Unmodified Half-Gates is Adaptively Secure
So is Unmodified Three-Halves

Xiaojie Guo∗, † Kang Yang∗ Xiao Wang‡ Yu Yu§, ¶ Zheli Liu†

January 16, 2024

Abstract

Adaptive security is a crucial property for garbling schemes in pushing the communication of garbled circuits to an offline phase when the input is unknown. In this paper, we show that the popular half-gates scheme by Zahur et al. (Eurocrypt’15), without any modification, is adaptively secure in the non-programmable random permutation model (npRPM). Since real implementations of selective-secure half-gates are already based on npRPM, our result shows that these implementations are already adaptively secure under the same condition where selective security is proven. Additionally, we expand our analysis to cover the recent three-halves construction by Rosulek and Roy (Crypto’21). As a byproduct, we discuss some optimizations and separation when considering the programmable random permutation model instead.

1 Introduction

Garbled circuits (GCs) [Yao86, BHR12b] play an important role in constructing many cryptographic protocols, including secure two-party computation (2PC) [Yao86], zero-knowledge proofs [JKO13], identity-based encryption [DG17], etc. In a garbling scheme, a garbler creates a garbled circuit \(\hat{f} \) and a garbled input \(\hat{x} \) for circuit \(f \) and input \(x \), respectively. An evaluator, given \(\hat{f} \) and \(\hat{x} \), can compute a garbled version of \(f(x) \), which can be further decoded.

Two categories of security have been widely studied in the literature: simulation-based selective security and simulation-based adaptive security. In selective security, the adversary chooses \((f, x)\) in one shot and is asked to distinguish between a real-world execution consisting of honestly computed \((\hat{f}, \hat{x})\) and an ideal-world execution where the values are simulated using only \(f(x) \). In adaptive security, the adversary is given more power to adaptively choose input \(x \) based on the garbling \(\hat{f} \) for \(f \): it first chooses \(f \) and receives \(\hat{f} \) in the offline phase, and then chooses \(x \) and receives \(\hat{x} \) in the online phase. Clearly, adaptive security is stronger than selective security. The size of garbled input \(\hat{x} \) is linear in the size of input \(x \) and independent of circuit size \(|f|\). Therefore, adaptive security allows us to achieve significantly lower online communication cost, by pushing the communication of garbled circuits (linear in \(|f|\)) to the offline phase. As a result, a direct application of adaptive garbling is to design 2PC protocols with low online communication, e.g., [IK00, AIKW13, LR14, LR15, RR16, MR17]. In addition, adaptively secure garbling schemes underlie one-time programs [GKR08], functional encryption [SS10, GVW12], verifiable computation [GGP10, AIK10], etc.

Both security notions have been heavily studied but with very different philosophies and outcomes. For selective security, most prior works focus on how to reduce the computational cost and the size of garbled circuit \(\hat{f} \). An impressive line of GC research [Yao86, BMR90, NPS99, KS08, PSSW09, KMR14,

∗State Key Laboratory of Cryptology. Email: yangk@sklc.org
†Nankai University. Email: xiaojie.guo@mail.nankai.edu.cn, liuzheli@nankai.edu.cn
‡Northwestern University. Email: wangxiao@northwestern.edu
§Shanghai Jiao Tong University. Email: yuyu@yuyu.hk
¶Shanghai Qi Zhi Institute.
1As we focus on simulation-based security in this paper, we will omit the prefix and use "adaptive/selective security" unless it is not clear from the context.
To schemes with selective security, results in adaptive security. On the other hand, research in adaptive security has mostly studied from a more theoretical aspect. In contrast to garbling schemes producing more than 20 million garbled gates per second [WMK16], a weaker notion that does not allow composability immediately, but even with this relaxation, the best-known result is still not desirable. We summarize all garbling schemes with adaptive security in Table 1.

In practice, most implemented garbling schemes only have selective security working in the random permutation model, while most analyzed adaptive schemes only need a pseudorandom function (PRF) but never got implemented. There are some works that sit in the middleland. For example, Gueron et al. [GLNP15] proposed a concretely efficient selective-secure garbling scheme based solely on PRFs; however, the scheme is not compatible with free-XOR. On the other hand, all existing implementations of adaptive garbling schemes are proven in the programmable random oracle model (ROM), either following the work by Bellare et al. [BHR12a] where a generic selective-to-adaptive transformation was proposed [LR14, RR16], or directly proving that the garbling scheme is secure in the programmable ROM [LR15]. Clearly, there is a huge gap between what is being implemented and the security properties that we hope to prove.

<table>
<thead>
<tr>
<th>Schemes</th>
<th>Security</th>
<th>Offline Cost</th>
<th>Online Cost</th>
<th>Security Loss</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>[JSW17]</td>
<td>IND</td>
<td>$C \cdot 8\lambda + m \cdot 4\lambda$</td>
<td>$n \cdot 2\lambda + O(d \cdot \lambda^2 \cdot \log C)$</td>
<td>$2^{O(d)}$</td>
<td>OWF</td>
</tr>
<tr>
<td></td>
<td>IND</td>
<td>$C \cdot 8\lambda + m \cdot 4\lambda$</td>
<td>$n \cdot 2\lambda + O(w \cdot \lambda^2 \cdot \log C)$</td>
<td>poly(C, λ)</td>
<td>OWF</td>
</tr>
<tr>
<td>[KKPW21]</td>
<td>IND</td>
<td>$C \cdot 4\lambda$</td>
<td>$m + n\lambda$</td>
<td>$2^{O(\sqrt{d})}$</td>
<td>OWF</td>
</tr>
<tr>
<td>[KKP21]</td>
<td>IND</td>
<td>$C \cdot 4\lambda + m$</td>
<td>$n\lambda$</td>
<td>$C^{O(w)}$</td>
<td>OWF</td>
</tr>
<tr>
<td>[HJO*16]</td>
<td>SIM</td>
<td>$C \cdot 4\lambda$</td>
<td>$m + n\lambda + O(d \cdot \lambda^2 \cdot \log C)$</td>
<td>$2^{O(d)}$</td>
<td>OWF</td>
</tr>
<tr>
<td></td>
<td>SIM</td>
<td>$C \cdot 4\lambda$</td>
<td>$m + n\lambda + O(w \cdot \lambda^2 \cdot \log C)$</td>
<td>poly(C, λ)</td>
<td>OWF</td>
</tr>
<tr>
<td>[JW16, JKK*17]</td>
<td>SIM</td>
<td>$C \cdot 2\lambda + A \cdot \lambda$</td>
<td>$m + n\lambda$</td>
<td>$2^{O(d)}$</td>
<td>OWF</td>
</tr>
<tr>
<td>[JO20]</td>
<td>SIM</td>
<td>$C \cdot \text{poly}(\lambda)$</td>
<td>$m + n + \text{poly}(\lambda, \log C)$</td>
<td>poly(C, λ)</td>
<td>CDH/LWE/etc</td>
</tr>
<tr>
<td>[GS18]</td>
<td>SIM</td>
<td>$A \cdot {1.5, 2\lambda} + m$</td>
<td>$n\lambda$</td>
<td>poly(C, λ)</td>
<td>pROM</td>
</tr>
<tr>
<td>[LR15]</td>
<td>SIM</td>
<td>$A \cdot 3\lambda + m$</td>
<td>$n\lambda$</td>
<td>poly(C, λ)</td>
<td>pROM</td>
</tr>
<tr>
<td>This work</td>
<td>SIM</td>
<td>$A \cdot {1.5, 2\lambda}$</td>
<td>$m + n\lambda$</td>
<td>poly(C, λ)</td>
<td>npRPM</td>
</tr>
<tr>
<td></td>
<td>SIM</td>
<td>$A \cdot {1.5, 2\lambda} + m$</td>
<td>$n\lambda$</td>
<td>poly(C, λ)</td>
<td>pRPM</td>
</tr>
</tbody>
</table>

Table 1: Comparison of adaptively secure garbling schemes. “SIM” (resp., “IND”) denotes the simulation-based (resp., indistinguishability-based) security. The offline and online costs only focus on communication, where minor terms are omitted for simplicity. The notation C (resp., A) is the total number of all AND and XOR gates (resp., only AND gates). Let λ, n, m, w, d be the security parameter, input size, output size, circuit width and circuit depth, respectively. OWF denotes the one-way function. pROM denotes the programmable random oracle (RO) model. pRPM (resp., npRPM) denotes the programmable (resp., non-programmable) random permutation model.

GLNP15, ZRE15, RR21] have reduced the size of \tilde{f} from 8\lambda to 2\lambda [ZRE15] or 1.5\lambda [RR21] bits per AND gate, while XOR gates are free using the free-XOR technique [KS08], where λ is the security parameter. To reduce the computational cost, almost all implementations instantiate the correlation robust hash functions needed for free-XOR [KS08] in the random permutation model (RPM), which is commonly instantiated by fixed-key AES and accelerated using AES-NI [BHKR13, GKWY20, GKW*20]. This leads to garbling schemes producing more than 20 million garbled AND gates per second [WMK16]. On the other hand, research in adaptive security has mostly studied from a more theoretical aspect. In contrast to schemes with selective security, results in adaptive security [BHR12a, HJO*16, JW16, JKK*17, GS18, JO20] are mostly in the standard model but all require some compromise either in exponential security loss or in undesirable online communication, unless Cryptomania assumptions are used. Some efforts consider indistinguishability-based adaptive security [JSW17, KKKPW21, KKP21], a weaker notion that does not allow composability immediately, but even with this relaxation, the best-known result is still not desirable. We summarize all garbling schemes with adaptive security in Table 1.
1.1 Our Contribution

In this work, we prove that half-gates [ZRE15] and three-halves [RR21], the two state-of-the-art selectively secure garbling schemes, already comply with the adaptive security requirement in the non-programmable RPM (npRPM) [RS08, BHKR13]. As real implementations of these two schemes already used a random permutation to instantiate circular correlation robust (CCR) hash functions [ZRE15, GKWY20, RR21], our results are essentially proven in the same model as the selective-secure setting. We view our result as something valuable in both theory and practice. On the theoretic side, although the resulting construction still needs an ideal model, it is the first time that the adaptive security of concretely efficient garbling schemes is proven in a non-programmable model; furthermore, a λ-to-λ random permutation appears more plausible compared to a random oracle with unlimited entropy. On the practical side, by not changing the garbling schemes at all, the resulting schemes incur zero additional computation/communication overhead and no change of implementation. Below, we discuss our result in more detail.

Adaptive security in the npRPM. Our main result is the simulation-based adaptive security of the two schemes in the npRPM, which is a realistic and conservative model of block ciphers by giving all parties the oracle access to the same random permutation and its inverse. Our proof idea significantly differs from the pebbling games in prior works [HJO+16, JW16, JKK+17, GS18, JO20] to support free-XOR [KS08]: all garbled gates are correlated with the same global key, making it impossible to use a gate-by-gate hybrid argument in a black-box way. Instead, we regard a garbled circuit as a whole by considering it as part of a transcript produced in the interaction between an adaptive adversary and a challenger in the real or ideal world. We bound the advantage of the adaptive adversary via the statistical distance of transcripts in the two worlds, since w.l.o.g. the adversary is deterministic so that its decision bit is a deterministic function of a transcript. As it suffices to prove the adaptive security against a slightly more powerful adversary that has additional information, we introduce an approach called transcript padding that pads a transcript with more values to be revealed to the adversary. This approach helps us to bound the statistical distance. We have the following theorem.

Theorem 1 (informal). *In the non-programmable RPM, half-gates and three-halves are adaptively secure against any computationally unbounded non-uniform adversary, which makes q queries to a random permutation and its inverse, and chooses a circuit $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$ with s AND gates, with advantage at most $O(qs/2^\lambda)$ and online communication of $m + n\lambda$ bits.*

Adaptive security in the pRPM. We also prove that half-gates and three-halves are already adaptively secure in the programmable RPM (pRPM) to cover the implementations that send the decoding information in the offline phase instead of the online phase. We prove their adaptive security also via transcript padding and the statistical distance of transcripts. One difference is to construct a simulator, which programs the random permutation such that its responses w.r.t. the garbled labels of output wires maintain decoding correctness (i.e., these labels can be decoded to the correct circuit output). We fix the responses in the transcripts with padding, and additionally identify the transcripts, which fail programming, to bound their effect on the statistical distance. As such responses are sampled at random by the simulator, this effect would be negligible. The following result in the pRPM gives a trade-off between online communication and assumption.

Theorem 2 (informal). *In the programmable RPM, half-gates and three-halves are adaptively secure against any computationally unbounded non-uniform adversary, which makes q queries to a random permutation and its inverse, and chooses a circuit $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$ with s AND gates, with advantage at most $O(qs/2^\lambda)$ and online communication of $n\lambda$ bits.*

Separation between the npRPM and pRPM. Finally, we prove that the above gap of online communication is inherent in the programmability of the ideal permutation, which gives a separation of adaptively secure garbling schemes in the two RPMs. Particularly, we have that
Theorem 3 (informal). For any \(n, m \in \mathbb{N}^+ \), there is a circuit \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \) such that any garbling scheme with simulation-based adaptive security in the non-programmable RPM has online communication of at least \(m \) bits.

Our proof builds upon the proof idea [AIKW13, HW15] in the standard model, which constructs a pair of polynomial-sized circuits from the simulator and the evaluation algorithm in a garbling scheme to contradict the Yao entropy [Yao82, BSW03, HLR07] of evaluation result. We modify these circuits to hardcode an approximate random permutation and its inverse, and to ensure that they are still of polynomial sizes. The resulting circuits also break the Yao entropy, implying a quantitatively identical lower bound of online communication complexity in the npRPM. In our previous results, we already show that half-gates and three-halves can be implemented to match this lower bound. In contrast, the pRPM endows the simulator the programmability to embed a circuit output into its internal state to maintain the decoding correctness, even if the decoding information has been fixed before the circuit output is known. As a result, the online communication in the pRPM can bypass this lower bound.

2 Technical Overview

2.1 Previous Techniques

We claim that the existing techniques fail to prove adaptive security of half-gates [ZRE15] and three-halves [RR21], the two state-of-the-art garbling schemes with selective security. These schemes adopt free-XOR optimization [KS08], where an active label XORed with its coupled inactive label matches a global offset \(\Delta \) for each wire. In these schemes, a gate ciphertext is an one-time pad (OTP) encryption with a mask \(H(X \oplus \Delta, k) \oplus b\Delta \) for active label \(X \), tweak \(k \), and bit \(b \) dependent on a truth bit.

The selective security of the two schemes can be reduced to circular correlation robust (CCR) hash functions by properly dealing with tweaks. More specifically, the reduction algorithm adaptively calls the CCR oracle to obtain pseudorandom masks of form \(H(X \oplus \Delta) \oplus b\Delta \) when it is given an input \(x \) chosen by the selective adversary. Here, input \(x \) is used to compute all truth bits on circuit \(f \) to get all \(b \)'s in the masks. The obtained masks bridge a real garbled circuit and a simulated one. However, for adaptive security, the same reduction algorithm fails since it has not received an online input from the adaptive adversary when an offline garbled circuit should be simulated.

For adaptive security, almost all previous proofs [HJO+16, JW16, JKK+17, GS18, JO20] follow the proof method [LP09] of Yao’s garbling scheme in the selective setting (i.e., the approach based on pebbling games)\(^2\). Such a pebbling game changes all real-world garbled gates (i.e., white pebbles) to simulated ones (i.e., black pebbles) using a carefully designed hybrid argument, where each hybrid bridges an input-dependent garbled gate (i.e., gray pebble) and a real-world or simulated one. To ensure that such gray pebbles are consistent with the input (being undefined until the online phase), these works adopt somewhere equivocal encryption or piecewise guessing in the construction of the gray pebbles, which incurs high overhead or non-negligible security loss.

In the pebbling-game-based works, there are two notable facts: (i) a pebbling hybrid changes only one pebble, and (ii) the indistinguishability between a gray pebble and a white/black one comes from a black-box reduction to the security of some cryptographic primitive. So, any two pebbling hybrids should be respectively reduced to two independent instances of the primitive in a black-box way. In these works, this primitive acts as an encryption scheme for truth bits and all encryptions should be independent. However, all garbled gates in half-gates and three-halves are correlated under the same free-XOR offset \(\Delta \). This correlation implies that a pebble-by-pebble hybrid argument cannot prove the adaptive security of these schemes.

To sum up, we need to address the following two challenges simultaneously to prove the adaptive security of half-gates and three-halves:

(c1) How to consider all garbled gates as a whole garbled circuit to capture that they are correlated under a global offset \(\Delta \)? This challenge is not solved by the prior works of adaptive garbling

\(^2\)The exceptions are the work by Bellare et al. [BHR12a] using circuit-wise padding in the pROM and the work by Lindell et al. [LR15] with a gate-by-gate use of the pROM.
without relying on programmable ROM.

(c2) How to prove the indistinguishability between a simulated garbled circuit and a real one based on a proper computational assumption, without modifying the two schemes?

Clearly, this indistinguishability is necessary for adaptive garbling since the adaptive adversary is given the garbled circuit. The known proofs of the two unmodified schemes turn to CCR hash functions. As recalled, these CCR-based proofs can only address this challenge in the selective setting. For adaptive security, they fail because the online input is unspecified when the input-dependent CCR queries should be made to the CCR oracle to simulate the garbled circuit.

2.2 Our Approach

Below, we outline how to address the above two challenges and prove adaptive security of the two schemes, followed by a toy example and our separation result between npRPM and pRPM.

Core idea: Using statistical distance instead of complexity-theoretic reduction. In our proofs, we do not pursue security reduction to computationally secure primitives but study adaptive garbling in a general statistical framework: a computationally unbounded non-uniform adversary \(A \) adaptively interacts with either a real-world oracle \(O_0 \) or an ideal-world oracle \(O_1 \) and outputs its decision bit after the interaction. Both oracles provide the same query interfaces to \(A \). The interaction between \(A \) and \(O_b \) defines a random variable \(Z_b \) of transcripts, which records query-response pairs in order. Without loss of generality, we assume that non-uniform adversary \(A \) is deterministic\(^3\) so that its decision bit is a deterministic function of its auxiliary input and a transcript sampled according to \(Z_b \). It is well-known that the advantage of adaptive adversary \(A \) is upper bounded by statistical distance \(SD(Z_0, Z_1) \). This statistical perspective considers a stronger adaptive adversary than the complexity-theoretic one and paves a way to prove adaptive security other than reduction to adaptively secure building blocks.

More specifically, adaptivity in this framework is captured by the ordered query-response pairs in a transcript. Note that \(SD(Z_0, Z_1) \) is defined from probability \(\Pr[Z_b = \tau] \) for each possible transcript \(\tau \) and \(b \in \{0, 1\} \). To compute this probability, it is crucial to deal with the adaptivity that is implicit in the defined random variable of transcripts. Let us consider fixed \(b \in \{0, 1\} \) and transcript \(\tau \) of ordered pairs \(((q_1, r_1), . . . , (q_n, r_n)) \). Intuitively, probability \(\Pr[Z_b = \tau] = 0 \) if the next-message function of a fixed non-uniform deterministic \(A \) can never produce queries \(q_1, . . . , q_n \) in order when responses \(r_1, . . . , r_n \) arrives in order. Otherwise, \(A \) certainly produces these queries upon receiving \(r_1, . . . , r_n \) in order (as \(A \) is deterministic and it is a yes-or-no event) and \(\Pr[Z_b = \tau] \) quantitatively matches the probability that \(A \) is given responses \(r_1, . . . , r_n \) in order, i.e., the probability that oracle \(O_b \) produces responses \(r_1, . . . , r_n \) in order if queries \(q_1, . . . , q_n \) arrives in order. Plugging this observation (which is implicit in the analysis [Pat09, CS14, DLMS14, HT16] of symmetric-key primitives and recalled in Lemma 1) into the framework, we have a general proof blueprint of adaptive security against \(A \):

Proof blueprint of adaptive security

For each transcript \(\tau \) with \(\Pr[Z_0 = \tau] \neq 0 \) or \(\Pr[Z_1 = \tau] \neq 0 \) (i.e., \(\tau \) raises \(SD(Z_0, Z_1) \)), if \(O_0 \) and \(O_1 \) have statistically close probability of being “compatible with \(\tau \),” i.e., producing the ordered responses in \(\tau \) when given the ordered queries in \(\tau \), then the advantage of \(A \) is negligible.

Note that the two probabilities are only taken over the randomness of the two oracles, respectively.

In essence, this statistical blueprint quantifies over all possible interaction transcripts in both two worlds and replaces the adaptive adversary with all sequences of ordered queries in these transcripts. Using this quantification, we no longer run an adaptive adversary to extract its adaptive queries and use the oracle of some low-level primitive to answer each query as in complexity-theoretic reduction. Instead, we consider all possible outcomes of adaptive queries to bound their effect on the advantage of an adaptive adversary. So, the proof blueprint will not confront a challenge in the reduction-based proofs of adaptive security: given the real execution where a response will be consistent with future

\(^3\)A non-uniform adversary is at least as powerful as a probabilistic adversary [Can00].
adaptive queries as per the real oracle of some low-level primitive, and the ideal execution where the response is sampled at random as in the ideal oracle, how to bridge the two executions via a security reduction to the primitive? This challenge has been noticed by the known proofs of adaptive garbling (see challenge (c2) in Section 2.1) and causes additional costs.

Remark 1 (Computationally secure primitives are useless in the proof blueprint). *Note that the proof blueprint requires that the two probabilities of being compatible with each possible transcript have negligible difference. Clearly, this statistical closeness cannot be bounded by a computational advantage in the complexity-theoretic reduction to some computationally secure primitive. Instead, one can turn to explicit randomness (e.g., ideal models and uniform coins) to compute this difference directly.*

RPM-based adaptive garbling from the proof blueprint. We prove the adaptive security of half-gates and three-halves by instantiating the blueprint. In our proof, real-world oracle O_0 runs the garbling scheme while ideal-world oracle O_1 is defined from the simulation. As the two schemes are in RPM, both oracles provide adaptive adversary A with not only an offline interface for garbled circuit and an online interface for garbled input, but also two interfaces for the random permutation and its inverse. In Figure 1, we illustrate two experiments of adaptive garbling in this blueprint according to whether the RPM is programmable or not. In either RPM, A can make queries to the random permutation and its inverse at any time; the online interface can only be queried by A after the offline one. In each world, the probability of being compatible with any fixed transcript is taken over the random permutation and other uniform random coins. Here, challenge (c1) is addressed as a garbled circuit is a part of a transcript, and we have discussed that the blueprint can bypass challenge (c2) in general.

To simplify probability analysis in the blueprint, our proof considers two relaxations of the statistical distance. First, we study the statistical distance for a more powerful adaptive adversary, which is explicitly given more messages by padding them into transcripts. Since the adversary can omit these padding messages at will, a quick proof using the optimal-distinguisher-based definition of statistical distance can show that this new statistical distance is at least the original one. Roughly, the padding messages fix (i) the RPM-based hash values of all active labels (along with the query-response pairs
of the random permutation and its inverse therein), (ii) all truth bits and active labels on internal and output wires, (iii) free-XOR offset \(\Delta \) (which is revealed at the end of interaction so that no more permutation queries can depend on it), and (iv) all randomization bits (only in three-halves). The padding messages along with the original transcript explicitly fix all randomness in garbling but capture that no arbitrary permutation query depends on \(\Delta \). The fixed randomness makes it easier to compute the probability that the random permutation and its inverse are consistent with the query-response pairs in transcripts. We call this relaxation transcript padding.

Second, we use the H-coefficient technique [Pat09, CS14, DLMS14] to bound the above statistical distance instead of computing it directly. For any fixed (more powerful) \(\mathcal{A} \), let \(\mathcal{T}_b \) be a set collecting every transcript \(\tau \) with \(\Pr[Z_0 = \tau] \neq 0 \) or \(\Pr[Z_1 = \tau] \neq 0 \). This technique divides \(\mathcal{T}_b \) into a set \(\mathcal{T}_{\text{bad}} \) of bad transcripts and a set \(\mathcal{T}_{\text{good}} := \mathcal{T}_b \setminus \mathcal{T}_{\text{bad}} \) of good transcripts. It proves that \(\mathcal{S}(Z_0, Z_1) \leq \varepsilon_1 + \varepsilon_2 \) if \(\sum_{\tau \in \mathcal{T}_{\text{bad}}} \Pr[Z_1 = \tau] \leq \varepsilon_1 \) and, for every \(\tau \in \mathcal{T}_{\text{good}} \), \(1 - \Pr[Z_0 = \tau]/\Pr[Z_1 = \tau] \leq \varepsilon_2 \).

How to define bad and good transcripts? The definition of these transcripts depends on whether the RPM is programmable or not. In our proofs of half-gates and three-halves, npRPM considers the known implementations that send the decoding information in the online phase (e.g., Obliv-C [ZE15], ObliVM [LWN+15], and TinyGarble [SHS+15]) while pRPM can facilitate those with offline decoding information (e.g., ABY [DSZ15] and MP-SPDZ [Kel20]).

As the main component of transcripts, a (simulated) garbled circuit is sampled by the ideal-world oracle at random. In the real world, we require a statistically close distribution of real garbled circuit. Very roughly, in a real garbled circuit, each gate ciphertext equals the XOR of (a) the two RPM-based hash values of one active label and its coupled inactive label, (b) a linear function of two active labels, and (c) a function of offset \(\Delta \). In free-XOR optimization, an inactive label is its coupled active XORed with \(\Delta \). In the two schemes, the hash function is tweakable and can be instantiated with \(H(X, k) = \pi(X \oplus k) \oplus \sigma(X \oplus k) \), where \(\pi \) is a random permutation and \(\sigma \) is a linear permutation (see [GKWY20] or Section 3.1 for details). Using this hash function in (a), we see each gate ciphertext is effectively masked by some permutation image of form \(\pi(X \oplus \Delta \oplus k) \) for active label \(X \) and tweak \(k \). To achieve the above statistical closeness, such masks should be OTPs so that they are not trivially revealed in transcripts or do not have pairwise collision.

In the npRPM, a transcript is bad if and only if it violates this OTP requirement. First, such a mask is revealed if and only if there exists a query-response pair of form \((X \oplus \Delta \oplus k, \pi(X \oplus \Delta \oplus k)) \) in the transcript. Second, two masks of form \(\pi(X \oplus \Delta \oplus k) \) lead to pairwise collision if and only if at least one the following events occurs:

1. There exists collision between two permutation pre-images of form \(X \oplus \Delta \oplus k \). Equivalently, there exists collision between two permutation pre-images of form \(X \oplus k \), or between two permutation images of form \(\pi(X \oplus k) \). All implications follow from that the random permutation is invertible by querying its inverse. For the equivalent event, all relevant values of pre-images and images are fixed by the query-response pairs in the transcript given (i) in transcript padding.

2. There exists collision between the values of two masks, each of which is computed by subtracting other values from a masked gate ciphertext. These subtracted values are fixed by the transcript as per (a), (b), and (c). In particular, all linear functions in (b) and (c) are defined from (ii) (as well as (iv) in three-halves) in transcript padding.

The badness of such transcripts results from that the attacks against OTPs work when the adversary is given these transcripts, blowing up the statistical distance.

Remark 2 (On unique tweaks to resist a trivial pairwise collision between masks). Some attacks (e.g., [NS23]) have shown that the pairwise collision between masks can be exploited to distinguish between the real and ideal executions. Since the adversary can choose a circuit at will, this circuit can have some wire \(i \) (or rather, its active label \(X_i \)) being used more than once (e.g., in circuit \(x_j = \text{AND}(x_i, x_i) \)). In this case, bad transcripts also capture the pre-image collision between \(X_i \oplus k \) and \(X_i \oplus k' \), i.e., between tweaks \(k \) and \(k' \). Since all tweaks are public, they are required to be pairwise distinct to avoid this trivial collision.
In half-gates, a tweak is computed from a unique gate ID and an indicator bit of either input wire of this gate using the tweak. In the two-schemes, with its computational optimization\(^4\), we have a counter \(c_{tr,i}\) for each wire \(i\) and, upon every use of active label \(X_i\), use \((i \parallel c_{tr,i})\) as a fresh tweak and increase \(c_{tr,i}\) by 1. The above definitions ensure globally unique tweaks. Even if free-XOR in the two schemes produces two syntactically identical active labels \(X_i = X_j\) on two wires \(i \neq j\), such tweaks are still pairwise distinct. Indeed, Nieminen and Schneider [NS23] have pointed out that both half-gates and three-halves schemes are not vulnerable to their attack.

In the pRPM, bad transcripts correspond to the attacks against OTPs or failed programming. Note that this model allows for offline decoding information, which should be consistent with the LSBs of active output labels and the truth bits on output wires. Since these truth bits are not fixed until the online phase, we program the random permutation and its inverse to let them output the active labels consistent with the decoding information fixed in the offline phase. The programming manipulates all permutation entries accessed to evaluate a garbled circuit. These entries are fixed by all active labels and RPM-based hash values in a transcript with padding. A programming is successful if and only if, in this transcript, these entries have not been occupied by the query-response pairs before the online phase. This complements our definition of bad transcripts in addition to that in the npRPM.

A toy proof. Based on our methodology, we present a toy proof to demonstrate how to compute \(\varepsilon_1\) and \(\varepsilon_2\). Here, we consider half-gates and an adaptive adversary choosing a circuit \(f\) of an AND gate \(g\) with two input wires \((a, b)\) and an output wire \(c\). This proof can be generalized to three-halves and arbitrary circuits\(^5\) chosen by the adversary.

