
A 15-page abstract of this work appears (with the same title) in the proceedings of
the ACM Conference on Computer and Communications Security (CCS) 2023. This

is the authors’ full version. This document supersedes any previous versions.

Original Version: 2023-10-06. This Revision: 2023-12-07.
Reference Software Implementation Version: v0.4.3

Shufflecake: Plausible Deniability for Multiple
Hidden Filesystems on Linux

Elia Anzuoni1,2 and Tommaso Gagliardoni2 �

1 EPFL, Switzerland
elianzuoni@gmaildotcom

2 Kudelski Security, Switzerland
myfirstname@gagliardoni.net

Abstract. We present Shufflecake, a new plausible deniability design to
hide the existence of encrypted data on a storage medium making it very
difficult for an adversary to prove the existence of such data. Shufflecake
can be considered a “spiritual successor” of tools such as TrueCrypt and
VeraCrypt, but vastly improved: it works natively on Linux, it supports
any filesystem of choice, and can manage multiple volumes per device, so
to make deniability of the existence of hidden partitions really plausible.
Compared to ORAM-based solutions, Shufflecake is extremely fast and
simpler but does not offer native protection against multi-snapshot ad-
versaries. However, we discuss security extensions that are made possible
by its architecture, and we show evidence why these extensions might be
enough to thwart more powerful adversaries.
We implemented Shufflecake as an in-kernel tool for Linux, adding use-
ful features, and we benchmarked its performance showing only a minor
slowdown compared to a base encrypted system. We believe Shufflecake
represents a useful tool for people whose freedom of expression is threat-
ened by repressive authorities or dangerous criminal organizations, in
particular: whistleblowers, investigative journalists, and activists for hu-
man rights in oppressive regimes.

Keywords: Shufflecake · TrueCrypt · VeraCrypt · plausible deniability
· privacy · forensics · disk encryption · LUKS · dm-crypt · cryptsetup

Table of Contents

1 Introduction . 3
1.1 Motivation . 4
1.2 Previous Work . 4
1.3 Limitations of Existing Solutions . 6
1.4 Our Contribution . 7
1.5 Acknowledgements . 7

2 Preliminaries . 8
2.1 Cryptographic Primitives . 8
2.2 Full Disk Encryption . 10
2.3 Plausible Deniability . 12

3 TrueCrypt and VeraCrypt . 15
3.1 Design . 16
3.2 Operational Model . 17
3.3 Security . 18
3.4 Other Limitations . 19

4 The Shufflecake Scheme . 20
4.1 Design . 20
4.2 Operational Model . 29
4.3 Security . 32

5 Implementation and Benchmarks . 35
5.1 Structure of the Implementation . 35
5.2 Space Utilisation . 37
5.3 Benchmarks . 38

6 Conclusions and Future Directions . 40
6.1 Crash Consistency . 40
6.2 Multi-Snapshot Security . 41
6.3 Shufflecake “Lite” . 45
6.4 Corruption Resistance . 45
6.5 Use of Disk Metadata . 48
6.6 Reclaiming Unused Slices . 49
6.7 Unbounded Number of Volumes . 50
6.8 Hidden Shufflecake OS . 51

A Changelog . 55
B Key and Glossary . 56

1 Introduction

Privacy of personal and sensitive data is, now more than ever, a topic of major
public interest. In today’s heavily interconnected world where data are, often by
default, entrusted to an online third party, the last bastion of data confidentiality
is local storage, as the physical disconnection greatly helps in reducing the room
for abusive access. Even there, however, some protection measures need to be
implemented, to guard against adversaries who might close that gap. The most
trivial example of such an adversary is a thief stealing a user’s personal hard
disk and reading its raw contents; this is a very simple and well-studied threat
model, for which many robust disk encryption solutions exist.

However, disk encryption alone is not enough to handle adversaries empow-
ered by repressive laws or other, less legal methods (e.g., “rubber-hose”). Unlike
the previous scenario, these adversaries gain more than simple “offline” access
to the disk: they are in a position of power, which they can use to directly and
aggressively confront the user about the contents of the protected storage, and
by means of (physical, legal, psychological) coercion, they can obtain the encryp-
tion keys to any encrypted content identifiable on the user’s device. The security
goal in this scenario, then, becomes to still retain secrecy of some selected, “cru-
cial” data on the disk, by making the presence of such data not even identifiable,
thus allowing the user to make up a credible lie about the storage contents. This
is exactly the aim of plausible deniability (PD), a powerful security property,
enabling users to hide the existence of sensitive information on a system under
inspection by overreaching or coercive adversaries.

In the context of secure storage, PD refers to the ability of a user to plausibly
deny the existence of certain data stored on a device even under interrogation
or forensic inspection of the physical device. The underlying idea is that, if
the adversary cannot conclude anything about the existence of hidden sensi-
tive data, they have no motivation to further continue the coercion, thereby
(hopefully) limiting the damage for the user. PD was first proposed in 1998 [1]
and, since then, many different PD solutions have emerged, attempting to bal-
ance the security-efficiency trade-off. One of the most popular PD solutions was
TrueCrypt [46], first released in 2004, discontinued in 2014, and replaced by its
backward-compatible and technically similar successor VeraCrypt [49].

TrueCrypt and VeraCrypt remain the most well-known PD disk encryption
tools available, probably because of the large open source community around
them and the good performance, but they suffer from many drawbacks that
have been left unaddressed for many years now, both in terms of security and
operational model, such as: the possibility of only having one layer of extra
secrecy, limited filesystem support, and limited functionalities on Linux. In this
work we present Shufflecake, a novel disk PD tool that aims at solving these and
other limitations by still achieving a good security-performance tradeoff.

3

1.1 Motivation

Albeit less extensively covered by the existing literature, coercive adversarial
attacks unfortunately represent many diverse real-world situations. Most of the
demonstrable facts, in this regard, concern national security provisions in coun-
tries like the USA, France, or the UK, that allow prosecutors to legally oblige citi-
zens to disclose the passwords to their encrypted storage devices [21,25,38,40,48],
under threats of harsh legal or economic penalties for non-compliance. These pro-
visions are reported to have been often misused, sometimes to the point where
people’s rightful privacy has been arguably trampled on [2, 4, 8, 50].

The relative abundance of such reports coming from Western countries, how-
ever, is likely due to the comparatively attentive and critical public oversight
on the government’s operations. In countries with a less-developed system of
checks and balances, the precise extent to which the sensitive data of activists,
journalists, dissidents, and oppressed minorities are violated, can only be hinted
at by the few sporadic cases that occasionally make it to the international head-
lines [7,44]. These kinds of coercive attacks are not merely “tinfoil-hat paranoia”,
but a real-world concern.

1.2 Previous Work

Different approaches to PD on storage have been proposed, starting from the
layer one chooses to intervene at. Digital storage, in fact, is composed of many
stacked layers, from the topmost “logical” layer (the filesystem) down to the
more physical one. Such a layered structure complicates the security analysis,
as different PD solutions focus on different layers, each of them leading to dif-
ferent approaches with pros and cons. Certain solutions work at the filesystem
layer [28, 35]; they have to implement a rich interface, made of complex file-
and directory-oriented methods (fileOpen, fileRead, mkDir...). Other schemes
choose instead to go at the lowest level and modify the FTL [23] (flash-translation
layer, for SSDs), but this approach clearly leads to highly vendor-specific solu-
tions. Security of solutions designed for a specific layer might be defeated by
adversaries with access to lower layers.

A versatile approach for a robust PD solution is arguably to operate at the
block layer, whereby the scheme exposes a block device interface (a common ab-
straction layer used by many operating systems to represent storage devices as
arrays of fixed-size data blocks), providing just a bRead and a bWrite method.
This is the approach used by solutions like TrueCrypt, and also by Shufflecake;
in the remainder of this work, we will only focus on block-layer solutions. In this
framework, a single underlying disk or device is formatted to host one or more
volumes (logical storage units, usually represented as virtual block devices), each
encrypted with a different (usually password-derived) symmetric key. When con-
fronted with the adversary, the user surrenders the passwords to some of these
volumes, called decoy volumes (because in some use cases they might contain
deceptively innocent data): PD security guarantees that, even after these pass-
words have been given up, inspection of the disk by the adversary still yields

4

no clue whatsoever hinting at the presence of some further, hidden volumes.
The intuition behind the formal definition of these guarantees, is that the ad-
versary cannot distinguish between the case where all the passwords have been
surrendered, and the case where there is still undisclosed secret information left.

Security models. Early PD literature has focused mostly on single-snapshot ad-
versaries, who are assumed to only check the storage device once. This was
considered a natural assumption: in the typical scenario, an activist or journal-
ist is stopped at a checkpoint or arrested and interrogated one time, and her
electronics confiscated and analyzed. Provided she manages to escape, she will
be on high alert for future investigation, and in particular she will refresh the
PD protection in use through some specific procedure (e.g., by reformatting the
hard disk, or by buying a new device). So, in case of a second check, the adver-
sary will de facto face a completely new instance of PD storage, therefore falling
back to the single-snapshot case. This is the threat model addressed by solutions
like TrueCrypt and VeraCrypt.

The safety of the single snapshot threat model, however, has been questioned
in the literature over time, not only because it relies on good user security prac-
tice, but also because the technological evolution of storage brought a new issue
on the table. In modern devices, especially solid-state disks (SSDs), overwriting a
logical sector often results in the underlying physical sector being simply marked
as “unused” rather than being really overwritten, thereby leaving “traces”, or
“snapshots” of the data content at previous points in time. This in turn can
(in theory) allow the adversary to break plausible deniability even with a single
inspection, because by analysing these traces that are left on the device one can
see that content at certain locations has changed; since empty, unused space
should not change over time, the presence of hidden information therein can be
betrayed. This is the scenario considered in multi-snapshot security models.

One could argue that multi-snapshot attacks are likely to be very complex, to
the point that 100% evidence of the presence of a hidden volume based only on
past sector traces is unlikely to be reached, and an accusation in this sense might
not stand in court. In fact, we are not aware of a single case in public literature
of a conviction due to multi-snapshot attacks. On the contrary, there are many
documented cases [36,37,47] where even a simple system such as TrueCrypt was
enough to grant acquittal of a suspect. This is not to say that single- and multi-
snapshot security are equivalent: the latter is stronger. However, one should
question what price it is reasonable to pay (in terms of performance, etc) to
achieve this stronger security.

ORAMs. Multi-snapshot attacks are a well-known issue in PD systems (True-
Crypt and derivatives are also vulnerable in this sense) and designing counter-
measures turns out to be challenging. As of today, only a few constructions [10]
achieve multi-snapshot security, but at a hefty performance cost that makes them
not practical for most use cases. Most of these solutions are based on oblivious
random access machines (ORAMs). ORAMs are cryptographic schemes that aim
at hiding the access patterns (in addition to the data content itself) of a trusted

5

agent accessing an untrusted storage. The connection between ORAMs and PD
has been investigated since 2014 with the HiVE construction [6]. In a nutshell,
the idea is that if we use an ORAM to access a device, then nobody, not even
a run-time backdoor in the device firmware, can know which (logical) location
we access and how, thereby providing a solid method for implementing PD.
However, ORAMs are extremely slow: it is known [26] that the bandwidth over-
head of any secure ORAM of size n is Ω(log(n)). The HiVE paper circumvented
this problem with the following observation: If we are not worried by run-time
backdoors in the device firmware, but are only concerned about “traditional”
multi-snapshot adversaries, i.e. post-arrest investigation of the device physical
layer, then we do not need a fully-fledged ORAM, because read operations do
not change the state of the device. So all we need is a “write-only” ORAM
(WoORAM) that only obfuscates write requests. The advantage is that there
is no known efficiency bound for WoORAMs, and in fact existing WoORAM
constructions seem to be slightly better than full ORAMs. The WoORAM ap-
proach sparked a whole new line of research in multi-snapshot resistant PD
solutions [9, 39], and it has been proven [10] that resistance to multi-snapshot
security under certain assumptions is equivalent to the use of WoORAMs.

1.3 Limitations of Existing Solutions

So far, the landscape of available PD solutions presents many gaps, both in us-
ability and in security, a fact also hinted at by the relatively scarce adoption
of such solutions. By far the most widespread today is VeraCrypt, which comes
with many limitations. WoORAM-based techniques have been studied in the
last few years as promising alternatives to address TrueCrypt and VeraCrypt’s
security issues. However, it is important to stress that even the most performant
WoORAM-based schemes are still very slow or wasteful. To put this in perspec-
tive: HiVE has a slowdown of roughly 200x I/O throughput and wastes 50% of
the disk space, while some recent constructions such as DetWoOram [39] reach
a slowdown of “only” 5x but at the cost of wasting 75% of the disk space. This
leaves us with the dilemma of either choosing single-snapshot, efficient solutions
with limited security, or WoORAM solutions with unacceptable performance loss
and arguably stronger security.

Moreover, WoORAMs solutions themselves might not be bulletproof. In fact,
we believe that the idea that read requests do not change the underlying state
of the physical device is a somewhat strong assumption, and hard to justify with
modern, complex SSDs that might, for example, cache read requests in some
undocumented memory area of the firmware, or store read data on an ad-hoc
buffer to improve performance, etc.

Another big problem of many plausible deniability solutions (including True-
Crypt) is that the OS itelf (or other applications installed therein) can uninten-
tionally leak to an adversary the presence of hidden data when a hidden volume
is unlocked. This can happen for example through the OS logging disk events,
search agents indexing files within the hidden volume when this is unlocked,
even applications such as image galleries or document readers caching previews

6

of opened documents. Customizing the OS’ behavior in such a way to avoid these
pitfalls is an almost hopeless task [11]. A proposed solution to this problem is
to have the OS itself inside a hidden volume, which is the idea that led to the
concept of “hidden OS” on TrueCrypt. However, as far as we know, TrueCrypt
(and VeraCrypt) remain the only implementation of this idea, limited to the
Windows OS. Overall, we can say that a versatile PD solution able to balance
security and usability has been sorely missing for years, especially for Linux,
where no really practical solution exists.

1.4 Our Contribution

In this work we present Shufflecake, a novel PD scheme that aims at striking
a balance between the efficiency of TrueCrypt and the security of WoORAM-
based solutions. Shufflecake operates at the block device layer, like TrueCrypt,
but with important improvements:

1. It offers a virtually unlimited number of hidden volumes per-device, arranged
hierarchically: for the user it is sufficient to unlock one volume, and all the
“less secure” volumes will be unlocked automatically. This improves user
experience and operational security, as we will see in Section 4.2.

2. Unlike TrueCrypt, Shufflecake is filesystem-agnostic, meaning that all its
features are available regardless of the filesystem chosen by the user.

3. It works natively on Linux, and can be integrated with the kernel for use at
boot time and for hidden operating systems.

4. Unlike WoORAM-based solutions, Shufflecake is extremely fast (achieving
only a minor slowdown compared to a bare, non-PD system) and wastes less
than 1% of the disk space.

Moreover, Shufflecake not only achieves (provable) single-snapshot security, but
also implements features that could make possible in the future to achieve a
form of “operational” (i.e., weak) multi-snapshot security. These features are
Shufflecake’s hierarchical design and atomic block-rerandomisation, which are
not available in tools such as TrueCrypt. We discuss this in Section 6.

We implemented Shufflecake [45] in the C language, and we released it as a
free software under the GNU General Public License v2+.

1.5 Acknowledgements

We are grateful to Edouard Bugnion from EPFL for support and insightful
discussions on the Shufflecake scheme, and in particular on the topic of crash
consistency. We are also grateful to Vero Estrada-Galiñanes from EPFL for in-
sightful discussions on the topic of volume corruption. Part of this work was done
by E.A. in the context of an EPFL M.Sc. thesis work in the Research Team of
Kudelski Security, under official supervision of Edouard Bugnion and technical
supervision of T.G..

7

2 Preliminaries

In this section we give the required preliminaries that are going to be used in
the rest of this work. In the following, we use “iff” as “if and only if”. Array
and sequence indices start from 0. By (efficient) algorithm or procedure we mean
a uniform family of circuits of depth and width polynomial in the index of the
family. We implicitly assume that all algorithms take the index of the family as a
first input, so we will often omit this. In the case of cryptographic algorithms, we
call such index a security parameter, and we denote it by λ. We will often label
algorithms with names that reflect their role, e.g. “adversary”, “distinguisher”,
etc. If an algorithm A is deterministic, we denote its output y on input x as
y := A(x), while if it is randomized we use y ← A(x); when derandomising
an algorithm we look at the deterministic algorithm obtained when considering
explicitly the internal randomness r as additional auxiliary input, and we write
y := A(x; r). We will call negligible (and denote by negl(x)) a function that grows
more slowly than any inverse polynomial in x, and overwhelming a function which
is 1 minus a negligible function. Given an event E, we denote by Ē its negation.
Finally, we will write x $←−X if x is sampled uniformly at random from a set X.

2.1 Cryptographic Primitives

We assume familiarity with elementary cryptographic constructions and we refer
the reader to, e.g., [24] for a more in-depth dive. Here we just recap informally
the most relevant concepts.

Cryptographic security. We will often define the security of a cryptographic
scheme Π in terms of a game, or experiment, that captures the ‘difficulty in
breaking the scheme’, leading to so-called game-based security3. This usually
entails comparing the probability of the adversary A (modeled as an efficient
algorithm) in winning a Game, that is, breaking the scheme, versus the base-
line probability of ‘winning by pure chance’, for example by guessing randomly.
We call this difference of probabilities the advantage of the adversary winning
the game for Π, and we define (computational) security by requiring that this
advantage is negligible in λ for any (computationally bounded) adversary.

AdvGame
Π (A) :=

∣∣∣Pr [A (Π,Game)→ win]− Pr [Guess (Π,Game)→ win]
∣∣∣ ≤ negl.

Hash functions and KDFs. A hash function is an algorithm that maps strings
of arbitrary length into strings of fixed length (e.g., 256 or 512 bits). The most
relevant security property for hash functions in our case is collision resistance,
meaning that it is computationally difficult to find two distinct input strings that
map to the same hash value. In order to add resistance against pre-computation

3 Other frameworks exist, such as simulation-based, but as a first approximation game-
based security notions are very convenient for their intuitivity and simplicity.

