z,Q(ϕ̂(P)) · (x̃P − ω · xpQ)
.

(24)

Moreover, the points π2(Q) and π2(ϕ(Q)) have the same x-coordinates, that is,

ℓπ2(Q),π2(ϕ(Q))(P) = yp − yp
2

Q . (25)

Putting Eqs.(24) and (25) together, Eq. (12) can be rewritten as e(P,Q) =

(L1

L2
)(p

13−1)/r, where

L1 =
(N−z,Q(P)

D−z,Q(P) · (xP − ω · xpQ)

)−z+p
·
(
N−z,Q(ϕ̂(P))

)p · (yp − yp2Q),

L2 =
(
D−z,Q(ϕ̂(P)) · (x̃P − ω · xpQ)

)p
.

Once the values of N−z,Q(P), D−z,Q(P), N−z,Q(ϕ̂(P)) and D−z,Q(ϕ̂(P)) are
given, the computation of L1 and L2 can be done at a cost of ẽ+ĩ+6m̃+13m+5f̃+3ã.
We will delay the inversion of L2 into the easy part of the final exponentiation
such that one inversion can be saved.

3.2 The final exponentiation

An optimized final exponentiation routine is critical for fast pairing computation
on BW13-310. The exponent (p13−1)/r can be split as

(p13−1)/r = (p− 1)︸ ︷︷ ︸
easy part

· (1 + p+ p2 + · · ·+ p12)/r︸ ︷︷ ︸
hard part

·

Raising L1/L2 to the power of p − 1 is easy, which can be done at a cost of
ĩ + 3m̃ + 2f̃ as follows:

f = (L1/L2)
p−1 =

Lp1 · L2

Lp2 · L1
.

The bottleneck of the final exponentiation is to raise f to the power of the hard
part. In [17], the exponent of the hard part can be replaced by

h = λ0 + 3 · p+
(3∑
i=1

λi · pi−1
)
·
(3∑
i=0

x3i · p10−3i
)
,

where x = −z, and λ0, λ1, λ2 and λ3 are given by

λ0 = −x15 − 2x14 − 2x13 − x12 − x2 + 2x+ 2,
λ1 = −x18 − 2x17 − 2x16 − x15 − x5 + 2x4 + 2x3,
λ2=x

16 + x15+ x14 + x4 + 2x3 − x2 + x,
λ3 = x16 + x15 + x14 − 4x2 − x− 1.

However, unlike the case of even embedding degrees, the cost of the inversion of
f is still expensive. In order to avoid this operation as much as possible, we can
break λi as λi,0 − λi,1 for i = 0, 1, 2, 3, where

λ0,0 = 2x+ 2, λ0,1 = x15 + 2x14 + 2x13 + x12 + x2,

λ1,0 = 2x4 + 2x3, λ1,1 = x18 + 2x17 + 2x16 + x15 + x5,

λ2,0 = x16 + x15 + x14 + x4 + 2x3 + x, λ2,1 = x2,

λ3,0 = x16 + x15 + x14, λ3,1 = 4x2 + x+ 1.

The above exponents can be classified by degree into the following two categories:

low degrees : λ0,0, λ1,0, λ2,1 and λ3,1; high degrees : λ0,1, λ1,1, λ2,0 and λ3,0.

Firstly, the values of fλ0,0 , fλ1,0 , fλ2,1 and fλ3,1 can be computed using the
following operations:

f→f3→fx→fx ·f →f2(x+1)→fx
2

→f4x
2

·fx+1→fx
3

→fx
4

→fx
3

· fx
4

→f2(x
3+x4).

(26)

Since only one additional field multiplication is required for obtaining f3 at the
process of computing fx, the cost of computing (26) is 4ẽ + 4m̃ + 4s̃. Denote g
by f (x12+x13+x14). On the basis of (26), we then compute g with 10ẽ + m̃:

fx
5

→ fx
3+x4

· fx
5

→ fx
9(x3+x4+x5).

To compute fλ0,1 , fλ1,1 , fλ2,0 and fλ3,0 , the following operations are performed:

g→gx →g · gx · fx
2

→gx
2

→gx
2

·fx
3+x4

·fx
3

·fx→gx
3

→gx
4

→gx
3

·gx
4

·fx
5

.
(27)

The cost of computing (27) is 4ẽ + 7m̃. Using the trick of Montgomery’s si-
multaneous inversion [42], we then can compute the terms f0 = fλ0 and f1 =

fλ1+λ2·p+λ3·p2 as follows:

f0 =
fλ0,0

fλ0,1
=
fλ0,0 · (fλ1,1 · fλ2,1·p · fλ3,1·p2)

fλ0,1 · (fλ1,1 · fλ2,1·p · fλ3,1·p2)
,

f1 =
fλ1,0 · fλ2,0·p · fλ3,0·p2

fλ1,1 · fλ2,1·p · fλ3,1·p2
=
fλ0,1 · (fλ1,0 · fλ2,0·p · fλ3,0·p2)

fλ0,1 · (fλ1,1 · fλ2,1·p · fλ3,1·p2)
,

which requires ĩc+9m̃+4f̃. Finally, raising f to the power of h can be expressed
as

f0 · f3·p · fp
10+x3·p7+x6·p4+x9·p

1 = f0 · (f3 · fx
9

1)p · fp
10+x3·p7+x6·p4

1 . (28)

Since the value of f3 can be obtained from (26), the computation of (28) requires
9ẽ + 5m̃ + 4f̃.