For any fixed adaptive adversary \(\mathcal{A}\) in transcript padding, a transcript \(\tau \in \mathcal{T}_{\mathcal{A}}\) consists of offline part \((f, \hat{f})\), online part \((x = (x_a, x_b, \hat{x}), \text{query-response pairs w.r.t. the random permutation and its inverse, and free-XOR offset } \Delta\) with \(\text{lsb}(\Delta) = 1\). The query-response pairs are recorded before \(\Delta\) at any time and include the adaptive queries chosen by \(\mathcal{A}\) and their responses.

In the npRPM, \(\hat{f}\) contains two gate ciphertexts \((G_0, G_1)\) while \(\hat{x}\) fixes output bit \(x_c = x_a \cdot x_b\), all active labels \(\{X_i = W_i \oplus x_i \Delta\}_{i \in \{a, b, c\}}\) for zero-bit labels \(\{W_i\}_{i \in \{a, b, c\}}\), decoding information \(d_c = x_c \oplus \text{lsb}(X_c)\), and two RPM-based hash values

\[
H(X_a, k_0) = \pi(X_a \oplus k_0) \oplus \sigma(X_a \oplus k_0), \quad H(X_b, k_1) = \pi(X_b \oplus k_1) \oplus \sigma(X_b \oplus k_1)
\]

for two distinct tweaks \((k_0, k_1)\). Since \(\Delta\) has a non-zero LSB, for each wire \(i \in \{a, b, c\}\), permuted bit \(p_i = \text{lsb}(W_i)\) and masked bit \(s_i = \text{lsb}(X_i)\) satisfy \(s_i = p_i \oplus x_i\). In the real world, oracle \(O_0\) samples \((W_a, W_b)\) at random and computes

\[
\begin{align*}
G_0 &= H(W_a, k_0) \oplus H(W_a \oplus \Delta, k_0) \oplus p_\Delta \\
G_1 &= H(W_b, k_1) \oplus H(W_b \oplus \Delta, k_1) \oplus W_a \\
W_c &= H(W_a \oplus p_\Delta, k_0) \oplus H(W_b \oplus p_\Delta, k_1) \oplus p_a p_b \Delta
\end{align*}
\]

and \(\hat{x}\) as above. In contrast, ideal-world oracle \(O_1\) samples \((G_0, G_1)\) at random and computes \(\hat{x}\) as in the real world, except that \((X_a, X_b)\) are uniformly sampled and

\[
X_c = H(X_a, k_0) \oplus H(X_b, k_1) \oplus s_a G_0 \oplus s_b (G_1 \oplus X_a)
\]

is equivalently written as the real-world one. In both worlds, the hash values in (1) are computed by calling the random permutation and consistent with two fixed query-response pairs for permutation pre-images \(X_a \oplus k_0\) and \(X_b \oplus k_1\).

Suppose that \(\mathcal{A}\) makes \(q\) distinct queries to the random permutation and its inverse in addition to the above two query-response pairs. First, we bound \(\varepsilon_2\) for some fixed \(\tau \in \mathcal{T}_{\text{good}} \subseteq \mathcal{T}_{\mathcal{A}}\). Without loss

\(^4\)When being implemented, the three-halves scheme with the computational optimization would be preferred.

\(^5\)For general circuits, we require that all conditions of bad transcripts also hold for the relevant values of all AND gates.
of generality, we can assume \(\Pr \{ Z_1 = \tau \} \neq 0 \) in the ideal world; otherwise \(\varepsilon_2 = 0 \) trivially. In the real world, (2) fixes the values of two OTP masks as per the right-hand fixed values in transcript \(\tau \):

\[
\begin{aligned}
\pi(X_\alpha \oplus \Delta \oplus k_0) &= G_0 \oplus \sigma(\Delta) \oplus (s_b \oplus x_b)\Delta \oplus \pi(X_\alpha \oplus k_0) \\
\pi(X_b \oplus \Delta \oplus k_1) &= G_1 \oplus \sigma(\Delta) \oplus x_a\Delta \oplus \pi(X_b \oplus k_1)
\end{aligned}
\]

while \(W_c \) in (2) must be consistent with the right-hand fixed values in \(\tau \) as per (3). Using the pairwise distinctness in good transcripts, we have that \(\tau \) fixes \(q + 4 \) linkages between permutation pre-images and images. Taking over uniform \((W_a, W_b) \), random permutation \(\pi \), and uniform \(\Delta \) with \(\text{lsb}(\Delta) = 1 \), it holds that \(\Pr \{ Z_0 = \tau \} = \frac{1}{(2^\lambda)^2} \cdot \frac{(2^\lambda - q - 4)!}{(2^\lambda)!} \cdot \frac{1}{2^{\lambda - 2}} \). In the ideal world, \((G_0, G_1) \) are uniformly random and need not satisfy (4) to fix two linkages of the random permutation. Meanwhile, these two linkages are not fixed in good transcripts. So, \(\Pr \{ Z_1 = \tau \} = \frac{1}{(2^\lambda)^2} \cdot \frac{(2^\lambda - q - 2)!}{(2^\lambda)!} \cdot \frac{1}{2^{\lambda - 2}} \) and \(\varepsilon_2 = 0 \) for

\[
\frac{\Pr \{ Z_0 = \tau \}}{\Pr \{ Z_1 = \tau \}} = \frac{(2^\lambda)^q + 2 \cdot (2^\lambda)^2}{(2^\lambda)^q + 4} = \frac{(2^\lambda)^2}{(2^\lambda - q - 2)^2} \geq 1.
\]

Second, we claim that a negligible \(\varepsilon_1 \) bounds the probability of bad transcripts in the ideal world. This claim resorts to a negligible probability of pairwise collision and a negligible one of the existence of any \(\Delta \)-dependent query-response pair. Intuitively, the former probability is taken over the (nearly) uniformly random pre-images (i.e., \(X_\alpha \oplus k_0 \) or \(X_b \oplus k_1 \)) or images (i.e., \(\pi(X_\alpha \oplus k_0) \) or \(\pi(X_b \oplus k_1) \)). The latter probability results from the entropy of \(\Delta \) since no query-response pair can depend on it.

This analysis of \(\varepsilon_1 \) and \(\varepsilon_2 \) concludes the adaptive security of half-gates in the npRPM. As for the adaptive security in the pRPM, transcripts are defined as in the npRPM, except that decoding information \(d_c \) is moved from online garbled input \(\hat{x} \) to offline garbled circuit \(\hat{f} \). Then, \(\varepsilon_1 \) increases due to the additional bad transcripts failing programming. Note that permutation entries \(\langle X_\alpha \oplus k_0, \pi(X_\alpha \oplus k_0) \rangle \) and \(\langle X_b \oplus k_1, \pi(X_b \oplus k_1) \rangle \) should never be occupied by the query-response pairs before the online phase to ensure a successful programming. It also follows from the randomness of these pre-images and images that the increased \(\varepsilon_1 \) is still negligible.

For formal proofs, we refer readers to Section 4 for the half-gates in the npRPM, Appendix C for the half-gates in the pRPM, and Appendix D for the three-halves in both RPMs.

2.3 Separating npRPM from pRPM for Adaptive Garbling

In the npRPM, the simulator of adaptive garbling consists of two probabilistic polynomial-time (PPT) algorithms: \(\text{Sim}_{\text{npRPM}}^{x, f}(\cdot) \) and \(\text{Sim}_{\text{npRPM}}^{x, f}(\cdot) \), which have oracle access to a random permutation \(\pi \) and its inverse \(\pi^{-1} \). The former simulates garbled circuit \(\hat{f} \) (without online input \(x \)) and outputs an internal state, while the latter simulates garbled input \(\hat{x} \) given the internal state and circuit output \(f(x) \).

Intuitively, since the simulated \(\hat{x} \) is the only message that can depend on \(f(x) \), \(\hat{x} \) should consist of “adequate” information of \(f(x) \). Otherwise, we cannot reconstruct \(f(x) \) from the simulated \((\hat{f}, \hat{x}) \) in the ideal world, making the real world and ideal world trivially distinguishable.

Following prior works [AIKW13, HW15], we will also evaluate this “adequacy” based on the Yao entropy [Yao82, BSW03, HLR07] of \(f(x) \). This entropy is formalized as the minimal bit-length of an efficiently computable compressed form of \(f(x) \), which can be decompressed to \(f(x) \) with probability significantly more than \(1/2 \). Similar to the standard-model lower bound in the prior works, we can prove that the bit-length of \(\hat{x} \) should be at least the Yao entropy of \(f(x) \) in the npRPM. The high-level idea is that the simulator can compress \(f(x) \) into \(\hat{x} \), which can be decompressed using the evaluation algorithm of garbling scheme with overwhelming probability. Otherwise, the ideal world is trivially distinguishable from the real one. Recall that the simulator and the evaluation algorithm are PPT and the adversary also makes a polynomial number of queries to \(\pi^{\pm 1} \). The total number of permutation queries in such compression and decompression is polynomial, and their responses can be approximated by uniform strings up to negligible statistical distance. As a result, the above compression and decompression have polynomial-size circuits as required by Yao entropy, where the circuits hardcode the uniform responses used to approximate the real ones from \(\pi^{\pm 1} \).
More specifically, we first define an intermediate hybrid by replacing a random permutation and its inverse with “coarse” approximation $\hat{\pi}^{\pm 1}$, which outputs a fresh random string upon a fresh query but ensures the query-response consistency. Clearly, the advantage of any adaptive adversary to distinguish this hybrid and the ideal world is at most twice the birthday bound, which is negligible up to a polynomial number of queries to the permutation and its inverse. Given that the garbling scheme is adaptively secure in the npRPM, the ideal world is indistinguishable from the real one. As a corollary, $\text{SimF}_{\hat{\pi}^{\pm 1}}$ and $\text{SimIn}_{\hat{\pi}^{\pm 1}}$ give an approximate simulation indistinguishable from the real world.

This indistinguishability implies that the approximate simulation results in \hat{f} that can be decoded to $f(x)$ with overwhelming probability. If the bit-length of this \hat{x} is less than the Yao entropy of $f(x)$, we show that the approximate simulation contradicts this entropy. We construct a compression circuit that sequentially runs $\text{SimF}_{\hat{\pi}^{\pm 1}}$ and $\text{SimIn}_{\hat{\pi}^{\pm 1}}$ over some hardcoded random tape to output such an \hat{x}. The decompression circuit uses the same random tape to recompute \hat{f} output by $\text{SimF}_{\hat{\pi}^{\pm 1}}$, and runs the deterministic evaluation algorithm to compute $f(x)$ from (\hat{f}, \hat{x}). According to the coarse approximate permutation (which is hardcoded in the circuits), both circuits are polynomial sizes. Thus, the circuits contradict the Yao entropy of $f(x)$, leading to a lower bound of the online complexity in the npRPM. The detailed proof is presented in Appendix E.

However, this lower bound does not hold in the pRPM, where the simulator has another PPT algorithm $\text{SimP}^{\pm 1}$ to emulate a random permutation and its inverse for queries (a) before \hat{f}, (b) after \hat{f} but before \hat{x}, and (c) after \hat{x}. It is notable that SimF, SimIn, and $\text{SimP}^{\pm 1}$ maintain an internal state. In particular, given $f(x)$ and the internal state, SimIn outputs simulated \hat{x} and an updated internal state to be used in $\text{SimP}^{\pm 1}$ for case (c). Although we can prove that the output bit-length of SimIn should exceed the Yao entropy of $f(x)$, a part of the information of $f(x)$ can be transferred into the updated internal state so that the bit-length of the simulated \hat{x} can be lower than the Yao entropy. As a result, the lower bound does not hold for a real-world \hat{x} since the real and ideal worlds are indistinguishable for the adaptive security in the pRPM. This result is confirmed by our proofs for the adaptive security of half-gates and three-halves in the pRPM, where programming is performed to embed the decoding consistency, e.g., $\text{lsb}(X_c) = x_c \oplus d_c$, into the internal state of the simulator.

3 Preliminaries

3.1 Notation

Throughout this paper, we use $\lambda \in \mathbb{N}$ to denote the security parameter. We use $\text{poly}(\cdot)$ (resp., $\text{negl}(\cdot)$) for an unspecified polynomial (resp., negligible) function. For $a, b \in \mathbb{N}$ with $a \leq b$, we denote by $[a, b]$ the set $\{a, \ldots, b\}$ and by $(b)_a$ the falling factorial $b \cdot (b - 1) \cdots (b - a + 1)$. We use $x \leftarrow S$ to denote the uniform sampling of x from a finite set S. We use $:= \leftarrow$ to denote assigning a value or an output of a deterministic algorithm to a left-hand variable. Let S_{P} denote the set of permutations on $\{0, 1\}^\ell$. Let $\text{lsb}(x)$ denote the least significant bit (LSB) of $x \in \{0, 1\}^n$. Let $\| \|$ denote the concatenation of bit-strings. Let \oplus denote the symmetric difference of sets, i.e., for two sets A, B, $A \oplus B := (A \backslash B) \cup (B \backslash A)$.

Linear orthomorphism. A permutation $\sigma : \mathbb{G} \to \mathbb{G}$ over an additive Abelian group \mathbb{G} is called a linear orthomorphism if (i) $\sigma(x + y) = \sigma(x) + \sigma(y)$ for any $x, y \in \mathbb{G}$, (ii) $\sigma'(x) := \sigma(x) - x$ is also a permutation, and (iii) σ, σ' and their inverses are efficiently computable. There are two simple instantiations in [GKWy20]: (i) if \mathbb{G} is a field, $\sigma(x) := c \cdot x$ for some $c \neq 0, 1 \in \mathbb{G}$, and (ii) if $\mathbb{G} = \{0, 1\}^n$, $\sigma(x) := (x_L \oplus x_R) \parallel x_L$ where x_L and x_R are the left and right halves of x.

Circuits. Given a circuit f with fan-in two and fan-out one, we define:

- $|f|$: The number of AND gates.
- $W(f), W_{in}(f), W_{out}(f), W_{and}(f)$: The sets of wires, circuit input wires, circuit output wires, and output wires of AND gates, respectively.
- $G(f), G_{and}(f)$: The sets of gates and AND gates, respectively.
• For a gate $g \in \mathcal{G}(f)$, let $(a, b) := (i_{00}(g), i_{10}(g))$ denote the two input wires and $c := o(u(g)$ denote the output wire.

In Appendix A, we present the additional notation used in the appendices.

3.2 Random Permutation Model

In the random permutation model (RPM) [RS08, BHKR13], all parties have oracle access to random permutation π and its inverse $\pi^{-1} := \text{inv}(\pi)$. We refer to queries to π as forward queries and queries to π^{-1} as backward queries. In this work, we consider non-programmable RPM (npRPM) and programmable RPM (pRPM). Inspired by the separation [Nie02] w.r.t. the random oracle model [BR93], we formalize the pRPM like a hybrid model, where an ideal functionality provides two $\pi^{\pm 1}$ interfaces. This model gives the simulator the power to “appropriately” choose the responses to the adversary’s queries to $\pi^{\pm 1}$. In contrast, all parties (as well as the real-world adversary and the simulator) in the npRPM are given oracle access to a global $\pi^{\pm 1}$, whose responses cannot be chosen by the simulator.

3.3 Adaptive Security of Garbling Schemes

In Definition 1, we adapt the definition of adaptively secure garbling schemes in [HJO+16, JW16] for a q-query computationally unbounded adversary in the npRPM and the pRPM. This definition combines the evaluation and decoding algorithms in the literature [BHR12a, BHR12b] and does not explicitly send the decoding table as part of a garbled circuit \hat{f}. To simplify the notation, we assume that all algorithms and the adversary implicitly take the unary security parameter 1^λ as input.

Definition 1 (Adaptively secure garbling scheme). For some polynomial ℓ, an $\ell(\lambda)$-garbling scheme in the npRPM or pRPM has three PPT algorithms, each of which is given oracle access to a random permutation $\pi \in S_{\ell(\lambda)}$ and its inverse $\pi^{-1} := \text{inv}(\pi)$:

- $(\hat{f}, k) \leftarrow \text{Garble}^{\pi^{\pm 1}}(\pi)(f)$. The bit-length of \hat{f} is called **offline complexity**.
- $\hat{x} := \text{Encode}^{\pi^{\pm 1}}(\pi)(k, x)$. The bit-length of \hat{x} is called **online complexity**.
- $y := \text{DecEval}^{\pi^{\pm 1}}(\pi)(\hat{f}, \hat{x})$.

For some polynomials q, s, negligible function ε, and side-information function Φ, this scheme is said $(q(\lambda), s(\lambda), \varepsilon(\lambda), \Phi)$-adaptively secure in the npRPM (resp., pRPM) if it complies with correctness and adaptive security in the npRPM (resp., pRPM). By default, $\Phi(f) = f$ is omitted in the definition.

- **Correctness.** For every polynomial-size circuit $f : \{0, 1\}^{\ell_{in}} \rightarrow \{0, 1\}^{\ell_{out}}$, and every input $x \in \{0, 1\}^{\ell_{in}}$, it holds that

\[
\Pr \left[\pi \leftarrow S_{\ell(\lambda)}, \pi^{-1} := \text{inv}(\pi), \right.
ight.

\hat{f}, k) \leftarrow \text{Garble}^{\pi^{\pm 1}}(\pi)(f), \; \text{DecEval}^{\pi^{\pm 1}}(\pi)(\hat{f}, \hat{x}) = f(x)

\left. \hat{x} := \text{Encode}^{\pi^{\pm 1}}(\pi)(k, x) \right] = 1.

- **Adaptive security in the npRPM.** There exists a PPT simulator

\[
\text{Sim} = (\text{SimF}, \text{SimIn})
\]

with an internal state s_{sim} such that, for every auxiliary input $z \in \{0, 1\}^*$ and every computationally unbounded adversary $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3)$ totally making $q(\lambda)$ oracle queries and choosing a circuit...
with \(s(\lambda) \) AND gates,

\[
\Pr \left[\begin{array}{l}
\pi \leftarrow S_{\ell(\lambda)}, \pi^{-1} := \text{inv}(\pi), \\
(f, st_1) \leftarrow A_1^{\pi \pm 1}(z), \\
(f, k) \leftarrow \text{Garble}^{\pi \pm 1}(f), : A_3^{\pi \pm 1}(st_2, \hat{f}, \hat{x}) = 1 \\
(x, st_2) \leftarrow A_2^{\pi \pm 1}(st_1, \hat{f}), \\
\hat{x} := \text{Encode}^{\pi \pm 1}(k, x)
\end{array} \right] \leq \varepsilon(\lambda).
\]

- **Adaptive security in the pPRM.** There exists a PPT simulator

\[\text{Sim} = (\text{SimF, SimIn, SimP}^{\pm 1})\]

with an internal state \(st_{\text{sim}} \) such that, for every auxiliary input \(z \in \{0, 1\}^* \) and every computationally unbounded adversary \(A = (A_1, A_2, A_3) \) totally making \(q(\lambda) \) oracle queries and choosing a circuit with \(s(\lambda) \) AND gates,

\[
\Pr \left[\begin{array}{l}
\pi \leftarrow S_{\ell(\lambda)}, \pi^{-1} := \text{inv}(\pi), \\
(f, st_1) \leftarrow A_1^{\pi \pm 1}(z), \\
(\hat{f}, k) \leftarrow \text{Garble}^{\pi \pm 1}(f), : A_3^{\pi \pm 1}(st_2, \hat{f}, \hat{x}) = 1 \\
(x, st_2) \leftarrow A_2^{\pi \pm 1}(st_1, \hat{f}), \\
\hat{x} := \text{SimIn}^{\pi \pm 1}(f(x))
\end{array} \right] \leq \varepsilon(\lambda).
\]

3.4 Framework of Adaptive Security and H-coefficient Technique

We prove the adaptive security of garbling schemes in the following framework of adaptive experiments. In this framework, we consider a computationally unbounded non-uniform adversary \(A \), which takes an auxiliary input and outputs a decision bit after making a bounded number of adaptive queries to either a real-world or ideal-world oracle. Each oracle is stateful: for a query, a response is a deterministic function of the random tape, the query, and previous query-response pairs. The two oracles can give multiple interfaces, each of which has the same syntax in the two worlds. For simplicity, whenever we refer to a non-uniform adversary (e.g., \(A \) or \(A' \)), we assume that it has some auxiliary input fixed in its context unless this auxiliary input is given explicitly.

Without loss of generality, we consider a deterministic computationally unbounded non-uniform adversary \(A \). The interaction between \(A \) and the oracle produces a transcript, which gives an ordered list of query-response pairs from the view of \(A \). For some fixed \(A \), the distribution of transcripts in either world results from the oracle’s random tape, or equivalently, the random sampling of a deterministic oracle. So, the decision bit of \(A \) is a deterministic function of its (fixed) auxiliary input and a transcript produced in the interaction, and its advantage is at most the statistical distance of transcripts in the two worlds.
Let Ω_{real} (resp., Ω_{ideal}) denote the sample space where a deterministic real-world (resp., ideal-world) oracle is sampled at random. For any fixed \mathcal{A}, let $\mathcal{T}_\mathcal{A}$ denote the set of attainable transcripts s.t. a transcript $\tau \in \mathcal{T}_\mathcal{A}$ if and only if there exists a deterministic oracle ω' such that the interaction between \mathcal{A} and ω' produces τ. Let $X : \Omega_{\text{real}} \rightarrow \mathcal{T}_\mathcal{A}$ (resp., $Y : \Omega_{\text{ideal}} \rightarrow \mathcal{T}_\mathcal{A}$) denote the random variable w.r.t. the transcripts produced in the interaction between \mathcal{A} and a real-world (resp., ideal-world) oracle ω sampled from Ω_{real} (resp., Ω_{ideal}). For any fixed τ, let $\text{comp}_{\text{real}}(\tau) \subseteq \Omega_{\text{real}}$ (resp., $\text{comp}_{\text{ideal}}(\tau) \subseteq \Omega_{\text{ideal}}$) denote the set of compatible real-world (resp., ideal-world) oracles s.t. an oracle $\omega \in \text{comp}_{\text{real}}(\tau)$ (resp., $\omega \in \text{comp}_{\text{ideal}}(\tau)$) if and only if there exists a deterministic non-uniform adversary \mathcal{A}' such that the interaction between \mathcal{A}' and ω produces τ.

A key observation is that the adaptive interaction in random variables X, Y can be “unfolded” to be equivalently but easily studied from the compatibility between oracle and transcript. This compatibility, as defined above, essentially means that an oracle will return the responses in a fixed transcript τ in order if the queries match their counterparts in τ and are sent (by adversary \mathcal{A}') to the oracle in the given order. This observation is formalized in Lemma 1, and its proof for stateful oracles was sketched in [DLMS14, Appendix D]. We also present a formal proof in Appendix B for completeness.

Lemma 1 ([DLMS14]). Let the notations be defined in Section 3.4. Then, for every auxiliary input $z \in \{0, 1\}^*$, every computationally unbounded adversary \mathcal{A}, and every attainable transcript $\tau \in \mathcal{T}_\mathcal{A}(z)$, it holds that

$$\begin{align*}
\Pr_{\omega \sim \Omega_{\text{real}}} [X(\omega) = \tau] &= \Pr_{\omega \sim \Omega_{\text{ideal}}} [\omega \in \text{comp}_{\text{real}}(\tau)], \\
\Pr_{\omega \sim \Omega_{\text{ideal}}} [Y(\omega) = \tau] &= \Pr_{\omega \sim \Omega_{\text{ideal}}} [\omega \in \text{comp}_{\text{ideal}}(\tau)].
\end{align*}$$

For every fixed non-uniform \mathcal{A}, the H-coefficient technique [Pat09, CS14, DLMS14] bounds the statistical distance of transcripts in the experiment. It divides $\mathcal{T}_\mathcal{A}$ into two disjoint subsets $\mathcal{T}_{\text{bad}} \subseteq \mathcal{T}_\mathcal{A}$ and $\mathcal{T}_{\text{good}} := \mathcal{T}_\mathcal{A} \setminus \mathcal{T}_{\text{bad}}$. Then, it can prove an upper bound $\varepsilon_1 + \varepsilon_2$ of this statistical distance if it holds that

$$\Pr_{\omega \sim \Omega_{\text{ideal}}} [Y(\omega) \in \mathcal{T}_{\text{bad}}] \leq \varepsilon_1, \quad \forall \tau \in \mathcal{T}_{\text{good}} : \frac{\Pr_{\omega \sim \Omega_{\text{real}}} [X(\omega) = \tau]}{\Pr_{\omega \sim \Omega_{\text{ideal}}} [Y(\omega) = \tau]} \geq 1 - \varepsilon_2,$$

where, for some $\tau \in \mathcal{T}_{\text{good}}$, ε_2 is defined to 0 if $\Pr_{\omega \sim \Omega_{\text{ideal}}} [Y(\omega) = \tau] = 0$.

4 Adaptive Security of Half-Gates in npRPM

We prove that half-gates is adaptively secure in the npRPM. This scheme can be implemented in Figure 2, which slightly differs from the original one of [ZRE15] in including decoding table d in garbled input \hat{x} rather than garbled circuit \hat{f}. We will see in Appendix E that this difference is required to follow the online-complexity lower bound in the npRPM.

Theorem 4. Let $H(X, k) = \pi(X \oplus k) \oplus \sigma(X \oplus k)$ be a tweakable hash function where $X, k \in \{0, 1\}^\lambda$, $\pi \in S_\lambda$ is random permutation, and $\sigma : \{0, 1\}^\lambda \rightarrow \{0, 1\}^\lambda$ is a linear orthomorphism. Then, half-gates (Figure 2) is a λ-garbling scheme with (q, s, ε)-adaptive security in the npRPM, where $\varepsilon = (16qs + 38s^2)/2^\lambda$.

Proof. The correctness is given by the proof [ZRE15] as postponing decoding table d does not affect correctness. We only need to consider the simulation.

Our simulator $\text{Sim} = (\text{SimF}, \text{SimIn})$ is presented in Figure 3 and is obviously PPT. Then, we prove this theorem using the following three hybrids:

- Hybrid$_0$. This is the adaptive experiment using simulator Sim.

\footnotesize
\textsuperscript*Without loss of generality, we can assume that such an $\omega' \in \Omega_{\text{real}} \cup \Omega_{\text{ideal}}$ so that it is deterministic. Otherwise (i.e., no such an ω'), the statistical distance is zero.

\normalsize
Hybrid. This is identical to the previous hybrid, except that we replace \(\pi_{\pm 1} \) (which can be equivalently emulated on-the-fly as in Figure 4) by an approximation \(\tilde{\pi}_{\pm 1} \) (given in Figure 5). This approximation is the same as random permutation except that, for a new query of the simulator, it returns a
fresh random string as response and records this query-response pair. This hybrid is used to simplify probability analysis.

- Hybrid$_2$. This is the adaptive experiment using half-gates scheme.

Using the following Corollary 1 for the indistinguishability between Hybrid$_0$ and Hybrid$_1$ and Lemma 3 for that between Hybrid$_1$ and Hybrid$_2$, this theorem holds.

Before giving the proofs of Corollary 1 and Lemma 3, we prove the following lemma.

Lemma 2. Let $\tilde{\mathcal{P}}(\pi)$ denote the distribution of $\tilde{\pi}$ in Figure 5 for $n(\lambda) \in \mathbb{N}^+$ queries. For every PPT simulator $\text{Sim} = (\text{Sim}_F, \text{Sim}_N)$ making $n_{\text{sim}}(\lambda) \leq n(\lambda)$ queries, every auxiliary input $z \in \{0, 1\}^*$, and every computationally unbounded adversary $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3)$ making $n(\lambda) - n_{\text{sim}}(\lambda)$ queries, it holds that

$$\operatorname{Pr}[\tilde{\pi} = 1] - \operatorname{Pr}[\overline{\tilde{\pi}} = 1] \leq \frac{n(\lambda) \cdot n_{\text{sim}}(\lambda)}{2^{\ell(\lambda) - 1}}.$$

Proof. Let $N \subseteq [1, n(\lambda)]$ denote the index set of the queries made by Sim such that $|N| = n_{\text{sim}}(\lambda)$. Let $\text{true}(\pi)$ denote the event that $\mathcal{A}_3^{\pi}(st2, f, x) = 1$ in the first experiment, $\text{true}(\overline{\pi})$ denote the counterpart in the second one, and bad denote the event that $\bigvee_{i \in N}(\ldots, c_i) \in Q_{i-1} \vee (c_1, \ldots) \in Q_{i-1}$. We can study the two experiments under the same probability space, i.e., they use the same literal values of (r_x, r^*_x) and the random tapes of Sim and \mathcal{A}.

We can see that $\text{true}(\pi) \wedge \overline{\text{bad}}$ occurs if and only if $\text{true}(\overline{\pi}) \wedge \overline{\text{bad}}$ occurs, i.e., the two experiments proceed identically unless bad occurs. Thus, it follows from the Difference Lemma that

$$\left| \operatorname{Pr}[\text{true}(\pi)] - \operatorname{Pr}[\text{true}(\overline{\pi})] \right| \leq \sum_{i \in N} \frac{|Q_{i-1}|}{2^{\ell(\lambda)}} \leq \frac{n(\lambda) \cdot n_{\text{sim}}(\lambda)}{2^{\ell(\lambda) - 1}},$$

which completes this proof.

