
Evolving Secret Sharing Made Short

Danilo Francati1 and Daniele Venturi2

1Aarhus University
2Sapienza University of Rome

October 7, 2023

Abstract

Evolving secret sharing (Komargodski, Naor, and Yogev, TCC’16) generalizes the notion
of secret sharing to the setting of evolving access structures, in which the share holders are
added to the system in an online manner, and where the dealer does not know neither the
access structure nor the maximum number of parties in advance. Here, the main difficulty is
to distribute shares to the new players without updating the shares of old players; moreover,
one would like to minimize the share size as a function of the number of players.

In this paper, we initiate a systematic study of evolving secret sharing in the compu-
tational setting, where the maximum number of parties is polynomial in the security pa-
rameter, but the dealer still does not know this value, neither it knows the access structure
in advance. Moreover, the privacy guarantee only holds against computationally bounded
adversaries corrupting an unauthorized subset of the players.

Our main result is that for many interesting, and practically relevant, evolving access
structures (including graphs access structures, DNF and CNF formulas access structures,
monotone circuits access structures, and threshold access structures), under standard hard-
ness assumptions, there exist efficient secret sharing schemes with computational privacy
and in which the shares are succinct (i.e., much smaller compared to the size of a natural
computational representation of the evolving access structure).

Keywords: secret sharing, evolving access structures, computational security.

1

https://orcid.org/0000-0002-4639-0636
https://orcid.org/0000-0003-2379-8564

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Technical Overview . 4
1.3 Additional Related Work . 10

2 Preliminaries 10
2.1 Notation . 10
2.2 Pseudorandom Generators . 11
2.3 Puncturable Pseudorandom Functions . 11
2.4 Secret-key Encryption . 12
2.5 Somewhere Statistically Binding Hash Functions 12
2.6 Indistinguishability Obfuscation . 13
2.7 RSA Assumption . 14
2.8 Projective Pseudorandom Generators . 14

2.8.1 Unbounded Polynomial Stretch . 15
2.8.2 Instantiations . 16
2.8.3 Projective PRGs with Unbounded Polynomial Stretch 16

3 Computational Evolving Secret Sharing 21
3.1 Defining Computational Privacy . 22
3.2 Rigid Access Structures . 23

4 Construction for General Access Structures 23
4.1 Exponential-time Construction . 23
4.2 Polynomial-time Instantiation . 24

5 Constructions for Specific Access Structures 25
5.1 Dynamic Threshold Access Structure . 25
5.2 Graphs . 28
5.3 Monotone Circuits . 30
5.4 CNF Formulas . 36
5.5 DNF Formulas . 38

6 Domain Extension 40
6.1 Evolving Information Dispersal . 40
6.2 Krawczyk’s Compiler . 43

7 Conclusions 44

1 Introduction

A (threshold) secret sharing scheme, as introduced independently by Blakley [10] and Shamir [37],
allows a dealer to share a secret message µ between n parties, obtaining shares σ1, . . . , σn, in
such a way that the following two properties are satisfied for a fixed threshold parameter t ≤ n:

• Correctness: Any subset of at least t parties can reconstruct the message (by pulling
their shares together).

• (Perfect) Privacy: Any subset of at most t − 1 parties obtains no information (statis-
tically) on the message.

Ito, Saito, and Nishizeki [21] extended the concept of secret sharing to general access structures
A, in which certain subsets of the n parties are allowed to reconstruct the message (i.e., the
so-called authorized subsets I ∈ A), and all other subsets of the n parties (i.e., the so-called
unauthorized subsets U ̸∈ A) obtain no information on the message. It is natural to require
that access structures should be monotone, meaning that if a subset I is authorized, then any
subset of the parties that includes I is also authorized.

An important efficiency measure in the context of secret sharing schemes is the share size,
defined as the bit-length of the largest share given to the n parties. Indeed, a large body of
work has focused on minimizing the share size for different access structures A. For instance,
Shamir’s scheme (based on polynomial interpolation) for threshold access structures achieves
share size max{ℓ, log n}, where ℓ is the length of the message, which is known to be optimal [34].
More generally, Csirmaz [12, 13] proved that there is an (explicit) access structure that requires
a total share size of Ω(n2/ log n). In contrast, the best scheme [2] for general access structures
achieves share size 1.5n+o(n), which is pretty far from the lower bound. We refer to the excellent
survey by Beimel [6] for an overview of the main results in classical secret sharing.

Evolving secret sharing. In a beautiful work, Komargodski, Naor, and Yogev [23], gener-
alized secret sharing to the setting of evolving access structures, in which the number of parties
n is not known in advance and can potentially go to infinity. Intuitively, an evolving access
structures consists of a monotone sequence of subsets A = {An}n≥1, where An denotes the
access structure when there are n parties. Importantly, the dealer does not know n, neither it
knows the access structure An before the n-th party enters the system. The main result in [23]
is a secret sharing scheme for the evolving threshold access structure (i.e., the number of parties
n grows, but the threshold t = poly(λ) is fixed and known to the dealer), in which the share
size of party n, for messages of size ℓ = 1, is (t− 1) · log n+O(log log n). They also give a secret
sharing scheme for any evolving access structure, in which the share size of party n is 2n−1 (i.e.,
with exponential share size).

In a follow-up work, Komargodski and Paskin-Cherniavsky [25] give a secret sharing scheme
for the more general evolving dynamic threshold access structure, which is represented by a
sequence of thresholds {tn}n≥1 of increasing1 size, so that the authorized subsets when there
are n parties are all the subsets of at least tn parties. The share size of this construction, when
the message length is ℓ = 1, is O(n4 · log n). Note that, in this case, each of the thresholds tn
can depend on n; this captures, e.g., the so-called evolving majority access structure, in which
qualified subsets are those which form a majority of the current number of parties at some point
in time. Xin and Yuan [40] show that the share size can be improved to O(n4) by relying on
techniques from algebraic geometry.

1The fact that the thresholds should be increasing is required to ensure monotonicity of the access structure.

1

More recently, at Eurocrypt’20, Beimel and Othman [9] gave constructions of secret sharing
schemes for the dynamic threshold ramp access structure, which is represented by two functions
τ, ρ : N→ N such that, when there are n parties in the system, the threshold for reconstruction
is ρ(n) (i.e., any subset of at least ρ(n) ≤ n parties can reconstruct the message) while the
threshold for privacy is τ(n) (i.e., every subset of at most τ(n) < ρ(n) parties has no information
about the message). The share size in their construction depends on the gap between the
reconstruction and privacy thresholds; in particular, when the message length is ℓ = 1, the share
size is polylog(n) when ρ(n) − τ(n) = n/polylog(n), and O(n · log n) when ρ(n) − τ(n) =

√
n;

furthermore, they also give a direct construction for the special case in which ρ(n) = t and
τ(n) = t/2 for any constant t = O(1), with share size O(log t · log n). This improves over a
previous construction by the same authors [8], which achieves share size O(1), always when the
message length is ℓ = 1, but when ρ(n) = b · n and τ(n) = a · n for any constants 0 < a < b < 1
(i.e., when the gap between the reconstruction and the privacy thresholds is a constant fraction
of the number of parties).

All of the above constructions achieve perfect privacy (i.e., unauthorized subsets have no
information about the message, in an information-theoretic sense), and can potentially accom-
modate an infinite number of users. Moreover, they are all tailored to variations of the evolving
threshold access structure, and have share size that is at least linear in the number of parties n
or in the threshold t (the only exception being ramp secret sharing schemes). Given this state
of affairs, the following question arises naturally:

Can we get secret sharing schemes with succinct shares (e.g., with size independent
on n) for richer evolving access structures, possibly under computational assump-
tions?

1.1 Our Contributions

We provide a positive answer to the above question by initiating a systematic study of secret
sharing schemes for evolving access structures in the computational setting. Our contributions
are summarized in Table 1, where we compare our results with the state of the art in terms of
access structure, share size, and computational assumptions.

In a nutshell, we provide constructions of computationally private secret sharing schemes
for a plethora of evolving access structures, under standard hardness assumptions. In all of
our constructions, the number of parties n is upper bounded by an arbitrary polynomial in the
security parameter, but the dealer does not know this polynomial, neither it knows the overall
access structure (it only knows the new authorized subsets when a new party joins the system).
For some access structures, the share size is succinct (i.e., much smaller compared to the size of
a natural computational representation of the evolving access structure). More in details, we
given constructions of secret sharing schemes:

• For any evolving access structure in which the n-th participant appears in at most dn =
poly(λ, n) authorized subsets. This construction requires one-way functions (OWFs), and
yields share size λ · (dn + 1).

• For the dynamic threshold access structure. This construction requires OWFs, and yields
share size λ · (n+ 1)

• For graphs access structures, in which the parties are added to the nodes of an evolving
(undirected) graph, and the authorized subsets consist of all the pair of nodes for which
there is an edge in the graph. This construction requires either the RSA assumption,

2

Reference Access Structure Parameters Share Size Assumptions

[23]
Any – λ · 2n−1 –

Static Threshold t = poly(λ) (t− 1) · log n+ poly(λ, t) · o(log n) –

[25] Dynamic Threshold t1 ≤ · · · ≤ tn ≤ n λ ·O(n4 · log n) –

[8] Ramp Dynamic Threshold ρ(n)− τ(n) = c · n O(λ) –

[9]
Ramp Dynamic Threshold ρ(n)− τ(n) = n/polylog(n) λ · polylog(n) –
Ramp Dynamic Threshold ρ(n)− τ(n) =

√
n λ ·O(n · log n) –

Ramp Static Threshold ρ(n) = t; τ(n) = t/2 λ ·O(log t · log n) –

[40]
Static Threshold 0 < t ≤ n; ϵ > 0 λ ·O(t1+ϵ · log n) –

Dynamic Threshold t1 ≤ · · · ≤ tn ≤ n λ ·O(n4) –

§4.2 Any dn = poly(λ, n) λ · (dn + 1) OWFs

Static Threshold t = poly(λ) λ –§5.1
Dynamic Threshold t1 ≤ · · · ≤ tn ≤ n λ · (n+ 1) OWFs

§5.2 Graphs – poly(λ) RSA/iO + SSB

mg · poly(λ) RSA/iO + SSB
(m∨

g)
2 +m∧

g ·O(λ) DDH/BDDH§5.3 Monotone Circuits mg = m∧
g +m∨

g ; g ≥ 1

m∨
g +m∧

g ·O(λ) LWE

poly(λ) RSA/iO + SSB
m2 · poly(λ) DDH/BDDH§5.4 CNF Formulas m ≥ 1
m · poly(λ) LWE

§5.5 DNF Formulas tn ≥ 1 λ · (tn + 1) OWFs

Table 1: Comparing our results with state-of-the-art constructions for evolving secret sharing,
in terms of access structure, share size, and computational assumptions. See Section 1.2 for the
definition of the various parameters. The share size refers to the size of the share received by
the n-th party, where n is the current number of parties in the system. In information-theoretic
constructions, n is unbounded; in the computational setting n = poly(λ) (but the dealer does
not know an upper bound on n). For simplicity, we only consider message length ℓ(λ) = λ;
when a scheme is for ℓ(λ) = 1, we consider the share size obtained by repeating the sharing
procedure λ times in parallel.

or indistinguishability obfuscation (iO) and somewhere statistically binding (SSB) hash
functions, and yields share size poly(λ).

• For monotone circuits access structures, in which the parties correspond to the inputs
wires of an evolving boolean circuit made of AND and OR gates with unbounded fan-in.
This construction requires either of the following assumptions: (i) RSA, (ii) iO plus SSB
hash functions, (iii) DDH/BDDH, (iv) LWE, and yields share size that is roughly linear2

in the number of gates that are added to the circuit.

• For CNF and DNF formulas access structures, which are a special case of monotone
circuits. In fact, in these cases, we give direct constructions that are slightly better in
terms of assumptions and/or share size.

All of the above constructions allow to share secret messages of size ℓ(λ) = λ. In the final
part of the paper, we deal with the problem of domain extension for evolving secret sharing
schemes and show that, under mild assumptions, all of our schemes can be generically upgraded
to support messages of length ℓ(λ) = poly(λ), by paying only an additive (in fact, linear in ℓ)
overhead in terms of share size. This transformation only requires OWFs.

2This is a very rough approximation. See Table 1 and Section 1.2 for more precise parameters.

3

1.2 Technical Overview

We now give a detailed overview of the main techniques we use in order to obtain our re-
sults, starting with the notion of computational privacy for evolving secret sharing, and then
explaining the ideas behind each of our constructions.

Computational evolving secret sharing. The definition of computationally private secret
sharing for evolving access structures is the natural adaptation of the corresponding information-
theoretic definition. In particular, in the computational setting, the number of parties is n =
poly(λ). An evolving access structure is a monotone sequence {An}n≥1, where An denotes the
access structure when there are n parties in the system. We note that the dealer does not know
the actual polynomial that upper bounds n, neither it knows the access structure An before the
n-th party enters the system. This limitation is rather important, as if the dealer knows that
n < ñ for some polynomial ñ, along with the access structure Añ, it can simply use a standard
secret sharing scheme for Añ and distribute the shares to the parties as they arrive.

Computational privacy simply requires that for every (polynomial) n ≥ 1, for all unautho-
rized subsets U ̸∈ An, and for every pair of messages (µ0, µ1), no computationally bounded ad-
versary given the shares (σi)i∈U can distinguish, with better than negligible probability, whether
the shares are generated using message µ0 or message µ1.

Rigidity. In principle, an evolving access structure A = {An}n≥1 only needs to be monotone,
in the sense that, for every I such that I ∈ An, every subset I ′ ⊂ I also satisfies I ′ ∈ I.
Now, say that n = 10 and that parties 1 and 3 are not authorized (i.e., U = {1, 3} ̸∈ A10);
when party 11 arrives, the set U might become authorized without violating monotonicity. An
access structure is called rigid if the above never happens, namely the subset U never becomes
authorized.

Interestingly, the definition of evolving access structures adopted in all previous works auto-
matically implies rigidity; indeed, Komargodski et al. [23] (and all the follow-up papers) define
An as the intersection of the entire access structure A (for n→∞) with [n]. This way, it does
not matter when a subset becomes authorized: if the subset {1, 3} becomes authorized when
n = 100, we still have that {1, 3} ∈ A3 = A∩ [3] by definition (which excludes the above exam-
ple). Note that some access structures, as the evolving dynamic threshold access structure, are
also automatically rigid.

It turns out that rigidity plays a rather important role when defining how more complex
access structures (e.g., monotone circuits) can evolve. Indeed, in Section 3.2, we show that
in any secret sharing for a non-rigid evolving access structure A, the dealer must update the
shares of old players at some point. This observation becomes immediately apparent when
we look again at the above example: Since U = {1, 3} is unauthorized when n = 10, by the
privacy property, the shares σ1 and σ3 reveal no information about the message; hence, unless
we update these shares, σ1 and σ3 are not enough to reconstruct the message when n = 11,
which contradicts the correctness property.

General access structures. In Section 4, we give a simple construction of a secret sharing
scheme for general rigid evolving access structures Â. However, the scheme is provably secure
(and efficient) only when we make the restriction that each party n is added to dn = poly(λ, n)
authorized subsets. The share size of party n is going to be λ · (dn+1) = poly(λ, n). We remark
that some kind of limitation on the access structure Â is inherent, as Mazor [30] proves that
there is a (rigid) evolving access structure Â such that every secret sharing scheme for Â has
shares of size 2n−o(n) for infinitely many n’s.

4

This construction roughly works as follows. Let G be a pseudorandom generator (PRG)
with unbounded polynomial stretch (this exists assuming OWFs); we think of the PRG output
as a sequence of λ-bit blocks, which we denote by G(κ)[j]. The share σn given to the n-th
party consists of a λ-bit seed κn for the PRG, as well as a ciphertext γI for every new subset I
containing n that is added to the access structure Ân. This ciphertext is obtained by masking
the message µ with a pad ρI =

⊕
i∈I G(κi)[j(I)], where κi is the seed of party i, and j(I) is

the index corresponding to the subset I in some lexicographic order. Note that the number of
ciphertexts given to party n is exactly dn; furthermore, since both n and dn are polynomial, the
number of PRG blocks that are needed is still polynomial, and thus the construction is efficient.

Correctness follows by observing that the parties corresponding to an authorized subset
I ∈ Ân can recover the pad ρI and reveal the message. Privacy follows by an hybrid argument, in
which we replace the ciphertext γI for every I that contains an index corresponding to an honest
party with a random string. Since the attacker does not know the seed of honest players, these
hybrids are all computationally indistinguishable by security of the PRG. Hence, one observes
that in the final hybrid, the distribution of the shares corresponding to an unauthorized subset
of the players is independent of the message. Interestingly, our construction shares similarities
with an old scheme proposed by Cachin in the context of online secret sharing [11, 14]. The
main difference is that Cachin’s scheme directly uses OWFs (or hard-core bits) instead of PRGs,
and additionally requires a public bulletin board that must be updated by the dealer.3 However,
in retrospect, the only reason why the bulletin board is needed is because Cachin’s definition
of evolving access structure does not require rigidity. This is consistent with our impossibility
result showing that secret sharing schemes for non-rigid evolving access structures require the
dealer to update old shares.

Dynamic threshold access structures. Next, we move to concrete access structures that do
not obey the restrictions of the above generic construction, starting with the evolving threshold
access structure. The static case, where there is a single threshold t = poly(λ) known to the
dealer, is rather simple to deal with: although the dealer does not know the maximum number
of users, it knows that n = poly(λ) and thus can define the share of the n-th party as the
evaluation σn = f(n) of a random polynomial f of degree t− 1 with coefficients over a field of
exponential size 2λ, subject to the constraint that f(0) = µ; this yields share size λ, ensures both
correctness and privacy as per Shamir’s secret sharing, and moreover allows to accommodate
an arbitrary polynomial number of users.4

Hence, we move to the more challenging setting of the evolving dynamic threshold access
structure. As explained above, this access structure is specified by a sequence of thresholds
{tn}n≥1 such that tn ≥ tn−1, and the authorized subsets when there are n parties are all the
subsets of size at least 0 < tn ≤ n. Here, the threshold tn may depend on n, and the dealer
does not know tn before party n arrives. Our construction, which can be found in Section 5.1,
works as follows. Let G be a PRG with unbounded polynomial stretch. When party n arrives,
the dealer samples a random seed κn, along with a random polynomial fn of degree tn− 1 over
a field of exponential size 2λ, subject to the constraint that fn(0) = µ. The share σn of party n
consists of the seed κn, of the evaluation fn(n), along with n−1 ciphertexts (γi)i<n, where each

3Online secret sharing is the ancestor of evolving secret sharing. Csirmaz and Tardos [14] show how to remove
the public bulletin board, obtaining information-theoretic privacy for infinitely many parties; however, they
require the dealer knows an upper bound on the maximum number of authorized subsets a party can join.

4Note that, in case t = O(1), the evolving threshold access structure actually satisfies the condition required
by our generic construction, as the number of new authorized subsets in which party n participates is exactly
dn =

(
n
t

)
= poly(λ). However, the above direct construction based on Shamir secret sharing works even for

t = poly(λ), and does not require computational assumptions.

5

ciphertext γi is an encryption of fn(i) under the pad ρi = G(κi)[n − i] (i.e., the next unused
block output by the PRG G(κi) associated to party i).