3.3 Operation counts

Fp13 Arithmetic Operation Counts in Fp
ã 13a
m̃ 66mu + 502a + 13r
m̃u 66mu + 502a
s̃ 66su + 443a + 13r
s̃u 66su + 443a
r̃ 13r
ĩ 277mu+73m+i+2034a+53r
ĩc 264mu + 60m + 2008a + 52r
ẽ 198mu + 726su + 6379a + 182r
f̃ 12m

Table 1: Operation counts for the full extension field arithmetic

Applying the technique of lazy reduction [4] and Karatsuba algorithm, a detailed
description of the finite field arithmetic in Fp13 was given in [17]. In Table 1, we
summarize the associated operation counts. We now provide detailed operation
counts of the pairing computation on BW13-310 by using our algorithms. From
(19), the computation of N−z,Q(P), D−z,Q(P),N−z,Q(ϕ̂(P)), D−z,Q(ϕ̂(P)) re-
quires executing 5 SQPL, 2 SADD and 1 SDBLADD. Thus, the total number
of operations in the Miller loop is

ML = 2ã︸︷︷︸
Eq.(20)

+12m̃ + 6m̃u + 13s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã︸ ︷︷ ︸
the first QPL

+

4(12m̃ + 6m̃u + 15s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã)︸ ︷︷ ︸
the last 4 QPL

+

2(12m̃ + 5m̃u + 3s̃ + 39m + 3r̃ + 15ã)︸ ︷︷ ︸
2 SADD

+

13m̃ + 8m̃u + 10s̃ + s̃u + 6r̃ + 39m + 26ã︸ ︷︷ ︸
1 SDBLADD

+

ẽ + ĩ + 6m̃ + 13m + 5f̃ + 3ã︸ ︷︷ ︸
L1 and L2

= ẽ + ĩ + 103m̃ + 48m̃u + 89s̃ + 11s̃u + 42r̃ + 260m + 65mu + 5f̃ + 201ã
= i + 393m + 10506mu + 7326su + 3277r + 131128a.

It can be seen from Section 3.2 that the total number of operations in the final
exponentiation is

FE =(̃i + 3m̃ + 2f̃) + (4ẽ + 4m̃ + 4s̃) + (10ẽ + m̃) + (4ẽ + 7m̃)

+ (̃ic + 9m̃ + 4f̃) + (9ẽ + 5m̃ + 4f̃)
=27ẽ + ĩ + ĩc + 29m̃ + 4s̃ + 10f̃
=i + 253m + 7801mu + 19866su + 5448r + 192605a.

In Table 2, we compare the operation counts of ML and FE on BW13-310 to the
previous works available in the literature. It should be noted that the estimation
in [31] assumes that m̃ ≈ 59m, while in [23] assumes that m̃ ≈ 66m. Clearly,
our algorithms require fewer computational cost as compared to the previous
works.

Work Phase Operation Counts

Guillevic [31] ML ≈ 2̃i + 29919m
FE −

Dai et al. [17] ML 2i+518m+15798mu+10758su+4747r+195187a
FE i + 325m + 7801mu + 19932su + 5461r + 193048a

Fouotsa et al. [23] ML ≈ 2i + 22925m
FE −

This work ML i + 393m + 10506mu + 7326su + 3277r + 131128a
FE i + 253m + 7801mu + 19866su + 5448r + 192605a.

Table 2: Comparison of operation counts for pairing computation on BW13-310
with the previous works available in the literature

4 Pairings Products Computation on BW13-310

The evaluation of the products of pairings is often required in many pairing-
based protocols. Efficient algorithms for computing such products were proposed
in [29,46,51] by sharing an amount of full extension field squarings and the costly
final exponentiation step. In the case of BW13-310, the products of n-pairings
can be expressed as

n∏
i=1

e(Pi, Qi) =
((n∏

i=1

f−z,Qi
(Pi)

)−z+p · (n∏
i=1

f−z,Qi
(ϕ̂(Pi))

)p · n∏
i=1

(
yPi
− yp

2

Qi

))(p13−1)/r

= (Ln,1/Ln,2)
(p13−1)/r.

By Eqs. (24) and (25), the values of Ln,1 and Ln,2 are given by

Ln,1=
(∏n

i=1N−z,Qi(Pi)∏n
i=1 D−z,Qi(Pi)·

∏n
i=1(xPi−ω ·xp

Qi
)

)p−z

·
(n∏

i=1

N−z,Qi(ϕ̂(Pi))
)p

·
n∏

i=1

(
yPi−yp2

Qi

)
,

Ln,2 =
(n∏

i=1

D−z,Qi(ϕ̂(Pi)) ·
n∏

i=1

(x̃Pi − ω · xp
Qi

)
)p

,

(29)
where x̃Pi represents the x-coordinate of ϕ̂(Pi). Clearly, the most costly opera-
tions for computing Ln,1 and Ln,2 take place in the evaluations of

∏n
i=1N−z,Qi(Pi),∏n

i=1D−z,Qi
(Pi),

∏n
i=1N−z,Qi

(ϕ̂(Pi)) and
∏n
i=1D−z,Qi

(ϕ̂(Pi)). To start, we need

to obtain the following four initial values:
n∏
i=1

N1,Qi
(Pi) =

n∏
i=1

(xPi
− xQi

),

n∏
i=1

D1,Qi
(Pi) = 1,

n∏
i=1

N1,Qi
(ϕ̂(Pi)) =

n∏
i=1

(x̃Pi
− xQi

),

n∏
i=1

D1,Qi
(ϕ̂(Pi)) = 1.

(30)

Given an integer m, we denote Ti by [m]Qi for each point Qi. Then, the following
relations are easily derived from Section 3.1:

nSADD

n∏
i=1

Nm+1,Qi(x, y) =

n∏
i=1

Nm,Qi(x, y)

n∏
i=1

LTi,a,1(x, y),

n∏
i=1

Dm+1,Qi(x, y) =

n∏
i=1

Dm,Qi(x, y)

n∏
i=1

LTi,a,2(x, y).

nSDBL

n∏
i=1

N2m+1,Qi(x, y) =
(n∏
i=1

Nm,Qi(x, y)
)2 n∏

i=1

LTi,d,1(x, y),

n∏
i=1

D2m+1,Qi
(x, y) =

(n∏
i=1

Dm,Qi
(x, y)

)2 n∏
i=1

LTi,d,2(x, y).

nSQPL

n∏
i=1

N4m,Qi
(x, y) =

(n∏
i=1

Nm,Qi
(x, y)

)4 n∏
i=1

LTi,q,1(x, y),

n∏
i=1

D4m,Qi
(x, y) =

(n∏
i=1

Nm,Qi
(x, y)

)4(n∏
i=1

LTi,q,2(x, y)
)2

.