8

attacks [32], most implementations of hash functions use an additional param-
eter, called salt (usually a non-secret, per-application string of 96-256 bits), to
further randomize their mapping. Typical hash algorithms for cryptographic use
are SHA256 [16], SHA-3 [12], and BLAKE2 [42].

Hash functions are designed to be very fast and efficient in term of required
computational resources. This might actually be an undesirable property when
using the function to store images of user-chosen passwords, because it allows for
faster adversarial brute-force. In these cases, a key derivation function (KDF),
should be used. KDFs are functionally similar to hash functions, but are de-
signed in such a way to be uniformly expensive to compute on a broad range of
computing devices, for example by requiring not only many CPU cycles but also
large amount of memory and low latency. Typical KDFs for cryptographic use
are Argon2id [5] and Scrypt [34].

Symmetric-key encryption and authentication. Regarding encryption,
the most fundamental primitive is symmetric-key encryption (SKE), also called
secret-key encryption. An SKE scheme is a pair of algorithms (one for encryp-
tion and one for decryption) which define a bijection between a domain (plaintext
space) and a co-domain (a subset of the ciphertext space) of strings. An addi-
tional input, the secret key, fixes the bijection across the set of all possible ones,
and correctness of the SKE ensures that, if the same secret key is used, then
the bijection offered by the decryption algorithm is the inverse of that offered
by encryption (with overwhelming probability in the case of non-deterministic
decryption). The size of a typical secret key in many real-world applications
is 128 or 256 bit. This allows to index at most 2128 or 2256 unique bijections,
which is generally much smaller than the number of possible bijections as the
domain space gets larger. For this reason, it is generally impossible to ask the
coverage of all possible bijections as a security property of SKEs. Instead, secu-
rity is usually given in terms of indistinguishability games, with strength of the
resulting notions depending on the additional power granted to the adversary.
One of the most common security notions for SKEs is indistinguishability under
chosen plaintext attack (or IND-CPA in short). In such game, the adversary’s
goal is to distinguish between the encryption of two messages of her choice,
given additional access to an encryption oracle (for the same, unknown secret
key used in the game). The scheme is called IND-CPA secure iff no efficient ad-
versary A can successfully win with probability more than negligibly better than
guessing at random. Notice that this, in particular, requires that the SKE must
be randomised, i.e., encrypting twice the same plaintext with the same key will
generally yield two different ciphertexts. We will denote encryption (resp., de-
cryption) of a plaintext p (resp., ciphertext c) with a key k (and, optionally, a
randomness r) as Encrypt(p, k; r) (resp., Decrypt(c, k; r)). The randomness r is
generally not needed for decryption, so we will omit it in that case.

If, in addition to privacy, authenticity of a message is also required, then
SKEs are not enough, and authenticated encryption (AE) schemes must be used
instead. An AE scheme works in a similar way to a SKE, but decryption of a

9

given ciphertext fails if the secret key used for decryption is not the same one
used to encrypt the original plaintext. When this happens we write that the
decryption procedure returns ⊥. This allows to check that a ciphertext has not
been altered or replaced by a malicious adversary, thereby granting authenticity
and integrity of the message. A typical way to implement AE is to append a
message authentication code (MAC) to a ciphertext. A MAC is a random-looking
bitstring, for example computed through the encrypt-then-MAC procedure with
a hash function on a combination of ciphertext and secret key. MACs are useful,
among other properties, to check whether a provided key is the correct one to
decrypt a ciphertext (without having to actually decrypt the ciphertext first).

Block ciphers. As a building block for SKEs, block ciphers are widely used.
These are algorithms that typically offer two different interfaces, one for encryp-
tion and one for decryption. In encryption mode, they take as input a block of
plaintext of fixed bitsize SB (the block size) and an encryption key of K bits
(the key size) and return a block of ciphertext, also of size SB. This mapping is
undone in decryption mode, provided the same key is used. In other words, block
ciphers implement a subset of size at most 2K of the space of all possible (2SB)!
permutations (and their inverses) over SB-bit strings. One of the most widely
used block ciphers are those from the AES family [20], identified by AES-K
(with a block size of 128 bits, and a keysize K of 128, 192, or 256 bits).

To turn a block cipher into a generic SKE, a mode of operation is required.
This is a deterministic procedure that describes how to split input plaintexts or
ciphertexts of arbitrary length into fixed size blocks, and iteratively applying the
block cipher on these blocks. Typical modes of operation are ECB, CBC, and
CTR [43]. Among these, CTR is widepsread for its good characteristics. In order
to achieve randomisation as a protection against known-plaintext attacks, many
modes of operations also include an additional input called inizialization vector
(IV), typically a string of a fixed size, like 64, 96 or 128 bits, not necessarily
secret but unpredictable and variable according to the message. Block ciphers
can also be used to build AE, but with different modes of operations than the
ones used for encryption only, such as GCM [29]. For a given block cipher B
with keysize K and a given mode of operationM, the resulting SKE is usually
denoted as B-M-K, for example AES-CTR-192 or AES-GCM-256.

2.2 Full Disk Encryption

Full disk encryption (FDE) is a security technique that protects the content of a
digital storage device (such as a hard drive or SSD) by using encryption ‘on the
fly’. This can include applications, user files, and even the OS itself. The primary
purpose of FDE is to prevent unauthorized access to sensitive information in the
event of device theft, loss, or unauthorized physical access.

FDE works by employing a cipher (usually a block cipher) to encrypt data
at rest on the storage device. A user (or the device manufacturer) must first ini-
tialise the storage device, by providing an encryption key or passphrase to create

10

and write on the device a special metadata structure that represents an (initially
empty) state encrypted with the provided key. In order to protect against space
analysis attacks, a very first step before initialisation consists of completely over-
writing the device with random noise. Then, every time the system is powered
on or the device accessed, the user must provide the valid key or passphrase to
decrypt and read/write data on the device. This key is not stored on the device
itself and must be entered each time the device is prepared for use (opening),
usually cached in a volatile and protected area of memory, and thereby erased
when the device stops being used (closing) or the system is shut down. Except
for the one-time initialisation phase (which can be quite slow depending on the
device size), the encryption process is typically invisible to the user, as the OS
handles the encryption and decryption of data as it is read from or written to
the disk. Once the correct key or passphrase is provided, the user can interact
with the device normally, without having to manually encrypt or decrypt files,
as the OS only exposes a virtualized device that looks unencrypted to the user.

FDE can be implemented using hardware-based or software-based solutions.
Hardware-based FDE is typically performed by a dedicated encryption chip,
while software-based FDE is achieved using encryption software that runs at
the operating system level. Implementation is usually done using standard block
ciphers contructions and modes of operations like AES-CTR-256. Some examples
of software-based FDE solutions include BitLocker for Windows, FileVault 2 for
macOS, and LUKS for Linux [15, 30]. All these implementations have typically
only negligible impact on performance compared to a non-FDE system, also
thanks to the widespread presence of dedicated CPU instructions to speed up
AES computation on personal devices such as smartphones and laptops.

Notice that if the whole OS is protected this way with a software-based solu-
tion, then there is a bootstrapping problem, because the OS itself cannot natively
run while encrypted. This is addressed by either having a small, unencrypted
bootloader which launches a minimal FDE application before the rest of the
OS can start, or with a lower-level solution usually provided through hardware
support such as a Trusted Platform Module (TPM).

Cipher modes for FDE. For block ciphers used in disk encryption, the XTS
mode of operation [22] is the most widely adopted because of its performance and
security. It avoids the need of explicitly writing IVs for every block on disk by
deriving these IVs pseudodeterministically from a global IV and sector-dependent
metadata. Using CTR mode in a similar way would be a serious security mistake,
unless care is taken in refreshing (and storing) IVs at every data write, which
usually has an impact on performance and space usage. The latter approach,
however, has a potential advantage: it gives the possibility of re-randomising
blocks, i.e., changing the ciphertext without changing the underlying plaintext.

Caveats. It’s important to note that FDE primarily protects data at rest,
meaning it is most effective when the device is powered off or in a locked state.
It does not provide protection against unauthorized access or data breaches while

11

the system is running and the encryption key or passphrase has been entered. In
particular, FDE is arguably less effective on devices such as smartphones, which
stay most of the time in an “on” state, and offers no protection against malware
such as keyloggers, which might intercept the password entered by the user, or
even access the unencrypted content directly. For comprehensive security, FDE
should be combined with other security measures, such as strong authentication,
secure boot processes, and proper access control policies.

2.3 Plausible Deniability

In this section, we present a formal game-based definition of PD security. It is
worth noting that almost every paper in the field has given its own security
definition, always slightly different from the others; valid attempts have been
made to unify them into a single framework [10], but here we will follow the
arguably more intuitive one given in [6], which is well suited for the block-layer
scenario we work in. In this setting, a user employs a PD scheme to multiplex a
single storage device into N independent volumes V0, V1, . . . VN−1, each Vi being
associated to a different password Pi. The PD scheme supports up to NMAX

volumes per device (so 2 ≤ N ≤ NMAX); the value of NMAX is publicly known.
Both the volumes and the underlying device are block-addressable, meaning that
the read and write operations they support have the granularity of a block. The
semantics of a scheme Π is given as follows.

Definition 1 (PD Scheme). Let N ≤ NMAX, and P0, . . . PN−1 user-provided
passwords. A PD scheme Π is a tuple of algorithms:

– Π.setup(P0, . . . , PN−1)→ Σ: Initialises disk to host N volumes V0, . . . VN−1,
encrypted with passwords P0, . . . PN−1; returns a device instance description
Σ which encapsulates everything.

– Π.read(Σ, i, βL)→ d: Reads data d in block address βL from volume Vi (we
assume reads to not modify the instance)4.

– Π.write(Σ, i, βL, d)→ Σ′: Writes data d into block address βL of volume Vi,
and updates the instance.

The following correctness requirement applies: for any fixed block βL and vol-
ume Vi, if Π.write(Σ, i, βL, d) is the most recent write query which precedes a
query Π.read(Σ′, i, βL), then Π.read(Σ

′, i, βL)→ d (for simplicity, we consider
operations atomic).

Access patterns. Let us define an access as the tuple o = (op, i, βL, d), with
op ∈ { read, write } (if op = read, then d is the return value), and i being the
index of the volume targeted by the access. Let us also define an access pattern
as a (chronologically) ordered sequence of accesses O =< o0, . . . , on−1 >. An
empty access o =⊥ is also defined, which is simply ignored by the instance Σ.

4 Note this is also the case for WoORAM-based constructions, but not necessarily for
ORAM-based or other, arbitrary, PD schemes constructions.

12

PD security The security game for PD inherits some high-level concepts from
the IND-CPA game (ciphertext indistinguishability under chosen-plaintext attack)
for secret-key encryption. The adversary is a distinguisher, and is challenged
with deducing whether she is interacting with a Σ encapsulating N or N − 1
volumes. Also, she is allowed to choose the read or write operations to be
executed, to capture the idea that indistinguishability must hold no matter the
accesses performed on the volumes, hence including adversarial ones. A secret
bit b within the game determines whether Σ0 (containing N volumes) or Σ1

(containing N−1 volumes) is first instantiated in the game and made to interact
with the adversary. In both cases, we allow the adversary to choose the first N−1
passwords5, and her goal is to guess b.

Experiment 2 (PD game, generic) For a PD scheme Π and an adversary
A the plausible deniability experiment PD(Π,A) is defined as follows:

1. A chooses N ∈ {2, . . . , NMAX} and chooses N − 1 passwords P0, . . . , PN−2.

2. A secret random bit b $←− { 0, 1 } is drawn. If b = 0, then an additional secret

high entropy password is sampled PN−1
$←− { 0, 1 }λ, where λ is the security

parameter6.

3. The game creates N − b volumes: Π.setup(P0, . . . , PN−1−b)→ Σb

4. A performs interactive rounds of queries. Every query works as follows:

(a) A chooses access patterns O0 and O1, where O0 is, in the adversary’s
intentions, aimed at Σ0 (thus potentially containing some operations
on VN−1) and O1 is aimed at Σ1 (and so only contains operations on
V0, . . . , VN−2).

She also chooses a bit v, signalling whether she wishes a snapshot of the
disk at the end of this round.

These adversarial choices are subject to constraints, which we discuss in
the next paragraph.

(b) The game only executes Ob (on Σb, the only instance that was created
in step 3). If requested, it sends the resulting disk snapshot D to A.

5. At the end of all rounds, the adversary outputs a bit b′.

6. The game outputs 1 iff b = b′, 0 otherwise.

Here we have omitted the constraints that the adversary is subject to in step
4a, when choosing the access patterns and when choosing the snapshot bit v; we
will present them now. Without any such constraints, we will see that security
would be impossible to achieve; also, the exact set of constraints will modulate
the induced threat model.

5 This represents the most unfavourable situation for the user, as we consider these
passwords compromised anyway.

6 We abuse notation by representing a password as a binary string, but w.l.o.g. it is
equivalent to the case of a user-chosen password with λ bits of entropy. We assume
that the user will choose a high entropy password at least for the hidden volume.

13

Constraints on the bit v. This constraint governs the snapshotting capabilities
of the adversary, thus the adversary power. We only define two extreme cases:

1. Arbitrary - No constraint: the adversary is allowed to set v = 1 in all of the
interactive rounds. This is the strongest form of multi-snapshot security, as
the adversary can obtain a snapshot any time she desires.

2. One-Time. The adversary is single-snapshot, i.e. can only set v = 1 for one
of the interactive rounds.

Constraints on the access patterns. These constraints define the adversary goal,
by specifying which two exact situations she has to distinguish between: if a
PD scheme is secure (i.e., the adversary cannot distinguish) under the game
enforcing such a constraint, the implication is that a user, having performed
some access pattern O0 including some operations on VN−1, can plausibly claim
to instead have executed a corresponding O1, which only accesses the volumes
V0, . . . , VN−2 (whose passwords have already been surrendered).

Discussion on the constraints. Let us first clarify that some constraint is neces-
sary in order to have any hope in the PD game against the adversary. Otherwise,
the adversary could submit O0 and O1 containing completely different (logical)
write accesses to the decoy volumes V0, . . . , VN−2, and there would be no way of
making the two outcomes indistinguishable, since the adversary holds the pass-
words to those volumes, so it could trivially verify which of the two patterns was
executed. This suggests the need for a minimal rule, stating that, whether O0 or
O1 is executed, the resulting logical contents of the decoy volumes V0, . . . , VN−2

must be the same. From the user’s perspective, this basic requirement means
that we do not try to disguise the writes to decoy volumes as something else,
both because we do not need to, and because there would be no way of doing it
even if we wanted to.

Furthermore, we notice that many PD solutions (including those based on
WoORAMs) treat write requests in a completely different way than read re-
quests, i.e. a write request could trigger allocation or reshuffling of a certain
volume sector. This might happen without breaking the minimal rule described
above: if an adversary first reads at a previously unallocated position βL, ob-
taining data d, and then writes the same data d at the same location βL, this
might cause a change of state in the instance without changing its logical con-
tent (as mandated by the minimal rule above). This, in turn, would enable an
attack where the adversary merely checks whether this state change happened
or not. However, we must consider this attack trivial: detecting this kind of state
change on a decoy volume would actually not compromise security. Therefore,
in order to capture this concept, we also demand that the set of all blocks that
are touched by write requests be the same for both O0 and O1, for all volumes
V0, . . . VN−2. We stress that this extra constraint is also very minimal and does
not weaken the security guarantees offered in practice; in fact, most schemes
demand even stricter constraints, for example by demanding that O0 and O1 are
of the same length, which we do not require here.

14

Single-snapshot security In the single-snapshot case, the security game can
be simplified. More formally, if the “One-Time” constraint is enforced on bit
v, then Experiment 2 is equivalent to the same game where the number of
interactive rounds is set to 1 instead of being chosen by the adversary. This is
because the access patterns submitted before obtaining the (only) disk snapshot
might as well be all concatenated into one, as they cannot be chosen adaptively;
moreover, all the access patterns submitted after obtaining the snapshot can be
disregarded altogether, as their effect will not be detectable by the adversary.

Security in this one-round game can then be rephrased as follows:

Definition 3 (Single-Snapshot Security) A PD scheme Π is single-snapshot
(SS)-secure iff for any PPT adversary A which chooses N ∈ {2, . . . , NMAX}, pass-
words P0, . . . , PN−2, and access patterns O0 and O1 subject to the constraints
outlined in Section 2.3, it holds:∣∣∣Pr [A (D0)→ 1]− Pr [A (D1)→ 1]

∣∣∣ ≤ negl, (1)

where:

– D0 is the disk snapshot resulting from the application of O0 to Σ0, where
Σ0 ← Π.setup(P0, . . . , PN−1) and PN−1

$←−{0, 1}λ.
– D1 is the disk snapshot resulting from the application of O1 to Σ1, where
Σ1 ← Π.setup(P0, . . . , PN−2).

3 TrueCrypt and VeraCrypt

Given its relevance in the context of comparison to Shufflecake, we want to
discuss here TrueCrypt [46], which was the first disk encryption software (now
discontinued) to offer PD capabilities. It was developed around the early 2000s,
before BitLocker [30] and LUKS [15] became the default standards for disk
encryption on Windows and Linux, respectively. Its development has come to a
sudden halt in 2014, but a backward-compatible successor exists (VeraCrypt [49])
that has kept most of the design principles, and improved on some minor aspects
(like a stronger key derivation). For our purpose in this work, we will focus on
TrueCrypt only, as all our considerations similarly apply to VeraCrypt.

TrueCrypt can operate in two main modes: with “standard” (sometimes
called “outer”) encrypted volumes, or with “hidden” volumes. In the former case,
it is functionally similar to other FDE solutions like LUKS (but with random-
looking encrypted headers). In the latter case, a hidden volume is embedded
in the unused empty space left by the content of the decoy standard volume.
Plausible deniability is given by the fact that disk headers and content are indis-
tinguishable from random, which makes it hard to distinguish between the two
cases without the correct passwords.

