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Abstract. The LESS signature scheme, introduced in 2020, represents
a fresh research direction to obtain practical code-based signatures. LESS
is based on the linear equivalence problem for codes, and the scheme is
entirely described using matrices, which define both the codes, and the
maps between them. It makes sense then, that the performance of the
scheme depends on how efficiently such objects can be represented.
In this work, we investigate canonical forms for matrices, and how these
can be used to obtain very compact signatures. We present a new notion
of equivalence for codes, and prove that it reduces to linear equivalence;
this means there is no security loss when applying canonical forms to
LESS. Additionally, we flesh out a potential application of canonical
forms to cryptanalysis, and conclude that this does not improve on ex-
isting attacks, for the regime of interest. Finally, we analyze the impact
of our technique, showing that it yields a drastic reduction in signature
size when compared to the LESS submission, resulting in the smallest
sizes for code-based signature schemes based on zero-knowledge.

1 Introduction

LESS is a post-quantum signature scheme first introduced in [13].
The scheme is usually considered part of code-based cryptography,
but it departs from the traditional methodology of this area. In fact,
rather than exploiting the difficulty of decoding, LESS relies on the
idea of finding some kind of isomorphism between linear codes. This
notion is well-known in coding theory under the name of code equiv-
alence. Interestingly, in the context of cryptography, such a concept
of equivalence can be seen as a group action, akin to the ubiquitous
one behind the Discrete Logarithm Problem (DLP), although show-
ing more similarities to settings such as the isomorphisms between
polynomials, or graphs. It is in this way that LESS is constructed,
following in the steps of well-trodden paths to construct a Sigma pro-
tocol based on the Code Equivalence Problem; this is then turned
into a signature scheme using the Fiat-Shamir transform.



Subsequent works followed, mainly trying to improve the effi-
ciency of the protocol: for instance, the authors in [6] show that the
signature size can be reduced by having a public key comprised of
more than two equivalent codes, as well as by selecting challenges
according to a fixed-weight distribution. These optimizations are
generic, in the sense that they can be applied to any scheme follow-
ing the same framework, and have appeared in literature in other
works, such as for instance [17]. In [23], instead, the authors inves-
tigate optimizations that are specific to the chosen setting, i.e. that
apply only to code equivalence. In the paper, it is shown that it is
possible to further reduce the signature size, by a large factor, as
some pieces of information in the commitments are redundant. The
idea of [23] is later used for the specification of LESS [3], as submit-
ted to NIST’s call for additional post-quantum signatures [22]. The
specification shows that the smallest signature sizes are around 5.0
KiB, 13.4 KiB, and 26.6 KiB for security categories 1, 3 and 5, re-
spectively. These sizes are achieved by using more than 2 generator
matrices in each public key, which increases the public key sizes by
a large factor.

1.1 Our Contributions

In this paper, we introduce the concept of canonical forms for matri-
ces and show how it can be applied to code equivalence. By canonical
form, we refer to the representative of a certain equivalence class;
the equivalence we focus on is the one derived from linear equiv-
alence. We show that using canonical forms one can define a new
notion of equivalence between codes, which we call Canonical Form
Code Equivalence. We show that canonical forms turn out to be a
rather useful tool, since they can greatly improve the performance
of schemes such as LESS (namely, reducing the signature size) and,
at the same time, could even be helpful in solving certain instances
of code equivalence.

When the canonical form possesses some desirable properties
(e.g., efficiently computable and low failure probability), one can
show that, for random instances, the new formulation is as hard as
the original one. This allows us to improve the LESS scheme, by us-
ing more efficient canonical forms for commitment and verification;
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these effectively replace the rudimentary one used in the original
works [6, 13] as well the more sophisticated one proposed in [23]
(and incorporated as part of the LESS submission [3]). With this
new variant, which we call CF-LESS, it is possible to achieve much
smaller signatures: for instance, using the same code and protocol
parameters as in “balanced” parameter sets from the LESS submis-
sion [3] (which uses only 2 generator matrices and aims to minimize
the public key size) yields signature of only 2.4 KiB, 5.7 KiB, and
9.8 KiB for NIST security categories 1, 3 and 5, respectively.

As mentioned above, interestingly, we also found that the cost
of exhaustive-search solvers for code equivalence can be reduced by
a large factor by exploiting exactly the concept of canonical forms:
for example, for the case of linear equivalence, the cost is intuitively

reduced from O
(√

n!(q − 1)n
)
to O

(√(
n
k

))
operations, where each

operation has a cost which is polynomial in n, k and q. Nevertheless,
the improvement does not affect the claimed security levels of the
parameters of LESS.

1.2 Paper Organization

The paper is organized as follows. Section 2 specifies our notation
and summarizes some preliminary notions. Section 3 describes the
equivalence relations that we consider for matrices over Fq, and in-
troduces the concept of canonical forms. This serves as an important
basis for the discussions in the sections that follow. Section 4 shows
concrete ways to define canonical forms, starting from existing ones
and including some entirely new formulations. In Section 5, we first
briefly review the Sigma protocol underlying LESS, and then present
a new Sigma protocol, which we refer to as the CF-LESS Sigma pro-
tocol, that makes use of canonical forms to reduce the communica-
tion size. We will see in Section 7 that this has a considerable impact
on signature size, allowing for a drastic reduction which yields the
smallest signature sizes among many post-quantum schemes, and in
particular, code-based schemes based on zero-knowledge. Finally, in
Section 6, we discuss the security of our new technique: we first argue
that CF-LESS is secure by showing a security reduction, and then
discuss an application of canonical forms to cryptanalysis, which re-
sults in an intuitive attack against LEP.
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2 Notation and Preliminaries

As usual, Fq denotes the finite field with q elements and F∗
q stands

for its multiplicative group. We use bold uppercase (resp., lower-
case) letter for matrices (resp., vectors). Given a vector v, we define
multiset(v) as the multiset formed by the entries of v. We use three
main matrix groups in our work, which are all subgroups of the gen-
eral linear group GLn of non-singular matrices over Fq. The first, is
the symmetric group, i.e. the group of permutations on n objects,
represented as binary matrices with a single 1 in each row and col-
umn; this is denoted by Sn. Second, we consider the group comprised
of diagonal matrices over Fq, such that all elements on the main di-
agonal are non-zero; we denote this by Dn. Finally, we define a group
which is a generalization of Sn, where each permutation is scaled with
non-zero factors from Fq; we denote this by Mn. In other words, for
each Q ∈Mn, we have that Q = P ·D, where P ∈ Sn and D ∈ Dn.
Such matrices are known as monomial matrices, and we will thus
refer to the group Mn as the monomial group over Fq. In addition,
we introduce a special type of permutations: given k < n, we call
Sk,n ⊂ Sn the set of permutations such that, for every P ∈ Sk,n,

– i < i′ ≤ k and Pi,j = Pi′,j′ = 1 implies that j < j′, and
– k < i < i′ and Pi,j = Pi′,j′ = 1 implies that j < j′.

In fact, once the first k columns of a matrix in Sk,n is defined, the
whole matrix is defined. Therefore, every matrix in Sk,n can be rep-
resented as a vector in Fn2 of Hamming weight k, such that the row
indices of the 1’s in the first k columns are exactly the indices of the
1’s in the vector.

The matrices considered in this work are mostly treated in the
context of coding theory. A linear code C with dimension k > 0 and
length n > k is a k-dimensional linear subspace of Fnq and, as such,
can be represented compactly by a full rank matrix G ∈ Fk×nq which

serves as a basis, i.e., C =
{
uG : u ∈ Fkq

}
. In the context of coding

theory, this matrix is called generator matrix. Note that there are
several choices for generator matrices for the same code, correspond-
ing to different choices of basis: any G and S ·G, where S ∈ GLk,
generate the same code. Whenever a generator matrix is in the form
(Ik | A), where Ik is the identity of size k, we say it is in systematic
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form (or standard form). When {1, · · · , k} is an information set (i.e.
corresponding columns are linearly independent), this form can be
obtained by setting S as the inverse of the leftmost k×k submatrix in
G. Otherwise, letGJ be the submatrix ofG with columns indexed by
J . One can first compute the Reduced Row-Echelon Form (RREF),
i.e., the matrix G−1

J G with J being the first information set4 (in
lexicographical order), and then eventually applying a column per-
mutation so that the identity columns are moved from positions J
to {1, · · · , k}. In other words, the systematic form is defined as

SF(G) =
(
Ik | G−1

J G{1,··· ,n}\J
)
, J is the first information set.

