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Abstract. In a proof of space, a prover performs a complex computation
with a large output. A verifier periodically checks that the prover still
holds the output. The security goal for a proof of space construction is
to ensure that a prover who erases even a portion of the output has to
redo a large portion of the computation in order to satisfy the verifier.

We present the first proof space that ensures that the prover has to
redo almost the entire computation (fraction arbitrarily close to 1) when
trying to save even an arbitrarily small constant fraction of the space.

Our construction is a generalization of an existing construction called
SDR (Fisch, Eurocrypt 2019) deployed on the Filecoin blockchain. Our
improvements, while general, also demonstrate that the already deployed
construction has considerably better security than previously shown.

1 Introduction

In a proof of persistent space [6], a verifier V wants to be convinced that a
prover P is continuously using a lot of storage. To initialize a proof of space1

instance, P takes a small instance identifier x, and generates a very large output
y = f(x). (Depending on the flavor of the proof of space, P may also provide to
V a commitment to y and a proof that the computation of f was correct or at
least close to correct.) V then periodically queries random portions of y, which
P returns together with the proof of their correctness. To be confident that P is
really using the storage, we need the following property: when storing less than
all of y, it should be hard for P to come up with portions of y in response to the
queries of V .

To make this notion more precise, we have to address what “less than all of y”
and “hard” mean. Naturally, the prover is not limited to storing bits of y, and can
store other values—for example, some intermediate values in the computation
of y = f(x). If P stores just a little bit less then |y|, perhaps answering queries
is not so hard. A proof of space is thus characterized by a space gap εspace: if a
cheating prover stores fewer than (1 − εspace) · |y| bits, then answering queries
becomes “hard”; but above (1− εspace) · |y| storage, the proof of space provides
no guarantees.

? Work done while visiting Universitat Pompeu Fabra and Protocol Labs.
1 We will omit the term “persistent” from now on; proofs of transient, as opposed to

persistent, space were introduced in [3].
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The construction of Pietrzak [12, Lemma 8] is the first one to provide security
against an arbitrarily small space gap, but only in a theoretical sense, because
the complexity of f grows too high as the space gap shrinks, and is problematic
even for a space gap of 1

2 [8, Section 1.1]. The SDR construction of Fisch [8] is
the first one to do so for practical parameter values and is deployed in practice
for a space gap of 0.2 [10].

Because x is short, answering the queries of V is never harder than simply
recomputing y = f(x). We will use the term “relative hardness” rhardness ≤ 1
to denote the ratio between the hardness of answering the queries of V by a
cheating prover who uses less than (1− εspace) · |y| storage, and the hardness of
f . We will also use the term “hardess gap” εhardness = 1− rhardness.

We have not yet addressed what “hardness” actually means. Two notions
have found use in practice [10, Section 1.2]: monetary cost and latency. If the
cost of recomputing portions of y in response to V ’s queries is higher than cost of
storing (1− εspace) · |y| bits and simply looking up the answers, then a prover in-
centivized by money will choose to use storage. Alternatively, if the time required
to recompute portions of y is longer than V is willing to wait, then a prover who
does not use storage will simply fail. While real-life cost and latency are difficult
to estimate, as they depend on a multitude of implementation-specific factors,
they are reasonably well approximated by the notions of sequential time and
parallel time, respectively.

For both cost and and latency, the closer relative hardness rhardness is to 1,
the better. When hardness is measured in terms of cost, a bigger rhardness lowers
initializations costs for the prover and/or decreases the frequency of queries from
the verifier. When hardness is measured in terms of latency, a bigger rhardness
reduces the time needed for initialization and/or increases V ’s willingness to
wait, potentially allowing P to use cheaper hardware. When proofs of space
are used for useful storage, as in constructions of [4,12,9,7], these gains directly
translate into reduced costs for storage and retrieval.

1.1 Our Contribution

We show a practical proof of space that can achieve hardness ratio rhardness ar-
bitrarily close to 1. Moreover, we do so while also maintaining the arbitrarily
small space gap εspace shown by Fisch [8]. Our result is for sequential time (corre-
sponding to cost); achieving the same for parallel time (corresponding to latency)
remains an open problem.

In contrast to our result, the result of Fisch achieves hardness for parallel
time, but rhardness goes to zero as the space gap εspace decreases. The only known
proof of space that could theoretically achieve rhardness arbitrarily close to 1
and εspace arbitrarily close to 0 for parallel time is the construction of Pietrzak
[12] generalized to larger and more depth-robust graphs (as presented in [12],
rhardness = 1

4 ), but such generalization will even further reduce the practicality of
the construction.

Our construction of f , which we call SPR, is quite practical — in fact, it is a
minor relaxation of the SDR construction by Fisch. Our main contribution is in
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the new analysis techniques. The analysis techniques we develop are more general
than the techniques used in prior analyses of graph-based proof of space con-
structions (as they do not rely on the particular parameters of the expansion and
depth-robustness) and, at the same time, provide better concrete results when
instantiated with specific parameters. We emphasize that these techniques are
not only of theoretical interest; we apply them to demonstrate that the relative
hardness rhardness for SDR as deployed by the decentralized storage blockchain
Filecoin [11] is 11 times better than previously proven, and that adding just a
little more complexity to the graph provides further dramatic improvements.

1.2 Technical Overview

We now elaborate on the construction and analysis.
All known constructions of proofs of space are in the random oracle model;

let H denote this random oracle. Queries to H are assumed to be atomic; space
is measured in the number of H outputs stored, and time is measured in the
number of queries to H. Like most constructions of proofs of space (with the
exception of [1]), our construction SPR uses a directed acyclic graph G with a
single source to represent f , as follows. Each node in G is labeled with the output
of H applied to the labels of the node’s predecessors (and the node’s index in
the graph, for uniqueness); the source is labeled with x and the labels of nodes
near the sink(s) become y.

Assume that a malicious prover P ∗ stores labels of only some of the nodes in
G.2 Then, when a query from V asks P ∗ for the label of some node v in y, P ∗

needs to compute this label from the labels stored. This problem corresponds to
the following pebbling game on G: given pebbles on some nodes on G (the ones
with stored labels), work to place a pebble onto v; you are allowed to place a
pebble onto a node when all of its predecessors already have pebbles. Sequential
time corresponds to the total number of pebbles placed in order to reach v, and
parallel time corresponds to the longest path on those pebbles.

A malicious prover can cheat somewhat when computing y = f(x), by label-
ing some nodes with incorrect, easy to compute, values. This cheating cannot
cover too many nodes, as the verifier spot checks the computation during the ini-
tialization phase. For P ∗, incorrectly computed nodes correspond to additional
pebbles on G. Pebbles of this “cheating” type are called “red” [6], in contrast to
pebbles that correspond to storage, which are “black”.

When a node v is queried by V , the prover has to compute the labels of all
nodes that have unpebbled paths to v; thus, our goal is to a prove high lower
bound on the number of such nodes, no matter how the red and black pebbles
are placed. Such nodes make the footprint of v.

The SDR (“Stacked Depth-Robust”) graph used for the computation of f in
[8] is built a follows. Take ` layers of n nodes each; number them from 1 to `

2 As shown in [12, Sections 5, 7], for proofs of parallel time, it is possible to prove that
a malicious prover who stores information other than random oracle outputs — for
example, functions of those outputs — cannot do better; unfortunately, no proof of
this fact is not known for sequential time.
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top to bottom. Level i has edges going to level i+ 1 so as to form an expander
when viewed backwards; that is, a set of nodes on level i + 1 of size αn has
β(α) ·n predecessors on level i, where β(α) > α is a function that grows quickly,
particularly for small values of α. Each level also has horizontal (left-to-right)
edges that form a graph of with the following property: a path of length απ · n
exists in any subgraph of size π · n (this is known as a (1− π, απ)-depth-robust
graph). The horizontal graphs have a single source on the left; the label of the
top left node is x and the labels of the entire bottom level are y.

Our construction SPR (“Stacked Predecesor-Robust”) is a slight generaliza-
tion of SDR: we can relax depth robustness to predecessor robustness, we do not
need horizontal edges on all levels, and we are agnostic to the specific expander
and depth-robustness parameters; see Section 2.

The technical heart of this paper develops techniques for lowerbounding foot-
print sizes in such graphs. We show the applicability of these techniques in both
the asymptotic regime (where we prove that the footprint size can get arbitrarily
close to |G| to get rhardness arbitrarily close to 1) and the concrete regime (where
we provide an 11-fold improvement over the previous analysis of a deployed
scheme, and show that rhardness can be easily improved further).

2 Definition and Construction

2.1 The Graph SPR

Please refer to Section 1.2 for the explanation of the construction; here we only
fill in the details.

Both SDR [8] and our construction SPR are graphs G of ` levels of n nodes
each. We follow the numbering in [8]: the top level is 1, the bottom is `, with
edges going left-to-right in each level (for depth-robustness per level) and down
from level i to level i + 1 (for expansion when going back from lower levels
to upper levels). Note that this level numbering can be confusing, as most of
our arguments go bottom-to-top by induction, and thus induction goes down in
natural numbers as it goes up levels.

SDR requires the following depth-robustness guarantee: any set of 0.8n nodes
in a given level has a path of length απn. This guarantee needs to apply to all
levels.

In SPR, we relax this guarantee. We parameterize SPR by both ` and `pr. Of
the ` total levels, only the lower `pr need to have the following guarantee, called
predecessor robustness in [2]: any subgraph of a given level of size π · n contains
single-sink subgraph of size απn (this guarantee is implied by depth-robustness,
as a path is, in particular, a single-sink subgraph). In contrast to SDR, which is
analyzed specifically for π = 0.8, our construction works for almost any constant
π and απ. There is a mild technical condition that relates π to the behavior of
the expander; see Condition 2 in Section 5.1.

The levels above the lowest `pr need no horizontal edges, except level 1, which
needs an edge from the leftmost node labeled x to every node.
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The expansion guarantee is the following: any set of α·n nodes in a given level
has, collectively, β(α) · n predecessors (for constant α and sufficiently large n).
In contrast to SDR, which is analyzed for a specific β (from the degree-8 Chung
expander), our analysis works for general β. We only require the following:

Condition 1 β(α) is a continuous, monotonically increasing strictly concave
function on [0, 1], with β(0) = 0, β(1) = 1, and β(α) > α for all α ∈ (0, 1).

We emphasize that SDR is a special case of SPR, and our analysis works for
SDR as well.

2.2 Initialization

As in most proof of space schemes, initialization starts by having P compute
the labeling of G, commit to the labels using a Merkle tree or another vector
commitment, and send the commitment to V . To ensure the computation is ap-
proximately correct, V queries some number of randomly chosen labels, which
P reveals together with the labels of their predecessors; V verifies that the de-
commitments are correct and that the label of the requested node is correctly
computed from the predecessors. For our construction, initialization will assure
V with probability 1 − e−λ that the fraction of incorrectly computed labels on
each layer is at most δ. This will require λ/δ queries per layer, which can be done
quickly, because the graph is almost the same layer-to-layer, so entire columns
of nodes can be queried and decommitted at once.3

From now on, we will assume that initialization has succeeded: that is V
accepted, the probability e−λ event that P ∗ was not caught cheating has not
happened, and thus at most a δ fraction of each layer is incorrect. Nodes with
incorrect labels will be said to have red pebbles on them.

After initialization the honest P stores the n labels of the bottom layer of
the graph. A malicious P ∗ stores the labels of any (1 − εspace) · n nodes; these
nodes will be said to have black pebbles on them.

2.3 Execution and Security

During the execution, V queries a bottom-layer node, and P decommits its label.
A malicious P ∗ must place new pebbles in order to find the label of P ; recall
that a pebble can be placed on a node only if all of its predecessors have pebbles.

Our definition of security is in the graph pebbling model, following [6,13].
Note that different definitions of proofs of space highlight different parameters
in parentheses; we avoid the positional parenthetical notation to avoid confusion.

3 It is also possible to use `λ/δ challenges for the entire graph G to guarantee that at
most δ/` fraction of the entire graph is incorrect, which would in particular imply
the per layer guarantee of δ, but the per-layer approach is more efficient, because
working with entire columns means that there are only λ/δ decommitments.
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Definition 1. Let N be the number of nodes in G and n be the number of nodes
in the output y. We will say that a proof of space in the pebbling model has space
gap εspace, hardness ratio rhardness, and single-query catching probability phard if
the following holds: assuming initialization succeeded, with probability at least
phard over the random choice of a queried node, a cheating prover P ∗ who stores
at most (1− εspace) · n black pebbles before the query is issued must place pebbles
onto rhardness ·N nodes4 in order to place a pebble onto the queried node.

Note that V can query λ/phard nodes to increase the probability from phard
to 1− (1− phard)λ/phard > 1− e−λ (however, the work of P ∗ may not grow above
rhardness ·N , as it may be shared among all the queried nodes).