15

3.1 Design

TrueCrypt (like Shufflecake and many other existing PD schemes) works as a
stacking driver, that is, a device driver operating on top of another device driver.
It exposes a logical (virtual) storage space to the upper layer, which directs
logical TcRead and TcWrite requests to it; the stacking driver then executes its
algorithm to map these requests to physical block bRead and bWrite requests
to the underlying device driver, which manages the physical storage space. Here
the distinction between logical and physical is the distinction between before
and after the translation operated by the stacking driver, regardless of whether
the physical storage space is also a virtual device.

The first initialisation operation performed by TrueCrypt when creating new
volumes within a device is to fill the disk with random bytes, which is also the
case for regular disk encryption tools including LUKS, as we already discussed.
The first part of the disk contains the fixed-size encrypted header of the standard
volume, and an equal-size empty slot filled with random bytes (remaining from
the initialisation procedure). Then comes the actual encrypted data section of
the standard volume, which includes some empty space, also filled with random
bytes (coming from the initialisation procedure).

Fig. 1: TrueCrypt’s disk layout (standard volume).

TrueCrypt optionally allows to “embed” a hidden volume in the (contigu-
ous) empty space left by the standard volume: this is the mechanism providing
plausible deniability. Its encrypted header then fits in the empty slot left after
the header of the standard volume. The standard volume and the hidden volume
are encrypted with two different passwords.

Fig. 2: TrueCrypt’s disk layout (standard/decoy and hidden volumes).

16

One big limitation of TrueCrypt is that it can only support a hidden volume
if the outer volume is formatted as a FAT filesystem. This is because we need the
empty space left by the decoy volume to be contiguous. Most modern filesystems
(like ext4 and NTFS) “jump back and forth” on the disk as they are written with
data, leaving lots of empty blocks, or “holes”, in the middle. Instead, the FAT
filesystem is special, in that it grows incrementally and, up to the physiological
holes created by deleted files, occupies all the space up until its last utilised
block. This way, one can have the hidden volume start at a certain offset, after
the end of the decoy volume, and then follow data allocation linearly. TrueCrypt
automatically computes a convenient starting position for the hidden volume
(leaving some leeway buffer after the end of the standard volume), and places it
among the metadata of the hidden volume’s header. Whereas the hidden volume
is assigned a logical size that follows the physical space actually allocated to it,
the standard volume is not resized, and keeps logically mapping onto the whole
disk. This is crucial in order to not defy deniability: if we resized the standard
volume, this information (which leaks the existence of a hidden volume) would
be written in the metadata of its file system, which is inspected by the adversary.

Another big limitation of this approach is that, from the moment that a
hidden volume is embedded into a standard volume, the latter will be very
limited in the possibility of content growth: as the hidden volume lives in the
empty space of the standard volume, this seemingly empty space can never shrink
(except for the leeway buffer), or the hidden volume will be corrupted.

3.2 Operational Model

Using TrueCrypt comes with restrictions on what the user can do in order to
preserve data integrity and plausible deniability.

As already mentioned, once the hidden volume is created, its starting position
is final, and it “freezes” the end of the decoy standard volume, limiting the
maximum size that it will ever be able to attain. Since the standard volume
cannot be resized to accommodate for the hidden volume, and instead keeps
mapping onto the whole disk, it is up to the user to not let it grow too much and
overwrite the hidden volume. This is achieved both by frequent de-fragmentation
of the FAT filesystem within the standard volume, and by actually not writing
too much data into it. If one wants to be absolutely safe about data corruption
within the hidden volume, the recommendation for the user is to never unlock
only the standard volume for daily use (except if under coercion), but to always
unlock either 1) the hidden volume only, or 2) both hidden and standard volumes,
but keeping the latter in read-only mode.

The standard volume must contain “decoy” data, that will reasonably con-
vince the adversary that it is the only volume existing on the disk. Clearly, the
user should only surrender the password of the standard volume to the adver-
sary when under coercion. This, in turn, opens the door for corruption of the
hidden volume. Eliminating completely such corruption risk is unavoidable, in
TrueCrypt this can can only be mitigated by frequent backups.

17

3.3 Security

Here, we analyse TrueCrypt’s security under different threat models.

Pseudorandomness. Unlike other FDE solutions such as LUKS and Bitlocker,
TrueCrypt-formatted devices do not contain any cleartext header. This means
that a TrueCrypt-formatted device is indistinguishable, when at rest, from a
device completely filled with random noise. This feature is desirable in certain
scenarios, for example it is more straightforward and less risk-prone if one wants
to embed a TrueCrypt container file within another medium using steganogra-
phy, but represents a tradeoff against ease of integration with other parts of the
system, which is the approach preferred by all-purpose FDE solutions such as
LUKS and Bitlocker. Anyway, it must be stressed that this feature is not rele-
vant per se for PD, because in the PD scenario the adversary is always provided
with at least one decryption key.

Single-snapshot security. In TrueCrypt, once the user surrenders the pass-
word of the decoy volume and lets the adversary decrypt it, the only part of
the disk contents that remains to be “interpreted” by the adversary is the non-
decrypted space after the end of the decoy FAT file system. However, whether
this space is actually empty or whether it contains a hidden volume, it will be
filled with random bytes that are not readable with the decoy password alone.
Therefore, even if a hidden volume is present, the user can plausibly claim that
the remaining space is empty and filled with random bytes: the adversary has
no way to disprove this claim, or even to question its likelihood, based on the
observed disk content.

Multi-snapshot security. It is easy to see why TrueCrypt is insecure in the
multi-snapshot threat model: what happens if the adversary obtains two snap-
shots of the disk at two different points in time, and the user has made changes
to the hidden volume in the meantime? By comparing the two snapshots, the
adversary clearly sees that some of the allegedly “empty” blocks have changed,
which immediately reveals that a second volume exists, because TrueCrypt never
re-randomises the actually-free space.

TrueCrypt’s hidden OS. Latest versions of TrueCrypt offer a solution to the
OS’ tendency to leak the existence of hidden partitions through a “hidden OS”
feature. A decoy OS is installed within a standard volume, while a separate OS is
installed within the hidden volume of another partition. In order to decide which
OS is booted according to the provided password, the computer’s bootloader is
replaced by the ad-hoc TrueCrypt bootloader, which will first try to boot the
decoy OS with the user-provided password and then, if unsuccessful, will try to
boot the hidden one. Since the decoy OS itself never sees the hidden partition,
there is no possibility for it to even be aware of the existence of hidden data.
Notice, however, that this feature is only available for Windows.

18

3.4 Other Limitations

Here we discuss other problematic aspects of TrueCrypt. It is to be noted that
some of such considerations apply today, but were less relevant in the early 2000s,
when TrueCrypt was first conceived.

First of all, as discussed, the standard volume must be formatted as a FAT
filesystem if a hidden volume is desired. However, FAT is now outdated: it used
to be very widespread, but today there is little plausible reason to use it anymore.
Therefore, the mere fact that we are using FAT raises a red flag to the adversary.

Another problem arises from the fact that the user must avoid or limit the
use of the decoy partition in order to not corrupt the hidden one. Yet, decoy
volume(s) must “look legitimate”: it must be plausible by looking at their content
that they are the only ones. In particular, they must be reasonably up to date: if
we only ever work on the hidden volume, and completely forget about the decoy,
an adversary unlocking the decoy would become very suspicious seeing that the
most recent updates are months if not years old.

In general, it is not within the scope of PD schemes to hide themselves,
i.e., hide the very fact that that scheme is being used. We must assume that
this fact is known to the adversary, who might, e.g., by searching the user’s
laptop, discover a TrueCrypt installation. Since a locked TrueCrypt volume is
indistinguishable from random data, when asked for the first password, we could
in theory even claim that the disk is not formatted with TrueCrypt at all, but
is instead the result of a secure wiping procedure, or even that it is a pool of
random data coming from other sources. However, a real-world adversary will
arguably be unconvinced given the knowledge that a system like TrueCrypt is in
use. So, a recommended course of action is to separate the TrueCrypt-supporting
system (e.g., a laptop) and the encrypted media (e.g., a USB stick). This might
be cumbersome for most use cases.

Another big limitation is the fact that only one hidden volume within each
standard volume is supported. This is a problem, because the adversary might
reasonably suspect that TrueCrypt is in use exactly to hide something through
its PD feature: if we only meant to encrypt a volume, we would reasonably use a
more widespread and supported solution like LUKS or BitLocker. A user could
claim that they prefer using independent, niche open-source software to secure
their data, and it would be relatively credible, but the safest course of action
when designing a PD scheme is assuming that the adversary might not believe
this claim, and ask for a second password.

The short answer to this problem is: a robust TrueCrypt-like PD solution
should allow simultaneous access to more than two layers of volumes. That way,
we can create a series of volumes with increasingly “private” contents (that could
well be all decoys), so as to reveal more than one password to the adversary
and convince them, based on the resulting decrypted contents, that we have
effectively given up what we were hiding, while in fact we are still holding the
password to one more top-secret volume whose existence they have no more
reason to suspect.

19

4 The Shufflecake Scheme

In this section we present our Shufflecake scheme, we explain its way of operation,
and we provide a security analysis. We do not provide concrete parameters in this
section, as we want to present a generic framework that can be adapted to various
implementations, but we provide our own choice of parameters in Section 5. In
particular, in this section we will treat security as asymptotic, without targeting a
concrete bit-security level. We assume a target storage block device of SD blocks,
each of them of size SB bits, and a maximum of NMAX supported volumes per
device.

4.1 Design

By device, we mean the underlying disk, which exposes a physical storage space.
Instead, volumes are the logical storage units that map onto a device. The name
‘Shufflecake’ stems from the analogy of mixing up slices of a cake (the device) in
order to provide many stacking layers of privacy (the volumes). Conceptually,
Shufflecake’s operation consists of four functionalities:

1. Initialize a device: this is done only once, when a new device is first pre-
pared for use in Shufflecake. It consists in overwriting the device with ran-
dom data, asking the user to provide the number N of desired volumes and
related passwords, and creating an encrypted header with metadata using
this information.

2. Instantiate a device: this is the preliminary stage of preparing a Shufflecake-
initialized device for use. It consists of reading the user’s provided password,
trying to decrypt the device’s header metadata with the derived key, and, if
successful, recover information on the available volumes provided.

3. Open a volume: using the correctly derived volume key, volume-specific meta-
data is read from the relevant header section. This metadata is used to create
a logical device which is presented to the user, and the user’s OS can issue
SflcRead and SflcWrite requests to this logical volume.

4. Close a previously instantiated device: ephemeral state changes, if present,
are written (encrypted) to disk, and then all the open volumes provided by
that device are removed from the user’s view.

At its core, Shufflecake is a block indirection layer on top of an encryption
layer. Our indirection layer realizes a mechanism which is already a strong im-
provement over TrueCrypt, since it fixes two of its crucial limitations: it allows
multiple volumes, and it is filesystem-independent. Data decryption keys for ev-
ery volume are derived by a password and other header-derived randomness.
Furthermore, the decrypted payload of the header of volume Vi with i > 0 also
contains a copy of the header decryption key for volume Vi−1. This allows to re-
cursively open all volumes present in a device by using a single password, which
in turn improves security and user experience, as we will see.

20

Disk Layout. The device’s physical storage space is statically divided into a
header section and a data section. The header section is found at the beginning of
the disk, and it is composed of a fixed-size device master block (DMB), and NMAX

equal-sized volume headers (each of them comprised of a volume master block
(VMB) and a slice map), irrespective of how many volumes there are effectively.
This mild waste of space is necessary in order to to prevent the adversary from
trivially deducing the number of volumes by the size of the device header (which
might be possible by analysing the data allocation pattern even when not all
volumes are opened). Let us analyse all these sections, starting with the data.

Fig. 3: Shufflecake’s disk layout overview.

Data section. Instead of mandating that the volumes be physically adjacent
on-disk, like in TrueCrypt, we randomly interleave them as encrypted (but not
authenticated) fixed-size slices, where every slice belongs to one volume and
contains a certain number of blocks. Metadata in the i-th volume header allows
to reconstruct the logical content of Vi by mapping the corresponding slices as
a (virtual) contiguous space.

We distinguish between logical slices, of size SL blocks, and physical slices,
of size SP = SL +∆S, where ∆S blocks are used to store the encryption IVs for
that slice. Logical slices store the data of their respective volumes, while physical
slices are used to reserve space on the disk to allocate the encrypted logical slice.
A physical slice can either be unallocated (i.e., unclaimed by any volume), or
mapped to a single logical slice belonging to some volume Vi. In the latter case,
the mapping from the logical slice index (LSI) σ of volume Vi to the device’s
physical slice index (PSI) ψ is given by a correspondence SliceMapi : σ 7→ ψ
which is just a lookup of Vi’s slice map (basically, a per-volume array). I/O
operations to a logical block address βL of volume Vi are performed through
the two interfaces SflcRead and SflcWrite. We will describe later these two
interfaces, as well as the structure of the slice map.

21

Fig. 4: Shufflecake’s data section layout and slicing.

Device master block (DMB) The DMB encapsulates all password-related data. It
begins with one single KDF salt, shared for all volumes: this salt, combined with
a volume Vi’s password through a KDF, yields the volume’s key-encryption-key
(KEKi). Notice that we derive every KEKi by using just a single global salt for all
NMAX volumes, otherwise we would incur in up to NMAX expensive different key
derivations every time we instantiate a device7. This does not hamper security,
as password hashes are never stored on disk, but only used to generate the KEK
which is in turn used as a decryption key.

Then come NMAX DMB cells, each being an authenticated ciphertext (to-
gether with the corresponding IV), encrypted with the respective volume’s KEK:
the plaintext is itself another cryptographic key, encrypting the volume’s VMB
(the volume master key VMKi). This key decoupling allows us to possibly change
a volume’s password without having to re-encrypt all its content with a different
key. For granularity and consistency, the overall size of the DMB is fixed to be
exactly one block. The rest of the DMB, and the unused DMB cells, contain
random noise.

Fig. 5: Shufflecake’s Device Master Block (DMB).

7 This limitation can actually be avoided by using some key derivation tricks, like
‘re-salting’, i.e. using the output of the KDF in combination with a (fast) hash using
a per-header salt. We leave this approach for future consideration.

22

Volume master blocks (VMBs). The header of volume Vi is composed of a Volume
Master Block (VMB), followed by the encrypted (but not authenticated) slice
map of Vi. We discuss the slice map in the next paragraph. The VMB is a single
block containing a (non-authenticated) ciphertext, encrypted with the volume
master block’s key VMKi, and the associated IV. The underlying plaintext is
composed of the following fields:

– The volume’s volume-encryption key (VEKi), used for encrypting the actual
data section and the slice map.

– The previous volume’s VMB key VMKi−1 (or a random value if i = 0).
– The number of slices numslices contained in the device.
– The remaining space up to filling the block size is left random, but can be

optionally used to embed additional volume-related metadata if needed.

The device-specific value numslices defines and fixes the size of the slice maps,
even in the case that the device is resized; it is replicated across all volume
headers in order to be decryptable with any provided password. The presence of
VMKi−1 is what allows us to impose a hierarchy on the otherwise-independent
volumes (they are all treated equally in the data section). This way, once we
open volume Vi, we can iteratively walk the backwards-linked list induced by this
field, and also open volumes Vi−1 through V0. While this approach compromises
deniability for a volume Vi “in the middle”, once the password to Vj , j > i has
been provided, it does not harm deniability as defined by the security game:
the volume we want to hide is the last one, VN−1, not the middle ones. The
usefulness of this approach is discussed in Section 4.2.

Fig. 6: Shufflecake’s Volume Master Block (VMB).

Slice maps. Slice slice maps are arrays SliceMapi of numslices elements, where
every element is a PSI: the index of each element is the LSI mapping to that PSI.
Each volume’s slice map is decrypted and loaded in memory when the volume is
instantiated ; these maps are kept entirely in RAM while the volumes are “live”,
and persisted on-disk (encrypted, together with their fresh IVs) when the vol-
umes are closed. slice maps are stored after the VMBs as equal-size ciphertexts,
large enough to address all the possible physical slices. The RAM and disk space
requirements are modest: if the underlying device is SD blocks large and the
header size is SH blocks, there can be at most mxslc = ⌈SD−SH

SP
⌉ physical slices,

each requiring O(log SD

SP
) bits to be indexed, for a total size of O(SD

SP
log SD

SP
) bits

per slice map. This is in turn due to the choice of addressing the storage space at
the slice granularity, instead of the block granularity, which would have entailed
a slice map of O(SD logSD) bits.

23

Operation. We now describe more in detail how Shufflecake operates and ex-
plain the rationale behind certain design choices. We start by explaining how we
use encryption to secure data on-disk. Then we look at the indirection layer be-
tween physical data on disk and data on the logical volumes, i.e., the mechanism
which creates the correspondence between physical and logical slices. We explain
how this correspondence is updated when new logical slices are needed as data
is written on the logical volumes. Then, we explain how Shufflecake handles the
case of allocation errors, i.e., when a physical slice is mistakenly assigned to more
than one volume. Finally, we detail how the instantiation procedure works.

Cryptographic layer. As in many disk encryption solutions, we encrypt with
the block granularity, meaning that blocks are the unit of both I/O requests
and encryption/decryption; in other words, one IV encrypts one block. Many
disk encryption schemes generate these IVs pseudo-deterministically from some
public context information and the volume’s secret key (e.g., this is what happens
in the XTS mode of operation) in order to save the space and the I/O overhead
needed to store and retrieve them. Having such a deterministic procedure for
generating IVs on the fly is enough for the threat model covered by FDE and
single-snapshot secure PD solutions like TrueCrypt.

In our case, however, we stick to explicitly random IVs because we want
to keep the future possibility to extend Shufflecake with some degree of multi-
snapshot security, requiring us to re-encrypt some blocks with a different IV while
leaving their content unchanged. For this reason, we use CTR mode instead, and
the IV of a block is refreshed at each SflcWrite for that block, to avoid IV-reuse
attacks. This means that all these IVs are stored on-disk.

This strategy introduces a potential performance issue: a naive implemen-
tation would translate each logical SflcWrite to a physical bWrite of the cor-
responding physical data block, plus an additional bRead-update-bWrite of the
whole corresponding IV block. This would be very wasteful in terms of I/O over-
head, because we only need to update one IV (e.g., 16 bytes for AES-CTR), but
we are forced to load and store whole blocks (typically 4096 bytes).