Correctness follows by observing that the parties corresponding to an authorized subset
can recover at least tn pads used to encrypt the evaluations of the polynomial fn, and thus
reconstruct the message via polynomial interpolation. Privacy follows by an hybrid argument,
in which we replace all of the ciphertexts γj corresponding to honest parties with a uniformly
random ciphertext. Since the attacker does not know the seed of honest players, these hybrids
are all computationally indistinguishable by security of the PRG. Hence, one observes that for
every k ∈ [n], the adversary now knows at most tk − 1 evaluations of the polynomial fk, and
thus the message is information-theoretically hidden.

An interesting feature of our construction is that it works unmodified even assuming the
sequence of thresholds {tn}n≥1 is not increasing. Namely, it is allowed that tn < tn−1 for some
number of parties n, so long as the newly added authorized subsets (i.e., those that are in Ân,
but not in Ân−1) always include party n. The latter ensures monotonicity (and rigidity is also
preserved). We find this to be a natural extension of the evolving dynamic threshold access
structure.

Graphs access structures. Consider now the case of graphs access structures, in which the
parties correspond to nodes v1, . . . , vn in an undirected graph G = (V, E), and parties (i, j)
are authorized if and only if (vi, vj) ∈ E (i.e., (vi, vj) is an edge in the graph). Applebaum et
al. [1] recently gave a succinct secret sharing scheme for this access structure, based on a new
primitive called projective PRG. Intuitively, a projective PRG, as any standard PRG, allows to
stretch a short seed msk (a.k.a. the master secret key) into a pseudorandom string of bounded
length m ∈ N. Additionally, one can use the master secret key msk to generate projective keys
αT associated to sets T ⊂ [m], in such a way that it is possible to use αT , along with the
master public key mpk associated to msk, to recover the PRG output corresponding to the seed
msk in the positions indexed by T . On the other hand, all the remaining positions still look
pseudorandom (this property is known as robustness). For this notion to be non-trivial, the
projective keys must be succinct (i.e., with length sub-linear in |T |).

Applebaum et al. [1] first give a construction for bipartite graphs access structures, in which
the nodes belong to two sets V = (V(0),V(1)), and the edges are only between nodes pertaining
to different sets. It is known that secret sharing schemes for bipartite graphs imply ones for
arbitrary graphs. To secret share a message µ ∈ {0, 1}, the dealer picks a random seed msk for
the projective PRG, and lets y1, . . . , ym be the full PRG output. Hence, the share of a left node
vi ∈ V(0) is set to µ⊕ yi, whereas the share of a right node vj ∈ V(1) is set to the projective key
for the set Tj = {i : (vi, vj) ∈ E} of vj ’s neighbors.

In Section 5.2, we extend the above construction to the evolving setting. Here, the underlying
graph evolves as nodes and edges are added to it, whenever new players enter the system.
However, new edges can be added only if those involve a new player, otherwise we would violate
rigidity. This yields the rigid evolving bipartite graphs access structure. Our construction is
based on the following observation: when the n-th party corresponds to a right node vn ∈ V(1),
the dealer can define its share as the projective key corresponding to the set of left neighbors
Tn of node vn. On the other hand, when the n-th party corresponds to a left node vn ∈ V(0),
we would need to encrypt the message with the next available output bit from the projective
PRG. This generates two technical problems:

• The output length of the projective PRG is fixed to some valuem, which needs to be known
in advance. We solve this problem by requiring that the projective PRG has unbounded
polynomial stretch, so that the setup does not depend on m. Note that increasing the
stretch of a projective PRG (in a black-box way) is a non-trivial task: For instance, the

6

standard trick to increase the stretch of a PRG by running it sequentially poly-many
times simply does not work, as it destroys succinctness. Fortunately, in Section 2.8.3,
we show that some of the constructions in Applebaum et al. [1] can be adapted to our
purpose. In particular, there exist projective PRGs with unbounded polynomial stretch
and, with master public keys and projective keys of size poly(λ), assuming either the RSA
assumption, or indistinguishability obfuscation (iO) and somewhere statistically binding
(SSB) hash functions.

• Setting the share σn to γn = µ ⊕ yn, where yn is the next output bit produced by the
projective PRG, requires to update the shares of vn’s right neighbors, as the projective
keys given to these nodes needs to allow them to recover yn. We solve this problem by
repeating the construction in parallel two times, namely the share of party n is obtained
by considering two independent executions of the construction by Applebaum et al. [1]:
one in which vn is a left node, and one in which vn is a right node. This way, assuming
rigidity, when a new party enters the system, we never need to update old shares.

The above yields a secret sharing scheme for the rigid evolving bipartite graphs access structure,
with shares of size poly(λ), under either the RSA assumption or assuming iO and SSB hash
functions. Additionally, the latter directly implies an evolving secret sharing scheme, with the
same share size, for (non-bipartite) graphs access structures.

Monotone circuits access structures. Finally, consider the case of monotone circuits ac-
cess structures, in which the parties correspond to an input x = (x1, . . . , xn) for a boolean
circuit C consisting of AND and OR gates with unbounded fan-in, and a subset of the parties I
is authorized if C(xI) = 1, where xI is the input associated to I (i.e., xi = 1 if i ∈ I and xi = 0
otherwise). For simplicity, let us assume5 that the circuit alternates layers made only by either
OR or AND gates, starting always with OR gates; hereafter, we refer to such circuits as AND-
OR circuits. Applebaum et al. [1] give a construction of a succinct secret sharing scheme for this
access structure, based on projective PRGs. In particular, the share size in their construction
grows with the number of gates in the circuit, which improves over the classical construction of
Yao [39], in which the share size grows linearly with the number of wires in the circuit.

At a high level, the construction by Applebaum et al. [1] allocates to the i-th gate a secret
key κi, and makes sure that a set of authorized parties corresponding to input x ∈ {0, 1}n
will be able to learn the keys of the gates that are satisfied by x, while all other keys remain
secret. The keys associated to the OR gates are pseudorandom blocks from the output of the
projective PRG, whereas the keys associated to the AND gates are the projective keys for the
set Ti = {j : i→ j in C} corresponding to the out-neighbors of the i-th gate. The share of the
parties include the master public key mpk of the projective PRG, as well as a ciphertext for
each AND gate, which essentially allows one to move from an OR gate to an AND gate during
reconstruction; the only exception are the input OR gates, for which the secret key is a random
label that is given in the clear to the associated players.

In Section 5.3, we extend the above construction to the evolving setting. Here, the underlying
circuit evolves as wires and gates are added to it, whenever new players enter the system. Some
care is needed when specifying how the circuit evolves: say that we have a circuit over n − 1
inputs; when the n-th player arrives, monotonicity may forbid to add the corresponding input
wire as input to an already existing AND gate (e.g., if the AND gate is an output gate). Still,
we could add such wires as part of other AND and OR gates, or add new gates to the circuit.

5This assumption is essentially without loss of generality, at least if one is willing to pay an additive factor of
n in the number of OR gates, which does not impact the final share size by too much. See Section 5.3 for more
on this point.

7

However, the latter cannot be done arbitrarily if we want to also consider rigidity, which, as
explained above, is a necessary condition in order to have an evolving secret sharing scheme
where old shares do not need to be updated. To allow more flexibility, we will consider a strict
generalization in which the parties arrive in generations instead of one by one. We denote
by ng ≥ 1 the number of parties in generation g ≥ 1, so that n =

∑
g ng. Hence, when the

first generation arrives, the access structure is specified by a circuit Ĉ1(x1, . . . , xn1) for some
AND-OR circuit Ĉ1; when the second generation arrives the access structure is specified by the
circuit

Ĉ1(x1, . . . , xn1) ∨ Ĉ2(x1, . . . , xn1+n2),

where Ĉ2 is any AND-OR circuit such that Ĉ2(x1, . . . , xn1 , 0, . . . , 0) = 0. The above preserves
monotonicity (as the output of the two circuits are input to an OR gate), and ensures rigidity
(as any assignment x1, . . . , xn1 that does not satisfy Ĉ1 won’t satisfy Ĉ2 unless some of the
parties in [n] \ [n1] is present).

6

Given the above characterization, our construction proceeds as follows. When the n-th
generation begins, the dealer knows the circuit Ĉg; say such a circuit is made of mg = m∨

g +m∧
g

gates, where m∨
g (resp., m∧

g) denotes the number of OR (resp., AND) gates. The dealer now
distributes the shares to the parties of the g-th generation as in the construction by Applebaum
et al. [1], with the only difference that the secret key associated to the input OR gates is defined
using a standard PRG with unbounded polynomial stretch, evaluated using a seed that is only
known by the corresponding player. This way, the wires associated to old players can be used as
inputs in the new circuits, without the need for updating old shares. Moreover, the dealer knows
the sub-circuit representing each generation, and thus can define the secret keys associated to
the OR gates using a fresh pair of keys (mpkg,mskg) for a projective PRG with bounded output
length m∨

g . By using the constructions of projective PRGs from Applebaum et al. [1], we can
instantiate our scheme from either (i) the RSA assumption, or (ii) iO and SSB hash functions,
or (iii) the DDH/BDDH assumption, or (iv) the LWE assumption, with different trade-offs in
terms of share size (see Table 1).

We remark that the rigid evolving monotone circuits access structure captures several in-
teresting evolving access structures as a special case, such as:

• The rigid evolving monotone conjunctive normal form (CNF) formulas access structure, in
which the authorized subsets I are those corresponding to inputs xI such that

∧
i∈[m]Ci,

where each clause Ci is a disjunction over a subset of the n players. Note that, while
n increases, the clauses change over time. However, by monotonicity, no clause can be
added to the access structure, and, by rigidity, no clause can be removed from the access
structure. Thus, the number of clauses m is a fixed parameter of the access structure.

• The rigid evolving monotone disjunctive normal form (DNF) formulas access structure, in
which the authorized subsets I are those corresponding to inputs xI such that

∨
i∈[m]Ci,

where each clause Ci is a conjunction over a subset of the n players. Note that, while n
increases, the clauses change over time. However, by monotonicity, we can neither remove
old clauses nor add new variables to old clauses, and, by rigidity, we can add new clauses,
so long as each new clause including old inputs must also include at least one new input.
Thus, the number of clauses m is not fixed, and grows over time together with the number
of players.

While the above construction directly implies an evolving secret sharing scheme for rigid evolving
CNF/DNF formulas access structures, in Section 5.4 and Section 5.5, we give direct construc-

6An equivalent way to preserve monotonicity and rigidity is to assume that Ĉ1(x1, . . . , xn1) =
Ĉ2(x1, . . . , xn1 , 0, . . . , 0).

8

tions which are slightly better in terms of share size and/or assumptions. More in details,for
the case of CNF formulas, we again rely on projective PRGs with bounded polynomial stretch
m, and obtain instantiations from assumptions (i)-(iv) listed above with different trade-offs in
terms of share size (see Table 1). For the case of DNF formulas, we only rely on OWFs and
get a scheme with shares size tn · (λ+ 1), where tn is the number of clauses in which the input
associated to player n appears.

Domain extension. As our final contribution, we study the question of domain extension
for evolving secret sharing schemes in the computational setting. Here, one starts with a secret
sharing scheme supporting messages of size λ, for a rigid evolving access structure Â, and the
goal is to obtain a secret sharing scheme for the same access structure, but supporting messages
of length ℓ≫ λ.

In the non-evolving setting, this question was first studied by Krawczyk [26] for the case of
threshold access structures. The main idea is to use a so-called information dispersal, which
allows to divide the message into n fragments, in such a way that the message can be recovered
from any t ≤ n fragments, while the size of each fragment is only ℓ/t (which is optimal). In other
words, an information dispersal for the t-threshold access structure offers the same functionality
of a secret sharing scheme for the same access structure, but without any privacy guarantee
(which is the reason why the fragments can be shorter than the message). A simple example
of information dispersal comes from Reed-Solomon codes: Parse the message µ into t blocks
µ = (µ0, . . . , µt−1), and interpret each block as an element of GF(q); if needed, the original
message can be padded so that the message length ℓ is a multiple of the threshold t. Hence, let
f(X) = µ0 +µ1 ·X + · · ·+µt−1 ·Xt−1 be the polynomial over GF(q), whose coefficients are the
fragments of the message. The fragment γi assigned to party i ∈ [n] is f(i). Now, any subset of
t parties can successfully reconstruct the polynomial, and thus recover the message. Moreover,
the size of each fragment is log q = ℓ/t, which is optimal.

Given a secret sharing scheme (with domain {0, 1}λ) and an information dispersal for the t-
threshold access structure, Krawczyk’s compiler works as follows: First sample a random secret
key κ ∈ {0, 1}λ for a symmetric encryption scheme; then, encrypt the message µ ∈ {0, 1}ℓ.
The share of party i ∈ [n] is defined to be σ′

i = (σi, γi), where σi is the i-th share of a secret
sharing of the key κ, and γi is the i-th fragment of an information dispersal of the ciphertext
γ. This results in shares of size ℓ/t + λ, which is asymptotically optimal (as ℓ → ∞). In a
follow-up work, Bèguin and Cresti [5] showed that the above construction still works assuming
the underlying secret sharing scheme and information dispersal support an arbitrary access
structure. Moreover, they observed that an information dispersal for access structure A can
be obtained by dispersing the message using an information dispersal for the t-threshold access
structure, where t is the minimum7 size of an authorized set in A.

In Section 6, we show that Krawczyk’s compiler works unmodified even in the evolving
setting. Naturally, this requires to assume an information dispersal for any rigid evolving
access structure A. To this end, we first show how to obtain an information dispersal for the
evolving t-threshold access structure. Basically, this is an erasure code where one can disperse
the message into a growing number of fragments (potentially infinite), with the guarantee that
the message can be recovered from any fraction of t fragments. When n = poly(λ), an easy
solution comes again using Reed-Solomon codes, i.e. we simply disperse the message using
the above defined polynomial f(X) over an exponentially large field GF(2λ). This allows to
accommodate an arbitrary polynomial number of users. A drawback of this solution is that it

7This solution is optimal in terms of minimizing the maximum share size. Bèguin and Cresti also propose
simple variants that minimize the total size of the shares, but for simplicity we do not consider these variants in
our paper.

9

requires an exponentially large field, and thus it is not very efficient in practice, as reconstruction
takes quadratic (in t) time. This can be improved using more sophisticated techniques from
coding theory. In particular, using so-called digital fountains [31] (e.g., Tornado codes [29],
LT codes [28], or Raptor codes [38]), one can support a potentially infinite number of players
with reconstruction time that is only linear (in t). To the best of our knowledge, this is the
first application of rateless codes in cryptography, and thus we believe our work establishes an
interesting connection with information theory.

Given an information dispersal for the evolving t-threshold access structure, one can obtain
an information dispersal for any rigid evolving access structure Â by setting the threshold to the
size of a minimum authorized subset in Â, as proposed by Bèguin and Cresti [5]. A small caveat
is that the latter requires the dealer to know the size of a minimal authorized subset in Â; while
this assumption is for free for some evolving access structures (e.g., dynamic threshold access
structures, graphs access structures, and CNF formulas access structures), it is not always true
in general (e.g., in the case of DNF formulas and monotone circuits access structures). We
prove that this limitation is somewhat inherent for general access structures: whenever a rigid
evolving access structure Â is such that the minimal size of an authorized subset goes from t1
(when there are n1 parties) to t2 < t1 (when there are n2 > n1 parties), no information dispersal
for Â can be optimal in terms of share size (i.e., have maximum share size ℓ/t, where t is the
minimum size of an authorized subset) without updating old shares.

1.3 Additional Related Work

Paskin-Cherniavsky [33] gives a secret sharing scheme for arbitrary evolving access structures
with slightly better (but still exponential) share size (compared to [23]. Dutta et al. [16] con-
sider a simple generalization of the evolving threshold access structure in which parties belong to
different compartments, and each compartment has associated a threshold specifying the min-
imum size of an authorized subset in that compartment. Both of these constructions require
that the dealer knows the access structure in advance.

Desmedt, Dutta, and Morozov [15] give an interpretation of evolving secret sharing from the
lens of so-called evolving perfect hash families. This is useful in order to obtain schemes where
the message space is a non-abelian group.

Komargodski and Paskin-Cherniavsky further show how to generically transform any secret
sharing scheme for the evolving t-threshold access structure into a scheme which is robust [35],
where the latter means that the message can be recovered even if some parties hand-in incorrect
shares.

2 Preliminaries

2.1 Notation

Capital bold-face letters (such as X) are used to denote probability distributions, small letters
(such as x) to denote concrete values, calligraphic letters (such as X) to denote sets, serif letters
(such as A) to denote algorithms. For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a
set, |X | represents the cardinality of X . When x is chosen uniformly from a set X , we write
x←$ X .

IfA is a deterministic algorithm (modeled as a Turing machine), we write y = A(x) to denote
a run of A on input x and output y; if A is randomized, we write y←$A(x) (or y = A(x; r))
to denote a run of A on input x and (uniform) randomness r, and output y. An algorithm A
is probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in a polynomial number of steps (in the input size).

10

We write negl(λ) to denote an arbitrary (unspecified) negligible function of the security
parameter λ ∈ N. Similarly, we write poly(λ) to denote an arbitrary (unspecified) polynomial
function of the security parameter. We assume all algorithms take the security parameter (in
unary) as input.

Let X = {X(λ)}λ∈N and Y = {Y(λ)}λ∈N be ensembles of random variables. We say that
X and Y are computationally indistinguishable (denoted X ≈c Y) if for all PPT adversaries A
it holds that:

|P[A(X(λ)) = 1]− P[A(Y(λ) = 1]| ≤ negl(λ).

The notion of computational indistinguishability immediately extends to (ensembles of) inter-
active games GA(λ) featuring a PPT adversary and a challenger, where at the end of the game
the adversary outputs a bit given its view.

2.2 Pseudorandom Generators

A PRG G : {0, 1}λ → {0, 1}∗ is a polynomial-time algorithm G taking as input a uniformly
random seed κ ∈ {0, 1}λ and outputting a pseudorandom string y ∈ {0, 1}∗. We recall the
formal definition below.

Definition 1 (Security of PRG). A PRG G : {0, 1}λ → {0, 1}∗ is secure if for every PPT
adversary A we have:

|P[A(G(κ)) = 1]− P[A(y) = 1]| ≤ negl(λ),

where κ←$ {0, 1}λ and y←$ {0, 1}∗.

2.3 Puncturable Pseudorandom Functions

A puncturable pseudorandom function (pPRF) with input space X and output space Y consists
of three polynomial-time algorithms pPRF = (pPRF.Setup, pPRF.Eval, pPRF.Puncture) defined
as follows:

• The setup algorithm pPRF.Setup(1λ) takes as input the security parameter and outputs
a key κ.

• The deterministic evaluation algorithm pPRF.Eval(κ, x) takes as input a key κ, and a value
x ∈ X , and outputs y ∈ Y.

• The deterministic puncturing algorithm pPRF.Puncture(κ, x) takes as input a key κ, and
a value x ∈ X , and outputs a punctured key κx.

We now recall the definition of correctness and security of pPRFs.

Definition 2 (Correctness of pPRF). A puncturable pseudorandom function pPRF = (pPRF.
Setup, pPRF.pPRF.Eval, pPRF.Puncture) with input space X and output space Y is correct if for
all λ ∈ N, for all κ ∈ pPRF.Setup(1λ), and for all x, x′ ∈ X such that x ̸= x′, we have

P
[
pPRF.Eval(pPRF.Puncture(κ, x), x′) = pPRF.Eval(κ, x′)

]
= 1.