Note that this also corresponds to RREF(G)·P for some permutation
matrix P ∈ Sk,n, where RREF : Fk×nq 7→ Fk×nq is the function comput-
ing the RREF form. In the following, we will sometime use RREF∗

to define the function returning both the systematic form, as well as
the permutation P ∈ Sk,n. SF and RREF are invariant under changes
of basis: for any two generator matrices G and S ∈ GLk, it holds
that SF(G) = SF(SG) and RREF(G) = RREF(SG). If {1, · · · , k} is
an information set, then SF and RREF coincide and P = Ik.

Linear codes are typically measured in the Hamming metric,
which defines the weight of a (code)word as the number of its non-
zero positions. Indeed, the precise distribution of weights of the var-
ious codewords, and the distance between them, is exactly what
characterizes the code, enabling features such as error detection and
correction. With this in mind, it is then natural to consider equiv-
alent two codes having an identical weight distribution. Equivalent
codes are obtained from one another via an isometry, i.e. a map pre-
serving distances. In the simplest of cases, such a map consists of
just a permutation, which leads to the notion of permutation equiv-
alence; if instead the map is a monomial one, this is usually known
as linear equivalence. The more general notion of semilinear equiva-
lence refers to the addition of a field automorphism. This concept is
not relevant for cryptographic applications, and we do not treat it
here. It is immediate to note that permutation equivalence is noth-
ing but a special case of linear equivalence. Equivalent codes can

4 For instance, we consider the natural ordering defined by the relations {1, · · · , k −
1, k} < {1, · · · , k − 1, k + 1} < · · · < {1, · · · , k − 1, n} < · · · < {1, · · · , n − 1, n} <
· · · < {2, · · · , k, k + 1} < · · · < {n− k + 1, · · · , n}
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be easily represented via their generator matrices, so that, if C is
permutationally (resp. linearly) equivalent to C ′, then there exist a
change-of-basis matrix S ∈ GLk and a permutation P ∈ Sn (resp.
monomial Q ∈ Mn) such that G′ = S ·G · P, where G and G′ are
the respective generator matrices.

Determining whether two codes are equivalent is often a chal-
lenging task. In cryptography, one is usually interested in the com-
putational version of the problem, which we report below.

Problem 1 (Code Equivalence) Given linear codes C ,C ′ ⊆ Fnq
with dimension k, defined by generator matrices G,G′ respectively,
decide if C is equivalent to C ′, i.e., if there exists S ∈ GLk(Fq) and
P ∈ Sn (resp. Q ∈Mn) such that G′ = SGP (resp. G′ = SGQ).

The problem is known respectively as Permutation Equivalence
Problem (PEP) or Linear Equivalence Problem (LEP), depending on
which kind of equivalence is involved. The hardness of the code equiv-
alence problem has been studied in detail through several works, and
we point the interested reader to [7,8,25] for an extensive treatment.

3 Equivalence Relations on Matrices and Codes

Let n, k, q ∈ Z be the typical coding theory parameters, as defined
above. The equivalence relations introduced in this sections are de-
fined using a set F ⊆ Dk ×Sk ×Dn−k ×Sn−k. We consider 16 cases,
where each component for F can be either the set of one identity
matrix (of the respective size), or the entire group. For instance, F
could be {Ik} × {Ik} × {In−k} × Sn−k, i.e. consisting only of column
permutations, or {Ik} × Sk × {In−k} × Sn−k, which considers per-
mutations for both rows and columns, and so on. To each case, we
associate a notion of equivalence relation on Fk×(n−k)

q and Fk×nq . As
we shall see later, these notions can be used to boost the perfor-
mance of schemes based on code equivalence and, at the same time,
can be useful in the cryptanalysis for the problem.

3.1 New Equivalence Relations on Matrices

We first introduce a notion of equivalence on Fk×(n−k)
q .
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Definition 1 (Equivalence Relations on Fk×(n−k)
q ).

Given F ⊆ Dk×Sk×Dn−k×Sn−k, we say that two matrices A,B ∈
Fk×(n−k)
q are equivalent with respect to RF (denoted as A ∼RF

B) if

B = Pr ·Dr ·A ·Dc ·Pc,

for some (Dr,Pr,Dc,Pc) ∈ F 5 .

Note that replacing Pr ·Dr by Dr ·Pr or replacing Dc ·Pc by Pc ·Dc

does not change the definition of RF . We now introduce a notion of
equivalence on Fk×nq .

Definition 2 (Equivalence Relations on Fk×nq ).
Given F ⊆ Dk×Sk×Dn−k×Sn−k, we say that two matrices A,B ∈
Fk×nq are equivalent with respect to R′

F (denoted as A ∼R′
F
B) if

B = T ·A ·
[
D−1
r P−1

r 0
0 DcPc

]
,

where (Dr,Pr,Dc,Pc) ∈ F and T ∈ GLk.

Remark 1. RF ′ is a subcase of linear equivalence since the monomial
in the above definition has a very special structure: it never mixes
the first k columns with the last n− k ones.

Replacing D−1
r P−1

r by DrPr in the above definition does not change
R′
F ; we used D−1

r P−1
r because this is convenient for explaining the

relationship between RF and R′
F . We do this in the next theorem.

Theorem 1. Let A,B ∈ Fk×nq be two generator matrices for which

{1, · · · , k} is an information set. Let (Ik | Â) and (Ik | B̂) be the
respective systematic generator matrices. Then

A ∼R′
F
B ⇐⇒ Â ∼RF

B̂.

Moreover,

B = T ·A ·
[
D−1
r P−1

r 0
0 DcPc

]
⇐⇒ B̂ = Pr ·Dr · Â ·Dc ·Pc,

where (Dr,Pr,Dc,Pc) ∈ F and T ∈ GLk.
5 The subscripts r and c stand for row and column, respectively. We use these sub-
scripts because in Definition 1, Pr,Dr can be considered as row operations and
Pc,Dc can be considered as column operations.
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Proof. Let A = (A1 | A2), with A1 ∈ GLk and A2 ∈ Fk×(n−k)
q . Since

by hypothesis {1, · · · , k} is an information set, the systematic form

for A is A−1
1 A, so that Â = A−1

1 ·A2. Using analogous notation for

B, we get B̂ = B−1
1 · B2. For the direction =⇒ , it is enough to

consider that B1 = T · A1 · D−1
r · P−1

r and B2 = T · A2 · Dc · Pc,
which implies

B̂ = (T ·A1 ·D−1
r ·P−1

r )−1︸ ︷︷ ︸
B−1

1

·T ·A2 ·Dc ·Pc︸ ︷︷ ︸
B2

= Pr ·Dr ·A−1
1 ·A2︸ ︷︷ ︸

Â

·Dc ·Pc.

For the direction ⇐= , we have

B−1
1

[
B1 B1 · B̂

]
︸ ︷︷ ︸

B

=
[
Ik B̂

]
=
[
Ik Pr ·Dr · Â ·Dc ·Pc

]
= Pr ·Dr

[
Ik Â

] [D−1
r ·P−1

r 0
0 Dc ·Pc

]
,

which implies[
B1 B1 · B̂

]
︸ ︷︷ ︸

B

= B1 ·Pr ·Dr ·A−1
1

[
A1 A1 · Â

]
︸ ︷︷ ︸

A

[
D−1
r P−1

r 0
0 DcPc

]
.

⊓⊔

3.2 Representatives for Equivalence Classes

In the previous section, we defined equivalence relations RF and R′
F .

For the purpose of this paper, we are interested in specifying rep-
resentatives for some (not necessarily all 6) equivalence classes. We
call representative of an equivalence class the canonical form of any
element in the equivalence class. If the representative is not specified
for an equivalence class, then the canonical form does not exist for
its elements. The mapping between any element and its canonical
form can be formalized via a canonical form function.