3 Main Results

Theorem 1. Fix εspace > 0. For any constant r < 1, there is a setting of con-
stants δ, `pr, and n in the SPR construction, and a constant m, such that for
any number of layers ` the SPR construction has hardness ratio

rhardness ≥
r(`−m)

`

(which approaches r as ` grows) and single-query catching probability phard ≥
εspace/2.

Sections 4–9 are dedicated to proving Theorem 1.

Theorem 2. For SPR instantiated with the degree-8 Chung expander, m in
Theorem 1 is at most linear in

1

β(απ)− απ
+

1

β(π)− π

plus an amount that is logarithmic in the inverses of εspace, απ, 1− π and 1− r.

A description of Chung expanders and a proof of this theorem are in Sec-
tion A.

4 We define rhardness in terms of nodes pebbled rather than edges traversed. If the de-
grees of nodes are similar, it does not make much of a difference. We could, instead,
redefine it in terms of edges traversed, which would account for the fact that costs
of hashing are roughly proportional to the input length; this would make accounting
messier, but would not change our main result of achieving rhardness arbitrarily close
to 1. It is also possible to use duplicate hash inputs simply to make hash compu-
tation time at each node the same (as is done in the Filecoin implementation [11]).
Whether using duplicate hash inputs or increasing the number of layers in our con-
struction results in a tighter cost ratio in practice depends on specific parameters
and implementation details.



7

Theorem 3. Suppose SPR is instantiated with the degree-8 Chung expander, a
predecessor-robust graph with π = 0.8 and απ = 0.2, `pr = 8, and ` ≥ 11. Assume
εspace = 0.2 and δ = 0.0378. Then it has hardness ratio

rhardness ≥
2.24 + 0.93(`− 11)

`

and single-query catching probability 10%.

The parameters in Theorem 3 are taken from the deployed instantiation on
the Filecoin blockchain [11]. They are slightly better than what follows directly
from the proof of Theorem 2; in particular, crucially, they give a nontrivial
result for ` = 11, which is the deployed instantiation, while the constants from
Theorem 2 would have nothing to say until ` = 15 and would say nothing
about the deployed instantiation. The proof of Theorem 3 thus requires a bit
of additional work, which is in Section B. Prior to this work, the best hardness
ratio known for SDR with these parameters was 0.2/` [8,10] (importantly, that
hardness ratio is proven for parallel hardness, which corresponds to latency, while
our result is only for sequential hardness, which corresponds to cost).

4 Overview of the Proof of Theorem 1

Given a set S of nodes, let weight wt(S) denote |S|/n.

Definition 2. A path is unpebbled if none of its nodes (including beginning
and end) have pebbles. For a node v, its footprint is the set of nodes that have
unpebbled paths to v. If v itself is pebbled, its footprint is empty. For a set of
nodes, its footprint is the union of the footprints of its elements.

Fix a set weight ζ, with 1− εspace + δ < ζ < 1.

Definition 3. Call a level b fertile if for every subset S of the bottom level with
wt(S) ≥ ζ, the footprint of S on level b has weight at least π, i.e., the ancestor
robustness guarantee applies to the footprint of S on level b.

4.1 Summary of the SDR Proof from Fisch [8]

Our goal is to show that sufficiently many nodes in the bottom level have suf-
ficiently large footprints. We don’t know how to do that using only expansion
arguments (i.e., vertical edges), because we can’t prove that an average single
node in the bottom level expands much as we go up. There are just not enough
levels and not enough degree for exponential growth to do its job, especially
when pebbles slow down this growth.

The proof in [8] first uses the expansion argument on a set of nodes to prove
that it expands, and then uses horizontal edges to prove that even a single node
at the bottom will depend on many nodes in a given level. Specifically, the proof
proceeds as follows (substituting predecesor-robustness for depth-robustenss):



8

1. Expansion to get a large footprint of a large set. Assume S is a subset
of the bottom layer and wt(S) ≥ ζ. Prove, using vertical edges and expan-
sion arguments, that there exists a fertile level. At its core, the argument is
relatively simple: the set expands to the next level via β, pebbles reduce this
expansion, and you repeat. Eventually pebbles run out and you win.
The argument is suboptimal because β(α) for the specific degree-8 Chung
expander used in [8] is a messy function, and the proof uses its piecewise-
linear approximation to reach π = 0.8. We replace this argument with one
that works for a general π and a general β using its global properties from
Condition 1; this improved argument gives better results (i.e., the fertile
level is lower) even for the specific expander in [8] (see Section B.1).

2. Predecessor robustness to get a single-sink footprint. By the prede-
cessor robustness property, the footprint of S on level b contains a single-sink
subgraph T of size απ.

3. Single-sink graphs to go from collective to individual footprints. At
least one node in S depends on the sink of T , and therefore the individual
footprint of that one node contains all of T and is thus of size απ (note that
in SDR, as opposed to SPR, T is a chain, which implies that pebbling this
one node takes time απ even with unbounded parallelism).

4. Simple counting to get many nodes with large footprints. Because
the above holds for every S of weight ζ on level `, there are at least (1−ζ) ·n
nodes at level ` whose footprint at level b contains a graph T of weight
απ (else, all the nodes that don’t satisfy this condition form a set S that
contradicts the previous three steps).

4.2 Main Idea of the Improvement

Our proof that footprint size approaches r` for any r < 1 proceeds in the same
steps as outlined above, but with the addition of a new step after Step 3 above:

3.5 An individual footprint on a fertile level expands in levels above.
The single-sink graph T has a footprint T ′ that is of weight r on almost
every level above b.

Applying Step 4 to T ′ instead of T implies that there are at least (1− ζ) · n
nodes at the bottom level whose footprint is of size almost r(`− b).

To make step 3.5 work, we will need to argue that above b, there are not
enough pebbles to kill this expansion of T . Unfortunately, that is not the neces-
sarily the case, because απ may be quite small and there may be a lot of pebbles
left.

At its core, the argument will be as follows. Each infertile level costs the
adversary some black pebbles, because S wants to expand, and it costs pebbles
to keep this expansion in check 6. This bounds the number of infertile levels.
Each fertile level has an unpebbled set T that wants to grow. We characterize
the minimum footprint of such a set in Section 7, where we use concavity of β
to prove that to minimize the footprint weight, all the pebbles should be placed
on the level directly above T .
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The challenge is that the adversary has enough pebbles to completely prevent
the growth of a single fertile set. Moreover, some black pebbles can be used to
stop several fertile sets at once. In Section 8, we show that, despite this ability,
for each fertile level that is prevented from growing, the adversary has to use
some quantity of black pebbles. We then show that eventually some fertile level’s
footprint will outgrow the number of black pebbles that the adversary can use
above it (the main insight here is to look at the gap between the footprint
and available pebbles, thus reducing two variables to one). Once a fertile level’s
footprint outgrows the number of available pebbles, we can lowerbound the rest
of the footprint, no matter how the pebbles above are distributed.

This argument shows that if we carefully choose a fertile level in Step 1, we
will be done. We fill in the quantitative details in Section 9.

5 Proof Notation and Basic Notions

We recap notation used above and introduce some new notation.

5.1 Graph, Weights, Gains

Given a set S of nodes, let weight wt(S) denote |S|/n. The number of nodes
at each level is n, and the total number of levels is `, of which the lower `pr
have horizontal edges to ensure predecessor robustness — i.e., to ensure that
any subset of weight at least π has single-sink subgraph of weight απ. The layers
are connected via an expander so that a subset of weight α on level i has β(α)
predecessors on level i−1, with β satisfying Condition 1; let gain(α) = β(α)−α,
βδ(α) = β(α) − δ, and gainδ(α) = gain(α) − δ, where δ is maximum per-level
weight of red pebbles.5

We prove the following standard set of facts in Appendix C.

Fact 1 The function gain is strictly concave on the interval [0, 1], with gain(0) =
gain(1) = 0. There is a value 0 < αg < 1 that maximizes gain. The function
gain (and therefore also gainδ) is monotonically increasing on inputs from 0 to
αg and monotonically decreasing on inputs from αg to 1.

We assume δ < gain(αg) (because we get to choose δ) and let [αmin
δ , αmax

δ ]
denote the interval in which gain(α) ≥ δ (i.e., gainδ(α) ≥ 0). We do not care
about expansion guarantees outside of this interval (thus, we can set n large
enough so that expansion guarantees hold on the interval once the constants
αmin
δ , αmax

δ are fixed). Note that αmin
δ < αg < αmax

δ .

5 One of the technical challenges in the proof is having to deal with δ red pebbles
at every level, which means the total number of red pebbles can easily exceed n.
If we had a small upper bound on the total number of red pebbles, we could just
add them to the black pebbles, as long as the total was less than n. This would
simplify the proofs and improve the quantitative bounds, but require more effort
during initialization, as explained in Footnote 3.
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Fig. 1. Generic β and gainδ (see Figure 2 in Section A for the Chung expander).

Condition 2 We assume π > αg.

If this condition does not hold, decrease δ and/or increase π until it does, which
won’t hurt predecessor robustness (but may change the constants in Theorem 1).
Let gπ = gainδ(π), and let [π, π] denote the interval in which gain(α) ≥ gπ. Note
that π < αg < π. Let gαπ = gainδ(απ). π

The following definition is used to measure how fast expansion grows over
multiple layers when unimpeded by any black pebbles; our notation is on purpose
analogous to logarithms.

Definition 4. Let βcountx(y) = min{i : βiδ(x) ≥ y}.

Claim 1. If x > αmin
δ and y < αmax

δ , then βcountx(y) is finite and is at most
min(0, (y − x)/min(gainδ(x), gainδ(y)).

Proof. If x ≥ y, we are done, so assume αmin
δ < x < y < αmax

δ . Let g =
min(gainδ(x), gainδ(y)). We will be using Fact 1. Because gainδ is strictly con-
cave, gainδ(x) > min(gainδ(α

min
δ ), gainδ(α

max
δ )) ≥ 0 by Claim 23; same for

gainδ(y), so g > 0. Because gainδ is concave, gainδ(α) ≥ g for x ≤ α ≤ y
by Claim 23, and therefore βiδ(x) ≥ min(y, x+ i ·g), so βcountx(y) ≤ min(0, (y−
x)/g). ut

Specifically for the degree-8 Chung expander used in SDR (see Section A
for details), expansion is rapid all the way from x = δ to y = 1 − 2δ, taking
fewer than 2 log 1/δ steps, as we prove in Claim 10. Moreover, simple numerical
computations for the Chung expander show βcountδ(1− 2δ) < 10 for δ ≥ 0.001.

5.2 Pebbles and Footprints

Let ρ = 1− εspace be the maximum total weight of black pebbles, ρi be the black
pebble weight on level i, and ρi...j be black pebble weight on levels i through j,
inclusive (regardless of whether i ≤ j, i.e., ρi...j = ρj...i).
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Let ζ = (1− εspace)/2 (this choice is somewhat arbitrary, and we could pick
any ζ as long as ζ > 1− εspace + δ + αmin

δ , ζ < 1, and ζ < δ + αmax
δ ; a smaller ζ

will increase the catching probability but decrease the footprint). Let ζδ = ζ−δ.
Recall Definition 2. If T is a subset of nodes at level b, define fb(T ) to be the

weight of the unpebbled part of T . For i ≤ b, inductively define

fi(T ) = max(0, βδ(fi+1(T ))− ρi) . (1)

Observe, by induction, that fi(T ) is a lower bound on weight of the footprint
of T at level i, because there are at least β(fi+1(T )) parents of the footprint at
level i + 1, and at most ρi + δ of those are pebbled (this is not even counting
horizontal edges, if any). If fi = 0, then for all j ≤ i, fj = 0, because βδ(0) = 0.
When T is clear from the context, we will write fi(b) or simply fi instead of
fi(T ) to simplify notation.

Define the functions φT and φfb as

φT (ρb . . . , ρ1) = φfb(ρb−1 . . . , ρ1) = fb + · · ·+ f1

to provide lower bounds on the total footprint of T .
We note that f and φ obey intuitive monotonicity constraints.

Claim 2. For every j ≥ i, fi is monotone nonincreasing as a function of ρj and
monotone nondecreasing as a function of wt(T ). The function φ is monotone:
if f ′b ≥ fb and ρ′i ≤ ρi for each i, then φf ′

b
(ρ′b−1, . . . , ρ

′
1) ≥ φfb(ρb−1, . . . , ρ1).

Moreover, adding a level at the end cannot decrease φ: φfb(ρb−1, . . . , ρ1, ρ0) ≥
φfb(ρb−1, . . . , ρ1) for any ρ0.

Proof. The first sentence follows by monotonicity of β (see Condition 1). The
second sentence can be proven by induction, as follows: using monotonicity of
β, observe that the fi values do not decrease when we change from fb to f ′b or
from ρ to ρ′. The third sentence follows from nonnegativity of f . ut

5.3 Basic Facts about Measuring Footprints

The following simple claim will turn out surprisingly useful in understanding
footprints, because it will allow us to focus on the total amount of black pebbles
rather than on their allocation to specific levels.

Claim 3.

fm = max (0, fb + gainδ(fb) + · · ·+ gainδ(fm+1)− ρm...b−1) .