Definition 3 (Security of pPRF). A puncturable pseudorandom function pPRF = (pPRF.Setup,
pPRF.Eval, pPRF.Puncture) with input space X and output space Y is secure if for every PPT
A, and for every x ∈ X , we have

|P[A(κx, pPRF.Eval(κ, x)) = 1]− P[A(κx, y) = 1]| ≤ negl(λ),

where κ←$ pPRF.Setup(1λ), κx = pPRF.Puncture(κ, x), and y←$ Y.

11

2.4 Secret-key Encryption

A secret-key encryption (SKE) scheme SKE = (SKE.Enc,SKE.Dec) over message spaceM and
ciphertext space C consists of two polynomial-time algorithms specified as follows:

• The deterministic encryption algorithm SKE.Enc(κ, µ) takes as input a secret key κ ∈
{0, 1}λ and a message µ ∈M, and outputs a ciphertext γ ∈ C.

• The deterministic decryption algorithm SKE.Dec(κ, γ) takes as input a secret key κ ∈
{0, 1}λ and a ciphertext γ ∈ C, and outputs a message µ ∈M.

The definition below says that a SKE scheme is correct if decryption inverts the encryption
process (when using the same key).

Definition 4 (Correctness of SKE). We say that a secret-key encryption scheme SKE =
(SKE.Enc, SKE.Dec) over message space M and ciphertext space C is correct if for all λ ∈ N,
for all keys κ ∈ {0, 1}λ, and for all messages µ ∈M, we have:

P[SKE.Dec(κ,SKE.Enc(κ, µ)) = µ] = 1.

The definition below captures security of SKE schemes in settings in which the adversary
only obtains the encryption of a single message. Given a PRG G : {0, 1}λ → {0, 1}ℓ, we can
obtain such an SKE scheme over M = C = {0, 1}ℓ by letting SKE.Enc(κ, µ) = G(κ) ⊕ µ and
SKE.Dec(κ, γ) = G(κ)⊕ γ.

Definition 5 (One-time security of SKE). We say that a secret-key encryption scheme SKE =
(SKE.Enc, SKE.Dec) over message spaceM and ciphertext space C is one-time secure if {Gone-time

SKE,A (

λ, 0)}λ∈N ≈c {Gone-time
SKE,A (λ, 1)}λ∈N, where the game Gone-time

SKE,A (λ, b) is specified as follows:

• The adversary picks two messages µ0, µ1 ∈M and sends (µ0, µ1) to the challenger.

• The challenger picks κ←$ ∈ {0, 1}λ, runs γ = SKE.Enc(κ, µb), and sends γ to the adver-
sary.

2.5 Somewhere Statistically Binding Hash Functions

A somewhere statistically binding (SSB) hash function [20, 32] with block length ℓblock, out-
put length ℓout, and opening length ℓopen, consists of four polynomial-time algorithms SSB =
(SSB.Setup,SSB.Hash,SSB.Open,SSB.Verify) specified as follows:

• The randomized setup algorithm SSB.Setup(1λ, 1ℓblock ,m, i) takes as input the security
parameter 1λ, a block size 1ℓblock , a message length m ≤ 2λ, and an index i ∈ [m], and
outputs a key hk. Here, we assume that m and i are encoded in binary, i.e., the size of
both m and i ∈ [m] is bounded by O(log(m)).

• The deterministic hashing algorithm SSB.Hash(hk, (xi)i∈[m′]) takes as input a key hk and

an input (xi)i∈[m′] (where xi ∈ {0, 1}ℓblock and m′ ≤ m), and outputs a hash h ∈ {0, 1}ℓout .

• The deterministic opening algorithm SSB.Open(hk, (xi)i∈[m′], i) takes as input a key hk,

an input (xi)i∈[m′] (where xi ∈ {0, 1}ℓblock and m′ ≤ m), and an index i ∈ [m′], and outputs

an opening πi ∈ {0, 1}ℓopen .

• The deterministic verification algorithm SSB.Verify(hk, h, i, xi, πi) takes as input a key hk,
a hash h ∈ {0, 1}ℓout , an index i ∈ [m′] (for m′ ≤ m), an input xi ∈ {0, 1}ℓblock , and an
opening πi ∈ {0, 1}ℓopen , and outputs a bit.

12

Correctness of SSB hash functions says that honest openings always verify. As for security, SSB
hash functions guarantee two properties, known as index hiding and somewhere statistically
binding.

Definition 6 (Correctness of SSB hash functions). We say that a SSB hash function SSB =
(SSB.Setup,SSB.Hash,SSB.Open,SSB.Verify) is correct if ∀λ ∈ N, ∀ℓblock ∈ N, ∀m ∈ N such
that m ≤ 2λ, ∀m′ ∈ N such that m′ ≤ m, ∀i∗ ∈ [m], ∀i ∈ [m′], and ∀(xi)i∈[m′] ∈ {0, 1}ℓblock·m

′
,

we have:

P

SSB.Verify(hk, h, i, xi, πi) = 1 :

hk←$ SSB.Setup(1λ, 1ℓblock ,m, i∗),
h = SSB.Hash(hk, (xi)i∈[m′]),

πi = SSB.Open(hk, (xi)i∈[m′], i)

 = 1.

Definition 7 (Index hiding of SSB hash functions). We say that a SSB hash function SSB
= (SSB.Setup,SSB.Hash, SSB.Open,SSB.Verify) satisfies index hiding if for every PPT adver-
sary A, for every ℓblock ∈ N, for every m ∈ N, for every indexes i0, i1 ∈ [m], we have:∣∣P[A(1λ, hk0) = 1

]
− P

[
A(1λ, hk1) = 1

]∣∣ ≤ negl(λ) where hkb = SSB.Setup(1λ, 1ℓblock ,m, ib) for
b ∈ {0, 1}.

Definition 8 (Somewhere statistically binding of SBB hash functions). We say that a SSB hash
function SSB = (SSB.Setup,SSB.Hash,SSB.Open,SSB.Verify) is somewhere statistically binding
if for every ℓblock ∈ N, for every m ∈ N such that m ≤ 2λ, for every i ∈ [m], we have:

P
[

̸ ∃(h, x, x′, π, π′) ∈ {0, 1}ℓout+2ℓblock+2ℓopen s.t. x ̸= x′ ∧
SSB.Verify(hk, h, i, x, π) = 1 ∧ SSB.Verify(hk, h, i, x′, π′) = 1

]
≥ 1− negl(λ),

where hk←$ SSB.Setup(1λ, 1ℓblock ,m, i).

In addition to the above properties, we focus on succinct and efficient SSB hash functions,
which can be built from different assumptions such as DDH, ϕ-Hiding, DCR, and LWE [20, 32].

Definition 9 (Succinctness of SBB hash function). A SSB hash function SSB = (SSB.Setup,
SSB.Hash, SSB.Open,SSB.Verify) is succinct and efficient if the output length ℓout, the opening
length ℓopen, and the size of hk (output by SSB.Setup(1λ, 1ℓblock ,m, i)) are bounded by poly(λ,
ℓblock, logm).

In particular, we are interested in succinct SSB schemes where the maximum number of
blocks m is exponential and where the block length is a single bit. When m = 2λ and ℓblock = 1,
we write SSB.Setup(1λ, i) (instead of SSB.Setup(1λ, 11, 2λ, i)). In this case, by definition of
succinctness, the output length ℓout, the opening length ℓopen, and the size of hk are bonded by
poly(λ).

2.6 Indistinguishability Obfuscation

An indistinguishability obfuscator (iO) [4] is a PPT algorithm Obf that, upon input the security
parameter 1λ and a circuit Π, outputs an obfuscation Obf(1λ,Π) of Π. An iO obfuscator must
(i) preserve the functionality of the original circuit, and (ii) produce obfuscations of polynomial
size w.r.t. to |Π|. Moreover, for every pair of functionally equivalent circuits Π0,Π1 (i.e., ∀x ∈
{0, 1}∗, Π0(x) = Π1(x) and |Π0| = |Π1|), Obf(1λ,Π0) and Obf(1λ,Π1) must be computationally
indistinguishable.

Definition 10 (Indistinguishability obfuscation). Let C an ensemble of circuits. We say that
a PPT algorithm Obf is an iO obfuscator if the following conditions are satisfied:

13

Correctness. ∀λ ∈ N, ∀Π ∈ C, ∀x ∈ {0, 1}∗, we have that Π′(x) = Π(x) where Π′←$ Obf(1λ,Π).

Polynomial slowdown. For every Π ∈ C, we have |Obf(1λ,Π)| ≤ poly(|Π|).

Indistinguishability. For every pair of functionally-equivalent circuits Π0,Π1 ∈ C of equal
size, for every PPT adversary A, we have∣∣∣P[A(1λ,Obf(1λ,Π0)) = 1

]
− P

[
A(1λ,Obf(1λ,Π1)) = 1

]∣∣∣ ≤ negl(λ).

2.7 RSA Assumption

We state the RSA assumption, as introduced by Rivest, Shamir and Adleman in [36].

Definition 11 (RSA assumption). We say that the (polynomial) RSA assumption holds if, for
all PPT adversaries A, it holds that P[Grsa

A (λ) = 1] ≤ negl(λ), where the game Grsa
A (λ) is defined

as follows:

• The challenger samples two random λ-bit primes p and q, a random λ-bit prime e, and
sets N = p · q. Then, it picks y←$ Z∗

N and lets z = ye mod N .

• The adversary is given (N, e, z) and outputs y′.

• The game outputs 1 if and only if y′ = y.

The above is sometimes referred to as the RSA assumption with prime exponents, which
differs from the standard RSA assumption in that the exponent e is a λ-bit random prime
(instead of being a random value in Z∗

φ(N)). However, because primes are Θ(1/ logN)-dense in
Z∗
φ(N), the two assumptions are equivalent.

RSA hard-core bits. Since the RSA assumption immediately implies a one-way function,
we know that it admits a hard-core bit as proven by Goldreich and Levin [18]. Below, we state
their result in the concrete case of the RSA assumption.

Theorem 1 (Goldreich-Levin Theorem [18]). Under the RSA assumption, the following holds:

(N, e, r, z, ⟨r, y⟩ mod 2) ≈c (N, e, r, z, β),

where N = p · q for random λ-bit primes p and q, e is a random λ-bit prime, r←$ {0, 1}λ,
y←$ Z∗

N , z = ye mod N and β←$ {0, 1}.

2.8 Projective Pseudorandom Generators

We review the recent notion of projective pseudorandom generators (pPRGs) from Applebaum
et al. [1], which will be used as a tool in some of our constructions. For space reasons, we defer
other auxiliary standard definitions to Section 2.

Intuitively, a projective PRG is a PRG G : {0, 1}λ → {0, 1}m with the additional property
that, given a master key msk and a subset T ⊆ [m], one can produce a succinct8 projective key
αT which can be used to recover the output bits G(α)|T , but reveals nothing about the other
bits.

More formally, a projective PRG is a tuple of polynomial-time algorithms pPRG = (pPRG.
Setup, pPRG.KeyGen, pPRG.Eval) specified as follows:

8Succinctness is a crucial requirement, as otherwise a projective key could just be G(α)|T .

14

• The randomized setup algorithm pPRG.Setup(1λ, 1m) takes as input the security parameter
λ ∈ N and an output length parameter m ∈ N, and outputs public parameters mpk along
with a master secret key msk.

• The deterministic key generation algorithm pPRG.KeyGen(mpk,msk, T) takes as input the
public parameters mpk, the master secret key msk, and a target set T ⊆ [m], and outputs
a projective key αT .

• The deterministic evaluation algorithm pPRG.Eval(mpk, αT , T) takes as input the public
parameters mpk, a projective key αT , and a target set T ⊆ [m], and outputs a string
y ∈ {0, 1}|T |.

Abusing notation, we write pPRG.Eval(mpk,msk) to denote the output of the PRG corre-
sponding to pPRG.Eval(mpk, α[m], [m]) (i.e., when the target set T corresponds to the entire
output length). A projective PRG is required to satisfy three properties. The first property is
a correctness requirement saying that a projective key for target set T allows to learn the PRG
output in the positions indexed by T . The second property is a succinctness requirement saying
that the size of a projective key for a target set T is significantly shorter than |T |. The third
property is a security requirement saying that an adversary obtaining a projective key for the
union of different subsets T ∗ learn no information about the output of the PRG in the positions
outside T ∗.

Definition 12 (Correctness of pPRGs). We say that pPRG = (pPRG.Setup, pPRG.KeyGen,
pPRG.Eval) is correct if for all λ,m ∈ N, all (mpk,msk) ∈ pPRG.Setup(1λ, 1m), all subsets T ⊆
[m], and all projective keys αT = pPRG.KeyGen(mpk,msk, T), it holds that yT = pPRG.Eval(mpk,
αT , T) equals all of the bits of y = pPRG.Eval(mpk,msk) indexed by the positions in T .

Definition 13 (Succinctness of pPRGs). We say that pPRG = (pPRG.Setup, pPRG.KeyGen,
pPRG.Eval) is (fully) succinct if for all λ,m ∈ N, all (mpk,msk) ∈ pPRG.Setup(1λ, 1m), and
all subsets T ⊆ [m], it holds that the projective key αT = pPRG.KeyGen(mpk,msk, T) has size
|αT | = poly(λ, logm).

Definition 14 (Robustness of pPRGs). We say that pPRG = (pPRG.Setup, pPRG.KeyGen,
pPRG.Eval) is robust if for all PPT adversaries A it holds that {Grob

pPRG,A(λ, 0)}λ∈N ≈c {Grob
pPRG,A(

λ, 1)}λ∈N, where the game Grob
pPRG,A(λ, b) is defined as follows:

• Given 1λ, the adversary sends 1m and T1, . . . , Tq ⊂ [m] to the challenger.

• The challenger runs (mpk,msk)←$ pPRG.Setup(1λ, 1m) and lets y0 = yT and y1←$ {0, 1}|T |,
where T = [m]\T , T = T1∪· · ·∪Tq, and yT = pPRG.Eval(mpk, pPRG.KeyGen(mpk,msk, T),
T). Then, the challenger forwards (mpk, (αTi)i∈[q], yb) to A, where αTi = pPRG.KeyGen(mpk,
msk, Ti).

2.8.1 Unbounded Polynomial Stretch

For some of our applications, we will require a stronger variant of projective PRGs in which
the output length is an unbounded polynomial m = poly(λ). For concreteness, we define this
variant below.

Definition 15 (pPRGs with unbounded stretch). We say that pPRG = (pPRG.Setup, pPRG.
KeyGen, pPRG.Eval) has unbounded polynomial stretch if algorithm Setup takes only the security
parameter λ ∈ N as input, whereas algorithms KeyGen and Eval take as input target sets T of
arbitrary polynomial size |T | = poly(λ).

15

The definitions of correctness, succinctness and robustness can be easily adapted to the case
of projective PRGs with unbounded polynomial stretch. In particular, correctness is immediate,
while succinctness still requires that the size of the projective keys αT are poly(λ), whereas the
running time of algorithms KeyGen and Eval are poly(λ, |T |). We remark that, when the stretch
is unbounded, the master public key mpk is always succinct (i.e., of size poly(λ)), as the setup
algorithm does not depend on m.

As for robustness, the security game remains unchanged as the adversary can already specify
the output length 1m of the challenge. Note the adversary has to commit to 1m and to the
subsets T1, · · · , Tq before receiving the master public key mpk. This flavor of “selective” security
is sufficient for our applications.

Outputting blocks. Sometimes, it is convenient to think of the pPRG output as a sequence
of t blocks of size λ. In such a case, the key generation takes as input subsets T ⊆ [t] and gen-
erates projective keys corresponding to the blocks indexed by the positions in T ; the evaluation
algorithm is modified analogously. The latter can be obtained by mapping T into T ′ ⊆ [t · λ],
where T ′ consists of the set of all location that fall inside the blocks whose indexes are in T .

2.8.2 Instantiations

The following theorem summarizes known constructions of projective PRGs under a variety of
assumptions.

Theorem 2 ([1]). There exist constructions of projective PRGs from the following assumptions
and with the following parameters:

• Under the RSA assumption, with unbounded polynomial stretch, and with master public
keys and projective keys of size poly(λ).

• Assuming indistinguishability obfuscation and somewhere statistically binding hash func-
tions, with unbounded polynomial stretch, and with projective keys of size poly(λ) (and
empty master public keys).

• Under the DDH and the BDDH assumption, with bounded polynomial stretch, and with
master public keys of size m2 · poly(λ) and projective keys of size O(λ). In the second
construction the master public key is reusable (i.e., it is independent of the master secret
key).

• Under the LWE assumption, with bounded polynomial stretch, and with master public
keys of size m · poly(λ) and projective keys of size O(λ).

We remark that Applebaum et al. [1] actually prove a slightly different statement about
the constructions based on RSA and on obfuscation. In particular, they prove that the first
construction achieves sub-exponential stretch under the sub-exponential RSA assumption, and
that the second construction achieves bounded polynomial stretch. Nevertheless, it is easy to
adapt these constructions and show that they indeed achieve unbounded polynomial stretch
under polynomial hardness.

2.8.3 Projective PRGs with Unbounded Polynomial Stretch

Instantiation from RSA. We show that the construction of pPRGs from [1], based on
the RSA assumption, can easily be adapted to yield unbounded polynomial stretch under the
polynomial RSA assumption.

16

Construction 1

Let m̄ = 2λ/3 and k = λ · (λ + log m̄). Consider the following projective PRG pPRG =
(pPRG.Setup, pPRG.KeyGen, pPRG.Eval) with unbounded polynomial stretch:

• The setup algorithm pPRG.Setup(1λ) outputs msk = (p, q) and mpk = (N, u, r, ρ),
where p and q are random λ-bit primes, N = p · q, u←$ Z∗

N , r←$ {0, 1}λ, and
ρ = (ρ0, . . . , ρk−1) for ρi←$ GF(2λ). We think of ρ as a degree-k polynomial Ψρ(X) =∑

i ρi · Xi over GF(2λ), and let x1, x2, . . . be a canonical set of distinct evaluation
points in GF(2λ).

• The key generation algorithm pPRG.KeyGen(mpk,msk, T) proceeds as follows:

– Let |T | = t. Evaluate the polynomial Ψρ(X) using the evaluation points
x1, . . . , xt·k, obtaining t · k integers of size λ, and, for each i ∈ [t], define ei
to be the first prime in the i-th block of k integers.

– Output the projective key αT = u
∏

j∈T 1/ej mod N , where the computations in
the exponent are modulo φ(N) = (p− 1) · (q − 1).

• The evaluation algorithm pPRG.Eval(mpk, αT , T) proceeds as follows for each i ∈ T :

– Let |T | = t. Evaluate the polynomial Ψρ(X) using the evaluation points
x1, . . . , xt·k, obtaining t · k integers of size λ, and, for each i ∈ [t], define ei
to be the first prime in the i-th block of k integers.

– Compute y′i = α

∏
j∈T \{i} ej

T mod N and output yi = ⟨r, y′i⟩ mod 2.