Based on the analysis of Section 3.1, we can deduce that the costs of the nSADD,
nSDBLADD and nSQPL steps are

– nSADD: n(12m̃ + 5m̃u + 3s̃ + 39m + 3r̃ + 15ã).
– nSDBLADD:

n(2m̃ + m̃u + 3s̃ + s̃u + r̃ + 7ã)︸ ︷︷ ︸
point doublings

+n(6m̃ + 2m̃u + 3s̃ + r̃ + 8ã)︸ ︷︷ ︸
point additions

+ n(m̃ + 5m̃u + 4r̃ + 39m + 11ã)︸ ︷︷ ︸
LTi,d,1

and LTi,d,2

+ 4nm̃ + 4s̃︸ ︷︷ ︸
the final step

= 4s̃ + n(13m̃ + 8m̃u + 6s̃ + s̃u + 6r̃ + 39m + 26ã.
– nSQPL:

n(4m̃ +2m̃u + 6s̃ + 2s̃u+ 2r̃ +14ã)︸ ︷︷ ︸
point quadruplings

+

n(4m̃ + 4m̃u + s̃ + 4r̃ + 26m + 13mu + 14ã)︸ ︷︷ ︸
LTi,q,1

and LTi,q,2

+ 4nm̃ + 8s̃︸ ︷︷ ︸
the final step

= 8s̃ + n(12m̃ + 6m̃u + 7s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã).

Analogous to the single pairing computation, two full extension field squarings
can be saved at the first nSQPL step, and we can obtain the terms

∏n
i=1N−z,Qi

(Pi),∏n
i=1D−z,Qi

(Pi),
∏n
i=1N−z,Qi

(ϕ̂(Pi)) and
∏n
i=1D−z,Qi

(ϕ̂(Pi)) by executing 5
nSQPL, 2 nSADD and 1 nSDBLADD. On this basis, we continue to calculate
Ln,1 and Ln,2. Since the point Pi for each i is defined over Fp, we have

n∏
i=1

(xPi
− ω · xpQi

) =
(n∏
i=1

(xPi
− ω · xQi

)
)p
,

n∏
i=1

(x̃Pi
− ω · xpQi

) = (

n∏
i=1

(x̃Pi
− ω · xQi

))p,

n∏
i=1

(
yPi
− yp

2

Qi

)
=

(n∏
i=1

(
yPi
− yQi

))p2
.

The above computation requires 3(n− 1)m̃ + 13nm + 3f̃ + 3nã. By the form of
Eq. (29), it is straightforward to see that the cost of computing Ln,1 and Ln,2 is

(3(n− 1)m̃ + 13nm + 3f̃ + 3nã) + (ẽ + ĩ + 6m̃ + 2f̃)
=ẽ + ĩ + 3(n+ 1)m̃ + 13nm + 5f̃ + 3nã.

Based on the above analysis, the cost of the Miller loop for computing n-pairings
products on BW13-310 is

nML =2(n− 1)m̃ + 2nã︸ ︷︷ ︸
Eq. (30)

+6s̃ + n(12m̃ + 6m̃u + 7s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã)︸ ︷︷ ︸
the first nQPL

+

32s̃ + 4n(12m̃ + 6m̃u + 7s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã)︸ ︷︷ ︸
the last 4 nQPL

+

2n(12m̃ + 5m̃u + 3s̃ + 39m + 3r̃ + 15ã)︸ ︷︷ ︸
2 nSADD

+

4s̃ + n(13m̃ + 8m̃u + 6s̃ + s̃u + 6r̃ + 39m + 26ã)︸ ︷︷ ︸
1 nSDBLADD

+

ẽ + ĩ + 3(n+ 1)m̃ + 13nm + 5f̃ + 3nã︸ ︷︷ ︸
Ln,1 and Ln,2

=ẽ + ĩ + (102n+ 1)m̃ + 48nm̃u + (47n+ 42)s̃ + 11ns̃u + 42nr̃ + 260nm
+ 65nmu + 5f̃ + 201nã.

=i + (260n+ 133)m + (9965n+ 541)mu + (3828n+ 3498)su + (2483n+ 794)r
+ (103607n+ 27521)a.

In summary, the total number of operations required for computing n-pairings
products on BW13-310 is

nML+ FE =2i + (260n+ 386)m + (9965n+ 8342)mu + (3828n+ 23364)su
+ (2483n+ 6242)r + (103607n+ 220126)a.

5 Exponentiation in Pairing Groups

Exponentiation in three pairing groups G1, G2 and GT also plays a vital role in
the implementation of pairing-based protocols. In this section, we discuss how
to efficiently perform the operation on BW13-310. The best-known method for
computing [n]P with P ∈ G1 and n ∈ Zr was introduced by Gallant, Lambert,
Vanstone [28], which is called the GLV method.The basic idea of this method
is as follows. If the target curve has an efficiently computable endomorphism ϕ
such that ϕ(P) = [λ]P for some integer λ, then the scalar n can be decomposed
as n0, n1 such that n ≡ n0 +n1 · λ mod r, where |n0|, |n0| ≈

√
r. Thus, the com-

putation of [n]P can be replaced by the multi-exponentiation [n0]P + [n1]ϕ(P).
In summary, this method can halve the number of point doublings. In addition,
recoding n0 and n1 with the w-width non-adjacent form (w-NAF) can reduce
the number of point additions. In the RELIC cryptographic toolkit [1], this
method can be implemented automatically once the associated curve parame-
ters are given. Therefore, we only investigate how to perform exponentiations in
G2 and GT on this curve.

5.1 Exponentiation in G2

For exponentiation in G2 on curves admitting a twist, such as BN and BLS12
families, GLS method [26] breaks a random exponent n ∈ Zr into φ(k) mini-
exponents n0, n1, · · · , nφ(k)−1 such that the bit size of the maximum of |ni| is
about 1

φ(k) log r. In general, GLS method largely reduces the number of iterations
required for computing [n]Q with Q ∈ G2.