We avoid this problem by caching IV blocks in RAM, in an LRU cache of
predefined depth (e.g., 1024 entries). For the performance reasons just discussed,
this cache is not write-through. This way, we coalesce possibly many updates
of the same IV block (triggered by many logical SflcWrites to the same data
block, or by logical SflcWrites to many blocks within the same slice) into just
one physical bWrite, thereby lowering the I/O overhead.

For each physical slice, we pack the IVs for the blocks contained therein into
∆S physical blocks at the beginning of the slice. There is a simple static cor-
respondence between a physical block and the on-disk location of its IV: the
(j + ∆S)-th block within a physical slice is encrypted by the j-th IV within
the initial ∆S blocks. Hence, we assume the existence of functions LoadIV and
SampleAndStoreIV (with self-explanatory behaviour) which take as input a
physical address βP and return the corresponding IV. Analogously, we consider
the functions Encrypt(p, IV, k) and Decrypt(c, IV, k) as acting on blocks accord-
ing to the implied mode of operation.

24

Indirection layer. Consider a read or write operation to a logical block address
βL for volume Vi. There are three possible cases:

1. The requested operation (read or write) happens on a block whose logical
address βL was previously allocated. In this case we need to map efficiently
βL for volume Vi to the corresponding physical address βP on the device.

2. It is a SflcRead operation for a βL which falls within a slice that was not
allocated before. We need to specify the behavior in this case.

3. It is a SflcWrite operation for a βL which falls within a slice that was not
allocated before. We need to define how to allocate a new physical slice.

Notice that the offset of a block within a slice is left unchanged by the slice
map. So, we can find the LSI σ to which βL belongs as simply σ := ⌊βL/SL⌋. Then
we need to check whether SliceMapi[σ] is defined or not. Luckily, as we have seen
above, slice maps are not too large. So, when decrypting the slice maps during
device instantiation, we can store in memory a full view of these slice maps for
each volume as arrays of PSIs indexed by the related LSI, and define a special
return symbol ⊥ for those LSIs which have not yet been assigned.

Then let’s analyse the three cases above one by one. In the first case, we just
need to consider the PSI ψ just obtained and add a correct offset. This will give
us the physical address βP where we will find the data to decrypt. From what
we just discussed, this can be done as βP := ψ · SP +∆S + (βL mod SL).

In the second case, instead, SflcRead should return a default, non-error
value, e.g., 0. Not throwing an error in this case is necessary for the semantic of
a volume: Although it has never been written before, the block logically exists,
it is within the logical boundary of the volume, so it would be incorrect to return
an error. Notice how we never allocate new slices on SflcRead requests: as we
will see in Section 4.3, this is necessary for security, and prevents logical read
operations to leave a trace on the disk.

In the third and last case we need a way to allocate a new slice for volume Vi
at a position consistent with βL. We do this through a function NewSlice which
returns a PSI uniformly at random among those not yet mapped. We will see in
the next paragraph how to implement this function.

Slice allocation. slice mappings are created lazily, only when the first request for
a block belonging to a new, yet-unmapped slice arrives. At this point, we create
the mapping for this slice by sampling a physical slice uniformly at random
among the free ones: this guarantees that no conflicts arise between volumes,
and their slices end up randomly interleaved on the disk. To make this lazy
sampling possible, we need to implement efficiently a function NewSlice: given
as input a volume’s identifier Vi and an LSI σ, it returns a corresponding PSI
ψ for the new slice. There are different ways to implement this, here we give a
reference description using a permutation of the array representing the slices.

Concretely, we keep an in-memory, per-device array prmslices of PSIs of size
at most mxslc = ⌈SD−SH

SP
⌉ (maximum possible number of slices), and an array of

the same size ofld, an “occupation bitfield” telling us which physical slices are

25

Algorithm 1 SflcRead (Vi, βL)

1: σ := ⌊βL/SL⌋
2: ψ ← SliceMapi[σ]
3: if ψ = ⊥
4: return 0
5: βP := ψ · SP +∆S + (βL mod SL)
6: IV← LoadIV(βP)
7: c← bRead(βP)
8: return Decrypt(c, IV,VEKi)

Algorithm 2 SflcWrite (Vi, B, d)

1: σ := ⌊βL/SL⌋
2: ψ ← SliceMapi[σ]
3: if ψ = ⊥
4: ψ ← NewSlice(Vi, σ)
5: if ψ = ⊥ return Error

6: βP := ψ · SP +∆S + (βL mod SL)
7: IV← SampleAndStoreIV(βP)
8: c := Encrypt(d, IV,VEKi)
9: return bWrite(βP, c)

occupied (the PSIs are the indexes of the array). Initially, at device instantiation,
prmslices is initialized as prmslices[i] := i and then permuted using the efficient
Fisher-Yates algorithm [13]. The bitfield ofld is initialized with all free values.
When a volume is opened, and we discover the physical slices it maps to, we
mark them as occupied in ofld. The slice allocation algorithm then simply works
by repeatedly taking the next element from the pre-shuffled array of PSIs until
the bitfield tells us it is free (at which point we take it and mark it as occupied).
A stateful occupation counter octr is kept to facilitate this task, initially set to
0, and then increased up to the first element of prmslices marked as free (i.e., the
first octr elements of prmslices are guaranteed to be occupied in ofld). This way,
when a new slice is required, it is immediate to advance to the next available
one. We also need to update Vi’s slice map SliceMapi before returning (this is
the only change that will eventually persist, encrypted, on disk).

Algorithm 3 NewSlice (Vi, σ)

1: while ofld[prmslices[octr]] = occupied do: octr := octr + 1
2: ψnew ← prmslices[octr]
3: ofld[prmslices[octr]] := occupied
4: SliceMapi[σ] := ψnew

5: return ψnew

The permutation of indexes changes at every device instantiation, so that the
mapping is not static. The size of these in-memory supporting data structures
(array and bitfield) is O(SD

SP
log SD

SP
), as usual. The lazy allocation technique is

also what allows us to overcommit the total physical storage space: we can have
the sum of the sizes of the logical volumes exceed the total physical storage
space, as long as the sum of “actually used” spaces does not. However, it might
be useful to intentionally limit this overcommitment (for the opened volumes)
to decrease the risk of I/O errors and improve user experience. This can be done
using the metadata field in the VMB ciphertexts, as explained in Section 6.5.

26

Handling slice conflicts. Unsafe user operations could lead to accidental corrup-
tion of one or more volumes, resulting in the same PSI being assigned to different
LSIs on different slice maps (see, e.g., Section 4.2). This would create a persistent
ambiguity on volume instantiation, which would hamper any attempts from the
upper layer (for example, as explained in Section 6.4) to restore data content. To
avoid this, Shufflecake resolves any slice allocation conflict by duplicating and
reassigning corrupted slices for every affected volumes. To be more precise:

– When reading an entry ψ from SliceMapi[σ] for an LSI σ, a collision for ψ is
detected by seeing that the current element being initialised ofld[ψ] is already
set to occupied. That means that the physical slice with index ψ has been
corrupted: formerly, it belonged to volume Vi (and, possibly, that was also
corrupted from a volume of even higher order), but it has been mistakenly
assigned also to a volume Vj for some unknown j < i.

– When this happens, do not attempt to resolve the collision by modifying
SliceMapj . First, because by the time of this detection we might not know
j, and second, because it might break plausible deniability in the multi-
snapshot setting: If the corruption happens because an adversary has forced
the user to open and write data to Vj (as explained in Section 4.2, then the
user is left alone and tries to repair the slice collision by changing SliceMapj ,
later at the next inspection the adversary sees that the content of Vj has not
changed, and yet SliceMapj has, which would not be plausibly explainable.

– Instead, the solution is to modify SliceMapi by allocating a new slice with
NewSlice(Vi, σ), which also sets SliceMapi[σ].

This has the disadvantage that the corruption of a few blocks due to opera-
tions performed on Vj makes the whole slice unreadable by Vi (because the freshly
assigned slice contains garbage). However, remediating volume corruption is not
a primary goal of Shufflecake, as this can only happen as a consequence of unsafe
volume operations (see Section 4.2). The important point here is that this mech-
anism avoids the problem of allocation ambiguity persisting on the slice maps,
thereby giving some hope for upper layer tools to repair the corrupted volumes.
Possible improvements on this mechanism are described in Section 6.4. There,
in particular, it is argued that by carefully cloning the content of the corrupted
slice to the newly assigned slice, one can hope to recover from corruption at the
block granularity rather than the slice granularity.

Device instantiation. We are now ready to explain in detail how the process
of device instantiation works. We assume a subroutine HandleCorruption: this
is the procedure responsible for handling the case of ambiguous slice assign-
ment derived from a volume corruption. As explained above, in this reference
description the corruption is handled by simply reassigning a new slice to the
topmost corrupted volume. The full instantiation procedure is depicted in Algo-
rithm 4. Notice that volume information is recovered ‘backward’, i.e., VMBs are
decrypted starting from N − 1 down to 0. However, once all VMBs (and related
slice maps) are decrypted, the volumes are opened in forward order, meaning
that ofld is populated by reading content from SliceMap0 to SliceMapN−1.

27

Algorithm 4 Instantiate (device, password)

1: read salt from device
2: KEK := KDF(password, salt)
3: for j = 0, . . . , NMAX − 1
4: read (IV, c) from device.DMB.cell[j]
5: topvmk := Decrypt(c, IV,KEK)
6: if topvmk ̸= ⊥ then exit for ▷ Password correct: top volume found
7: next j
8: if j = NMAX return “ERROR: wrong password.”
9: N := j + 1
10: global arrays VMK, VEK, metadata of size N , global var numslices
11: VMKN−1 := topvmk

12: for i = N − 1, . . . , 0
13: read (IV, c) from device.VMBi

14: (VEKi, prevVMK, thisnumslices,metadatai) := Decrypt(c, IV,VMKi)
15: if i ̸= 0 then VMKi−1 := prevVMK
16: if i = N − 1 then ▷ Sanity checks
17: if thisnumslices > ⌈SD−SH

SP
⌉ then return “ERROR: oversize volume.”

18: numslices := thisnumslices
19: end if
20: if numslices ̸= thisnumslices then return “ERROR: size mismatch.”
21: global array SliceMapi of size numslices
22: read IV′ and c′ of size numslices from blocks after device.VMBi

23: SliceMapi := Decrypt(c′, IV′,VEKi)
24: next i
25: global arrays prmslices, ofld of size numslices, global var octr
26: octr := 0
27: for i = 0, . . . , numslices− 1
28: prmslices[i] := i
29: ofld[i] := free
30: next i
31: for i = 1, . . . , numslices− 1 ▷ Fisher-Yates shuffle
32: j $←− { 0, . . . , i }
33: swap(prmslices[i], prmslices[j])
34: next i
35: for i = 0, . . . , N − 1 ▷ Scan across all volumes
36: for σ = 0, . . . , numslices− 1 ▷ Scan all slice map of Vi

37: ψ ← SliceMapi[σ]
38: if ofld[ψ] = occupied then
39: HandleCorruption(Vi, ψ, σ) ▷ Corruption found; repair
40: else
41: ofld[ψ] := occupied
42: end if
43: next σ
44: create virtual block device Vi of size SL · numslices
45: next i
46: return

28

Volume actions. In principle, nothing in the scheme inherently prevents us
from creating, opening, and closing volumes freely and independently, at any
time. However, for real-world operations, we force volumes to be opened in a
hierarchical way, by only providing one password (for the most secret volume).

To create a new volume it is needed: the index i of the new volume Vi, the
chosen password, and the VMB key of volume Vi−1 (if i > 1). This way, one can
format the header by generating the relevant keys, filling the VMKi−1 field, and
initialising the slice map as empty. No operation is needed on the data section.

To open a volume, only its password is needed in order to decrypt the header,
which then allows to load its slice map and to decrypt its slices. Finding the right
header for a provided password is done simply by trying every one of them, until
the authenticated ciphertext in the related DMB cell decrypts correctly.

Closing a volume mainly modifies the state of the Shufflecake instance in
RAM, by removing the relevant volume information (and securely erasing its
key). The only required disk operations are the ones needed to persist some
possibly-unsynchronised data.

No specific operation is needed to destroy a volume, i.e. to remove it from
the disk. It is enough to just forget the password, or to overwrite the header
with random bytes: by the PD guarantees, there is no way to then even prove
that there was a volume in that slot, let alone to decrypt it.

4.2 Operational Model

In this section, we define the operational model of Shufflecake, to provide a
safe mode of use allowing the user to retain both plausible deniability and data
integrity. Besides some general constraints, we specify what the user has to do in
ordinary working conditions, and how instead they must behave when confronted
with the adversary.

Risk of data corruption. A simple observation shows how a legitimate-looking
usage mode of Shufflecake actually entails a high risk of data corruption. If we
do not open all N existing volumes, and instead only open the ones we plan
to use, we do not load all the slice maps in RAM, which leads to an incorrect
reconstruction of the complete device’s bitfield ofld of free physical slices. The
physical slices belonging to the still-closed volumes will be counted as free, and
will therefore possibly be allocated to the open volumes during data write, which
would then overwrite their content. This can only be avoided with certainty by
always opening every volume, regardless of which ones we are going to use: if
the password to a volume is not provided, Shufflecake has no way of detecting
its existence. It then follows from the overcommitment of the physical storage
space that we risk re-using its physical slices for some other volume.

However, mitigation does need to be perfect. It could be possible to reduce the
risk of corruption when not opening all volumes by using some form of error-
correction on the unopened volumes (hence sacrificing some space), and then
trying to recover the volume if corruption happens. We discuss this in Section 6.4.

29

General constraints. The first thing to do when initialising a device with Shuf-
flecake is to fill it completely with random bytes. Though long and tedious, this
operation is crucial even for single-snapshot security, as we will see in Section 4.3,
just like it is for TrueCrypt. The most sensitive data should be placed in a volume
of sufficiently high order. We cannot, of course, give precise indications of the
form “use at least 3 volumes”, or “6 volumes should be safe enough”, because,
by Kerchoff’s principle, we assume that the adversary knows about Shufflecake,
and in particular reads this document. The volumes of lower order, that will be
disclosed to the adversary, should be filled with “mildly incriminating” data, so
as to convince the attacker that one had a plausible reason to hide them. We
do not specify more precisely what kind of content would be suited to this end,
partly for the same reasons as before (the adversary would immediately flag it as
decoy content, and ask for more passwords), partly because it heavily depends
on the context and on who the adversary concretely is. The decoy volumes must
also be otherwise “credible”, in particular they must be formatted with realistic
file systems, and they must be reasonably up to date. Periodic updates can be
delegated to a background daemon or offloaded to the user.

Home alone. In normal operating conditions, when not confronted with the
adversary, the recommended course of action for the user is to unlock all the
volumes present on the device, in order to prevent data corruption as explained
before. The reason behind the design choice of chaining the volumes into a
linked list to help the user in that regard: this way, the user is able to open all
volumes by just providing the password to VN−1. In our implementation, this is
actually the mandated semantic of the open operation: the user only provides
the password of the last volume they want to open, the previous ones are opened
automatically. Other implementations might opt instead to ignore the VMKi−1

field in the volume header, and give more flexibility to the user, if aware of the
risks entailed.

Under interrogation. When questioned by the adversary and forced to reveal
passwords, the user must obviously not surrender more than N − 1 of them
(otherwise there would be nothing left to protect). Although irrelevant for the
cryptographic security of the scheme, we stress that, in order for the user’s lie to
be credible, they must only reveal the decoy passwords under a certain amount
of pressure, or after some time has passed. Notice that a responsible and safe
use of Shufflecake puts on the user the burden of being able recall quickly and
reliably these decoy passwords, even under distress. This might be hard to get
right given that the recommended course of action for the user in daily use is to
only open the most hidden volume. It is up to the user to define the maximum
number of volumes N that makes them comfortable in this task. Shufflecake
implementations might include additional features to aid the user in this sense,
for example a function to check the password of a decoy volume without actually
opening it, or even a puzzle which, with some random probability, prompts the
user to also insert the password for a decoy volume when opening a hidden one.

30

Safeword. As we previously discussed, one big operational difference between
Shufflecake (but also other solutions like, e.g., HiVE) and TrueCrypt is that with
Shufflecake “the adversary does not know when she can stop questioning you”,
because there is no way to prove that a given password unlocks all the existing
volumes on a given device (unless it’s the password unlocking the (N − 1)-
th volume). In TrueCrypt, instead, there is either just a regular volume, or
a decoy and a hidden volume. This distinction might be important in those
scenarios where a user wants to avoid the possibility of looking uncooperative
to a certain adversary. In such scenarios, the user might want to have the choice
of surrendering all the volumes, and a method to convince the adversary that
no other volumes exist, possibly using an additional “full disclosure password”
that we will call safeword.

One simple way to implement this, even in Shufflecake, is to actually cre-
ate all NMAX volumes when initializing a device. Clearly, remembering NMAX

passwords would be quite cumbersome for the user, so the solution is to only
remember N + 1 passwords instead: those for the N volumes that are actually
desired, and the extra one for the last NMAX-th volume, which is going to be
the safeword. In fact, the user will never need to open more than N volumes for
regular use. As discussed in Section 4.2, this might harm the consistency of the
other, unopened volumes, but this is not important: by using the safeword, the
user would still be able to convince the adversary that all volumes have been re-
vealed due to the linkage between them and the ciphertext authentication in the
headers. Analogously, in solutions like TrueCrypt, a simple way to implement a
safeword is to actually always create a hidden volume, even if only a standard
volume is desired.

We stress, however, that using this feature is a dangerous proposition: If
such possibility exists, and users are allowed to do that, then why not to? The
adversary might arguably assume that a user must have a safeword, and pressure
for its disclosure. This would put at risk those users who decide to not use this
feature, who might then be pushed to its adoption. This, in turn, would ruin
plausible deniability for everyone, because now we have a system where everyone
has a safeword by default.