The full output of the projective PRG is defined to be (y1, . . . , ym̄) where yi = ⟨r, y′i⟩ for
y′i = u1/ei and for all i ∈ [m̄]; note that m̄ is exponential, and indeed the key generation and
evaluation algorithms never need to generate all of the primes (e1, . . . , em̄). Correctness follows
because:

y′i ≡ α

∏
j∈T \{i} ej

T ≡
(
u
∏

j∈T 1/ej
)∏

j∈T \{i} ej
≡ u1/ei (mod N).

Note that, by the prime number theorem, the probability that each of the values ei computed
during key generation and evaluation is not a prime, or that the primes are not distinct, is
exp(−Ω(λ)); for simplicity, we just ignore these events when analyzing the construction.9 Suc-
cinctness follows because, by inspection, both the master public key and the projective keys
have size poly(λ). As for security, we have the following theorem:

Theorem 3. Under the RSA assumption (Definition 11), the projective PRG pPRG described
in Construction 1 is robust.

Proof. By contradiction, let B be any PPT adversary that breaks the robustness of pPRG with
probability non-negligible probability. Denote by (1m, T1, . . . , Tq) the values output by B at the
beginning of the robustness game, where m = poly(λ) and |Ti| = poly(λ) for all i ∈ [q]. Also,
let T = [m] \

⋃
i∈[q] Ti = {i1, . . . , it̄} for some t̄ such that 0 ≤ t̄ < m.

For an index j ∈ [0, t̄], consider the hybrid experiment Hj(λ) in which we modify the
challenge given to the attacker B as follows:

9Strictly speaking, this means that the construction does not achieve perfect correctness, but instead correct-
ness only holds with overwhelming probability over the randomness of the setup algorithm.

17

• For each of the sets T1, . . . , Tq, the projective keys (αTi)i∈[q] are computed as defined in
Construction 1.

• For each h ≤ j, the challenge bits yih are computed as defined in Construction 1.

• For each h > j, the challenge bits yih are sampled uniformly at random.

Clearly,

{H0(λ)}λ∈N ≡ {Grob
pPRG,B(λ, 0)}λ∈N {Ht̄(λ)}λ∈N ≡ {Grob

pPRG,B(λ, 1)}λ∈N.

Thus, by the hybrid argument, there exists an index j ∈ [t̄] such that:

|P[Hj(λ) = 1]− P[Hj−1(λ) = 1]| ≥ ϵ.

where ϵ is non-negligible. We now construct an adversary A (using B) that breaks security of
the hard-core bit for the RSA one-way function:

• The input of A is a tuple (N, e, z, r, β), where N = p · q for two random λ-bit primes, e is
a random λ-bit prime, z = ye mod N for random y←$ Z∗

N , r←$ {0, 1}λ, and β is either
the hard-core bit of (r, y) (i.e., β = ⟨r, y⟩ mod 2) or a uniformly random bit.

• Run B(1λ), obtaining the tuple (1m, T1, . . . , Tq).

• Simulate the master public key for the projective PRG as follows:

– Let k = λ · (λ+ logm), then sample k random integers and replace the first integer
with e from the challenge. Hence, using polynomial interpolation, find a random seed
ρ = (ρ0, . . . , ρk−1) that generates the above integers as the ij-th sequence of integers.

– Compute u = z
∏

i∈[m]:i̸=ij
ei
, where ei are the primes associated to the polynomial

corresponding to the seed ρ determined in the previous step.

– Set mpk = (N, u, r, ρ), and return mpk to the adversary B.

• Simulate the projective keys αTi , for each i ∈ [q], by letting:

αTi = z
∏

h ̸∈Ti:h ̸=ij
eh .

• Simulate the output bits yih , for each h ∈ [t̄], by letting

yih =

⟨r, y′ih⟩ mod 2 If h < j

β If h = j

uniform If h > j,

where y′ih = z
∏

i∈[m]:i ̸=ij ,ih
ei
.

• Send (mpk, (αTi)i∈[q], (yih)j∈[t̄]) to B and output whatever B outputs.

For the analysis, we note that:

• The simulation of the public key is perfect. Indeed, N and e are chosen randomly and
the seed ρ is random subject to ej = e. Thus, N and ρ are random. Moreover, since y is

uniform, u = y
∏

i∈[m] ei is a permutation, and thus the value u simulated by the reduction
is uniform over Z∗

N . Note that y = u
∏

i∈[m] 1/ei , although the reduction does not know
1/ei.

18

• For each i ∈ [q], the simulation of the projective keys αTi is perfect, as z = ye = yeij and

thus αTi = y
∏

h̸∈Ti
eh = (u

∏
i∈[m] 1/ei)

∏
h ̸∈Ti

eh = u
∏

h∈Ti
1/eh .

• For each h ∈ [t̄], the simulation of the output bits yih is perfect, as z = ye = yeij and thus:

– If h < j, we have that y′ih = y
∏

i∈[m]:i ̸=ih
ei = (u

∏
i∈[m] 1/ei)

∏
i∈[m]:i ̸=ih

ei = u
∏

i∈[m]:i ̸=ih
ei ,

and yih = ⟨r, y′ih⟩ mod 2 as defined in both hybrid experiments.

– If h = j, we have that yih = β is either equal to ⟨r, y⟩ = ⟨r, y′ij ⟩ (as defined in Hj(λ))

or uniformly random (as defined in Hj+1(λ)).

– If h > j, we have that yih is uniform as defined in both hybrids experiments.

We conclude that A breaks security of the hard-core bit for RSA with non-negligible probability.
By Theorem 1 this contradicts the RSA assumption, and thus concludes the proof.

Instantiation from Obfuscation. We show that the construction of projective PRGs from [1]
based on obfuscation, can easily be adapted to yield unbounded polynomial stretch.

Construction 2

Let Obf be an iO obfuscator, pPRF = (pPRF.Setup, pPRF.Eval, pPRF.Puncture) be
a puncturable PRF with input space {0, 1}λ and output space {0, 1}, SSB =
(SSB.Setup,SSB.Hash,SSB.Open,SSB.Verify) be a SSB hash function. Consider the fol-
lowing projective PRG pPRG = (pPRG.Setup, pPRG.KeyGen, pPRG.Eval) with unbounded
polynomial stretch:

• The setup algorithm pPRG.Setup(1λ) outputs msk = κ and mpk = hk where
hk←$ SSB.Setup(1λ, 1) and κ←$ pPRF.Setup(1λ).

• The key generation algorithm pPRF.KeyGen(mpk,msk, T) proceeds as follows:

– Compute hT = SSB.Hash(hk, (vi)i∈|T |) where vi = 1 if i ∈ T ; otherwise vi = 0.

– Compute Π̃T ←$ Obf(1λ,Πhk,hT ,κ) where the circuit Πhk,hT ,κ is defined as follows:

Πhk,hT ,κ(i, πi)

If SSB,Verify(hk, hT , i, 1, πi) = 1 : return pPRF.Eval(κ, i)

return ⊥

The circuit Πhk,hT ,κ is padded to match the size max{Πhk,hT ,κ,Π
γ,ij+1

hk,hT ,κij+1
} =

poly(λ), where Π
γ,ij+1

hk,hT ,κij+1
is defined in the security proof below. (Recall that

ij+1 ≤ 2λ; hence, it can be represented using λ bits.)

Finally, it outputs αT = Π̃T .

• The evaluation algorithm pPRG.Eval(mpk, αT , T) proceeds as follows for each i ∈ T :

– Compute πi = SSB.Open(hk, (vj)j∈T , i) where vj = 1 if j ∈ T ; otherwise vj = 0.

– Execute yi = Π̃T (i, πi).

Finally, it outputs y = (y1, . . . , y|T |).

19

Correctness is immediate. Succinctness follows by inspection, as the size of both the master
public key and of the projective keys is poly(λ). As for security, we have the following theorem:

Theorem 4. Assuming Obf is secure (Definition 10), SSB is somewhere statistically binding
(Definition 8) and satisfies index hiding (Definition 7), and pPRF is secure (Definition 3), then
the projective PRG described in Construction 2 is robust.

Proof. Without loss generality, let 1m be the output length chosen by the adversary in the
robustness game and T = {i1, . . . , it̄} = [m] \ T . Consider the following hybrid experiments:

H0,0(λ): This experiment is identical to Grob
pPRG,A(λ, 0).

Hj,0(λ) for j ∈ [t̄]: Identical to Hj−1,0(λ), except that the challenger sets y0 = yT = y′||y′′
where y′←$ {0, 1}j and y′′ are the last t̄ − j bits of pPRG.Eval(mpk, αT , T) for αT =
pPRG.KeyGen(mpk,msk, T).

Hj,1(λ) for j ∈ [t̄− 1]: Identical to Hj,0(λ) except that the challenger computes hk←$ SSB.
Setup(1λ, ij+1).

Hj,2(λ) for j ∈ [t̄− 1]: Identical to Hj,1(λ), except that the challenger, for every i ∈ [q], com-

putes αTi = Π̃Ti ←$ Obf(1λ,Π
γ,ij+1

hk,hTi ,κj+1
) where ij+1 ∈ T , κij+1 = pPRF.Puncture(κ, ij+1),

γ = pPRF.Eval(κ, ij+1), and the circuit Π
γ,ij+1

hk,hT ,κij+1
is defined as follows:10

Π
γ,ij+1

hk,hT ,κij+1
(i, πi)

If i = ij+1 : return γ

If SSB.Verify(hk, hT , i, 1, πi) = 1 : return pPRF.Eval(κij+1
, i)

return ⊥

Hj,3(λ) for j ∈ [t̄− 1]: Identical toHj,2(λ), except that the challenger sets γ = ⊥ in Π
γ,ij+1

hk,hTi ,κj+1

for every i ∈ [q].

Hj,4(λ) for j ∈ [t̄− 1]: Identical to Hj,3(λ), except that the challenger sets y0 = yT = y′||y′′
where y′←$ {0, 1}j+1 and y′′ are the last t̄ − j − 1 bits of pPRG.Eval(mpk, αT , T) for
αT = pPRG.KeyGen(mpk,msk, T).

Hj,5(λ) for j ∈ [t̄− 1]: Identical to Hj,4(λ), except that the challenger sets γ = pPRF.Eval(κ,

ij+1) in Π
γ,ij+1

hk,hTi ,κj+1
for every i ∈ [q].

Hj,6(λ) for j ∈ [t̄− 1]: Identical to Hj,5(λ), except that the challenger, for every i ∈ [q], com-
putes αTi = Π̃Ti ←$ Obf(1λ,Πhk,hTi ,κ

) where circuit Πhk,hT ,κ is defined as in Construction 2.

Hj,7(λ) for j ∈ [t̄− 1]: Identical to Hj,6(λ), except that the challenger computes hk←$ SSB.
Setup(1λ, 1). This experiment is identical to Grob

pPRG,A(λ, 1).

Lemma 1. For every j ∈ [0, t̄− 1], it holds that {Hj,0(λ)}λ∈N ≈c {Hj,1(λ)}λ∈N.

Proof. The lemma follows directly by the index hiding property of SSB (Definition 7).

10Recall that the Πhk,hT ,κij+1
of Construction 2 is padded to match the size max{Πhk,hT ,κij+1

,Π
γ,ij+1

hk,hT ,κij+1
}.

This is required during the proof in order to use the security of the iO obfuscator Obf.

20

Lemma 2. For every j ∈ [0, t̄− 1], it holds that {Hj,1(λ)}λ∈N ≈c {Hj,2(λ)}λ∈N.

Proof. It is easy to see that Πhk,hTi ,κ
(of Hj,1(λ)) and Π

γ,ij+1

hk,hTi ,κij+1
(of Hj,2(λ)) are functionally-

equivalent for every i ∈ [q]. Hence, the lemma follows directly by the security of the iO
obfuscator Obf (Definition 10).

Lemma 3. For every j ∈ [0, t̄− 1], it holds that {Hj,2(λ)}λ∈N ≈c {Hj,3(λ)}λ∈N.

Proof. The only input on which Π
γ,ij+1

hk,hTi ,κij+1
(of Hj,2(λ)) and Π

⊥,ij+1

hk,hTi ,κij+1
(of Hj,3(λ)) may

differ is one for which (i∗, π∗) = (ij+1, π
∗). However, since SSB is somewhere statistically

binding (Definition 8), there is no valid opening π∗ for values vij+1 = 1. Hence, both circuits
output ⊥ on input (i∗, π∗) = (ij+1, π

∗). Since the circuits are functionally-equivalent, the lemma
follows directly by the security of the iO obfuscator Obf (Definition 10).

Lemma 4. For every j ∈ [0, t̄− 1], it holds that {Hj,3(λ)}λ∈N ≈c {Hj,4(λ)}λ∈N.

Proof. The lemma follows directly by the security of pPRF (Definition 3).

Lemma 5. For every j ∈ [0, t̄− 1], it holds that {Hj,4(λ)}λ∈N ≈c {Hj,5(λ)}λ∈N.

Proof. The lemma follows by an identical argument to that in the proof of Lemma 3.

Lemma 6. For every j ∈ [0, t̄− 1], it holds that {Hj,5(λ)}λ∈N ≈c {Hj,6(λ)}λ∈N.

Proof. The lemma follows by an identical argument to that in the proof of Lemma 2.

Lemma 7. For every j ∈ [0, t̄− 1], it holds that {Hj,6(λ)}λ∈N ≈c {Hj,7(λ)}λ∈N.

Proof. The lemma follows by an identical argument to that in the proof of Lemma 1.

The theorem now follows by combining the above lemmas.

3 Computational Evolving Secret Sharing

Let n ∈ N, and denote by [n] = {1, . . . , n}. A collection of subsets A ⊆ 2[n] is monotone if for
every I ∈ A, with I ⊆ I ′, it holds that I ′ ∈ A.

Definition 16 (Access structure). An access structure A ⊆ 2[n] is a monotone collection of non-
empty subsets. Subsets in A are called qualified, whereas subsets not in A are called unqualified.

If A is an access structure, then a subset B ∈ A is minimal if B′ ̸∈ A whenever B′ ⊂ B. We
will typically assume A only consists of minimal authorized subsets, which we sometimes refer
to as the minimal representation form.

Standard secret sharing schemes are typically defined in a setting where the number of
parties n is fixed. In evolving secret sharing [23], instead, parties arrive one by one and thus the
value n represents the number of parties currently in the system. In the information-theoretic
setting, the number n can grow up to infinity; in the computational setting, instead, n = poly(λ).
We denote by An the access structure when there are n parties in the system. We stress, that
the dealer does not know the value n, neither it knows the access structure An before the n-th
party enters the system.

Definition 17 (Evolving access structure). Let n ∈ N, with n(λ) = poly(λ). An evolving access
structure A = {An} is a monotone collection of subsets An ⊆ 2[n] such that, for every n ∈ N,
it holds that An ⊆ An+1.

21

We are now ready to define evolving secret sharing schemes. A secret sharing scheme
SS = (SS.Share,SS.Recon) over message spaceM for an evolving access structure A consists of
two polynomial-time algorithms specified as follows:

• The randomized sharing algorithm SS.Share(µ, (σi)i∈[n−1],An) takes as input a message
µ ∈ M, a collection of n − 1 shares σ1, . . . , σn−1 ∈ S, and an access structure An, and
outputs the share σn for the n-th party.

• The deterministic reconstruction algorithm SS.Recon((σi)i∈I , I,An) takes as input a col-
lection of shares (σi)i∈I , along with a subset I ⊆ 2[n] of the parties, and outputs a message
µ ∈M.

The share size s(n, ℓ, λ) of party n in a secret sharing scheme for evolving access structure
A is defined as the maximum of |σn| over all messages of length ℓ = ℓ(n) and over all possible
previous assignments σ1, . . . , σn−1. Whenever s(n, ℓ, λ) = poly(λ), we say that SS is succinct.

Remark 1 (On representing the access structure). When dealing with efficiency of compu-
tational secret sharing schemes, it is important to define how an evolving access structure is
represented. In particular, we can associate to each access structure An over n parties a boolean
function fn : {0, 1}n → {0, 1} such that f(x) = 1 if and only if the set Ix consisting of all
the parties in [n] for which xi = 1 is such that Ix ∈ An. Hence, we assume there is a univer-
sal (polynomial-time computable) representation model U : {0, 1}∗ × {0, 1}∗ → {0, 1} such that
U(Πn, x) = fn(x) for all n ≥ 1 and for all x ∈ {0, 1}n, where Πn is a program representing
the function fn. For simplicity, in the rest of the paper, we implicitly assume that the sharing
and reconstruction algorithm take as input the program Πn representing the function fn corre-
sponding to the access structure An; sometimes, we abuse notation and write An instead of the
program Πn.

3.1 Defining Computational Privacy

Evolving secret sharing schemes are required to satisfy the following two properties. The first
property is a correctness requirement saying that, at any point in time, qualified subsets of
parties can recover the message. The second property is a security requirement saying that, at
any point in time, a computationally bounded adversary knowing the shares corresponding to
an unqualified subset of parties obtains no information about the message.

Definition 18 (Correctness of evolving secret sharing). We say that a secret sharing scheme
SS over message space M for the evolving access structure A is correct if for every message
µ ∈M, for every number of parties n ≥ 1, and for every qualified subset I ∈ An it holds that

P
[
µ = µ′ :

∀i ≤ n : σi←$ SS.Share(µ, (σj)j<i,Ai)
µ′ = SS.Recon((σi)i∈I , I)

]
= 1.

Definition 19 (Privacy of evolving secret sharing). We say that a secret sharing scheme SS over
message spaceM for the evolving access structure A is computationally private if {Gpriv

SS,A(λ, 0)

}λ∈N ≈c {Gpriv
SS,A(λ, 1)}λ∈N, where the game Gpriv

SS,A(λ, b) is defined as follows:

• The adversary chooses a pair of messages µ0, µ1 ∈M, an integer n ≥ 1, and an unqualified
subset U ̸∈ An, and forwards them to the challenger.

• The challenger computes σi←$ SS.Share(µb, (σj)j<i,Ai) for all i ≤ n, and forwards (σi)i∈U
to A.

22

3.2 Rigid Access Structures

We remark that our definition of evolving access structures is less stringent than previous
definitions considered in the literature (see, e.g., [23]). In particular, previous definitions require
that if at some point there is an unqualified subset U ⊆ 2[n], where n is the current number
of parties, then the set U will always remain unqualified when more parties are added to the
evolving access structure. In contrast, Definition 17 potentially allows sets that previously
were unqualified to become qualified at a later point in time (without necessarily involving new
players). The theorem below states that Definition 17 is impossible to achieve unless the dealer
is allowed to update the shares.

Theorem 5. Let A be an evolving access structure such that there exist indexes n1, n2, with
n1 < n2, along with a subset U ∈ 2[n1] which satisfy the following conditions: (i) U ̸∈ An1; (ii)
U ∈ An2. Then, any computationally private secret sharing scheme for A requires to update the
shares of party n1 when party n2 enters the system.

Proof. Let A, n1, and n2 be as in the statement of the theorem. Fix an arbitrary message
µ ∈ M, and denote by (σi)i∈[n2] the shares obtained by sharing µ among n2 parties. Con-
dition (ii) on the access structure A, along with the correctness property of SS, imply that
SS.Recon((σi)i∈U ,U) outputs µ with probability one over the randomness of the sharing algo-
rithm SS.Share.