Proof. By induction on m starting at b and going down to 1. The base case
is trivial. For the inductive case, note that if fm = 0, then fm−1 = 0 because
β(0) = 0, and the formula in the claim also gives us 0 because gain(0) = 0

and ρm−1 ≥ 0. Else, fm = fb +
∑b
i=m+1 gainδ(fi) − ρm...b−1 by the inductive

hypothesis, so

βδ(fm)− ρm−1 = fm + gainδ(fm)− ρm−1 = fb +

b∑
i=m

gainδ(fi)− ρm−1...b−1 .

ut



12

We generally will be interested in footprints that grow. The following claim
allows us to rule out some situations in which a footprint decreases even without
any black pebbles. This decrease can occur when the footprint is too low (below
αmin
δ ) or too high (above αmax

δ ), because then gainδ is negative, and thus red
pebbles alone are enough to decrease the footprint. The claim shows, in part,
that if the footprint starts below αmax

δ , it will always stay below αmax
δ , essentially

because βδ(α) cannot overcome the αmax
δ barrier.

Claim 4. Therefore, if for some m, gainδ(fm) > 0, then for all i ≤ m, either
fi ≤ αmin

δ or gainδ(fi) > 0. Moreover, if ρm−1...i = 0, then fm < fm−1 < · · · <
fi.

Proof. We will proceed by induction starting at i = m and going down to i = 1.
The base case is given. For the inductive step (going from fi to fi−1), consider
the following cases that cover all the possibilities with αmin

δ < fi−1.

– if αmin
δ < fi−1 < fi, then gainδ(fi−1) > min(gainδ(α

min
δ ), gainδ(fi)) by

strict concavity of gainδ (per Fact 1 and Claim 23), and gainδ(fi) > 0 =
gainδ(α

min
δ ) by the inductive hypothesis.

– if αmin
δ < fi < fi−1, then, since fi−1 > 0, we know fi−1 = βδ(fi) − ρi−1.

Then gainδ(fi−1) = βδ(fi−1)−fi−1 = βδ(fi−1)−(βδ(fi)−ρi−1) ≥ βδ(fi−1)−
βδ(fi) > 0 by monotonicity of βδ (Condition 1).

– If αmin
δ < fi = fi−1 then gainδ(fi−1) = gainδ(fi) > 0 by the inductive

hypothesis
– the case fi ≤ αmin

δ < fi−1 is impossible, because then fi−1 ≤ βδ(fi) =
fi + gainδ(fi) ≤ fi, because gainδ(fi) ≤ gainδ(α

min
δ ) ≤ 0 by Fact 1.

If, moreover, ρm−1...i−1 = 0, then fi−1 ≥ fi + gainδ(fi). Because fi ≥ fm
by the inductive hypothesis and fm > αmin

δ (by Fact 1, because we assume
gainδ(fm) > 0), we know gainδ(fi) > 0 by the inductive hypothesis. Thus,
fi−1 > fi. ut

6 Upperbounding the Number of Infertile Levels

Recall the definition of fertile (Definition 3) and constraints on ζ (Section 5.2).
The main idea for bounding the number of infertile levels is the following. Take
a subset S of nodes on the bottom level ` of weight ζ. Suppose some level b is
infertile, which means the footprint weight fb(S) < π. Consider two cases:

– If fb(S) ≥ π, then the gain gainδ(fb(S)) of level b is at least gπ, so there have
to be enough pebbles so that the next infertile level above b can overcome
this gain, per Claim 3. Thus, every infertile level (except the lowest) costs at
least gπ in black pebbles. Note that this argument does not say when the gπ
black pebbles must be placed, as long as they are above the infertile level.

– If fb(S) < π, most of the black pebbles must be at level b or below, per
Claim 3, because π is small. The footprint will grow above b until it gets to
π, and there are not many pebbles left to stop this growth, so as soon as the
footprint reaches π, the remaining levels above will be fertile.
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These cases essentially correspond to two possible adversarial strategies for
placing pebbles: either keep every infertile level just below π and spend gπ(π)
black pebbles to keep it infertile one level up, or spend all the black pebbles at
once to get a very small footprint, which will remain infertile for a few levels
of growth. In this section we show that the best adversarial strategy will not
do much better than either of these two. Our bounds on the number of infertile
levels are nearly tight, as we further discuss below.

As a result, we obtain the following theorem.

Theorem 4. Assume gπ > 0 and αmin
δ +ρ < ζδ < αmax

δ . The number of infertile
levels is less than

max

(
1 +

ρ+ π − ζδ
gπ

, 1 + βcountζδ−ρ(π)

)
,

and the first argument of max is greater than the second whenever ζδ − ρ ≥ π.

The rest of this section is dedicated to the proof of this theorem. As we
explain following Lemmas 1 and 2, the bound in this theorem is tight up to 1
level as long ζδ ≥ π; else it is a slight overestimate.

Proof. The following variant of Claim 3 specialized for the set S will be useful
for us.

Claim 5. Assume αmin
δ + ρ < ζδ < αmax

δ . Then

fm(S) = ζδ + gainδ(f`) + · · ·+ gainδ(fm+1)− ρm...` ,

and gainδ(fm) > 0.

Proof. The intuition is that at every level, because gainδ is positive below m,
there are not enough black pebbles for fm(S) to go below αmin

δ , and thus gainδ
will remain positive by Claim 4.

Formally, we proceed by induction on m from b down to 1. For the base case,
0 < αmin

δ < f`(S) = ζδ − ρm < αmax
δ , so gainδ(f`) > 0. For the inductive case

(going from m to m − 1), observe that fm ≥ ζδ − ρm...` because gainδ(fi) > 0
for m ≤ i ≤ ` by the inductive hypothesis. Therefore,

fm−1 ≥ fm + gainδ(fm)− ρm−1 by Claim 3

≥ fm − ρm−1 by the inductive hypothesis

≥ ζδ − ρm...` − ρm−1 as shown about fm above

≥ ζδ − ρ > αmin
δ .

Thus, fm−1 is positive and the formula follows by Claim 3; since fm−1 > αmin
δ ,

gainδ(fm−1) > 0 by Claim 4. ut

Theorem 4 now follows from Lemmas 1 and 2 below. Note that the first
argument to the max is greater than the second when ζδ−ρ ≥ π by Claim 1. ut
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6.1 The simpler case: when the footprints don’t get too small

Lemma 1. Assume gπ > 0 and αmin
δ + ρ < ζδ < αmax

δ . Let m < ` be some level.
Assume there are k > 0 infertile levels below m, and assume that for all i > m,
fi(S) ≥ π. Then

ρ`...m+1 > ζδ − π + gπ · (k − 1)

and thus the total number of infertile levels is less than

1 +
ρ− ζδ + π

gπ
.

The bound in this lemma is tight if ζδ ≥ π, because there is a matching
adversarial strategy: spend ρ` > ζδ − π black pebbles on level ` and gπ black
pebbles on every subsequent level until pebbles run out. If ζδ < π, then the
adversary would have to spend more pebbles than stated in the bound, because
the bound does not take into consideration higher gain gainδ(ζδ) > gπ for the
first infertile level and a few levels above it. This makes a difference only if ρ > ζδ
is considerably smaller than π (i.e., the space gap is large).

Proof. The footprint of every infertile level is at most π, so the footprint of every
infertile level below m is between π and π, so its gain is least gπ. The gains of
other levels are positive by Claim 5. Let m′ be the last highest infertile level
below level m. Because it’s infertile, π > fm′ , so by Claim 5

π > fm′ ≥ ζδ +
∑̀

i=m′+1

gainδ(fi)− ρ`...m′ = ζδ + (k − 1) · gπ − ρ`...m′ .

Rearranging the terms concludes the proof. ut

6.2 The more complex case: small footprints

Lemma 2. Assume gπ > 0 and αmin
δ + ρ < ζδ < αmax

δ . Assume for some level i,
fi(S) < π. Then the number of infertile levels is at most βcountζδ−ρ(π).

This bound is tight up to one level, as the adversary has a matching strategy:
place all ρ black pebbles on level `; there will be at least βcountζδ−ρ(π) − 1
infertile levels.

Proof. Starting with some pebble allocation, we will proceed to rearrange the
pebbles so at not to decrease the number of infertile levels. After all the rear-
ranging is done, the black pebble weight will be all at the bottom level, except
perhaps less than gπ on the highest infertile level. Since the lowest infertile level
has footprint at most ζδ − ρ and the second-to-highest infertile level k has foot-
print fk < π, and there are no pebbles on levels ` − 1, . . . , k, the number of
infertile levels is at most βcountζδ−ρ(π).

The intuition is that packing more pebbles into a level with an already tiny
footprint is best for the adversary, because the gain will be small, so the footprint
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will grow very slowly. Turning this intuition into a proof takes a sequence of
carefully chosen steps.

No matter how the pebbles are arranged, every footprint is positive by
Claim 5. Suppose level b is the lowest level with fb < π, and every level up
to m ≤ b is infertile, while level m− 1 (if m > 1) is fertile.

First, if any level i is fertile and has pebbles above it, simply lower all the
pebbles above it by one level. Let f ′i denote the new footprint at level i. Note
that f ′i = fi−1−gainδ(fi) is smaller than the old fi−1 (by Claim 5), and thus all
the levels above i that were infertile will remain infertile, just one level lower (by
monotonicity, Claim 2). Do so repeatedly until level ` is infertile and infertile
levels continue, without gaps, until some level m.

Second, if the lowest level b with fb < π is not `, we know from Lemma 1 that
ρ`...b > ζδ−π+gπ · (`−b)+ρb. Move all the pebbles from levels `−1, . . . , b down
to level ` and let f ′` denote the new footprint at level `; f ′` = fb − gainδ(f`) −
· · · − gainδ(fb+1) < fb − gπ · (` − b), because gainδ(fi) for i > b was at least
gπ (because fi ∈ [π, π]). The new gain of each level up to b is less than gπ by
induction (because fb < π), so the footprint at level b is at most fb, and thus
the footprints above level b have not increased by monotonicity, so the number
of infertile levels has not decreased.

We can now assume that there are sufficient pebbles on level ` to cause
f` < π and that infertile levels continue without interruption until level m, with
no higher infertile levels or black pebbles (if any are left, move them to m). If
m = `, we are done, because βcountζδ−ρ(π)) ≥ 1, because ζδ − ρ < π < π by
Claim 5. If m = `− 1, move all the pebbles form level `− 1 to level `; this will
decrease f` and therefore will decrease gain(f`) by Fact 1, because f` < π < αg,
and therefore will decrease f`−1, thus not decreasing the number of infertile
levels. Thus, assume m ≤ `− 2 for the rest of this proof.

We will describe an iteration of steps that reallocates pebbles. Each step will
not decrease the number of infertile levels and will keep f` < π. We will always
be able to take a step until ρi = 0 for all m < i < ` and ρm < gπ. At each step,
we will either increase the number of levels i for which ρi = 0 without decreasing
ρ`, or increase ρ` by at least gπ, and therefore the sequence of steps will be finite.
At the end, we will have all pebbles on level `, except at most gπ on level m.

At each step in the iteration, we do one of the following, specified in order
of priority, unless none can be performed.

– Case 1. Suppose there exists a level i ≤ ` − 2 with ρi+1 + ρi ≥ gπ and
gainδ(fi+1) ≥ gπ. Move gπ of the pebbles from levels i and i + 1 to the
bottom level ` and shift the pebbles from levels `− 1, . . . , i+ 1 up on level.
Let f ′i denote the footprints after this step. Then f ′` = f` − gπ, so βδ(f

′
`) =

f`−gπ+gainδ(f
′
`) < f`−gπ+gainδ(f`) < f` (where the first inequality follows

by monotonicity of gainδ below αg, Fact 1; and the second by f` < π.).
Note that f ′`−1 = βδ(f

′
`) < f`, because there are no black pebbles left on

level b − 1. Thus, by induction and monotonicity (Claim 2), for all i ∈
[` − 1,m + 1], f ′i < fi+1, so all levels up to m + 1 remain infertile. Because
level m now contains black pebbles that were formerly on level m + 1, as
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well as its own black pebbles, except for gπ ones that were moved, f ′m =
βδ(f

′
m+1)−ρm+1−ρm+gπ < βδ(fm+2)−ρm+1−ρm−gπ = fm+1−ρm+gπ =

βδ(fm+1)− gainδ(fm+1)− ρm + gπ = fm − gainδ(fm+1) + gπ ≤ fm, so level
m also remains infertile.
For the rest of the cases, we assume no such level exists in this iteration.