We believe there is no simple solution to this dilemma: One has either to
accept the risk of looking uncooperative and be subject to further interrogation,
or to give up PD at all. We remark that, as far as we know, the issue of a
safeword feature (or even just its possibility) for plausible deniable filesystems
has not been addressed in the literature before, as all implementations we are
aware of (including WoORAM-based ones) employ some form of architectural
hard limit on the number of possible nested levels of secrecy. We believe this
to be a serious operational problem for the security of PD solutions. For this
reason, not only do we discourage the use of this feature, but we also propose a
way to make the implementation of any safeword-like system impossible. This
is discussed in Section 6.7, and boils down to the idea of having an unbounded
number of possible volumes per device.

31

4.3 Security

In this section, we prove that Shufflecake achieves single-snapshot security, as
defined in Section 2.3.

Theorem 4 (Single-snapshot security of Shufflecake). The Shufflecake
scheme as described in Section 4.1 is a single-snapshot (SS) secure PD scheme
according to Definition 3.

Assumptions. In proving Theorem 4 we will make some assumptions in order
to keep the proof compact and intuitive. We assume w.l.o.g. that all passwords
are encoded as bitstrings of length λ. Notice how throughout all Section 4.1 we
avoided giving concrete security parameters. Although in the real-world instan-
tiation of Shufflecake we are going to have cryptographic primitives with input
and output of fixed size (e.g., 128-bit IVs, 256-bit keys, etc), in the context of
this proof we can consider them of variable length. This will allow us to produce
an asymptotic bound, and to apply it as in Definition 3 in order to prove that
the advantage of any (computationally bounded) adversary is indeed negligible
in the security parameter. In so doing, we will treat the cryptographic primitives
used in the Shufflecake design as ideal. More specifically:

– The KDF will be replaced by a random oracle OK , mapping λ-bit passwords
and salts to truly-random λ-bit strings.

– The symmetric encryption scheme will be replaced by an ideal cipher E ,
mapping λ-bit keys and IVs to truly-random permutations over { 0, 1 }λ.

– The authenticated encryption used in the DMB will be replaced by a pair
of oracles: the oracle OAE , mapping λ-bit keys and IVs to truly-random
injections between plaintext and ciphertext spaces, and its inverse which
returns a constant ⊥ failure symbol if queried outside of the codomain.

All these oracles will be initialised by the game and provided to the adversary
A to be queried freely (at a unitary time cost).

The proof. Let us consider Experiment 2 under the constraints explained in
Section 2.3, and letD be the “challenge disk snapshot” provided to the adversary
A by the game (i.e., either D0 or D1 according to the secret bit b). For the given
A, we will consider N , the decoy passwords P0, ..., PN−2, and the access patterns
O0 and O1 as public parameters of the game instance.

Let us first notice that all the oracle queries performed by A before receiving
the challenge disk snapshot D cannot change A’s advantage, because they are
completely uncorrelated with D (and the secret bit b). We can, therefore, safely
disregard those queries in our analysis.

Then, let us define Q to be the ordered sequence of all queries { qi }i made
by A to the oracles after receiving the challenge D, and define n := |Q|. Also
define Qi to be the sequence of queries (q0, . . . , qi−1) up to the i-th query. Analo-
gously, let us define R to be the ordered sequence of all responses { ri }i returned

32

by the oracles; also define Ri to be the sequence of responses (r0, . . . , ri−1) up
to the i-th response. We consider the execution of A as the execution of a se-
quence of single-query stateful adversaries, where the state is just the ‘history’
of the previous queries: A0 (D) → q0, A1 (D,Q0, R0) → q1, and so on until
An−2 (D,Qn−2, Rn−2)→ qn−1 and An−1 (D,Qn−1, Rn−1)→ b′.

Let KEKi, VMKi and VEKi be, respectively, the key-encryption key, the VMB
key, and the volume encryption key of volume Vi. Rigorously speaking, in the se-
curity game, the values PN−1,KEKN−1,VMKN−1, and VEKN−1 are only sampled
if b = 0. Let us instead consider them to be sampled anyway, and left unused in
the case b = 1. We denote by S the tuple (PN−1,KEKN−1,VMKN−1,VEKN−1) ∈
{ 0, 1 }4λ. Let us define the event Ei as the event that either of PN−1, KEKN−1,
VMKN−1, or VEKN−1 appear in query qi (we say that query qi strikes). Finally,
let us define E := E0 ∪ . . . ∪En−1 the event that at least one query strikes. We
will first prove two lemmata.

Lemma 5. Pr [E] = Pr [E | b = 0] = Pr [E | b = 1] = negl(λ). (The adversary can

only guess one of the secrets of VN−1 with negligible probability.)

Proof. Let us prove that S is statistically independent from any query qi ∈ Q.
This tuple gets sampled uniformly at random from { 0, 1 }4λ, so its distri-

bution does not depend on the public values. Since the oracles implement ideal
cryptographic primitives, it follows that their outputs are statistically indepen-
dent from their inputs; this does not just hold marginally for single input-output
pairs, but jointly : any tuple of inputs is statistically independent from the tuple
of corresponding outputs (for the ideal cipher E , this only holds for the key in-
puts). In particular, S is statistically independent from the whole tuple (D,R).
Since Ai’s inputs, namely the tuple (D,Qi−1, Ri−1), are a (randomised) function
of (D,R), we deduce that its output, namely qi, must also be independent of S.

Therefore, since (PN−1,KEKN−1,VMKN−1,VEKN−1) are uniform, the prob-
ability that qi contains, say, PN−1, is 2

−λ. By the union bound, Pr [Ei] ≤ 4 ·2−λ.

Using the union bound again, we get:

Pr [E] ≤
n−1∑
i=0

Pr [Ei] ≤ n · 4 · 2−λ

This expression is clearly negl(λ), since n must be at most a polynomial in λ.
The final claim on the equality of the conditional probabilities follows by simply
observing that this reasoning holds irrespective of the value of b. ⊓⊔

Lemma 6. Pr
[
A (D)→ 1|b = 0 ∧ Ē

]
= Pr

[
A (D)→ 1|b = 1 ∧ Ē

]
. (Unless she

can guess one of VN−1’s secrets, the adversary has the exact same view in the
cases b = 0 and b = 1.)

Proof. It is sufficient to prove that An−1’s inputs, namely D, Qn−1, and Rn−1,
follow the same joint conditional distribution, conditioned to the event Ē, re-
gardless of whether b = 0 or b = 1.

33

We prove this by induction. Using a concise notation, we want to prove that
the following quantity does not depend on the bit b:

Pr
[
D,Qn-1, Rn-1|Ē, b

]
=Pr

[
qn-1, rn-1|D,Qn-2, Rn-2, Ē, b

]
·Pr

[
D,Qn-2, Rn-2|Ē, b

]
Showing that the first factor is independent of b will prove the inductive step.

To this end, let us further rewrite it as:

Pr
[
qn−1|D,Qn−2, Rn−2, Ē, b

]
· Pr

[
rn−1|qn−1, D,Qn−2, Rn−2, Ē, b

]
The first factor is independent of b because qn−1 is the output of An−2, which

only takes D,Qn−2, Rn−2 as inputs, all of which are among the conditioning
terms already. The second factor is independent of b because, given that Ē holds,
the oracles behave the same whether b = 0 or b = 1. This is because striking
queries are the only oracle inputs that could trigger responses with unequal
distributions (i.e., correlated to D) in the cases b = 0 and b = 1. But if, instead,
we rule these queries out by conditioning on Ē, then the oracles instantiated
when b = 0 are perfectly interchangeable with the ones instantiated when b = 1.

We are now left to prove the base step for induction, corresponding to
Pr

[
D | Ē, b

]
. Let us rewrite it, using Bayes’ theorem, as:

Pr
[
D|Ē, b

]
=

Pr
[
Ē|D, b

]
· Pr [D|b]

Pr
[
Ē|b

]
The term Pr

[
Ē|b

]
is independent of b by Lemma 5. The same is true of

Pr
[
Ē|D, b

]
: the same proof applies as for Lemma 5, because the reasoning is

unchanged when we condition the probabilities on a particular realisation for D.
We only have to prove that Pr [D|b] does not depend on the bit b, i.e. that the

disk snapshot follows the same a-priori (non-conditioned) distribution, whether
b = 0 or b = 1. To prove this, we will use the actual properties of the Shufflecake
scheme. Let us proceed by analysing the disk layout region by region.

The blank spaces (empty DMB cells, unmapped slices, etc.) are filled with
equally-distributed uniformly-random noise. The spaces occupied by volume
VN−1, when b = 0, are filled with oracle responses to queries containing one
of VN−1’s secrets. These responses are fresh randomnesses, which follow the
same distribution as the noise filling the same spaces when b = 1.

We are only left to prove that the (decrypted) logical contents and metadata
of the decoy volumes follow the same distribution when b = 0 and when b = 1.
Indeed, the logical contents of the volumes are fixed and identical in the two
cases, determined byO0 andO1 (this is because they have to follow the constraint
defined in Section 2.3). Also, the DMB cells and the VMBs contain equally-
distributed uniformly-random oracle outputs (keys, etc.).

34

The last step is to show that the slice maps of the decoy volumes follow the
same distribution in the two cases b = 0 and b = 1. By the second constraint on
the access pattern, defined in Section 2.3, we get that slice allocation is triggered
for the same LSIs of the decoy volumes in both the two cases. Even though some
more slice allocations are performed on VN−1’s LSIs when b = 0, this does not
impact the resulting observable distribution on the PSIs assigned to decoy LSIs.
This is because slice allocation always takes a PSI randomly among the free ones,
therefore the order in which the LSIs are mapped can be permuted freely without
impacting the distribution. Thus, even in the case b = 0, we can equivalently
imagine that the decoy LSIs get all mapped before VN−1’s ones, yielding the
same distribution as when b = 1. This concludes the proof. ⊓⊔
Proof (Proof of Theorem 4). We use Lemmata 5 and 6 to prove that the advan-
tage of A, as defined in Equation 1 of Definition 3, is negligible. By conditioning
both terms of Equation 1 to the events E and Ē, we get:∣∣∣Pr [A (D)→1|b=0]− Pr [A (D)→1|b=1]

∣∣∣ =
=
∣∣∣Pr [E]

(
Pr [A (D)→1|b=0 ∧ E]− Pr [A (D)→1|b=1 ∧ E]

)
+

+Pr
[
Ē
] (

Pr
[
A (D)→1|b=0 ∧ Ē

]
− Pr

[
A (D)→1|b=1 ∧ Ē

])∣∣∣ ≤
≤Pr [E] · 1 + Pr

[
Ē
]
· 0 = negl(λ),

which concludes the proof. ⊓⊔

5 Implementation and Benchmarks

We implemented the Shufflecake scheme in the C language as an open-source
device-mapper-based driver for the Linux kernel. We published our code under
the GPLv2+ license. The current release is v0.4.3 [45]. This section describes
the programming environment and the structure of our implementation, and
presents concrete performance measurements taking other popular disk encryp-
tion solutions as a baseline for comparison.

5.1 Structure of the Implementation

Our implementation consists of two components: a dm-sflc kernel module (which
does most of the job), and a shufflecake companion userland application (used
to correctly manage the volumes). The kernel module is the component that ac-
tually implements the scheme, translating logical requests into physical requests,
and persisting slice maps into the respective headers.

Cryptography. Cryptographic primitives are provided by the Libgcrypt li-
brary [19]. We target 128 bits of security. We use Argon2id as a KDF, which was
implemented in Libgcrypt recently [18]. We use AES-GCM-256 as an authenti-
cated cipher, and AES-CTR-256 for data encryption, with 128-bit IVs.

35

The userland application. This component is used to manage volumes cre-
ation, opening, and closing. To this end, it manages the DMB and VMB of each
volume header. The VEKi is passed to the kernel module to decrypt the slice
map and data section of that volume, while VMKi−1 is used to iteratively open
all the less-secret volumes, as described in Section 4.1.

This is offloaded to the userland application because key management is
arguably better handled in user space: for example, we need to react to an
incorrect password by asking the user to try again, not by emitting a kernel
log message. There is also another technical hindrance to delegating everything
to the kernel module: state-of-the-art KDFs like Argon2id [5] are not currently
implemented in the Linux Kernel Crypto API [31], while they are available in
user-space software libraries like Libgcrypt [19].

The other blocks of the volume header, which contain the slice map encrypted
with the VEK, are managed by the kernel module (except at init time, when
an empty slice map is written by the userland tool).

Volume operations. The shufflecake init command takes as input a device
path, and then interactively asks the user a number N ≤ NMAX and N passwords
as input, correctly formats the first N volume headers, and fills the remaining
NMAX−N slots with random bytes; this way, the pre-existing volumes are wiped
by erasing their headers (crypto-shredding). Unless a --skip-randfill option
is provided (e.g., for testing or debugging purpose), the whole disk is filled with
random bytes before formatting the header section. This command only formats
the disk: it does not create the Linux virtual devices associated to the volumes.

The shufflecake open command takes a device path as input and asks one
single password to the user, then looks up the volume headers, and opens all
the volumes starting from the one whose password is provided, backwards up to
the first one (walking up the chain using the VMKi−1 field in the VMB). This
is the command that actually creates the Linux virtual devices representing the
volumes, under /dev/mapper: the names are generated algorithmically. Notice
that these virtual devices are not automatically mounted, it is up to the user to
mount them and format them with a filesystem of choice when required.

Finally, the shufflecake close command takes a device path as input, and
closes all the volumes open on that device.

Additional functionalities. In addition to standard features such as command-
line usage help and printing on screen the current version, our implementation
also offers two additional functionalities: a changepwd action, which allows the
user to change a volume’s password as described in Section 5.1, and a testpwd

action, which tests whether a provided password unlocks a certain volume (and
which one) without actually opening that volume. This might be helpful for the
scrupulous user who wants to regularly recall the passwords to decoy volumes,
as suggested in Section 4.2.

36

5.2 Space Utilisation

A few factors influence the disk and RAM space efficiency of Shufflecake, i.e.,
what part of the storage contains actual data coming from the upper layer, and
what part contains metadata, or is otherwise wasted. Overall, with a sensible
choice of the parameters, and with reasonable assumptions about the behaviour
of the upper layer, we can attain a very low space overhead.

For our implementation, we fixed the block size SB to 4096 bytes (32768 bits),
so as to better amortise the per-block space overhead determined by the IVs. We
chose SL = 256, and NMAX = 15. Since we use AES-CTR-256 as the underlying
encryption scheme, we need 16-byte IVs. This led to a choice of ∆S = 1, and
hence SP = 257: a single 4-KiB IV block (containing 256 IVs) encrypts a 1-MiB
slice. To provide a numerical summary of the space utilisation, we observe that
in the case of a 1 TiB disk, the resulting theoretical maximum utilisable space
is 1019.91 GiB, equal to more than 99.6% of the physical storage space.

Headers. With the above parameters, the total size of a volume header is around
SH = SD

SP
log SD

SP
, roughly equal to 4 MiB per volume header, for a 1-TiB disk:

about 60 MiB for the total device header size.

IVs. As previously discussed, we store IVs on-disk. With the concrete choice of
parameters of our implementation, we have 16-byte IVs encrypting 4096-byte
blocks (256 times as much); therefore, we only use 1

257 (< 0.4%) of the physical
data section to store IVs.

Internal fragmentation of slices. Internal fragmentation is a frequent problem
in space allocation, and it is particularly well known and studied in file systems
theory. For performance reasons, the block layer only works with the block gran-
ularity; the file system, therefore, has to allocate a whole block even if it needs
less space to, e.g., host a file. Internal fragmentation is the problem arising from
this “over-allocation”. On top of this, Shufflecake adds another layer of inter-
nal fragmentation through its slice mechanism: when a volume requests a block,
we reserve a whole slice of SL blocks just for that volume. Moreover, we have
no means of communicating this over-allocation to the file system layer, which
therefore has no way of adapting its behaviour. Thus, we have to hope that a
file system does not jump back and forth too wildly, and that it generally tries
to fill a group of slices before requesting a new one.

Luckily, some file systems do exhibit this behaviour. For example, the com-
monly used ext4 file system defines the concept of a block group, i.e., a group
consisting of 32768 consecutive blocks (which amounts to 128 MiB for 4096-byte
blocks). The block allocator of ext4 tries its hardest to keep related files within
the same block group; specifically, whenever possible, it stores all inodes of a
directory in the same block group as the directory; also, it stores all blocks of
a file in the same block group as its inode [27]. This feature plays nicely with
the value of SL = 256 we chose: a block group encompasses a whole number of
slices, which will therefore not be too fragmented in the long run.

37

Releasing unused slices. Our implementation currently does not have a way to
reclaim physical slices that were assigned to some volume but are no longer used,
when all of the blocks within the corresponding logical slice have been deallo-
cated by the file system. We discuss this in Section 6.6. We note, however, that
deallocation of slices can occur more or less frequently depending on the filesys-
tem in use: filesystems with good contiguity will tend to free up consecutive
blocks (and hence whole slices) as the data is moved or erased, while filesys-
tems with higher granularity might ‘leave blocks around’ more often. We cannot
release a slice until all the physical blocks therein are freed up. Therefore, the
efficiency of any slice-releasing mechanism must be evaluated carefully.

5.3 Benchmarks

We tested our implementation looking at I/O performance and space efficiency.
The test environment was a fresh installation of Ubuntu 23.04 running kernel
v6.2.0 on a laptop equipped with an AMD Ryzen 7 PRO 6850U CPU with Spec-
tre mitigations enabled, 32 GiB 4-channel 6400 MHz DDR5 RAM, and a low-
power 1 TiB NVMe Micron MTFDKCD1T0TFK SSD. We tested the amount
of slice fragmentation of Shufflecake (v0.4.1), its I/O performance, as well as
the I/O performance of other two relevant disk-encryption tools for comparison:
dm-crypt/LUKS (v6.2.0-26) and VeraCrypt (v1.25.9). All the tests were per-
formed sequentially, on a physical primary SSD partition of size 8 GB, using
the ext4 filesystem (which is the one most relevant for Shufflecake’s envisioned
final use case). In the case of Shufflecake, we initiated the partition with two
volumes (one decoy and one hidden), and performed all tests on the hidden one.
Analogously, in the case of VeraCrypt, we formatted the partition as a standard
no-FS VeraCrypt volume, and created a 6.5 GB ext4 volume therein. In order to
aid reproducibility, we also included in our implementation a suite of benchmark
scripts performing the tests described here.