Corollary 1. Let Sim be defined as in Figure 3. Then, for every auxiliary input $z \in \{0, 1\}^*$ and every computationally unbounded adversary $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3)$ totally making q oracle queries and choosing a circuit with s AND gates, $\mathcal{A}(z)$ can distinguish Hybrid$_0$ and Hybrid$_1$ with advantage at most $(2qs + 4s^2)/2^{\lambda - 1}$.

Proof. This corollary follows from Lemma 2 by using $\ell(\lambda) = \lambda$, $n_{\text{sim}}(\lambda) = 2 |f|$, and $n(\lambda) = q + n_{\text{sim}}(\lambda)$, given q queries of \mathcal{A} and $2 |f| = 2s$ queries of Sim.

Then, we will use the H-coefficient technique (Section 3.4) with "transcript padding" to bound the advantage of distinguishing Hybrid$_1$ and Hybrid$_2$.

Lemma 3. Let Sim be defined as in Figure 3. Then, for every auxiliary input $z \in \{0, 1\}^*$ and every computationally unbounded adversary $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3)$ totally making q oracle queries and choosing a circuit with s AND gates, $\mathcal{A}(z)$ can distinguish Hybrid$_1$ and Hybrid$_2$ with advantage at most $(12qs + 30s^2)/2^\lambda$.

15
Proof. Fix z and \mathcal{A}. We regard Hybrid$_1$ (resp., Hybrid$_2$) as the ideal (resp., real) world in the H-coefficient technique, where the computationally unbounded non-uniform adversary $\mathcal{A} = \mathcal{A}(z)$ and $\varepsilon_1, \varepsilon_2$ are computed as follows.

Transcript padding. In either world, \mathcal{A} will interact with an integrated oracle that acts as the two-round challenger in the adaptive experiment and provides interfaces $\pi^+ \in \{\pi^+, \widetilde{\pi}^+\}$ for forward/backward permutation queries. Here, \mathcal{A} can learn $\pi^+(\alpha) = \beta$ if and only if it sent forward query α to π^+ and received response β, or sent backward query β to π^- and received response α.

To compute $\varepsilon_1, \varepsilon_2$ more easily, we ask the oracle to send more messages to \mathcal{A} and \mathcal{A} to make extra queries (in addition to the supposed q queries) in both two worlds. More specifically,

- Upon receiving x from \mathcal{A}, the oracle sends $\widetilde{X} := \{X_i\}_{i \in \mathcal{W}(f)}$ rather than $\widetilde{x} := (\{X_i\}_{i \in \mathcal{W}(f)}, d)$ to \mathcal{A}. In addition to the active input labels given by \widetilde{x}, the former also gives the active internal and

1. Initialize a list $Q_0 = \varnothing$.
2. Sample uniform $c_1, \ldots, c_{n(\lambda)} \leftarrow \{0, 1\}^{\ell(\lambda)}$.
3. for $i \in [1, n(\lambda)]$ do
 4. if π is queried with input $\alpha_i \in \{0, 1\}^{\ell(\lambda)}$ then
 5. if $\exists (\alpha_i, \gamma_i) \in Q_{i-1}$ then Return γ_i as response.
 6. else Sample uniform $\beta_i \leftarrow \{s_i \in \{0, 1\}^{\ell(\lambda)} \mid (s_i, \ldots) \notin Q_{i-1}\}$.
 7. Return γ_i as response and define $Q_i := Q_{i-1} \cup \{(\alpha_i, \gamma_i)\}$.
 8. if π^{+1} is queried with input $\beta_i \in \{0, 1\}^{\ell(\lambda)}$ then
 9. if $\exists (\gamma_i, \beta_i) \in Q_{i-1}$ then Return γ_i as response.
 10. else Sample uniform $\gamma_i \leftarrow \{s_i \in \{0, 1\}^{\ell(\lambda)} \mid (s_i, \ldots) \notin Q_{i-1}\}$.
 11. Return γ_i as response and define $Q_i := Q_{i-1} \cup \{(\gamma_i, \beta_i)\}$.

1. Initialize a list $Q_0 = \varnothing$.
2. Sample uniform $c_1, \ldots, c_{n(\lambda)} \leftarrow \{0, 1\}^{\ell(\lambda)}$.
3. for $i \in [1, n(\lambda)]$ do
 4. if π is queried with input $\alpha_i \in \{0, 1\}^{\ell(\lambda)}$ from \Sim then
 5. if $\exists (\alpha_i, \gamma_i) \in Q_{i-1}$ then Return γ_i as response.
 6. Return $\gamma_i := c_i$ as response and define $Q_i := Q_{i-1} \cup \{(\alpha_i, \gamma_i)\}$.
 8. if π^{+1} is queried with input $\beta_i \in \{0, 1\}^{\ell(\lambda)}$ from \Sim then
 9. if $\exists (\gamma_i, \beta_i) \in Q_{i-1}$ then Return γ_i as response.
 10. else Return $\gamma_i := c_i$ as response and define $Q_i := Q_{i-1} \cup \{(\gamma_i, \beta_i)\}$.

4. if π is queried with input $\alpha_i \in \{0, 1\}^{\ell(\lambda)}$ from \Sim then
 5. if $\exists (\alpha_i, \gamma_i) \in Q_{i-1}$ then Return γ_i as response.
 6. Return $\gamma_i := c_i$ as response and define $Q_i := Q_{i-1} \cup \{(\alpha_i, \gamma_i)\}$.
 7. else if π^{+1} is queried with input $\beta_i \in \{0, 1\}^{\ell(\lambda)}$ from \Sim then
 8. if $\exists (\gamma_i, \beta_i) \in Q_{i-1}$ then Return γ_i as response.
 9. Return $\gamma_i := c_i$ as response and define $Q_i := Q_{i-1} \cup \{(\gamma_i, \beta_i)\}$.

Figure 4: The workflow of oracle $\pi^{+1}(\cdot)$ up to $n(\lambda)$ queries.

Figure 5: The workflow of approximate oracle $\pi^{+1}(\cdot)$ up to $n(\lambda)$ queries, where the differences are highlighted in box.
Bad transcripts. We treat them as “events” to avoid cumbersome notation. The formal events (i.e., the specific sets of oracles)

along with \(X, d\), the oracle sends \(\tilde{x} := \{x_i\}_{i \in W(f)}\) to \(\mathcal{A}\), which are the wire truth values in the evaluation of \(f(x)\). Both two oracles “echo” these values, which are self-evident to \(\mathcal{A}\), to explicitly include them in transcripts. In the experiment, the real-world oracle uses \(x = \{x_i\}_{i \in W_\omega(f)}\) in HG.Encode\(\pi^{\pm_1}(\cdot)\), but the ideal-world oracle can only use \(f(x) = \{x_i\}_{i \in W_\omega(f)}\) in Simln.

Along with \(X, d\), the oracle sends \(\tilde{U} := \{U_{0}^{g}, U_{1}^{g}\}_{g \in \mathcal{G}_\text{and}(f)}\) to \(\mathcal{A}\). In the real world, the oracle computes \(U_{0}^{g} := H(X_a, k_0^{g})\) and \(U_{1}^{g} := H(X_b, k_1^{g})\) for each \(g \in \mathcal{G}_\text{and}(f)\) with \((a, b) := (in_0(g), in_1(g))\). In the ideal world, this \(\tilde{U}\) is output by Simln and is essentially the same hash outputs.

\(\text{(Extra queries)}\) Upon receiving \((X, d, \tilde{x}, \tilde{U})\) from the oracle, \(\mathcal{A}\) also makes a forward permutation query \(X_a \oplus k_0^{g}\) (resp., \(X_b \oplus k_1^{g}\)) for each \(g \in \mathcal{G}_\text{and}(f)\) with \((a, b) := (in_0(g), in_1(g))\), if it has never learned \(\pi^*(X_a \oplus k_0^{g}) = Y\) (resp., \(\pi^*(X_b \oplus k_1^{g}) = Y\)) for some \(Y\) in its interaction with \(\pi^{\pm_1} \in \{\pi^{\pm_1}, \pi^{\pm_1}\}\).

At the end of the experiment (i.e., once all other transcripts are settled), the oracle sends \(\Delta\) to \(\mathcal{A}\). In the real world, the oracle gets this \(\Delta\) from the output of HG.Garble\(\pi^{\pm_1}(\cdot)\). In the ideal world, \(\Delta\) is dummy and sampled by the oracle at this time (note that Sim does not use \(\Delta\)).

According to the two oracle constructions, real-world sample space

and ideal-world sample space

\[
\Omega_{\text{real}} = \{0, 1\}^{\lambda-1} \times \{0, 1\}^{|W_\omega(f)|\lambda} \times S_{\lambda},
\]

\[
\Omega_{\text{ideal}} = \{(0, 1)^{2\lambda}\}|f| \times \{0, 1\}^{\lambda}|W_\omega(f)| \times \{0, 1\}^{s} \times \{0, 1\}^{\lambda-1}. \quad \text{random tape for dummy } \Delta.
\]

Given the oracle constructions, a transcript in the original adaptive experiment will be padded with more literal values. Note that transcript padding will not lower the advantage of \(\mathcal{A}\) since \(\mathcal{A}\) can discard the padding values at will. With the padding, a transcript is of the form:

\[
\tau = (\mathcal{K}_1, (\hat{f}, \tilde{f}), \mathcal{K}_2, (x, (\tilde{x}, d, \tilde{x}, \tilde{U})), \mathcal{K}_3, \Delta),
\]

where \(\mathcal{K}_1, \mathcal{K}_2, \) and \(\mathcal{K}_3\) are the ordered lists of query-response pairs seen in the interleaved interaction with permutation oracles. We do not explicitly consider query direction in these pairs. Given \(\pi^{\pm_1} \in \{0, 1\}, \mathcal{A}\) learns \(\pi^*(\alpha) = \beta\) if and only if there exists \((\alpha, \beta) \in \cup_{\ell=1}^{3}\mathcal{K}_\ell\).

Let \(q_\ell := |\mathcal{K}_\ell|\) for every \(\ell \in \{1, 2, 3\}\) and \(q_S := \sum_{\ell=1}^{3} q_\ell\). It follows from the extra queries that \(q_S \leq q + 2|f|\). Without loss of generality, we assume that \(\mathcal{A}\) only makes non-repeating queries, i.e., it never makes forward query \(\alpha\) to \(\pi^*\) or backward query \(\beta\) to \(\pi_*\) for any learned permutation entry \((\alpha, \beta)\).

Bad transcripts. A transcript \(\tau \in \mathcal{T}_\text{bad}\) if and only if it incurs at least one of the following events\(^7\):

- \(\text{bad}_1\). There exist distinct \((g, u), (g', u') \in \mathcal{G}_\text{and}(f) \times \{0, 1\}\) such that

\[
X_w \oplus k_u^g = X_{w'} \oplus k_{u'}^{g'} \quad \lor \quad U_u^g \oplus \sigma(X_w \oplus k_u^g) = U_{u'}^{g'} \oplus \sigma(X_{w'} \oplus k_{u'}^{g'})
\]

where \(w := in_u(g)\) and \(w' := in_{u'}(g')\), or

\(^7\)Strictly speaking, such bad,’s are the disjunctive predicates of \(\tau \in \mathcal{T}_\text{bad}\) to define, in set-builder notation, a set \(\mathcal{T}_\text{bad} \subseteq \mathcal{T}_\text{bad}\) of bad transcripts. We treat them as “events” to avoid cumbersome notation. The formal events (i.e., the specific sets of oracles) w.r.t. bad,’s are well-defined from \(\mathcal{T}_\text{bad}\) and the two random variables in Section 5.4.
There exists \(g \in \mathcal{G}_{\text{and}}(f) \) such that
\[
(s_b \oplus x_b) \Delta \oplus G_0^g \oplus U_0^g \oplus \sigma(X_a \oplus k_0^g) = x_a \Delta \oplus X_a \oplus G_1^g \oplus U_1^g \oplus \sigma(X_b \oplus k_1^g)
\]
(7)
where \((a, b) := (\text{in}_0(g), \text{in}_1(g))\), or

There exist distinct \(g, g' \in \mathcal{G}_{\text{and}}(f)\) such that
\[
(s_b \oplus x_b) \Delta \oplus G_0^g \oplus U_0^g \oplus \sigma(X_a \oplus k_0^g) = (s_b \oplus x_b') \Delta \oplus G_0^{g'} \oplus U_0^{g'} \oplus \sigma(X_a \oplus k_0^{g'}) \quad \lor \quad (8)
\]
\[
x_a \Delta \oplus X_a \oplus G_1^g \oplus U_1^g \oplus \sigma(X_b \oplus k_0^g) = x_a \Delta \oplus X_a \oplus G_1^{g'} \oplus U_1^{g'} \oplus \sigma(X_b \oplus k_0^{g'}) \quad \lor \quad (9)
\]
\[
(s_b \oplus x_b) \Delta \oplus G_0^g \oplus U_0^g \oplus \sigma(X_a \oplus k_0^g) = x_a \Delta \oplus X_a \oplus G_1^{g'} \oplus U_1^{g'} \oplus \sigma(X_b \oplus k_0^{g'}) \quad \lor \quad (10)
\]
\[
x_a \Delta \oplus X_a \oplus G_1^g \oplus U_1^g \oplus \sigma(X_b \oplus k_0^g) = (s_b \oplus x_b') \Delta \oplus G_0^{g'} \oplus U_0^{g'} \oplus \sigma(X_a \oplus k_0^{g'}) \quad (11)
\]
where \((a, b) := (\text{in}_0(g), \text{in}_1(g))\) and \((a', b') := (\text{in}_0(g'), \text{in}_1(g'))\).

In this case, \(\mathcal{A}\) can check the consistency between the value of \(G_0^g \oplus G_0^{g'}\) and that of \(\Delta\) at the end of experiment without further sending required queries, which are computed from \(\Delta\) to a random permutation or its inverse. In the real world, the consistency certainly holds. However, the ideal-world garbled rows and \(\Delta\) are independently sampled, leading to the consistency only with negligible probability. So, \(\mathcal{A}\) has non-negligible advantage to distinguish the two worlds and the statistical distance, as an upper bound, also blows up.

More specifically, the real world is as follows in this case. The pre-image collision (5) leads to the syntactically same XOR of two hash masks in \(G_0^g, G_0^{g'}\), which can be XORed to cancel all hash masks to check the consistency with \(\Delta\) without further queries. Moreover, the image collision (6) also implies the pre-image collision (5) since \(\pi\) is permutation. The other equalities imply the image collision \(\pi(X_w \oplus \Delta \oplus k_0^g) = \pi(X_w \oplus \Delta \oplus k_0^{g'})\) for some distinct tuple \((g, u), (g', u') \in \mathcal{G}_{\text{and}}(f) \times \{0, 1\}\), \(w := \text{in}_u(g)\), and \(u' := \text{in}_{u'}(g')\). Given permutation \(\pi\), this collision implies the pre-image collision (5), which can be used to see the consistency. However, the above cancelling of hash masks will not give this consistency except with negligible probability in the ideal world.

- **bad**. There exists \(\{ (\alpha, \beta, g) \in \cup_{\ell=1}^3 \mathcal{K}_\ell \times \mathcal{G}_{\text{and}}(f) \} \) such that
\[
\alpha = X_a \oplus \Delta \oplus k_0^g \quad \lor \quad (12)
\]
\[
\alpha = X_b \oplus \Delta \oplus k_1^g \quad \lor \quad (13)
\]
\[
\beta = \sigma(\Delta) \oplus (s_b \oplus x_b) \Delta \oplus G_0^g \oplus U_0^g \oplus \sigma(X_a \oplus k_0^g) \quad \lor \quad (14)
\]
\[
\beta = \sigma(\Delta) \oplus x_a \Delta \oplus X_a \oplus G_1^g \oplus U_1^g \oplus \sigma(X_b \oplus k_1^g) \quad (15)
\]
where \((a, b) := (\text{in}_0(g), \text{in}_1(g))\).

In this case, \(\mathcal{A}\) essentially makes it to guess \(\Delta\) before receiving this value. It allows \(\mathcal{A}\) to distinguish the real world, where every \(G_0^g\) is consistent with \(\Delta\), and the ideal world with a dummy \(\Delta\). So, the statistical distance blows up.

- **bad**. There exists \(\{ (\alpha, \beta, g) \in \cup_{\ell=1}^2 \mathcal{K}_\ell \times \mathcal{G}_{\text{and}}(f) \} \) such that
\[
\alpha = X_a \oplus k_0^g \quad \lor \quad (16)
\]
\[
\alpha = X_b \oplus k_1^g \quad \lor \quad (17)
\]
\[
\beta = U_0^g \oplus \sigma(X_a \oplus k_0^g) \quad \lor \quad (18)
\]
\[
\beta = U_1^g \oplus \sigma(X_b \oplus k_1^g) \quad (19)
\]
where \((a, b) := (\text{in}_0(g), \text{in}_1(g))\).

In this case, \(\mathcal{A}\) can make forward/backward queries w.r.t. some active labels before receiving active input labels and computing other active ones. We use this case to explicitly ensure that these query-response pairs are fixed by the queries to \(\pi^\pm(\cdot)\) in the step 10 to 12 of HG.Garble\(\pi^\pm(\cdot)\) (when \(\tau\) is
produced in the real world) or the queries to $\tilde{\pi}^{\pm 1}(\cdot)$ in the step 9 of $\text{Sim}^{F^{\pi^{\pm 1}(\cdot)}}$ (when τ is produced in the ideal world), instead of the extra queries of \mathcal{A}.

This case is used to simplify probability analysis.

Bounding $1 - \varepsilon_2$. Without loss of generality, we can consider some fixed good transcript τ such that $\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) = \tau] \neq 0$ (if this probability is zero, it is trivial by definition that $\varepsilon_2 = 0$ for this τ). Using Lemma 1, we turn to analyze the sampled oracle’s compatibility (Section 3.4) with such a transcript, instead of the interaction between \mathcal{A} and the sampled oracle.

Note that there is a computationally unbounded non-uniform adversary \mathcal{A}' such that, for every oracle ω, it sends the queries in τ in order in its interaction with ω (e.g., \mathcal{A}' has auxiliary input τ and sends its ordered queries). Fix \mathcal{A}' in the following compatibility analysis so that any real-world or ideal-world oracle will receive the queries in τ in order. For a response c recorded in a fixed τ, let $\omega \vdash c$ denote the event that, fixing the ordered queries as per τ, oracle ω produces c given the corresponding query. Let \mathcal{K}_{i}^{R} denote the order-preserving list of the responses in an ordered list \mathcal{K} of permutation query-response pairs.

First, we compute $\Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)]$. Following from half-gates, a real-world oracle $\omega = (\Delta, \{W_i\}_{i \in \mathcal{W}(f)}, \pi) \in \Omega_{\text{real}}$. It holds that

$$\Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (\mathcal{K}_{1}^{R}, f, \mathcal{K}_{2}^{R}, \tilde{X}, d, \tilde{x}, \tilde{U}, \mathcal{K}_{3}^{R}, \Delta)] .$$

To begin with, every real-world ω certainly produces f' (i.e., the first value in \tilde{f}) and \tilde{x} fixed in τ, which leads to $\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) = \tau] \neq 0$. This non-zero probability implies that (f', \tilde{x}) in τ is honestly and deterministically computed from the fixed queries (f, x). Otherwise, no ideal-world oracle, which computes (f', \tilde{x}) from the same deterministic procedure, can produce this transcript, contradicting the non-zero probability. As every real-world ω will follow the same deterministic procedure, it certainly produces the two values.

Meanwhile, a real-world oracle ω should have the same literal value of Δ as its counterpart in τ. Conditioned on the compatibility so far, the probability

$$\Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (\mathcal{K}_{1}^{R}, f, \mathcal{K}_{2}^{R}, \tilde{X}, d, \tilde{x}, \tilde{U}, \mathcal{K}_{3}^{R}, \Delta)] \cdot \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash \Delta] .$$

Conditioned on the compatibility with (f', \tilde{x}, Δ), a real-world ω should also be compatible with $(\cup_{i=1}^{3} \mathcal{K}_{i}^{R}, F, \tilde{U})$ and some active labels in \tilde{X} such that

(i) $\pi^{\pm 1}$ maps the fixed permutation queries to the responses in $\cup_{i=1}^{3} \mathcal{K}_{i}^{R}$.

(ii) For each $i \in \mathcal{W}(f)$, it holds that $X_i = W_i \oplus x_i \Delta$.

(iii) For each $g \in \mathcal{G}_{\text{and}}(f)$ with $(a, b) := (\text{in}_0(g), \text{in}_1(g))$, it holds that

$$H(X_a, k_0^g) := \pi(X_a \oplus k_0^g) \oplus \sigma(X_a \oplus k_0^g) = U_0^g,$$

$$H(X_b, k_1^g) := \pi(X_b \oplus k_1^g) \oplus \sigma(X_b \oplus k_1^g) = U_1^g.$$
(iv) For each $g \in \mathcal{G}_{and}(f)$ with $(a, b, c) := (in_0(g), in_1(g), out(g))$, it holds that
\begin{align}
X_c &= H(X_a, k_0^g) \oplus H(X_b, k_0^g) \oplus s_a G_0^g \oplus s_b (G_1^g \oplus X_a), \\
G_0^g &= H(X_a, k_0^g) \oplus H(X_a \oplus \Delta, k_0^g) \oplus (s_b \oplus x_b) \Delta, \\
G_1^g &= H(X_b, k_0^g) \oplus H(X_b \oplus \Delta, k_0^g) \oplus x_a \Delta \oplus X_a,
\end{align}
where the bits $x_a, x_b, s_a = \text{lsb}(X_a), s_b = \text{lsb}(X_b)$ are given in τ.

Conditioned on the compatibility so far, every real-world oracle ω is always compatible with the leftover values in τ, i.e., decoding table d and other active labels in X, which are deterministically computed from XOR combination. The reason is that, for τ ensuring $\Pr_{\omega \leftarrow \Omega_{bad}} [Y(\omega) = \tau] \neq 0$, these values should be honestly determined by the conditioned values as in the real world. Otherwise, this probability will be zero for an ideal-world oracle, which obtains them from a consistent deterministic computation as per the conditioned values. As every real-world oracle ω honestly follows the real-world computation, this “leftover” compatibility must hold conditioned on the previous compatibility.

It remains to compute the conditional probabilities for (i) to (iv). Consider (iii) and (iv). We note that every good τ with $\Pr_{\omega \leftarrow \Omega_{bad}} [Y(\omega) = \tau] \neq 0$ already implies (20) and (21). Otherwise, no ideal-world oracle, which computes these values according to the step 9 and 10 in SimF (using the given tweakable hash function), can produce τ, contradicting the non-zero probability.

Then, consider (22), the leftover part of (iii) and (iv). We rewrite (22) as:
\[\mathcal{V} := \left\{ g \in \mathcal{G}_{and}(f), (a, b) := (in_0(g), in_1(g)) : \begin{array}{l}
\pi(X_a \oplus k_0^g) \oplus \pi(X_a \oplus \Delta \oplus k_0^g) = \sigma(\Delta) \oplus (s_b \oplus x_b) \Delta \oplus G_0^g, \\
P_{g,0} \left(\frac{\pi(X_a \oplus k_0^g) \oplus \pi(X_a \oplus \Delta \oplus k_0^g)}{\pi(X_b \oplus k_1^g) \oplus \pi(X_b \oplus \Delta \oplus k_1^g)} = \sigma(\Delta) \oplus x_a \Delta \oplus X_a \oplus G_1^g \right) = P_{g,3}.
\end{array} \right.\]

As τ is a good transcript, there are exactly $4|f|$ pairwise distinct permutation pre-images on the left hand (otherwise, there will be a pair of permutation pre-images leading to (5) in bad$_1$ or a permutation pre-image leading to (12) \lor (13) in bad$_2$ given the extra queries). \mathcal{V} has exactly $4|f|$ syntactically different variables $\mathcal{P} := \{P_{g,0}, P_{g,1}, P_{g,2}, P_{g,3}\}_{g \in \mathcal{G}_{and}(f)}$. They fix the same number of the entries of permutation π in a real-world ω if and only if their literal values fixed by τ are also pairwise distinct. Note that every good transcript τ indeed fixes exact one such assignment of these values for the following reasons:

• (20) already holds for τ, i.e., for $g \in \mathcal{G}_{and}(f)$ with $(a, b) := (in_0(g), in_1(g))$,
\begin{align}
P_{g,0} &:= \pi(X_a \oplus k_0^g) = U_0^g \oplus \sigma(X_a \oplus k_0^g), \\
P_{g,1} &:= \pi(X_b \oplus k_1^g) = U_1^g \oplus \sigma(X_b \oplus k_1^g). \tag{23}\end{align}

The literal values of $\{P_{g,0}, P_{g,1}\}_{g \in \mathcal{G}_{and}(f)}$ can be fixed by the responses in \mathcal{K}_3^R given the extra queries and will be pairwise distinct according to the impossible (6) from bad_1.

• For $g \in \mathcal{G}_{and}(f)$ with $(a, b) := (in_0(g), in_1(g))$, $\{P_{g,2}, P_{g,3}\}_{g \in \mathcal{G}_{and}(f)}$ are literally assigned the following values fixed by τ according to \mathcal{V} and (23):
\begin{align}
P_{g,2} &:= \pi(X_a \oplus \Delta \oplus k_0^g) = \sigma(\Delta) \oplus (s_b \oplus x_b) \Delta \oplus G_0^g \oplus U_0^g \oplus \sigma(X_a \oplus k_0^g), \\
P_{g,3} &:= \pi(X_b \oplus \Delta \oplus k_1^g) = \sigma(\Delta) \oplus x_a \Delta \oplus X_a \oplus G_1^g \oplus U_1^g \oplus \sigma(X_b \oplus k_1^g). \tag{24}\end{align}

Clearly, one can see that the literal values of $\{P_{g,2}, P_{g,3}\}_{g \in \mathcal{G}_{and}(f)}$ are pairwise distinct according to the impossible (7) \lor (8) \lor (9) \lor (10) \lor (11) from bad_1.

• The goodness of τ also ensures that there do not exist $P' \in \{P_{g,0}, P_{g,1}\}_{g \in \mathcal{G}_{and}(f)}, P'_\Delta \in \{P_{g,2}, P_{g,3}\}_{g \in \mathcal{G}_{and}(f)}$.

20
such that \(P' = P'_\Delta \). Otherwise, this equality and (24) ensure that there exist \((g, u) \in \mathcal{G}_{\text{and}}(f) \times \{0, 1\}\) and \(g' \in \mathcal{G}_{\text{and}}(f)\) such that

\[
\pi(X_u \oplus k''_u) = \pi(X_{u'} \oplus \Delta \oplus k''_u) = \sigma(\Delta) \oplus (s_{u'} \oplus x_{u'}) \Delta \oplus G''_0 \oplus \sigma(X_{u'} \oplus k''_u) \quad \lor \\
\pi(X_u \oplus k''_u) = \pi(X_{u'} \oplus \Delta \oplus k''_u) = \sigma(\Delta) \oplus x_{u'} \Delta \oplus X_{a'} \oplus G''_1 \oplus \sigma(X_{u'} \oplus k''_u)
\]

(25)

where \(w := \text{in}_u(g)\) and \((a', b') := (\text{in}_0(g'), \text{in}_1(g'))\). Recall that \(\neg \text{bad}_3\) and the extra queries implies \((X_u \oplus k''_u, \pi(X_u \oplus k''_u)) \in \mathcal{K}_3\). As a result, (25) leads to contradiction with the impossible (14) \(\lor (15)\) from \(\neg \text{bad}_2\).

Putting these cases together, we can see that \(\tau\) yields a value assignment of \(\mathcal{P}\), and this assignment fixes exact \(4 |f|\) entries of real-world permutation \(\pi\).

Conditioned on \(\neg \text{bad}_1 \land \neg \text{bad}_3\) of good transcript \(\tau\), \(2 |f|\) extra queries are non-repeating and the number of non-repeating queries is \(q + 2 |f| = q\Sigma\). So, \(2 |f|\) responses in \(\bigcup_{\ell=1}^3 \mathcal{K}_\ell\) for the non-repeating extra queries are fixed by the values in \(\mathcal{P}\) while the other \(q\Sigma - 2 |f| = q\) responses are fixed by real-world \(\pi\) (conditioned on the values in \(\mathcal{P}\)). Using (i), (ii), (iii), and (iv) together with the “leftover” compatibility, we have in the real world that

\[
\Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (\mathcal{K}_1^R, \mathcal{K}_2^R, \mathcal{K}_3^R) \mid \omega \vdash (f', \bar{x}) \land \omega \vdash \Delta] = \frac{1}{(2^\lambda)^{2|f|}} \cdot \frac{1}{(2^\lambda)!} = \frac{1}{(2^\lambda)^{2|f|} (2^\lambda)!} \cdot \frac{1}{2^{\lambda-1}}.
\]

Second, in the ideal world, condition \(\neg \text{bad}_3\) ensures that the responses for the \(2 |f|\) extra queries are fixed by the queries in the step 9 of SimF\(\tilde{\Pi}^\pm(\cdot)\). So, each \(U''_\ell\) is independently uniform according to the randomness of \(\tilde{\Pi}^\pm\) and the pairwise distinct pre-images by \(\neg \text{bad}_1\). From the garbled rows, the active input labels, and these \(U''_\ell\), the active internal and output labels (as well as decoding table \(d\)) are fixed in topology order. So, we have

\[
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\omega \in \text{comp}_{\text{ideal}}(\tau)] = \Pr_{\omega \leftarrow \text{comp}_{\text{ideal}}(\tau)} [\omega \vdash (f', \bar{x}, d, \bar{x}, \bar{U}, \Delta)] \cdot \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\omega \vdash (f, \bar{x}, d, \bar{x}, \bar{U}, \Delta)] = \Pr_{\omega \leftarrow \text{comp}_{\text{ideal}}(\tau)} [\omega \vdash (f', \bar{x}, d, \bar{x}, \bar{U}, \Delta)] \cdot \frac{1}{2^{|W_{\text{real}}(f)|} + 2\lambda |f| + (\lambda - 1) + 2\lambda |f|}.
\]

According to the condition \(\neg \text{bad}_1 \land \neg \text{bad}_3\) and the \(2 |f|\) extra queries, there are exact \(q + 2 |f| = q\Sigma\) non-repeating queries. Moreover, \(2 |f|\) responses in \(\bigcup_{\ell=1}^3 \mathcal{K}_\ell\) for the non-repeating extra queries are fixed by the conditioned values but the other responses are fixed by \(\tilde{\Pi}^\pm\) for other \(q\Sigma - 2 |f| = q\) non-repeating queries (which are responded with the rejection sampling, see Figure 5).