– Case 2. Suppose there is a level i < ` level with fi < αg. We want to show
that fi+1 < αg. If i = ` − 1, that is true because f` < π < αg. Else,
suppose not. Since fi+1 is infertile and at least αg > π, gain(fi+1) > gπ, so
fi+1+gainδ(fi+1) ≥ αg+gπ, so ρi > gπ, but that contradicts the assumption
in Case 1. Thus, fi+1 < αg.
Move the ρi pebbles down from level i to level i+1. This will reduce fi+1 and
will change fi from βδ(fi+1)−ρi = fi+1 +gainδ(fi+1)−ρi to βδ(fi+1−ρi) =
fi+1 + gainδ(fi+1 − ρi) − ρi. By monotonicity of gainδ (Fact 1) and the
fact that fi+1 < αg, this reduces fi and therefore, by monotonicity of fj
(Claim 2), also reduces all fj for j < i, thus not decreasing the number of
infertile levels.
For the rest of the cases, we assume no such level exists in this iteration.

– Case 3. Let i be the highest level with m < i < ` for which there are any
black pebbles, i.e., ρi > 0. If i = ` (or there is no such level at all), we are
done. Note that fi ≥ αg, because otherwise we would have applied Case 2,
and because gainδ is positive by Claim 5, the same is true of fi−1, . . . , fm+1.

• Case 3a. Suppose ρi ≥ gπ. Then i = `− 1 or gainδ(fi+1) < gπ (else Case
1 applies), so either way gainδ(fi+1) < gπ, so fi+1 < π < αg. We can
move the pebbles down from level i to i + 1, by the same argument as
in Case 2.

• Case 3b. Suppose ρi < gπ. For m + 1 ≤ j ≤ i, fj ≤ π − gπ (because
fj = fj−1 − gainδ(fj) and fj−1 < π and gainδ(fj) > gπ because levels
j, j − 1 are infertile and fj ≥ αg). Move the ρi pebbles from level i to
level m+1. This will increase fj for m+1 < j ≤ i, and therefore decrease
their gains, so each fj for m+ 1 < j ≤ i will increase by at most ρi, and
thus will remain infertile because ρi < gπ. fm+1 will decrease because
of the decrease in the gains below it and therefore fj for j ≤ m will
decrease by monotonicity (Claim 2). Thus, the number of infertile levels
will not decrease.
Now that these pebble are on level m+ 1, call their weight ρm+1 instead
of ρi and use fm+1 and fm for the post-move footprints of the respective
levels. If ρm+1 + ρm ≥ gπ, apply the same process as in Case 1 to move
them to level b. We have thus created a new level with 0 black pebbles.
Else, moving these pebbles from level m + 1 to level m will not reduce
the number of infertile levels, as we show in the next paragraph, and we
will do so to create a new level with 0 black pebbles.
Indeed, suppose otherwise. fm and footprints of levels above m decrease,
by the same argument as two paragraphs ago. Thus, if a new fertile level
gets created by this move, then β(ρm+2) ≥ π. But because m is infertile,
we know

fm+1 + gainδ(fm+1)− ρm < π .
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Plugging in β(fm+2)− ρm+1 for fm+1, we get

β(fm+2)− ρm+1 + gainδ(fm+1)− ρm < π .

Recalling that β(ρm+2) ≥ π, we have

ρm+1 + ρm > gainδ(fm+1) > gπ

because level m+ 1 is infertile and fm+1 ≥ αg > π. This is a contradic-
tion.

Thus concludes the proof of Lemma 2. ut

7 Lowerbounding Footprints of Fertile Levels

In this section, we switch from thinking per-level footprints of a set S of weight
ζ at level ` to thinking about the total footprint of a set T at level b with that
has unpebbled weight fb.

Naturally, the adversary’s goal is to place black pebbles so as to minimize φ.
While computing φ for specific input values is easy numerically, we wish to find
a general lower bound on φ as a function of the total number of pebbles φb−1...1,
without having to enumerate possible individual placements.

It may be intuitive to think that moving a pebble one level down always
decreases the total footprint, because growth stops earlier. It turns out that
this intuition is not true in general, because the footprint on the higher of the
two levels may grow slightly as the pebble moves down, which will cause the
footprints in the levels above it to also grow, compensating for the reduction. For
example, for the parameters of Section B, φ0.2(0, 0.7, 0) ≈ 1.007, while moving
pebbles of weight 0.06 down increases it to φ0.2(0.06, 0.64, 0) ≈ 0.021.

The main result of this section is the following theorem that shows that
moving all black pebbles down results in the minimal possible φ.

Theorem 5. Assume T is an unpebbled set at layer b of weight fb. Assume
gainδ(fb) > 0 and let σ = βδ(fb) − ρb−1...1. Assume σ > αmin

δ . Then the total
footprint

φfb(ρb−1, . . . , ρ1) ≥ φfb(ρb−1...1, 0, . . . 0︸ ︷︷ ︸
b−2

) = fb +

b−2∑
i=0

βiδ(σ) .

Proof. The heart of the proof is the following Lemma 3. It says that moving
all black pebbles one level down from the highest level with any black pebbles
will decrease (or at least not increase) φ, as long as gainδ(fb) ≥ 0. This lemma,
applied repeatedly b − 2 times for m = 1, 2, . . . , b − 2, suffices for proving that
the smallest φ is with all the black pebbles as low as possible. This implies the
inequality. The equality follows simply by computing the footprint at each level;
we need only to make sure we don’t apply βδ to negative numbers, which follows
from βδ(fb)− ρb−1...1 ≥ αmin

δ . ut
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Lemma 3. Assume T is an unpebbled set at layer b of weight fb and gainδ(fb) >
0. Let m = mini ρi > 0 be the highest level with any black pebbles. If m < b− 1,
then moving all these pebbles down one level will not increase φ. That is, for all
b, fb, and ρm, . . . , ρb−1, the following holds as long as gainδ(fb) > 0.

φfb(ρb−1, . . . , ρm+2, ρm+1, ρm, 0, . . . 0︸ ︷︷ ︸
m−1

)

≥φfb(ρb−1, . . . , ρm+2, ρm+1 + ρm, 0, 0, . . . 0︸ ︷︷ ︸
m−1

)

Before proving this lemma, we will prove the following simple claim.

Claim 6. Suppose fi ≤ αg. Then moving any black weight from level i − 1 to
level i will not increase φ.

Proof. The footprint below level i will not change. Suppose the total weight of
moved pebbles is x ≥ 0. Then by Claim 3, fi will decrease by x (but will not go
below 0). Again by Claim 3, fi−1 will decrease by gainδ(fi)− gainδ(max(0, fi−
x)) (but not below 0), which is nonnegative because gainδ is monotonically
increasing below αg (Fact 1). By Claim 2, none of the fi−1, . . . , f1 will increase,
and thus φ will not increase. ut

Proof (of Lemma 3). We will consider three different pebble arrangements:

– ρb−1, . . . , ρm+2, ρm+1, 0, 0, . . . 0︸ ︷︷ ︸
m−1

(with ρm completely removed)

– ρb−1, . . . , ρm+2, ρm+1, ρm, 0, . . . 0︸ ︷︷ ︸
m−1

(as in the left-hand side, with black pebbles

of weight ρm on level m)
– ρb−1, . . . , ρm+2, ρm+1 + ρm, 0, 0, . . . 0︸ ︷︷ ︸

m−1

(as in the right-hand side, with black

pebbles of weight ρm moved to level m+ 1)

Denote the per-level footprint bounds in the three cases by fi, gi, and hi,
respectively, and the totals f , g, and h. We need to prove that g ≥ h. Because
Claim 6 covers the case of fm+1 = gm+1 ≤ αg, it suffices to consider the case
when fm+1 = gm+1 > αg.

The challenge in proving the desired result is that it may not necessarily be
the case that gi ≥ hi, because the g sequence has less time to grow to make up
for the ρm pebbles, because ρm pebbles appear later in the sequence. The trick
to this proof is to study how gi recovers from ρm pebbles as compared to hi+1.

The intuition is roughly this: placing pebbles on level m+ 1 causes a higher
reduction in the footprint that placing the same pebbles on level m, because the
function β is more sensitive on smaller inputs, and fm+1 < fm < fm−1 < · · · <
f1, so placing pebbles lower affects smaller inputs to β. Note that this intuition
(and the result) no longer holds if there are pebbles at levels above m, because
the f values are not necessarily increasing as we go up. We will now formalize
this intuition.
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Case 1: No 0s among footprints. It will be easier to first handle the case when
all the fi, gi, and hi values are nonzero, as this simplifies formula (1) to fi =
βδ(fi+1)− ρi (and similarly for gi and hi).

We need to prove that g ≥ h. We will do so by proving that f − g < f − h:
that is, placing pebbles on level m reduces φ less than placing pebbles on level
m+ 1 does.

To compute f − g, observe that fi = gi for i > m. Then fm − gm = ρm,
fm−1−gm−1 = βδ(fm)−βδ(fm−ρm), and in general for 1 ≤ i < m, fm−i−gm−i =
βiδ(fm)− βiδ(fm − ρm), where βiδ denotes βδ applied i times. Thus,

f − g = ρm +

m−1∑
i=1

βiδ(fm)− βiδ(fm − ρm) .

To compute f−h, observe that fi = hi for i > m+1. Then fm+1−hm+1 = ρm,
fm − hm = βδ(fm+1) − βδ(fm+1 − ρm), and in general for 1 ≤ i < m + 1,
fm−i+1 − hm−i+1 = βiδ(fm+1)− βiδ(fm+1 − ρm). Thus,

f−h = ρm+

m∑
i=1

βiδ(fm+1)−βiδ(fm+1−ρm) > ρm+

m−1∑
i=1

βiδ(fm+1)−βiδ(fm+1−ρm)

where the inequality follows from the fact that βδ is monotonically increasing
(Condition 1), so βiδ is monotonically increasing, and ρm > 0.

Thus, to prove that f − g < f − h, it suffices to prove that βiδ(fm) −
βiδ(fm − ρm) ≤ βiδ(fm+1) − βiδ(fm+1 − ρm). Note that fm = βδ(fm+1) =
fm+1 + gainδ(fm+1) > fm+1, because gainδ(fm+1) > 0 by Claim 4 (since we are
assuming fm+1 > αg, and αg > αmin

δ ). Note also that βiδ, as a self-composition
of a concave increasing function, is concave by repeated application of Claim 25.
Since a concave function is more sensitive to a change ρm in the input when
the input is smaller, the result follows. Formally, the result follows by Claim 26
applied to x1 = fm+1, x2 = fm, and z = ρm. Because the results on concave
functions are standard, general, and separate from the rest of the proof, we
present them in Appendix C.

Case 2: 0s among footprints. Now we will deal with possible 0s among the fi, gi,
and hi values. Recall that if any of these values becomes 0 at some level, then it
remains 0 at higher levels (so, conversely, if it is nonzero at some level, it is also
nonzero below). We already are considering only the case when fm+1 > αg, so
fm+1 > αmin

δ , and thus we know by applying Claim 4 that f1 > · · · > fm > fm+1

(because there are no black pebbles on levels 1, . . . ,m), so none of the fi values
is 0.

Claim 7. For all i with 1 ≤ i ≤ m, gi ≥ hi+1.

Proof. We will proceed by induction starting at i = m and going down to i = 1.
For the base case, note that fm = βδ(fm+1) = fm+1 + gainδ(fm+1) > fm+1,
because we are considering only the case when fm+1 > αg, so we can apply
Claim 4. Therefore, gm = max(0, fm − ρm) ≥ max(0, fm+1 − ρm) = hm+1.
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The inductive step follow by monotonicity of βδ, because for i < m, gi =
max(0, βδ(gi+1)) and hi+1 = max(0, βδ(hi+2)). ut

Applying this claim, g =
∑b
i=1 gi =

∑b
i=m+2 gi + gm+1 +

∑m
i=1 gi ≥∑b

i=m+2 hi + 0 +
∑m
i=1 hi+1 = h − h1. If any of the gi values is ever 0, then

g1 = 0, so by the above claim h2 = 0 (since h2 ≤ g1), so h1 = 0 and we are done.
Similarly, if any of the hi values is ever 0, then h1 is 0 and we are done.

This concludes the proof of Lemma 3. ut

8 Upperbounding the Number of Fertile Levels that Stop
Growing

Thanks to Theorem 5, we know how the footprint of a fertile level grows. Un-
fortunately, the adversary can stop the growth completely by spending enough
pebbles at some level to cover up the entire footprint. Intuitively, doing so will
reduce the number of available black pebbles, so the adversary cannot do so too
many times. But this intuition, even if we could make it formal, is insufficient:
if the adversary could, just once in the middle of the graph, stop the growth of
all fertile levels below, then the best we could hope for is a footprint of size half
the graph, while we are aiming for a footprint that is almost the entire graph.

A stronger intuitive statement is that the stopping the growth of a fertile
level becomes more expensive the longer you wait, and becomes impossible if
you wait too long. Formalizing it requires defining what it means to “wait” and
to “stop” the growth. We will consider the growth stopped if a footprint on some
level becomes less than απ. (While this will give a slightly suboptimal bound,
because such a footprint may yet recover, we are only slightly undercounting the
cost to the adversary: note that the footprint can be dropped to 0 with βδ(απ)
black pebbles, while to get a footprint to be below απ takes at least gαπ black
pebbles, and these values are close for small απ.) We thus provide the following
definition.