Fragmentation In order to evaluate the fragmentation caused by Shufflecake’s
allocation of slices, we filled the ext4 filesystem with incrementally large amount
of random files and directories up to saturating the space, and at every step we
measured the space given by the increasing number of slices allocated by dm-sflc
for the hidden volume VS the total amount of data written therein. We define
space efficiency as the ratio between real data written on disk and slice-allocated
space (0 = bad, 1 = good).

The results are shown in Figure 7. As we can see, even when the disk is
initially empty, some slices are immediately allocated for the ext4 journal and
metadata. However, as data is written on disk, the effect of fragmentation quickly
disappears: already at 10% of data capacity the space efficiency is above 90%, and
at 25% of data written it reaches 95%. We conclude that the slicing algorithm
of Shufflecake behaves very well in our simulated random usage pattern, at least
with the ext4 filesystem, and slice fragmentation can be considered negligible.

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2
0.4
0.6
0.8
1

Volume occupancy ratio
S
p
a
ce

effi
ci
en

cy

Fig. 7: Shufflecake space efficiency as the ext4 filesystem fills up.

I/O and bandwidth. For testing the I/O performance of Shufflecake against
dm-crypt/LUKS and VeraCrypt, we used the fio benchmarking tool, which can
flexibly measure various metrics. For each of the three disk encryption tools, we
performed both random and sequential read/write operations with large amount
of data on the filesystem. We fixed the same parameters for all tests, such as
a queue of 32 operations and a block size of 4 kiB, which are commonly rec-
ommended to evaluate real-world performance of disks. Under these conditions,
we found no observable difference in metrics between IOPs (I/O operations per
second) and bandwidth (expressed in MB/s), hence we report the results looking
at the bandwidth only.

Shufflecake dm-crypt/LUKS VeraCrypt

random write 26.77 38.43 39.07

random read 26.78 38.44 39.09

sequential write 176.87 247.14 247.75

sequential read 177.10 247.43 248.04

Table 1: I/O performance (in MB/s) of Shufflecake, dm-crypt/LUKS, and Ver-
aCrypt (higher = better).

The results are shown in Table 1. As we can see, Shufflecake incurs in an I/O
slowdown of roughly 30% compared to the other tested tools. We believe this
overhead to be acceptable in daily use.

Comparison with WoORAMs. The comparison with some popular ORAM-based
PD solutions more convincingly shows the real-world efficiency advantages of-
fered by Shufflecake. Of course it has to be stressed that these ORAM-based
solutions aim at achieving PD in a more strict scenario than the single-snapshot
security offered by the current version of Shufflecake. We have just seen how
Shufflecake achieves a slowdown of roughly 30% I/O throughput over dm-crypt
and uses almost all space available. On the other hand, HiVE [6] has a heavy
200x I/O overhead and wastes 50% of the disk space. DetWoOram [39] has an
overhead of 2.5x for reads and 10x-14x for writes, and wastes 75% of space.

39

6 Conclusions and Future Directions

We have seen how Shufflecake represents a usable PD scheme with many op-
erational advantages over solutions like TrueCrypt. We released it as an open
source tool in the hope of building trust and adoption in the community, and
possibly encouraging contribution to future work. In fact, many possibilities for
further improvement exist. We are going to mention some in this section.

6.1 Crash Consistency

As it is right now, the main obstacle to reach maturity and adoption for daily
use is that Shufflecake is not crash-consistent. This means that if the program
crashes during operation with one or more open volumes, data corruption is
possible, because some volume state changes happen in-RAM and are cached
for some time before being written on disk. This is a problem for Shufflecake,
because if a crash occurs between a write of encrypted data to disk and its
associated IV, the encryption becomes unrecoverable. The situation is different
for solutions like LUKS or TrueCrypt, which use the XTS mode of operation and
are therefore immune to this problem because they do not use explicit random
per-block IVs. To fix this while keeping the property of block re-randomisation,
we should make the individual logical write requests atomic, i.e. we should mask
the fact that they map to several physical requests (which need to be assumed
atomic): if a crash happens at any point between two of these physical requests,
the old content of the logical block should still be recoverable, the disk should not
be left in a “limbo” state that does not correspond to any of the logical contents
written by the upper layer. We discuss here some ideas for future improvements
to address these concerns.

Shufflecake incurs crash-inconsistencies when a crash happens in the time
window between the update of a data block and the update of the corresponding
IV block. As was discussed, Shufflecake adopts a write-on-flush approach for the
IV cache, whereas data blocks are immediately written to disk, encrypted with
the new IV (which is not immediately persisted on-disk); therefore, the disk is in
a “vulnerable” (inconsistency-prone) state whenever the upper layer has written
on a file and has not yet synced it: this is, reasonably, a large fraction of the
total operating time. To solve this, it would be necessary to make the IV cache
write-through; the performance impact of such a choice has not been evaluated
but it would probably be heavy. It would not be sufficient, anyway, because it
would only reduce the “vulnerability window” between the update of a data
block and that of the IV block, it would not eliminate it.

The final solution would be to also duplicate each IV block into a circular log
of length 2: the update of the IV block synchronously precedes the update of the
data block, and overwrites the older of the two versions; this way, if the crash
happens right afterwards, and the data block is not updated, it is still decryptable
because the corresponding IV block has not been touched. Disambiguation (i.e.,
deciding which of the two versions of the IV to use) would be based on an
additional MAC on the data block (stored alongside the IV); this would only be

40

needed when the block is read for the first time since volume opening: afterwards,
the state can be kept in RAM (it is just one bit for each slice).

An alternative solution, which wastes more disk space but we believe to be
overall better, would be to store the IV alongside the data block itself, so that
the two updates can be merged into a single physical request. We believe that, in
addition to mitigate the issue of crash inconsistency, this approach would proba-
bly lead to better I/O performance, as it would not need separate operations for
writing IV blocks during data writes. The minimum addressable unit of disk stor-
age space, at least on Linux systems, is usually the 512-byte sector. Therefore,
the least wasteful option is to map a logical 4096-byte block (8 sectors, as was
already the case for our implementation) onto 9 consecutive physical sectors: the
first one contains the IV, the other ones constitute the data block. This would
lead to a waste of disk space (fraction of disk not used for upper-layer data)
equal to 1

9 = 11.1%. Since an IV only occupies 16 bytes, much of the first sector
would be left unused; we could use the rest of the free space to also contain ad-
ditional useful data, for example a MAC to detect IV alterations, and a “reverse
map”, indicating which logical block βL of which volume Vi that physical block
corresponds to (this information would of course be encrypted). Additionally, we
could build an even more fault-resilient system by again having a circular log of
two IVs in the first sector (each accompanied by the corresponding MAC), plus
16 MACs, one for each IV and for each of the 8 data sectors. This would allow
us to disambiguate with the sector granularity, in case the underlying disk can
ensure atomicity of the sector writes, but not of the physical requests writing on
several adjacent sectors.

6.2 Multi-Snapshot Security

The way it has been presented so far, Shufflecake is completely vulnerable to
multi-snapshot attacks in the exact same way as TrueCrypt (and its successor,
VeraCrypt): when the adversary sees “empty” slices change across snapshots,
the only possible explanation is that there still is a hidden volume whose pass-
word has not been provided. We have already argued in Section 1.2 why, in
practice, this level of security might be enough in most cases, and also why we
believe current WoORAM-based solutions base their promise of stronger security
on somewhat hard to justify assumptions. We already know [10] that achieving
“complete” multi-snapshot security requires the use of WoORAMs, which have
serious performance drawbacks. Regardless, as mentioned in Section 4, we de-
signed Shufflecake with the idea of being able to add features that might help
to reach an unproven, “operational” level of multi-snapshot security. In this
section, we explore the possibility to achieve this goal through some separate,
“orthogonal” pattern obfuscation procedure that operates independently of the
main scheme and does not interfere with its single-snapshot security. We present
three high-level ideas to accomplish this. They are not currently implemented,
nor are they precisely specified from a conceptual point of view; instead, they
are left as pointers for future research, since this area is greatly under-studied.

41

Security Notion Revisited. Let us first clarify what we mean by “opera-
tional” multi-snapshot security. The rationale is the hope that even though the
distinguishing advantage of the adversary in the multi-snapshot game is not neg-
ligible (and so the scheme is not cryptographically secure in the strict sense), it
is still low enough for an investigation to be inconclusive against an adversary in
practice. In other words, we argue that legal or anyway operational security, in
this context, is not the same as cryptographic security in the theoretical sense.

Physical slices have known boundaries, so the adversary can compare the disk
snapshots she has on a slice basis. This amounts to inspecting the subsequent
changes, or diffs, each physical slice goes through across snapshots. Recall that
a physical slice is essentially an array of SP blocks; when one of these blocks
changes, it can either be because of the re-encryption of a data block (with a
different IV, and possibly a different content), or because of the re-randomisation
of an empty block: the IND-CPA security of the encryption scheme guarantees
the indistinguishability of these two situations. This means that no hint on the
nature of a block (i.e., whether it is a data or an empty block) is leaked by
its encrypted content or by the history of its encrypted contents. Therefore,
when comparing two snapshots of a physical slice, the only information that an
adversary gets is which of the SP blocks have changed: how they have changed is
completely inconsequential and uninformative. In other words, the diff between
two snapshots of a physical slice boils down to a bitmask of SP bits, representing
which blocks have changed and which remained the same.

The task of the adversary then becomes to distinguish between “data slices”
(i.e., belonging to some volume) and “free slices” (not mapped to any volume)
based on a sequence of such diffs for each slice. The point is that, after unlocking
the first N− volumes, the rest of the space may or may not contain another
volume (there may or may not be some more data slices among the free slices):
if we want the adversary to be incapable of distinguishing between the two
cases, we need the diffs of data slices and free slices to look the same. Once we
frame the problem in this way, we can rephrase the weakness of Shufflecake as
follows: the diff bitmask of a free slice is always all-zeros, and as such is clearly
distinguishable from that of a data slice, which might have some bits set to 1.

Our task then becomes to “obfuscate” the changes that occurred in the data
slices (especially those belonging to VN−1) by artificially creating a non-zero diff
bitmask in the free slices, through a re-randomisation of some selected blocks.
This way, a user will hopefully be able to claim that all the changes happened
to the “empty” blocks are due to this obfuscation procedure, and not to the
existence of VN−1. Nothing prevents us, of course, from also touching the data
slices during the obfuscation procedure, if that helps making the diff bitmasks
look more alike. It is to be noted, however, that if a block was modified by the
upper layer during the normal operational phase, the corresponding bit will be
set to 1 in the diff bitmask and there is no way for the obfuscation procedure to
“undo” that change: when we touch a data slice, we cannot turn the 1s of the diff
bitmask into 0s. Instead, we can turn some 0s into 1s by simply re-encrypting
the same content of a block with a different IV.

42

Trivial Random Refresh. A very simple first idea for an obfuscation proce-
dure is to take all physical blocks belonging to free slices, and re-randomise them
all, independently at random, each with probability p1. This operation could be
either performed upon volume close or, for better resilience, spread across the
normal operations. It is the easiest way to achieve a non-zero diff bitmask for
free slices, but it is definitely too crude to work: nothing guarantees that the diff
bitmasks of data slices will “look random” like the ones artificially generated
for free slices. Also, it might very well be the case that many data slices do not
change across two snapshots, in which case it becomes very easy to tell them
apart from free slices, which often have a non-zero diff bitmask.

Such consideration suggests a refinement: besides re-randomising some blocks
in the free slices, we could re-encrypt (with a different IV but same plaintext)
some blocks in the data slices of existing volumes, again independently at ran-
dom, each with probability p2. This way, we also randomise the diff bitmasks of
the data slices, making them more similar to those generated for free slices.

Insecurity with many snapshots. The procedure we just illustrated could well
succeed, for a suitable choice of p1 and p2, in rendering the diff bitmasks of data
slices and free slices roughly indistinguishable, but only if the adversary gets just
one diff for each slice, i.e., if she only gets two snapshots. This is because we are
essentially playing a hopeless game: roughly speaking, we are aiming at making
signal+noise (the diffs of a data slice) indistinguishable from noise alone (the diff
of a free slice). As discussed, we cannot turn the 1s of the diff bitmasks of data
slices into 0s: the “signal” given by which blocks were modified by the upper
layer stays there, we can only hope to bury it in enough noise by turning some
0s into 1s through re-encryption. However, with enough snapshots, the signal
will eventually emerge. Imagine, for instance, that there is one particular block
in a data slice that is very often modified (maybe it contains some sort of file
system index): the corresponding bit in the diff bitmask will often be set to 1,
which would be hard to justify through the obfuscation procedure, which only
hits one given block with probability p1 each time.

Subsampling. The previous discussion teaches us a valuable lesson: in our set-
ting, we cannot hope to disguise the accesses performed by the upper layer as
random noise, as is commonly the case for ORAMs. The only option we have left
is to take the opposite approach: let us make the diffs of free slices look like they
were also generated by some file system workload. This way, we are still making
the diffs for the two kinds of slices similar, but we are not trying to erase the
signal from existing data slices, which we cannot. Instead, we “copy this signal”
onto the free slices, so that the adversary will always see this signal, even if
the last N -th volume has been surrendered. A tedious, convoluted, and yet very
imprecise way of doing it would be for us to sit down, study the access patterns
resulting from typical file system workloads, model them as a probability dis-
tribution, and hardcode that into the obfuscation procedure. Probably, a better
idea would be to use a ML approach and let a daemon run in the background
to adaptively learn and simulate such distribution.

43

Instead, a simpler method that is likely to capture the patterns we want to
imitate is to have the scheme itself “learn” them online, by simply subsampling
the stream of incoming logical requests. More concretely: for each incoming log-
ical SflcWrite request, we “imitate” it with probability p. Imitating a request
means “learning” that the affected logical block at position βL is likely to be
written by file system workloads, and copy this signal onto a free slice: we retain
the offset (βL mod SL) of the block within the slice, we choose a “target” free
slice, and we re-randomise the block with the same offset within the target slice.
This approach guarantees that, if a particular block is often updated by the up-
per layer, then we are very likely to catch this signal and correctly carry it over
to a free slice. Note, however, that we need to choose the target free slice deter-
ministically from some context information. Only in this way can we replicate
the signal consistently across snapshots, always onto the same free slice; also,
this allows us to correctly capture and copy a signal in case it consists of not
just one, but several blocks in a slice being frequently updated.

Counting attacks. If we assume that the obfuscation procedure just described
really succeeds in making the empty space look like it is occupied, we are still
left with one problem. The special blocks that are often updated by the upper
layer leave a very clear trace in the snapshot history, since their bits in the
diff bitmasks are almost always set to 1. If we have N volumes, the obfuscation
procedure will generate N such clear traces in the free space. Therefore, a simple
attack would consist in counting these traces, and checking whether there are
as many of them as there are disclosed volumes. To thwart this attack, we can
rework the obfuscation procedure in such a way that the device’s data section
always looks like it’s hosting NMAX volumes. We can ideally assign the free slices
to NMAX −N pairwise-disjoint sets, each one representing a “fake” volume, and
have the obfuscation procedure be aware of this partitioning when choosing the
target free slice, so as to really simulate NMAX − N volumes with the imitated
logical SflcWrite requests.

Ghost File System. The above procedure may already offer good protection,
although it might be non-trivial to translate the rough idea of “being aware
of the partitioning into NMAX − N fake volumes” into a concrete algorithm for
choosing a target free slice when we imitate a SflcWrite request. A valid, if
“exotic”, alternative, would be to actually create NMAX −N additional “ghost”
Shufflecake volumes on the device, that behave in the exact same way as reg-
ular volumes, except that they do give up their slices when needed. On these
volumes, a separate component (a daemon) could mount a file system and per-
form some typical sequences of accesses. The advantage of this solution is that,
by definition, it will always look like there are NMAX volumes on the device.
However, when slices are reclaimed from ghost volumes, their file systems might
suddenly get corrupted and start complaining quite loudly, thus impairing the
practical usability of the system. A daemon operating on these ghost filesystems
might therefore need to be aware of the new slice allocation requests from “real”
volumes, and move or remap the ghost slices accordingly at runtime.

44

6.3 Shufflecake “Lite”

As we have seen in Section 6.1, crash inconsistency is a serious problem of the
current embodiment of Shufflecake, caused by the use of the CTR mode of en-
cryption which, in turn, is necessary to achieve block re-randomisation. And we
have seen in Section 6.2 how this block re-randomisation is an essential ingre-
dient for achieving some form of multi-snapshot security. However, currently no
multi-snapshot security measure is implemented in Shufflecake, or even formally
defined. We have already seen in Section 5.3 how the current CTR design brings
some (minimal) performance hit, and how this performance hit will likely be
exacerbated both by the discussed mechanisms for achieving crash consistency
and by the proposed ideas for multi-snapshot security. Furthermore, we have
argued in Section 1.2 how single-snapshot security might already offer a good
enough security margin in many scenarios.

This brings us the following idea: proposing a “lite” mode of Shufflecake
which sacrifices the feature of block re-randomisation (with all its pros and cons)
and employs the XTS mode of operation instead of CTR for encryption, just
like TrueCrypt. This would give up every hope of achieving any form of security
better than single-snapshot, but it would bring the following advantages:

– It would avoid the need of writing IVs on disk, therefore avoiding completely
the (minimal) space waste and I/O slowdown measured in Section 5.3.

– It would be natively crash-consistent, so all the countermeasures discussed
in Section 6.1 would be unnecessary.

– Compared to TrueCrypt/VeraCrypt, it would still offer huge operational
advantages: providing “real” plausible deniability by offering many nested
layers of secret volumes, unlocking a whole hierarchy of volumes with a single
password, and being filesystem-agnostic.

The idea would be eventually to provide both modes for Shufflecake, “lite”
and “full” (the latter including both crash consistency countermeasures and
multi-snapshot capabilities), and let the user choose which one is desired during
the init operation. In practice, one of the two would be the default choice and
the other one could be selected as optional, but deciding which of the two shall be
the default and which one optional will require a careful security and usability
study. We leave this decision for future work, after proper confrontation with
representatives of the envisioned final user demographics.