Let \(\mathcal{N} \subseteq [1, q\Sigma]\) denote the index set of these \(q\) queries in \(q\Sigma\) non-repeating queries to \(\tilde{\Pi}^\pm(\cdot)\) such
that \(|\mathcal{N}| = q\). The rejection sampling in \(\hat{z}^{\pm1}(\cdot)\) gives

\[
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\omega \vdash (K_0^R, K_2^R, K_3^R) \mid \omega \vdash (\tilde{f}, \tilde{X}, \tilde{d}, \tilde{x}, \tilde{U}, \Delta)] = \prod_{\omega \in \mathcal{N}} \frac{1}{2^{\lambda} - (i - 1)} \leq \frac{1}{2^\lambda - 2 |f|} \times \frac{2^\lambda - (2 |f| + 1)}{2^\lambda - (q + 1) - 1} = \frac{(2^\lambda - 2 |f|)_q}{(2^\lambda - (q + 1))_q} \cdot \frac{1}{2^\lambda - 1}.
\]

So, we can have \(\varepsilon_2 = 0\) since, for every \(|f| \geq 0\) and every \(q \geq 0\),

\[
\frac{\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\omega \in \text{comp}_{\text{ideal}}(\tau)]}{\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\omega \in \text{comp}_{\text{ideal}}(\tau) \setminus \{\omega \vdash (\tilde{f}, \tilde{X}, \tilde{d}, \tilde{x}, \tilde{U}, \Delta)\}]} \leq \frac{(2^\lambda - 2 |f|)_q \cdot (2^\lambda/4 |f|)}{(2^\lambda)_q \cdot (2^\lambda)_q \cdot (2^\lambda/2 |f|)} \leq \frac{(2^\lambda)_q \cdot (2^\lambda/2 |f|)}{(2^\lambda)_q \cdot (2^\lambda)_q \cdot (2^\lambda/2 |f|)} = \frac{(2^\lambda)_q \cdot (2^\lambda/2 |f|)}{(2^\lambda)_q \cdot (2^\lambda)_q \cdot (2^\lambda/2 |f|)} \geq 1.
\]

Bounding \(\varepsilon_1\). First, consider \(bad_1 \lor bad_2\). For each \(i \in [2, 2 |f|]\), let \(coll_i\) denote the event that there exist distinct \((g, u), (g', u')\) in "the first \(i\) pairs of \(G_{\text{and}}(f) \times \{0, 1\}\)" such that \(X_w \oplus k^g = X_w \oplus k^g\), where \(w := in_u(g)\) and \(w' := in_u(g')\), query\(_i\) denote the event that there exists \((\alpha, \beta), (g, u)\) \(\in \bigcup_{\ell=1}^{2\lambda} K_\ell \times \) "the first \(i\) pairs of \(G_{\text{and}}(f) \times \{0, 1\}\)" such that \(\alpha = X_w \oplus k^g\), where \(w := in_u(g)\), and \(bFwd_i\) denote \(coll_i \lor \text{query}_i\). Then, \(Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [bFwd_i | |] = Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [5 \lor (16) \lor (17)]\). We will prove the following bound using an induction:

\[
Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [bFwd_i] \leq \frac{i(i - 1) + 2i \cdot (q_1 + q_2)}{2^{\lambda+1}}.
\]

In the base case \((i = 2)\), \(X_w\) and \(X_{w'}\) are two active circuit input labels so that \(coll_2\) occurs with probability at most \(1/2^\lambda\) due to the sampling in the step 2 of \(SimF\) (note that the probability is zero if \(w = w'\)). For \(\text{query}_2\), each of the two labels matches a fixed \(\alpha \oplus k^g\) also with probability \(1/2^\lambda\). Following from a union bound, the target bound holds for \(i = 2\).

Assume that the probability bound holds for \(i \in [2, 2 |f| - 1]\) and consider the \(i + 1\) case. Using the law of total probability, we have

\[
Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [bFwd_{i+1}] = Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [bFwd_{i+1} \mid bFwd_i] \cdot Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [bFwd_i] + Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [bFwd_{i+1} \mid \neg bFwd_i] \cdot Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\neg bFwd_i] \leq Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [bFwd_i] + Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [bFwd_{i+1} \mid \neg bFwd_i] \leq \frac{i(i - 1) + 2i \cdot (q_1 + q_2)}{2^{\lambda+1}} + \frac{Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [bFwd_{i+1} \mid \neg bFwd_i]}{2^{\lambda+1}}.
\]

Let \((g^*, u^*)\) denote the \((i + 1)\)-th pair of \(G_{\text{and}}(f) \times \{0, 1\}\) and \(w^* := in_{u^*}(g^*)\). To incur \(coll_{i+1}\) conditioned on \(\neg bFwd_i\), we have \(X_{w^*} \oplus k^{g^*} = X_w \oplus k^{g^*}\), where \((g, u)\) in "the first \(i\) pairs of \(G_{\text{and}}(f) \times \{0, 1\}\)" and \(w := in_u(g)\). Recall that each active label \(X_i\) is the XOR from (i) some active circuit input labels, and/or (ii) some active output labels of the precedent AND gates, i.e.,

\[
X_i = \bigoplus_{w \in \mathcal{I} \subseteq \mathcal{W}_{\text{and}}(f) \cdot X_w \bigoplus \bigoplus_{w \in \mathcal{K} \subseteq \mathcal{W}_{\text{and}}(f)} X_w = \bigoplus_{w \in \mathcal{I} \subseteq \mathcal{F} \cdot X_w \in \{0, 1\}^\lambda}.
\]
for $I_i \cap J_i \neq \emptyset$. We use (26) to rewrite the equality to incur coll_{i+1} as follows:

$$
\bigoplus_{i \in (J_w \ominus I_w) \ominus (J_w \ominus J_w^*)} X_i = k_w^a \oplus k_w^a^* \in \{0, 1\}^\lambda.
$$

Here, the active circuit input labels in $I_w \ominus I_w^*$ are sampled at random in Sim. For the active labels in $J_w \ominus J_w^*$, they are masked by the responses sent from $\tilde{\pi}^{\pm 1}(\cdot)$ to Sim. Conditioned on $\neg b\text{Fwd}_i$, these responses are taken from uniform $c_1, \ldots, c_{\ell}(\lambda)$ in $\tilde{\pi}^{\pm 1}(\cdot)$ and pairwise independent since the queries (i.e., $X_w \oplus k_w^a$ for (g, u)) are “the first i pairs of $G_{\text{rand}}(f) \times \{0, 1\}$” and $w := in_u(g)$ are pairwise distinct under this condition. The active labels in $J_w \ominus J_w^*$ are uniform, and the XOR on the left hand is uniform unless $I_w = I_w^*$ and $J_w = J_w^*$. That is, the equality to incur coll_{i+1} holds with probability at most $1/2^\lambda$ for some fixed (g, u). The same argument and probability hold for the equality $\alpha = X_w^a \oplus k_w^a^*$ to incur query w_{i+1}. Using a union bound,

$$
\Pr_{\omega \leftarrow U_{\text{ideal}}}[b\text{Fwd}_{i+1} \mid \neg b\text{Fwd}_i] \leq \frac{i + (q_1 + q_2)}{2^\lambda},
$$

which concludes the induction for the $i + 1$ case. We have

$$
\Pr_{\omega \leftarrow U_{\text{ideal}}}[b\text{Fwd}_{2|f}] \leq \frac{2|f|(2|f| - 1) + 4|f| \cdot (q_1 + q_2)}{2^{\lambda+1}}.
$$

(27)

Consider (6), (7), (8), (9), (10), (11), (18), and (19) conditioned on $b\text{Fwd}_{2|f}$. In each of them, $U_w^a \oplus \sigma(X_w \oplus k_w^a)$ is the response for query $X_w \oplus k_w^a$ to $\tilde{\pi}^{\pm 1}(\cdot)$. Conditioned on $\neg b\text{Fwd}_i$, these responses are taken from uniform $c_1, \ldots, c_{\ell}(\lambda)$ in $\tilde{\pi}^{\pm 1}(\cdot)$ and pairwise independent as the queries are pairwise distinct under this condition. Therefore, each of them occurs with probability $1/2^\lambda$ for some fixed quantifier. Let $b\text{Fwd} := (6) \lor (7) \lor (8) \lor (9) \lor (10) \lor (11) \lor (18) \lor (19)$. Taking a union bound over all quantifiers, we have

$$
\Pr_{\omega \leftarrow U_{\text{ideal}}}[b\text{Fwd} \mid \neg b\text{Fwd}_{2|f}] \leq \frac{2|f|(2|f| - 1) + 4|f| \cdot (q_1 + q_2)}{2^\lambda}.
$$

(28)

Using (27) and (28), we have

$$
\Pr_{\omega \leftarrow U_{\text{ideal}}}[\text{bad}_1 \lor \text{bad}_3] = \Pr_{\omega \leftarrow U_{\text{ideal}}}[b\text{Fwd}_{2|f} \lor b\text{Fwd}] = \Pr_{\omega \leftarrow U_{\text{ideal}}}[b\text{Fwd}_{2|f}] + \Pr_{\omega \leftarrow U_{\text{ideal}}}[b\text{Fwd} \mid \neg b\text{Fwd}_{2|f}] \leq 3\frac{|f|(2|f| - 1) + 4|f| \cdot (q_1 + q_2)}{2^\lambda}.
$$

(29)

Then, consider bad_2. From (12) (resp., (13)), we see $\Delta = \alpha \oplus X_a \oplus k_0^a$ (resp., $\Delta = \alpha \oplus X_b \oplus k_0^b$), occurring with probability $2^{-(\lambda - 1)}$ due to the randomness of Δ. In (14), if $s_b \oplus x_b = 0$, linear orthomorphism σ ensures that

$$
\Delta = \sigma^{-1}(\beta \oplus G_0^a \oplus U_0^a \oplus \sigma(X_a \oplus k_0^a)),
$$

which occurs with probability $2^{-(\lambda - 1)}$; if $s_b \oplus x_b = 1$, according to permutation $\sigma'(x) := \sigma(x) \oplus x$ well-defined from σ, it holds with the same probability that

$$
\Delta = \sigma'^{-1}(\beta \oplus G_0^a \oplus U_0^a \oplus \sigma(X_a \oplus k_0^a)).
$$

Similar result holds for (15). Taking a union bound over all pairs, we have

$$
\Pr_{\omega \leftarrow U_{\text{ideal}}}[\text{bad}_2] \leq \frac{4|f| \cdot (q_1 + q_2 + q_3)}{2^{\lambda-1}}.
$$

(30)
We have a bound ε_1 from (29) and (30):

$$\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) \in T_{\text{bad}}] = \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_1 \lor \text{bad}_2 \lor \text{bad}_3]$$

$$\leq \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_1 \lor \text{bad}_3] + \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_2]$$

$$\leq \frac{3|f|(2|f|-1) + 12|f| \cdot (q + 2|f|)}{2^\lambda}$$

$$= \frac{12qs + 30s^2 - 3s}{2^\lambda} = \varepsilon_1.$$

This lemma follows from the H-coefficient technique with the above $\varepsilon_1, \varepsilon_2$. □

Acknowledgements

Xiao Wang would like to thank Ran Canetti and Vinod Vaikuntanathan for initial discussion during his post-doc. The authors would like to thank Ben Riva and Yehuda Lindell for explanations of some related work. Work of Kang Yang is supported by the National Natural Science Foundation of China (Grant Nos. 62102037 and 61932019). Work of Xiao Wang is supported by DARPA under Contract No. HR001120C0087, NSF award #2016240, #2318974 and research awards from Meta and Google. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Work of Yu Yu is supported by the National Natural Science Foundation of China (Grant Nos. 62125204 and 92270201), the National Key Research and Development Program of China (Grant No. 2018YFA0704701), and the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008). Yu Yu also acknowledges the support from the XPLORER PRIZE. Work of Zheli Liu is supported by the National Natural Science Foundation of China (Grant No. 62032012).

References

A More Preliminaries

Define the following notation in the appendices. Let bold lowercase letters (e.g., a) denote column vectors and bold uppercase letters (e.g., A) denote matrices. Let I_n denote the n-by-n identity matrix. Let $\text{Half}_0(a) \in \mathbb{F}_{2^n}$ (resp., $\text{Half}_1(a) \in \mathbb{F}_{2^n}$) denote the lower (resp., upper) half of vector $a \in \mathbb{F}_{2^n}$. We can also define $\text{lsb}(a) := \text{lsb}(\text{Half}_0(a))$ for vector $a \in \mathbb{F}_{2^n}$. Let \otimes denote the Kronecker product of matrices. Let A^+ denote the left inverse of matrix A. We will use \mathbb{F}_{2^n}, \mathbb{F}_{2^m}, and $\{0,1\}^n$ interchangeably.

A generalized definition of linear orthomorphism is described as follows:

Definition 2 (Linear orthomorphism). A permutation $\sigma : G \rightarrow G$ over an additive Abelian group G is called a linear orthomorphism for a function family \mathcal{L} of some linear functions from G to G, if (i) $\sigma(x+y) = \sigma(x) + \sigma(y)$ for any $x, y \in G$, (ii) $\sigma'(x) := \sigma(x) - L(x)$ is also a permutation for every $L \in \mathcal{L}$, and (iii) σ, σ' and their inverses are efficiently computable. We will simply call σ a linear orthomorphism if \mathcal{L} contains only the identity function.

For half-gates [ZRE15], we can use the two instantiations of σ in Section 3.1. For three-halves [RR21], we require a linear orthomorphism $\sigma : \mathbb{F}_{2^{n/2+1}}^2 \rightarrow \mathbb{F}_{2^{n/2+1}}^2$ for the function family

$$\mathcal{L} = \{L_{\xi_1,\xi_2,\xi_3,\xi_4} : \mathbb{F}_{2^{n/2+1}}^2 \rightarrow \mathbb{F}_{2^{n/2+1}}^2 \}_{\xi_1,\xi_2,\xi_3,\xi_4 \in \mathbb{F}_{2^n}}.$$

The following linear orthomorphism σ is suggested by three-halves:

$$\sigma \left(\begin{bmatrix} x_L \\ x_R \end{bmatrix} \right) = \left[\begin{bmatrix} c \cdot x_L \\ c \cdot x_R \end{bmatrix} \right]$$

where $c \in \mathbb{F}_{2^{n/2+1}} \setminus \mathbb{F}_2$ is a fixed element and the multiplication is in $\mathbb{F}_{2^{n/2+1}}$.

Auxiliary circuit notation for the proofs in appendices. Given a circuit f with fan-in two and fan-out one, we define:

- $\mathcal{Y}(f), \ldots, \mathcal{Y}_m(f) \subseteq \mathcal{W}_{\text{out}}(f)$: $m \geq 1$ maximal non-empty partitions of circuit output wires such that, for every $i \in [1, m]$ and every distinct $w, w' \in \mathcal{Y}_i(f)$, wire w and w' are from the same XOR combination of (i) some circuit input wires, and/or (ii) some output wires of last-level AND gates. We point out that $\sum_{i=1}^m |\mathcal{Y}_i(f)| = |\mathcal{W}_{\text{out}}(f)| \geq m$.

- $\mathcal{Z}(f) \subseteq \mathcal{W}_{\text{and}}(f)$: The set of the output wires of last-level AND gates.

- $\mathcal{X}(f) := \mathcal{W}_{\text{in}}(f) \cup \mathcal{Z}(f)$.

- For each $i \in [1, m]$, let $\mathcal{X}_i(f) \subseteq \mathcal{X}(f)$ denote the set collecting the wires used to XOR-combine the circuit output wires in $\mathcal{Y}_i(f)$, and $y_i(f)$ denote the first (i.e., representative) wire in $\mathcal{Y}_i(f)$.

For three-halves, we also define:

- For an AND gate $g \in \mathcal{G}_{\text{and}}(f)$, let $\text{in}_2(g)$ denote the global alias of all wires that syntactically use a pair of labels $(W_a \oplus W_b, W_a \oplus W_b \oplus \Delta)$ with $a := \text{in}_0(g)$ and $b := \text{in}_1(g)$ in free-XOR. If no such a wire exists, we define it artificially. See [RR21, Section 6.2] for details.

- $\mathcal{W}_2(f) := \bigcup_{g \in \mathcal{G}_{\text{and}}(f)} \{\text{in}_0(g), \text{in}_1(g), \text{in}_2(g)\}$.

- Let $n_i(f) \geq 0$ denote the number of times the wire i is used for the input to the AND gates in f.

- $N := \sum_{i \in \mathcal{W}_2(f)} n_i(f)/2$.

- $M := |\{i \in \mathcal{W}_2(f) \mid n_i(f) \text{ is odd}\}|$.

29
B Proof of Lemma 1

Lemma 1 ([DLMS14]). Let the notations be defined in Section 3.4. Then, for every auxiliary input \(z \in \{0, 1\}^* \), every computationally unbounded adversary \(\mathcal{A} \), and every attainable transcript \(\tau \in \mathcal{T}_{\mathcal{A}(z)} \), it holds that

\[
\Pr_{\omega \leftarrow \Omega_{\text{real}}} [X(\omega) = \tau] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)],
\]

\[
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) = \tau] = \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\omega \in \text{comp}_{\text{ideal}}(\tau)].
\]

Proof. Let \(M^O \rightarrow x \) be the predicate that is true if and only if the interaction between \(M \) and oracle \(O \) produces a transcript with literal value \(x \).

We have that, for every computationally unbounded non-uniform adversary \(\mathcal{A} = \mathcal{A}(z) \) and every attainable transcript \(\tau \in \mathcal{T}_{\mathcal{A}} \),

\[
\Pr_{\omega \leftarrow \Omega_{\text{real}}} [X(\omega) = \tau] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \{\omega \in \Omega_{\text{real}} \mid \mathcal{A}^{\omega} \rightarrow \tau\}],
\]

\[
\Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \{\omega \in \Omega_{\text{real}} \mid \exists \mathcal{A}' : \mathcal{A}'^{\omega} \rightarrow \tau\}] \]

\[
= \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \{\omega \in \Omega_{\text{real}} \mid (\exists \mathcal{A}' : \mathcal{A}'^{\omega} \rightarrow \tau) \land \tau \in \mathcal{T}_{\mathcal{A}}\}]
\]

where \(\mathcal{A}, \mathcal{A}', \omega, \) and \(\omega' \) are deterministic (c.f. Section 3.4).

We claim that, for every computationally unbounded non-uniform \(\mathcal{A} \), every attainable \(\tau \in \mathcal{T}_{\mathcal{A}} \), and every \(\omega \in \Omega_{\text{real}} \), the predicate equivalence \(\mathcal{A}^{\omega} \rightarrow \tau \Leftrightarrow (\exists \mathcal{A}' : \mathcal{A}'^{\omega} \rightarrow \tau) \land (\exists \omega' : \mathcal{A}^{\omega'} \rightarrow \tau) \) holds. The forward implication is obvious by using \(\mathcal{A}' := \mathcal{A} \) and \(\omega' := \omega \). For the backward implication, we can use in an induction that \(\tau \) is an ordered list of query-response pairs \(\{(q_1, r_1), \ldots\} \).

In the base case, \(\mathcal{A} \) (resp., \(\mathcal{A}' \)) will send query \(q_1 \) to and receive response \(r_1 \) from \(\omega' \) (resp., \(\omega \)) according to the same fixed \(\tau \). As \(q_1 \) (resp., \(r_1 \)) is the first query (resp., response) of \(\mathcal{A} \) (resp., \(\omega \)) so that there is no previous list on which it can depend, \(\mathcal{A} \) will also send \(q_1 \) and receive \(r_1 \) if it is given oracle \(\omega \). We assume that the interaction between \(\mathcal{A} \) and \(\omega \) has produced the same list of query-response pairs \(\tau_{i-1} = \{(q_1, r_1), \ldots, (q_{i-1}, r_{i-1})\} \), which is a prefix of \(\tau \). It is known from the same fixed \(\tau \) that, conditioned on the same previous list \(\tau_{i-1} \), \(\mathcal{A} \) (resp., \(\mathcal{A}' \)) will send query \(q_i \) to and receive response \(r_i \) from \(\omega' \) (resp., \(\omega \)). As a result, if \(\mathcal{A} \) accesses \(\omega \) for the \(i \)-th query conditioned on \(\tau_{i-1} \), \(\mathcal{A} \) will also send \(q_i \) as query and receive \(r_i \), which only depends on \(\tau_{i-1} \) in oracle \(\omega \). The above induction concludes that the two predicates are equivalent for every non-uniform \(\mathcal{A} \), attainable \(\tau \in \mathcal{T}_{\mathcal{A}} \), and \(\omega \in \Omega_{\text{real}} \). So, we have

\[
\Pr_{\omega \leftarrow \Omega_{\text{real}}} [X(\omega) = \tau] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)].
\]

We can also prove the ideal-world result using the same induction. \(\square \)

C Adaptive Security of Half-Gates in pRPM

We prove that the original implementation of the half-gates scheme [ZRE15], which is identical to Figure 2 but sends decoding table \(\hat{d} \) as part of garbled circuit \(\hat{f} \), is adaptively secure in the pRPM and does not suffer from the lower bound in the npRPM. We refer to Appendix A for the additional notation.

Theorem 5. Let \(H(X, k) = \pi(X \oplus k) \oplus \sigma(X \oplus k) \) be a tweakable hash function where \(X, k \in \{0, 1\}^\lambda \), \(\pi \in S_\lambda \) is random permutation, and \(\sigma : \{0, 1\}^\lambda \rightarrow \{0, 1\}^\lambda \) is a linear orthomorphism. Then, half-gates ([ZRE15]) is a \(\geq \lambda \)-garbling scheme with \((q, s, \varepsilon)\)-adaptive security in the pRPM, where \(\varepsilon = (8qs + 21s^2)/2^{\lambda - 1} \).
SimF(f):
1: \(F \leftarrow \{0, 1\}^{|f|}, d \leftarrow 2^{\lceil |W_{\text{in}}(f)| \rceil} \) such that
 i. For each \(i \in [1, m] \) and each wire \(j \in \mathcal{Y}(f) \), \(d_j = d_{y_i(f)} \).
 ii. For each \((\mu_1, \ldots, \mu_m) \in \mathbb{F}_2^m \) such that \(\bigoplus_{i=1}^m X_i(f) = \varnothing \), \(\bigoplus_{i=1}^m d_{y_i(f)} = 0 \).
2: return \(\tilde{f} := (f' := f, F, d) \), \(\text{st}_{\text{sim}} := (\text{st}_{\text{sim}}, f, F, d) \)

Simln(f(x)):
1: \(\{X_i\}_{i \in \mathcal{X}(f)} := \{0, 1\}^{|X(f)|} \) such that, for each \(j \in [1, m] \), \(\text{lsb}(\bigoplus_{i \in X_i(f)} X_i) = d_{y_j(f)} \oplus f(x)_{y_j(f)} \).
2: for \(g \in \mathcal{G}(f) \) in topology order do
3: \(\langle a, b, c \rangle := (\text{in}(g), \text{in}(g), \text{out}(g)) \)
4: if type \((g) = \text{XOR} \) then \(X_c := X_a \oplus X_b \)
5: else if type \((g) = \text{AND} \) then
6: \(k_0 := 2 \cdot g - 1, k_0 := 2 \cdot g \)
7: \(s_a := \text{lsb}(X_a), s_b := \text{lsb}(X_b) \)
8: if \(c \in \mathcal{Z}(f) \) then
9: \(U_0^c \leftarrow \{0, 1\}^\lambda \)
10: \(U_0^c := X_c \oplus U_0^c \oplus s_a G_0^c \oplus s_b (G_1^c \oplus X_a) \)
11: else if \(c \notin \mathcal{Z}(f) \) then
12: \(U_0^c, U_0^c := \{0, 1\}^\lambda \)
13: \(X_c := U_0^c \oplus U_0^c \oplus s_a G_0^c \oplus s_b (G_1^c \oplus X_a) \)
14: (Programming) Add two pairs \((X_a \oplus k_0^c, U_0^c \oplus \sigma(X_a \oplus k_0^c)) \) and \((X_b \oplus k_1^c, U_0^c \oplus \sigma(X_b \oplus k_1^c)) \)
 to the list \(Q \) kept in \(\text{st}_{\text{sim}} \), if they cause no pre-image collision or image collision in \(Q \), to ensure
 \[
 \pi(X_a \oplus k_0^c) \oplus \sigma(X_a \oplus k_0^c) = U_0^c, \quad \pi(X_b \oplus k_1^c) \oplus \sigma(X_b \oplus k_1^c) = U_0^c.
 \]
15: return \(\tilde{f} := \{X_i\}_{i \in \mathcal{W}_{\text{out}}(f)}, \text{st}_{\text{sim}} := (\text{st}_{\text{sim}}, \tilde{X}, \tilde{U}) \) where \(\text{st}_{\text{sim}} \) on the right hand has an updated list \(Q \), \(\tilde{X} := \{X_i\}_{i \in \mathcal{W}(f)}, \tilde{U} := \{U_0^c, U_0^c\}_{g \in \mathcal{G}(f)} \).

Figure 6: Our simulator for half-gates in the pRPM.

Proof. The correctness has been proved in the original work [ZRE15]. We only need to consider the simulation.

Our simulator Sim consists of (SimF, Simln) in Figure 6 and Simp±, which emulates the random permutation and its inverse on-the-fly. More specifically, there is a list \(Q \) of query-response pairs in internal state \(\text{st}_{\text{sim}} \). Upon receiving forward query \(\alpha \) (resp., backward query \(\beta \)) from \(\mathcal{A} \), to SimP (resp., SimP−), it reads \(Q \) from \(\text{st}_{\text{sim}} \) and checks whether \(\exists (\alpha, \gamma) \in Q \) (resp., \(\exists (\gamma, \beta) \in Q \)). If true, it returns \(\gamma \) as response; otherwise it samples \(\gamma \leftarrow \{s \in \{0, 1\}^\lambda \mid \left\langle \ldots, s \right\rangle \notin Q \} \) (resp., \(\gamma \leftarrow \{s \in \{0, 1\}^\lambda \mid \left\langle \ldots, s \right\rangle \notin Q \} \), adds \((\alpha, \gamma) \) (resp., \((\gamma, \beta) \)) to \(Q \), and returns \(\gamma \) as response. The programming is the step 14 of Simln, where \((\alpha, \beta) \) is added to \(Q \) if and only if there is no pre-image collision with \((\alpha, \ldots) \in Q \) or image collision with \((\beta, \ldots) \in Q \).

To see that Sim is PPT, we note that the circuit-dependent notation can be efficiently computed by traversing the polynomial-size circuit \(f \). Then, the crux is to show that the step 1 in both SimF and Simln can be polynomial-time.

The runtime of the step 1 of SimF is dominated by the runtime of iterating through all qualified \((\mu_1, \ldots, \mu_m) \in \mathbb{F}_2^m \). To find the qualified vectors, one can interpret each \(X_i(f) \) as a one-hot non-zero column vector in the space \(\mathbb{F}_2^{|W(f)|} \) and derive a \(|W(f)| \times m\) matrix \(E \) from these column vectors. One can check that all qualified vectors fall in the kernel of \(E \). This kernel can be efficiently computed from the Gaussian elimination on \(E \) and is a subspace spanned by \(m - \text{rank}(E) \) basis vectors. So, the step 1 of SimF only needs to iterate through these basis vectors, and the other qualified vectors must satisfy the constraints as they are in the subspace. As a result, the step 1 of SimF runs in polynomial time due to the Gaussian elimination plus a linear-time pass to assign random or constrained values to
$d_{y_i}(f)$'s according to the $m - \text{rank}(E)$ basis vectors.

The step 1 of Simln only requires one linear-time pass to assign constrained or random values to the active labels so it runs in polynomial time. The linear constraint on the LSBs of these active labels has rank rank(E) and is satisfiable for the $d_{y_i}(f)$'s assigned in SimF.

Then, we fix z and \mathcal{A}. We will use the H-coefficient technique (Section 3.4) with transcript padding to bound the advantage of distinguishing between the real world (i.e., the adaptive experiment that uses the half-gates scheme) and the ideal world (i.e., the adaptive experiment that uses simulator Sim). In this technique, we consider the computationally unbounded non-uniform adversary $\mathcal{A} = \mathcal{A}(z)$ and compute $\varepsilon_1, \varepsilon_2$ as follows.