Definition 5. Let T be an unpebbled set of weight at least απ in level b. We
will say that T (or simply level b) is viable for k levels if fb−i(T ) ≥ απ for all
0 ≤ i < k. If m ≥ b−k, we will say that m is a viable ancestor of b. We will say
that T is extinguished after k levels if it is viable for k levels and fb−k(T ) < απ.

The main idea for avoiding a messy case analysis based on different adversar-
ial strategies is to think not about per-level footprint size and pebble allocation,
but rather about the gap between the footprint and the number of available
pebbles, thus reducing the problem to a single variable. The main result of this
section is the following theorem, which uses this idea to show that the footprint
becomes big after just a constant number of fertile levels.

Theorem 6. Assume gαπ > 0. Let m be a fertile level; assume there are k fertile
levels up to and including m. Fix some σ so that ρ + σ < αmax

δ and σ > αmin
δ .
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Assume

k ≥ max

(
ρ+ σ − απ

gαπ
, βcountαπ (ρ+ σ)

)
.

Then there is a fertile level b ≥ m with footprint at least απ +
∑m−2
i=0 βiδ(σ).

We defer the proof of this theorem to the end of the section. Note that m
may be a viable ancestor of several different levels; this theorem does not tell us
which one we can choose in such a situation—it tells us only that one of them
will work.

The central technical piece of the proof of Theorem 6 is the following lemma
about the cost of viable levels. The main insight is to focus on the gain, rather
than the footprint or black pebbles weight of each level. Intuitively, this ap-
proach works because the gain is easier to bound, and because to slow down the
growth of the footprint (perhaps even to stop it completely), the adversary has
to overcome the total gain, by Claim 3, no matter how the pebbles are allocated
among levels.

Lemma 4. Assume gαπ ≥ 0. Assume a subset T of level b is viable for k levels.
Then the total of first k gains satisfies

gainδ(fb) + · · ·+ gainδ(fb−(k−1)) ≥ min(k · gαπ , βkδ (απ)− απ) .

Interpretation of Lemma 4. Note that the sum of the first k gains is a function of
k−1 black pebble weights ρb−1 . . . ρb−(k−1). This lemma says that the minimum
of this function, subject to the viability constraint, is at one of two extremal
points of its domain: when ρb−1 = ρb−2 = · · · = ρb−(k−1) = gαπ , or when
ρb−1 = · · · = ρb−(k−1) = 0. In other words, if the adversary’s goal is to minimize
the gain while maintaining viability, the adversary can accomplish this goal by
spending either spending enough black pebbles at each level to bring fi value
down to απ for each i, or no black pebbles at all, to let fi grow as fast as possible.
Note that the bound given by this lemma is tight.

Proof (Proof of Lemma 4). Suppose for every m such that b − k < m ≤ b, we
have gainδ(fm) ≥ gαπ . Then we are done because the total gain for k levels is
at least k · gαπ .

Thus, the remaining case to consider is when for some m, gainδ(fm) < gαπ .
The following simple claim will be helpful.

Claim 8. If for some i, fi ≥ αg, and there are no black pebbles above level i,
then gainδ(fi) > gainδ(fi−1) > · · · > gainδ(f1).

Proof. Because there are no black pebbles, by Claim 4, αg ≤ fi < fi−1 < · · · <
f1, and gainδ is a decreasing function above αg by Fact 1. ut

We will now show a sequence of changes to the allocation of black pebbles.
This sequence will be carefully constructed, so that each step in the sequence
does not increase the total gain. At the end, the total gain will be at least as big
as in the statement of the lemma.
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1. Let m (with b − k ≤ m < b) be the lowest level between b and b − k with
gainδ(fm) < gαπ . Observe that this means fm > αg (by Fact 1, because
fm ≥ απ by viability, but gainδ(fm) < gαπ ).

If there are any black pebbles at level m and above, remove them. Doing
so will not decrease any of fm−1, . . . , fb−(k−1) (by Claim 2). Moreover, each
of these fi values will become greater that fm by Claim 4 (because fm >
αg > αmin

δ ) and therefore also greater than αg. Thus, if before this change,
fi was above αg, then increasing fi decreases its gain by Fact 1. Else, fi was
between απ and αg, and therefore gainδ(fi) was at least gαπ by Fact 1, and
it becomes smaller than gainδ(fm) < gαπ by Fact 1 and therefore decreases.

Note the importance of removing all black pebbles at m and above at once:
removing black pebbles one level at a time (either from b− (k − 1) down to
m or from m to b − (k − 1)) would not allow this argument to go through,
as some fi values may increase but not go above αg.

2. Now proceed removing all black pebbles one level at a time from level m− 1
down to b − 1, in order, as long as removing all black pebbles at that level
does not increase the total gain. If we get to level b−1, we are done, because
the total gain is fb−k − fb by Claim 3, which is βkδ (fb) − fb because there
are no black pebbles. Else, let j be the the level at which this process stops:
setting ρj = 0 increases the total gain, even though there are no longer any
black pebbles above level j.

3. Consider the total gain of levels j through b−(k−1):
∑j
i=b−(k−1) gainδ(fi) =

β
j−(b−k)
δ (fj)− fj . Consider this total gain as a function of fj , where all the

black pebble weights are fixed, except ρj . Note that β
j−(b−k)
δ and −fj are

both concave functions of fj (the former is by Claim 25, the latter because
it’s a line), and thus their sum is concave by 24, and thus the minimum
is reached at the extrema of fj by Claim 23. The largest fj happens when
ρj = 0, but we know, by the previous step, that removing all pebbles at level
j increases the total gain, so ρj = 0 cannot give the minimum total gain.
The smallest fj is απ, by viability, and thus the minimum possible total gain
happens when fj = απ. Note, again, the importance of the careful ordering
of steps: we are using the fact that there are no black pebbles above level
j, which implies (by Claim 4, which applies because fj > απ > αmin

δ ) that
fj < fj−1 < · · · < fb−(k−1), and thus as long as viability holds at level j, it
also holds above up to level b−(k−1); without the removal of pebbles above
level j, the minimum allowed fj could be larger than απ due to viability
constraints on the levels above.

Thus, setting ρj = βδ(fj+1) − απ so that fj = απ will not increase the

total gain. We do so. The total gain is now equal to
∑b
i=j−1 gainδ(fi) +

β
j−(b−k)
δ (απ)− απ.

4. By the choice of m in the first step, we know gainδ(fi) ≥ gαπ for j < i < b
(because black pebble quantities at levels below j have not been changed
yet). Note that this step crucially uses that m was chosen as the lowest level
with gainδ(fm) < gαπ . By the step above, gainδ(fj) = gαπ . Above fj , the f
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values are increasing (by Claim 4). If gainδ above fj is always at least gαπ ,
the total gain is at least k · gαπ and we are done.
Else for some level j′ < j, gainδ(fj′) < gαπ , which means fj′ > αg (because
fj′ ≥ απ by viability, so if fj′ ≤ αg, then gainδ(fj′) ≥ gαπ = gαπ by Fact 1).
In such a case, remove all the remaining black pebbles above level b.
This shifts the f values down by b − j steps. That is, the new values of
fb, . . . , fb−(k−1)+(b−j) become equal to the old values of fj . . . fb−(k−1) (since
fb = απ and now there are no black pebbles above b, just like before the
removal of the pebbles, fj was απ and there were no black pebbles above j).
The new b− j values f(b−k)+(b−j), . . . , fb−(k−1) all have gains less than gαπ
by the existence of j′ and Claim 8), whereas before this removal of pebbles,
the b− j values fb, . . . , fj+1 had gains greater than gαπ . Thus, the total gain
does not increase, because we removed b− j levels at the bottom whose gain
was at least gαπ , shifted k− (b− j) levels down without changing the gains,
and added b−j levels at the top whose gain is less than gαπ . But, by Claim 3,
the total gain is now fb−k − fb = βkδ (απ)− απ.

This concludes the proof of Lemma 4. ut

This lemma tells us, in particular, what it takes to extinguish a viable set.

Corollary 1. Assume gαπ ≥ 0. Assume a subset T of level b is extinguished
after k levels. Then

ρb−1...b−k ≥ min(k · gαπ , βkδ (απ)− απ) .

Proof. By Claim 3, fb+k ≥ απ +
∑b
i=b−(k−1) gainδ(fi) − ρb−1...b−k. Since b is

extinguished, απ > fb+k, so

ρb−1...b−k >

b∑
i=b−(k−1)

gainδ(fi) ≥ min(k · gαπ , βkδ (απ)− απ)

by Lemma 4. ut

The following corollary, in contrast to Corollary 1, speaks of sets that have
not been extinguished. We cannot bound the number of pebbles spent on such
sets, but we can bound the sum of the number of pebbles and the expansion of
the last level.

Corollary 2. Assume gαπ ≥ 0. Assume a subset T of level b is viable for k
levels, and m = b− (k − 1). Then

ρb−1...m + βδ(fm) ≥ απ + min(k · gαπ , βkδ (απ)− απ) .

Proof. By Claim 3 βδ(fm) = fm + gainδ(fm) ≥ απ +
∑b
i=m gainδ(fi)− ρb−1...m,

so

ρb−1...m + βδ(fm) ≥ απ +

b∑
i=m

gainδ(fi) ≥ απ + min(k · gαπ , βkδ (απ)− απ)

by Lemma 4. ut
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Consider now several sets that are extinguished after some number of levels
each. Add up the total black pebbles required. The following (rather boring and
technical) claim shows that what you get is at least as big as if you had a single
set extinguished after the combined total number of levels.

Claim 9. Assume gαπ ≥ 0. Let k1 and k2 be positive integers.Then

min((k1 + k2) · gαπ , β
k1+k2
δ (απ)− απ)

≤min(k1 · gαπ , β
k1
δ (απ)− απ)

+ min(k2 · gαπ , β
k2
δ (απ)− απ) .

Proof. Intuitively, as chains get longer, per level gains eventually start decreas-
ing, and longer chains have more time to benefit from this decrease. Now we give
the formal proof.

If k1 · gαπ ≤ βk1δ (απ) − απ and k2 · gαπ ≤ βk2δ (απ) − απ, then the sum in
question is equal to (k1 + k2) · gαπ and we are done.

Else, assume, without loss of generality, that βk1δ (απ) − απ < k1 · gαπ . Note

that βk1δ (απ)− απ =
∑k1−1
i=0 gainδ(β

i
δ(απ)) by definition of gainδ. Therefore, for

some m (with 0 ≤ m < k1), gainδ(β
m
δ (απ)) < gαπ , which, by Fact 1, means

βmδ (απ) > αg (because βmδ (απ) ≥ απ by Claim 4). Take the smallest such m.

By Claim 8, gainδ(β
j1
δ (απ)) ≤ gainδ(β

j2
δ (απ)) < gαπ for any j1 ≥ j2 ≥ m. From

this step, we derive two inequalities.

– Because k1 ≥ m,
∑k1+k2−1
i=k1

gainδ(β
i
δ(απ)) < k2 · gαπ . Therefore,

βk1+k2δ (απ)− απ =

k1−1∑
i=0

gainδ(β
i
δ(απ)) +

k1+k2−1∑
i=k1

gainδ(β
i
δ(απ))

≤
k1−1∑
i=0

gainδ(β
i
δ(απ)) + k2 · gαπ

= (βk1δ (απ)− απ) + k2 · gαπ .

– Take any i ≥ 0. Set j1 = i + k1 and j2 = i. Note that j1 ≥ m because
k1 ≥ m. We can show by cases that gainδ(β

i+k1
δ (απ)) ≤ gainδ(β

i
δ(απ)),

as follows: if i = j2 ≥ m, we have already shown it, and if i = j2 < m,
then gainδ(β

j2
δ (απ)) ≥ gαπ , while gainδ(β

j1
δ (απ)) ≥ gαπ because j1 ≥ m.

Therefore,

βk1+k2δ (απ)− απ =

k1−1∑
i=0

gainδ(β
i
δ(απ)) +

k1+k2−1∑
i=k1

gainδ(β
i
δ(απ))

≤
k1−1∑
i=0

gainδ(β
i
δ(απ)) +

k2−1∑
i=0

gainδ(β
i
δ(απ))

= (βk1δ (απ)− απ) + (βk2δ (απ)− απ) .
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These two inequalities together conclude the proof of Claim 9. ut

Proof (Proof of Theorem 6). The assumptions imply the that the βcount term
is finite by Claim 1, because gαπ ≥ 0 implies απ > αmin

δ .
Starting with level ` and going up, find the lowest fertile level b1; assume it

becomes extinguished after k1 levels. This gives us a lower bound

ρb1−1...b1−k1 ≥ min(k1 · gαπ , β
k1
δ (απ)− απ) ,

by Corollary 1. Skip infertile levels (if any) above b1 − k1 to find a fertile level
b2, and assume it becomes extinguished after k2 levels. This, again, gives us a
lower bound

ρb2−1...b2−k2 ≥ min(k2 · gαπ , β
k2
δ (απ)− απ) ,

Note that the regions for which we obtain these bounds on black pebble weight
do not overlap, as b2 − 1 < b1 − k1. Note also that we will not skip over m, as it
is fertile. Continuing in this manner, eventually we will come to a fertile level b
that stays viable until level m inclusive. Then, letting k′ = b−m+ 1

ρb−1...m + βδ(fm) ≥ απ + min(k′ · gαπ , βk
′

δ (απ)− απ)

by Corollary 2.
Adding up all the inequalities per Claim 9 and observing that the bounds on

ρ values are for nonoverlapping ranges of levels, we obtain

ρ`...m + βδ(fm) ≥ απ + min((k1 + k2 + · · ·+ k′) · gαπ , β
k1+k2+···+k′
δ (fb)− απ) .