It is possible to build a higher-dimensional decomposition by combining GLV
and GLS methods on some certain curves. This idea was initially proposed by
Longa and Sica [40] to obtain a four dimensional decomposition on certain curves,
and subsequently applied into different scenarios [14,22]. On BW13-310, the or-
ders of ϕ and π are respectively 3 and k in EndF

pk
(E) with gcd(3, k) = 1,

where EndF
pk
(E) denotes the endomorphism ring of E over Fpk . It indicates

that ψ = ϕ ◦ π satisfies Φ2φ(k)(ψ) = 0, so a random exponent n can be de-
composed into 2φ(k) mini-exponents, where the bit size of the maximum of |ni|
is about 1

2φ(k) log r. It should be noted that the 2φ(k)-dimensional decomposi-
tion takes advantage of the fact that ψ(Q) = [−z]Q. More specifically, since
log r ≈ 24 log|z|, the exponent n can be written in the basis of |z| as

n = n0 + n1 · |z|+ · · ·+ n23 · |z|23,

where log|ni| < log|z| ≈ 1
24 log r. Thus, the computation of [n]Q with Q ∈ G2

can be accomplished as

[n]Q = [n0]Q+ n1ψ(Q) + · · ·+ [n23]ψ
23(Q).

By the form of the endomorphism ψ, we have

ψi(Q) = (ωi · xp
i

Q , y
pi

Q)

for i = 0, 1, · · · , 23, and thus the cost of computing ψi(Q) is negligible. The
procedure of performing exponentiation in G2 on BW13-310 is summarized in
Alg. 2.
Remark 1. We conclude that if the orders of ϕ and π are coprime in EndF

pk
(E),

then there exists a 2φ(k)-dimensional decomposition in G2. However, the orders
of ϕ and π are respectively d and k in EndF

pk
(E) with d | k (d = 3 or 4)

on many mainstream pairing-friendly curves, such as BN, BLS12, KSS16 and
KSS18 families. It means that ψ = ϕ ◦ π satisfies Φφ(k)(ψ) = 0. Thus, the new
technique is not suitable for the above mentioned curves.

Algorithm 2 Exponentiation in G2 on BW13-310
Input: a random positive integer n ∈ Zr, a random point Q ∈ G2

Output: [n]Q
1: Q0 ← Q
2: for i = 1 to 23 do
3: Qi ← ψ(Qi−1)
4: end for
5: Compute [j]Qi for j ∈ {1, 3, 5, · · · , 2w − 1}

6: Decompose n into (n0, n1, · · · , n23) with n =
23∑
i=0

ni · |z|i

7: Recode ni =
t−1∑
j=0

ni,j2
j in w-NAF

8: R← O
9: for j = t− 1 down to 0 do

10: R← [2]R
11: for i = 0 to 23 do
12: if ni,j > 0
13: R← R+ [ni,j]Qi
14: else
15: R← R− [ni,j]Qi
16: end if
17: end for
18: end for
19: return R

5.2 Exponentiation in GT

Since there is not an efficient computable endomorphism in Fpk corresponding to
the GLV endomorphism in E(Fpk), the exponentiation in GT is slightly different

to that in G2. In other words, in the case of exponentiation in GT , a given
exponent n can be only decomposed into φ(k) multi-exponents by using the
Frobenius endomorphism, rather than 2φ(k). We now follow the same recipe
described by Galbraith and Scott [27] to decompose n the as n0, n1, · · · , nφ(k)−1

such that
n ≡ (n0 + n1 · p+ · · ·+ nφ(k)−1p

φ(k)−1) mod r

and max{|n0|, |n1| · · · , |nφ(k)−1|} ≈ r1/φ(k). To this aim, we first define a mod-
ular lattice L as

L = {(z0, z1, · · · , z11)|z0 + z1 · p+ · · ·+ z11 · p11 ≡ 0 mod r}.

Clearly, a basis B∗ = (b∗
0,b∗

1, · · · ,b∗
11) of L is naturally selected as

b∗
0 = (r, 0, 0, · · · , 0),

b∗
1 = (p,−1, 0 · · · , 0),
...

b∗
11 = (p, 0, 0 · · · ,−1).

Inputting the basis B∗ into the LLL algorithm [38], we obtain a LLL-reduced
basis B = (b0,b1, · · · ,b11) as

b0 = (z2,−z, 1, 0, 0, · · · , 0),
b1 = (0, z2,−z, 1, 0, · · · , 0),

...
b9 = (0, 0, · · · , 0, z2,−z, 1),
b10 = (1, · · · , 1,−z2 + 1, z + 1),
b11 = (−z − 1,−z, · · · ,−z,−z2 + z).

Since (r, 0, 0, · · · , 0) ∈ L, there exists a unique solution (y0, y1, · · · , y11) ∈ Z12

such that

(r, 0, 0, · · · , 0) = y0b0 + y1b1 + · · ·+ y11b11 (31)

Multiplying n/r on the both side of (31), it produces that

(n, 0, 0, · · · , 0) = α0b0 + α1b1 + · · ·+ α11b11, (32)

where αi = yi · n/r. We define

n = (n0, n1, · · · , n11) = (n, 0, 0, · · · , 0)− ⌊α0⌉b0 − ⌊α1⌉b1 − · · · − ⌊α11⌉b11.
(33)

Since ⌊αi⌉ ∈ Z for each i, it is clear that n ∈ n+L. Moreover, combining Eqs.(32)
and (33), we have

(n0, n1, · · · , n11) = (α0 − ⌊α0⌉)b0 + (α1 − ⌊α1⌉)b1 + · · ·+ (α11 − ⌊α11⌉)b11.

Since the selected seed z is negative and |α0 − ⌊α0⌉| ≤ 1/2, we immediately get
that

∥n∥∞ ≤ (z2 − 2z + 2)/2 ≈ r1/φ(k). (34)

For the mainstream pairing-friendly curves, such as BN, BLS12, KSS16 and
KSS18 families, the embedding degrees k are always even. This allows inversion
in GT to be computed for almost free by using a simple conjugation over Fpk/2 .
In other words, non-positive exponent decomposition will not bring extra over-
head for exponentiation in GT on these curves. However, the picture is different
on BW13-310 as it has an odd prime embedding degree. It pays a penalty for
expensive cost inversion in GT . In order to avoid this operation when performing
exponentiation in GT , we expect multi-exponents are all-positive.