6.4 Corruption Resistance

As discussed in Section 4.2, writing data to decoy volumes while not all the
hidden volumes are open entails a risk of corrupting the hidden volumes. There
cannot be perfect mitigation to this problem, save for frequent backups. However,
it could be possible to reduce this risk of corruption by using some form of
error-correction on the unopened volumes (hence sacrificing some space), and
then trying to recover the volume if corruption happens. We tested positively
this idea using RAID[33], namely by partitioning a Shufflecake hidden volume

45

into different equal-sized logical partitions, and using them to assemble a RAID
device with redundancy. Other methods might be more suitable, such as alpha
entanglement codes[14] or other error-correcting codes.

At present, we do not have plans of including corruption-recovery capabilities
within Shufflecake itself. This is first because volume corruption is an event
which, albeit undesirable, is a consequence of unsafe operations rather than a
necessary scenario to be covered. And, second, because we do not want to impose
on the user a default choice of mitigation tools (e.g., RAID vs alpha entanglement
codes vs something else). However, what we plan of doing is facilitating the
integration of such corruption-recovery tools with Shufflecake, by providing the
necessary technical machinery to make them work efficiently, and by providing
an API interface for communication between Shufflecake, the tools, and the OS.

Improving resolution of corrupted slice assignments. We have already
seen in Section 4.1 how Shufflecake tries to resolve volume corruption by reassign-
ing new slices to disambiguate collisions in the slice maps. We have also seen how
this mechanism has the drawback that corruption of a single block of a lower-
order volume at the logical level makes the whole slice content unrecoverable to
the higher-order volume, because the newly assigned slice contains garbage data.
One possible improvement in this respect is to actually clone the corrupted slice
instead, so to make (potentially most of) its original content available again to
the higher-order volume, thereby greatly improving the effectiveness of external
corruption mitigation tools. This has to be done carefully, though: We cannot
simply take a fresh available PSI and copy the corrupted physical slice at that
position, for two reasons.

The first one is that this would break plausible deniability, not only in the
multi-snapshot setting, but also if an adversary gets a single snapshot of the
device after a corruption recovery attempt happened by slice cloning as just
presented. The reason is that the adversary would see two physical slices equal
one-to-one in content, which is clearly unexplainable without assuming that such
recovery happened - and hence hinting at the presence of at least two volumes.

The second reason is that the blocks in the cloned slice can only be de-
crypted (by some of the conflicting corrupted volumes) if the correct IVs are
also recovered at the new position. This would indeed happen in the CTR mode
of operation we use, because IVs are written explicitly as part of the slice, and
would therefore also be copied to the new location, but it would not happen,
e.g., in the XTS mode of operation, where IVs depend on the position within
the device. This means that such a proposed solution would not be compatible
with the ‘lite’ mode of operation of Shufflecake described in Section 6.3 above.

The right approach is therefore to clone the plaintext content of the slice, or
at least as much as possible of it, but re-encrypting it (re-randomising it with new
IVs) in the new physical slice. This should happen either explicitly (by sampling
and storing new fresh IVs on the slice, in the case of CTR mode) or implicitly
(by deriving new IVs from the new physical address, in the case of XTS mode).
The encryption key to be used, both for decryption and re-encryption, should be

46

that of the higher-order corrupted volume (the one whose position map is being
modified). The corrupted blocks within the slice will still be unrecoverable to
this volume (but remain available at the original physical position to the lower-
order volume which last wrote them), while the non-corrupted blocks will be
successfully recovered and re-encrypted to the new location.

The resulting modified HandleCorruption procedure is depicted in Algo-
rithm 5. This mechanism allows to recover from volume corruption at the block
granularity rather than the slice granularity, thereby reducing the overall amount
of error on the reconstructed volumes, and increasing the recovery chances of
external mitigation tools.

Algorithm 5 HandleCorruption(Vi, ψ, σ)

1: ψnew = NewSlice(Vi, σ)
2: for j = 0, . . . , SL − 1
3: β in

P := ψ · SP +∆S + j
4: IVin ← LoadIV

(
β in
P

)
5: c← bRead

(
β in
P

)
6: p := Decrypt

(
c, IVin,VEKi

)
7: βout

P := ψnew · SP +∆S + j
8: IVout ← SampleAndStoreIV

(
βout
P

)
9: c := Encrypt

(
p, IVout,VEKi

)
10: bWrite

(
βout
P , c

)
11: next j
12: return

Corruption mitigation API . Another possible improvement in integrating
corruption-mitigation capabilities in Shufflecake is to provide an interface to
communicate to upper layers (e.g., the OS, or third-party error-correction tools)
whether a volume corruption happened, and possibly where. This can be done,
e.g., by publishing a virtual corruption file on /sys/devices/sflc/$VOLNAME.
By detecting whether this file exists, the OS or other recovery tools can know
in advance when to start a recovery process without need of user intervention.
Whether a volume is corrupted or not should be detected by dm-sflc during ini-
tialisation, as explained above. Then, after the conflicting slice assignment has
been resolved, Shufflecake would set a persistent corrupted flag on the affected
volume. Whenever a volume is opened and such a set flag is read, Shufflecake
would create the corruption file as explained above. In case extra information
on the corruption event is known, for example the LSI of affected slices (only
known the first time their corruption is detected, i.e., during the disambigua-
tion procedure explained above), this information could be published, e.g., in
/sys/devices/sflc/$VOLNAME/corruption. This might be helpful in case cer-
tain external recovery tools work better by knowing the location of errors.

After the recovery process has completed successfully, the external tool or OS
should communicate it to dm-sflc, for example by writing a new file repaired

at the same path. Then, on device close, Shufflecake would check if such file
exists and, if so, clear the persistent flag on the affected volume.

47

6.5 Use of Disk Metadata

We have seen in Section 4.1 how there is space for embedding volume-specific
metadata in each volume’s VMB. Here we discuss a couple of useful ideas on
how to employ this extra space.

One option could be to embed a string specifying a user-defined name for
the volume. Currently, our implementation assigns volume names procedurally
in order to avoid name collisions, but a user might prefer to assign these names
statically or with mnemonic IDs, to facilitate scripting etc.

Likewise, one could embed a string specifying a desired mountpoint for that
volume. Notice in fact that, given the PD requirements, one cannot let these
volumes be assigned at static mountpoints in a regular Linux way, e.g. using
fstab or crypttab. Rather, the desired mountpoint should be hidden within
the context of the volume itself. Then, if the implementation supports it, once
the volume is opened, it can also be automatically mounted at a given position.

Another idea could be to embed virtual quotas, in order to artificially limit
the maximum available size of decoy volumes. As it is now, Shufflecake performs
maximum overcommitment on the visible available space of all volumes: each
of them will appear as large as the underlying device. This can cause issues if
the user (or the OS) mistakenly assumes that that space is actually available,
and starts writing too much data on the volumes. In order to mitigate this,
metadata could be used to limit the size of the block device seen by the OS.
Importantly, this must only hold for decoy volumes, because overcommitment is
substantially what allows for PD. Therefore, the correct way to implement this
is: each volume’s VMB should specify a virtual quota for the volume below itself
in the secrecy hierarchy, but not for itself. When an N -th volume is opened, the
virtual quota for all less secret volumes in the hierarchy will be recursively read
this way (the lowest volume, e.g. volume 0, will not have this assigned metadata,
or anyway it will be ignored). Then, the N -th volume could be assigned a virtual
size equal to the maximum available size on the device, minus the sum of the
virtual quotas of all other volumes. This way, it will always be impossible to
accidentally write too much data on the volume hierarchy, but an adversary will
always see the most secret unlocked volume as the last one present.

Volume metadata is also the natural right place to store a persistent corrup-
tion flag, as explained in Section 6.4.

It might also be possible, although probably overkill and exceedingly complex
to implement, to have different security or redundancy policies assigned per-
volume rather than per-device, and use the metadata to disambiguate them. For
example, it could in theory be possible to have different features in terms of crash
consistency (as discussed in Section 6.1), security (Section 6.2) or corruption
resistance (Section 6.4) assigned to different volumes within the same hierarchy.

Finally, all this metadata could be embedded in raw text, or a more robust
and machine-friendly encoding such as JSON could be used.

48

6.6 Reclaiming Unused Slices

Currently, our implementation of Shufflecake does not have a mechanism for
reclaiming slices that are no longer used: once a slice is allocated for a certain
volume, it will always belong to that volume, even if the volume’s filesystem is
emptied of all data. It would be desirable to implement an operation to reassign
empty slices to the pool of free available ones, in order to make space allocation
across volumes more efficient and limiting the risk of overcommitment.

Clearly, we need some sort of hint from the upper layer in order to trigger this
operation. To that effect, we need to intercept the trim requests emitted by the
file system. These commands are effectively a third instruction accepted by hard
disks, besides read and write; they serve as a way for the file system to indicate
to the disk that some sectors no longer contain user data, and so the internal
disk controller can avoid copying them over when reshuffling its own internal
indirection layer [17]. These commands are also vital for the efficiency of disk
virtualisation systems, such as Shufflecake, that overcommit the total underlying
space and thus need to exploit every occasion to optimise the resource allocation.

Once we have this mechanism in place, we can design a way to reassign a
freshly freed-up physical slice to the pool of available ones at a random posi-
tion, so that the function NewSlice (Algorithm 3) will return it with uniformly
random probability when a new slice is required. More concretely: suppose that
Shufflecake intercepts an OS signal telling us that a logical slice for volume Vi
at LSI σ is now free. We define a function ReclaimSlice (Algorithm 6) which
operates on the same structures used by NewSlice, and also on the slice map
of the interested volume. This function clears the occupation bitfield of the re-
claimed slice and the entry in the slice map, then moves the PSI at a random
position of prmslices (after octr) by doing another Fisher-Yates iteration. We use
a subfunction ReverseShuffle which, given as input a PSI, returns the index of
prmslices where this PSI is found, or error if not present. The way to implement
this subfunction can vary, e.g. by keeping in-memory a reverse map of prmslices,
or by doing a linear search every time.

Algorithm 6 ReclaimSlice(Vi, σ)

1: ψ ← SliceMapi[σ]
2: ofld[ψ] := free
3: SliceMapi[σ] := ⊥
4: ℓ← ReverseShuffle(ψ)
5: if ℓ > octr then: return ▷ No need to reshuffle in this case.
6: swap(prmslices[ℓ], prmslices[octr])
7: j $←− { octr, . . . ,mxslc− 1 } ▷ mxslc = ⌈SD−SH

SP
⌉ max number of slices.

8: swap(prmslices[j], prmslices[octr])
9: if ofld[prmslices[octr]] = free then: octr := octr − 1
10: return

49

6.7 Unbounded Number of Volumes

Shufflecake assumes a number NMAX of possible volumes that can be provided by
any device. Even if this limit can be chosen freely by implementations, it would
be desirable to have a way for creating unlimited numbers of volumes (subject to
space availability) per device. This would not only remove an artificial limitation
on the scheme, but would also strengthen its operational security by making any
kind of safeword-like technique (as discussed in Section 4.2) impossible.

For this to be achievable, volume headers should probably not be adjacent
and packed at the beginning of the disk. One idea for further investigation would
be to embed every header (except the first, ‘less secret’ one, which is still going
to be at the beginning) at random positions within the device, and having them
linked by the previous volume header through an ad-hoc pointer field which is al-
ways present, and indistinguishable from random without the correct password.
Traversing this list of linked headers, however, presents some challenges. In par-
ticular, when the user provides one password on volume instantiation, how do
we know whether the password is wrong? And, if not, how do we reach the right
header unlocked by that password? It might be possible to devise some complex
linking scheme for an arbitrary number of “bogus” headers on the device, but
in any case the following limitations would apply.

First, bogus headers cannot “reserve” an area of the disk, otherwise we would
waste too much space. They can be placed at any position during device initial-
ization, but when a new slice allocation falls on their position, that space should
be released. One can think of different ways to handle this, for example by dy-
namically moving out bogus headers to another free position if they are about to
be overwritten, or simply accepting the risk of breaking the list at some random
point during use (as this would not impact consistency for the “real” volumes,
and it would still be enough to justify the impossibility of an a-priori generated
safeword). In any case, except for this difference in reserving allocation, “bogus”
and “real” headers should either be treated equally, or extra precautions should
be adopted to maintain PD.

Second, once the user inserts a password to instantiate a device, we might not
be able to tell anymore whether the password unlocks something or it’s wrong
(e.g., a typo). Instead, depending on the chosen solution, the program might
continue to traverse the linked list in search of something to decrypt with that
password, until either it finds the right header, or the list is broken (e.g., by a
bogus header which was overwritten), in which case we can say the password
was wrong. We might even envision that the user should expect to terminate
manually the program in case a provided password does not succeed after some
time, because any hardcoded timeout in the implementation could nullify this
feature by inserting a de-facto artificial limit to the number of possible headers.

A possible way to implement this idea could be the following:

1. Coalesce DMB and VMBs into unified, per-volume headers.
2. Each header is one slice large.
3. Every header also contains a field with a random value nxtptr.

50

4. Except for the first one, headers are found at random disk positions that are
a (public) function of the previous header’s nxtptr.

5. During init, in case there is a collision during a nxtptr generation over the
location of another pre-existing header, the currently generated nxtptr value
is discarded and sampled again, until a suitable one is found by brute-forcing
(since the total header size is supposed to be negligible in comparison to the
device size, this should be very efficient).

6. All the headers are functionally equivalent and contain the same fields.
7. The first header contains a value that is the KDF’s salt, while the same field

in other headers is either left unused, or used to re-salt the password-derived
key for every header using a (fast) hash function.

8. Shufflecake would allocate slices for the volumes in the usual way, just con-
sidering the slices at header locations as permanently occupied.

The above idea might very well work, but it remains to specify an efficient
way to embed this way also the slice maps, which might be larger than one
slice. Many options are open to evaluation here, from linked lists starting at the
header, to multiple branching pointers.

There might be other good ways to implement the possibility of having a
virtually unlimited number of volumes, we leave this for future exploration.

6.8 Hidden Shufflecake OS

As discussed in Section 1.3, a PD solution that only provides volumes for data
storage will never achieve a satisfying level of operational security due to leakage
from the OS and other applications installed therein. In order to solve this issue,
it is important that the OS itself is run from within a hidden volume, as it
was done with TrueCrypt’s concept of hidden OS. The natural evolution for
Shufflecake would be to be launched at boot time (e.g., as a GRUB module [3])
and boot a whole Linux distribution installed within a volume. Alternatively, an
ad-hoc, minimal Shufflecake bootloader could be deployed.

More concretely, eventually Shufflecake could become itself a full PD-focused
Linux distribution, where during installation the user is guided in the process of
creating volumes and installing other distributions therein in a guided way. For
operational efficiency and security, every OS at layer j should be aware of the
filesystem and OS in the volume at layers i < j (which is made possible by the
hierarchy among Shufflecake volumes). This would also allow a butler daemon
to run from the currently running OS and operate in the background on lower-
hierarchy OSes, e.g. by performing system updates, downloading emails, etc., so
that all these decoy systems are kept up-to-date even if the user neglects to use
them regularly. This would in turn allow to ease the suspicion of an adversary
when surrendering a decoy password.

As an alternative to having a full Linux distribution for every volume, a
hypervisor-based solution like Qubes OS [41] might be used instead. However,
in order to validate this approach, further analysis is required to ensure that the
hypervisor (which is not designed with PD in mind) does not leak the existence
of hidden volumes.

51

References

1. Anderson, R., Needham, R., Shamir, A.: The Steganographic File System. In:
Lecture Notes in Computer Science (01 2000). https://doi.org/10.1007/3-540
-49380-8_6

2. Ashtana, A.: Revealed: British councils used Ripa to secretly spy on public. [Online;
accessed 2023-10-04] https://www.theguardian.com/world/2016/dec/25/britis
h-councils-used-investigatory-powers-ripa-to-secretly-spy-on-public

(2016)
3. Babar, Y., Babar, Y.: GRUB bootloader. Hands-on Booting: Learn the Boot Pro-

cess of Linux, Windows, and Unix pp. 133–181 (2020)
4. BBC: Man jailed over computer password refusal. [Online; accessed 2023-10-04]

https://www.bbc.com/news/uk-england-11479831 (2010)
5. Biryukov, A.: Argon2. [Online; accessed 2023-10-04] https://www.password-has

hing.net/#argon2 (2013)
6. Blass, E.O., Mayberry, T., Noubir, G., Onarlioglu, K.: Toward Robust Hidden

Volumes Using Write-Only Oblivious RAM. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. p. 203–214. CCS
’14, Association for Computing Machinery, New York, NY, USA (2014). https:
//doi.org/10.1145/2660267.2660313, https://doi.org/10.1145/2660267.26
60313

7. Burke, J.: Kenyan election official ‘tortured and murdered’ as fears of violence
grow. [Online; accessed 2023-10-04] https://www.theguardian.com/world/2017
/jul/31/kenyan-election-official-christopher-msando-dead-before-natio

nal-vote (2017)
8. Casciani, D.: Why Cage director was guilty of withholding password. [Online; ac-

cessed 2023-10-04] https://www.bbc.com/news/uk-41394156 (2017)
9. Chakraborti, A., Sion, R.: SqORAM: Read-Optimized Sequential Write-Only

Oblivious RAM. Proceedings on Privacy Enhancing Technologies 2020, 216 – 234
(2017), https://api.semanticscholar.org/CorpusID:201070384

10. Chen, C., Liang, X., Carbunar, B., Sion, R.: SoK: Plausibly Deniable Storage.
Proceedings on Privacy Enhancing Technologies 2022, 132–151 (04 2022). https:
//doi.org/10.2478/popets-2022-0039

11. Czeskis, A., Hilaire, D.J.S., Koscher, K., Gribble, S.D., Kohno, T., Schneier, B.:
Defeating Encrypted and Deniable File Systems: TrueCrypt v5. 1a and the Case of
the Tattling OS and Applications. In: USENIX Summit on Hot Topics in Security
(HotSec) (2008)

12. Dworkin, M.: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions (2015-08-04 2015). https://doi.org/https://doi.org/10.6028/NIST
.FIPS.202

13. Eberl, M.: Fisher–Yates shuffle. Archive of Formal Proofs (September 2016), http
s://isa-afp.org/entries/Fisher_Yates.html, Formal proof development