Now, consider the adversary A that plays the computational privacy game by choosing
messages µ0 = µ and µ1 = µ′ ̸= µ, number of parties n1, and subset U . The adversary obtains
(σi)i∈U from the challenger and outputs b′ = 1 if and only if SS.Recon((σi)i∈U ,U) = µ. By
the above argument, A wins with probability one. Moreover, condition (i) implies that U is
unqualified, and thus A is valid. This finishes the proof.

An evolving access structure that does not meet the properties (i) and (ii) in Theorem 5
(i.e., if U ̸∈ Ai for some i, then U ̸∈ Aj for all j > i) is called rigid. The definition below, which
also appears in [23], formalizes this property.

Definition 20 (Rigid evolving access structure). A rigid evolving access structure A = {An} is
a monotone collection of subsets An ⊆ 2[n] such that, for any n ∈ N, it holds that An = A∩ [n].

Since in this paper we are not interested in evolving secret sharing schemes in which the
dealer can update the shares, in what follows we only focus on rigid evolving access structures.
Throughout the paper, we use the hat symbol Â to denote access structures that evolve while
preserving rigidity.

4 Construction for General Access Structures

4.1 Exponential-time Construction

We present a construction of a secret sharing scheme for any rigid evolving access structure. The
construction is based on any PRG with unbounded polynomial stretch (and thus only requires
one-way functions). Unfortunately, for certain access structures, the running time of the sharing
algorithm in our construction may be exponential, and thus we cannot prove computational
privacy for all rigid evolving access structures. Nevertheless, we show that the construction
runs in polynomial time for a fairly natural family of rigid evolving access structures, and in
this case we can also prove computational privacy.

23

Construction 3

Let G : {0, 1}λ → {0, 1}∗ be a PRG. For a seed κ ∈ {0, 1}λ, we parse the output of G(κ)
into blocks of size λ, and we denote with G(κ)[i] the i-th such block. Consider the following
secret sharing scheme SS = (SS.Share, SS.Recon) over message space M = {0, 1}λ for an
arbitrary rigid evolving access structure Â. We assume a lexicographic order ξ : 2[n] → N
over the subsets in Â, and that Â is in its minimal representation form.

Sharing: When the n-th party arrives, the dealer proceeds as follows:

• Sample κn←$ {0, 1}λ.
• For each I ∈ Ân \ Ân−1, let I = (i1, . . . , it−1, n) for some t ≥ 1 and compute
γI = µ

⊕t−1
j=1 G(κij)[ξ(I)].

• Return σn = (κn, (γI)I∈Ân\Ân−1
) to the party.

Reconstruction: The reconstruction algorithm SS.Recon((σi)i∈I , I), given the shares
(σi)i∈I such that σi = (κi, (γI)I∈Âi\Âi−1

), and a minimal authorized subset I =

{i1, . . . , it−1, n} ∈ Ân, returns the same as γI
⊕t−1

j=1 G(κij)[ξ(I)], where γI is taken
from the share σn of party n.

Recall that, by rigidity, every new authorized subset I ∈ Ân \ Ân−1 must include the new
party n. Correctness then follows by the fact that each of the party ij in I knows the seed κij ,
and moreover can determine the correct index ξ(I) given the lexicographic order ξ of the access
structure Â. However, the the sharing algorithm requires to generate a ciphertext γI for each
minimal authorized subset I ∈ Ân \ Ân−1 that party n completes, which can be exponential
in n, and thus one cannot prove computational security of the above construction for arbitrary
rigid evolving access structures.

4.2 Polynomial-time Instantiation

We note that if the number of authorized subsets that each new arriving party completes is
poly(λ, n), then the sharing and reconstruction algorithms in Construction 3 always run in
polynomial time. The size of each share is poly(λ, n), and becomes poly(λ) in case the number
of added authorized subsets is independent of the number of parties currently in the system n.
Moreover, in this case, the above secret sharing scheme is also computationally private. Below,
we report the formal result.

Theorem 6. Assuming G is secure (Definition 1), then the scheme SS described in Construc-
tion 3 is a computationally private secret sharing scheme over M = {0, 1}λ for every rigid
evolving access structure Â such that, for each n ≥ 1, it holds that |Ân| − |Ân−1| = poly(λ, n).

Proof. Fix any rigid evolving access structure Â = {Ân} meeting the condition in the theorem
statement. Let n and U ̸∈ Ân be, respectively, the number of parties and the unqualified subset
chosen by the adversary in the game defining computational privacy of SS. Denote by t the size
of U and let [n] \ U = {i1, . . . , in−t}. Consider the following hybrid experiments:

H0(λ, b): This experiment is identical to Gpriv
SS,A(λ, b).

Hj(λ, b) for j ∈ [n− t]: Identical to Hj−1(λ, b) except that we change how the challenger com-
putes the shares of the parties. In particular, for every party k ∈ [n], and for every subset

24

I that is used during the computation of the share σk, and that contains the index ij , the
challenger replaces G(κij)[ξ(I)] with a uniformly random string of length λ.

Hn−t+j(λ) for j ∈ [n− t]: Identical to Hn−t+j−1(λ, b) except that we change how the chal-
lenger computes the shares of the parties. In particular, for every party k ∈ [n], and for
every subset I that is used during the computation of the share σk, and that contains the
index ij , the challenger replaces γI with a uniformly random string of length λ.

Lemma 8. For every j ∈ [n− t], it holds that {Hj−1(λ, b)}λ∈N ≈c {Hj(λ, b)}λ∈N.

Proof. The only difference between Hj−1(λ, b) and Hj,b(λ) is in the computation of the ci-
phertexts γI corresponding to authorized sets I that contain the index ij . Since ij ̸∈ U , the
corresponding seed κij is unknown to the adversary. This allows to make a reduction to the
security of the PRG G (Definition 1). The reduction is standard, so we omit it.

Lemma 9. For every j ∈ [n− t], it holds that

{Hn−t+j−1(λ, b)}λ∈N ≡ {Hn−t+j(λ, b)}λ∈N.

Proof. The lemma follows by simply observing that the distribution of ciphertexts γI corre-
sponding to authorized sets I that contain the index ij are now uniformly random.

Lemma 10. {H2n−2t(λ, 0)}λ∈N ≡ {H2n−2t(λ, 1)}λ∈N.

Proof. The lemma follows by simply observing that the distribution of the shares (σi)i∈U is now
independent of the message.

Theorem 7 now follows by combining the above lemmas.

While the above construction is general, the shares are not succinct and additionally it fails
to capture many important evolving access structures in which the number of added autho-
rized subsets is super-polynomial in the number of parties (e.g., the dynamic threshold access
structure). We will provide more efficient solutions for many of these access structures in the
following section.

5 Constructions for Specific Access Structures

5.1 Dynamic Threshold Access Structure

We start with the so-called dynamic threshold evolving access structure [25]. This access struc-
ture is a generalization of the t-threshold evolving access structure, in which the authorized
parties consist of all subsets of at least t parties, where t = O(1) is fixed and independent of n.
In the more general case of the dynamic threshold evolving access structure Âdthr, instead, we
have a sequence of thresholds t1 ≤ t2 ≤ · · · , such that when there are n parties the qualified
sets are those of size at least tn; note that now, at least in general, the thresholds can depend on
n. The condition that tn ≥ tn−1 is necessary to ensure monotonicity, namely for the sequence
of access structures to be a valid evolving access structure. Moreover, by definition, Âdthr is
automatically rigid.

Below, we give a construction of secret sharing for Âdthr with message space {0, 1}λ and
share size λ · (n+1). The scheme is based on Shamir’s secret sharing and on any standard PRG
with unbounded polynomial stretch.

25

Construction 4

Let GF(2λ) be a field of size 2λ, and G : {0, 1}λ → {0, 1}∗ be a standard PRG with
unbounded polynomial stretch. For a seed κ ∈ {0, 1}λ, we parse the output of G(κ) into
blocks of size λ, and we denote with G(κ)[i] the i-th such block. Consider the following
secret sharing scheme SS = (SS.Share, SS.Recon) over message space M = {0, 1}λ for the
dynamic threshold access structure Âdthr with sequence of thresholds t1 ≤ t2 ≤ · · · .

Sharing: When the n-th party arrives, the dealer proceeds as follows:

• Sample a random polynomial fn of degree tn − 1 over GF(2λ)[X], subject to
fn(0) = µ.

• For every i ∈ [n− 1], compute γi = fn(i)⊕ G(κi)[n− i].

Finally, set the share of the n-th player to:

σn = (κn, (γi)i<n, fn(n))

where κn←$ {0, 1}λ.

Reconstruction: The reconstruction algorithm SS.Recon((σi)i∈I , I), given the shares
(σi)i∈I = ((κi, (γj)j<i, yi))i∈Q, and a minimal authorized subset I =
{i1, . . . , itn−1 , n} ∈ Âdthr

n , proceeds as follows:

• For every j ∈ [tn − 1], compute y′j = γij ⊕ G(κij)[n − ij] where (γk)k<n are the
ciphertexts contained in σn.

• Use Lagrange interpolation over the points ((i1, y
′
1), . . . , (itn−1, y

′
tn−1), (n, yn)),

yielding a polynomial f ′ ∈ GF(2λ)[X], where yn = fn(n) is the (plaintext)
evaluation contained in σn.

Finally, output f ′(0) = µ.

Let I = {i1, . . . , itn−1, n} ∈ Âdthr
n be a minimal authorized subset, i.e., I is of size tn.

Correctness follows by observing that, for j ∈ [n − 1], each ciphertext γij contained in σn can
be correctly decrypted by means of the seed κij contained in σij , thus yielding y′j = γij ⊕
G(κij)[n− ij] = fn(ij). Hence, the authorized parties can retrieve tn evaluations (as fn(n) = yn
is already contained in σn) of the polynomial fn of degree tn − 1. Thus, by correctness of
Lagrange interpolation, the parties in I can correctly reconstruct f ′ = fn and, in turn, recover
the correct message f ′(n) = fn(0) = µ. As for security, we prove the following result.

Theorem 7. Assuming G is secure (Definition 1), the scheme SS described in Construction 4
is a computationally private secret sharing scheme for the dynamic threshold evolving access
structures Âdthr.

Proof. Let n and U ̸∈ Âdthr
n be, respectively, the number of parties and the unqualified subset

chosen by the adversary in the game defining computational privacy of SS. Also, let t1 ≤ t2 ≤
· · · ≤ tn be the thresholds defining Âdthr

n . Consider the following hybrid experiments:

H0(λ, b): This experiment is identical to Gpriv
SS,A(λ, b).

Hj(λ, b) for j ∈ [n] \ U : Identical toHj−1(λ, b), except that we change how the challenger com-
putes the shares of the parties. In particular, for every party k ∈ [n], the challenger (during

26

the computation of the σk) lets γj = fk(j)⊕ρ (recall that γj is part of the share σk) where
ρ←$ {0, 1}λ.

H|[n]\U|+j(λ, b) for j ∈ [n] \ U : Identical to H|[n]\U|+j−1(λ, b), except that we change how the
challenger computes the shares of the parties. In particular, for every party k ∈ [n], the
challenger (during the computation of σk) samples γj at random from {0, 1}λ (recall that
γj is part of the share σk).

Lemma 11. For every j ∈ [n] \ U , and for every b ∈ {0, 1}, it holds that {Hj−1(λ, b)}λ∈N ≈c

{Hj(λ, b)}λ∈N.

Proof. The only difference between Hj−1(λ, b) and Hj(λ, b) is in the computation of the cipher-
texts {γj} contained in each of the shares (σ1, . . . σn). Since j ̸∈ U , we have that the seed κj of
the j-th party is never revealed to the adversary. Hence, the lemma follows by the security of
the PRG G (Definition 1).

Lemma 12. For every j ∈ [n]\U , and for every b ∈ {0, 1}, it holds that {H|[n]\U|+j−1(λ, b)}λ∈N ≡
{H|[n]\U|+j(λ, b)}λ∈N.

Proof. The lemma follows by simply observing that, for every party k ∈ [n], each ciphertext γj
(contained in the share σk) for j ̸∈ U is a one-time pad encryption which, in turn, is identically
distributed to a random string in {0, 1}λ.

Lemma 13. {H2·|[n]\U|(λ, 0)}λ∈N ≡ {H2·|[n]\U|(λ, 1)}λ∈N.

Proof. By the validity of the adversary, we have that |U ∩ [k]| < tk for every k ∈ [n]. Otherwise,
we would have that U ∈ Âdthr

k by definition of the dynamic threshold access structure. It easy
to see that the above condition implies that, for every k ∈ [n], in experiment H2·|[n]\U|(λ, b)
(for b ∈ {0, 1}) the challenger evaluates (and uses) at most |U ∩ [k]| < tk evaluations of the
polynomial fk sampled at round k. Hence, we can use the security of Shamir’s secret sharing in
order to conclude the proof since, for each polynomial fk (recall that fk is of degree tk− 1), the
point fk(0) is information-theoretically hidden given at most tk−1 evaluations of the polynomial.
This concludes the proof.

Theorem 7 follows by combining the above lemmas. We note that the exact same proof allows
to show that Construction 4 is a computationally private secret sharing scheme for the evolving
flexible dynamic threshold access structure Âflex-dthr, in which the thresholds are arbitrary. The
reason for this is that the validity condition of the adversary for this access structure still implies
|U ∩ [k]| < tk for every k ∈ [n], which allows for Lemma 13 to go through.

Remark 2 (Static threshold). A special case of the dynamic threshold access structure is the
(static) t-threshold access structure Âthr

t , i.e., the threshold t is fixed and independent of n (i.e.,
t1 = t2 = · · · = t = O(1)). Of course, Construction 4 yields a secret sharing scheme for Âthr

t ,
with share size λ · (n+1).11 However, the share size can be improved with a direct construction
based on Shamir’s secret sharing scheme: The dealer samples a single random polynomial f
over GF(2λ), of degree t− 1, and subject to f(0) = µ. Then, for each n ≥ 1, the share of party
n is simply σn = f(n). The share size is λ. Note that this works because, in the computational
setting, the number of parties is upper bounded by an unknown polynomial, but the field is of
exponential size.

11Note that a secret sharing scheme for Âthr
t can also be obtained as a special case of our construction for

rigid evolving DNF formulas access structures (see Theorem 11), by taking n1 = t, ng = 1 for every g ≥ 2, and
mg =

(
n
t

)
for every g ≥ 1. However, the latter yields an even worse share size of poly(λ, n).

27

Remark 3 (Flexible dynamic threshold). Consider the evolving flexible dynamic threshold
access structure Âflex-dthr = {tn}, in which the new authorized subsets when the n-th party
arrives (i.e., the subsets in Âflex-dthr

n \ Âflex-dthr
n−1) are all the subsets of at least tn players that

always include n. We note that this access structure is still monotone, even if we remove the
condition that t1 ≤ · · · ≤ tn; in fact, when the latter condition is added, the access structure
Âflex-dthr collapses to Âdthr. One can show that Construction 4 yields a computationally private
secret sharing scheme for Âflex-dthr, with exactly the same parameters. See the proof of Theorem 7
for more on this point.

Corollary 1. Assuming OWFs, there exists a computationally private secret sharing scheme
over M = {0, 1}λ for the evolving flexible dynamic threshold access structure Âflex-dthr, where
the share size of party n ≥ 1 is λ · (n+ 1).

5.2 Graphs

We start by recalling the concept of secret sharing schemes for graph access structures. Given
an undirected graph G = (V, E), we view the parties as the vertexes in V and authorized sets are
those sets that contain vertexes such that there is at least a pair of vertexes corresponding to an
edge in the graph. Namely, the access structure is specified by a function fG : {0, 1}n → {0, 1},
where n = |V|, and fG(x) = 1 if and only if there exist indexes i, j ∈ [n] such that xi = xj = 1
and (i, j) ∈ E .

We can generalize the above access structure to the evolving setting as follows. W.l.o.g.,
parties are added to the graph in an online manner; every new player is added to the vertex set
V and can be connected via one or more edges to the previous nodes in the graph. However, no
new edges can be added between old nodes in the set V, i.e. we only consider the rigid evolving
graphs access structure, which we denote by Âgraph = {En}, where Gn = (Vn, En) is the graph
when there are n parties. By Theorem 5, the above limitation is inherent as the evolving secret
sharing scheme we describe below does not require to update the shares of old players.

Following [7], we focus on the simpler case where the graph Gn = (Vn, En) is bipartite,

namely the vertex set Vn consists of two sets (V(0)n ,V(1)n), and the edge set En is of the form

En ⊆ V(0)n × V(1)n . This naturally extends to the evolving setting as well (keeping the rigidity
condition), and we write Â2graph = {En} to denote the rigid evolving bipartite graphs access
structure. We will later show that secret sharing for Â2graph implies secret sharing for Âgraph.

Construction 5

Let pPRG = (pPRG.Setup, pPRG.KeyGen, pPRG.Eval) be a pPRG with unbounded polyno-
mial stretch. Consider the following secret sharing scheme SS = (SS.Share, SS.Recon) over
message spaceM = {0, 1} for the rigid evolving bipartite graphs access structure Â2graph.

Sharing: At the onset, the dealer computes (mpkb,mskb)←$ pPRG.Setup(1λ) for every
b ∈ {0, 1}. When the n-th party arrives, the dealer proceeds as follows:

• Let vn ∈ V(b)n (for some b ∈ {0, 1}) be the node in the graph corresponding to

the n-th party, where Gn = ((V(0)n ,V(1)n), En) is the graph specified in Â2graph
n .

• Run α{n} = pPRG.KeyGen(mpkb,mskb, {n}) and yn = pPRG.Eval(mpkb, α{n},
{n}), and let γn = µ⊕ yn.

• Let Tn = {j : (vn, vj) ∈ En} be the set of indexes corresponding

28

to the neighbors of the node vn ∈ V(b)n in the graph. Let αTn =
pPRG.KeyGen(mpk1−b,msk1−b, Tn).

• Return σn = (mpk1−b, γn, αTn).

Reconstruction: The reconstruction algorithm SS.Recon((σi)i∈I , I), given the shares
(σi)i∈I = ((mpk, γi, αTi))i∈I (for some b ∈ {0, 1}), and a minimal authorized sub-

set I = {vi0 , vi1} such that (vi0 , vi1) ∈ En = Â2graph
n , proceeds as follows:

• Without loss of generality, assume that vi0 ∈ V
(b)
n and vi1 ∈ V

(1−b)
n (other-

wise, simply swap vi0 and vi1). Hence, σ0 = (mpk1−b, γi0 , αTi0) and σ1 =
(mpkb, γi1 , αTi1)

• If i0 < i1, compute y′ = pPRG.Eval(mpkb, αTi1 , Ti1) and µ = γi0 ⊕ y′k, where y′k
is the k-th bit of y′ such that the k-th index ik ∈ Ti1 is equal to i0.

• Otherwise, if i1 < i0, compute y′ = pPRG.Eval(mpk1−b, αTi0 , Ti0) and µ = γi1 ⊕
y′k, where y′k is the k-th bit of y′ such that the k-th index ik ∈ Ti0 is equal to i1.

• Output µ.

Correctness follows readily from the correctness property of the underlying projective pPRG.

More in details, fix two vertexes vi1 and vi0 such that (vi0 , vi1) ∈ En and vij ∈ V
(j)
n for j ∈ {0, 1}.