Proposition 1. Let the lattice L and the LLL-reduced basis B = (b0,b1, · · · ,b11)
of L be constructed as above. For any integer n ∈ Z, there exists a vector
n′ = (n′0, n

′
1, · · · , n′

11) ∈ n + L such that the tuples of n′ are all-positive and
∥n′∥∞ ≤ 3(z2 − 2z + 2)/2.

Proof. We first decompose the scalar n into the vector n as in (33). Then, we
define c = b0 + b1 + · · · + b9 − b10 − b11 and n′ = c + n. It is obviously that
n′ ∈ n+ L. Moreover, by the definition of bi for each i, it is straightforward to
see that

min{c0, c1, · · · , cφ(k)−1} ≥ z2 − 1,max{c0, c1, · · · , cφ(k)−1} ≤ z2 − 2z + 2,
(35)

where ci is denoted as the i-th tuple of c. Combining Eq.s (34) and (35) together,
the proof is immediate.

The all-positive decomposition described in Proposition 1 also leads to around
1 bit increase for the bound of the size of the mini-exponents. Considering the
expensive cost of inversion in GT , this trade is absolutely worthwhile. In addition,
one should be noted that when performing the small exponentiations by n′i
for i = 0, 1, · · · , 11, the NAF expression is not applicable. The procedure of
exponentiation in GT on BW13-310 is presented in Alg. 3.

6 Implementation Results

In this section, we present our implementation results of the pairing computation
and common building blocks on BW13-310 within the RELIC cryptographic
toolkit. For the pairing computation and the group exponentiations in G2 and
GT we use the algorithms proposed in this paper. For hashing to G1 and G2,
the group membership testings and the group exponentiation in G1, we exploit
state-of-the-art techniques. In detail,

Algorithm 3 Exponentiation in GT on BW13-310
Input: a random positive integer n ∈ Zr, a random element f ∈ GT
Output: fn
1: f0 ← f
2: for i = 1 to 11 do
3: fi ← fpi−1

4: end for
5: Compute f ji for j ∈ {1, 3, 5, · · · , 2w − 1}
6: Decompose n into all-positive mini-exponents (n0, · · · , n11) by using Propo-

sition 1
7: Recode ni =

t−1∑
j=0

ni,j2
j such that ni,j ∈ {1, 3, 5, · · · , 2w − 1}

8: g ← 1
9: for j = t− 1 down to 0 do

10: g ← g2

11: for i = 0 to 11 do
12: if ni,j > 0
13: g ← g · fni,j

i

14: end if
15: end for
16: end for
17: return g

• The function H1 : {0, 1}∗ → G1 is implemented by using the Shallue-van
de Woestijne (SVW) map [48], followed by a cofactor multiplication. The
SVW map aims to efficiently hash a binary string to a random point R1 ∈
E(Fp) in constant time, and the cofactor multiplication forces R1 into the
target group G1. RELIC provides dedicated implementation of this map in
the ep_map_from_field() function in the file /src/ep/relic_ep_map.c. The
procedure of clearing cofactor can be done at a cost of one multiplication by
z2 − z + 1 [20].

• The function H2 : {0, 1}∗ → G2 is implemented by using the method pro-
posed in [16]. Likewise, it is split into two phases: hashing a binary string to
a random point R2 ∈ E(Fp13), followed by mapping R2 to G2. The compu-
tational cost of hashing to G2 largely comes from the second phase, which
requires approximately 26 scalar multiplications by z, 13 point doublings
and 41 point additions in E(Fp13).

• The best-known algorithms for the G1, G2 and GT membership testings
on BW13-310 are proposed in [15], which require approximately 12 scalar
multiplications by z in E(Fp), 1 scalar multiplications by z in E(Fp13) and
2 exponentiations by z in Fp13 , respectively.

In order to evaluate strengths and weaknesses of BW13-310 in real-world pairing
based cryptographic protocols, we present a performance comparison between
BW13-310 and other 128-bit secure pairing-friendly curves, including BN446,

BLS12-446 and BLS24-315. Specially, BN446 and BLS12-446 are well known for
fast pairing computations, while BLS24-315 is another interesting curve with
fast exponentiation in G1. All of these curves are defined by an equation of the
form y2 = x3+ b for some b ∈ F∗

p, and the related parameters are summarized in
Table 3. RELIC provides high speed implementations of pairing computations

p r z, b

BN446 36z4+36z3+24z2+6z+1 36z4+36z3+18z2+6z+1 2110 + 236 + 1, 257

BLS12-446 (z − 1)2(z4 − z2 + 1)/3 + z z4 − z2 + 1 −274+273−263−257 − 250−217− 1, 1

BW13-310 1
3
(z+1)2(z26−z13 + 1)−z27 Φ78(z) −(211 + 27 + 25 + 24),−17

BLS24-315 (z − 1)2(z8 − z4 + 1)/3 + z z8 − z4 + 1 −232 + 230 + 221 + 220 + 1, 1

Table 3: Important parameters of BN446, BLS12-446, BW13-310 and BLS24-
315.

and the required auxiliary building blocks on BN446, BLS12-446 and BLS24-
315. We have integrated our codes in this library to allow a direct performance
comparison across different curves. The source code is available at https://
github.com/eccdaiy39/BW13-P310. Our benchmark results are presented in
Figs. 1-4. Timings are measured on an Intel Core i9-12900K processor running
at @3.2GHz with TurboBoost and hyper-threading features disabled, averaged
over 104 executions. For group exponentiations G1, G2 and GT on each curve,
window widths w are set as 4, 1 and 1, respectively.

• Compared to BN446 and BLS12-446, BW13-310 is about 109.1%− 227.3%,
100%−192.6%, 24.5%−108.5% and 68.2%−145.5% faster in terms of hash-
ing to G1, exponentiations in G1 and GT , and membership testing for GT ,
respectively. In essence, as to operations related to G1, BW13-310 benefits
from fast prime field arithmetic. As to operations related to GT , even though
BW13-310 fails to provide fast cyclotomic squaring [30, 34] and decode ex-
ponents in the NAF form, it is much more favoured for a small size of full
extension field and a large value of φ(k), which result in fast full extension
field multiplication and high dimensional GLS decomposition.