14. Estrada-Galiñanes, V., Miller, E., Felber, P., Pâris, J.F.: Alpha Entanglement
Codes: Practical Erasure Codes to Archive Data in Unreliable Environments.
In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). pp. 183–194. IEEE Computer Society, Los Alami-
tos, CA, USA (jun 2018). https://doi.org/10.1109/DSN.2018.00030,
https://doi.ieeecomputersociety.org/10.1109/DSN.2018.00030

15. Fedora Project: LUKS. [Online; accessed 2023-10-04] https://docs.fedoraproje
ct.org/en-US/quick-docs/encrypting-drives-using-LUKS/ (2022)

52

https://doi.org/10.1007/3-540-49380-8_6
https://doi.org/10.1007/3-540-49380-8_6
https://doi.org/10.1007/3-540-49380-8_6
https://doi.org/10.1007/3-540-49380-8_6
https://www.theguardian.com/world/2016/dec/25/british-councils-used-investigatory-powers-ripa-to-secretly-spy-on-public
https://www.theguardian.com/world/2016/dec/25/british-councils-used-investigatory-powers-ripa-to-secretly-spy-on-public
https://www.bbc.com/news/uk-england-11479831
https://www.password-hashing.net/#argon2
https://www.password-hashing.net/#argon2
https://doi.org/10.1145/2660267.2660313
https://doi.org/10.1145/2660267.2660313
https://doi.org/10.1145/2660267.2660313
https://doi.org/10.1145/2660267.2660313
https://doi.org/10.1145/2660267.2660313
https://doi.org/10.1145/2660267.2660313
https://www.theguardian.com/world/2017/jul/31/kenyan-election-official-christopher-msando-dead-before-national-vote
https://www.theguardian.com/world/2017/jul/31/kenyan-election-official-christopher-msando-dead-before-national-vote
https://www.theguardian.com/world/2017/jul/31/kenyan-election-official-christopher-msando-dead-before-national-vote
https://www.bbc.com/news/uk-41394156
https://api.semanticscholar.org/CorpusID:201070384
https://doi.org/10.2478/popets-2022-0039
https://doi.org/10.2478/popets-2022-0039
https://doi.org/10.2478/popets-2022-0039
https://doi.org/10.2478/popets-2022-0039
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://isa-afp.org/entries/Fisher_Yates.html
https://isa-afp.org/entries/Fisher_Yates.html
https://doi.org/10.1109/DSN.2018.00030
https://doi.org/10.1109/DSN.2018.00030
https://doi.ieeecomputersociety.org/10.1109/DSN.2018.00030
https://docs.fedoraproject.org/en-US/quick-docs/encrypting-drives-using-LUKS/
https://docs.fedoraproject.org/en-US/quick-docs/encrypting-drives-using-LUKS/

16. Frankel, S., Kelly, S.G.: Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-
SHA-512 with IPsec. RFC 4868 (May 2007). https://doi.org/10.17487/RFC4868,
https://www.rfc-editor.org/info/rfc4868

17. Frankie, T., Hughes, G., Kreutz-Delgado, K.: A Mathematical Model of the TRIM
Command in NAND-Flash SSDs. In: Proceedings of the 50th Annual Southeast
Regional Conference. p. 59–64. ACM-SE ’12, Association for Computing Machin-
ery, New York, NY, USA (2012). https://doi.org/10.1145/2184512.2184527,
https://doi.org/10.1145/2184512.2184527

18. GNU Project: Libgcrypt 1.10.1 released. [Online; accessed 2023-10-04] https://
lists.gnu.org/archive/html/info-gnu/2022-03/msg00007.html (2022)

19. GNU Project: Libgcrypt. [Online; accessed 2023-10-04] https://gnupg.org/soft
ware/libgcrypt/index.html (2023)

20. Heron, S.: Advanced Encryption Standard (AES). Network Security 2009(12), 8–
12 (2009). https://doi.org/https://doi.org/10.1016/S1353-4858(10)70006
-4

21. In re Boucher: In re Boucher — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 2023-10-04] https://en.wikipedia.org/wiki/In_re_Boucher (2022)

22. Institute of Electrical and Electronics Engineers: IEEE Standard for Cryptographic
Protection of Data on Block-Oriented Storage Devices. IEEE Std 1619-2018 (Re-
vision of IEEE Std 1619-2007) pp. 1–41 (2019). https://doi.org/10.1109/IEEE
STD.2019.8637988

23. Jia, S., Xia, L., Chen, B., Liu, P.: DEFTL: Implementing Plausibly Deniable En-
cryption in Flash Translation Layer. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. p. 2217–2229. CCS ’17,
Association for Computing Machinery, New York, NY, USA (2017). https://do
i.org/10.1145/3133956.3134011, https://doi.org/10.1145/3133956.3134011

24. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press (2007)

25. Key Disclosure Law: Key disclosure law — Wikipedia, The Free Encyclopedia.
[Online; accessed 2023-10-04] https://en.wikipedia.org/wiki/Key_disclosure
_law (2022)

26. Larsen, K.G., Nielsen, J.B.: Yes, There is an Oblivious RAM Lower Bound! In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp.
523–542. Springer International Publishing (2018)

27. Linux: ext4 High Level Design. [Online; accessed 2023-10-04] https://docs.ker
nel.org/filesystems/ext4/overview.html (2022)

28. McDonald, A.D., Kuhn, M.G.: StegFS: A steganographic file system for Linux. In:
International Workshop on Information Hiding. pp. 463–477. Springer (1999)

29. McGrew, D., Viega, J.: The Galois/counter mode of operation (GCM). Submission
to NIST Modes of Operation Process 20, 0278–0070 (2004)

30. Microsoft: BitLocker. [Online; accessed 2023-10-04] https://docs.microsoft.com
/en-us/windows/security/information-protection/bitlocker/bitlocker-o

verview (2022)

31. Mueller, S.: Kernel Crypto API. [Online; accessed 2023-10-04] https://www.kern
el.org/doc/html/v4.16/crypto/index.html (2022)

32. Oechslin, P.: Making a Faster Cryptanalytic Time-Memory Trade-Off. In: Boneh,
D. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 2729, pp. 617–630.
Springer (2003), http://dblp.uni-trier.de/db/conf/crypto/crypto2003.html
#Oechslin03

53

https://doi.org/10.17487/RFC4868
https://doi.org/10.17487/RFC4868
https://www.rfc-editor.org/info/rfc4868
https://doi.org/10.1145/2184512.2184527
https://doi.org/10.1145/2184512.2184527
https://doi.org/10.1145/2184512.2184527
https://lists.gnu.org/archive/html/info-gnu/2022-03/msg00007.html
https://lists.gnu.org/archive/html/info-gnu/2022-03/msg00007.html
https://gnupg.org/software/libgcrypt/index.html
https://gnupg.org/software/libgcrypt/index.html
https://doi.org/https://doi.org/10.1016/S1353-4858(10)70006-4
https://doi.org/https://doi.org/10.1016/S1353-4858(10)70006-4
https://doi.org/https://doi.org/10.1016/S1353-4858(10)70006-4
https://doi.org/https://doi.org/10.1016/S1353-4858(10)70006-4
https://en.wikipedia.org/wiki/In_re_Boucher
https://doi.org/10.1109/IEEESTD.2019.8637988
https://doi.org/10.1109/IEEESTD.2019.8637988
https://doi.org/10.1109/IEEESTD.2019.8637988
https://doi.org/10.1109/IEEESTD.2019.8637988
https://doi.org/10.1145/3133956.3134011
https://doi.org/10.1145/3133956.3134011
https://doi.org/10.1145/3133956.3134011
https://doi.org/10.1145/3133956.3134011
https://doi.org/10.1145/3133956.3134011
https://en.wikipedia.org/wiki/Key_disclosure_law
https://en.wikipedia.org/wiki/Key_disclosure_law
https://docs.kernel.org/filesystems/ext4/overview.html
https://docs.kernel.org/filesystems/ext4/overview.html
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://www.kernel.org/doc/html/v4.16/crypto/index.html
https://www.kernel.org/doc/html/v4.16/crypto/index.html
http://dblp.uni-trier.de/db/conf/crypto/crypto2003.html#Oechslin03
http://dblp.uni-trier.de/db/conf/crypto/crypto2003.html#Oechslin03

33. Patterson, D., Gibson, G., Katz, R.: A case for Redundant Arrays of Inexpensive
Disks (RAID). ACM SIGMOD Record 17 (07 1988). https://doi.org/10.1145/
50202.50214

34. Percival, C., Josefsson, S.: The scrypt Password-Based Key Derivation Function.
RFC 7914 (Aug 2016). https://doi.org/10.17487/RFC7914, https://www.rf
c-editor.org/info/rfc7914

35. Peters, T., Gondree, M., Peterson, Z.: DEFY: A Deniable, Encrypted File System
for Log-Structured Storage. In: Network and Distributed System Security Sympo-
sium (01 2015). https://doi.org/10.14722/ndss.2015.23078

36. Register, T.: Brazilian banker’s crypto baffles FBI. [Online; accessed 2023-10-04]
https://www.theregister.com/2010/06/28/brazil_banker_crypto_lock_out/

(2010)
37. Reuters: UK asked N.Y. Times to destroy Snowden material. [Online; accessed

2023-10-04] https://www.reuters.com/article/us-usa-security-snowden-nyt
imes-idUSBRE97T0RC20130830 (2013)

38. RIPA: Regulation of Investigatory Powers Act 2000 — Wikipedia, The Free En-
cyclopedia. [Online; accessed 2023-10-04] https://en.wikipedia.org/wiki/Regu
lation_of_Investigatory_Powers_Act_2000 (2022)

39. Roche, D.S., Aviv, A., Choi, S.G., Mayberry, T.: Deterministic, stash-free write-
only ORAM. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. pp. 507–521 (2017)

40. Rubber-hose cryptanalysis: Rubber-hose cryptanalysis — Wikipedia, The Free En-
cyclopedia. [Online; accessed 2023-10-04] https://en.wikipedia.org/wiki/Rubb
er-hose_cryptanalysis (2022)

41. Rutkowska, J., Wojtczuk, R.: Qubes OS architecture. Invisible Things Lab Tech
Rep 54, 65 (2010)

42. Saarinen, M.J.O., Aumasson, J.P.: The BLAKE2 Cryptographic Hash and Message
Authentication Code (MAC). RFC 7693 (Nov 2015). https://doi.org/10.17487
/RFC7693, https://www.rfc-editor.org/info/rfc7693

43. Stallings, W.: NIST block cipher modes of operation for confidentiality. Cryptologia
34(2), 163–175 (2010)

44. Star, T.: How a Syrian refugee risked his life to bear witness to atrocities. [Online;
accessed 2023-10-04] https://www.thestar.com/news/world/2012/03/14/how_
a_syrian_refugee_risked_his_life_to_bear_witness_to_atrocities.html

(2012)
45. The Shufflecake Project: The Shufflecake Website. [Online; accessed 2023-10-04]

https://shufflecake.net (2022)
46. The TrueCrypt Foundation: TrueCrypt Homepage. [Online; accessed 2023-10-04]

https://www.truecrypt71a.com/ (2015)
47. United States Court of Appeals, Eleventh Circuit: UNITED STATES OF

AMERICA v. JOHN DOE, Nos. 11–12268 & 11–15421 - D.C. Docket No.
3:11–mc–00041–MCR–CJK. [Online; accessed 2023-10-04] https://caselaw.fi
ndlaw.com/court/us-11th-circuit/1595245.html (2012)

48. United States v. Fricosu: United States v. Fricosu — Wikipedia, The Free Ency-
clopedia. [Online; accessed 2023-10-04] https://en.wikipedia.org/wiki/United
_States_v._Fricosu (2022)

49. VeraCrypt: VeraCrypt Homepage. [Online; accessed 2023-10-04] https://www.ve
racrypt.fr/en/Home.html (2022)

50. Ward, M.: Campaigners hit by decryption law. [Online; accessed 2023-10-04] http:
//news.bbc.co.uk/2/hi/technology/7102180.stm (2007)

54

https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/50202.50214
https://doi.org/10.17487/RFC7914
https://doi.org/10.17487/RFC7914
https://www.rfc-editor.org/info/rfc7914
https://www.rfc-editor.org/info/rfc7914
https://doi.org/10.14722/ndss.2015.23078
https://doi.org/10.14722/ndss.2015.23078
https://www.theregister.com/2010/06/28/brazil_banker_crypto_lock_out/
https://www.reuters.com/article/us-usa-security-snowden-nytimes-idUSBRE97T0RC20130830
https://www.reuters.com/article/us-usa-security-snowden-nytimes-idUSBRE97T0RC20130830
https://en.wikipedia.org/wiki/Regulation_of_Investigatory_Powers_Act_2000
https://en.wikipedia.org/wiki/Regulation_of_Investigatory_Powers_Act_2000
https://en.wikipedia.org/wiki/Rubber-hose_cryptanalysis
https://en.wikipedia.org/wiki/Rubber-hose_cryptanalysis
https://doi.org/10.17487/RFC7693
https://doi.org/10.17487/RFC7693
https://doi.org/10.17487/RFC7693
https://doi.org/10.17487/RFC7693
https://www.rfc-editor.org/info/rfc7693
https://www.thestar.com/news/world/2012/03/14/how_a_syrian_refugee_risked_his_life_to_bear_witness_to_atrocities.html
https://www.thestar.com/news/world/2012/03/14/how_a_syrian_refugee_risked_his_life_to_bear_witness_to_atrocities.html
https://shufflecake.net
https://www.truecrypt71a.com/
https://caselaw.findlaw.com/court/us-11th-circuit/1595245.html
https://caselaw.findlaw.com/court/us-11th-circuit/1595245.html
https://en.wikipedia.org/wiki/United_States_v._Fricosu
https://en.wikipedia.org/wiki/United_States_v._Fricosu
https://www.veracrypt.fr/en/Home.html
https://www.veracrypt.fr/en/Home.html
http://news.bbc.co.uk/2/hi/technology/7102180.stm
http://news.bbc.co.uk/2/hi/technology/7102180.stm

A Changelog

2023-12-07

First revision of this document. Release reference software Shufflecake v0.4.3.

– Add this Changelog in appendix.
– Add Key and Glossary in appendix.
– Change and restyle symbols and variable names in order to be closer to the

reference code implementation.
– Switch from math-style array indices beginning from 1 to coding-style array

indices beginning from 0.
– Add paragraph “Handling slice conflicts” in Section 4.1.
– Add paragraph “Device instantiation” and full algorithm for device instan-

tiation in Section 4.1.
– Expand Section 6.4 with discussion on block-level corruption recovery (and

related Algorithm 5) and on corruption mitigation API.

2023-10-06

First version of this document. Release reference software Shufflecake v0.4.1.

55

B Key and Glossary

B Block of data (typically a 4096 bytes string.)

SB Blocksize, in bits (typically 4096 bytes = 32768 bits).

device Block device (physical partition, USB drive, file-backed loop device, SD card, etc).

SD Size (in blocks) of a given device.

Vi Logical Shufflecake volume of index i (the higher, the more secret).

N Number of volumes created (from V0 to VN−1).

NMAX Maximum number of volumes supported per device (15 in our implementation).

password User-provided password.

KEK Key Encryption Key, derived from a password and used to encrypt a DMB cell.

DMB Device Master Block. Contains NMAX DMB cells.

cell DMB cell. Contains (encrypted with a KEK) the VMK for the associated volume.

VMK Volume Master Key, used to encrypt a VMB.

VMB Volume Master Block. Contains information on the associated volume.

SH Size (in blocks) of a device header (DMB + VMBs).

metadata metadata associated to a volume. Contained in the volume’s VMB.

VEK Volume Encryption Key, used to encrypt position map and data slices of a volume.

SL Size (in blocks) of a logical slice.

SP Size (in blocks) of a physical slice.

∆S Difference (in blocks) between SP and SL, used to store IVs for CTR mode.

ψ Physical slice index (PSI), i.e., position of a physical slice within a device.

σ Logical slice index (LSI), i.e., position of a logical slice within a volume.

SliceMapi Slice map of volume Vi.

numslices Number of logical slices available across all volumes.

mxslc Maximum supported number of slices for a given device.

βL Logical block address, i.e., index of a block within a volume.

βP Physical block address, i.e., index of a block within a device.

prmslices Array of permuted PSIs of a device (reshuffled at every instantiation).

ofld Array of occupation flags, with PSIs as indices and free/occupied values.

octr Occupation counter for prmslices: the first octr elements of prmslices are occupied.

56

	Introduction
	Motivation
	Previous Work
	Limitations of Existing Solutions
	Our Contribution
	Acknowledgements

	Preliminaries
	Cryptographic Primitives
	Cryptographic security.
	Hash functions and KDFs.
	Symmetric-key encryption and authentication.
	Block ciphers.

	Full Disk Encryption
	Cipher modes for FDE.
	Caveats.

	Plausible Deniability
	Access patterns.
	PD security
	Single-snapshot security

	TrueCrypt and VeraCrypt
	Design
	Operational Model
	Security
	Pseudorandomness.
	Single-snapshot security.
	Multi-snapshot security.
	TrueCrypt's hidden OS.

	Other Limitations

	The Shufflecake Scheme
	Design
	Disk Layout.
	Operation.
	Volume actions.

	Operational Model
	Risk of data corruption.
	General constraints.
	Home alone.
	Under interrogation.
	Safeword.

	Security
	Assumptions.
	The proof.

	Implementation and Benchmarks
	Structure of the Implementation
	Cryptography.
	The userland application.
	Volume operations.

	Space Utilisation
	Benchmarks
	Fragmentation
	I/O and bandwidth.

	Conclusions and Future Directions
	Crash Consistency
	Multi-Snapshot Security
	Security Notion Revisited.
	Trivial Random Refresh.
	Subsampling.
	Ghost File System.

	Shufflecake ``Lite''
	Corruption Resistance
	Improving resolution of corrupted slice assignments.
	Corruption mitigation API

	Use of Disk Metadata
	Reclaiming Unused Slices
	Unbounded Number of Volumes
	Hidden Shufflecake OS

	Changelog
	Key and Glossary