Transcript padding. In either world, \mathcal{A} will interact with an integrated oracle that acts as the two-round challenger in the adaptive experiment and provides interfaces $\pi^{+\pm} \in \{\pi^{\pm}, \text{SimP}^{\pm}\}$ for forward/backward permutation queries. \mathcal{A} can learn $\pi^*(\alpha) = \beta$ if and only if it sent forward query α to π^* and received response β, or sent backward query β to π^{*-1} and received response α.

To compute $\varepsilon_1, \varepsilon_2$ more easily, we ask the oracle to send more messages to \mathcal{A} and \mathcal{A} to make extra queries (in addition to the supposed q queries) in both two worlds. More specifically,

- Upon receiving x from \mathcal{A}, the oracle sends $\tilde{X} := \{X_i\}_{i \in \mathcal{W}(f)}$ instead of $\tilde{x} := \{X_i\}_{i \in \mathcal{W}_n(f)}$ to \mathcal{A}. In addition to the active input labels in \tilde{x}, the former also gives the active internal and output labels. In the real world, the oracle can run HG.DecEval$^{\pi^{+\pm}()}$, which determines other active labels in \tilde{X}. In the ideal world, this \tilde{X} can be directly output by Simln.

- Along with \tilde{X}, the oracle sends $\tilde{x} := \{x_i\}_{i \in \mathcal{W}(f)}$ to \mathcal{A}, which denote the wire truth values in the evaluation of $f(x)$. Both two oracles “echo” these values, which are self-evident to \mathcal{A}, to explicitly include them in transcripts. In the experiment, the real-world oracle uses $x = \{x_i\}_{i \in \mathcal{W}_n(f)}$ in HG.Encode$^{\pi^{+\pm}()}$, but the ideal-world oracle can only use $f(x) = \{x_i\}_{i \in \mathcal{W}_n(f)}$ in Simln.

- Along with \tilde{X}, the oracle sends $\tilde{U} := \{U^{g}_{0}, U^{g}_{1}\}_{g \in \mathcal{G}_{\text{rand}}(f)}$ to \mathcal{A}. The real-world oracle computes $U^{g}_{0} := H(X_a, k^g_0)$ and $U^{g}_{1} := H(X_b, k^g_1)$ for each $g \in \mathcal{G}_{\text{rand}}(f)$ with $(a, b) := (i_0(g), i_1(g))$. In the ideal world, this \tilde{U} is output by Simln and contains the “hash outputs” fixed by the random tape, which is specified by the oracle to run the programming therein.

- **(Extra queries)** Upon receiving $(\tilde{X}, \tilde{x}, \tilde{U})$ from the oracle, \mathcal{A} will also make a forward permutation query $X_a \oplus k^g_0$ (resp., $X_b \oplus k^g_1$) for each $g \in \mathcal{G}_{\text{rand}}(f)$ with $(a, b) := (i_0(g), i_1(g))$, if it has never learned $\pi^*(X_a \oplus k^g_0) = Y$ (resp., $\pi^*(X_b \oplus k^g_1) = Y$) for some Y in its interaction with $\pi^{*\pm} \in \{\pi^{\pm}, \text{SimP}^{\pm}\}$.

- At the end of the experiment (i.e., once all other transcripts are settled), the oracle sends Δ to \mathcal{A}. In the real world, the oracle gets this Δ from the output of HG.Garble$^{\pi^{+\pm}()}$. In the ideal world, Δ is dummy and sampled by the oracle at this time (note that Sim does not use Δ).

According to the two oracle constructions, real-world sample space

$$\Omega_{\text{real}} = \{0, 1\}^{\lambda - 1} \times \{0, 1\}^{\mathcal{W}_n(f)\lambda} \times S_{\lambda},$$

and ideal-world sample space

$$\Omega_{\text{ideal}} = (\{0, 1\}^{2\lambda})^{\left| \mathcal{F} \right|} \times \{0, 1\}^{\text{rank}(E)} \times \{0, 1\}^{(\mathcal{W}_n(f) + |\mathcal{Z}(f)|)\lambda - \text{rank}(E)}$$

$$\times \left(\{0, 1\}^{\lambda} \mathcal{Z}(f) \right) \times \{0, 1\}^{2\lambda} \times \{0, 1\}^{\lambda - 1} \times \{0, 1\}^{\lambda - 1} \times \{0, 1\}^{\lambda - 1} \cdot \text{random tape for} \Delta$$

$$= \{0, 1\}^{\mathcal{W}_n(f)\lambda} \times \{0, 1\}^{\Delta \lambda - 1} \cdot \text{dummy}$$
Given the oracle constructions, a transcript in the original adaptive experiment will be padded with more literal values. Note that transcript padding will not lower the advantage of \(\mathcal{A} \) since \(\mathcal{A} \) can discard the padding values at will. With the padding, a transcript is of the form:

\[
\tau = (\mathcal{K}_1, (f, \tilde{f}), \mathcal{K}_2, (x, (\tilde{X}, \tilde{x}, \tilde{U})), \mathcal{K}_3, \Delta),
\]

where \(\mathcal{K}_1, \mathcal{K}_2, \) and \(\mathcal{K}_3 \) are the ordered lists of query-response pairs seen in the interleaved interaction with permutation oracles. We do not explicitly consider query direction in these pairs. Given \(\pi^{*+1} \in \{\pi^{\pm 1}, \text{SimP}^{\pm 1}\} \), \(\mathcal{A} \) is able to learn \(\pi^{*}(\alpha) = \beta \) if and only if there exists \((\alpha, \beta) \in \cup_{\ell=1}^{3} \mathcal{K}_\ell \).

Let \(q_\ell := |\mathcal{K}_\ell| \) for every \(\ell \in \{1, 2, 3\} \) and \(q_\Sigma := \sum_{\ell=1}^{3} q_\ell \). It follows from the extra queries that \(q_\Sigma \leq q + 2 |f| \). Without loss of generality, we assume that \(\mathcal{A} \) only makes non-repeating queries, i.e., it never makes forward query \(\alpha \) to \(\pi^{*} \) or backward query \(\beta \) to \(\pi^{*+1} \) for any learned permutation entry \((\alpha, \beta) \).

Bad transcripts. A transcript \(\tau \in \mathcal{T}_{\text{bad}} \) if and only if it incurs at least one of the following events:

- **bad 1.** There exist distinct \((g, u), (g', u') \in G_{\text{and}}(f) \times \{0, 1\} \) such that

\[
X_w \oplus k^q_{u} = X_{w'} \oplus k^q_{u'} \quad \lor \quad (s_b \oplus x_b) \Delta \oplus G^q_0 \oplus U^q_0 \oplus \sigma(X_a \oplus k^q_{0}) = x_a \Delta \oplus X_a \oplus G^q_1 \oplus U^q_1 \oplus \sigma(X_b \oplus k^q_{1})
\]

where \(w := \text{in}_w(g) \) and \(w' := \text{in}_w(g') \), or

There exists \(g \in G_{\text{and}}(f) \) such that

\[
(s_b \oplus x_b) \Delta \oplus G^q_0 \oplus U^q_0 \oplus \sigma(X_a \oplus k^q_{0}) = x_a \Delta \oplus X_a \oplus G^q_1 \oplus U^q_1 \oplus \sigma(X_b \oplus k^q_{1})
\]

where \((a, b) := (\text{in}_0(g), \text{in}_1(g)) \), or

- **bad 2.** There exist distinct \(g, g' \in G_{\text{and}}(f) \) such that

\[
(s_b \oplus x_b) \Delta \oplus G^q_0 \oplus U^q_0 \oplus \sigma(X_a \oplus k^q_{0}) = (s_b \oplus x_b') \Delta \oplus G^q_0 \oplus U^q_0 \oplus \sigma(X_a' \oplus k^q_{0}) \quad \lor \quad (s_b \oplus x_b) \Delta \oplus G^q_0 \oplus U^q_0 \oplus \sigma(X_a \oplus k^q_{0}) = (s_b \oplus x_b') \Delta \oplus G^q_0 \oplus U^q_0 \oplus \sigma(X_a' \oplus k^q_{0})
\]

In this case, \(\mathcal{A} \) can check the consistency between the value of \(G^q_0 \oplus G^q_{u'} \) and that of \(\Delta \) at the end of experiment without further sending required queries, which are computed from \(\Delta \), to a random permutation or its inverse. In the real world, the consistency certainly holds. However, the ideal-world garbled rows and \(\Delta \) are independently sampled, leading to the consistency only with negligible probability. So, \(\mathcal{A} \) has non-negligible advantage to distinguish the two worlds and the statistical distance, as an upper bound, also blows up.

More specifically, the real world is as follows in this case. The pre-image collision (5) leads to the syntactically same XOR of two hash masks in \(G^q_0, G^q_{u'} \), which can be XORed to cancel all hash masks to check the consistency with \(\Delta \) without further queries. Moreover, the image collision (6) also implies the pre-image collision (5) since \(\pi \) is permutation. The other equalities imply the image collision \(\pi(X_w \oplus \Delta \oplus k^q_{u}) = \pi(X_w \oplus \Delta \oplus k^q_{u'}) \) for some distinct tuple \((g, u), (g', u') \in G_{\text{and}}(f) \times \{0, 1\} \), \(w := \text{in}_w(g) \), and \(w' := \text{in}_w(g') \). Given permutation \(\pi \), this collision implies the pre-image collision (5), which can be used to see the consistency. However, the above cancelling of hash masks will not give this consistency except with negligible probability in the ideal world.
• bad2. There exists \((\alpha, \beta), g) \in \cup_{\ell=1}^{3} \mathcal{K}_\ell \times \mathcal{G}_{\text{and}}(f)\) such that

\[
\alpha = X_a \oplus \Delta \oplus k_0^g \quad \vee \quad \alpha = X_b \oplus \Delta \oplus k_0^g \quad (12)
\]

\[
\beta = \sigma(\Delta) \oplus (s_b \oplus x_b)\Delta \oplus G_0^g \oplus U_0^g \oplus \sigma(X_a \oplus k_0^g) \quad \vee \quad \beta = \sigma(\Delta) \oplus x_a\Delta \oplus X_a \oplus G_1^g \oplus U_1^g \oplus \sigma(X_b \oplus k_1^g) \quad (13)
\]

where \((a, b) := (in_0(g), in_1(g))\).

In this case, \(\mathcal{A}\) essentially makes it to guess \(\Delta\) before receiving this value. It allows \(\mathcal{A}\) to distinguish the real world, where every \(G_0^g\) is consistent with \(\Delta\), and the ideal world with a dummy \(\Delta\). So, the statistical distance blows up.

• bad3. There exists \((\alpha, \beta), g) \in \cup_{\ell=1}^{3} \mathcal{K}_\ell \times \mathcal{G}_{\text{and}}(f)\) such that

\[
\alpha = X_a \oplus k_0^g \quad \vee \quad \alpha = X_b \oplus k_0^g \quad (16)
\]

\[
\beta = U_0^g \oplus \sigma(X_a \oplus k_0^g) \quad \vee \quad \beta = U_1^g \oplus \sigma(X_b \oplus k_1^g) \quad (17)
\]

where \((a, b) := (in_0(g), in_1(g))\).

In this case, \(\mathcal{A}\) can make forward/backward queries w.r.t. some active labels before receiving active input labels and computing other active ones.

This case is necessary to ensure successful programming in the ideal world as the values on the right hand should not be queried before the programming (otherwise it fails due to pre-image or image collision). If the programming fails in the ideal world, the two worlds can be distinguishable as the decoding consistency in the ideal world does not always hold as in the real world.

Bounding \(1 - \varepsilon_2\). Without loss of generality, we can consider some fixed good transcript \(\tau\) such that \(\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) = \tau] \neq 0\) (if this probability is zero, it is trivial by definition that \(\varepsilon_2 = 0\) for this \(\tau\)). Using Lemma 1, we turn to analyze the sampled oracle's compatibility (Section 3.4) with such a transcript, instead of the interaction between \(\mathcal{A}\) and the sampled oracle.

Note that there is a computationally unbounded non-uniform adversary \(\mathcal{A}'\) such that, for every oracle \(\omega\), it sends the queries in \(\tau\) in order in its interaction with \(\omega\) (e.g., \(\mathcal{A}'\) has auxiliary input \(\tau\) and sends its ordered queries). Fix \(\mathcal{A}'\) in the following compatibility analysis so that any real-world or ideal-world oracle will receive the queries in \(\tau\) in order. For a response \(c\) recorded in a fixed \(\tau\), let \(\omega \vdash c\) denote the event that, fixing the ordered queries as per \(\tau\), oracle \(\omega\) produces \(c\) given the corresponding query. Let \(\mathcal{K}^R\) denote the order-preserving list of the responses in an ordered list \(\mathcal{K}\) of permutation query-response pairs.

First, we compute \(\Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)]\). Following from half-gates, a real-world oracle \(\omega = (\Delta, \{W_i\}_{i \in \text{W}_{\text{in}}(f)}, \pi) \in \Omega_{\text{real}}\). It holds that

\[
\Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (\mathcal{K}^R_1, \mathcal{K}^R_2, \widetilde{X}, \widetilde{x}, \widetilde{U}, \mathcal{K}^R_3, \Delta)].
\]

To begin with, every real-world \(\omega\) certainly produces \(f'\) (i.e., the first value in \(\mathcal{f}\)) and \(\widetilde{x}\) fixed in \(\tau\), which leads to \(\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) = \tau] \neq 0\). This non-zero probability implies that \((f', \widetilde{x})\) in \(\tau\) is honestly and deterministically computed from the fixed queries \((f, x)\). Otherwise, no ideal-world oracle, which computes \((f', \widetilde{x})\) from the same deterministic procedure, can produce this transcript, contradicting the non-zero probability. As every real-world \(\omega\) will follow the same deterministic procedure, it certainly produces the two values.
Meanwhile, a real-world oracle \(\omega \) should have the same literal value of \(\Delta \) as its counterpart in \(\tau \). Conditioned on the compatibility so far, the probability

\[
\Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (K^R_1, F, d, K_2^R, \tilde{X}, \tilde{U}, K_3^R) | \omega \vdash (f', \tilde{x}) \land \omega \vdash \Delta] \cdot \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (f', \tilde{x}) \land \omega \vdash \Delta] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (f', \tilde{x})] \cdot \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash \Delta] = \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (f', \tilde{x})] \cdot \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash \Delta] \cdot \frac{1}{2^{3\lambda^2}}.
\]

Conditioned on the compatibility with \((f', \tilde{x}, \Delta)\), a real-world \(\omega \) should also be compatible with \((\cup_{j=1}^3 K_j^R, F, \tilde{U})\) and some active labels in \(\tilde{X} \) such that

(i) \(\pi^{\pm 1} \) maps the fixed permutation queries to the responses in \(\cup_{j=1}^3 K_j^R \).

(ii) For each \(i \in W_{in}(f) \), it holds that \(X_i = W_i \oplus x_i \Delta \).

(iii) For each \(g \in G_{\text{and}}(f) \) with \((a, b) := (i_{00}(g), i_{10}(g)) \), it holds that

\[
H(X_a, k_0^g) := \pi(X_a \oplus k_0^g) \oplus \sigma(X_a \oplus k_0^g) = U_0^g,
\]

\[
H(X_b, k_0^g) := \pi(X_b \oplus k_0^g) \oplus \sigma(X_b \oplus k_0^g) = U_1^g. \tag{20}
\]

(iv) For each \(g \in G_{\text{and}}(f) \) with \((a, b, c) := (i_{00}(g), i_{10}(g), \text{out}(g)) \), it holds that

\[
X_c = H(X_a, k_0^g) \oplus H(X_b, k_0^g) \oplus s_a G_0^g \oplus s_b (G_1^g \oplus X_a), \tag{21}
\]

\[
G_0^g = H(X_a, k_0^g) \oplus H(X_a \oplus \Delta, k_0^g) \oplus (s_b \oplus x_b) \Delta
\]

\[
G_1^g = H(X_b, k_0^g) \oplus H(X_b \oplus \Delta, k_0^g) \oplus x_a \Delta \oplus X_a, \tag{22}
\]

where the bits \(x_a, x_b, s_a = \text{lsb}(X_a), s_b = \text{lsb}(X_b) \) are given in \(\tau \).

Conditioned on the compatibility so far, every real-world oracle \(\omega \) is always compatible with the leftover values in \(\tau \), i.e., decoding table \(d \) and other active labels in \(\tilde{X} \), which are deterministically computed from XOR combination. The reason is that, for \(\tau \) ensuring \(\Pr_{\omega \leftarrow \Omega_{\text{real}}} [Y(\omega) = \tau] \neq 0 \), these values should be honestly determined by the conditioned values as in the real world. Otherwise, this probability will be zero for an ideal-world oracle, which obtains them from a consistent deterministic computation as per the conditioned values. As every real-world oracle \(\omega \) honestly follows the real-world computation, this “leftover” compatibility must hold conditioned on the previous compatibility.

It remains to compute the conditional probabilities for (i) to (iv). Consider (iii) and (iv). We note that every good \(\tau \) with \(\Pr_{\omega \leftarrow \Omega_{\text{real}}} [Y(\omega) = \tau] \neq 0 \) already implies (20) and (21). To see this, one can check that condition \(\neg \text{bad}_3 \) for good transcripts and the extra queries ensure that \(K_3 \) fixes the pairs of permutation pre-images and images for hash values

\[
\{H(X_a, k_0^g), H(X_b, k_0^g)\}_{g \in G_{\text{and}}(f), (a, b) := (i_{00}(g), i_{10}(g))}.
\]

These values are consistent with \(\tilde{U} \) fixed in \(\tau \) as per (20). Otherwise, \(\Pr_{\omega \leftarrow \Omega_{\text{real}}} [Y(\omega) = \tau] \neq 0 \) cannot be satisfied by \(\tau \) since \(\neg \text{bad}_1 \land \neg \text{bad}_3 \) for every good transcript implies successful programming in the ideal world so that \(H(X_a, k_0^g) = U_0^g \) and \(H(X_b, k_0^g) = U_1^g \). As a corollary, (21) holds for every good transcript according to this consistency and the step 10 and 13 of Simln.
Then, consider (22), the leftover part of (iii) and (iv). We rewrite (22) as:

\[
\begin{align*}
\forall (a, b) := (\text{in}_0(g), \text{in}_1(g)) : \\
\pi(X_a \oplus k^q_0) + \pi(X_a \oplus \Delta \oplus k^q_0) &= \sigma(\Delta) \oplus (s_b \oplus x_b)\Delta \oplus G^q_0, \\
P_{g,0} &:= \pi(X_a \oplus k^q_0) + \pi(X_a \oplus \Delta \oplus k^q_0) = \sigma(\Delta) \oplus (s_b \oplus x_b)\Delta \oplus G^q_0, \\
P_{g,1} &:= \pi(X_b \oplus k^q_0) + \pi(X_b \oplus \Delta \oplus k^q_0) = \sigma(\Delta) \oplus x_a\Delta \oplus X_a \oplus G^q_1, \\
P_{g,2} &:= \pi(X_a \oplus k^q_0) + \pi(X_a \oplus \Delta \oplus k^q_0) = \sigma(\Delta) \oplus (s_b \oplus x_b)\Delta \oplus G^q_0 \oplus U^q_0 \oplus \sigma(X_a \oplus k^q_0), \\
P_{g,3} &:= \pi(X_b \oplus k^q_0) + \pi(X_b \oplus \Delta \oplus k^q_0) = \sigma(\Delta) \oplus x_a\Delta \oplus X_a \oplus G^q_1 \oplus U^q_1 \oplus \sigma(X_b \oplus k^q_0).
\end{align*}
\]

As \(\tau\) is a good transcript, there are exactly \(4 |f|\) pairwise distinct permutation pre-images on the left hand (otherwise, there will be a pair of permutation pre-images leading to (5) in \(\text{bad}_1\) or a permutation pre-image leading to (12) \(\lor\) (13) in \(\text{bad}_2\) given the extra queries). \(\forall\) has exact \(4 |f|\) syntactically different variables \(P := \{P_{g,0}, P_{g,1}, P_{g,2}, P_{g,3}\}_{g \in \mathcal{G}_{and}(f)}\). They fix the same number of the entries of permutation \(\pi\) in a real-world \(\omega\) if and only if their literal values fixed by \(\tau\) are also pairwise distinct. Note that every good transcript \(\tau\) indeed fixes exact one such assignment of these values for the following reasons:

- (20) already holds for \(\tau\), i.e., for \(g \in \mathcal{G}_{and}(f)\) with \((a, b) := (\text{in}_0(g), \text{in}_1(g))\),

\[
P_{g,0} := \pi(X_a \oplus k^q_0) = U^q_0 \oplus \sigma(X_a \oplus k^q_0), \\
P_{g,1} := \pi(X_b \oplus k^q_0) = U^q_1 \oplus \sigma(X_b \oplus k^q_0).
\]

The literal values of \(\{P_{g,0}, P_{g,1}\}_{g \in \mathcal{G}_{and}(f)}\) can be fixed by the responses in \(\mathcal{K}^q_3\) given the extra queries and will be pairwise distinct according to the impossible (6) from \(\text{bad}_1\).

- For \(g \in \mathcal{G}_{and}(f)\) with \((a, b) := (\text{in}_0(g), \text{in}_1(g))\), \(\{P_{g,2}, P_{g,3}\}_{g \in \mathcal{G}_{and}(f)}\) are literally assigned the following values fixed by \(\tau\) according to \(\forall\) and (23):

\[
P_{g,2} := \pi(X_a \oplus \Delta \oplus k^q_0) = \sigma(\Delta) \oplus (s_b \oplus x_b)\Delta \oplus G^q_0 \oplus U^q_0 \oplus \sigma(X_a \oplus k^q_0), \\
P_{g,3} := \pi(X_b \oplus \Delta \oplus k^q_0) = \sigma(\Delta) \oplus x_a\Delta \oplus X_a \oplus G^q_1 \oplus U^q_1 \oplus \sigma(X_b \oplus k^q_0).
\]

Clearly, one can see that the literal values of \(\{P_{g,2}, P_{g,3}\}_{g \in \mathcal{G}_{and}(f)}\) are pairwise distinct according to the impossible (7) \(\lor\) (8) \(\lor\) (9) \(\lor\) (10) \(\lor\) (11) from \(\text{bad}_1\).

- The goodness of \(\tau\) also ensures that there do not exist

\[
P' \in \{P_{g,0}, P_{g,1}\}_{g \in \mathcal{G}_{and}(f)}, P'_{\Delta} \in \{P_{g,2}, P_{g,3}\}_{g \in \mathcal{G}_{and}(f)}
\]

such that \(P' = P'_{\Delta}\). Otherwise, this equality and (24) ensure that there exist \((g, u) \in \mathcal{G}_{and}(f) \times \{0, 1\}\) and \(g' \in \mathcal{G}_{and}(f)\) such that

\[
\begin{align*}
\pi(X_u \oplus k^q_0) &= \pi(X_u' \oplus \Delta \oplus k^q_0) \\
&= \sigma(\Delta) \oplus (s_b \oplus x_b)\Delta \oplus G^q_0 \oplus U^q_0 \oplus \sigma(X_u \oplus k^q_0) \quad \lor \\
\pi(X_u \oplus k^q_0) &= \pi(X_u' \oplus \Delta \oplus k^q_0) \\
&= \sigma(\Delta) \oplus x_a\Delta \oplus X_a \oplus G^q_1 \oplus U^q_1 \oplus \sigma(X_u \oplus k^q_0)
\end{align*}
\]

where \(w := \text{in}_u(g)\) and \((a', b') := (\text{in}_0(g'), \text{in}_1(g'))\). Recall that \(\text{bad}_3\) and the extra queries implies \((X_u \oplus k^q_0, \pi(X_u \oplus k^q_0)) \in \mathcal{K}^q_3\). As a result, (25) leads to contradiction with the impossible (14) \(\lor\) (15) from \(\text{bad}_2\).

Putting these cases together, we can see that \(\tau\) yields a value assignment of \(P\), and this assignment fixes exact \(4 |f|\) entries of real-world permutation \(\pi\).

Conditioned on \(\text{bad}_1 \land \text{bad}_3\) of good transcript \(\tau\), 2 \(|f|\) extra queries are non-repeating and the number of non-repeating queries is \(q + 2 |f| = q_{\infty}\). So, 2 \(|f|\) responses in \(\cup_{i=1}^{3} \mathcal{K}^q_i\) for the non-repeating extra queries are fixed by the values in \(P\) while the other \(q_{\infty} - 2 |f| = q\) responses are fixed by real-world
π (conditioned on the values in \(\mathcal{P}\)). Using (i), (ii), (iii), and (iv) together with the “leftover” compatibility, we have in the real world that

\[
\Pr_{\omega \sim \Omega_{\text{real}}} \left[\omega \vdash \left(\mathcal{K}_i^R, F, d, \mathcal{K}_2^R, \tilde{X}, U, \mathcal{K}_3^R \right) \mid \omega \vdash (f', \tilde{x}) \wedge \omega \vdash \Delta \right] \\
= \frac{1}{(2\lambda)^{|W_m(f)|}} \cdot \frac{(2\lambda - 4|f| - (q_{\Sigma} - 2|f|))!}{(2\lambda)!} \\
= \frac{1}{(2\lambda)^{|W_m(f)|}} \cdot \frac{1}{(2\lambda)^{q+4|f|}} \\
\Rightarrow \Pr_{\omega \sim \Omega_{\text{real}}} \left[\omega \in \text{comp}_{\text{real}}(\tau) \right] = \frac{1}{(2\lambda)^{|W_m(f)|}} \cdot \frac{1}{(2\lambda)^{q+4|f|}} \cdot \frac{1}{2^{\lambda-1}}.
\]

Second, in the ideal world, we can use a similar argument to show

\[
\Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\omega \in \text{comp}_{\text{ideal}}(\tau) \right] = \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\omega \vdash (\mathcal{K}_1^R, \mathcal{K}_2^R, \mathcal{K}_3^R) \mid \omega \vdash (\bar{f}, \bar{X}, \bar{x}, \bar{U}, \Delta) \right] \\
\cdot \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\omega \vdash (\bar{f}, \bar{X}, \bar{x}, \bar{U}, \Delta) \right] \\
= \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\omega \vdash (\mathcal{K}_1^R, \mathcal{K}_2^R, \mathcal{K}_3^R) \mid \omega \vdash (\bar{f}, \bar{X}, \bar{x}, \bar{U}, \Delta) \right] \\
\cdot \frac{1}{2^{|W_m(f)|} \lambda + 2\lambda|f| + (\lambda - 1) + 2|\lambda/f|}.
\]

According to the condition \(-\text{bad}_1 \wedge -\text{bad}_3\) and the 2|f| extra queries, there are exact q + 2|f| = q_{\Sigma} non-repeating queries. Moreover, 2|f| responses in \(\cup_{i=1}^{3} \mathcal{K}_i^R\) for the non-repeating extra queries are fixed by the conditioned values but the other responses are fixed by SimP_{\pm 1} for other q_{\Sigma} - 2|f| = q queries.