6 Usually people try to specify a representative for every single equivalence class. For
some choices of F , it seems hard to specify a representative for every equivalence
class of RF and R′

F while achieving some nice properties we want, such as having an
efficient canonical-form-deriving algorithm. Therefore, we relaxed the constraint.
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Definition 3 (Canonical Form Function).
For an equivalence relation R defined on a set S, we define a canon-
ical form function as a function CFR : S 7→

{
{⊥}∪S

}
satisfying the

following properties:

i) for any A ∈ S, CFR(A) ̸=⊥ =⇒ A ∼R CFR(A);
ii) for any A,B ∈ S, A ∼R B =⇒ CFR(A) = CFR(B).

We say CFR has success probability γ if CFR(A) ̸=⊥ with probability
γ, when A is drawn uniformly at random from S.

Remark 2. The first property implies that CFR(A) = CFR(B) =⊥
=⇒ A ∼R B. Notice that the bidirectional A ∼R B ⇐⇒ CF(A) =
CF(B) is hindered by the fact that the canonical form may not be
defined for some matrices (i.e., the output of CF is ⊥), and holds
only if γ = 1, i.e., the canonical form is defined for all elements in S.

As we shall see next, the above properties are crucial to have a tight
correspondence between the classical code equivalence problem and
the problems we rely on in this paper.

Proposition 1. Assume that CFRF
is a canonical form function

with R = RF and S = Fk×(n−k)
q . For any A = (A1 | A2) ∈ Fk×nq

where A1 ∈ GLk, we define CFR′
F
(A) as

(
Ik | CFRF

(A−1
1 A2)

)
if

CFRF
(A−1

1 A2) ̸=⊥, or ⊥ otherwise. Then CFR′
F
is a canonical form

function with R = R′
F and S =

{
(A1 | A2) ∈ Fk×nq | A1 ∈ GLk

}
.

Proof. According to Theorem 1, CFR′
F
(A) ̸=⊥ implies

CFR′
F
(A) =

(
Ik | CFRF

(A−1
1 A2)

)
∼R′

F
(A1 | A2)

and

(A1 | A2) ∼R′
F
(B1 | B2) =⇒ A−1

1 A2 ∼RF
B−1

1 B2

=⇒ CFRF
(A−1

1 A2) = CFRF
(B−1

1 B2)

=⇒ CFR′
F
((A1 | A2)) = CFR′

F
((B1 | B2)),

so the properties in Definition 3 are satisfied. ⊓⊔
In the next section we show practical examples for CFRF

. Note that
each example of CFRF

immediately gives us a canonical form function
CFR′

F
, as defined in the proposition above. In the remainder of the

paper, we will often omit the subscripts RF and R′
F , as it is always

clear from the context which equivalence relation we are considering.
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4 Defining Canonical Forms for RF

This section shows how one can define canonical forms for RF for
different choices of F . Note that the first two approaches have been
implicitly used in [23] and [3], while the remaining ones are entirely
new. The number of field operations taken by each algorithm pre-
sented in this section is polynomial in q and n in the worst case.

Case 1. Let F = {Ik} × {Ik} × {In−k} × Sn−k. In this case, one
can define the canonical form of any equivalence class as the matrix
in which the columns are sorted with respect to a total ordering
defined on Fkq . For example, the total ordering can simply be the
lexicographic order. This way, the canonical form is well-defined for
every equivalence class, and from any matrix the canonical form can
be derived easily by simply sorting the columns.

Case 2. Let F = {Ik} × {Ik} ×Dn−k × Sn−k. Here, one can define
the canonical form as the unique matrix such that 1) the first non-
zero entry of each non-zero column is 1 and 2) the columns are sorted
with respect to a total ordering defined on Fkq . Again, this guarantees
that the canonical form is well-defined for every equivalence class.
Given any matrix, to compute the canonical form, one can first scale
each non-zero column to turn the first non-zero entry into 1, and
then sort the columns.

Case 3. Let F = {Ik}×Sk×{In−k}×Sn−k. Given a total ordering
defined all size-(n−k) multisets of elements in Fq and a total ordering
defined on Fkq , for any equivalence class, we define the canonical form
as the matrix of which the multisets for the rows are sorted and the
columns are sorted, if it exists. For some equivalence classes, such
a matrix might not exist. This happens only when there are two
distinct rows that cannot be compared (because they lead to the
same multiset) in all matrices in the equivalence class.

For any matrix, one can derive the corresponding canonical form
by sorting first the rows using the partial ordering, and then the
columns using the total ordering. Similarly, one can also define the
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canonical form as the result of sorting first the columns using a par-
tial ordering defined on Fkq , and then the rows using a total ordering
defined on Fn−kq . It is easy to detect whether the corresponding
canonical form exists or not, during the step of sorting rows.

One reasonably efficient way to define the total ordering for mul-
tisets is as follows: for any distinct multisets S and S ′, let u,u′ be the
vectors obtained by sorting the elements in S and S ′, respectively.
Then S ≤ S ′ ⇐⇒ u ≤ u′, where u and u′ are compared using
a total ordering defined on Fn−kq . The algorithm above takes about
O(n2) field operations, if logarithmic terms are omitted. A proven
lower bound on the success probability of the algorithm above is
shown in Appendix B.

Case 4. Let F = {Ik} × Sk × Dn−k × Sn−k and choose d distinct
integers m1, . . . ,md ∈ Z such that

– 0 < m1 < m2 < · · · < md < q − 1,
– gcd(mi, q − 1) = 1 for all i, and
– char(Fq) is not a factor of any mi.

For efficiency of the algorithm that will be introduced below, it is
reasonable to select mi’s as the smallest d integers that satisfy the
criteria. We define the canonical form of a equivalence class as the
matrix (if it exists) such that

1. for each non-zero column v, the vector (
∑

i v
m1
i , . . . ,

∑
i v

md
i ) is

a non-zero vector where the first non-zero entry is 1, and
2. the rows and columns are sorted in the way described for Case 3,

To derive the systematic form of a matrix, one can carry out one
step to ensure that the first constraint above holds and then another
step to ensure that the second constraint holds. The second step can
be carried out by the algorithm in Case 3. The first step can be
carried out as follows. For each non-zero column v ∈ Fkq , we find the
smallest j such that

∑
i v

mj

i ̸= 0. If no such j exists, ⊥ is returned.

Otherwise, v is replaced by (
∑

i v
mj

i )
−1
mj · v. Note that f(x) = x

1
mj

is a bijective 7 map on F∗
q and can be evaluated quickly 8 with a

precomputed table of q − 1 field elements.

7 It is bijective because gcd(mi, q − 1) = 1.
8 Here we assume that each table lookup takes constant time.
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The algorithm above essentially takes O(d · n2) field operations
with precomputed tables, if logarithmic terms are omitted. The al-
gorithm is expected to take O(n2) field operations on average, as j
is highly biased towards 1. Section 7 shows some experiment results
regarding success probability of the algorithm.

Case 5. Let F = Dk×Sk×Dn−k×Sn−k. The way we define canonical
forms in this case is a little less intuitive, so we limit ourselves to
describe here just the algorithm for deriving the canonical form from
any matrix. Consider a matrix A, for each j such that column j
consists of only non-zero elements; we define A(j) as the result of
scaling the rows of A so that column j of A(j) is (1, 1, . . . , 1). If every
column contains 0, return ⊥. Then, for each A(j), the algorithm for
Case 4 is applied to obtain a matrix A[j] (if ⊥ is not returned).
Finally, the canonical form is simply defined as the smallest A[j]

with respect to a total ordering defined on Fk×(n−k)
q .

It is easy to see that the above procedure leads to a canonical
form satisfying the first property in Definition 3. To show that the
second property is also satisfied, we introduce two results.

Proposition 2. Given A,B ∈ Fk×(n−k)
q satisfying B = Dr ·A ·Dc

for some Dr,Dc ∈ Dn−k, such that column j of A (and B) consists of
only non-zero elements. Then B(j) = A(j) ·D′

c for some D′
c ∈ Dn−k.

Proof. Let the elements on the main diagonal of Dr be x1, . . . xk.
Let the elements on the main diagonal of Dc be y1, . . . yn−k. Then
column i of A(j) is (A1,i ·A−1

1,j , . . . ,Ak,i ·A−1
k,j), while column i of B(j)

is

(
x1 ·A1,i · yi
x1 ·A1,j · yj

, . . . ,
xk ·Ak,i · yi
xk ·Ak,j · yj

).