Assume i0 < i1 (the case i1 < i0 follows by using a symmetrical argument). Then, we have
that γi0 = µ ⊕ yi0 (which is part of σi0), where yi0 = pPRG.Eval(mpk0, αi0 , {i0}). Moreover,
by definition, we have that αTi1 = pPRG.KeyGen(mpk0,msk0, Ti1) (which is part of σi1), where
i0 ∈ Ti1 . By correctness of the projective PRG, we conclude that the output µ = γi0 ⊕ y′k is
correct, since y′k is the k-th bit of y′ = pPRG.Eval(mpk0, αTi1 , Ti1) such that i0 = ik ∈ Ti1 (i.e.,
y′k = yi0).

As for security, we prove the following theorem.

Theorem 8. Assuming pPRG is robust (Definition 14), then the scheme SS described in Con-
struction 5 is a computationally private secret sharing scheme overM = {0, 1} for the the rigid
evolving bipartite graphs access structure Â2graph.

Proof. Let n and U ̸∈ Â2graph
n be, respectively, the number of parties and the unqualified subset

(i.e., vertexes that does not have an edge between them) chosen by the adversary in the game

defining computational privacy of SS. Also, let Gn = ((V(0)n ,V(1)n), En) be the graph which

defines Â2graph
n . Consider the following hybrid experiments:

H0(λ, b): This experiment is identical to Gpriv
SS,A(λ, b).

H1(λ, b) Identical to H0(λ, b), except that we change how the challenger computes the shares of

the parties. In particular, for every party k ∈ U such that vk ∈ V
(0)
n , the challenger (during

the computation of σk) lets γj = µ⊕ ρ (recall that γj is part of σk), where ρ←$ {0, 1}.

H2(λ, b): Identical toH1(λ, b), except that we change how the challenger computes the shares of

the parties. In particular, for every party k ∈ U such that vk ∈ V
(1)
n , the challenger (during

the computation of σk) lets γj = µ⊕ ρ (recall that γj is part of σk), where ρ←$ {0, 1}.

Lemma 14. For every b ∈ {0, 1}, we have {H0(λ, b)}λ∈N ≈c {H1(λ, b)}λ∈N.

Proof. By the validity of the adversary, we have that either i ̸∈ U or j ̸∈ U for every (vi, vj) ∈ En.
Hence, for each share σi such that i ∈ U (i.e., the share σi is obtained by the adversary)

29

and vi ∈ V(1)n , the corresponding projective key αTi associated to set Ti satisfies the following

invariant: ∀k ∈ U such that k ∈ V(0)n we have k ̸∈ Ti (otherwise the adversary is not valid).

Hence, by using a hybrid argument (over k ∈ U such that vk ∈ V
(0)
n) and the security of pPRG,

we conclude that γk (as defined in H0(λ, b)) is computationally indistinguishable from µ ⊕ ρ

where ρ←$ {0, 1} (as defined in H1(λ, b)), for every k ∈ U such that vk ∈ V
(0)
n .

Lemma 15. For every b ∈ {0, 1}, we have {{H1(λ, b)}λ∈N ≈c {H2(λ, b)}λ∈N.

Proof. The lemma follows by using an analogous argument to that used in the proof of Lemma 14.

Lemma 16. {H2(λ, 0)}λ∈N ≡ {H2(λ, 1)}λ∈N.

Proof. The lemma follows by observing that:

• The only values (obtained by the adversary) that depend on µ0 and µ1 are the ciphertexts
(γi)i∈U contained in the shares (σi)i∈U .

• Each γi for i ∈ U is a one-time pad encryption of the message.

Thus, the experiments H2(λ, 0) and H2(λ, 1) are identically distributed.

Theorem 8 follows by combining the above lemmas.

For each n ≥ 1, the share σn in Construction 5 consists of a one-bit ciphertext γn, a
projective key αTn , and the master public key mpk of the projective PRG. Moreover, while the
construction only deals with message spaceM = {0, 1}, it is immediate to obtain a scheme for
M = {0, 1}λ by repeating the construction λ times in parallel. Hence, by invoking Theorem 2,
we obtain:

Corollary 2. Under the RSA assumption, or assuming iO and SSB hash functions, there exists
a computationally private secret sharing scheme over M = {0, 1}λ for the the rigid evolving
bipartite graphs access structure Â2graph, where the share size of party n ≥ 1 is poly(λ).

Arbitrary graphs. As observed in [7], in the non-evolving setting, secret sharing schemes
for bipartite graph access structures imply ones for arbitrary graph access structures. In more
details, given a graph G = (V, E) one can construct a bipartite graph H by taking two copies
of each vertex, and for every (u, v) ∈ E connect the first copy of u to the second copy of v; the
share of each party in V consists of the shares of the corresponding two copies of this vertex in
H. The above transformation clearly preserves rigidity, and thus readily adapts to the setting
of rigid evolving graphs access structures. Thus, by leveraging Corollary 2, we obtain:

Corollary 3. Under the RSA assumption, or assuming iO and SSB hash functions, there exists
a computationally private secret sharing scheme overM = {0, 1}λ for the rigid evolving graphs
access structure Âgraph, where the share size of party n ≥ 1 is poly(λ).

5.3 Monotone Circuits

We now turn to the case of access structures represented as circuits C : {0, 1}n → {0, 1} with
AND and OR gates of unbounded fan-in, which we refer to as an AND-OR circuit. We denote
by x = (x1, . . . , xn) the input to the circuit, where xi = 1 means that the i-th player is part of
the reconstruction. Following [1], we make some conventions on the structure of the circuit.

30

• We assume w.l.o.g. that all the outgoing wires of an OR gate are connected as incoming
wires to AND gates, and viceversa; if this is not the case and, say, an OR gate has an
outgoing wire that enters another OR gate, we can duplicate all the input wires of the
first OR gate and connect them directly to the second OR gate. (The same can be done
with AND gates.)

• We assume, for simplicity, that each input wire is only12 connected to an OR gate with
fan-in 1; this can be achieved by adding an OR gate with fan-in 1 for every input xi that
goes into an AND gate with fan-in ≥ 2, and by adding both an OR gate with fan-in 1
followed by an AND gate with fan-in 1 for every input xi that goes into an OR gate with
fan-in ≥ 2 (at the cost of increasing the number of gates by at most 2n).

• We assume that gates are numbered from 1 to m according to some topological order and
that the first n gates correspond to the inputs x1, . . . , xn. We write i→ j when an output
of the i-th gate is being fed to the j-th gate as an input.

As explained in the introduction, we can generalize the above to the evolving setting as
follows. The rigid evolving monotone circuits access structure Âckts = {φ̂g}g≥1 consists of a
sequence of monotone formulas φ̂g (with g = poly(λ)) defined as follows:

φ̂g(x) =
∨
g

Ĉg(x1, . . . , xn), (1)

where Ĉg : {0, 1}n → {0, 1} is an arbitrary AND-OR circuit such that Ĉg(x1, . . . , xn−ng , 0, . . . , 0) =
0, and n =

∑
g ng. Furthermore, without loss of generality, we will assume the output gates

in Ĉg are all AND gates, as if an OR gate is an output gate we can remove it and connect its
output to the final OR gate in the above formula (i.e., the operator

∨
g in Equation (1)).

Based on the above formalization, we propose an evolving secret sharing scheme for Âctks

based on projective PRGs with bounded polynomial stretch (and standard PRGs with un-
bounded polynomial stretch).

Construction 6

Let pPRG = (pPRG.Setup, pPRG.KeyGen, pPRG.Eval) be a block projective PRG with
bounded polynomial stretch, and G : {0, 1}λ → {0, 1}∗ be a standard PRG with unbounded
polynomial stretch. For a seed κ ∈ {0, 1}λ, we parse the output of G(κ) into blocks of size
equal to the size of a projective key produced by pPRG, and denote with G(κ)[i] the i-th
such block. Consider the following secret sharing scheme SS = (SS.Share, SS.Recon) over
message spaceM = {0, 1}λ for the rigid evolving monotone circuits access structure Âckts.

Sharing: When the generation g ≥ 1 begins, the dealer proceeds as follows:

• Let Ĉg be the AND-OR circuit corresponding to the arrival of the g-th generation
(see Equation (1)). Let mg = m∧

g + m∨
g be the number of gates in Ĉg, where

m∧
g and m∨

g are, respectively, the number of AND and OR gates (including the
input and output gates).

• Compute (mpkg,mskg)←$ pPRG.Setup(1λ, 1m
∨
g).

12This assumption is slightly different from[1], where one adds an OR gate with fan-in 1 only for the input
wires that go into AND gates; the modification is needed in order to obtain a construction in the evolving setting.

31

• For each i ∈ [m∨
g], associate to the i-th OR gate in Ĉg a key κ

(g)
i determined as

follows:

– If the gate is an input OR gate, set κ
(g)
i = G(κ∗i)[1] where κ∗i ←$ {0, 1}λ for

each i ∈ [n] \ [n − ng], and κ
(g)
i = G(κ∗i)[g − gi + 1] for each i ∈ [n − ng],

where gi is the generation corresponding to the arrival of party i ∈ [n−ng].
(Observe that, for every i ∈ [n − ng], the key κ∗i corresponds to the PRG
seed contained in the shares of parties of previous generations.)

– If the gate is a non-input OR gate, set

κ
(g)
i = y

(g)
i = pPRG.Eval(mpkg, α

(g)
{i}, {i}),

where α
(g)
{i} = pPRG.KeyGen(mpkg,mskg, {i}).

• For each i ∈ [m∧
g], associate to the i-th AND gate in Ĉg a key κ

(g)
i determined

as follows:

– If the i-th gate is a non-output AND gate, set

κ
(g)
i = αT (g)

i

= pPRG.KeyGen(mpkg,mskg, T (g)
i),

where T (g)
i = {j : i→ j in Ĉg} consists of all out-neighbor of the i-th AND

gate in Ĉg.

– If the i-th gate is an output AND gate, set κ
(g)
i = µ.

• For each i ∈ [m∧
g], associate to the i-th AND gate in Ĉg (including the output

gates) the ciphertext γ
(g)
i = κ

(g)
i ⊕ ρ

(g)
i , which is viewed as an encryption of κ

(g)
i

under the mask ρ
(g)
i =

⊕
j:j→i G(κ

(g)
j)[i]. (For each of the output AND gates,

we only take the first λ bits of the corresponding PRG blocks.)

• Finally, the share of party i ∈ [n] \ [n − ng] (i.e, the share of the new parties

belonging to the g-th generation) is defined to be σi = (mpkg, κ
∗
i , (γ

(g)
j)j∈[m∧

g]
).

Reconstruction: Let x ∈ {0, 1}n be the input that corresponds to the parties that want
to reconstruct the message. For each generation, we traverse the circuit Ĉg from

the inputs to the outputs, and recover the key κ
(g)
i associated to each gate i that is

satisfied by x (i.e., the gate is evaluated to 1 under the assignment x) in Ĉg. In case
the latter allows to obtain the key associated to any of the output AND gates in Ĉg,
output that value as the reconstructed message.

Correctness can be seen as follows. Clearly, for any qualified subset I corresponding to a
satisfying assignment xI for C(x), there exists some g ≥ 1 such that at least one output AND

gate in Ĉg is satisfied by xI . Furthermore, the parties in I can recover the key κ
(g)
i associated

to each gate i that is satisfied by xI in Ĉg, and thus can correctly recover the message. Indeed:

• For an input OR gate, the key κ
(g)
i is given as part of the shares of the parties corresponding

to the assignment x.

• For a non-input OR gate, the key κ
(g)
i = y

(g)
i can be recovered based on the key κ

(g)
j of the

first gate j that is satisfied, and whose outgoing wire enters i, i.e. j → i in Ĉg. Indeed, j

32

is an AND gate, and its key κ
(g)
j , which was already recovered, consists of a projective

key αT (g)
j

for a set T (g)
j that contains i.

• For an AND gate, the key κ
(g)
i can be recovered by XOR-ing the ciphertext γ

(g)
i with the

mask ρ
(g)
i . This mask can be computed based on all the keys {κ(g)j : j → i in Ĉg} that

were already recovered (since j < i and since all the gates j : j → i must be satisfied by
xI).

Turning to security, we establish the following result.

Theorem 9. Assuming pPRG is robust (Definition 14) and G is secure (Definition 1), the
scheme SS described in Construction 6 is a computationally private secret sharing scheme over
M = {0, 1}λ for the rigid evolving monotone circuits access structure Âckts.

Proof. Let n and U be, respectively, the number of parties and the unqualified subset chosen
by the adversary in the game defining computational privacy of SS. Denote by t = |U| the total
number of corrupted parties, and let [n] \ U = {i1, . . . , in−t}. By validity of the adversary, the
unqualified subset U is associated to an input xU ∈ {0, 1}n such that

∨
g Ĉg(xU) = 0, where Ĉg is

the AND-OR circuit corresponding to the g-th generation. We denote by ḡ the last generation.
Consider the following hybrid experiments:

H0(λ, b): This experiment is identical to Gpriv
SS,A(λ, b).

H1(λ, b): We change how the challenger computes the shares of the parties. In particular,

for every generation g ≥ 1, we replace the key κ
(g)
i associated to every input OR gate

corresponding to an honest party, with a uniformly random string of the appropriate
length.

H2(λ, b): We change how the challenger computes the shares of the parties. In particular, for
every generation g ≥ 1:

• We replace the key κ
(g)
i associated to an unsatisfied non-input OR gate with a uni-

formly random key of the appropriate length;

• We replace the ciphertext γ
(g)
i associated to an unsatisfied AND gate (including the

output AND gates) with a uniformly random ciphertext of the appropriate length.

Lemma 17. For every b ∈ {0, 1}, it holds that {H0(λ, b)}λ∈N ≈c {H1(λ, b)}λ∈N.

Proof. The proof uses the hybrid argument. In particular, for every j ∈ [0, n− t], let H1,j(λ, b)

be the experiment where, for every generation g ≥ 1, we replace the key κ
(g)
i associated to each

of the input OR gates that correspond to the first j honest players with a uniformly random

key κ
(g)
i , whereas the keys κ

(g)
i associated to each of the input OR gates that correspond to

the remaining players are defined as in H1(λ, b). Clearly, {H1,0(λ, b)}λ∈N ≡ {H0(λ, b)}λ∈N and
{H1,n−t}λ∈N ≡ {H1(λ, b)}λ∈N, and thus, in order to prove the lemma, it suffices to show that,
for all j ∈ [n− t], we have {H1,j(λ, b)}λ∈N ≈c {H1,j−1(λ, b)}λ∈N.

The latter statement follows by security of the PRG G. Indeed, the only difference between

H1,j−1(λ, b) and H1,j(λ, b) is that, for every g ≥ 1, all of the keys κ
(g)
i associated to the input

OR gates that correspond to the j-th honest player are either equal to G(κ∗ij)[g−gij] (where the

seed of the PRG is unknown to the adversary) or uniformly random. The reduction is standard,
and thus we omit it.

33

Lemma 18. For every b ∈ {0, 1}, it holds that {H1(λ, b)}λ∈N ≈c {H2(λ, b)}λ∈N.

Proof. The proof uses the hybrid argument. In particular, for every g ≤ ḡ and h ≤ mg, let
H2,g,h(λ, b) be the experiment specified below:

• For the first g − 1 generations, the shares of the players are computed as in H2(λ, b).

• For the generation g, the shares of the players are computed as follows:

– For all i ≤ h, if the i-th gate is an unsatisfied AND gate, sample the ciphertext

γ
(g)
i uniformly at random; if the i-th gate is an unsatisfied OR gate, sample the

corresponding key κ
(g)
i uniformly at random.

– For all i > h, On the other hand, the keys and ciphertexts associated to gates i > h
are determined as in H1(λ, b).

• For the last ḡ − g generations, the shares of the players are computed as in H1(λ, b).

Clearly, {H2,0,0(λ, b)}λ∈N ≡ {H1(λ, b)}λ∈N and {H2,ḡ,mḡ}λ∈N ≡ {H2(λ, b)}λ∈N, and thus, in
order to prove the lemma, it suffices to show that, for all g ∈ [ḡ] and all h ∈ [ng], we have
{H2,g,h(λ, b)}λ∈N ≈c {H2,g,h−1(λ, b)}λ∈N.

Observe that the two hybrids differ only if the h-th gate is an unsatisfied gate which is either
an AND gate or a non-input OR gate. We deal with these two cases separately.

Case 1: the h-th gate is an AND gate. In this case, at least one of the incoming wires

j must be connected to an unsatisfied OR gate j < h. The key κ
(g)
j associated to this gate is

chosen at random in both hybrids, so we can use any distinguisher A between the two hybrids
in order to break the security of G as follows:

• The reduction is given13 m∧
g blocks of size equal to the dimension of a projective key

producede by pPRG, which we denote by z = (z1, . . . , zm∧
g
), where zi is uniform for all

i ≤ h− 1 and zi = G(κ
(g)
j)[i] for all i ≥ h+ 1, and where zh is either uniform or equal to

zh = G(κ
(g)
j)[h].

• For the first g − 1 generations, the reduction computes the shares of the players exactly
as defined in H2(λ, b).

• For the generation g, the reduction determines the shares of the parties as defined in

H1(λ, b), except that it replaces the key κ
(g)
i with the challenge block zi.

• For the last ḡ − g generations, the reduction computes the shares of the players exactly
as defined in H1(λ, b).

• Finally, output whatever A outputs.

Depending on the distribution of the challenge z, the reduction perfectly simulates the view of
the adversary in either H2,g,h(λ, b) or in H2,g,h−1(λ, b). The lemma follows.

13This property follows by security of G by a standard hybrid argument.

34

Case 2: the h-th gate is a non-input OR gate. In this case, all the incoming wires must
be connected to unsatisfied gates. We show how to turn any distinguisher A between the two
hybrids into an adversary attacking the robustness property of the projective PRG pPRG as
follows:

• The reduction initializes the robustness game with parameters 1m
∨
g , and asks the challenger

to obtain the projective keys associated to all sets T (g)
i that are used by the dealer in the

computation of the shares for the g-th generation, except for the sets that contain the
index h. Let T̄ be the union of those sets.

• For the first g − 1 generations, the reduction computes the shares of the players exactly
as defined in H2(λ, b).

• For the generation g, the reduction determines the shares of the parties as defined in

H1(λ, b), except that it replaces the keys κ
(g)
i = y

(g)
i associated to all the non-input OR

gates i such that i→ h with one of the blocks from the challenge. In addition, we use the
projective keys received from the challenger in order to generate all other pseudorandom

blocks y
(g)
i for i ≥ h that are needed by the sharing algorithm for this generation.

• For the last ḡ − g generations, the reduction computes the shares of the players exactly
as defined in H1(λ, b).

• Finally, output whatever A outputs.

Lemma 19. {H2(λ, 0)}λ∈N ≡ {H2(λ, 1)}λ∈N.

Proof. The lemma follows by observing that in the experiment H2(λ, b), for every generation

g ≥ 2, the ciphertext γ
(g)
i associated to each of the unsatisfied output AND gates in Ĉg is

uniform. By the validity of the adversary, all such gates are indeed unsatisfied, and thus the
distribution of the shares given to the adversary is independent of the challenge bit.

Theorem 9 follows by combining the above lemmas.