Let \(Q_{i-1}\) denote the list \(Q\) (which is maintained in internal state \(s_{\text{sim}}\)) when it includes \(i - 1 \in [0, q_{\Sigma} - 1]\) pairs (note that \(Q\) finally includes \(q_{\Sigma}\) pairs given the \(q_{\Sigma}\) non-repeating queries), and \(\mathcal{N} \subseteq [1, q_{\Sigma}]\) denote the index set of these \(q\) queries in \(q_{\Sigma}\) non-repeating queries to SimP_{\pm 1} (\(\cdot\)) such that \(|\mathcal{N}| = q\). We have

\[
\Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\omega \vdash (\mathcal{K}_1^R, \mathcal{K}_2^R, \mathcal{K}_3^R) \mid \omega \vdash (\bar{f}, \bar{X}, \bar{x}, \bar{U}, \Delta) \right] \\
= \prod_{i \in \mathcal{N}} \frac{1}{2^{|\lambda| - |Q_{i-1}|}} = \prod_{i \in \mathcal{N}} \frac{1}{2^{|\lambda| - (i - 1)}} \\
\leq \frac{2^{|\lambda| - 2|f|}}{2^{|\lambda| - (2|f| + 1)}} \times \cdots \times \frac{2^{|\lambda| - (q_{\Sigma} - 1)}}{2^{|\lambda| - (|f| - 1)}} = \frac{(2^{|\lambda| - 2|f|})^{q_{\Sigma}}}{(2^{|\lambda| - 2|f|})_{q_{\Sigma}}} \\
\Rightarrow \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\omega \in \text{comp}_{\text{ideal}}(\tau) \right] \leq \frac{1}{(2\lambda)^{|W_m(f)|}} \cdot \frac{1}{(2^{|\lambda| - 2|f|})_{q_{\Sigma}}} \cdot \frac{1}{2^{\lambda-1}}.
\]

So, we can have \(\varepsilon_2 = 0\) since, for every \(|f| \geq 0\) and every \(q \geq 0\),

\[
\frac{\Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\omega \in \text{comp}_{\text{ideal}}(\tau) \right]}{\Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\omega \in \text{comp}_{\text{ideal}}(\tau) \right]} = \frac{(2^{|\lambda| - 2|f|})^{q_{\Sigma}}}{(2^{|\lambda| - 2|f|})_{q_{\Sigma}}} \cdot \frac{(2^{|\lambda| - 2|f|})^{4f}}{(2^{|\lambda| - 2|f|})_{4f}} \\
\geq \frac{(2^{|\lambda| - 2|f|})^{q_{\Sigma}}}{(2^{|\lambda| - 2|f|})_{q_{\Sigma}}} \cdot \frac{(2^{|\lambda| - 2|f|})^{2f}}{(2^{|\lambda| - 2|f|})_{2f}} \cdot \frac{(2^{|\lambda| - 2|f|})^{2|f|}}{(2^{|\lambda| - 2|f|})_{2|f|}} \\
= \frac{(2^{|\lambda| - 2|f|})^{q_{\Sigma} + 2f}}{(2^{|\lambda| - 2|f|})_{q_{\Sigma}} + 2f} \cdot \frac{(2^{|\lambda| - 2|f|})^{4f}}{(2^{|\lambda| - 2|f|})_{4f}} \geq 1.
\]

Bounding \(\varepsilon_1\). We bound the probabilities of the bad events in the ideal world. First, consider bad_1. Note that each active label \(X_i\) can be written as the XOR of (i) some active circuit input labels, and/or (ii) some active output labels of the precedent AND gates, i.e., for \(I_i \ominus J_i \neq \emptyset\),

\[
X_i = \left(\bigoplus_{w \in I_i \subseteq W_m(f)} X_w \right) \oplus \left(\bigoplus_{w \in J_i \subseteq W_{\text{real}}(f)} X_w \right) = \bigoplus_{w \in I_i \ominus J_i} X_w \in \{0, 1\}^\lambda.
\]

37
For (5), we can use (26) to rewrite it as

$$\bigoplus_{i \in (I_w \ominus I_{w'}) \cup (J_w \ominus J_{w'})} X_i = k_{uw}^g + k_{uw'}^g \in \{0, 1\}^\lambda.$$

According to Simln, each X_i, which is sampled in the step 1 or computed in the step 13, has at least $\lambda - 1$ random non-LSBs. Therefore, the equality holds with probability at most $2^{-(\lambda - 1)}$ for some fixed distinct k_{uw}^g and $k_{uw'}^g$ (or equivalently, (g, u) and (g', u')). If $I_w = I_{w'}$ and $J_w = J_{w'}$, this probability will be zero for the distinct k_{uw}^g and $k_{uw'}^g$. For (6), the worst case is that U_{w}^g and $U_{w'}^g$ are used for the same AND gate with an output wire in $Z(f)$. In this case, the XOR $U_{w}^g \oplus U_{w'}^g$ has at least $\lambda - 1$ random non-LSBs due to some X_c sampled in the step 1 of Simln. Such non-LSBs are independent of other (previously fixed) active labels, including X_w and $X_{w'}$. So, the equality holds with probability at most $2^{-(\lambda - 1)}$ for some fixed (g, u) and (g', u').

In the same gate g, the upper $\lambda - 1$ bits of $U_{w}^g \oplus U_{w'}^g$ are uniform so that (7) holds with probability at most $2^{-(\lambda - 1)}$. Otherwise, the distinct $g \neq g'$ implies that, for every $u, u' \in \{0, 1\}$, $U_{w}^g \oplus U_{w'}^g \in \{0, 1\}^\lambda$ is uniform. As a result, each of λ holds with probability $2^{-\lambda}$.

Taking a union bound over the above cases, we have

$$\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_1] \leq \frac{2 |f| (2 |f| - 1) + |f|^2}{2^{\lambda - 1}} = \frac{5 |f|^2 - 2 |f|}{2^{\lambda - 1}}. \quad (31)$$

Then, consider bad$_2$. From (12) (resp., (13)), we have $\Delta = \alpha \oplus X_a \oplus k_0^g$ (resp. $\Delta = \alpha \oplus X_b \oplus k_0^g$), occurring with probability $2^{-(\lambda - 1)}$ due to the randomness of Δ. In (14), if $s_b \oplus x_b = 0$, linear orthomorphism σ ensures that

$$\Delta = \sigma^{-1}(\beta \oplus C_0^g \oplus U_0^g \oplus \sigma(X_a \oplus k_0^g)),$$

which occurs with probability $2^{-(\lambda - 1)}$; if $s_b \oplus x_b = 1$, according to permutation $\sigma'(x) := \sigma(x) \oplus x$ well-defined from σ, it holds with the same probability that

$$\Delta = \sigma'^{-1}(\beta \oplus C_0^g \oplus U_0^g \oplus \sigma(X_a \oplus k_0^g)).$$

Similar result holds for (15). Taking a union bound over all pairs, we have

$$\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_2] \leq \frac{4 |f| \cdot (q_1 + q_2 + q_3)}{2^{\lambda - 1}}. \quad (32)$$

Finally, consider bad$_3$. Recall that each X_i has at least $\lambda - 1$ random non-LSBs. Since these bits are independent of $\bigcup_{i=1}^{2^{\lambda}} \mathcal{K}_i$, each of (16) and (17) holds with probability at most $2^{-(\lambda - 1)}$ for some fixed (α, \ldots, β) and g. For each of (18) and (19), the mask sampled in the step 9 of Simln (resp., the direct sampling in the step 9 or 12 of Simln) ensures that $U_0^g \in \{0, 1\}^\lambda$ (resp., $U_3^g \in \{0, 1\}^\lambda$) is uniform and independent of X_a (resp., X_b) or $\bigcup_{i=1}^{2^{\lambda}} \mathcal{K}_i$. So, each equality holds with probability $2^{-\lambda} < 2^{-(\lambda - 1)}$ for some fixed (\ldots, β) and g. It follows from a union bound that

$$\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_3] \leq \frac{4 |f| \cdot (q_1 + q_2)}{2^{\lambda - 1}}. \quad (33)$$

We have a bound ε_1 from (31), (32), and (33):

$$\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) \in \mathcal{T}_{\text{bad}}] = \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_1 \lor \text{bad}_2 \lor \text{bad}_3] \leq \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_1] + \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_2] + \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_3]$$

$$\leq \frac{5 |f|^2 - 2 |f| + 8 |f| \cdot (g + 2 |f|)}{2^{\lambda - 1}} = \frac{8qs + 21s^2 - 2s}{2^{\lambda - 1}} = \varepsilon_1.$$

The above $\varepsilon_1, \varepsilon_2$ and the H-coefficient technique lead to this theorem.

\[\square \]
Public parameters: (Concrete instantiations are recalled in Appendix F)

- \(M \in \mathbb{F}_2^{8 \times 6} \) with \(K \in \mathbb{F}_2^{3 \times 8} \) from the co-kernel basis of \(M \), i.e., \(KM = 0_{3 \times 6} \).
- \(V = [V_{00} \ V_{01} \ V_{10} \ V_{11}]^T \in (\mathbb{F}_2^{2 \times 5})^4 \equiv \mathbb{F}_2^{8 \times 8} \) with left inverse \(V^+ \in \mathbb{F}_2^{8 \times 8} \).
- Basis matrices \(S_L, S_R \in \mathbb{F}_2^{2 \times 4} \).
- Control matrices \(R'_L, R'_R \in \mathbb{F}_2^{4 \times 2} \), \(R_p = [R_{p,00} \ R_{p,01} \ R_{p,10} \ R_{p,11}]^T \in (\mathbb{F}_2^{2 \times 4})^4 \equiv \mathbb{F}_2^{8 \times 4} \).
- A distribution \(\mathcal{R}_0 \) over \((\mathbb{F}_2^{2 \times 4})^4 \equiv \mathbb{F}_2^{8 \times 4} \) such that, for every \(R'_p = [R'_{p,00} \ R'_{p,01} \ R'_{p,10} \ R'_{p,11}]^T \leftarrow \mathcal{R}_0 \),
 1. \(K [\hat{R}_{s,00} \ \hat{R}_{s,01} \ \hat{R}_{s,10} \ \hat{R}_{s,11}]^T = 0_{3 \times 6} \) where \(\hat{R}_{s,ij} := (R'_{s,ij} \otimes I_2) [S_L \ S_R] \begin{pmatrix} 1 & 0 & j \ 0 & 1 & j \end{pmatrix} \otimes I_2 \)

\[\text{for every } i, j \in \mathbb{F}_2, \text{ and (ii) for every } i, j \in \mathbb{F}_2, \text{ the marginal distribution of } R'_{s,ij} \text{ is uniform.} \]

TH.Sample(\(t \)):
1. \(\zeta_1 := g(p_0, p_0) \oplus g(p_1, p_0) \), \(\zeta_2 := g(p_0, p_1) \oplus g(p_0, p_1) \)
2. \(R'_p \leftarrow \mathcal{R}_0, \quad r_00^T \ r_01^T \ r_10^T \ r_11^T := R'_p \otimes \zeta_1 R'_L \otimes \zeta_2 R'_R \)
3. for \(i, j \in \mathbb{F}_2 \) do \(R_{ij} := (r_{ij}^T \otimes I_2) [S_L \ S_R] \otimes R_{p,ij} \), \(\tilde{R}_{ij} := R_{ij} \begin{pmatrix} 1 & 0 & j \ 0 & 1 & j \end{pmatrix} \otimes I_2 \)
4. \(\hat{R} := [\hat{R}_{00} \ \hat{R}_{01} \ \hat{R}_{10} \ \hat{R}_{11}]^T, \ r := [r_{00} \ r_{01} \ r_{10} \ r_{11}]^T \)
5. return \((\hat{R}, r) \)

TH.Decode(\(r_{ij}, i, j \)):
1. return \(R_{ij} := (r_{ij}^T \otimes I_2) [S_L \ S_R] \otimes R_{p,ij} \)

![Figure 7: Three-halves garbling scheme [RR21] (Part I).](image)

D Adaptive Security of Three-Halves

We consider the three-halves scheme [RR21] with the computational optimization using both halves of hash outputs (see Section 6.2 therein). It uses a counter per wire rather than an identifier per gate to compute tweaks in hash computation. We begin with the implementation in the pRPM that sends decoding table \(d \) in the offline phase, followed by another implementation in the nRPM that postpones \(d \) to the online phase. Note that three-halves uses an equivalent invariant for each wire \(i \): its active label \(x_i = w_i \oplus \left(p_i \oplus x_i \right) \Delta \) for its wire label \(w_i \), of bit 0 with \(\text{lsb}(w_i) = 0 \), truth bit \(x_i \), permuted bit \(p_i \), and global key \(\Delta \) with \(\text{lsb}(\Delta) = 1 \).

For some \(\pi \in S_8 \) and \(x = [x_L \ x_R]^T \in \mathbb{F}_2^{d/2} \), we slightly abuse the notation \(y := \pi(x) \) for the following computation: \((y_L \ y_R) := \pi(x_L \ x_R) \in \{0, 1\}^\ell \) and \(y := [y_L \ y_R]^T \in \mathbb{F}_2^{d/2} \). We refer to Appendix A for the additional notation.

D.1 Adaptive Security in pRPM

Theorem 6. Let \(H(x, k) = \pi(0 \parallel x) \oplus \sigma(0 \parallel x) \oplus k \) be a tweakable hash function where \(x \in \mathbb{F}_2^{2d/2}, k \in \mathbb{F}_2^{2d/2+1}, \pi \in S_{\lambda+2} \) is random permutation, and \(\sigma : \mathbb{F}_2^{2\lambda/2+1} \rightarrow \mathbb{F}_2^{2\lambda/2+1} \) is a linear orthomorphism for the function family

\[\mathcal{L} = \{ L_{\xi_1, \xi_2, \xi_3, \xi_4} : \mathbb{F}_2^{2\lambda/2+1} \rightarrow \mathbb{F}_2^{2\lambda/2+1} \} \xi_1, \xi_2, \xi_3, \xi_4 \in \mathbb{F}_2, \quad L_{\xi_1, \xi_2, \xi_3, \xi_4} \begin{pmatrix} x_L \ x_R \end{pmatrix} = \begin{pmatrix} \xi_1 x_L \oplus \xi_2 x_R \\ \xi_3 x_L \oplus \xi_4 x_R \end{pmatrix}. \]

Then, three-halves (Figure 7) is a \((\lambda + 2)\)-garbling scheme with \((q, s, \varepsilon)\)-adaptive security in the pRPM, where \(\varepsilon = (48qs + 189s^3)/2^{\lambda+1} \).

Proof. The correctness has been proved in the original work [RR21]. We only need to consider the simulation.
Figure 7: Three-halves garbling scheme [RR21] (Part II).
SimF(f):
1: $F \leftarrow (F^3_{2^{\lambda/2}} \times F^3_2)[f]$, $d \leftarrow F^3_{2^{\lambda}}[\mathcal{W}_m(f)]$ such that
 (i) For each $i \in [1, m]$ and each wire $j \in \mathcal{Y}(f)$, $d_j = d_{y_i(f)}$.
 (ii) For each $(\mu_1, \ldots, \mu_\mu) \in F^\mu_2$ such that $\tau_{\mu_1, \ldots, \mu_\mu} \in \mathcal{X}_i(f) = \emptyset$, $\oplus_{i \in [1, m]} \mu_i \cdot d_{y_i(f)} = 0$.
2: return $\hat{f} := (f' := f, F, d)$, $\text{st}_{\text{sim}} := (\text{st}_{\text{sim}}, f, F, d)$

Simln(f(x)):
1: $(x_i)_{i \in \mathcal{X}(f)} \leftarrow (F^2_{2^{\lambda/2}} \times F^2_2)[\mathcal{X}(f)]$ such that, for each $j \in [1, m]$, $\text{lsb}(\oplus_{i \in \mathcal{X}_i(f)} x_i) = d_{y_j(f)} \oplus f(x)_{y_j(f)}$.
2: for $i \in \mathcal{W}_c(f)$ do $\text{ctr}_i := 0$
3: for $g \in \mathcal{G}(f)$ in topology order do
 4: $(a, b, c) := (\text{in}_0(g), \text{in}_1(g), \text{out}(g))$
 5: if type$(g) = \text{XOR}$ then $x_c := x_a \oplus x_b$
 6: else if type$(g) = \text{AND}$ then
 7: $\Gamma := \text{in}_2(g)$
 8: $(\chi_a, \rho_a) := ([\text{ctr}_a/2], \text{lsb}([\text{ctr}_a]), \text{ctr}_a := \text{ctr}_a + 1$)
 9: $(\chi_b, \rho_b) := ([\text{ctr}_b/2], \text{lsb}([\text{ctr}_b]), \text{ctr}_b := \text{ctr}_b + 1$)
 10: $(\chi_r, \rho_r) := ([\text{ctr}_r/2], \text{lsb}([\text{ctr}_r]), \text{ctr}_r := \text{ctr}_r + 1$
 11: $s_a := \text{lsb}(x_a), s_b := \text{lsb}(x_b)$
 12: if $\in \mathcal{Z}(f)$ then
 13: $r^g_{s_a, s_b} \leftarrow F_{2^{2\lambda/2}}^2, R^g_{s_a, s_b} := \text{TH.DecodeR}(r^g_{s_a, s_b}, s_a, s_b)$
 14: $\text{Half}_r(u^{CH}_0) := F_{2^{2\lambda/2}}^3$
 15: $[\text{Half}_r(u^{CH}_0)] := \left(\text{Half}_r(u^{CH}_0) \oplus r^g_{s_a, s_b} \oplus x_a \oplus R^g_{s_a, s_b} \oplus x_a \oplus x_b \oplus V_{s_a, s_b} \left(\begin{array}{c} \chi_a \oplus x_b \\ \psi \end{array}\right) \right)$
 16: else if $\not\in \mathcal{Z}(f)$ then
 17: $\text{Half}_r(u^{CH}_0), \text{Half}_r(u^{CH}_0), \text{Half}_r(u^{CH}_0) \leftarrow F_{2^{2\lambda/2}}^2$
 18: $r^g_{s_a, s_b} := \text{TH.DecodeR}(r^g_{s_a, s_b}, s_a, s_b)$
 19: $R^g_{s_a, s_b} := \left(\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array}\right)$
 20: $x_c := m^g_{s_a, s_b} \oplus R^g_{s_a, s_b} \oplus x_b$
21: for $i \in \mathcal{W}_c(f)$ do
22: for $j \in [0, [n_i(f)]/2 - 1]$ do
23: (Programming) Add a pair $(\left(\begin{array}{c} 0 \\ x_i \oplus (i \oplus j) \end{array}\right), \sigma((\left(\begin{array}{c} 0 \\ x_i \oplus (i \oplus j) \end{array}\right))$ to the list Q kept in st_{sim}, if it causes no pre-image collision or image collision in Q, to ensure $\pi((\left(\begin{array}{c} 0 \\ x_i \oplus (i \oplus j) \end{array}\right)) \oplus \sigma((\left(\begin{array}{c} 0 \\ x_i \oplus (i \oplus j) \end{array}\right))) = u^i = \left[\text{Half}_r(u^{CH}_0)\right]$. $H(x_i, i \oplus j)$
24: if $n_i(f)$ is odd then
25: $j := [n_i(f)/2], \text{Half}_r(u^i) \leftarrow F_{2^{2\lambda/2}}^2$, and repeat the step 23 for this j
26: return $\tilde{x} := (x_i)_{i \in \mathcal{W}_c(f)}, \tilde{x}_{\text{sim}} := (\text{st}_{\text{sim}}, \tilde{x}, \text{u}, \text{r})$ where st_{sim} the right hand has an updated list Q, $\tilde{x} := (x_i)_{i \in \mathcal{W}_c(f)}, \text{u} := (u^i)_{i \in \mathcal{W}_c(f), j \in [0, [n_i(f)]/2 - 1]}, \text{r} := (r^g_{s_a, s_b})_{g \in \mathcal{G}(f), (u, b) := (\text{in}_0(g), \text{in}_1(g))}$.

Figure 8: Our simulator for three-halfes in the pRPM.

Our simulator Sim consists of (SimF, Simln) in Figure 8 and SimP±1, which emulates the random permutation and its inverse on-the-fly. More specifically, there is a list Q of query-response pairs in internal state st_{sim}. Upon receiving forward query α (resp., backward query β) from \mathcal{A}_i to SimP (resp., SimP−1), it reads Q from st_{sim} and checks whether $\exists (\alpha, \gamma) \in Q$ (resp., $\exists (\gamma, \beta) \in Q$). If true, it returns γ as response; otherwise it samples $\gamma \leftarrow \{s \in F_{2^{2\lambda/2}}^2 \mid (\ldots, s) \notin Q\}$ (resp., $\gamma \leftarrow \{s \in F_{2^{2\lambda/2}}^2 \mid (s, \ldots) \notin Q\}$), adds (α, γ) (resp., (γ, β)) to Q, and returns γ as response. The programming is the step 23 of Simln, where (α, β) is added to Q if and only if there is no pre-image collision with
(α, . . .) ∈ Q or image collision with (. . . , β) ∈ Q.

To see that Sim is PPT, we note that the circuit-dependent notation can be efficiently computed by traversing the polynomial-size circuit f. Then, the crux is to show that the step 1 in both SimF and Simln can be polynomial-time.

The runtime of the step 1 of SimF is dominated by the runtime of iterating through all qualified (μ1, . . . , μm) ∈ Fq 2 . To find the qualified vectors, one can interpret each Xi(f) as a one-hot non-zero column vector in the space Fq 2[W(j)] and derive a |W(f)|-by-m matrix E from these column vectors. One can check that all qualified vectors fall in the kernel of E. This kernel can be efficiently computed from the Gaussian elimination on E and is a subspace spanned by m − rank(E) basis vectors. So, the step 1 of SimF only needs to iterate through these basis vectors, and the other qualified vectors must satisfy the constraints as they are in the subspace. As a result, the step 1 of SimF runs in polynomial time due to the Gaussian elimination plus a linear-time pass to assign random or constrained values to dby(β)’s according to the m − rank(E) basis vectors.

The step 1 of Simln only requires one linear-time pass to assign constrained or random values to the active labels so it runs in polynomial time. The linear constraint on the LSBs of these active labels has rank rank(E) and is satisfiable for the dby(β)’s assigned in SimF.

Then, we fix ε and A. We will use the H-coefficient technique (Section 3.4) with transcript padding to bound the advantage of distinguishing between the real world (i.e., the adaptive experiment that uses the three-halves scheme) and the ideal world (i.e., the adaptive experiment that uses simulator Sim). In this technique, we consider the computationally unbounded non-uniform adversary A = A(z) and compute ε1, ε2 as follows.

Transcript padding. In either world, A will interact with an integrated oracle that acts as the two-round challenger in the adaptive experiment and provides interfaces πi±1 ∈ {π±1, SimP±1} for forward/backward permutation queries. A can learn πi(α) = β if and only if it sent forward query α to πi and received response β, or sent backward query β to πi−1 and received response α.

To compute ε1, ε2 more easily, we ask the oracle to send more messages to A and A to make extra queries (in addition to the supposed q queries) in both two worlds. More specifically,

- Upon receiving x from A, the oracle sends x := \{x_i\}i∈W(f) instead of x := \{x_i\}i∈W(f) to A. In addition to the active input labels in x, the former also gives the active internal and output labels. In the real world, the oracle can run TH.DecEvalπ±1(·), which determines other active labels in x. In the ideal world, this x can be directly output by Simln.

- Along with x, the oracle sends x := \{x_i\}i∈W(f) to A, which denote the wire truth values in the evaluation of f(x). Both two oracles “echo” these values, which are self-evident to A, to explicitly include them in transcripts. In the experiment, the real-world oracle uses x = \{x_i\}i∈W(f) in TH.Encodeπ±1(·), but the ideal-world oracle can only use f(x) = \{x_i\}i∈W(f) in Simln.

- Along with x, the oracle sends u := \{u^i\}i∈W(f), j∈[0,\lceil n_i(f)/2 \rceil − 1] to A. In the real world, the oracle computes u^i := H(x_i, i || j) for each i ∈ W(f) and j ∈ [0, \lceil n_i(f)/2 \rceil − 1]. In the ideal world, this u is output by Simln and gives the “hash outputs” fixed by the random tape, which is specified by the oracle to run the programming therein.

- Along with x, the oracle sends τ := \{r_s^a\}g∈Gadj(f) to A. In the real world, the oracle computes r_s^a ∈ Fq 2 from two uniform bits (which span Rq 2 ← Rq 0 and match Rq 2,i,j for every i, j ∈ Fq 2 as per distribution Rq 0), the truth table τ (expressed in terms of the truth values x_a, x_b in x and the masked bits s_a = \text{lsb}(x_a), s_b = \text{lsb}(x_b) in x), and the two masked bits s_a and s_b. More specifically, it follows from TH.SampleR that

\[
r_s^a \cdot \tau = R_s^a \cdot s_a \oplus (g(p_a, p_b) \oplus g(p_a, \overline{p_b}) \cdot R_1^a \cdot s_a \oplus (g(p_a, \overline{p_b}) \cdot R_2^a \cdot s_a s_b^a)
\]

In the ideal world, this x is also output by Simln as per the random tape of the oracle.
Along with \(\tilde{x} \), the oracle sends \(\tilde{T} := \{ T_i \} \in \mathcal{W}_f, n_i(f) \text{ is odd} \) to \(\mathcal{A} \). In the real world, the oracle computes \(T_i := \text{Halff}(H(x_i \oplus \Delta, i \mid |n_i(f)/2|)) \in \mathbb{F}_{2^{\lambda/2+1}} \), i.e., the unused upper half of the \(|n_i(f)/2| \)-th \(\Delta \)-related hash output of the wire \(i \). In the ideal world, this \(\tilde{T} \) is sampled by the oracle at random.

(Extra queries) Upon receiving \((\tilde{x}, \tilde{x}, \tilde{u}, \tilde{r}, \tilde{T}) \) from the oracle, \(\mathcal{A} \) will also make a forward permutation query \((0 \mid x_i) \oplus (i \mid \{ j \}) \) for every \(i \in \mathcal{W}_f(f) \) and \(j \in [0, |n_i(f)/2| - 1] \), if it has never learned \(\pi^\ast((0 \mid x_i) \oplus (i \mid j)) = y \) for some \(y \) in its interaction with \(\pi^{\ast\pm 1} = \{ \pi^{\pm 1}, \text{SimP}^{\pm 1} \} \).

At the end of the experiment (i.e., once all other transcripts are settled), the oracle sends \(\Delta \) to \(\mathcal{A} \). In the real world, the oracle gets this \(\Delta \) from the output of TH.Garble\(^{\pi^{\ast\pm 1}(\cdot)} \). In the ideal world, \(\Delta \) is dummy and sampled by the oracle at this time (note that Sim does not use \(\Delta \)).

According to the two oracle constructions, real-world sample space

\[
\Omega_{\text{real}} = \mathbb{F}_2^{\lambda-1} \times \mathbb{F}_2^{\lceil |W_f(f)/2| \rceil} \times \mathbb{F}_2^{2|\Delta|} \times S_{\lambda+2},
\]

and ideal-world sample space

\[
\Omega_{\text{ideal}} = (\mathbb{F}_2^{\lambda/2+5}|f|) \times \mathbb{F}_2^{\text{rank}(E)} \times \mathbb{F}_2^{\lceil \left| W_f(f) + |Z(f)| \right| \lambda - \text{rank}(E)} \times (\mathbb{F}_2^{\lambda/2+3}|Z(f)|) \times (\mathbb{F}_2^{\lambda/2+3}|f|-|Z(f)|)
\]
\[
\times \left(\mathbb{F}_2^{\lambda+2} \right)^M \times \{0,1\}^s \times \mathbb{F}_2^{\lambda-1}.
\]

for the step 25 of SimIn and \(\tilde{T} \) random tape for the sampling in SimP\(^{\pm 1}(\cdot) \) times dummy \(\Delta \).

Given the oracle constructions, a transcript in the original adaptive experiment will be padded with more literal values. Note that transcript padding will not lower the advantage of \(\mathcal{A} \) since \(\mathcal{A} \) can discard the padding values at will. With the padding, a transcript is of the form:

\[
\tau = (\mathcal{K}_1, (f, \tilde{f}), \mathcal{K}_2, (x, \tilde{x}, \tilde{u}, \tilde{r}, \tilde{T}), \mathcal{K}_3, \Delta),
\]

where \(\mathcal{K}_1, \mathcal{K}_2, \) and \(\mathcal{K}_3 \) are the ordered lists of query-response pairs seen in the interleaved interaction with permutation oracles. We do not explicitly consider query direction in these pairs. Given \(\pi^{\ast\pm 1} = \{ \pi^{\pm 1}, \text{SimP}^{\pm 1} \} \), \(\mathcal{A} \) is able to learn \(\pi^\ast(\alpha) = \beta \) if and only if there exists \((\alpha, \beta) \in \bigcup_{\ell=1}^3 \mathcal{K}_\ell \).

Let \(q_\ell := |\mathcal{K}_\ell| \) for every \(\ell \in \{1, 2, 3\} \) and \(q_\Sigma := \sum_{\ell=1}^3 q_\ell \). It follows from the extra queries that \(q_\Sigma \leq q + N \). Without loss of generality, we can assume that \(\mathcal{A} \) only makes non-repeating queries, i.e., it never makes forward query \(\alpha \) to \(\pi^\ast \) or backward query \(\beta \) to \(\pi^{\ast\pm 1} \) for any learned permutation entry \((\alpha, \beta) \).

Bad transcripts. A transcript \(\tau \in \mathcal{T}_{\text{bad}} \) if and only if it incurs at least one of the following events:

- bad1. There exist distinct \((i, j) \in \mathcal{W}_f(f) \times [0, |n_i(f)/2| - 1], (i', j') \in \mathcal{W}_f(f) \times [0, |n_i'(f)/2| - 1] \) such that

\[
(0 \mid x_i) \oplus (i \mid j) = (0 \mid x_i') \oplus (i' \mid j') \quad \vee \quad (35)
\]
\[
u_i \oplus \sigma((0 \mid x_i) \oplus (i \mid j)) = u_i' \oplus \sigma((0 \mid x_i') \oplus (i' \mid j')) \quad \vee \quad (36)
\]
\[
y_i \oplus u_i \oplus \sigma((0 \mid x_i) \oplus (i \mid j)) = y_i' \oplus u_i' \oplus \sigma((0 \mid x_i') \oplus (i' \mid j')) \quad \vee \quad (37)
\]

where \(y_i' \in \mathbb{F}_{2^{\lambda/2+1}} \) will be defined from \(\tau \) according to (45) and (47).

In this case, \(\mathcal{A} \) is able to check the consistency between the value of \(y_i' \oplus y_i' \) and that of \(\Delta \) at the end of experiment without sending any needed queries, which are computed from \(\Delta \), to a random
permutation or its inverse. In the real world, the consistency certainly holds. However, the ideal-world garbled rows and Δ are independently sampled, leading to the consistency only with negligible probability. So, \mathcal{A} has non-negligible advantage to distinguish the two worlds and the statistical distance, as an upper bound, also blows up.

More specifically, the real world is as follows in this case. The pre-image collision (35) leads to the syntactically same XOR of two hash masks in y_i^j, $y_i'^j$, which can be XORed to cancel all hash masks to check the consistency with Δ without further queries. Furthermore, the image collision (36) also implies the pre-image collision (35) as π is permutation. The collision (37) results in the image collision $\pi((0 \parallel x_i \oplus \Delta) \oplus (i \parallel j)) = \pi((0 \parallel x_i' \oplus \Delta) \oplus (i' \parallel j'))$ for some distinct (i, j) and (i', j'). Since π is permutation, this collision implies the pre-image collision (35), which can be used to see the consistency. In contrast, the above cancelling of hash masks cannot give this consistency except with negligible probability in the ideal world.