Note that k1 +k2 + · · ·+k′ ≥ k, because the only levels we skipped were infertile
(we didn’t necessarily skip all infertile levels, as some of them may have been
viable; hence the inequality rather than equality). Replacing k1+k2+· · ·+k′ with
k on the right-hand side will not increase it. Noting that ρ`...m = ρ − ρ1...m−1,
we thus obtain

βδ(fm(b))− ρ1...m−1 ≥ min(απ + k · gαπ , βkδ (απ))− ρ .

By the condition on k in Theorem 6, the right-hand side of this inequality at
least σ. We can thus apply Theorem 5 to level m and substitute σ instead of
βδ(fm(b)) − ρ1...m−1 by monotonicity of β (the condition fm ≥ απ is satisfied
because fm is viable). ut

9 Finishing the Proof with Quantitative Details

Theorem 1. Fix εspace > 0. For any constant r < 1, there is a setting of con-
stants δ, `pr, and n in the SPR construction, and a constant m, such that for
any number of layers ` the SPR construction has hardness ratio

rhardness ≥
r(`−m)

`

(which approaches r as ` grows) and single-query catching probability phard ≥
εspace/2.
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Proof. Fix ζ = 1 − εspace/2 = ρ + εspace/2. Fix δ and n to satisfy the following
conditions:

1. δ < gain(π) (so that gπ > 0 for Theorem 4)
2. αmin

δ < εspace/2−δ for Theorem 4 (this implies ζδ−ρ > αmin
δ because ρ = 1−ε)

3. αmax
δ + δ > 1− εspace/2 for Theorem 4

4. δ < gain(απ) (so that gαπ > 0 for Theorem 6)
5. αmin

δ < απ for Theorem 6
6. αmax

δ − αmin
δ > ρ for Theorem 6

7. αmax
δ > r

Fix some σ so that ρ+σ < αmax
δ and σ > αmin

δ for Theorem 6 (this is possible
by condition 6 on δ above). Set m1 to be the largest integer smaller than

max

(
1 +

π + δ − εspace/2
gπ

, 1 + βcountεspace/2−δ(π)

)
and m2 to be the largest integer no greater than

max

(
ρ+ σ − απ
gainδ(απ)

, βcountαπ (ρ+ σ)

)
Set `pr = m1+m2. Somewhere among the lowest `pr levels, there must be a fertile
level with m2− 1 fertile levels below it, because if not, then the total number of
fertile levels among the lowest `pr levels is less than m2, so the total number of
infertile levels is greater than m1, which contradicts Theorem 4.

Therefore, Theorem 6 applies, which means that among the lowest `pr levels,

there is a fertile level with footprint weight at least απ+
∑`−`pr−1
i=0 βiδ(σ). Letm3 =

βcountσ(r) (it’s bounded by the choice of σ, Condition 7 on δ, and Claim 1).
Then the last `−`pr−m3 terms in this sum are at least r, and thus this footprint
is of size at least rn(`−m1 −m2 −m3). The entire graph is of size n` and the
result follow by the proof in Section 4.2. ut
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where x = u/n, y = u/n, and Hb is the binary entropy function.
The work of [13] used expansion at one point α, whereas we want it to work

almost the entire [0, 1] — specifically, on the interval [αmin
δ , αmax

δ ].
Given a security parameter λ (so that a random permutation satisfies the

expansion condition with probability 1− 2−λ), take εchung = λ/n and define

β(α) = sup{y : Hb(α) + Hb(y) + d · (yHb(α/y)− Hb(α)) < −εchung} .

We need to make sure it is well defined (i.e., the set of y values is non-empty)
on the entire interval [αmin

δ , αmax
δ ]; this may require raising n in order to lower

εchung, as the right-hand side of the inequality gets closer to 0 for α closer to 0
and to 1. Taking a union bound over all possible values of u (there are almost
n of them, from αmin

δ · n to αmax
δ · n), we get that the probability there exists an

integer u and subset of weight α = u/n whose predecessor set weight is less than
β(α) is at most 2−nεchung = 2−λ.

We will be using d = 8. Because we will be working with large graphs, we
can have very small εchung (which helps make expansion faster even for small
α) and still maintain a security parameter λ. For our numerical computations
in Section B, we will use εchung = 2−20 and n = 230, which gives extremely
high assurance that a random graph is an expander with expansion β: namely,
security parameter λ = 1024. (We note that the computations barely change —
by less than 1/1000 in the β values — even if we use a much higher εchung of
2−10.)

0.0940.021 0.9790.9060.32 0.68

0.360.226 0.226 0.0730.073

Fig. 2. Expansion speed for the Chung expander: β(0.021) ≈ 0.094, β(0.094) ≈ 0.32,
etc. The top numbers show the gain.

Fact 2 For a random Chung expander of degree 8 and sufficiently large n, with
high probability

1. αg ≈ 0.32
2. gain(αg) ≈ 0.36
3. Expansion is rapid for small sets, with β(α) > 3α for any constant 0 < α ≤

0.14
4. Expansion quickly bridges small-to-big gap: β(β((β(0.14) − 0.14) − 0.14) −

0.14 > 0.58, i.e., β3
δ (0.14) > 0.58 for δ ≤ 0.14

5. Expansion quickly reaches almost everything for big sets: β(1− 3γ) > 1− γ
for any constant 0 < γ ≤ 0.14
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These facts imply that for any δ ≤ 0.14, if there are no black pebbles, ex-
pansion can rapidly get the per layer footprint from δ to 1− 2δ, as shown in the
following claim.

Claim 10. For the degree-8 Chung expander and δ ≤ 0.14,

βcountδ(1− 2δ) ≤ 4 + 2 log2(0.14/δ) < −1.6 + 2 log(1/δ) .

Proof. Let k = dlog2(0.14/δ)e. By Fact 2.3,

βδ(α) > 3α− δ ≥ 2α

for δ ≤ α ≤ 0.14, so, by monotonicity of β (Condition 1), βkδ (δ) > max(2 ·
0.14, δ · 2k) ≥ max(0.28, δ · 2log2(0.14/δ)) = 0.14. By Fact 2.4 and monotonicity of
β, βk+3

δ (δ) > 0.58.
Now it’s easier to proceed from the tail end. Note that β−1δ (x) = β−1(x+ δ),

so
β−1δ (1− 2δ) = β−1(1− δ) = 1− β(δ) < 1− 3δ

by 2.5. And for 3δ ≤ x ≤ 0.21, we have x− δ ≥ 2x/3, so

β−1δ (1− x) = β−1(1− x+ δ) ≤ β−1(1− 2x/3) < 1− 2x,

where the last step follows from 2x/3 ≤ 0.14. Thus, by monotonicity of β,
β−(k+1)(1− 2δ) = min(1− 2 · 0.21, 1− 3 · 2kδ) ≤ min(0.58, 1− 3 · 2log2(0.14/δ)) =
0.58 < βk+3

δ (δ). Applying βk+1
δ to both sides gives the result of Claim 10 by

monotonicity of β. ut

Theorem 2. For SPR instantiated with the degree-8 Chung expander, m in
Theorem 1 is at most linear in

1

β(απ)− απ
+

1

β(π)− π

plus an amount that is logarithmic in the inverses of εspace, απ, 1− π and 1− r.

Proof. Set

δ < min

(
gain(π)

2
,

gain(απ)

2
,
εspace

4
,

1− π
2

, απ, 1− r, 0.14

)
and σ = δ. Use the proof of Theorem 1 from Section 9, observing that this
setting of δ makes every βcount subscript at least δ and input at most 1 − 2δ,
so by Claim 10, every βcount term is logarithmic in δ. ut

B Proof of Theorem 3

Recall the parameters of Theorem 3, which match SDR as proposed by [8] and
deployed by Filecoin [11]:
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– a degree-8 Chung expander as described in Section A
– εspace = 0.2
– π = 0.8
– δ = 0.0378 (using 180 challenges during initalization, with statistical sound-

ness error 2−10)
– απ = 0.2 with the depth-robust graph of degree 6 (because proving practical

depth robustness parameters is beyond our current state of knowledge, απ
is assumed, rather than proven [9])

– n = 230

– As before, we set ζ = 1− εspace/2 = 0.9 and thus ζδ = 0.8622.

In this section we use numerical estimates for values of β on specific inputs.
We obtain these estimates via a simple implementation of the formula from
Section A, which finds upper and lower bounds on β(α) using binary search.
With these parameter settings, we can compute

– 0.0508 < π < 0.0509
– 0.9491 < β(π) < 0.9492
– 0.1113 < gπ < 0.1114
– 0.2925 < gαπ < 0.2926
– 0.0097 < αmin

δ < 0.0098
– 0.9524 < αmax

δ < 0.9525
– 0.3200 < αg < 0.3202 and
– 0.3599 < gain(αg) < 0.3600

In the rest of this section we proving Theorem 3, which we restate here.

Theorem 3. Suppose SPR is instantiated with the degree-8 Chung expander, a
predecessor-robust graph with π = 0.8 and απ = 0.2, `pr = 8, and ` ≥ 11. Assume
εspace = 0.2 and δ = 0.0378. Then it has hardness ratio

rhardness ≥
2.24 + 0.93(`− 11)

`

and single-query catching probability 10%.

For the rest of this section, let S be a set of weight ζ on level `. We will use
αi to denote fi(S) (so as to easily distinguish it from fi(T )).

We could simply plug in the above numbers into the proof of Theorem 1 to
get results for this insantiation. We could pick σ = 0.1 and r = 0.92 and we
would get m1 = 7 from Theorem 4 (see Corollary 3), m2 = 3 = βcount0.2(0.9)
from Theorem 6 (thus `pr = m1 +m2 = 10), and m3 = 4 = βcount0.1(0.92) = 4.
This would give us a total footprint of 0.92 · (` − 14). What we get instead is
better by about 5 levels (0.93 · 3 + 2.24 > 0.92 · 5). While the difference may
seem minor, it is crucial for small ` and, in particular, for the deployed version
of SDR, where ` = 11.

We find room for improvement for these specific parameters for the following
reasons:
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– The proof Theorem 1 separately counts, and skips, the maximum number of
infertile levels (Theorem 4) and the maximum number of fertile levels that
are not going to grow (Theorem 6). But keeping fertile levels from growing
takes a lot of pebbles, which reduces not only the footprint of T , but also
the footprint αi of S. A lower αi results in a bigger gain in the footprint
of S, which increases the number of pebbles necessary to make an infertile
level, and therefore reduces the number of infertile levels. In other words,
the existing proof does not take advantage of the fact that more levels for
Theorem 6 means fewer levels for Theorem 4 and vice versa.

– The proof of Theorem 6 ignores fertile levels whose footprints dip below απ
before rebounding and growing.

– The proof Theorem 1 ignores the footprint of a growing fertile level until it
reaches weight r.

B.1 Number of Infertile Levels as a Function of Pebble
Arrangements

Most of the work in this section is simply in applying the general results in
Section 6 to the specific parameters of Theorem 3. However, Claims 14, 15, and
16 are new, and address the relationship between footprints, pebbles spent, and
the number of fertile levels.

Claim 11. For all i, αi ≥ 0.0622 > π and therefore for every infertile level m,
gainδ(αm) ≥ gπ > 0.1113.

Proof. By Claim 5, αi never falls below ζδ−ρ = 0.0622 and 0.0622 > π, because
gainδ(0.0622) > gainδ(0.8). ut

Thus, the simple case of Theorem 4—namely, the one given by Lemma 1—
applies and we have the following corollary to Theorem 4. Note that we get
at most 7 for the number of infertile levels (we argue that this is tight in Sec-
tion B.4), while the best previously known bound was 10 [8,10].

Corollary 3. For the parameter settings in Theorem 3, the number of infertile
levels is at most 7 and the following holds for any level m:

if number of infertile levels then maximum weight of black pebbles
below level m is ρ1...m at level m and above is at most

1 0.7378
2 0.6265
3 0.5152
4 0.4039
5 0.2926
6 0.1813
7 0.0700

It is helpful to have the following variant of Lemma 1.
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Claim 12. Let m be the highest infertile level (assuming one exists).

∑̀
i=m

gainδ(αi) < 0.8492

Proof. By Claim 5,
∑
i>m gainδ(αi) ≤ αm − ζ + ρ+ δ. Add gainδ(αm) to both

sides of the inequality, and recall that αm + gainδ(αm) = β(fm)− δ < β(π)− δ
because π < fm < π because αi > π for all i by Claim 11 and level m is fertile
so αi < π. ut

Claim 13. If i is the lowest fertile level, then gainδ(αi) ≥ 0.0313.