⊓⊔

Proposition 3. Given A,B ∈ Fk×(n−k)
q satisfying A = P−1

r ·B ·P−1
c

for some Pr,Pc ∈ Sn−k, such that column j of A consists of only
non-zero elements. Let i′ be the row index of 1 in column i of P−1

c .
In other words, the column permutation represented by P−1

c maps
column i′ to column i. Then A(i) = P−1

r ·B(i′) ·P−1
c .
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The proof for Proposition 3 is immediate and therefore omitted
in the interest of space. Now, combining the two propositions, we
have

B = Pr ·Dr ·A ·Dc ·Pc =⇒ P−1
r ·B ·P−1

c = Dr ·A ·Dc

=⇒ P−1
r ·B(i′) ·P−1

c = A(i) ·D′
c

=⇒ B(i′) = Pr ·A(i) ·D′
c ·Pc.

After applying the algorithm in Case 4 to A(i) and B(i′), we obtain
A[i] = B[i′]. Therefore, the set of A[j]’s is the same as the set of
B[j]’s, and we conclude that the algorithm leads to the same output
for any A,B in the same equivalence class.

The algorithm above takes about O(d · n3) field operations, if
logarithmic factors are omitted. The average-case running time is
expected to be much better than the worst-case running time. In-
deed, this is true for the algorithm in Case 4. Also, compared to the
wost-case complexity O(d ·n2) for the previous case, the extra factor
n comes from the number of columns consisting of only non-zero
entries, which is at most n − k and is, for “real” parameters, much
smaller than n − k on average. Section 7 shows some experiment
results regarding success probability of the algorithm.

5 Application to LESS Signatures

In this section, we discuss the application of our technique to LESS.

5.1 The LESS Sigma Protocol

We begin by recalling, in Figure 1, the Sigma protocol underlying
the LESS signature scheme.

As shown in [13], the protocol is 2-special sound, with soundness

error ε = 1
2
. Note that, if the matrices Q and Q̃ are both permuta-

tions, this protocol falls into a special case, in which security relies
exclusively on PEP (as this is a special case of LEP); this may re-
quire some slight changes in how the protocol is actually deployed
(for example, utilizing different parameters or particular choices of
codes, such as self-orthogonal codes).
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Private Key: Matrix Q ∈Mn

Public Key: Generator Matrices G,G′ = RREF(GQ) ∈ Fk×n
q

PROVER VERIFIER

Q̃
$←−Mn

G̃← G · Q̃
cmt← Hash

(
RREF(G̃)

) cmt−−→
ch←−− ch

$←− {0, 1}

If ch = 0 :

rsp← Q̃
Else:

rsp← Q′ := Q−1Q̃
rsp−−→ If ch = 0:

Verify Hash
(
RREF(G · rsp)

)
= cmt

Else:
Verify Hash

(
RREF(G′ · rsp)

)
= cmt

Fig. 1. The original LESS Sigma protocol

When ch = 0, the verifier computes G · Q̃, which is the very
same matrix G̃ computed by the prover. However, when ch = 1,
the verifier computes G′ · Q′, which is equal to G̃ up to a change
of a basis. To avoid this discrepancy, and enable verification, the
protocol computes the RREF, which is used as an invariant under
change of basis.Note that, in the case ch = 0, the response consists
of the randomly-generated matrix Q̃, and can thus be compressed by
transmitting only a seed for a secure PRNG, as is common practice.

Remark 3. The scheme presented in Figure 1 is simply the “core”
element in the design of the LESS signature scheme. Indeed, to ob-
tain a signature scheme, it is necessary to iterate the protocol, say
t times, and apply the Fiat-Shamir transformation. Furthermore, a
variety of optimizations are incorporated into the design, to improve
the overall performance. For instance, the final signature scheme
uses a variable number s of public keys (generating a tradeoff be-
tween public key and signature size); an “ unbalanced” challenge
string of fixed Hamming weight w (to maximize the reduction ob-
tained by transmitting seeds for random objects) and a seed tree to
compactly transmit seeds (as described in various previous works
such as [11,12]). It is worth clarifying that the Fiat-Shamir transfor-
mation directly yields EUF-CMA security [18], and the addition of
such standard optimizations does not affect this claim, as shown for
instance in [6, 17].
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Next, we show how the use of canonical forms can be embedded
into the protocol. The high-level intuition is that using canonical
forms, on top of the RREF computation, enriches the invariance
properties we are able to achieve. Technically, we let the prover and
the verifier end up in two generator matrices which are equal up to
an equivalence RF ′ ; in other words, we allow the verifier to compute
a code which is equivalent to the one generated by G̃, but not ex-
actly the same. Leveraging this fact, the prover can provide multiple
responses to verify the same commitment: among all such choices,
we consider the one having the smallest communication cost.

5.2 The CF-LESS Sigma protocol

The Sigma protocol for CF-LESS is shown in Figure 2.

Private Key: Monomial Q ∈Mn

Public Key: Generator Matrices G,G′ = RREF(GQ) ∈ Fk×n
q

PROVER VERIFIER
do:

Q̃
$←−Mn

G̃,P← RREF∗(G · Q̃)

while CF(G̃) =⊥
cmt← Hash

(
CF(G̃)

) cmt−−→
ch←−− ch

$←− {0, 1}

Q← Q̃ ·P
If ch = 0:

rsp← Q̃
Else:

rsp← Compress(Q′ := Q−1Q)
rsp−−→ If ch = 0:

G̃,P← RREF∗(G · rsp)
Verify Hash(CF(G̃))=cmt

Else:
Verify Hash(CF(G′ · rsp))=cmt

Fig. 2. The CF-LESS Sigma protocol.

It is easy to see that the protocol is apparently complete if Com-
press is omitted. The function Compress is used to reduce the size
of the response when ch = 1 (and thus the signature size). Before
specifying how Compress works, we show a way to decompose each
matrix in Sn and Mn into several matrices.
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Theorem 2. For every P ∈ Sn, we have P = Pis ·
[
Pr 0
0 Pc

]
, for

some (Pis,Pr,Pc) ∈ Sk,n × Sk × Sn−k
9 . For every M ∈ Mn, we

have M = Pis·
[
DrPr 0
0 DcPc

]
, for some (Pis,Pr,Pc,Dr,Dc) ∈ Sk,n×

Sk × Sn−k ×Dk ×Dn−k.

The way the function Compress operates is formalized next.

Definition 4. Let F ⊂ Dk × Sk × Dn−k × Sn−k such that each of
its components is trivial if the corresponding component in F is non
trivial, and vice versa. The function Compress: Mn 7→ Mn decom-
poses the input matrix into the form shown in Theorem 2 and re-
places Dr,Pr,Dc, or Pc by an identity matrix if the corresponding
component of F is trivial.

Let us make an example by considering F = {Ik}×Sk×Dn−k×Sn−k
for example. In this case, F = Dk × {Ik} × {In−k} × {In−k} and
Compress replaces Pr by Ik and Dc,Pc by In−k. Therefore, we have

Compress(Q′) = Compress

(
Pis ·

[
DrPr 0
0 DcPc

])
= Pis ·

[
Dr 0
0 In−k

]
.

Without Compress, the response size for ch = 1 would be n(⌈log2(n)⌉+
⌈log2(q−1)⌉) bits. Instead, as it turns out, Compress(Q′) takes fewer
bits to represent than Q′. We summarize the sizes we obtain in Ta-
ble 1, for different choices of F . In Section 7, we use the formulas in
Table 1 to derive the corresponding signature sizes of CF-LESS.

To summarize, below we report the number of bits required to
represent Compress(Q′), for various choices of the set F .

Type F Case isobits

Mono {Ik} × {Ik} ×Dn−k × Sn−k 2 k · (⌈log2(n)⌉+ ⌈log2(q − 1)⌉)
Mono {Ik} × Sk ×Dn−k × Sn−k 4 (n+ k · ⌈log2(q − 1)⌉)
Mono Dk × Sk ×Dn−k × Sn−k 5 n
Perm {Ik} × Sk × {In−k} × Sn−k 3 n

Table 1. isobits, the number of bits required to represent Compress(Q′).