We notice that the share of each new party within the generation g ≥ 1 (i.e., any party
that is not part of previous generations) consists of a master public key for a projective PRG
outputting m∨

g blocks of dimension λ, of a λ-bit seed for the standard PRG G, and of an

encryption of the projective key14 associated to each AND gate in the circuit Ĉg. Recall that
we increased the number of OR gates in the circuit Ĉg by at most ng (in order to make sure that
input wires only enter OR gates), and thus we can simply upper bound m∨

g with mg. Hence,
by invoking Theorem 2, we obtain:

Corollary 4. Let Âckts = {Ĉg} be the monotone circuits access structure, and denote by m∧
g

(resp. m∨
g) the number of AND (resp. OR) gates in Ĉg for any g ≥ 1. There exists a computa-

tionally private secret sharing scheme over M = {0, 1}λ for Âckts, from the following assump-
tions and with the following parameters:

• Under the RSA assumption, where the share size of all parties belonging to the generation
g ≥ 1 is m∧

g · poly(λ).
14The key associated to the output AND gate actually equals the message, but this difference is immaterial

when evaluating the share size.

35

• Assuming iO and SSB hash functions, where the share size of all parties belonging to the
generation g ≥ 1 is m∧

g · poly(λ).

• Under either the DDH or the BDDH assumption, where the share size of all parties be-
longing to the generation g ≥ 1 is (m∨

g)
2 · poly(λ) +m∧

g ·O(λ).

• Under the LWE assumption, where the share size of all parties belonging to the generation
g ≥ 1 is m∨

g · poly(λ) +m∧
g ·O(λ).

Remark 4 (On the number of gates). Recall that we assumed for simplicity that each input
wire in the circuits Ĉg is only connected to OR gates with fan-in 1. For this to hold, one needs
to add an AND gate with fan-in 1 for every input wire that goes into an OR gate with fan-in
≥ 2 (in order to maintain the invariant that the circuit alternates OR and AND layers). Hence,
the number of AND gates m∧

g in the above corollary must be increased by an additive factor of
at most ng for every g ≥ 1.

5.4 CNF Formulas

Next, we consider the case of access structures expressed by monotone formulas in conjunctive
normal form (CNF), i.e. φ(x) =

∧m
i=1Ci where each clause Ci is a disjunction over a subset of

the n variables x = (x1, . . . , xn).
We can easily adapt the above to the evolving setting. When the n-th party comes, the

access structure Acnf evolves as follows: (i) The variable xn corresponding to the n-th party can
be added (using ∨) inside any of the already existing clauses C1, . . . , Cm; (ii) Additionally, we
can remove any of the clauses C1, . . . , Cm. These conditions preserve monotonicity and cover
all possible cases (indeed, monotonicity forbids to add new clauses to the CNF formula). Note
that when only option (i) is available we get rigidity; in contrast, option (ii) violates rigidity.
Consistently, we write Âm-cnf to denote the rigid evolving CNF formulas access structure (i.e.,
when only option (i) is available).

Construction 7

Let pPRG = (pPRG.Setup, pPRG.KeyGen, pPRG.Eval) be a projective PRG with
bounded polynomial stretch. Consider the following secret sharing scheme SS =
(SS.Setup, SS.Share, SS.Recon) over message spaceM = {0, 1} for the rigid evolving CNF
formulas access structure Âm-cnf , where m is the (fixed) number of clauses.

Sharing: At the onset, the dealer computes (mpk,msk)←$ pPRG.Setup(1λ, 1m). Let
(y1, . . . , ym) = pPRG.Eval(mpk,msk). When the n-th party arrives, the dealer pro-
ceeds as follows:

• Let σ0 = µ⊕ y1 ⊕ · · · ⊕ ym.

• Let Tn = {j : xn ∈ Cj} and αTn = pPRG.KeyGen(mpk,msk, Tn).
• Output σn = (mpk, σ0, αTn).

Reconstruction: The reconstruction algorithm SS.Recon((σi)i∈I , I), given the shares
(σi)i∈I such that σi = (mpk, σ0, αTi), and a minimal authorized subset I ∈ Âm-cnf

n ,
proceeds as follows for every i ∈ [m]:

• Let j ∈ I be a party that appears in the i-th clause.

36

• Compute y′k, where y′k is the k-th bit of y′ = pPRG.Eval(mpk, αTj , Tj), such that
the k-th index jk ∈ Ti is equal to i.

Finally, output σ0 ⊕ y′1 · · · ⊕ y′m.

Let I ⊆ 2[n] be a qualified subset I ∈ Âm-cnf
n (recall that Âm-cnf

n ⊆ Âm-cnf denotes the access
structure with n parties), and let xI be the corresponding satisfying assignment (i.e., φ(xI) = 1,
where xI is the assignment with value 1 in the positions indexed by I, and 0 elsewhere).
Correctness follows readily from the correctness property of the underlying projective PRG,
since for every clause Cj in φ there exists a variable xi ∈ Cj such that j ∈ Ti, and thus yj
can be computed by the key αTi held by the parties in I; thus, the parties in I can compute
(y′1, . . . , y

′
m) = (y1, . . . , ym). As for security, we have the following theorem.

Theorem 10. Assuming pPRG is robust (Definition 14), the scheme SS described in Construc-
tion 7 is a computationally private secret sharing scheme over {0, 1} for the the rigid evolving
CNF formulas access structure Âm-cnf , for every fixed m ≥ 1.

Proof. Fix m ≥ 1. Let n and U ̸∈ Âm-cnf
n be, respectively, the number of parties and the

unqualified subset chosen by the adversary in the game defining computational privacy of SS.
Also, let φ(x) =

∧m
i=1Ci be the CNF formula made of m clauses and n variables which defines

Âm-cnf
n . Consider the following hybrid experiments:

H0(λ, b): This experiment is identical to Gpriv
SS,A(λ, b).

H1(λ, b) Identical to H0(λ, b), except that we change how the challenger computes the shares
of the parties. In particular, for every i ∈ [m] such that U ∩Ci = ∅, the challenger replaces
yi (i.e., one of the bits output by the projective PRG that are used to compute σ0 which,
in turn, is part of every share) with a random value ρ←$ {0, 1}.

Lemma 20. For every b ∈ {0, 1}, we have {H0(λ, b)}λ∈N ≈c {H1(λ, b)}λ∈N.

Proof. First, note that U ∩Ci = ∅ for some i ∈ [m]. Otherwise, the adversary is not valid since
U would not be an unqualified set for Âm-cnf

n . In turn, the condition U ∩ Ci = ∅ implies that
i ̸∈ Tj for every j ∈ U where Tj is the set defined in Construction 7. Thus, the adversary does
not obtain any projective key which allows to compute yi (i.e., the keys used to compute the
encryption σ0 of the message). Because of this, the robustness property of the projective PRG
guarantees that yi is indistinguishable from a random bit. This concludes the proof.

Lemma 21. {H1(λ, 0)}λ∈N ≡ {H1(λ, b)}λ∈N.

Proof. By the validity of the adversary, we have that φ(xU) = 0 where xU is the assignment
corresponding to the unqualified set of parties U chosen by the adversary. This implies that
there exists i ∈ [m] such that the i-th clause Ci of φ(x) is not satisfied by xU , i.e., U ∩ Ci = ∅.
Hence, the keys (y1, . . . , ym) (used to produce the ciphertext σ0 encrypting the message) satisfies
the following condition: ∃i ∈ [m] such that yi = ρ←$ {0, 1}. This implies that σ0 (included in
each share (σ1, . . . , σn)) is a one-time pad encryption of the message which, in turn, is identically
distributed to a random string. Thus, the experiments H1(λ, 0) and H1(λ, 1) are identically
distributed.

Theorem 10 follows by combining the above lemmas.

37

While Construction 7 only deals with message spaceM = {0, 1}, it is immediate to gener-
alize it toM = {0, 1}λ by using a block projective PRG with bounded polynomial stretch. In
turn, by invoking Theorem 2, we obtain:

Corollary 5. For every fixed m ≥ 1, there exists a computationally private secret sharing
scheme overM = {0, 1}λ for the rigid evolving CNF formulas access structure Âm-cnf , from the
following assumptions and with the following parameters:

• Under the RSA assumption, where the share size of party n ≥ 1 is poly(λ).

• Assuming iO and SSB hash functions, where the share size of party n ≥ 1 is poly(λ).

• Under either the DDH or the BDDH assumption, where the share size of party n ≥ 1 is
m2 · poly(λ).

• Under the LWE assumption, where the share size of party n ≥ 1 is m · poly(λ).

Remark 5 (On removing rigidity). We observe that, assuming the underlying projective PRG
has unbounded polynomial stretch, we can adapt Construction 7 to also work for the non-rigid
evolving CNF formulas access structure Acnf (i.e., the number of clauses m now also grows).
By Theorem 5, the latter requires to update the shares of the players. In this particular case,
whenever the clause Cm+1 is added to the CNF formula, it suffices to replace the value σ0
with σ0 ⊕ ym+1, where ym+1 is the next bit output by the projective PRG. Since the informa-
tion σ0 can be made public, this construction would only require public updates (without direct
communication with the old players).

From CNF formulas to truth tables. Following [1], given a truth table corresponding to a
monotone function f : {0, 1}n → {0, 1}, we can associate to it a CNF formula with at most m =
2n clauses. The latter also applies to the evolving setting, taking into account monotonicity and
rigidity. Thus, Construction 7 implies a secret sharing scheme for rigid evolving monotone truth
tables, although the running time of the sharing algorithm is polynomial only for n = O(log λ).
A negative result by Larsen and Simkin [27] shows that the latter limitation is inherent (even
in the non-evolving setting) when the shares are succinct.

5.5 DNF Formulas

Consider the case of access structures expressed by monotone formulas in disjunctive normal
form (DNF), i.e. φ(x) =

∨m
i=1Ci where each clause Ci is a conjunction over a subset of the n

variables x = (x1, . . . , xn). In the evolving setting, we can neither remove old clauses nor add
new variables to old clauses (as otherwise monotonocity is violated). In turn, we can always add
clauses, and thus the value m is not fixed and grows with the number of parties n. However,
rigidity requires that we never remove variables from old clauses, and that each new clause
including old variables must also include at least one new variable.

To allow more flexibility, we will assume the clauses are not added one by one, but rather
in generations of variable size. This distinction is important, as otherwise we might limit the
way the access structure evolves. For instance, consider the case in which the first clause is
C1(x1, x2) = x1∧x2 and then we add two additional clauses at the same time, say C2(x1, x2, x3,
x4) = x1 ∧ x3 ∧ x4 and C3(x1, x2, x3, x4) = x2 ∧ x3 ∧ x4. In case the clauses can only be added
one by one, rigidity forbids to add C3 after C2, as C3 must necessarily contain at least one new
variable x5 which is needed for reconstruction.

We write Âdnf to represent the corresponding rigid evolving DNF formulas access structure.
Also, we denote by mg the number of clauses added to the DNF formula in generation g ≥ 1,

38

and by ng the number of variables added to the DNF formula in generation g ≥ 1. This way,
we have n =

∑
g ng and m =

∑
g mg. We can obtain a secret sharing scheme for Âdnf by

considering a special case of Construction 6 in which each circuit Ĉg consists of mg output
AND gates, which take as input a subset of the n inputs. Since there are no non-input OR
gates in the circuits, we do not need a projective PRG anymore, and thus the share size of party
n ≥ 1 would be λ · (1 +mg).

For completeness, we describe a slightly different construction (assuming only one-way func-
tions) which optimizes the share size.

Construction 8

Let G : {0, 1}λ → {0, 1}∗ be a standard PRG with unbounded polynomial stretch. For a
seed κ ∈ {0, 1}λ, we parse the output of G(κ) into blocks of size λ and denote with G(κ)[i] the
i-th such block. Consider the following secret sharing scheme SS = (SS.Share,SS.Recon)
over message space M = {0, 1}λ for the rigid evolving monotone DNF formulas access
structure Âdnf .

Sharing: When the generation g ≥ 1 begins, the dealer proceeds as follows.

• Let (Cj)j∈[m]\[m−mg] be the new clauses, so that the current access structure is
specified by the clauses C1, . . . , Cm.

• For every i ∈ [n]\[n−ng] (i.e., the parties that have not received their shares yet),
the dealer sets the share of party i to σi = (κi, (γj)j∈Ti), where κi←$ {0, 1}λ,
γj = µ ⊕

⊕
xi∈Cj

G(κi)[j], and Ti is the set of the indexes j ∈ [m] \ [m − mg]

such that xi ∈ Cj (i.e., the indexes of the clauses that contain the variable xi
associated to the i-th party).

Reconstruction: The reconstruction algorithm SS.Recon((σi)i∈I , I), given the shares
(σi)i∈I such that σi = (κi, (γj)j∈Ti), and a minimal authorized subset I ∈ Âdnf

n ,
proceeds as follows:

• Let j∗ ∈ [m] be the index corresponding to a clause Cj∗ that is satisfied by xI ,
where xI is the assignment associated to I.

• For every xi ∈ Cj∗ , compute yi = G(κi)[j
∗].

Finally, output γj∗ ⊕
⊕

i∈Cj∗
yi.

Correctness is immediate. As for security, we show the following result.

Theorem 11. Assuming G is secure (Definition 1), the scheme SS described in Construction 8
is a computationally private secret sharing scheme overM = {0, 1}λ for the rigid evolving DNF
formulas access structure Âdnf .

Proof. Let n and U ̸∈ Âdnf
n be, respectively, the number of parties and the unqualified subset

chosen by the adversary in the game defining computational privacy of SS. Also, let φ(x) =∨m
i=1Ci be the DNF formula made of m clauses and n variables which defines Âdnf

n . Consider
the following hybrid experiments:

H0(λ, b): This experiment is identical to Gpriv
SS,A(λ, b).

39

Hj(λ, b) for j ∈ [n] \ U : Identical toHj−1(λ, b), except that we change how the challenger com-
putes the shares of the parties. In particular, for every i ∈ [m] such that xj ∈ Ci, and
for every k ∈ [n] such that xk ∈ Ci, the challenger (during the computation of σk) lets
γi = µb ⊕

⊕
xh∈Ci

yh where yj ←$ {0, 1}λ (instead of yj = G(κj)[i]), and yh = G(κh)[i] for
every xh ∈ Ci such that h ̸= j.

Lemma 22. For every j ∈ [n] \ U , and for every b ∈ {0, 1}, it holds that {Hj−1(λ, b)}λ∈N ≈c

{Hj(λ, b)}λ∈N.

Proof. The only difference between Hj−1(λ, b) and Hj(λ, b) is in the computation of the cipher-
texts {γi}i∈[m]:xj∈Ci

(note that γi is contained in the shares of party k ∈ [n] only if xk ∈ Ci).
Since j ̸∈ U , we have that the seed κj of the j-th party is never revealed to the adversary.
Hence, the lemma follows by the security of the PRG G (Definition 1).

Lemma 23. {H|[n]\U|(λ, 0)}λ∈N ≡ {H|[n]\U|(λ, 1)}λ∈N.

Proof. By the validity of the adversary, we can conclude that Ci ̸⊆ U for every i ∈ [m] (i.e., in
each clause there is a variable associated to an honest party; otherwise, we would have φ(xU) = 1
where xU is the assignment corresponding to the set U). Thus, by definition of H|[n]\U|(λ, 0)
and H|[n]\U|(λ, 1), for each i ∈ [m], the ciphertext γi associated to the clause Ci is computed

using at least one random key yj ←$ {0, 1}λ (for some xj ∈ Ci such that j ∈ [n] \ U). Hence, all
ciphertexts {γi}i∈[m] are uniformly distributed. This concludes the proof.

Theorem 11 follows by combining the above lemmas.

For every n ≥ 1, the share size of the n-th party is λ · (1 + |Tn|) where |Tn| is the number
of clauses that contain the variable xn associated to party n. Note that |Tn| ≤ mg (i.e., the
number of new clauses added with the g-th generation). Hence, we obtain:

Corollary 6. Assuming OWFs, there exists a computationally private secret sharing scheme
over M = {0, 1}λ for the rigid evolving monotone DNF formulas access structure Âdnf , where
the share size of party n ≥ 1 is λ · (1 + |Tn|) and |Tn| is the number of clauses that contain the
variable xn associated to party n.

6 Domain Extension

In the previous section, we gave constructions of computationally private secret sharing schemes
for different evolving access structures, over domain M = {0, 1}λ. In this section, we address
the question of extending the domain toM = {0, 1}ℓ for an arbitrary polynomial ℓ = poly(λ).

Assume for simplicity that ℓ is a multiple of λ (if not, one can use padding). A trivial
solution to the above question would be to consider ℓ parallel runs of an evolving secret sharing
scheme for domainM = {0, 1}λ. However, assuming the underlying secret sharing scheme has
shares of size s(λ, n, λ), the latter yields shares of size ℓ/λ ·s(λ, n, λ), and thus we are interested
here in better solutions in terms of share size.

6.1 Evolving Information Dispersal

An essential tool for dealing with the question of domain extension for standard secret sharing is
the concept of information dispersal, introduced by Krawczyk [26]. Intuitively, an information
dispersal for the t-threshold access structure allows to distribute a message µ ∈ {0, 1}ℓ to n
parties, in such a way that any subset of t parties can reconstruct the message; the main

40

difference with threshold secret sharing is that unauthorized subsets of players could potentially
learn partial information about the message.

The definitions below generalizes information dispersal to the setting of evolving access
structures. While the treatment would make sense even for non-rigid evolving access struc-
tures, we stick to rigid ones as we do in the rest of the paper. An information dispersal
IDS = (IDS.Share, IDS.Recon) for evolving access structure A, and with message space M and
fragments space C, consists of two polynomial-time algorithms specified as follows:

• The randomized sharing algorithm IDS.Share(µ, (γi)i∈[n−1],An) takes as input a message
µ ∈M, a collection of n− 1 fragments γ1, . . . , γn−1 ∈ S, and an access structure An and
outputs the fragment γn for the n-th party.

• The deterministic reconstruction algorithm IDS.Recon((γi)i∈I , I) takes as input a collec-
tion of fragments (γi)i∈I along with a subset I ⊆ 2[m] of the parties, and outputs a message
µ′ ∈M.

Definition 21 (Correctness of evolving information dispersal). We say that an information
dispersal IDS for an evolving access structure A is correct if for every message µ ∈ M, for
every number of parties n ≥ 1, and for every qualified subset I ∈ An it holds that

P
[
µ = µ′ :

∀i ≤ n : γi←$ IDS.Share(µ, (γj)j<i,Ai)
µ′ = IDS.Recon((γi)i∈I , I)

]
= 1.

An important goal in the design of an information dispersal is to minimize the maximum
size of the fragments assigned to the parties (as otherwise, the information dispersal that sets
γi = µ for all i ∈ [n] always woks). Let I ∈ A be an authorized subset, and let |I| = t.
Clearly, the size of each fragment assigned to the parties in I must be at least ℓ/t, and thus the
maximum size of a fragment corresponds to authorized sets with minimal size. We call optimal,
an information dispersal in which the maximum size of the fragments assigned to the players is
equal to ℓ/t, where t is the minimum size of any authorized subset in A. The theorem below
says that whenever an evolving access structure is such that the minimal size of an authorized
subset decreases over time, no information dispersal can be optimal in terms of the size of the
fragments without updating the previous fragments.

Theorem 12. Let A be an evolving access structure such that there exist indexes n1, n2 with
n1 < n2 for which 1 < t2 < t1, where t1 = min{|I| : I ∈ An1} and t2 = min{|I| : I ∈ An2}.
Then, any optimal information dispersal for A satisfying correctness requires to update the
fragments of some of the parties.