- **bad2.** There exists $((\alpha, \beta), i, j) \in \bigcup_{\ell=1}^{2} \mathcal{K}_\ell \times \mathcal{W}_\ell(f) \times [0, [n_i(f)/2] - 1]$ such that
 \[
 \alpha = (0 \parallel x_i \oplus \Delta) \oplus (i \parallel j) \quad \text{and} \quad \beta = \sigma(0 \parallel \Delta) \oplus y_i^j \oplus u_i^j + \sigma((0 \parallel x_i) \oplus (i \parallel j))
 \]
 where $y_i^j \in \mathbb{F}_{2^\ell \cdot 2 + 1}$ will be defined from τ according to (45) and (47).

In this case, \mathcal{A} essentially makes it to guess Δ before receiving this value. It allows \mathcal{A} to distinguish the real world, where every y_i^j is consistent with Δ, and the ideal world with a dummy Δ. So, the statistical distance blows up.

- **bad3.** There exists $((\alpha, \beta), i, j) \in \bigcup_{\ell=1}^{2} \mathcal{K}_\ell \times \mathcal{W}_\ell(f) \times [0, [n_i(f)/2] - 1]$ such that
 \[
 \alpha = (0 \parallel x_i) \oplus (i \parallel j) \quad \text{and} \quad \beta = u_i^j + \sigma((0 \parallel x_i) \oplus (i \parallel j))
 \]

In this case, \mathcal{A} can make forward/backward queries w.r.t. some active labels before receiving active input labels and computing other active ones.

This case is necessary to ensure successful programming in the ideal world as the values on the right hand should not be queried before the programming (otherwise it fails due to pre-image or image collision). If the programming fails in the ideal world, the two worlds can be distinguishable as the decoding consistency in the ideal world does not always hold as in the real world.

Bounding $1 - \varepsilon_2$. Without loss of generality, we can consider some fixed good transcript τ such that $Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [|Y(\omega) = \tau|] \neq 0$ (if this probability is zero, it is trivial by definition that $\varepsilon_2 = 0$ for this τ). Using Lemma 1, we turn to analyze the sampled oracle’s compatibility (Section 3.4) with such a transcript, instead of the interaction between \mathcal{A} and the sampled oracle.

Note that there is a computationally unbounded non-uniform adversary \mathcal{A}' such that, for every oracle ω, it sends the queries in τ in order in its interaction with ω (e.g., \mathcal{A}' has auxiliary input τ and sends its ordered queries). Fix \mathcal{A}' in the following compatibility analysis so that any real-world or ideal-world oracle will receive the queries in τ in order. For a response c recorded in a fixed τ, let $\omega \vdash c$ denote the event that, fixing the ordered queries as per τ, oracle ω produces c given the corresponding query. Let \mathcal{K}^R denote the order-preserving list of the responses in an ordered list \mathcal{K} of permutation query-response pairs.

First, we compute $Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)]$. Following from three-halves, a real-world oracle $\omega = (\Delta, \{(p_i, w_i)\}, \{(r_{i,L}, r_{i,R})\}, \{g \in \text{garbled}(f), \pi\} \in \Omega_{\text{real}}$. So,

\[
Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)] = Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (\mathcal{K}_1^R, \tilde{f}, \mathcal{K}_2^R, \tilde{x}, \tilde{u}, \tilde{r}, \tilde{T}, \mathcal{K}_3^R, \Delta)].
\]
To begin with, every real-world \(\omega \) certainly produces \(f' \) (i.e., the first value in \(\hat{f} \)) and \(\bar{x} \) fixed in \(\tau \), which leads to \(\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) = \tau] \neq 0 \). This non-zero probability implies that \((f', \bar{x})\) in \(\tau \) is honestly and deterministically computed from the fixed queries \((f, x)\). Otherwise, no ideal-world oracle, which computes \((f', \bar{x})\) from the same deterministic procedure, can produce this transcript, contradicting the non-zero probability. As every real-world \(\omega \) will follow the same deterministic procedure, it certainly produces the two values.

Meanwhile, a real-world oracle \(\omega \) should have the same literal value of \(\Delta \) as its counterpart in \(\tau \). Then, the real-world sampling \(\mathbf{R}^g \leftarrow \mathcal{R}_0 \) (in Appendix F) and \(r^g = \begin{bmatrix} r^g_{100} & r^g_{10} & r^g_{11} \end{bmatrix}^T \in \mathbb{F}_2^3 \) ensure that, for every \(i, j \in \mathbb{F}_2 \) and every \(g \in \mathcal{G}_{\text{rand}}(f) \) with \((a, b) := (in_0(g), in_1(g))\),

\[
\begin{align*}
r^g_{ij} &= r^g_{ijL} \oplus s_a \oplus x_a \cdot \mathbf{R}'_{1,ij} \oplus s_b \oplus x_b \cdot \mathbf{R}'_{2,ij} \\
&= r^g_{ijL} \oplus s_a \oplus x_a \cdot \mathbf{R}'_{1,ij} \oplus s_b \oplus x_b \cdot \mathbf{R}'_{2,ij}.
\end{align*}
\]

(42)

In particular, (42) holds for \(i = s_a \) and \(j = s_b \) (i.e., the real-world compatibility between \(\omega \) and \(\bar{\tau} \) in (34) for this \(g \)) with probability \(2^{-2} \), which comes from two uniform coins \((r^g_{10}, r^g_{11}) \in \mathbb{F}_2^2\) in \(\omega \) and independent of the literal values of \(x_a, x_b, s_a, \) and \(s_b \). Conditioned on the compatibility so far, the probability

\[
\Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)]
\]

\[
= \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (\mathcal{K}^R, F, d, \mathcal{K}^R, \bar{x}, \bar{\mathcal{K}}, \mathcal{K}^R) \mid \omega \vdash (f', \bar{x}) \land \omega \vdash (\bar{\tau}, \Delta)] \cdot \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (f', \bar{x}) \land \omega \vdash (\bar{\tau}, \Delta)] \cdot \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash \bar{\tau}] \cdot \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash \Delta]
\]

\[
= \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \vdash (\mathcal{K}^R, F, d, \mathcal{K}^R, \bar{x}, \bar{\mathcal{K}}, \mathcal{K}^R) \mid \omega \vdash (f', \bar{x}) \land \omega \vdash (\bar{\tau}, \Delta)] \cdot \frac{1}{2^{2|f'|+(\lambda-1)}}
\]

Conditioned on the compatibility with \((f', \bar{x}, \bar{\tau}, \Delta)\), a real-world \(\omega \) should be compatible with \((\cup_{\ell=1}^3 \mathcal{K}^R_\ell, F, \bar{\mathcal{K}}, \bar{\tau})\) and some active labels in \(\bar{x} \) such that

(i) \(\pi^{\pm 1} \) maps the fixed permutation queries to the responses in \(\cup_{\ell=1}^3 \mathcal{K}^R_\ell \).

(ii) For each \(i \in \mathcal{W}_n(f) \), it holds that \(x_i = u_i \oplus (p_i \oplus x_i) \Delta \).

(iii) For each \(i \in \mathcal{W}_n(f) \) and \(j \in [0, \lfloor n_s(f)/2 \rfloor - 1] \), it holds that

\[
H(x_i, i \parallel j) := \pi((0 \parallel x_i) \oplus (i \parallel j)) \oplus \sigma((0 \parallel x_i) \oplus (i \parallel j)) = u'_i = \begin{bmatrix} \text{Half}_1(u'_i) \\ \text{Half}_0(u'_i) \end{bmatrix}.
\]

(43)

(iv) For each \(g \in \mathcal{G}_{\text{rand}}(f) \) with \((a, b, \Gamma, c) := (in_0(g), in_1(g), in_2(g), \text{out}(g))\) and the non-repeating
counters \((\chi_a \parallel \rho_a), (\chi_b \parallel \rho_b),\) and \((\chi_\Gamma \parallel \rho_\Gamma)\) as per some fixed topology order of \(f\), it holds that

\[
\left(r^g_{s_a,s_b} \parallel x_c \oplus R^g_{s_a,s_b} \parallel x_d \right) \\
= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \text{Half}_{\rho_a}(H(x_a, a \parallel \chi_a)) \\ \text{Half}_{\rho_b}(H(x_b, b \parallel \chi_b)) \\ \text{Half}_{\rho_\Gamma}(H(x_\Gamma, \Gamma \parallel \chi_\Gamma)) \end{bmatrix} \\
\oplus V_{s_a,s_b} \left(z^g \parallel \left[0 \parallel g^g \right] \right),
\]

(44)

\[
(z^g_{\text{bot}} \parallel g^g) = V^+_{\text{bot}} \left(M h^g + \left(r^g \parallel \tilde{R}^g + \left[0_{4 \times 2} \parallel t^g \right] \otimes I_2 \right) \begin{bmatrix} w_a \\ w_b \end{bmatrix} \right)
\]

\[
= V^+_{\text{bot}} M \\
\begin{bmatrix}
\begin{array}{cccc}
s_a & s_a & s_a & s_a \\
s_a & s_a & s_a & s_a \\
s_b & s_b & s_b & s_b \\
s_b & s_b & s_b & s_b
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{cccc}
\text{Half}_{\rho_a}(H(x_a, a \parallel \chi_a)) \\
\text{Half}_{\rho_b}(H(x_b, b \parallel \chi_b)) \\
\text{Half}_{\rho_\Gamma}(H(x_\Gamma, \Gamma \parallel \chi_\Gamma)) \\
\text{Half}_{\rho_\Gamma}(H(x_\Gamma, \Gamma \parallel \chi_\Gamma))
\end{array}
\end{bmatrix}
\]

\[
\oplus \left(\begin{bmatrix}
\begin{array}{cccc}
\frac{s_a}{s_a} & \frac{x_a}{s_b} & \frac{x_a}{s_b} & \frac{x_a}{s_b}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{cccc}
\text{Half}_{\rho_a}(e^{\chi_a}) & \text{Half}_{\rho_b}(e^{\chi_b}) & \text{Half}_{\rho_b}(e^{\chi_b}) & \text{Half}_{\rho_b}(e^{\chi_b})
\end{array}
\end{bmatrix}
\right)
\]

\[
\leftrightarrow \left(z^g_{\text{bot}} \parallel g^g \right) \oplus \left[\begin{bmatrix}
\begin{array}{cccc}
\text{Half}_{\rho_a}(H(x_a, a \parallel \chi_a)) \\
\text{Half}_{\rho_b}(H(x_b, b \parallel \chi_b)) \\
\text{Half}_{\rho_\Gamma}(H(x_\Gamma, \Gamma \parallel \chi_\Gamma)) \\
\text{Half}_{\rho_\Gamma}(H(x_\Gamma, \Gamma \parallel \chi_\Gamma))
\end{array}
\end{bmatrix}
\right]
\]

\[
\leftrightarrow \left(\begin{bmatrix}
\begin{array}{cccc}
\text{Half}_{\rho_a}(y^{\chi_a}) & \text{Half}_{\rho_b}(y^{\chi_b}) & \text{Half}_{\rho_b}(y^{\chi_b}) & \text{Half}_{\rho_b}(y^{\chi_b})
\end{array}
\end{bmatrix}
\right)^T
\in \mathbb{F}^{3/2}_{2/2+1}
\]

(45)

where the bits \(x_a, x_b, s_a = \text{lsb}(x_a), s_b = \text{lsb}(x_b)\) are given in \(\tau\), and in (45),

\[
V^+ = \left[V^+_{\text{top}} \ V^+_{\text{bot}} \right]^T \in \left(\mathbb{F}_2^{1 \times 8} \right)^2 \times \left(\mathbb{F}_2^{1 \times 8} \right)^3,
\]

\[
\forall g \in \mathcal{G}_{\text{and}}(f) : z^g = \left[z^g_{\text{top}} \ z^g_{\text{bot}} \right]^T \in \mathbb{F}_2^{3 \times 2},
\]

\[
\forall g \in \mathcal{G}_{\text{and}}(f) : t^g = \begin{bmatrix} g(s_a \oplus x_a, s_b \oplus x_b) \\ g(s_a \oplus x_a, s_b \oplus x_b) \\ g(s_a \oplus x_a, s_b \oplus x_b) \\ g(s_a \oplus x_a, s_b \oplus x_b) \end{bmatrix},
\]

and for each \(g \in \mathcal{G}_{\text{and}}(f)\), \(\tilde{R}^g \in \mathbb{F}^{8 \times 6}_{2} \) is fixed by running TH.SampleR with random coins \((r^g_L, r^g_R)\) in \(\omega\), which have been compatible (according to the condition) with \(\tilde{r}\) as per the (42) for this \(g\) and \((i, j) = (s_a, s_b)\).

(v) For each \(i \in \{ i \in \mathcal{W}(f) \mid n_i(f) \text{ is odd} \}\), it holds that

\[
\text{Half}_{1}(H(x_i \oplus \Delta, i \parallel \lfloor n_i(f)/2 \rfloor)) = T_i.
\]

(46)

Conditioned on the compatibility so far, every real-world oracle \(\omega\) is always compatible with the leftover values in \(\tau\), i.e., decoding table \(d\) and other active labels in \(\tilde{d}\), which are deterministically computed from XOR combination. The reason is that, for \(\tau\) ensuring \(\text{Pr}_{\omega\leftarrow \Omega_{\text{rand}}} [Y(\omega) = \tau] \neq 0\), these values should be honestly determined by the conditioned values as in the real world. Otherwise, this probability will be zero for an ideal-world oracle, which obtains them from a consistent deterministic
As every real-world oracle ω honestly follows the real-world computation, this “leftover” compatibility must hold conditioned on the previous compatibility.

It remains to compute the conditional probabilities for (i) to (v). Consider (iii), (iv), and (v). We claim that every good τ with $\Pr_{w\leftarrow\Omega_{\text{ideal}}} [Y(\omega) = \tau] \neq 0$ already implies (43) and (44). To see this, we use that condition $-\text{bad}_3$ for good transcripts and the extra queries ensure that K_3 fixes the pairs of permutation pre-images and images for hash values

$$\{H(x_i, i \parallel j)\}_{i \in W(f), j \in [0, n_i(f)/2] - 1}.$$

These values are consistent with \tilde{u} fixed in τ as per (43). Otherwise, $\Pr_{w\leftarrow\Omega_{\text{ideal}}} [Y(\omega) = \tau] \neq 0$ cannot be satisfied by τ since $-\text{bad}_1 \land -\text{bad}_3$ for every good transcript implies successful programming in the ideal world so that $H(x_i, i \parallel j) = u_i^L$. As a corollary, (44) holds for every good transcript due to this consistency and the step 15 and 18 of SimIn.

Consider (45) and (46), the leftover parts of (iii), (iv), and (v). If we define from the fixed τ that

$$\text{Half}_1(y_i^{[n_i]/2}) := \text{Half}_1(u_i^{[n_i]/2}) \oplus T_i \in \mathbb{F}_{2^{n_i/2+1}}$$

for each $i \in \{i \in W(f) \mid n_i(f) \text{ is odd}\}$, then we can unify (45) and (46) as:

$$\mathcal{V} := \begin{cases}
 i \in W(f), j \in [0, n_i(f)/2] - 1 :
 y_i^j = H(x_i, i \parallel j) \oplus H(x_i \oplus \Delta, i \parallel j) \\
 = \pi((0 \parallel x_i) \oplus (i \parallel j)) \oplus \pi((0 \parallel x_i \oplus \Delta) \oplus (i \parallel j)) \oplus \sigma(0 \parallel \Delta)
 \end{cases}$$

since (45) and (46) iterate through both halves of all well-defined $y_i^j \in \mathbb{F}_{2^{n_i/2+1}}^2$ for $i \in W(f)$ and $j \in [0, n_i(f)/2] - 1$. Since τ is a good transcript, there are exactly $2N$ pairwise distinct permutation pre-images on the right hand (otherwise, there will be a pair of permutation pre-images leading to (35) in bad_1 or a permutation pre-image leading to (38) in bad_2 given the extra queries). Due to this pairwise distinctness, \mathcal{V} has $2N$ syntactically different variables $P := \{P_{i \parallel j,0}, P_{i \parallel j,1}\}_{i \in W(f), j \in [0, n_i(f)/2] - 1}$. They can fix the same number of the entries of permutation π in a real-world ω if and only if their literal values fixed by τ are also pairwise distinct. We note that every good transcript τ does fix exact one such assignment of these variables for the following reasons:

- (43) already holds for τ, i.e., for $i \in W(f)$ and $j \in [0, n_i(f)/2] - 1$,

$$P_{i \parallel j,0} := \pi((0 \parallel x_i) \oplus (i \parallel j)) = u_i^L \oplus \sigma((0 \parallel x_i) \oplus (i \parallel j)).$$

The literal values of $\{P_{i \parallel j,0}\}_{i \in W(f), j \in [0, n_i(f)/2] - 1}$ are immediate from the responses in K_3^R given the extra queries and will be pairwise distinct due to the impossible (36) from $-\text{bad}_1$.

- For $i \in W(f)$ and $j \in [0, n_i(f)/2] - 1$, the literal value of $P_{i \parallel j,1}$ is fixed by τ according to \mathcal{V} and (48):

$$P_{i \parallel j,1} := \pi((0 \parallel x_i \oplus \Delta) \oplus (i \parallel j)) = \sigma(0 \parallel \Delta) \oplus y_i^j \oplus u_i^L \oplus \sigma((0 \parallel x_i) \oplus (i \parallel j)).$$

The literal values of $\{P_{i \parallel j,1}\}_{i \in W(f), j \in [0, n_i(f)/2] - 1}$ will be pairwise distinct according to the impossible (37) from $-\text{bad}_1$.

- The goodness of τ also ensures that there do not exist

$$P' \in \{P_{i \parallel j,0}\}_{i \in W(f), j \in [0, n_i(f)/2] - 1},$$

$$P_{\Delta} \in \{P_{i \parallel j,1}\}_{i \in W(f), j \in [0, n_i(f)/2] - 1}$$

47
such that \(P' = P'_A \). Otherwise, this equality and (49) ensure that there exist \((i, j) \in W(f) \times [0, n(f)/2 - 1]\) and \((i', j') \in W(f) \times [0, n(f)/2 - 1]\) such that

\[
\pi((0 \parallel x_i) + (i \parallel j)) = \pi((0 \parallel x_i') + (i' \parallel j')) = \sigma(0 \parallel \Delta) + y_i' \oplus u_i' \oplus \sigma((0 \parallel x_i') + (i' \parallel j')).
\]

(50)

We have \((0 \parallel x_i) + (i \parallel j), \pi((0 \parallel x_i) + (i \parallel j)) \in K_3\) according to \(\neg bad_3 \) and the extra queries. So, (50) contradicts the impossible (39) from \(\neg bad_2 \).

Putting these cases together, we can see that \(\tau \) yields a value assignment of \(\mathcal{P} \), and this assignment fixes exact 2N entries of real-world permutation \(\pi \).

Based on the condition \(\neg bad_1 \land \neg bad_3 \) of good transcript \(\tau \), \(N \) extra queries are non-repeating and the number of non-repeating queries is \(q + N = q_\Sigma \). As a result, \(N \) responses in \(\cup_{i=1}^{2} K_i^R \) for the non-repeating extra queries are fixed by the values in \(\mathcal{P} \) while the other \(q_\Sigma - N = q \) responses are fixed by real-world \(\pi \) (conditioned on the values in \(\mathcal{P} \)). Based on (i), (ii), (iii), (iv), and (v) together with the “leftover” compatibility, we have in the real world that

\[
\Pr_{\omega \leftarrow \Omega_{real}} \left[\omega \vdash (K_1^R, F, d, K_2^R, \tilde{x}, \tilde{u}, \tilde{T}, K_3^R) \mid \omega \vdash (f', \tilde{x}) \land \omega \vdash (\tilde{r}, \Delta) \right]
\]

\[
= \frac{1}{(2\lambda)^{|W(f)|}} \cdot \frac{(2\lambda+2 - 2N - (q_\Sigma - N))!}{(2\lambda+2)!} \frac{1}{(2\lambda+2)^{q+2N}}
\]

\[
\Rightarrow \Pr_{\omega \leftarrow \Omega_{real}} \left[\omega \in \text{comp}_{real}(\tau) \right] = \frac{1}{(2\lambda)^{|W(f)|}} \cdot \frac{1}{(2\lambda+2)^{q+2N}} \cdot \frac{1}{2^{2\lambda+2} + (\lambda - 1)}.
\]

Second, in the ideal world, we can use a similar argument to show

\[
\Pr_{\omega \leftarrow \Omega_{ideal}} \left[\omega \in \text{comp}_{ideal}(\tau) \right] = \prod_{i \in N} \frac{1}{2^{\lambda+2} - \left| Q_{i-1} \right|} \cdot \prod_{i \in N} \frac{1}{2^{\lambda+2} - (i - 1)} \cdot \frac{1}{2^{\lambda+2} - N - (N + 1) \times \cdots \times (2\lambda+2 - (q_\Sigma - 1))}
\]

\[
\Rightarrow \Pr_{\omega \leftarrow \Omega_{ideal}} \left[\omega \in \text{comp}_{ideal}(\tau) \right] \leq \frac{1}{(2\lambda)^{|W(f)|}} \cdot \frac{1}{(2\lambda+2)^{q} \cdot (2\lambda+2)^{3/2} \cdot 2^{\lambda+2} + (\lambda - 1)}.
\]

According to the condition \(\neg bad_1 \land \neg bad_3 \) and the \(N \) extra queries, there are exact \(q + N = q_\Sigma \) non-repeating queries. Here, \(N \) responses in \(\cup_{i=1}^{2} K_i^R \) for the non-repeating extra queries are fixed by the conditioned values while the other responses are fixed by \(\text{SimP}^{\pm 1} \) for other \(q_\Sigma - N = q \) queries.

Let \(Q_{i-1} \) denote the list \(Q \) (which is maintained in internal state \(s_{sim} \)) when it includes \(i - 1 \in [0, q_\Sigma - 1] \) pairs (note that \(Q \) finally includes \(q_\Sigma \) pairs given the \(q_\Sigma \) non-repeating queries), and \(N \subseteq [1, q_\Sigma] \) denote the index set of these \(q \) queries in \(q_\Sigma \) non-repeating queries to \(\text{SimP}^{\pm 1}(\cdot) \) such that \(|N| = q \). We have

\[
\Pr_{\omega \leftarrow \Omega_{ideal}} \left[\omega \vdash (K_1^R, K_2^R, K_3^R) \mid \omega \vdash (\tilde{f}, \tilde{x}, \tilde{u}, \tilde{r}, \tilde{T}, \Delta) \right]
\]

\[
= \prod_{i \in N} \frac{1}{2^{\lambda+2} - \left| Q_{i-1} \right|} \cdot \prod_{i \in N} \frac{1}{2^{\lambda+2} - (i - 1)} \leq \frac{1}{2^{\lambda+2} - N} \cdot \frac{1}{2^{\lambda+2} - (N + 1) \times \cdots \times (2\lambda+2 - (q_\Sigma - 1))}
\]

\[
= \frac{1}{(2\lambda+2 - N)_q},
\]

\[
\Rightarrow \Pr_{\omega \leftarrow \Omega_{ideal}} \left[\omega \in \text{comp}_{ideal}(\tau) \right] \leq \frac{1}{(2\lambda)^{|W(f)|}} \cdot \frac{1}{(2\lambda+2 - N)_q} \cdot (2\lambda+2)^{3/2} \cdot 2^{\lambda+2} + (\lambda - 1)}.
\]
As iterating an AND gate increases three counters in either world, we have
\[
3 |\mathcal{I}| = \sum_{i \in \mathcal{W}(f)} n_i(f) = \sum_{i \in \mathcal{W}(f), n_i(f) \text{ is even}} 2 \cdot \left[\frac{n_i(f)}{2} \right] + \sum_{i \in \mathcal{W}(f), n_i(f) \text{ is odd}} 2 \cdot \left(\left[\frac{n_i(f)}{2} \right] - \frac{1}{2} \right)
\]
(51)

So, we can have \(\varepsilon_2 = 0 \) since, for every \(N \geq 0 \) and every \(q \geq 0 \),
\[
\Pr_{\omega \in \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)] \geq \frac{(2^{\lambda+2} - N)_q \cdot (2^{\lambda+2})^{2N}}{(2^{\lambda+2})^{q+2N}} \geq \frac{(2^{\lambda+2} - N)_q \cdot (2^{\lambda+2})^N \cdot (2^{\lambda+2})^N}{(2^{\lambda+2})^q \cdot (2^{\lambda+2})^{q+2N}} = \frac{(2^{\lambda+2})^q \cdot (2^{\lambda+2})^N}{(2^{\lambda+2})^q \cdot (2^{\lambda+2})^N} = \frac{(2^{\lambda+2})^N}{(2^{\lambda+2})^{q+N}} \geq 1.
\]

Bounding \(\varepsilon_1 \). We bound the probabilities of the bad events in the ideal world. First, consider bad_1. Note that each active label \(x_i \) can be written as the XOR of (i) some active circuit input labels, and/or (ii) some active output labels of the precedent AND gates, i.e., for \(I_i \cap J_i \neq \emptyset \),
\[
x_i = \left(\bigoplus_{w \in I_i \subseteq \mathcal{W}(f)} x_w \right) \oplus \left(\bigoplus_{w \in J_i \subseteq \mathcal{W}(f)} x_w \right) = \bigoplus_{w \in I_i \cap J_i} x_w \in \mathbb{F}_2^{\lambda/2}.
\]
(52)

For (35), we can use (52) to rewrite it as
\[
\left(\begin{array}{c} 0_{2 \times 1} \\ \left(\bigoplus_{w \in (I_i \cap I_i')} x_w \right) \oplus \left(\bigoplus_{w \in (J_i \cap J_i')} x_w \right) \end{array} \right) = (i \parallel j) + (i' \parallel j') \in \mathbb{F}_2^{2\lambda/2+1}.
\]

According to Simln, each \(x_w \), which is sampled in the step 1 or computed in the step 19, has at least \(\lambda - 1 \) random non-LSBs. Therefore, the equality holds with probability at most \(2^{-\lambda} \) for some fixed distinct \((i, j)\) and \((i', j')\), and, if (i) \(I_i = I_i' \) and \(J_i = J_i' \) or (ii) the right-hand XOR does not give two leading zero bits, this probability is zero for the distinct \((i, j)\) and \((i', j')\). For (36), the worst case is that both halves of \(u_i^l \oplus u_i^l' \in \mathbb{F}_2^{2\lambda/2+1} \) respectively serve (in the step 14 of Simln) as the lower-half masks of two AND gates both with output wires in \(\mathcal{Z}(f) \). In this case, each half of this XOR will have at least \(1 + (\lambda/2 - 1) = \lambda/2 \) random non-LSBs using the lower-half randomness of \((r_{a,b}^d || x_c) \in \mathbb{F}_2^{2\lambda/2+1} \) in each of the two AND gates. Note that such \(2 \cdot \lambda/2 = \lambda \) bits are independent of other (previously fixed) active labels, including \(x_i \) and \(x_i' \). Thus, the equality holds with probability at most \(2^{-\lambda} \) for some fixed \((i, j)\) and \((i', j')\).

Similarly, the worst case for (37) is that both halves of \(u_i^l \oplus u_i^l \in \mathbb{F}_2^{2\lambda/2+1} \) are respectively the lower-half masks of two AND gates both with output wires in \(\mathcal{Z}(f) \). Otherwise, at least one half of \((y_i^l \oplus y_i^l) \oplus (y_i^l' \oplus y_i^l')\) is uniform for:

(i) The \(u_i^l \oplus u_i^l' \) masked with the uniform upper half of some \((r_{a,b}^d || x_c)\), which cannot be cancelled by \(y_i^l \) or \(y_i^l' \) defined as per (45) and (47), or

(ii) The uniform \(u_i^l \) or \(u_i^l' \) sampled in the step 16 of Simln and independent of \(y_i^l \) or \(y_i^l' \), or

(iii) The uniform \(T_i = \text{Half}_1 (y_i^l \oplus u_i^l) \) (resp., \(T_i' = \text{Half}_1 (y_i^l' \oplus u_i^l') \) when the upper half of the XOR is considered, \(n_i(f) \) (resp., \(n_i'(f) \)) is odd, and \(j = \lceil n_i(f)/2 \rceil - 1 \) (resp., \(j' = \lceil n_i'(f)/2 \rceil - 1 \)).
In this worst case, each half of \(u^i_j \oplus u^{j'}_j \) includes at least 1 + (\(\lambda/2 - 1 \)) = \(\lambda/2 \) uniform bits for the lower-half non-LSBs of some \((r^{u}_{i,a_i} \parallel x_c) \). These non-LSBs are independent of \(y^i_j \) and \(y^{j'}_j \) defined as per (45) and (47), or other (previously fixed) active labels, including \(x \), and \(x' \). Thus, (37) holds with probability \(2^{-\lambda} \) for some fixed distinct \((i, j)\) and \((i', j')\).