• More surprisingly, the gap in the performance of single pairing computation
between BW13-310 and BN446 (resp. BLS12-446) is only up to 4.9% (resp.
26%). In particular, the computation of the Miller loop on BW13-310 is even
up to 48.2% faster than that on BN446. In fact, our results reveal that a
few percent efficiency disadvantage of pairing computation on BW13-310
mainly arises from the final exponentiation part. For the computation of the
n-pairings products, BW13-310 outperforms BN446, while still slower than
BLS12-446. For example, for the 8-pairings products, BW13-310 is about

https://github.com/eccdaiy39/BW13-P310
https://github.com/eccdaiy39/BW13-P310

14.2% faster than that on BN446, while 25.5% slower than that on BLS12-
446.

• However, BW13-310 also introduces a significant penalty for hashing to G2

and exponentiation in G2. Indeed, the pairing group G2 on BW13-310 is
defined over the full extension field as the lack of twists, while that on BLS12-
446 and BN446 lies in a subfield Fp2 .

• For BW13-310 and BLS24-315, they provide nearly equal performance in
terms of exponentiation in G1, membership testing for G1. Moreover, the
former has a significant advantage in terms of hashing to G1, exponentiation
in GT , membership testing for GT and pairing computation, while the latter
outperforms for hashing to G2 and exponentiation in G2.

In summary, our implementation results show that BW13-310 is competitive in
scenarios that hashing to G2 and exponentiation in G2 are not necessary, or
performed by a powerful computational entity.

BLS12-446 BN446 BW13-310 BLS24-315
0

300

600

900

1,200

1,500

1,800

71 46 22
78

168
137

1,658

602

cl
oc

k
cy

cl
es

(×
10

4
)

G2

G1

Fig. 1: Hashing to G1 and G2.

BLS12-446 BN446 BW13-310 BLS24-315
0

150

300

450

600

750

900

54
79

27 26

92

140

713

246

132

221

106

386

cl
oc

k
cy

cl
es

(×
10

4
)

GT
G2

G1

Fig. 2: Group exponentiations

BLS12-446 BN446 BW13-310 BLS24-315
0

25

50

75

100

125

150

39

0.8

27
22

33

51

118

109

37

54

22

96

cl
oc

k
cy

cl
es

(×
1
0
4
)

GT
G2

G1

Fig. 3: Group membership testings

BLS12-446 BN446 BW13-310 BLS24-315
0

200

400

600

800

1,000

1,200

731

284

256

170

154

252

183

155

cl
oc

k
cy

cl
es

(×
10

4
)

Final Exp
Miller Loop

Fig. 4: Single pairing computation

BLS12-446 BN446 BW13-310 BLS24-315
0

500

1,000

1,500

2,000

2,500

443

570 561

1,210

763

1,056
985

1,791

1,077

1,544

1,352

2,372

cl
oc

k
cy

cl
es

(×
10

4
)

n = 8
n = 5
n = 2

Fig. 5: n-pairings products computa-
tion

7 Applications

In this section, we estimate the performance of two pairing-based cryptosystems
built on the above mentioned pairing-friendly curves, aiming to explain that
BW13-310 is an interesting candidate.

7.1 Unbalanced Chen-Kudla protocol

In [12], Chen and Kudla designed a two-party identity based authenticated key
agreement protocol from pairings. In this protocol, each entity is required to
perform one exponentiation in G1 and one pairing computation. In real-world
protocols, it is often the case that one entity (Client) is equipped with a resource-
constrained device, while the other (Server) is more powerful. To reduce the
workload of the client, it is reasonable to shift the time-consuming pairing
computation to the server. To this aim, Scott [47] proposed an unbalanced
Chen-Kudla protocol (UCK). In this scenario, a system wide public parame-
ter Q ∈ G2 is introduced. A trusted authority (TA) posseses a master secret
key s ∈ Zr. The client and server have secret keys SA and SB issued by TA as
SA = [s]H1(IDA) ∈ G1 and SB = [s]Q ∈ G2 respectively, where IDA is the
client’s identity. Then the protocol runs as follows:

1. The client chooses r1, r2 ← Zr at random, calculates R1 = [r1]SA and R2 =
[r2]H1(IDA) and sends the two points R1 and R2 to the server;

2. The server chooses r3 ← Zr at random, calculates R3 = [r3]R1 and g =
e(R3, Q), and send the pairing value g to the client;

3. The client obtains the session key KA by computing

KA =
(
e(SA, Q)r1·r2 · g

)1/r1
.

The server obtains the session key KB by computing

KB = e(R2 + [r3]H1(IDA), SB).

4. If the both entities follow this protocol, they would share the same session
key

K = KA = KB = e(SA, Q)(r2+r3).

Since the client can precompute the pointH1(IDA) and the pairing value e(SA, Q),
the entity only costs two exponentiations in G1 and two exponentiations in GT .
Meanwhile, the server costs one hashing to G1, two exponentiations in G1 and
two pairing computations.

Considering the protocol is designed to minimize the workload of the client,
we can see that BW13-310 is well-suited as it provides fast implementation for
group exponentiations in both G1 and GT . Based on implementation results
presented in Figs.1-4, Table 4 shows our cost estimates for each party of the
UCK protocol built on different curves. One can see that the UCK protocol
built on BW13-310 is about 125.6% and 40.6% faster than that on BN446 and
BLS12-446 for the client, respectively.

Protocol\Curve BLS12-446 BN446 BW13-310 BLS24-315
preco 409 452 448 1093
client 374 600 266 824
server 855 1016 928 2160

Table 4: Timings of the UCK protocol reported in 104 clock cycles (extrapolation
from Figs.1-4.)