9 The subscript “is” stands for information set.
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5.3 Properties of the CF-LESS Sigma Protocol

We are now ready to show that the CF-LESS Sigma protocol achieves
the three fundamental properties for a ZK proof of knowledge, that
is, completeness, zero-knowledge and special soundness. The first two
properties are immediate; nonetheless, we prove them for the sake
of completeness. For what concerns special soundness, we show that
it reduces to finding solutions to the following problem

Problem 2 (Canonical Forms - Code Equivalence) Let F ⊆
Dk×Sk×Dn−k×Sn−k. Given G,G′ ∈ Fk×nq , find Pis,P

′
is ∈ Sk,n and

(Dr,Pr,Dc,Pc), (D
′
r,P

′
r,D

′
c,P

′
c) ∈ F such that

CF

(
G ·Pis ·

[
DrPr 0
0 DcPc

])
= CF

(
G′ ·P′

is ·
[
D′
rP

′
r 0

0 D′
cP

′
c

])
.

For analogy with the traditional case, we refer to the above prob-
lem as CF-LEP ; we will carefully analyze its hardness in Section 6.

Completeness and Zero-Knowledge. Zero-knowledge follows im-
mediately from the fact that Q̃ is uniformly distributed over Mn.We
now show why the protocol is also complete. To this end, we consider
that when ch = 0, the verifier receives Q̃ and executes the very same
operations which have been performed by the prover. When ch = 1,
let us take F = {Ik} × Sk ×Dn−k × Sn−k for example. In this case,
the verifier receives Compress(Q′), which is built such that

G′Compress(Q′) = G′Pis

[
Dr 0
0 In−k

]
∼R′

F
G′Pis

[
DrPr 0
0 DcPc

]
= G′Q′

=⇒ CF(G′ · Compress(Q′)) = CF(G′ ·Q′).

Therefore, the CF-LESS protocol is complete for the specific F . Sim-
ilarly, the protocol can be shown to be complete for F = {Ik}×{Ik}×
Dn−k × Sn−k

10 and F = Dk × Sk ×Dn−k × Sn−k. It is also easy to
see that the protocol is zero-knowledge and complete for the special
case of permutations, when F = {Ik} × Sk × {In−k} × Sn−k.

10 The papers [3,6] make use of the same technique for F = {Ik}×{Ik}×Dn−k×Sn−k.
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Special Soundness. We show that the protocol is 2-special sound;
given that it is a Sigma protocol with challenge space 1/2, it follows
that it has soundness error ε = 1/2.

Proposition 4. The protocol in Figure 2 is 2-special sound.

Proof. We consider two accepting transcripts Q̃ and Q′, respectively
for ch = 0 and ch = 1, and commitment cmt. From the knowledge
of Q̃, one can obtain P and compute Q = Q̃ ·P. This implies that

Hash
(
CF(G ·Q)

)
= Hash

(
CF(G′ ·Q′)

)
.

Either CF(G · Q) ̸= CF(G′ · Q′) and a hash collision has been
found, or CF(G ·Q) = CF(G′ ·Q′). Notice that Q′ is the output of
Compress, so it is constituted by P′

is ∈ Sk,n and (D′
r,P

′
r,D

′
c,P

′
c) ∈ F .

One can compute Compress, on input Q, and find Pis ∈ Sk,n and
(Dr,Pr,Dc,Pc) ∈ F such that

CF(G ·Q) = CF

(
G ·Pis ·

[
DrPr 0
0 DcPc

])
.

So, we have obtained

CF

(
G ·Pis ·

[
DrPr 0
0 DcPc

])
= CF

(
G′ ·P′

is ·
[
D′
rP

′
r 0

0 D′
cP

′
c

])
,

which implies that we have found a solution for CF-code equivalence,
on input G · Q and G′. Starting from this solution, one can easily
recover the equivalence between G and G′. ⊓⊔

5.4 Computational Complexity

We briefly comment on the computational cost of the protocol in
Figure 2. To this end, we rely on a heuristic which is commonly
employed when studying code-based problems (e.g., in papers about
information-set decoding). Most importantly, numerical simulations
confirm the heuristic.

Heuristic 1 Let G ∈ Fk×nq be the generator matrix for a code with
dimension k and length n. For any set J ⊆ {1, · · · , n} of size k, we
consider that GJ is a k×k matrix sampled according to the uniform
distribution over Fq. Analogously, also G{1,··· ,n}\J is a k × (n − k)
matrix sampled according to the uniform distribution over Fq.
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Under this heuristic, and recalling Definition 3, we have that the
average number of matrices Q̃ one has to test, before a valid matrix
is found, corresponds to 1/γ. Notice that the heuristic is here em-

ployed since we consider that, for each choice of Q̃, G̃ behaves as
a uniformly random matrix. For each Q̃ the prover executes RREF∗

and then computes CF. Let TRREF∗ and TCF be the costs of these
functions, respectively; then, computing the commitment comes with
cost TRREF∗+TCF

γ
. As we have already seen, γ is in practice very high,

so that 1
γ
≈ 1: the first choice of Q̃ is successful with overwhelm-

ing probability. Computing the response takes a much smaller time
so, for simplicity, we do not consider it. Analogously, verification is
predominated by performing Gaussian elimination and then com-
puting the canonical form. So, on the verifier’s side, the cost can be
estimated as TRREF∗ + TCF.

Whenever TCF has a cost which is less than or, at the very least,
comparable with TRREF∗ , the use of canonical forms does not lead
to significant computational overhead. Indeed, as it is well known, a
crude but realistic estimate for TRREF∗ is O

(
n3
)
field operations. As

we have already seen in Section 4, it is possible to define canonical
forms whose time complexity is much better than or comparable
with that of TRREF∗ . Indeed, among the functions we have defined,
the most time consuming one is that for Case 5, taking O(dn3) field
operations in the worst case but O(n3) operations on average.

6 Hardness Analysis and Implications

In this section we provide strong evidence that the new formulation
of code equivalence, using canonical forms, still leads to a hard prob-
lem. Namely, we prove that there exists a polynomial-time reduction
from code equivalence to Problem 2, given that canonical forms can
be computed in polynomial time. If the considered canonical forms
have γ = 1 (i.e., they never fail), we obtain that the reduction works
for every code equivalence instance. When instead γ < 1 we prove
that, under Heuristic 1, the reduction is successful for all but a neg-
ligible portion of codes given that γ is large enough (say, it does not
decrease exponentially with n). As we have already shown, we know
about canonical forms which exist with overwhelming probability,
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given that q is large enough. It follow that the reduction is mean-
ingful for all such code equivalence instances and, in particular, for
those which are relevant for cryptographic applications.

The reduction in the other way is trivial (we briefly sketch it,
even though it has already been shown implicitly in the protocol of
Figure 2). In practice, this means that the code equivalence problem
with canonical forms is as hard as in its traditional formulation.

We furthermore show that the reduction may be used to mount a
practical attack on code equivalence. When instantiated with canon-
ical forms that are efficiently computable (as those in Section 4), we
propose a collision search strategy that, when q is large enough, may
even be faster than state-of-the-art attacks.

For all the reductions we provide in the paper, we consider the
LEP version of code equivalence. Moreover, we consider the case in
which F = Dk × Sk ×Dn−k × Sn−k, which is the most general case.
All other cases can be treated in an analogous way.

6.1 Reductions between LEP and CF-LEP

Showing that CF-LEP reduces to LEP is trivial and has already been
done, implicitly, in the description of the CF-LESS Sigma protocol.
Namely, for a pair G,G′ for which a solution Q = PD is known,
it would be enough to continue sampling matrices Pis ∈ Sk,n until
CF(G ·Pis) ̸=⊥. Then, from the knowledge of P, one can easily find
P′

is such that CF(G ·Pis) = CF(G′ ·P′
is).

The other direction, i.e., showing that LEP reduces to CF-LEP
is more interesting. The way to map a CF-LEP solution into a LEP
solution is described in Algorithm 1; its correctness, together with
the probability that the reduction succeeds, is detailed in the next
Proposition.

Proposition 5. Let F = Dk×Sk×Dn−k×Sn−k and CF be a canon-
ical form for F , computable in polynomial time. If (G,G′) admits a
solution for CF-LEP, then a solution for LEP, on input (G,G′),can
be found in polynomial time.