Proof. If i = `, then αi ≤ ζδ = 0.8622. Else, the level below i is infertile, and thus
αi+1 < π, so αi < βδ(π) < 0.9114. Because gainδ monotonically decreases above
π, and αi ≥ π because i is fertile, we have gainδ(αi) > gainδ(0.9114) > 0.0313.

ut

The following claim shows that if the number of infertile levels is maximum
possible, then fertile levels cannot be extinguished, because gainδ(απ) > 0.2107.
This shows that the maximum number of levels for Theorem 4 leaves no levels
for Theorem 6.

Claim 14. Let b be the lowest fertile level. If there are 7 infertile levels, then
for every level m < b above b, ρm < 0.2107.

Proof. First, note that gainδ(αm) ≤ 0.1501. Indeed, this is automatically true
for fertile m, because for a fertile m, gainδ(αm) ≤ gπ < 0.1114. If this is false for
some infertile m, then, since there are 7 infertile levels total, taking m′ to be the
highest infertile level, we have

∑`
i=m′ gainδ(αi) > gainδ(αb) + 0.1501 + 6 · gπ >

0.0313 + 0.1501 + 6 · 0.1113 = 0.8492 (by Claim 11 and 13), which contradicts
Claim 12.

There are two regions of [0,1] where gainδ(α) ≤ 0.1501: one requires that
0 ≤ α < 0.0703 and the other requires that 0.7418 < α ≤ 1. By Claim 5,

αm ≥ αb + gainδ(αb)− ρ = βδ(αb)− 0.8 ≥ βδ(π)− 0.8 > 0.0703 ,

so we must have αm > 0.7418.
Note that βδ(αm+1) < αmax

δ (else gainδ(βδ(αm+1)) ≤ 0, which contradicts
Claim 5). Since αm = βδ(αm+1)− ρm, we have ρm < αmax

δ − 0.7418 < 0.9525−
0.7418 < 0.2107. ut

The next claim shows how a small footprint αm (which can happen when
a lot of pebbles are used to extinguish a fertile level) reduces the number of
infertile levels.

Claim 15. If there is m with αm ≤ 0.5015, then there are at most 5 infertile
levels.
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Proof. Suppose there are 6 or more infertile levels. If at least four of those are
below m, then by Claim 5 and Claim 11

αm ≥ ζ − δ − ρ+ 4 · gπ = 0.0622 + 0.1113 · 4 > 0.5015 ,

which is a contradiction. Thus, at most three infertile levels are below m, so
there are at least two levels above m.

The main idea of the proof is to show that the gains of levels m and m − 1
are too high. We will consider two cases: αm > 0.2023 and αm ≤ 0.2023.

Suppose αm > 0.2023. By Claim 23, because gain is concave (Fact 1), we
know gainδ(αm) ≤ min(gainδ(0.2023), gainδ(0.5015)) > 0.2804 To have αm ≤
0.5015, we had to place black pebbles of weight at least ζδ − 0.5015 = 0.8622−
0.5015 = 0.3607 at level m or below (by Claim 5), which means that the weight
of the black pebbles above level m is at most ρ−0.3607 = 0.4393. Then we know

αm−1 > βδ(αm)− 0.4393 > βδ(0.2023)− 0.4393 > 0.0567

and
αm−1 ≤ βδ(0.5015) < 0.7820 ,

so gainδ(αm−1) ≥ min(gainδ(0.0567), gainδ(0.7820)) > 0.1236. Note also that
level m− 1 is infertile, because αm−1 < 0.7820 < 0.8 = π.

Taking m′ to be the highest infertile level, we have by Claim 11∑̀
i=m′

gainδ(αi) ≥ 4 · gπ + gainδ(αm) + gainδ(αm−1)

> 0.4452 + 0.2804 + 0.1236 = 0.8492 ,

which contradicts Claim 12. This concludes the first case.
Now consider the second case: suppose αm ≤ 0.2023. By Claims 5 and 11,

because there are at least 5 infertile levels below the highest fertile level m′,
αm′ ≥ 0.0622 + 5 · 0.1113 = 0.6187 > 0.5015. We thus know that there exists
at least one level above m for which αi > 0.5015. Let i < m be the lowest such
level. Then αi+1 > 0.2023 (because βδ(0.2023) < 0.5015) but αi+1 ≤ 0.5015 by
the definition of i, and thus we can apply the previous case to m = i− 1. ut

Finally, we show that extinguishing even one fertile level (which costs gαπ >
0.2925 pebble weight) while keeping at least six infertile levels reduces the num-
ber of available black pebbles.

Claim 16. Suppose level b ≤ ` − 6 is infertile, and at least five levels below it
are also infertile. If there is a level m > b with ρm > 0.2925, then the weight
ρ1...b−1 of black pebbles above b is at most 0.0607.

Proof. Note that level m is infertile because αm < 1−0.2925 < 0.8 = π. Because
level b is infertile, 0.8 > αb, and thus by Claims 5, 11, and 13

0.8 > αb = ζδ +
∑
i>b

gainδ(αi)− ρ`...b

≥ 0.8622 + 0.0313 + 0.1113 · 4 + gainδ(αm)− ρ`...b .
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Level m has αm = βδ(αm+1) − 0.2925; since βδ(αm+1) < αmax
δ < 0.9525 (else

gainδ(βδ(αm+1) ≤ 0, which contradicts Claim 5) we have αm < 0.66. Since
there are at least six infertile levels, by Claim 15, αm > 0.5015. Because gain is
monotonically decreasing on inputs in the range from 0.5015 to 0.66 by Fact 1,
gainδ(αm) > gainδ(0.66) > 0.2006. Thus, we have ρ`...b > 0.7393 and ρ1...b−1 <
ρ− 0.7393 = 0.0607. ut

B.2 Footprints For Specific Pebble Arrangements

Start with an unpebbled set T of weight fb = απ = 0.2 on level b. In this section,
we show lower bounds on the total footprint of b in several different situations.
These situations do not cover all possibilities, but they turn out to be sufficient
for the final proof in Section B.3. The specific situations addressed in this section
are:

– When b ≥ 4 and ρb−1...1 ≤ 0.07 (Claim 17)
– When b ≥ 5 and ρb−1...1 ≤ 0.30 (Claim 18)
– When b ≥ 6 and ρb−1...1 ≤ 0.44 (Claim 19)
– When b ≥ 8 and T is viable for at least three levels (Claim 20)
– When b ≥ 8 and ρb−1 + ρb−2 ≤ 0.36 and ρb−1...1 ≤ 0.8 (Claim 21)
– When b ≥ 8 and ρb−1 ≤ 0.1525, ρb−1 + ρb−2 ≤ 0.73, and ρb−1...1 ≤ 0.8

(Claim 22)

The first four of these claims simply apply the results of Sections 7 and 8 to
the specific parameters of Theorem 3. The last two are new, because they deal
footprints of fertile sets that may lose viability for a few levels and then regain
it. These claims require calculations of the functions β, gain, and φ. We do not
show these calculations explicitly—they are done by straightforward code that
computes the function β for the Chung expander.

Claim 17. Suppose b ≥ 4, fb = 0.2, and the total weight ρb−1...1 of black pebbles
above level b is at most 0.07. The total footprint is at least φfb(ρb−1, . . . , ρ1) >
2.24 + 0.93 · (b− 4).

Proof. Applying Theorem 5, we know φfb(ρb−1, . . . , ρ1) ≥ φfb(0.07, 0, . . . , 0) >
2.24 + 0.93 · (b− 4). ut

Claim 18. Suppose b ≥ 5, fb = 0.2, and the total weight ρb−1...1 of black pebbles
above level b is at most 0.3. Then the total footprint is at least φfb(ρb−1, . . . , ρ1) >
2.54 + 0.94 · (b− 5).

Proof. Applying Theorem 5, we know φfb(ρb−1, . . . , ρ1) ≥ φfb(0.3, 0, . . . , 0) >
2.54 + 0.94 · (b− 5). ut

Claim 19. Suppose b ≥ 6, fb = 0.2, and the total weight ρb−1...1 of black pebbles
above level b is at most 0.44. The total footprint is at least φfb(ρb−1, . . . , ρ1) >
2.49 + 0.93 · (b− 6).



35

Proof. Applying Theorem 5, we know φfb(ρb−1, . . . , ρ1) ≥ φfb(0.44, 0, . . . 0) >
2.49 + 0.93 · (b− 6). ut

Claim 20. Suppose T is an unpebbled subset of level b ≥ 8 of weight fb = απ =
0.2 that is viable for at least 3 levels. Then the total footprint of T is at least
φfb(ρb−1, . . . , ρ1) > 3.4 + 0.94 · (b− 8).

Proof. By Corollary 2, ρb...b−2 + βδ(fb−2) ≥ min(0.2 + 3 · gainδ(0.2), β3
δ (0.2)) =

β3
δ (0.2) > 0.9037. Therefore, βδ(fb−2)−ρb−3...1 = βδ(fb−2)+ρ`...b−2−ρ > 0.1037.

Thus, by Theorem 5. the footprint of T is at least 0.2·2+φ0.2(ρb−3...1, 0, . . . , 0︸ ︷︷ ︸
b−4

) =

0.6 + φ0.1037(0, . . . 0︸ ︷︷ ︸
b−4

) ≥ 0.6 + 2.8 + 0.94 · (b− 8). ut

Claim 21. Suppose b ≥ 8, fb = 0.2, ρb−1 + ρb−2 ≤ 0.36, and the total weight
ρb−1...1 of black pebbles above level b is at most 0.8. Then the total footprint is
at least φfb(ρb−1, . . . , ρ1) > 3.07 + 0.93 · (b− 8).

Proof. We have φfb(ρb−1, . . . , ρ1) ≥ φfb(ρb−1, ρb−2, ρb−3...1, 0, . . . , 0) ≥ φfb(ρb−1,
ρb−2, 0.8− ρb−1 − ρb−2, 0, . . . , 0) (by applying Lemma 3 b− 4 times followed by
Claim 2)

For ease of notation, fix b = 8 for now. We will provide a lower bound for
φfb(ρ7, ρ6, 0.8 − ρ7 − ρ6, 0, 0, 0, 0), where ρ7 + ρ6 ≤ 0.36. The f1, . . . , f8 values
discussed in the rest of the proof are with respect to this calculation of φ.

Since βδ(0.2)− 0.36 ≤ f7 ≤ βδ(0.2), and gain is concave, we have

gainδ(f7) ≥ min(gainδ(βδ(0.2)), gainδ(βδ(0.2)− 0.36))

= gainδ(βδ(0.2)− 0.36) > 0.2389 .

Using Claim 3, f6 = βδ(0.2) + gainδ(f7)− (ρ6 + ρ7), and thus

βδ(0.2) + gainδ(βδ(0.2)− 0.36)− 0.36 < f6 ≤ βδ(f7) ≤ βδ(βδ(0.2)) .

Therefore, 0.3715 < f6 < 0.7766.
Because gain is concave, gainδ(f6) ≥ min(gainδ(0.3715), gainδ(0.7766)) =

gainδ(0.7766) > 0.1271. Thus, using Claim (3), f5 = βδ(0.2) + gainδ(f7) +
gainδ(f6)− 0.8 ≥ βδ(0.2) + gainδ(βδ(0.2)− 0.36) + gainδ(0.7766)− 0.8 > 0.0586.

Thus, by Claim 2, f5 + f4 + 3 + f2 + f1 = φf5(0, 0, 0, 0) > φ0.0586(0, 0, 0, 0) >
2.37. And by Lemma 3 and Claim 2, f8+f7+f6 = φ0.2(f7, f6) ≥ φ0.2(f7+f6, 0) ≥
φ0.2(0.36, 0) > 0.7, giving us a total of 2.37 + 0.7 = 3.07.

If b > 8, we simply replace φ0.0586(0, 0, 0, 0) with φ0.0586(0, . . . 0︸ ︷︷ ︸
b−4

) > 2.37 +

0.93 · (b− 8). ut

Claim 22. Suppose b ≥ 8, fb = 0.2, ρb−1 ≤ 0.1525, ρb−1 +ρb−2 ≤ 0.73, and the
total weight ρb−1...1 of black pebbles above level b is at most 0.8. Then the total
footprint is at least φfb(ρb−1, . . . , ρ1) > 3.17 + 0.94 · (b− 8).
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Proof. We have φfb(ρb−1, . . . , ρ1) ≥ φfb(ρb−1, ρb−2, ρb−3...1, 0, . . . , 0) ≥ φfb(ρb−1,
ρb−2, 0.8− ρb−1 − ρb−2, 0, . . . , 0) (by Applying Lemma 3 b− 4 times followed by
Claim 2).