7.2 BLS signature scheme

The Boneh-Lynn-Shacham (BLS) signature is a famous short signature scheme
from pairings [8]. In the scheme, the point g2 ∈ G2 is a public parameter and the
signer posseses a pair of key (s, pk = [s]g2), where s is private and pk is public.
Then, the scheme works as follows:

1. To sign a message msg, the signer computes M = H1(msg), sig = [s]M ,
and sends the pair (msg, sig) to the verifier.

2. To verify the signed message, the verifier computes M = H1(msg) and assert
that the signature is valid if and only if sig ∈ G1 and e(sig, pk) = e(M, g2).

It should be noted that an attacker can use the point sig′ = sig + R to forge
a valid signature as e(sig′, pk) = e(sig, pk), where R is an random point in the
subgroup r · E(Fp). Thus, it can not be ignored for the verifier to check sig ∈
G1. In this setting, the signer costs one hashing to G1 and one exponentiation
in G1, while the verifier costs one hashing to G1, one subgroup membership
testing for G1 and one product of 2-pairings. From Figs. 1-4, we estimate that

the BLS signature scheme built on BW13-310 is about both 1.5× faster than
that on BN446 and BLS12-446 for the signer, respectively. Considering that
the performance penalty for the verifier is not expensive, this tradoff becomes
favorable in the case that the scheme is designed to reduce the workload of the
signer.

Protocol\Curve BLS12-446 BN446 BW13-310 BLS24-315
sign 125 125 49 104

verify 553 616.8 610 1115

Table 5: Timings of the BLS signature scheme reported in 104 clock cycles (ex-
trapolation from Figs.1-4.)

8 Conclusion and Future Work

In this work, we presented a detailed study of a 128-bit secure pairing-friendly
curve: BW13-310. We first proposed a new formula for computing the optimal
pairing on this curve. Specially, we showed that it requires two evaluations at the
same Miller function of bit length approximately log r/(2φ(k)). On this basis,
we proposed a shared Miller loop such that the two function evaluations can
share intermediate values as much as possible. In addition, we also described
several optimizations for group exponentiations in G2 and GT on this curve.
In the case of G2, we showed that GLV and GLS method can be combined to
build a 2φ(k) dimensional decomposition. In the case of GT , our optimization
eliminates expensive field inversion.

Finally, we presented high speed implementations of pairing computation,
hashing (to G1 and G2), group exponentiations and membership testings on
a 64-bit processor over BW13-310. The technique of lazy reduction was fully
utilized to minimize the number of modular reductions. Our results showed that
compared to BN446 and BLS12-446, BW13-310 wins out in the performance of
hashing to G1, group exponentiations in G1 and GT , and membership testing for
GT . Furthermore, it was very surprising to find that the gap in the performance
of single pairing computations between BW13-310 and BN446 (resp. BLS12-446)
is only up to 4.9% (resp. 26%). In particular, compared to BN446, BW13-310
even has certain advantages for the computation of pairings products. Our results
also reported that the target curve would pay a penalty for hashing to G2 and
the group exponentiation in G2.

Very recently, Longa [39] further optimized the technique of lazy reduction
such that the penalty of “double-precision” operations can be avoided. We note
that the new algorithm gets a greater performance boost on prime fields with
smaller sizes, potentially helping BW13-310 become more attractive. In addi-
tion, a faster SVW map (SwiftEC) was proposed in [11](ASIACRYPT 2022).

The performance comparison across different pairing-friendly curves using these
optimized algorithms are left as future work.

Acknowledgment

We would like to thank the anonymous referees for their valuable comments and
suggestion. This work is supported by Guangdong Major Project of Basic and
Applied Basic Research(No. 2019B030302008) and the National Natural Science
Foundation of China(No. 61972428 and 61972429).

References

1. Aranha, D.F., Gouvêa, C.P.L.: Relic is an efficient library for cryptography.
https://github.com/relic-toolkit/relic

2. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof
systems. Designs, Codes and Cryptography (Dec 2022)

3. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodríguez-
Henríquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing-Based Cryptography – Pairing 2012. pp. 177–195.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

4. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.) Ad-
vances in Cryptology – EUROCRYPT 2011. pp. 48–68. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

5. Azarderakhsh, R., Fishbein, D., Grewal, G., Hu, S., Jao, D., Longa, P., Verma,
R.: Fast software implementations of bilinear pairings. IEEE Transactions on De-
pendable and Secure Computing 14(6), 605–619 (2017)

6. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal
of Cryptology 32(4), 1298–1336 (2019)

7. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Iwata,
T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015. pp. 31–55.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of cryptology 17(4), 297–319 (2004)

9. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997), computational algebra
and number theory (London, 1993)

10. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security. pp.
132–145. Association for Computing Machinery, New York, NY, USA (2004)

11. Chavez-Saab, J., Rodríguez-Henríquez, F., Tibouchi, M.: Swiftec: Shallue-van de
woestijne indifferentiable function to elliptic curves: Faster indifferentiable hash-
ing to elliptic curves. In: Advances in Cryptology – ASIACRYPT 2022. p. 63–92.
Springer-Verlag, Berlin, Heidelberg (2023)

12. Chen, L., Kudla, C.: Identity based authenticated key agreement protocols from
pairings. In: 16th IEEE Computer Security Foundations Workshop, 2003. Proceed-
ings. pp. 219–233. IEEE (2003)

13. Clarisse, R., Duquesne, S., Sanders, O.: Curves with fast computations in the first
pairing group. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) Cryptology and
Network Security. pp. 280–298. Springer International Publishing, Cham (2020)

14. Costello, C., Longa, P.: FourQ: Four-dimensional decompositions on a Q-curve over
the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology –
ASIACRYPT 2015. pp. 214–235. Springer Berlin Heidelberg, Berlin, Heidelberg
(2015)

15. Dai, Y., Lin, K., Zhao, C.A., Zhou, Z.: Fast subgroup membership testings for
G1, G2 and GT on pairing-friendly curves. Designs, Codes and Cryptography
(may 2023). https://doi.org/10.1007/s10623-023-01223-7, https://doi.org/10.
1007/s10623-023-01223-7