Proof. Let us denote by Pis,P
′
is ∈ Sk,n the solution for the CF-LEP

instance (G,G′). Now, consider Algorithm 1, on input G,G′ and

20



Algorithm 1: Building LEP solution from CF-LEP solution
Data: F = Dk × Sk ×Dn−k × Sn−k, canonical form function

CF : Fk×(n−k)
q 7→

{
{⊥} ∪ Fk×(n−k)

q

}
Input: matrices G,G′ ∈ Fk×n

q , solution Pis,P
′
is for IS-LEP

Output: solution S ∈ GLk, Q ∈Mn for LEP

1 Compute RREF(G ·Pis) =
(
Ik | A

)
= U ·G ·Pis;

2 Compute RREF(G′ ·P′
is) =

(
Ik | A′) = U′ ·G′ ·P′

is;
3 Compute B = CF(A) = Pr ·Dr ·A ·Pc ·Dc;
4 Compute B′ = CF(A′) = P′

r ·D′
r ·A′ ·P′

c ·D′
c;

5 Set P̃r · D̃r = (P′
r ·D′

r)
−1 ·Pr ·Dr;

6 Set P̃c · D̃c = Pc ·Dc · (P′
c ·D′

c)
−1;

7 Compute Q = Pis ·

[
P̃r · D̃r 0

0 P̃c · D̃c

]
·P′−1

is ;

8 Compute S = U′−1 · (P̃r · D̃r)
−1 ·U;

9 return S,Q

Pis,Pis. The algorithm obviously takes polynomial time, since all it
does is computing canonical forms (which takes polynomial time by
hypothesis) and matrix multiplications/inversions. We only need to
show it is correct, i.e., that the returned S, Q indeed solves LEP.

Since Pis,P
′
is is a solution for CF-LEP, this means that CF(G·Pis) =

CF(G ·P′
is). Recalling how canonical forms are defined, this is equiv-

alent to first computing RREF and then computing CF on the non
systematic part. Let U be the matrix that brings G ·Pis into RREF
form, that is, U ·G ·Pis = (Ik | A). So CF

(
G ·Pis) = CF(Ik | CF(A)

)
and, by definition of canonical forms,

CF(A) = Pr ·Dr ·A ·Pc ·Dc.

We use analogous notation for G′ (notice that we are following the
notation of Algorithm 1), and get U′ ·G′ ·P′

is = (Ik | A′) and

CF(A′) = P′
r ·D′

r ·A′ ·P′
c ·D′

c.

Since CF(G ·Pis) = CF(G′ ·P′
is), we have CF(A) = CF(A′), i.e.,

A′ = (P′
r ·D′

r)
−1 ·Pr ·Dr︸ ︷︷ ︸

P̃r·D̃r

·A ·Pr ·Dr · (P′
c ·D′

c)
−1︸ ︷︷ ︸

P̃c·D̃c

.
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So, we can write

U′ ·G′ ·P′
is = (Ik | A′) = (P̃r · D̃r)

−1 · (Ik | A)︸ ︷︷ ︸
U·G·Pis

·

[
P̃rD̃r 0

0 P̃cD̃c

]

= (P̃r · D̃r)
−1 ·U ·G ·Pis ·

[
P̃rD̃r 0

0 P̃cD̃c

]
.

From the above, with simple algebraic manipulations, we obtain the
expressions for S and Q. ⊓⊔

We now comment on how many LEP instances admit also a so-
lution for CF-LEP. To this end, we consider that an arbitrary LEP
instance (G,G′) indeed admits a solution for CF-LEP in case there
exists at least one matrix Pis ∈ Sk,n for which CF(G ·Pis) ̸=⊥. This
corresponds to the complementary of the probability that, for all
possible RREF forms for G and G′, the canonical form is not de-
fined. Whenever γ = 1, then canonical forms can always be defined
and the above reduction applies to any LEP instance.

If instead γ < 1, then we can rely on Heuristic 1. From [19, Sec-
tion 2], we know that a a random k × k matrix is non singular
with probability ζ which is at least 1 − 1/q − 1/q2. So, for any set
J ⊆ {1, · · · , k}, ζ corresponds to the probability that J is an infor-
mation set. According to the heuristic, after RREF, the non system-
atic part behaves as a uniformly random k× (n− k) matrix over Fq,
so it admits a canonical form with probability γ. Consequently, the
probability that canonical forms cannot be defined for all sets J is

(1− ζγ)(
n
k). Taking the the logarithm of this quantity and consid-

ering that log2(x) ≤ 1
ln(2)

(x − 1) for all positive x ∈ R, we further
get

log2 (1− ζγ)(
n
k) ≤

(
n

k

)
(1− ζγ)− 1

ln(2)
= −

(
n

k

)
ζγ

ln(2)
.

Thus, the number of LEP instances for which a solution for CF-

LEP cannot be found is less than 2−(
n
k)

ζγ
ln(2) = 2−ψ(n,k,q). In practice,

this always close to 0: ψ(n, k, q) ≥ 0,
(
n
k

)
is exponential in n (when

k = Rn with R constant) and ζ is lower bounded by a constant.
Thus, ϕ(n, k, q) can be close to 0 (so that 2−ψ(n,k,q)) is large) only
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when γ is extremely small, say, γ = 2−c·n for some positive c ≥ 0.
As we have seen, for the codes we consider in this paper, γ is always
very large (almost 1), so that 2−ψ(n,k,q) is negligible.

Remember that, for all canonical forms we have defined, the suc-
cess probability gets smaller when q gets lower. In such a regime,
there may exist different ways to define canonical forms with suffi-
ciently large success probability. Finding canonical forms that work
even when q is smaller would enlarge the range of code equivalence
instances for which the reduction is meaningful; we leave this as an
interesting open question.

6.2 Canonical Forms as a Solver for LEP

We now show how the reduction in Algorithm 1 can be used to
mount a practical attack on code equivalence. Again, we focus on the
case of LEP but the attack obviously works also when considering
PEP. The core of our proposed procedure is shown in Algorithm
2. Essentially, the procedure first solves CF-LEP using a meet-in-
the-middle strategy; then, it calls the reduction in Algorithm 2 to
reconstruct the equivalence between G and G′.

The analysis of the resulting time complexity is very simple.
First, because of the birthday paradox, the algorithm has constant
success probability which is approximately 1/2. For each candidate
Pis (resp., P

′
is), the probability that it corresponds to a computable

canonical form is ζγ which, as we have already seen, is expected to
be a constant (with value close to 1). Finally, we have shown that
canonical forms can be computed in polynomial time. Indicating
with h(R) = −R log2(R) − (1 − R) log2(1 − R) the binary entropy
function, we get an asymptotic time complexity of

O (|L|+ |L′|) = O

(√(
n

k

))
= 2n·h(R)·

(
1+o(1)

)
.

In practice, we can think of the algorithm as a clever way to
brute force CF-LEP. Note that, for LEP, a brute force attack (using
with the very same meet-in-the-middle approach) would take time

O
(√

n!(q − 1)n
)
, which is super-exponential in n.
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Algorithm 2: Solving code equivalence via canonical forms

Input: matrices G,G′ ∈ Fk×n
q

Output: equivalence between G and G′, or failure

1 Set L = ∅, L′ = ∅;

// Populate first list

2 while |L| <
√(

n
k

)
do

3 Sample Pis
$←− Sk,n;

4 if G ·Pis admits information set {1, · · · , k} then
5 Compute B = CF(G ·Pis);
6 if B ̸=⊥ then
7 Add

(
Pis,B

)
to L;

// Populate second list

8 while |L′| <
√(

n
k

)
do

9 Sample P′
is

$←− Sk,n;
10 if G′ ·P′

is admits information set {1, · · · , k} then
11 Compute B′ = CF(G′ ·P′

is);
12 if B′ ̸=⊥ then
13 Add

(
P′

is,B
′) to L′;

// Find solution for CF-LEP, then reconstruct the equivalence

14 Search for collisions, i.e., pairs (Pis,B) ∈ L, (P′
is,B

′) ∈ L′ such that B = B′;
15 If a collision is found, call Algorithm 1 on input G,G′ and Pis, P

′
is

All known attacks on LEP have complexity which grows with
q; however, the complexity resulting from Algorithm 2 does not de-
pend on this factor11. Appendix A briefly compares Algorithm 2
with other known attacks. The analysis is only qualitative, since we
use a very rough estimate for the costs of the algorithms based on
short codewords [7, 8, 21]. Also, we are assuming that γ is a (large)
constant, but this may require more precise evaluations (especially
since, for growing n, the success probabilities may change). Yet, our
preliminary results show that, when q is large enough, Algorithm
1 may significantly outperform state-of-the-art attacks. It is worth
mentioning here, once more, that this is not the regime of interest
for LESS, and thus such results do not affect the claimed security
levels.