Taking a union bound over the above cases, we have

\[
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_1] \leq \frac{5N(N - 1)}{2^{2\lambda + 1}}.
\]

Then, consider \(\text{bad}_2 \). For (38), it is clear that \((0 \parallel \Delta) = \alpha \oplus (0 \parallel x_j) \oplus (i \parallel j)\), which occurs with probability \(2^{-(\lambda - 1)} \) according to the randomness of \(\Delta \). Let \(\Delta = [\Delta_L \Delta_R]^{T} \in \mathbb{F}_{2\lambda/2}^{2} \). We note that each \(y^i_j \in \mathbb{F}_{2\lambda/2+1}^2 \) defined from (45) and (47) includes an additive term of the form

\[
L_{\xi_1, \xi_2, \xi_3, \xi_4}(0 \parallel \Delta) = \begin{bmatrix}
0 \parallel \xi_1 \Delta_L \oplus \xi_2 \Delta_R \\
0 \parallel \xi_3 \Delta_L \oplus \xi_4 \Delta_R
\end{bmatrix} \in \mathbb{F}_{2\lambda/2+1}^{2},
\]

for some \(\xi_1, \xi_2, \xi_3, \xi_4 \in \mathbb{F}_2 \), while other additive terms in \(y^i_j \) are independent of \(\Delta \). Linear orthomorphism \(\sigma \) for every \(L_{\xi_1, \xi_2, \xi_3, \xi_4} \) turns (39) into

\[
\sigma(0 \parallel \Delta) \oplus L_{\xi_1, \xi_2, \xi_3, \xi_4}(0 \parallel \Delta) = \beta \oplus u^i_j \oplus \sigma((0 \parallel x_i) \oplus (i \parallel j)) \oplus \text{"other additive terms in } y^i_j \text{"},
\]

which is invertible to compute \((0 \parallel \Delta)\). This implies that the equality holds with probability \(2^{-(\lambda - 1)} \) due to the randomness of \(\Delta \). Taking a union bound, we have

\[
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_2] \leq \frac{2N \cdot (q_1 + q_2 + q_3)}{2^{2\lambda - 1}}.
\]

Finally, consider \(\text{bad}_3 \). Recall that each \(x_{\omega} \) has at least \(\lambda - 1 \) random non-LSBs. Since these bits are independent of \(\bigcup_{\ell=1}^p \mathcal{K}_\ell \), (40) holds with probability at most \(2^{-(\lambda - 1)} \) for some fixed \((\alpha, \ldots)\) and \((i, j)\). For (41), the mask sampled in the step 13 or the direct sampling in the step 13 or 16 of SimIn ensures that both halves of \(u^i_j \in \mathbb{F}_{2\lambda/2+1}^2 \) are uniform and independent of \(x_i \) or \(\mathcal{K}_\ell \). It holds with probability \(2^{-(\lambda + 2)} < 2^{-(\lambda - 1)} \) for some fixed \((\ldots, \beta)\) and \((i, j)\). So, we can take a union bound to have that

\[
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_3] \leq \frac{2N \cdot (q_1 + q_2)}{2^{2\lambda - 1}}.
\]

We have a bound \(\varepsilon_1 \) from (53), (54), and (55):

\[
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) \in \mathcal{T}_{\text{bad}}] = \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_1 \lor \text{bad}_2 \lor \text{bad}_3]
\leq \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_1] + \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_2] + \Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\text{bad}_3]
\leq 5N(N - 1) + 16N(q + N)
\leq \frac{48qs + 189s^2 - 15s}{2^{2\lambda + 1}} = \varepsilon_1,
\]

where the last inequality comes from (51), \(M \leq |W_0(\ell)| \leq 3|f|, \) and \(|f| = s \).

The above \(\varepsilon_1, \varepsilon_2 \) and the H-coefficient technique lead to this theorem. \(\Box \)

D.2 Adaptive Security in npRPM

We consider a slightly different three-halves implementation from the original one of [RR21] in that decoding table \(d \) is transferred from \(\hat{f} \) to \(k \) in TH\,. Garble\(^{\pm 1}(\cdot)\) and then included in garbled input \(\hat{x} \) in the online phase. This implementation also follows the lower bound in Theorem 8 and satisfies the adaptive security in the npRPM as per the following theorem.
orthomorphism for the function family

Then, three-halves (sketched above) is a

\(\text{Hybrid}_0 \) This is the adaptive experiment using simulator Sim.

\(\text{Hybrid}_1 \) This is identical to the previous hybrid, except that we replace \(\pi^{\pm 1} \) (which can be equivalently emulated on-the-fly as in Figure 4) by an approximation \(\tilde{\pi}^{\pm 1} \) (given in Figure 5). This approximation is the same as random permutation except that, for a new query of the simulator, it returns a fresh random string as response and records this query-response pair. This hybrid is used to simplify probability analysis.

\(\text{Hybrid}_2 \) This is the adaptive experiment using three-halves scheme.

\[\text{SimF}^{\pm 1}(f): \]

1. \(F := \{(g^0, z^0)\}_{g \in \text{Out}(f)} \leftarrow (F^3_{2^\lambda/2} \times F^3_{2^\lambda})^{/|f|} \)
2. \(\{x_i\}_{i \in W_0(f)} \leftarrow (F^3_{2^\lambda/2} \times W_0(f))^{/|W_0(f)|} \)
3. for \(i \in W_0(f) \) do \(\text{ctr}_i := 0 \)
4. for \(g \in \mathcal{G}(f) \) in topology order do
5. \(\langle a, b, c \rangle := (\text{in}_0(g), \text{in}_1(g), \text{out}(g)) \)
6. if type\((g) \) = XOR then \(x_e := x_a + x_b \)
7. else if type\((g) \) = AND then
8. \(\Gamma := \text{in}_2(g) \)
9. \(\langle \chi_a, \rho_a \rangle := ([\text{ctr}_a/2], \text{lsb}(\text{ctr}_a)), \text{ctr}_a := \text{ctr}_a + 1 \)
10. \(\langle \chi_b, \rho_b \rangle := ([\text{ctr}_b/2], \text{lsb}(\text{ctr}_b)), \text{ctr}_b := \text{ctr}_b + 1 \)
11. \(\langle \chi_r, \rho_r \rangle := ([\text{ctr}_r/2], \text{lsb}(\text{ctr}_r)), \text{ctr}_r := \text{ctr}_r + 1 \)
12. \(s_a := \text{lsb}(x_a), s_b := \text{lsb}(x_b) \)
13. \(\begin{bmatrix} \text{Half}_{\rho_a}(u^a_\lambda) \\ \text{Half}_{\rho_a}(u^a_\lambda) \\ \text{Half}_{\rho_r}(u^\Gamma) \end{bmatrix} := \begin{bmatrix} \text{Half}_{\rho_a}(\pi(0 \parallel x_a) \oplus (\sigma(0 \parallel x_a) \parallel (a \parallel \chi_a))) \\ \text{Half}_{\rho_a}(\pi(0 \parallel x_a) \oplus (b \parallel \chi_a)) \oplus (\sigma(0 \parallel x_a) \parallel (b \parallel \chi_a)) \end{bmatrix} \)
14. \(\begin{bmatrix} r_{g,s_a}^a || m_{g,s_a}^a \\ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \end{bmatrix} \begin{bmatrix} \text{Half}_{\rho_a}(u^a_\lambda) \\ \text{Half}_{\rho_a}(u^a_\lambda) \\ \text{Half}_{\rho_r}(u^\Gamma) \end{bmatrix} \oplus V_{s_a,s_b}(z^9 || 0 || g^9) \)
15. \(R_{g,s_a}^a := \text{THDecodeR}(r_{g,s_a}^a, s_a, s_b) \)
16. \(x_e := m_{g,s_a}^a \oplus R_{g,s_a}^a \)
17. return \(\tilde{f} := \langle f, F \rangle, \text{st}_{\text{sim}} := \langle f, \tilde{x} := \{x_i\}_{i \in W(f)}, \tilde{u} := \{u_i\}_{i \in W_0(f)}, \tilde{r} := \{r_{g,s_a}^a\}_{g \in \text{Out}(f), \langle a, b, c \rangle := (\text{in}_0(g), \text{in}_1(g))} \rangle \)

\[\text{SimIn}^{\pm 1}(f)(x): \]
1. Parse \(\text{st}_{\text{sim}} = \langle f, \tilde{x} := \{x_i\}_{i \in W(f)}, \tilde{u}, \tilde{r} \rangle \)
2. for \(i \in W_0(f) \) do \(d_i := f(x_i) \oplus \text{lsb}(x_i) \)
3. return \(\tilde{x} := \{x_i\}_{i \in W_0(f)} \)
According to Lemma 2, every adaptive adversary \mathcal{A} can distinguish Hybrid$_0$ and Hybrid$_1$, with advantage at most $(q + N) \cdot N / 2^{\lambda+1}$ up to the supposed q queries of \mathcal{A} and the N queries of Sim.

Then, we prove the negligible statistical distance between the transcripts in Hybrid$_1$ and Hybrid$_2$, which upper bounds the advantage of adaptive adversary \mathcal{A}. To simplify probability analysis, we also use the H-coefficient technique and the same transcript padding as in the proof of Theorem 6. We regard Hybrid$_1$ (resp., Hybrid$_2$) and the associated oracle as the ideal (resp., real) world in the H-coefficient technique. The real-world sample space is the same as that in the proof of Theorem 6, but the ideal-world sample space is defined as

$$
\Omega_{\text{ideal}} = \left(\mathbb{F}_2^{3\lambda/2+5}\right)^{|f|} \times \left(\mathbb{F}_2^\lambda\right)^{|W_\lambda(f)|} \times \left(\mathbb{F}_2^{\lambda/2+1}\right)^{|M|} \times \left(\mathbb{F}_2^\lambda\right)^{q-1}
$$

for the sampling of T, random tape for the sampling in $\tilde{\pi}^{\pm 1}(\cdot)$. We will consider the same bad transcripts as in the proof of Theorem 6 (where bad$_3$ is for probability analysis instead of programming, as its counterpart in the proof of Theorem 4) and assume that, without loss of generality, \mathcal{A} only makes non-repeating queries. Let $q_\ell := |K_\ell|$ for every $\ell \in \{1, 2, 3\}$ and $q_\Sigma := \sum_{\ell=1}^3 q_\ell$.

Banding $1 - \varepsilon_2$. We can follow a similar argument (with the difference that the consistency (43) and (44) trivially hold for good transcripts due to the step 12 to 15 in SimF) in the proof of Theorem 6 to show that, for some fixed good transcript τ such that $\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) = \tau] \neq 0$ and $q_\Sigma = q + N$ (which comes from the condition $\neg \text{bad}_1 \land \neg \text{bad}_3$ for good transcripts),

$$
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\omega \in \text{comp}_{\text{ideal}}(\tau)] \leq \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)]
$$

We can follow a similar argument (with the difference that the consistency (43) and (44) trivially hold for good transcripts due to the step 12 to 15 in SimF) in the proof of Theorem 6 to show that, for some fixed good transcript τ such that $\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [Y(\omega) = \tau] \neq 0$ and $q_\Sigma = q + N$ (which comes from the condition $\neg \text{bad}_1 \land \neg \text{bad}_3$ for good transcripts),

$$
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [\omega \in \text{comp}_{\text{ideal}}(\tau)] \leq \Pr_{\omega \leftarrow \Omega_{\text{real}}} [\omega \in \text{comp}_{\text{real}}(\tau)]
$$

That is, we have $\varepsilon_2 = 0$.

Banding ε_1. First, we consider $\text{bad}_1 \lor \text{bad}_3 = (35) \lor (36) \lor (37) \lor (40) \lor (41)$. We have a similar induction in the proof of Theorem 4 to prove the probability of bad values of some forward queries:

$$
\Pr_{\omega \leftarrow \Omega_{\text{ideal}}} [(35) \lor (40)] \leq \frac{N(N - 1) + 2N \cdot (q_1 + q_2)}{2^\lambda + 1}.
$$

We consider (36), (37), and (41) conditioned on $\neg((35) \lor (40))$. In each of them, $u_i^j \oplus \sigma((0 \parallel x_i) \oplus (i \parallel j))$ is the response for query $(0 \parallel x_i) \oplus (i \parallel j)$ to $\tilde{\pi}^{\pm 1}(\cdot)$. It follows from this condition that these queries are pairwise distinct so that their responses are taken from uniform $c_1, \ldots, c_{N(\lambda)}$ in $\tilde{\pi}^{\pm 1}(\cdot)$, where
\(\ell(\lambda) = \lambda + 2 \), and pairwise independent given the pairwise distinct queries. So, each of them occurs with probability \(1/2^{\lambda+2} \) for some fixed quantifier. Taking a union bound over all quantifiers, we have

\[
\Pr_{\omega \sim \Omega_{\text{ideal}}} \left[(36) \lor (37) \lor (41) \mid \neg((35) \lor (40)) \right] \leq \frac{N(N-1) + N \cdot (q_1 + q_2)}{2^{\lambda+2}}.
\]

Using (56) and (57), we have

\[
\Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\text{bad}_1 \lor \text{bad}_2 \right] = \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[(35) \lor (36) \lor (37) \lor (40) \lor (41) \right] \\
= \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[(35) \lor (40) \right] \\
+ \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[(36) \lor (37) \lor (41) \mid \neg((35) \lor (40)) \right] \\
\leq \frac{3N(N-1) + 5N \cdot (q_1 + q_2)}{2^{\lambda+2}}.
\]

Then, consider \(\text{bad}_2 \). It is easy to see from the randomness of \(\Delta \) that

\[
\Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\text{bad}_2 \right] \leq \frac{2N \cdot (q_1 + q_2 + q_3)}{2^{\lambda+1}}.
\]

We have a bound \(\varepsilon_1 \) from (58) and (59):

\[
\Pr_{\omega \sim \Omega_{\text{ideal}}} \left[Y(\omega) \in \mathcal{T}_{\text{bad}} \right] = \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\text{bad}_1 \lor \text{bad}_2 \lor \text{bad}_3 \right] \\
\leq \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\text{bad}_1 \lor \text{bad}_3 \right] + \Pr_{\omega \sim \Omega_{\text{ideal}}} \left[\text{bad}_2 \right] \\
\leq 3N(N-1) + 21N(q + N) \\
\leq \frac{63qs + 216s^2 - 9s}{2^{\lambda+2}} = \varepsilon_1,
\]

where the last inequality comes from (51). \(M \leq |W(0)| \leq 3|f|, and |f| = s. \)

By using the H-coefficient technique with the above \(\varepsilon_1 \) and \(\varepsilon_2 \), we have that any adaptive adversary can distinguish \(\text{Hybrid}_1 \) and \(\text{Hybrid}_2 \) with advantage at most \((63qs + 216s^2 - 9s)/2^{\lambda+2} \).

Putting the three hybrids together, we arrive at this theorem. \(\square \)

E Separation between npRPM and pRPM

We separate the adaptively secure garbling schemes in the two RPMs since the programmability can make a difference in online complexity. In Theorem 8, we prove that the online-complexity lower bound [AIKW13, HW15] of the adaptively secure garbling schemes in the standard model can be extended to the npRPM. However, it is implied by the definition of the adaptively secure garbling schemes in the pRPM that this lower bound can be bypassed if the random permutation is allowed to be programmed by the simulator to embed messages. The proof of Theorem 8 is extended from [HW15], which is based on Yao entropy.

Definition 3 (Yao entropy [Yao82, BSW03, HLR07]). A distribution \(X \) has Yao entropy at least \(\rho \in \mathbb{N}^+ \), denoted by \(H_\text{Yao}(X) \geq \rho \), if there exists a negligible function \(\varepsilon \) such that, for every pair of polynomial-size circuits \((C, D) \) where \(C \) has output bit-length at most \(\rho - 1 \), it holds that

\[
\Pr_{x \sim X} [D(C(x)) = x] \leq \frac{1}{2} + \varepsilon(\lambda).
\]

Theorem 8 (Lower bound of the online complexity in the npRPM). For every polynomial-size circuit \(f : \{0, 1\}^{\ell_{\text{in}}} \to \{0, 1\}^{\ell_{\text{out}}} \) with a distribution \(X_f \) on \(\{0, 1\}^{\ell_{\text{in}}} \) such that distribution \(f(X_f) \) on \(\{0, 1\}^{\ell_{\text{out}}} \) has Yao entropy at least \(\rho \), and every \(\ell(\lambda) \)-garbling scheme \(\text{poly}(\lambda), \text{poly}'(\lambda), \text{negl}(\lambda) \)-adaptively secure in the npRPM, Encode\(^{\pi+1}(k, \cdot) \) outputs at least \(\rho \) bits for \((\cdot, k) \leftarrow \text{Garble}^{\pi+1}(f) \).
Proof. For the sake of contradiction, assume that there exist a polynomial-size circuit f with an input distribution X_f inducing Yao entropy $H_{Yao}(f(X_f)) \geq \rho$, and an adaptively secure garbling scheme in the npRPM, such that the output of $\text{Encode}^{\pi_{\pm 1}}(k, \cdot)$ has at most $\rho - 1$ bits for $(\cdot, k) \leftarrow \text{Garble}^{\pi_{\pm 1}}(f)$. We prove that there exists a pair of polynomial-size compressor and decompressor circuits that contradicts the Yao entropy $H_{Yao}(f(X_f)) \geq \rho$.

We specify auxiliary input $z = (f, X_f, \rho)$ and the following computationally unbounded adversary \mathcal{A}:

- $\mathcal{A}_1^{\pi_{\pm 1}}(z)$ outputs f in z and defines $st_1 := z$.
- $\mathcal{A}_2^{\pi_{\pm 1}}(st_1, \widehat{f})$ samples $x \leftarrow X_f$ and defines $st_2 := (st_1, x)$.
- $\mathcal{A}_3^{\pi_{\pm 1}}(st_2, \widehat{f}, \widehat{x})$ outputs 1 if $\text{DecEval}^{\pi_{\pm 1}}(\widehat{f}, \widehat{x}) = f(x)$ and \widehat{x} has at most $\rho - 1$ bits, or outputs 0 otherwise. Recall that running $\text{DecEval}^{\pi_{\pm 1}}$ requires a polynomial number of oracle queries to $\pi_{\pm 1}$ as this algorithm is PPT.

The correctness and the contradiction assumption ensure that, for this (z, \mathcal{A}),

$$
\Pr \left[\pi \leftarrow S_{\ell(\lambda)}, \pi^{-1} := \text{inv}(\pi), \right.
\begin{array}{l}
(f, st_1) \leftarrow \mathcal{A}_1^{\pi_{\pm 1}}(z), \\
(\widehat{f}, k) \leftarrow \text{Garble}^{\pi_{\pm 1}}(f), : \mathcal{A}_3^{\pi_{\pm 1}}(st_2, \widehat{f}, \widehat{x}) = 1 \\
(x, st_2) \leftarrow \mathcal{A}_2^{\pi_{\pm 1}}(st_1, \widehat{f}), \\
\widehat{x} := \text{Encode}^{\pi_{\pm 1}}(k, x)
\end{array} \right] = 1. \tag{60}
$$

Meanwhile, the adaptive security in the npRPM guarantees that there exists a PPT simulator $\text{Sim} = (\text{SimF}, \text{SimIn})$ such that, for this (z, \mathcal{A}),

$$
\Pr \left[\pi \leftarrow S_{\ell(\lambda)}, \pi^{-1} := \text{inv}(\pi), \right.
\begin{array}{l}
(f, st_1) \leftarrow \mathcal{A}_1^{\pi_{\pm 1}}(z), \\
(\widehat{f}, k) \leftarrow \text{Garble}^{\pi_{\pm 1}}(f), : \mathcal{A}_3^{\pi_{\pm 1}}(st_2, \widehat{f}, \widehat{x}) = 1 \\
(x, st_2) \leftarrow \mathcal{A}_2^{\pi_{\pm 1}}(st_1, \widehat{f}), \\
\widehat{x} := \text{Encode}^{\pi_{\pm 1}}(k, x)
\end{array} \right] \leq \text{negl}(\lambda). \tag{61}
$$

Using (60) and (61), we have for the specified (z, \mathcal{A}) that

$$
\Pr \left[\pi \leftarrow S_{\ell(\lambda)}, \pi^{-1} := \text{inv}(\pi), \right.
\begin{array}{l}
(f, st_1) \leftarrow \mathcal{A}_1^{\pi_{\pm 1}}(z), \\
\widehat{f} \leftarrow \text{SimF}^{\pi_{\pm 1}}(\Phi(f)), : \mathcal{A}_3^{\pi_{\pm 1}}(st_2, \widehat{f}, \widehat{x}) = 1 \\
(x, st_2) \leftarrow \mathcal{A}_2^{\pi_{\pm 1}}(st_1, \widehat{f}), \\
\widehat{x} \leftarrow \text{SimIn}^{\pi_{\pm 1}}(f(x))
\end{array} \right] \geq 1 - \text{negl}(\lambda), \tag{62}
$$

where the probability is taken over the random choice of $\pi \in S_{\ell(\lambda)}$, the random tape of Sim, and the random tape used by \mathcal{A}_2 to sample $x \leftarrow X_f$.

Recall that both the adversary \mathcal{A} and the PPT simulator Sim can only make a polynomial number of oracle queries. Let $n(\lambda) \in \mathbb{N}^+$ denote the number of oracle queries jointly made by \mathcal{A} and Sim in the simulation (62). For the $n(\lambda)$ oracle queries, permutation π and its inverse π^{-1} can be emulated.
Initialize a list \(Q_0 = \emptyset \).

Sample uniform* \(c_1, \ldots, c_{n(\lambda)} \) \(\sim \{0, 1\}^{\ell(\lambda)} \).

\begin{algorithmic}[1]
 \For {\(i \in [1, n(\lambda)] \)}
 \If {\(X \) is queried with input \(\alpha_i \in \{0, 1\}^{\ell(\lambda)} \)}
 \If {\(\exists (\alpha_i, \gamma_i) \in Q_{i-1} \)}
 Return \(\gamma_i \) as response
 \EndIf
 \ElseIf {\(\exists (\gamma_i, \beta_i) \in Q_{i-1} \)}
 Return \(\gamma_i \) as response
 \EndElseIf
 \EndIf
 \ElseIf {\(\exists (\gamma_i, \beta_i) \in Q_{i-1} \)}
 Return \(\gamma_i \) as response
 \EndElseIf
 \EndFor
 \EndAlgorithmic

\end{minipage}

\begin{minipage}{\linewidth}

\textbf{Figure 10:} The workflow of coarse approximate oracle \(\hat{\pi}^{\pm 1}(\cdot) \) up to \(n(\lambda) \) queries.

\end{minipage}

on-the-fly as in Figure 4 on the uniform distribution of random tape \((r_\pi, r_\pi^*) \). This on-the-fly emulation requires exact \(n(\lambda) \cdot \ell(\lambda) \) bits of \(r_\pi \) but possibly exponentially large \(r_\pi^* \). To remove \(r_\pi^* \), we can consider a coarse approximation \(\hat{\pi}^{\pm 1} \) (see Figure 10), which differs from \(\pi^{\pm 1} \) in that it always returns a fresh \(c_i \) as the response for a new query. Similar to Lemma 2, it can be proved that replacing \(\pi^{\pm 1} \) with \(\hat{\pi}^{\pm 1} \) only incurs additional statistical distance at most \(n(\lambda)^2 / 2^{\ell(\lambda)} \). So, we have for \(\negl'(\lambda) := \negl(\lambda) + n(\lambda)^2 / 2^{\ell(\lambda)} \) and the distribution \(\hat{\pi}^{\pm 1}(\cdot) \) that

\[
\Pr \left[\hat{\pi}^{\pm 1}(\cdot) \rightarrow \hat{\pi}^{\pm 1} \right] \geq 1 - \negl'(\lambda),
\]

where the probability is taken over the random tape \(r_\pi \) to emulate \(\hat{\pi}^{\pm 1}(\cdot) \), the random tape \((r_{\SimF}, r_{\SimIn}) \) of Sim, and the random tape used by \(A_2 \) to sample \(x \leftarrow X_f \). We stress that \(r_\pi \) and \((r_{\SimF}, r_{\SimIn}) \) are polynomial-size as \(r_\pi \) carries \(n(\lambda) \cdot \ell(\lambda) \) uniform bits and the simulator is PPT.

Here, (63) implies the existence of a circuit pair violating \(H^{\text{ao}}(f(X_f)) \geq \rho \). To see this, let \(C_{\ell, \rho, f, r} \) (resp., \(D_{\ell, \rho, f, r} \)) denote the compressor (resp., decompressor) circuit, which hardcodes \((\ell, \rho, f) \) and a random tape \(r = (r_\pi, r_{\SimF}, r_{\SimIn}) \) with the following functionality:

- Given \(f(x) \leftarrow f(X_f) \), the compressor \(C_{\ell, \rho, f, r} \) invokes \(\SimF^{\pm 1}(\cdot) ; r_{\SimF} \) (to maintain internal state \(st_{\sim} \)) and computes \(\hat{x} := \SimIn^{\pm 1}(\cdot)(f(x); r_{\SimIn}) \). In the end, it outputs \(\hat{x} \) if \(\hat{x} \) has at most \(\rho - 1 \) bits, or a symbol \(\perp \) of \(\rho - 1 \) bits otherwise. Clearly, the output of \(C_{\ell, \rho, f, r} \) has at most \(\rho - 1 \) bits.

- Given \(\hat{x} \), the decompressor \(D_{\ell, \rho, f, r} \) recomputes \(\hat{f} := \SimF^{\pm 1}(\cdot)(f; r_{\SimF}) \). In the end, it outputs \(y := \DecEval^{\pm 1}(\hat{f}, \hat{x}) \) if \(\hat{x} \neq \perp \), or \(\perp \) otherwise.

- If an oracle query \(\alpha \) to \(\pi \) (resp., \(\beta \) to \(\pi^{-1} \)) is needed, the hardcoded random tape \(r_\pi \) is used to emulate the oracle response according to Figure 10.

Let correct denote the event \(D_{\ell, \rho, f, r}(C_{\ell, \rho, f, r}(f(x))) = f(x) \), and fail denote the event that \(\hat{x} \) has at least \(\rho \) bits. These events are taken over the distribution of \((r,f(x)) \). We consider the events in the same probability space where \((r,f(x)) \) takes the same literal values, to observe that correct \(\land \neg \text{fail} \) occurs if and only if \(A_3^{\pm 1}(\cdot)(st_2, \hat{f}, \hat{x}) = 1 \) occurs in the adaptive experiment (63), i.e.,

\[
\Pr_{r,f(x) \sim (X_f)} \left[\text{correct} \land \neg \text{fail} \right] = (63) \geq 1 - \negl'(\lambda),
\]
implying $\Pr_{r,f(x)\leftarrow f(X_f)}[\text{correct}] \geq \Pr_{r,f(x)\leftarrow f(X_f)}[\text{correct} \land \neg \text{fail}] \geq 1 - \negl'(\lambda)$. So, there exists a random tape r_0, which gives a circuit pair $(C_{\ell,\rho,f,r_0}, D_{\ell,\rho,f,r_0})$, such that $D_{\ell,\rho,f,r_0}(C_{\ell,\rho,f,r_0}(f(x))) = f(x)$ occurs with probability at least $1 - \negl'(\lambda)$ for $f(x) \leftarrow f(X_f)$. Otherwise,

$$\Pr_{r,f(x)\leftarrow f(X_f)}[\text{correct}] = \sum_r \Pr_{f(x)\leftarrow f(X_f)}[\text{correct} \mid r] \cdot \Pr_r[r] < (1 - \negl'(\lambda)) \cdot \sum_r \Pr_r[r] = 1 - \negl'(\lambda),$$

leading to a contradiction. Note the both C_{ℓ,ρ,f,r_0} and D_{ℓ,ρ,f,r_0} are polynomial-size circuits since the hardcoded random tape r_0 is polynomial-size and the two circuits run in polynomial time given this r_0. Thus, $(C_{\ell,\rho,f,r_0}, D_{\ell,\rho,f,r_0})$ contradicts the Yao entropy $H_{\text{Yao}}(f(X_f)) \geq \rho$. □

F Public Parameters of Three-Halves

The following public constants are suggested by three-halves [RR21].
\[M = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} \in \mathbb{F}_2^{8 \times 6}, \quad K = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \in \mathbb{F}_2^{3 \times 8}, \]

\[V = \begin{bmatrix} V_{00} \\ V_{01} \\ V_{10} \\ V_{11} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \in (\mathbb{F}_2^{2 \times 5})^4 \equiv \mathbb{F}_2^{8 \times 5}, \]

\[V^+ = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \in \mathbb{F}_2^{5 \times 8}, \]

\[S_L = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \in \mathbb{F}_2^{2 \times 4}, \quad S_R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \in \mathbb{F}_2^{2 \times 4}, \]

\[R'_1 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{F}_2^{4 \times 2}, \quad R'_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \in \mathbb{F}_2^{4 \times 2}, \]

\[R_p = \begin{bmatrix} R_{p,00} \\ R_{p,01} \\ R_{p,10} \\ R_{p,11} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \in (\mathbb{F}_2^{2 \times 4})^4 \equiv \mathbb{F}_2^{8 \times 4}. \]

The distribution \(R_0 \) is defined as sampling two uniform bits \([r_L, r_R] \leftarrow \mathbb{F}_2^2\) and returning

\[R'_0 = \begin{bmatrix} R'_{0,00} \\ R'_{0,01} \\ R'_{0,10} \\ R'_{0,11} \end{bmatrix} := r_L \cdot \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \oplus r_R \cdot \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \in (\mathbb{F}_2^{1 \times 2})^4 \equiv \mathbb{F}_2^{4 \times 2}.