16. Dai, Y., Zhang, F., Zhao, C.A.: Fast hashing to G2 in direct anonymous attestation.
Cryptology ePrint Archive, Paper 2022/996 (2022), https://eprint.iacr.org/
2022/996

17. Dai, Y., Zhou, Z., Zhang, F., Zhao, C.A.: Software implementation of optimal
pairings on elliptic curves with odd prime embedding degrees. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences 105(5),
858–870 (2022)

18. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves
suitable for one layer proof composition. In: Krenn, S., Shulman, H., Vaudenay, S.
(eds.) Cryptology and Network Security (2020)

19. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves.
In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EURO-
CRYPT 2022. pp. 367–396. Springer International Publishing, Cham (2022)

20. El Housni, Y., Guillevic, A., Piellard, T.: Co-factor clearing and subgroup member-
ship testing on pairing-friendly curves. In: Batina, L., Daemen, J. (eds.) Progress
in Cryptology – AFRICACRYPT 2022. pp. 518–536. Springer Nature Switzerland,
Cham (2022)

21. El Mrabet, N., Joye, M.: Guide to pairing-based cryptography. Chapman and
Hall/CRC (2016)

22. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves.
In: Benaloh, J. (ed.) Topics in Cryptology – CT-RSA 2014. pp. 1–27. Springer
International Publishing, Cham (2014)

23. Fouotsa, E., Guimagang, L.A., Ayissi, R.: x-superoptimal pairings on el-
liptic curves with odd prime embedding degrees: BW13-P310 and BW19-
P286. Applicable Algebra in Engineering, Communication and Computing
(2023). https://doi.org/10.1007/s00200-023-00596-5, https://doi.org/10.1007/
s00200-023-00596-5

24. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (2010)

25. Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge University
Press (2018), https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.
pdf, version 2

26. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 518–535. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

27. Galbraith, S.D., Scott, M.: Exponentiation in pairing-friendly groups using homo-
morphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing-Based Cryptography
– Pairing 2008. pp. 211–224. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

https://doi.org/10.1007/s10623-023-01223-7
https://doi.org/10.1007/s10623-023-01223-7
https://doi.org/10.1007/s10623-023-01223-7
https://eprint.iacr.org/2022/996
https://eprint.iacr.org/2022/996
https://doi.org/10.1007/s00200-023-00596-5
https://doi.org/10.1007/s00200-023-00596-5
https://doi.org/10.1007/s00200-023-00596-5
https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf

28. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) Advances in Cryptology
— CRYPTO 2001. pp. 190–200. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001)

29. Granger, R., Smart, N.P.: On computing products of pairings. Cryptology ePrint
Archive, Paper 2006/172 (2006), https://eprint.iacr.org/2006/172, https://
eprint.iacr.org/2006/172

30. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptography –
PKC 2010. pp. 209–223. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

31. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at
the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) Public-Key Cryptography – PKC 2020. pp. 535–564. Springer International
Publishing, Cham (2020)

32. Guillevic, A., Masson, S., Thomé, E.: Cocks-pinch curves of embedding degrees five
to eight and optimal ate pairing computation. Designs, Codes and Cryptography
88(6), 1047–1081 (2020)

33. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

34. Karabina, K.: Squaring in cyclotomic subgroups. Mathematics of Computation
82(281), 555–579 (2012)

35. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 543–571. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

36. Kim, T., Jeong, J.: Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree. In: Fehr, S. (ed.) Public-Key Cryp-
tography – PKC 2017. pp. 388–408. Springer Berlin Heidelberg, Berlin, Heidelberg
(2017)

37. Koshelev, D.: Subgroup membership testing on elliptic curves via the tate pairing.
Journal of Cryptographic Engineering (Sep 2022)

38. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261(4) (1982)

39. Longa, P.: Efficient algorithms for large prime characteristic fields and
their application to bilinear pairings. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2023(3), 445–472 (2023).
https://doi.org/10.46586/tches.v2023.i3.445-472, https://tches.iacr.org/
index.php/TCHES/article/view/10970

40. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. In: Wang, X., Sako, K. (eds.) Advances in Cryptology – ASIACRYPT 2012.
pp. 718–739. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

41. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology
17(4), 235–261 (2004)

42. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation 48(177), 243–264 (1987)

43. Pollard, J.M.: A monte carlo method for factorization. Bit Numerical Mathematics
15(3), 331–334 (1975)

44. Schirokauer, O.: Discrete logarithms and local units. Philosophical Transactions:
Physical Sciences and Engineering 345(1676), 409–423 (1993)

45. Scott, M.: Faster pairings using an elliptic curve with an efficient endomorphism.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) Progress in Cryptology

https://eprint.iacr.org/2006/172
https://eprint.iacr.org/2006/172
https://eprint.iacr.org/2006/172
https://doi.org/10.46586/tches.v2023.i3.445-472
https://tches.iacr.org/index.php/TCHES/article/view/10970
https://tches.iacr.org/index.php/TCHES/article/view/10970

- INDOCRYPT 2005. pp. 258–269. Springer Berlin Heidelberg, Berlin, Heidelberg
(2005)

46. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen, L.
(ed.) Cryptography and Coding. pp. 296–308. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

47. Scott, M.: Unbalancing pairing-based key exchange protocols. IACR Cryptol.
ePrint Arch. p. 688 (2013)

48. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number
Theory Symposium– ANTS 2006. pp. 510–524. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

49. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory
56(1), 455–461 (2009)

50. Yang, K., Chen, L., Zhang, Z., Newton, C.J., Yang, B., Xi, L.: Direct anonymous
attestation with optimal TPM signing efficiency. IEEE Transactions on Informa-
tion Forensics and Security 16, 2260–2275 (2021)

51. Zhang, X., Lin, D.: Analysis of optimum pairing products at high security levels.
In: Galbraith, S., Nandi, M. (eds.) Progress in Cryptology - INDOCRYPT 2012.
pp. 412–430. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

52. Zhao, C.A., Xie, D., Zhang, F., Zhang, J., Chen, B.L.: Computing bilinear pairings
on elliptic curves with automorphisms. Designs, Codes and Cryptography 58(1),
35–44 (Jan 2011)

	Don't Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