11 For concrete estimates, one would need to consider this since ζ, γ, and the cost of
computing canonical forms all depend on q. Yet, this consideration would only lead
to constant or polynomial factors, which disappear in the asymptotic regime.
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7 Concrete Instantiations

In this section, we discuss concrete instantiations of LESS using
our technique. It is worth noting that canonical forms allow us
achieve almost-optimal sizes. Indeed, we have n ≈ 2λ and our newly-
proposed attack technique shows that we have attacks with asymp-
totic complexity O

(
2

n
2
·h(1/2)) = O

(
2

n
2

)
. Thus, whenever the code

rate is 1/2, the codes have sizes which are close to being optimal (if
polynomial factors are omitted). Given that n ≈ 2λ, we are sending
responses that are as large as commitments and cannot use smaller
values for n.

NIST Type Code Params Prot. Params Attack Case pk sig
Cat. n k q s t w Factor (B) (B)

1

Mono

252 126 127 2 247 30 123.84

2

13939

8624
Mono 4 5789
Mono 5 2481
Perm 3 2481

3

Mono

400 200 127 2 759 33 197.67

2

35074

17208
Mono 4 11433
Mono 5 5658
Perm 3 5658

5

Mono

548 274 127 2 1352 40 271.56

2

65792

30586
Mono 4 19626
Mono 5 10036
Perm 3 10036

Table 2. Potential parameter sets with s = 2 for CF-LESS. All sizes in bytes (B).

Table 2 shows some potential parameter sets for CF-LESS, along
with the parameter sets with s = 2 of LESS; the latter are reported
in the bottom row of each cell. The main purpose of this table is
to illustrate the impact of our technique; therefore, we report sizes
corresponding to the various choices of F defined in our work, indi-
cating which one was considered in the column “Case”. The column
“Attack Factor” indicates the largest factor in the cost of of the at-

tack in Section 6.2, estimated as log2

√(
n
k

)
. Note that the number of

bit operations taken by the attack is more than
√(

n
k

)
, as there are

other nontrivial factors such as TCF. Giving the exact bit operation
counts is out of the scope of this paper.
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The signature sizes in the column “sig” are computed as

w · ⌈isobits/8⌉+ Λ(t, w) · ℓtree seed + ℓsalt + ℓdigest.

The value of isobits has been computed in Table 1. Λ(t, w) indicates
the number of seeds (in the tree) that we need. We define Λ(t, w)
as 2⌈log2 w⌉ + w · (⌈log2 t⌉ − ⌈log2w⌉ − 1), as in [14,20]. ℓtree seed, ℓsalt
and ℓdigest stand for the respective lengths of seeds, salt and digest.
These values have been specified in [3, Table 2].

Of course, one can achieve even smaller signature sizes by in-
creasing s, at the cost of larger public keys. We report these below.

NIST Type Code Params Prot. Params Attack Case pk sig
Cat. n k q s t w Factor (B) (B)

1

Mono

252 126 127 4 244 20 123.84

2

41785

5941
Mono 4 4051
Mono 5 1846
Perm 3 1846

3

Mono

400 200 127 4 895 24 197.67

2

105174

12768
Mono 4 8568
Mono 5 4368
Perm 3 4368

5

Mono

548 274 127 4 907 34 271.56

2

197312

25237
Mono 4 15921
Mono 5 7769
Perm 3 7769

Table 3. Potential parameter sets with s = 4 for CF-LESS. All sizes in bytes (B).

Failure Probability. We have experimentally confirmed that the
failure rate is reasonably low for each parameter set in Table 2. To
this end, we generated 220 random matrices in Fk×(n−k)

q for each
parameter set (for Case 4 and 5 we set d = 5) and were always
able to derive the corresponding canonical forms. Even better, in
Appendix B we show that the failure probability is below 2−165 when
the algorithm in Case 3 is used. With such low failure probabilities,
we conclude that the reduction of Proposition 5 is efficient, and the
resulting overhead for signing is consequently quite small.

26



Comparison with Other Schemes. Table 4 shows public key and
signature sizes of some other post-quantum signature schemes.

Parameter Set pk sig NIST Cat. Reference

SPHINCS+-128s 32 7856 1
SPHINCS+-192s 32 16224 3 [2]
SPHINCS+-256s 32 29792 5

MEDS-9923 9923 9896 1
MEDS-41711 41711 41080 3 [16]
MEDS-134180 134180 132528 5

uov-Ip 43576 128 1

[10]
uov-Is 66576 96 1
uov-III 189232 200 3
uov-V 446992 260 5

MiRitH-Ia 129 5673 1
MiRitH-IIIa 205 12440 3 [1]
MiRitH-Va 253 21795 5

Table 4. Public key and signature sizes of other post-quantum signature schemes.

Compared to MEDS, which is similar in design, CF-LESS has
comparable public key sizes but much smaller signatures. SPHINCS+
and MPC-in-the-head schemes like MiRitH, have characteristically
very small public keys, but their signature sizes are much larger. CF-
LESS can be an attractive option, then, in applications where signa-
ture size has more impact than public key size. On the other hand,
when compared to schemes such as UOV, CF-LESS has smaller pub-
lic keys and larger signatures. Still, we remark that CF-LESS per-
forms better if the sum of public key and signature is considered.

There are other post-quantum schemes featuring both smaller
public keys and smaller signatures than CF-LESS, such as MAYO [9]
and SQIsign [15]. The underlying problem in MAYO is still quite
young, so it probably requires more study to gain confidence. On
the other hand, SQISign’s reported performance numbers are still far
from practical (e.g. very slow signing and key generation, in the order
of billions of cycles). Overall, our scheme is be well-positioned in
the post-quantum signature ecosystem, especially among code-based
signatures, where we exhibit the smallest signature size, except for
hash-and-sign schemes such as Wave [4], which are however hindered
by huge public keys (e.g. 3.6 MB at category 1).
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A Comparison with Other Solvers

In this section, we consider various solvers for the code equivalence
problem, and compare their running time with the one of our algo-
rithm from Section 6.2.

SSA, [24]: this algorithm can efficiently solve PEP when the hull of
the considered codes is small. However, the attack takes exponential
time when the hull is large, as is the case for self-orthogonal codes
(i.e. contained in their dual); in such a case, it has time complexity
TSSA = O(qk) = O(2Rn·log2(q)). Thanks to a reduction in [25], SSA
can also be used to solve LEP; however, whenever q ≥ 5, the reduc-
tion maps any code into a self-orthogonal code with dimension k (so,
it has time complexity O(qk)).

BOS, [5]: this algorithm reduces PEP to graph isomorphism. While
the technique is efficient for codes whose hull is either trivial or has
small dimension, it yields super-exponential running time TBOS =
O(nRn) when self-orthogonal codes are considered.

Leon, Beullens, BBPS, [7, 8, 21]: each of these algorithms exhibits
some peculiar aspects and may work only in certain regimes. For
instance, while Leon’s algorithm works regardless of q, Beullens’ al-
gorithm is very likely to fail when q is too small. Both of these algo-
rithms can solve both PEP and LEP, while the BBPS algorithm im-
proves upon Beullens’ LEP algorithm by exploiting short codewords
instead of subcodes. A precise estimate for the time complexity of
each of these algorithms would depend on several factors which are
sometimes hard to take into account. For instance, Leon requires to
find all codewords whose weight is not greater than some value w
which (heuristically) can be set slightly larger than the minimum
distance: however, to the best of our knowledge, a formula to set w
a priori is not known. In any case, these three algorithms follows a
common principle, since they do not depend on the hull dimension
and require to find a sufficiently large number of short codewords
(or subcodes). For the sake of simplicity, for these three algorithms
we consider the cost of finding a unique low-weight codeword us-
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ing Prange’s algorithm1213 Hence, for these algorithms we consider
a time complexity given by

T = O

(
2τPrange(R,q)

(
1+o(1)

))
,

where

τPrange(R, q) = h2(R)−
(
1− h−1

q (1−R)
)
· h2

(
R

1− h−1
q (1−R)

)
,

and hq denotes the q-ary entropy function.