Proof. Let IDS be any information dispersal for the evolving access structure A in which the
fragments of the parties never change once assigned by the dealer. Let t1 be the minimal size
of an authorized subset when party n1 arrives. Since IDS is optimal, the maximum size of the
fragments assigned to the parties when party n1 arrives is ℓ/t1. When party n2 arrives, the
minimal size of an authorized subset is t2 < t1 with t2 > 1. Suppose that we assign to party
n2 a fragment of size ℓ/t2; now, the parties belonging to any authorized subset I ∈ An2 hold at
most ℓ/t2 + (t2− 1) · ℓ/t1 < ℓ/t2 + (t2− 1) · ℓ/t2 = ℓ bits of information about the message, and
thus cannot determine the message.

Threshold access structures. In the non-evolving setting, an information dispersal for the
t-threshold access structure is simply an erasure code, which can be instantiated using Reed-
Solomon codes as follows. Parse the message µ into t blocks µ = (µ0, . . . , µt−1), and interpret
each block as an element of GF(q); if needed, the original message can be padded so that the

41

message length ℓ is a multiple of the threshold t. Hence, let f(X) = µ0+µ1 ·X+ · · ·+µt−1 ·Xt−1

be the polynomial overGF(q), whose coefficients are the fragments of the message. The fragment
γi assigned to party i ∈ [n] is f(i). Now, any subset of t parties can successfully reconstruct the
polynomial, and thus recover the message. Moreover, the size of each fragment is log q = ℓ/t,
which is optimal.

We can extend the above to the evolving setting assuming the message is long enough, so that
the size q can accommodate an arbitrary polynomial number of players n = poly(λ). In practice,
this requires an exponentially large field and thus it is not very efficient as reconstruction takes
quadratic (in t) time. Using more sophisticated encoding methods (e.g., LT codes [28]), one
can support a large number of players for messages of arbitrary length more efficiently, with
reconstruction time that is only linear (in t).

Theorem 13. For every n, ℓ = poly(λ) and t = O(1), there exists an information dispersal
overM = {0, 1}ℓ for the evolving t-threshold access structure.

Arbitrary access structures. As shown by Bèguin and Cresti [5], given an information
dispersal for the threshold access structure, we can obtain an information dispersal for arbitrary
access structures by setting the threshold t to the minimum size of an authorized subset. This
optimizes the fragments size in terms of the maximum size of each fragment. The above works
directly also in the evolving setting, by assuming an information dispersal for the evolving
threshold access structure. We note that this construction requires that the dealer knows the
minimum size of an authorized subset from the start; this property is satisfied by many evolving
access structures such as graphs access structures, dynamic threshold access structures, and
CNF formulas access structures.

Construction 9

Let IDS′ = (IDS′.Share, IDS′.Recon) be an information dispersal over message spaceM for
the evolving threshold access structure, where the threshold is fixed. Consider the following
information dispersal IDS = (IDS.Share, IDS.Recon) over message spaceM for any evolving
access structure A such that t = min{|I| : I ∈ A}.

Sharing: When the n-th party arrives, the dealer runs γn = IDS′.Share(µ, (γi)i<n, t) and
returns γn to the party.

Reconstruction: The reconstruction algorithm IDS.Recon((γi)i∈I , I), given the fragments
(γi)i∈I corresponding to an authorized subset I ∈ An reconstructs the message µ by
running the reconstruction algorithm of the underlying information dispersal IDS′.

Theorem 14. Assuming IDS′ satisfies correctness, the information dispersal IDS described in
Construction 9 satisfies correctness for any evolving access structure A.
Proof. The theorem simply follows by observing that any authorized subset I ∈ A used for
reconstruction satisfies |I| ≥ t. Hence, by correctness of IDS′, running IDS′.Recon((γi)i∈I , I)
yields the message.

While the information dispersal of Theorem 14 is optimal in terms of fragments size, it
requires to know the minimum size of an authorized subset in advance. By Theorem 12, this
limitation in inherent if one insists on obtaining an optimal information dispersal for arbitrary
access structures.

42

6.2 Krawczyk’s Compiler

Krawczyk [26] showed that, using an information dispersal for the threshold access structure,
one can extend the domain of any secret sharing scheme for the same access structure in such
a way that the maximum share size is ℓ/t+ poly(λ), where ℓ is the message length and t is the
threshold. This is asymptotically optimal (as ℓ → ∞). Later, Bèguin and Cresti [5] showed
how to extend this result to arbitrary access structures.

In this section, we show a simple generalization of the above constructions to the evolving
setting. Namely, we assume an information dispersal for an arbitrary rigid evolving access
structure Â, and use it to extend the domain of any secret sharing scheme for the same access
structure. Assuming the underlying information dispersal is optimal, the maximum share size
of the transformed secret sharing scheme satisfies s∗(λ, n, ℓ) = s(λ, n, λ) + ℓ/t, where s(λ, n, λ)
is the share size of the underlying secret sharing scheme for messages of length λ, and t is the
minimum size of an authorized set in Â.

Construction 10

Let SS = (SS.Share, SS.Recon) be a secret sharing scheme over message space {0, 1}λ for
the rigid evolving access structure Â, let IDS = (IDS.Share, IDS.Recon) be an information
dispersal over message space {0, 1}ℓ for Â, and let SKE = (SKE.Enc,SKE.Dec) be a secret-
key encryption scheme with message and ciphertext space {0, 1}ℓ. Consider the following
secret sharing scheme SS∗ = (SS∗.Share, SS∗.Recon) over message space {0, 1}ℓ for Â.

Sharing: At the onset, the dealer samples κ←$ {0, 1}λ and lets γ = SKE.Enc(κ, µ). When
the n-th party arrives, the dealer runs σn = SS.Share(κ, (σi)i<n, Ân) and γn = IDS.
Share(γ, (γi)i<n, Ân). Finally, it outputs σ

∗
n = (σn, γn).

Reconstruction: The reconstruction algorithm SS∗.Recon((σ∗
i)i∈I , I), given the shares

(σ∗
i)i∈I such that σ∗

i = (σi, γi), and an authorized subset I ∈ Ân, it returns Dec(κ, γ)
where κ = SS.Recon((σi)i∈I , I) and γ = IDS.Recon((γi)i∈I , I).

Correctness follows immediately by the correctness of the underlying building blocks. As
for security, we establish the following result.

Theorem 15. Assuming that SS is a computationally private secret sharing scheme for the rigid
evolving access structure Â (Definition 19), and that SKE is one-time secure (Definition 5), the
scheme SS∗ described in Construction 10 is a computationally private secret sharing scheme for
Â.

Proof. Let H0(λ, b) ≡ Gpriv
SS∗,A∗(λ, b) be the original experiment defining computational privacy

of the secret sharing scheme SS∗, with the challenge bit fixed to b ∈ {0, 1}. We consider the
following hybrid experiment.

H1(λ, b): This experiment is identical to H0(λ, b), except that the challenger samples two in-
dependent keys κ, κ′←$ {0, 1}λ and the shares σn are now computed using κ′, whereas
the ciphertext γ (and thus the fragments γn) is still computed using κ as in the original
experiment.

Lemma 24. For all b ∈ {0, 1}, it holds that H0(λ, b) ≈c H1(λ, b).

43

Proof. Fix b ∈ {0, 1}. The proof is by reduction to the computational privacy of the underlying
secret sharing scheme SS. By contradiction, assume that there exists a PPT adversary A∗ that
can distinguish between H0(λ, b) and H1(λ, b) with non-negligible probability. We construct a
PPT adversary A that breaks computational privacy of SS as follows:

• Run A∗ and receive back a pair of messages (µ0, µ1), an integer n ∈ N, and an unauthorized
subset U ̸∈ Ân.

• Sample κ, κ′←$ {0, 1}λ, and forward (κ, κ′), n and U to the challenger.

• Upon receiving the challenge shares (σi)i∈U , compute γ = SKE.Enc(κ, µb) and for each
i ∈ [n] generate γi = IDS.Share(γ, (γj)j<i, Âi). Return (σ∗

i)i∈U = ((σi)i∈U , (γi)i∈U) to A∗.

• Upon receiving a bit b′ from A∗ return b′ to the challenger.

For the analysis, we note that when the shares (σi)i∈U are generated by a secret sharing of κ,
the distribution generated by the reduction is identical to the view of A∗ in a run of experiment
H0(λ, b). Similarly, when the shares (σi)i∈U are generated by a secret sharing of κ′, the distri-
bution generated by the reduction is identical to the view of A∗ in a run of experiment H1(λ, b).
The lemma follows.

Lemma 25. H1(λ, 0) ≈c H1(λ, 1).

Proof. The proof is by reduction to the one-time security of the underlying secret-key encryption
scheme SKE. By contradiction, assume that there exists a PPT adversary A∗ that can distinguish
between H1(λ, 0) and H1(λ, 1) with non-negligible probability ϵ. We construct a PPT adversary
A that breaks one-time security of SKE as follows:

• Run A∗ and receive back a pair of messages (µ0, µ1), an integer n ∈ N, and an unauthorized
subset U ̸∈ Ân.

• Forward (µ0, µ1) to the challenger, and receive back the ciphertext γ.

• Sample κ′←$ {0, 1}λ, and for each i ∈ [n] generate σi = SS.Share(κ′, (σj)j<i, Âi), as well
as γi = IDS.Share(γ, (σj)j<i, Âi). Return (σ∗

i)i∈U = ((σi)i∈U , (γi)i∈U) to A∗.

• Upon receiving a bit b′ from A∗ return b′ to the challenger.

For the analysis, we note that when the challenge ciphertext γ is generated by encrypting µ0,
the distribution generated by the reduction is identical to the view of A∗ in a run of experiment
H1(λ, 0). Similarly, when the challenge ciphertext γ is generated by encrypting µ1, the distri-
bution generated by the reduction is identical to the view of A∗ in a run of experiment H1(λ, 1).
The lemma follows.

The theorem statement now follows by combining the above lemmas.

7 Conclusions

We have initiated a systematic study of evolving secret sharing schemes in the computational
setting. Our main finding is that switching to computational security allows to obtain se-
cret sharing schemes for a plethora of evolving access structures, including dynamic threshold,
graphs, CNF and DNF formulas, and monotone circuits access structures. Furthermore, for
many of there access structures, our secret sharing schemes are succinct, i.e., much smaller
compared to the size of a natural computational representation of the evolving access structure.

44

A first natural direction for future research would be to obtain secret sharing schemes for
more evolving access structures (e.g., monotone NP [24]), or to improve our constructions in
terms of hardness assumptions and/or share size. Another interesting open problem is to study
evolving secret sharing in the context of adaptive security [22], or with additional properties
such as verifiability [3], and non-malleability [19, 17].

Acknowledgements. The first author was supported by the Carlsberg Foundation under the
Semper Ardens Research Project CF18-112 (BCM); the second author was partially supported
by project SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU
and by Sapienza University under the project SPECTRA.

References

[1] Applebaum, B., Beimel, A., Ishai, Y., Kushilevitz, E., Liu, T., Vaikuntanathan, V.: Suc-
cinct computational secret sharing. Cryptology ePrint Archive, Paper 2023/955 (2023),
https://eprint.iacr.org/2023/955

[2] Applebaum, B., Nir, O.: Upslices, downslices, and secret-sharing with complexity of 1.5n.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 627–655.
Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84252-
9 21

[3] Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609. Springer,
Heidelberg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0 32

[4] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.:
On the (im) possibility of obfuscating programs. Journal of the ACM (JACM) 59(2), 1–48
(2012)

[5] Béguin, P., Cresti, A.: General short computational secret sharing schemes. In: Guillou,
L.C., Quisquater, J.J. (eds.) EUROCRYPT’95. LNCS, vol. 921, pp. 194–208. Springer,
Heidelberg (May 1995). https://doi.org/10.1007/3-540-49264-X 16

[6] Beimel, A.: Secret-sharing schemes: A survey. In: Coding and Cryptology - Third In-
ternational Workshop, IWCC 2011, Qingdao, China, May 30-June 3, 2011. Proceedings.
vol. 6639, pp. 11–46. Springer (2011)

[7] Beimel, A., Farràs, O., Mintz, Y.: Secret-sharing schemes for very dense graphs. Journal
of Cryptology 29(2), 336–362 (Apr 2016). https://doi.org/10.1007/s00145-014-9195-8

[8] Beimel, A., Othman, H.: Evolving ramp secret-sharing schemes. In: Catalano, D., De
Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp. 313–332. Springer, Heidelberg (Sep 2018).
https://doi.org/10.1007/978-3-319-98113-0 17

[9] Beimel, A., Othman, H.: Evolving ramp secret sharing with a small gap. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 529–555. Springer,
Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45721-1 19

[10] Blakley, G.R.: Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National Com-
puter Conference 48, 313–317 (1979)

45

https://eprint.iacr.org/2023/955

[11] Cachin, C.: On-line secret sharing. In: Boyd, C. (ed.) 5th IMA International Conference
on Cryptography and Coding. LNCS, vol. 1025, pp. 190–198. Springer, Heidelberg (Dec
1995)

[12] Csirmaz, L.: The size of a share must be large. In: Santis, A.D. (ed.)
EUROCRYPT’94. LNCS, vol. 950, pp. 13–22. Springer, Heidelberg (May 1995).
https://doi.org/10.1007/BFb0053420

[13] Csirmaz, L.: The size of a share must be large. Journal of Cryptology 10(4), 223–231 (Sep
1997). https://doi.org/10.1007/s001459900029

[14] Csirmaz, L., Tardos, G.: On-line secret sharing. Des. Codes Cryptogr. 63(1), 127–147
(2012)

[15] Desmedt, Y., Dutta, S., Morozov, K.: Evolving perfect hash families: A combi-
natorial viewpoint of evolving secret sharing. In: Mu, Y., Deng, R.H., Huang, X.
(eds.) CANS 19. LNCS, vol. 11829, pp. 291–307. Springer, Heidelberg (Oct 2019).
https://doi.org/10.1007/978-3-030-31578-8 16

[16] Dutta, S., Roy, P.S., Fukushima, K., Kiyomoto, S., Sakurai, K.: Secret sharing on evolving
multi-level access structure. In: You, I. (ed.) WISA 19. LNCS, vol. 11897, pp. 180–191.
Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-39303-8 14

[17] Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting: Adap-
tive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 448–479. Springer, Heidelberg
(Aug 2019). https://doi.org/10.1007/978-3-030-26951-7 16

[18] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st ACM
STOC. pp. 25–32. ACM Press (May 1989). https://doi.org/10.1145/73007.73010

[19] Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I., Kempe,
D., Henzinger, M. (eds.) 50th ACM STOC. pp. 685–698. ACM Press (Jun 2018).
https://doi.org/10.1145/3188745.3188872

[20] Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation
with long output. In: Roughgarden, T. (ed.) ITCS 2015. pp. 163–172. ACM (Jan 2015).
https://doi.org/10.1145/2688073.2688105

[21] Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure.
In: Proc. IEEE Global Telecommunication Conf. (Globecom’87). pp. 99–102 (1987)

[22] Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be adap-
tive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 133–163. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-
319-63688-7 5

[23] Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M., Smith,
A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg
(Oct / Nov 2016). https://doi.org/10.1007/978-3-662-53644-5 19

[24] Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. Journal of Cryptology 30(2),
444–469 (Apr 2017). https://doi.org/10.1007/s00145-015-9226-0

46

[25] Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: Dynamic thresholds
and robustness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp.
379–393. Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/978-3-319-70503-3 12

[26] Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO’93. LNCS,
vol. 773, pp. 136–146. Springer, Heidelberg (Aug 1994). https://doi.org/10.1007/3-540-
48329-2 12

[27] Larsen, K.G., Simkin, M.: Secret sharing lower bound: Either reconstruction is hard or
shares are long. In: Galdi, C., Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp. 566–578.
Springer, Heidelberg (Sep 2020). https://doi.org/10.1007/978-3-030-57990-6 28

[28] Luby, M.: Lt codes. In: 43rd FOCS. pp. 271–282. IEEE Computer Society Press (Nov
2002). https://doi.org/10.1109/SFCS.2002.1181950

[29] Luby, M., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Efficient erasure correct-
ing codes. IEEE Trans. Inf. Theory 47(2), 569–584 (2001)

[30] Mazor, N.: A lower bound on the share size in evolving secret sharing. In: 4th Conference
on Information-Theoretic Cryptography, ITC 2023, June 6-8, 2023, Aarhus University,
Aarhus, Denmark. LIPIcs, vol. 267, pp. 2:1–2:9. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023)

[31] Mitzenmacher, M.: Digital fountains: a survey and look forward. In: 2004 IEEE Informa-
tion Theory Workshop, San Antonio, TX, USA, 24-29 October, 2004. pp. 271–276. IEEE
(2004)

[32] Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere sta-
tistically binding hashing and positional accumulators. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg (Nov / Dec
2015). https://doi.org/10.1007/978-3-662-48797-6 6

[33] Paskin-Cherniavsky, A.: How to infinitely share a secret more efficiently. Cryptology ePrint
Archive, Report 2016/1088 (2016), https://eprint.iacr.org/2016/1088

[34] Pueyo, I.C., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing and its
applications. IEEE Trans. Inf. Theory 59(9), 5600–5612 (2013)

[35] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In: 21st ACM STOC. pp. 73–85. ACM Press (May 1989).
https://doi.org/10.1145/73007.73014

[36] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the Association for Computing Machinery
21(2), 120–126 (Feb 1978). https://doi.org/10.1145/359340.359342

[37] Shamir, A.: How to share a secret. Communications of the Association for Computing
Machinery 22(11), 612–613 (Nov 1979)

[38] Shokrollahi, M.A., Luby, M.: Raptor codes. Found. Trends Commun. Inf. Theory 6(3-4),
213–322 (2009)

[39] Vinod, V., Narayanan, A., Srinathan, K., Rangan, C.P., Kim, K.: On the power of com-
putational secret sharing. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS,
vol. 2904, pp. 162–176. Springer, Heidelberg (Dec 2003)

47

https://eprint.iacr.org/2016/1088

[40] Xing, C., Yuan, C.: Evolving secret sharing schemes based on polynomial evaluations and
algebraic geometry codes. Cryptology ePrint Archive, Report 2021/1115 (2021), https:
//eprint.iacr.org/2021/1115

48

https://eprint.iacr.org/2021/1115
https://eprint.iacr.org/2021/1115

	Introduction
	Our Contributions
	Technical Overview
	Additional Related Work

	Preliminaries
	Notation
	Pseudorandom Generators
	Puncturable Pseudorandom Functions
	Secret-key Encryption
	Somewhere Statistically Binding Hash Functions
	Indistinguishability Obfuscation
	RSA Assumption
	Projective Pseudorandom Generators
	Unbounded Polynomial Stretch
	Instantiations
	Projective PRGs with Unbounded Polynomial Stretch

	Computational Evolving Secret Sharing
	Defining Computational Privacy
	Rigid Access Structures

	Construction for General Access Structures
	Exponential-time Construction
	Polynomial-time Instantiation

	Constructions for Specific Access Structures
	Dynamic Threshold Access Structure
	Graphs
	Monotone Circuits
	CNF Formulas
	DNF Formulas

	Domain Extension
	Evolving Information Dispersal
	Krawczyk's Compiler

	Conclusions