For now, for ease of notation, we will fix b = 8 and provide a lower bound
for φfb(ρ7, ρ6, 0.8 − ρ7 − ρ6, 0, 0, 0, 0), where ρ7 ≤ 0.1525 and ρ7 + ρ6 ≤ 0.73.
The f1 . . . f8 values discussed in the rest of the proof are with respect to this
calculation of φ.

Since βδ(0.2) − 0.1525 ≤ f7 ≤ βδ(0.2), we have 0.34 < f7 < 0.4926. Since
gainδ is decreasing above βδ(0.2)− 0.1525 > αg, we have

gainδ(f7) ≥ gainδ(βδ(0.2)) > 0.2839 .

Using Claim 3, f6 = βδ(0.2) + gainδ(f7)− (ρ6 + ρ7), and thus

βδ(0.2) + gainδ(βδ(0.2))− 0.73 < f6 ≤ βδ(f7) ≤ βδ(βδ(0.2)) .

Therefore, 0.0465 < f6 < 0.7766.
Because gainδ is concave, gainδ(fb−2) ≥ min(gainδ(0.0465), gainδ(0.7766)) =

gainδ(0.0465) > 0.1016. Thus, using Claim 3, f5 = βδ(0.2) + gainδ(f7) +
gainδ(f6)− 0.8 ≥ βδ(0.2) + gainδ(βδ(0.2)) + gainδ(0.0464)− 0.8 > 0.0782.

Thus, by Claim 2, f5 + f4 + 3 + f2 + f1 = φf5(0, 0, 0, 0) > φ0.0782(0, 0, 0, 0) >
2.59. In addition, f8 + f7 + f6 > 0.2 + 0.3399 + 0.0464 > 0.58, for a total of at
least 3.17.

If b > 8, we simply replace φ0.0782(0, 0, 0, 0) with φ0.0782(0, . . . 0︸ ︷︷ ︸
b−4

) > 2.59 +

0.94 · (b− 8). ut

B.3 Putting the Proof of Theorem 3 Together

We now prove Step 3.5 described in Section 4.2, which suffices for proving The-
orem 3.

Lemma 5. There is a fertile level b ≥ ` − 7 with the following property. Let T
be an unpebbled subset of this level with weight at least 0.2. The total footprint
of T is at least 2.24 + 0.93 · (`− 11).

Proof. Let m1 be the lowest fertile level. We know m1 ≥ ` − 7, because there
are at most 7 infertile levels by Corollary 3.

If m1 = ` − 7, then there are at least 7 infertile levels below m1, and thus
the weight of black pebbles above m1 is at most 0.07 by Corollary 3, and thus
we can set b = m1 and apply Claim 17 to bound the total footprint.

If m1 = ` − 6, then there are at least 6 infertile levels below m1, and thus
the weight of black pebbles above m1 is at most 0.1813 by Corollary 3, and thus
we can set b = m1 and apply Claim 18 to bound the total footprint.

If m1 = `−5 or m1 = `−4, then there are at least 4 infertile levels below m1,
and thus the weight of black pebbles above m1 is at most 0.4039 by Corollary 3,
and thus we can set b = m1 and apply Claim 19 to bound the total footprint.
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If m1 ≥ ` − 3, the proof gets harder, because now the adversary may have
enough pebbles above m1 to stop the growth of T on m1 completely (since
βδ(απ) ≈ 0.4925, pebble weight 0.4925 right above m1 suffices, and Corollary 3
cannot rule it out). We will have to proceed by cases: in some cases, there won’t
be enough pebbles immediately above m1, and T will grow, and in other cases,
there will be many pebbles immediately above m1, but then second or third
lowest fertile level will grow, because there won’t be enough pebbles to stop the
growth above those levels.

If m1 ≥ ` − 3 and there are exactly 7 infertile levels (there cannot be more
by Corollary 3), then for each i < ` − 3, each ρi ≤ 0.2107 < gπ by Claim 14,
and thus, by simple induction, m1 can never be extinguished, so we can apply
Claim 20 to bound the total footprint.

If m1 ≥ ` − 3 and there are 6 or fewer infertile levels, let m2 be the second
highest fertile level. Note that m2 ≥ ` − 7 because there are at most 6 infertile
levels.

– If m2 = `− 7. We will do a proof by cases, depending on how concentrated
the pebbles are above m1. If no level i such that m2 < i < m1 has ρi > gπ >
0.2925, set b = m1. By simple induction, m1 is viable for at least 3 levels, so
we can apply Claim 20 to bound the total footprint. Else, set b = m2. We
know that the weight of black pebbles above level m2 is at most 0.0607 by
Claim 16, so we can apply Claim 17 to bound the total footprint.

– If m2 = ` − 6, then there are at least 5 infertile levels below m2, and thus
the weight of black pebbles above m2 is at most 0.2926 by Corollary 3, and
thus we can set b = m2 and apply Claim 18 to bound the total footprint.

– If m2 = `− 5, then there are at least 4 fertile levels below m2, and thus the
weight of black pebbles above m2 is at most 0.4039 by Corollary 3, and thus
we can set b = m2 and apply Claim 19 to bound the total footprint.

– If m2 ≥ ` − 4, we again have the problem that the adversary has enough
pebbles to stop the growth of T from m2. We consider two cases, with two
subcases each.

• m1 ≥ m2 +2. We will show that either m1 or m2 will grow, since there is
not enough pebble weight to stop the growth of both. The cases will focus
on how much pebble weight there is between m1 and m2. Specifically, if
ρm2...m1

≥ 0.36, set b = m2. We know the weight of black pebbles above
m2 is at most ρ − ρm2...m1

≤ 0.44, and since m2 > ` − 5, we can apply
Claim 19 to bound the total footprint. And if ρm2...m1 < 0.36, then in
particular ρm1−2...m1−1 < 0.36, so we set b = m1 and apply Claim 21 to
bound the total footprint.

• m1 = m2 + 1. Since we have two fertile levels in a row, m1 has a chance
to grow for at least one level. Specifically, we know ρm2

≤ 0.1525 because
ρm2

= β(m1)−m2 ≤ αmax
δ −π < 0.1525 (since β(m1) < αmax

δ by Claim 4).
This growth can still be stopped, but it will require a lot of pebbles in
the level above m2. Specifically, if ρm2

+ ρm2−1 ≤ 0.73, then set b = m1

and apply Claim 22 to bound the total footprint. Else, there are at most
five infertile levels by Claim 15, because αm2−1 ≤ 1 − ρm2−1 − δ ≤
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1 − (0.73 − 0.1525) − δ = 0.3847. Thus, there is a fertile level m3 such
that `− 7 ≤ m3 ≤ m2 − 1, and the weight of black pebbles above m3 is
less than 0.8 − ρm2−1 + ρm2 < 0.8 − 0.73 = 0.07. Set b = m3. Claim 17
applies to bound the total footprint.

This concludes the proof of Lemma 5. ut

B.4 On Optimality of the Result

Suppose the adversary places its black pebbles as follows: ρ` = 0.0623, ρ`−1 =
· · · = ρ`−6 = 0.1114, ρ`−7 = 0, ρ`−8 = 0.0693, and ρ`−9...1 = 0. Then the bottom
seven levels are infertile; the remaining ones are fertile. If we set b = ` − 7, we
get f`−7 = 0.2, f`−8 ≈ 0.42, f`−9 ≈ 0.73, and f`−10 ≈ 0.89, for a total of about
2.24 when ` = 11. Setting b = 3, 2, or 1 gives smaller results. If we have more
levels, f`−11 ≈ 0.94 and fi ≈ 0.95 for i < `− 11.

Thus, arguments that are based on the same framework of simply count-
ing sizes (i.e., looking at vertical expansion and subtracting pebbles) for this
construction are unlikey to overcome the 2.24 + 0.95 · (`− 11) bound, which es-
sentially matches the result of Theorem 3. That doesn’t mean the result can’t be
improved—perhaps other proof frameworks than the one in Section 4 are possi-
ble. In particular, it may be possible to reason about single-node expansion, or
to measure footprint growth via horizontal edges, or take into account pebble
positions, or use ancestor robustness of different size sets.

C Facts about Concave Functions

Recall the definition of a concave function: F is concave if for all a, b, the graph of
F on the segment [a, b] does not dip below the line connecting the points (a, F (a))
and (b, F (b)). Algebraically, for all 0 ≤ λ ≤ 1, F (λa+ (1− λ)b) ≥ λF (a) + (1−
λ)F (b). F is strictly concave is the inequality is strict for 0 < λ < 1. Recall also
that F is monotonically nondecreasing (respectively, increasing, nonincreasing,
decreasing) if for all a ≥ b, F (a) ≥ F (b) (respectively, F (a) > F (b), F (a) ≤ F (b),
F (a) < F (b)).

The first three claims are below standard; the last one only slightly less so.

Claim 23. The minimum of a concave function on a line segment [a, b] is
reached at either a or b, and nowhere else if concavity is strict.

Proof. Let c ∈ [a, b] and λ = (b − c)/(b − a). Let m = min(F (a), F (b)). Then
F (c) = F (λa + (1 − λ)b) ≥ λF (a) + (1 − λ)F (b) ≥ λm + (1 − λ)m = m. If
the concavity is strict, then whenever a < c < b, 0 < λ < 1 and so the first
inequality is strict. ut

Claim 24. The sum of two concave functions is concave and, moreover, is
strictly concave if one of the two functions is strictly concave.
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Proof. Assume F and G are concave and H = F + G. H(λa + (1 − λ)b) =
F (λa+(1−λ)b)+G(λa+(1−λ)b) ≥ λF (a)+(1−λ)F (b)+λG(a)+(1−λ)G(b) =
λH(a) + (1 − λ)H(b). The inequality will be strict if the inequality for F or G
is strict. ut

Claim 25. Let F and G be concave nondecreasing functions. Then F ◦ G is
a concave nondecreasing function wherever it is defined (which may not on the
entire domain of G, because we do not require F to be defined on the entire range
of G). (Note that for concavity of F ◦ G, it suffices for F to be nondecreasing,
and it doesn’t matter whether G is nondecreasing.)

Proof. Let a ≥ b be in the domain of F ◦ G. Since G is nondecreasing, G(a) ≥
G(b), and thus, since F is nondecreasing, F (G(a)) ≥ F (G(b)). Thus, F ◦ G is
nondecreasing.

Because G is concave, G(λa + (1 − λ)b) ≥ λG(a) + (1 − λ)G(b). Because F
is nondecreasing and concave, F (G(λa+ (1− λ)b) ≥ F (λG(a) + (1− λ)G(b)) ≥
λF (G(a)) + (1− λ)F (G(b)). ut

Claim 26. Let F be a concave function. Suppose x1 ≤ x2 and z ≥ 0. Let
δ1 = F (x1)− F (x1 − z) and δ2 = F (x2)− F (x2 − z). Then δ1 ≥ δ2.

Proof. The intuition is simple: because F is concave, F (x1) and F (x2 − z) are
both above the straight line that connects (x1 − z, F (x1 − z)) with (x2, F (x2)).
If we lowered F (x1) and F (x2 − z) to this line line, we would decrease δ1 and
increase δ2, and we would make them equal. So δ1 > δ2.

Algebraically, let a = x1 − z, b = x2, λ = x2−x1

x2−x1+z
, µ = z

x2−x1+z
. Note that

λa+ (1− λ)b = x1 and µa+ (1− µ)b = x2 − z, and that λ+ µ = 1.

The concavity of F gives two inequalities:

F (x1) = F (λa+ (1− λ)b) ≥ λF (a) + 1− λF (b) = λF (x1 − z) + (1− λ)F (x2)

F (x2− z) = F (µa+ (1−µ)b) ≥ µF (a) + 1−µF (b) = µF (x1− z) + (1−µ)F (x2)

Adding them together, we get

F (x1) + F (x2 − z) ≥ F (x1 − z) + F (x2)

and the result follows by subtracting F (x1 − z) + F (x2 − z) from both sides of
the inequality. ut

We restate and prove Fact 1 from Section 5.1.

Fact 1 The function gain is strictly concave on the interval [0, 1], with gain(0) =
gain(1) = 0. There is a value 0 < αg < 1 that maximizes gain. The function
gain (and therefore also gainδ) is monotonically increasing on inputs from 0 to
αg and monotonically decreasing on inputs from αg to 1.
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Proof. gain is a continuous strictly concave function as a sum of two continuous
concave functions β (per Condition 1) and −α (with β strictly concave), per
claim Claim 24. It is bounded because β is bounded by 1, and a bounded con-
tinuous function reaches its maximum on the compact set [0,1]; this maximum
is nonzero (because β(α) > α on (0, 1)) and therefore not reached at 0 or 1,
where gain is 0, so 0 < αg < 1. It is easy to show that a violation of the mono-
tonicity conditions on either side of αg would imply a violation of concavity of
gain: if gain(y) ≤ gain(x) for some x < y < αg, then (y, gain(y)) lies below
the line connecting (x, gain(x)) with (αg, gain(αg), as that line slopes up, since
gain(x) < gain(αg). Same proof works, mutatis mutandis, for the other side. ut


	Proofs of Space with Maximal Hardness