We are now ready to compare the above algorithms with Algo-
rithm 2; to this end, consider Figure 3. We are considering code
equivalence instances for which both SSA and BOS are no efficient
(i.e., PEP with self-orthogonal codes or LEP with q ≥ 5). Note that
SSA and BOS have been omitted from the comparison since their
performance would have not been competitive: BOS runs in time
which is super-exponential in the code length n while SSA is some-
times faster than our algorithm only if q ≤ 7. We see that, when q is
small, our algorithm is significantly slower than those based on code-
word finding. Instead, when q grows, our algorithm becomes much
more competitive and becomes faster then Prange.

We remark that this analysis holds given that efficiently com-
putable canonical forms are considered. The ones introduced in this
paper work whenever q is large enough, while they may yield a small
success probability when q gets lower: this may make our attack
slower. We have not analyzed how these canonical forms work when
q gets lower; we see this, and even the question of whether new
canonical forms may exist, as interesting research perspectives.

12 The choice of Prange’s ISD is meaningful since, for large finite fields, modern algo-
rithms such as Lee-Brickell and Stern seem to perform worse.

13 Even though this provides only a very broad estimate of the actual time complexity,
this allows us to compare with these algorithms in a simple and concise way. We
point out that cryptanalysis is not the focus of this paper and the aim of this section
is merely to show that canonical forms can be a useful tool not only for the design
of cryptographic schemes, but also for the cryptanalysis of the code equivalence
problem.
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Fig. 3. Comparison between the complexity coefficients for Prange (dashed lines) and
Algorithm 2 (continuous red line), as a function of the code rate.

Observe that the time complexity of Prange deteriorates quickly.
This is due to the fact that, as q grows, the minimum distance ap-
proaches n−k (since random codes meet the Singleton’s bound with
high probability). Hence, there is a unique information set which
would result in a success for Prange’s ISD: this is corroborated by
the fact that h−1

q (1 − R) → 1 − R as q grows and τPrange(R, q) →
h2(R). Note that this complexity coefficient is twice the one which
is achieved by our algorithm.

Asymptotic cost of Prange’s ISD. A random code of length
n and rate R has with overwhelming probability minimum distance
d = δn, where δ = h−1

q (1 − R) (where hq is the q-ary entropy func-
tion). The average number of iterations which are performed by the
algorithm is(

n
k

)(
n−d
k

) =

(
n
Rn

)(
n(1−δ)
Rn

) = 2n·(h2(R)−(1−δ)·h2( R
1−δ ))

(
1+o(1)

)
.

The cost of each iteration is that of one Gaussian elimination: this is
a polynomial term so we do not consider it. Then, for the algorithm
we assume a complexity coefficient given by

τPrange(R, q) = h2(R)− (1− δ) · h2
(

R

1− δ

)
.
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B A Lower Bound on the Success Probability
of the Canonical Form for Case 3

We derive a closed form, lower bound for the success probability
of the canonical from Section 4, case 3, which is defined for F =
{Ik} × Sk × {In−k} × Sn−k.

Proposition 6. For A ∈ Fk×(n−k)
q chosen uniformly at random, the

canonical form defined as in Section 4, Case 3 exists with probability
at least

∏k−1
i=1 1−

im
qn−k , where

m =

(n− k)! if n− k ≤ q,
(n−k)!(

v!
)q(v+1)−(n−k)(

(v+1)!
)n−k−qv if n− k > q,

where v = ⌊(n− k)/q⌋.

Proof. We use ai to indicate the i-th row of A and S(ai) to denote
the set of vectors whose multiset is equal to that of ai. Notice that
S(ai) contains all vectors that one can obtain by permuting the
entries of ai. The probability that computational of canonical form
does not fail can be lower bounded with a simple iterative reasoning.

Let us consider the first two rows of A: regardless of a1, they
will have different multisets if multiset(a2) ̸= multiset(a1). So, the
probability that this pair of rows is valid is

Pr [{a1, a2} is valid] =
∑
ai∈Fn

q

Pr [a2 is valid | a1] · Pr [a1]

=
1

qn−k

∑
ai∈Fn

q

(
1− |S(a1)|

qn−k

)
,

where Pr [a1] is the probability that the first row is equal to a1 and
is equal to q−(n−k) for each a1 (since A is sampled according to the
uniform distribution). Now, let m such that |S(a1)| ≤ m for each
possible a1: we get

Pr [{a1, a2} is valid] ≥ 1

qn−k

∑
ai∈Fn

q

(
1− m

qn−k

)
= 1− m

qn−k
.
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We now consider a3 and, with analogous reasoning, get that for any
valid pair {a1, a2}, a new vector a3 is valid only if it does not belong
to S(a1) ∪ S(a2). Using the upper bound m for both sets, we get
that a3 is valid with probability at least 1 − 2m

qn−k . If we iterate the
reasoning up to the k-th row, we obtain the following probability:

k−1∏
i=1

1− im

qn−k
.

Now we just need to derive useful values for m. To this end, we
consider that, when n−k ≥ q, then we can set m = (n−k)!: indeed,
|S(a1)| = (n − k)! holds only if a1 has all distinct entries while,
otherwise |S(a1)| contains fewer vectors. When n − k > q, we can
refine the bound by taking into account that each ai must necessarily
have some repeated entries. The proof on how m is derived, in this
case, is reported below. ⊓⊔

Maximum Number of Permutations for Vectors with Re-
peated Entries. We study the following problem: find the maximal
value that |S(a)| can have, when a is a length-z vector over Fq. Let
ℓi denote the number of entries of a with value equal to xi ∈ Fq (we
are writing the field as {x0 = 0, x1 = 1, x2, · · · , xq−1}); notice that
it must be

∑q−1
i=0 ℓi = z. The values ℓi allow us to take into account

the number of permutations with repetitions, so that

|S(a)| = z!∏q−1
i=0 ℓi!

=
z!

f(ℓ0, . . . , ℓq−1)
.

Maximizing |S(a)| means minimizing f(ℓ0, . . . , ℓq−1): as we show
next, this is achieved when all values ℓi are balanced, i.e., the differ-
ence between any pair of values ℓi, ℓj is not greater than 1.

Proposition 7. For any (ℓ0, · · · , ℓq−1) ∈ Nq such that
∑q−1

i=0 ℓi = z,
it holds that

f(ℓ0, · · · , ℓq−1) ≥ (v!)q(v+1)−z ((v + 1)!)z−qv ,

where v =
⌊
z
q

⌋
.

34



Proof. The proof is crucially based on the simple observation that

∀x, y ∈ N, it holds y!x! > (y − 1)!(x+ 1)! if y − x > 1. (1)

Let us consider an arbitrary tuple (ℓ0, · · · , ℓq−1), summing to z, and
assume there are two values ℓj, ℓu such that ℓj − ℓu > 1. Then, there
exists a new tuple (ℓ′0, · · · , ℓ′q−1) such that ℓ′i = ℓi for any i ̸= j, u,
ℓ′j = ℓj − 1 and ℓ′u = ℓu + 1. First, this configuration is valid since
the sum of all the ℓ′i is still equal to z. Also, because of (1), we have
that

f(ℓ0, · · · , ℓq−1)

f(ℓ′0, · · · , ℓ′q−1)
=

∏q−1
i=0 ℓi!∏q−1
i=0 ℓ

′
i!
=
ℓj!ℓu!

ℓ′j!ℓ
′
u!

=
ℓj!ℓu!

(ℓj − 1)!(ℓu + 1)!
> 1.

We can iterate the procedure until we end up with a tuple where,
for each pair of values, the difference is at most 1. This implies that

there are only two possible values in the tuple, v =
⌊
z
q

⌋
and v + 1.

Let w denote the number of entries with value v: since it must be
vw + (q − w)(v + 1) = z, we find w = q(v + 1)− z. So, the number
of entries with value equal to v + 1 is q − w = z − qv. ⊓⊔

It follows that

∀a ∈ Fzq , |S(a)| ≤
z!(

⌊z/q⌋!
)q(⌊ z

q⌋+1)−z(
(⌊z/q⌋+ 1)!

)z−q⌊ z
q⌋
.
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