
SoK: Signatures With Randomizable Keys

Sofía Celi1 , Scott Griffy2 , Lucjan Hanzlik3 , Octavio Perez Kempner4 , and Daniel Slamanig5

1 Brave Software
2 Brown University

3 CISPA Helmholtz Center for Information Security
4 NTT Social Informatics Laboratories
5 AIT Austrian Institute of Technology

Abstract. Digital signature schemes with specific properties have recently seen various real-
world applications with a strong emphasis on privacy-enhancing technologies. They have been
extensively used to develop anonymous credentials schemes and to achieve an even more com-
prehensive range of functionalities in the decentralized web.
Substantial work has been done to formalize different types of signatures where an allowable set
of transformations can be applied to message-signature pairs to obtain new related pairs. Most
of the previous work focused on transformations with respect to the message being signed,
but little has been done to study what happens when transformations apply to the signing
keys. A first attempt to thoroughly formalize such aspects was carried by Derler and Slamanig
(ePrint’16, Designs, Codes and Cryptography’19), followed by the more recent efforts by Backes
et al. (ASIACRYPT’18) and Eaton et al. (ePrint’23). However, the literature on the topic is
vast and different terminology is used across contributions, which makes it difficult to compare
related works and understand the range of applications covered by a given construction.
In this work, we present a unified view of signatures with randomizable keys and revisit their
security properties. We focus on state-of-the-art constructions and related applications, identi-
fying existing challenges. Our systematization allows us to highlight gaps, open questions and
directions for future research on signatures with randomizable keys.

Keywords: Digital signatures, key blinding, key randomization

1 Introduction

Digital signatures are an invaluable cryptographic primitive for the authenticity and integrity of data.
Over the years, different variants with advanced properties have been introduced. One particular
primitive used for privacy-enhancing applications [CGT23] (e.g., anonymity networks, rate-limiting
applications, deterministic wallets and stealth addresses) are malleable signatures. These are schemes
where given a signature σ on a message m, one can efficiently derive a new signature σ′ on a message
m′. Following the notation by Chase et al. [CKLM14], a digital signature is malleable if, on input a
message m and a signature σ, it is possible to efficiently compute a signature σ′ on a related message
m′ = T (m), for a (n-ary) transformation T allowed by the signature scheme. Ideally, σ′ should look
like a freshly computed signature on m′, a property known as context hiding.

The study of malleable signatures originates from the work on homomorphic signatures [JMSW02],
and subsequent formalizations by Ahn et al. [ABC+12] and Attrapadung et al. [ALP12]. They can be
considered a generalization of existing primitives, such as quotable [ABC+12, HHH+08] or redactable
signatures [SBZ02, JMSW02, BBD+10], homomorphic signatures for restricted classes [BFKW09,
BF11, CFW14] or any classes of functions [GVW15] (cf. [DDH+15] for a comprehensive overview).
When T is unary, i.e., it operates on a single signature, one obtains primitives such as quotable or
redactable signatures. For n-ary transformations, i.e., T operates on n > 1 signatures, one obtains
homomorphic signatures (cf. [CKLM14] for a more detailed discussion). In this work, we only consider
the unary case. One particular class of such signatures is randomizable signatures [CL03, CL04, PS16].
They allow one to maul the signature but leave the message untouched, i.e., m′ = m, and one can
publicly derive a new signature that is distributed like a fresh one on m′. Thus, they can be seen as
a special case where T is the identity function, and the scheme provides context hiding.

To the best of our knowledge, the first work to explicitly study malleability on the key space is
the work by Derler and Slamanig [DS16, DS19] on key-homomorphic signatures inspired by previous
works on pseudo-random functions [BLMR13] and encryption [BGG+14]. While they discuss the

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

2 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

unary and the n-ary case, again, we only focus on the former. They consider secret and public key
spaces to be groups (with an efficiently computable homomorphism µ from the secret to the public
key space), and the functionality that a given signature σ for message m that verifies under pk can be
adapted to a signature σ′ on m under pk′. The functionality is obtained by applying µ to a randomly
sampled element from the secret key space and combining the result with pk.

The concept of signatures with re-randomizable keys was introduced earlier in the context of
sanitizable signatures by Fleischhacker et al. in [FKM+16] and subsequently used in [DFL19, ADE+20]
and [ER22]. Kiltz et al. [KMP16] have used key-rerandomizability (calling it “random self-reducibility”)
of canonical identification schemes when converted to signature schemes. Another similar notion that
appears in the literature is known as key-blinding (sometimes referred to as key-randomization).
This notion has recently been used and further formalized in the works by Eaton et al. [ESS21] and
[ELW23]. Backes et al. [BHKS18] introduce signature schemes with flexible public keys, also focusing
on re-randomizable keys. But instead of switching keys arbitrarily, secret and public keys live in
equivalence classes induced by a relation R, and keys are re-randomized between representatives of
the respective classes. This relation is usually chosen based on an underlying computationally hard
problem to ensure any form of unlinkability. We also note that malleability of signature schemes w.r.t.
the message and key spaces have been studied under the name of mercurial signatures in [CL19] and
[CLPK22]. Besides, similar notions have also been studied in works targeting related-key attacks
(e.g., [BCM11, BPT12, MSM+16]).

Ferreira and Dahab [FD02, FD04] construct schemes named blinded-key signatures as a means to
protect a long-term secret key from being stolen. While their goal looks similar to that of one-way
blinding from [ESS21], it considers a different case where the adversary receives a blinded secret key
and must recover the long-term secret key. Furthermore, [FD02] and [FD04] do not provide formal
definitions and rely on a trusted third party for signature verification, making it difficult to compare
with the previous works (albeit the naming convention resembles).

There is also recent work on key-updatable signatures [JS18] and key-updating signatures [JMM19]
which might seem related. Those are signature schemes that support updating of secret keys and
corresponding public keys, and are generalizations of or closely related to forward-secure (or key-
evolving) signatures [BM99]. Their main focus is on unforgeability under certain key leakages and are
used in the construction of strongly secure messaging protocols. However, they are neither interested
in updated keys being indistinguishable from freshly generated keys, nor in the randomization or
adaption of issued signatures.

Our approach and contributions. We aim to present a complete overview of signatures with
randomizable keys, which we see as malleable signatures w.r.t. the key space. To systematize their
knowledge, we review existing works on the topic and revisit security definitions with a focus on
privacy-preserving applications. As a result, we propose new security notions to better capture differ-
ent attack scenarios and adversarial behaviour. As applications evolve, we aim for a general security
framework to capture all the possible combinations. More in detail, we propose a set of parametrized
definitions to capture unforgeability, unlinkability and unextractability of signature schemes. The lat-
ter notion differentiates from unlinkability in that the adversary is challenged to extract the long-term
public key when given access to randomizations of it and corresponding key-randomizers. This con-
trasts with unlinkability where access to the long-term public key and randomizations of it is given
but not the key-randomizer. Furthermore, our formalizations also consider maliciously generated pa-
rameters, keys and oracles in a comprehensive manner. From there, we identify research gaps and
discuss related challenges as part of our contributions. Along the way, we also show how definitions
given in previous works can be strengthened.

Organization. We give the preliminaries in Section 2. The related literature is discussed in Section 3.
Our systematization is presented in Section 4. Finally, we discuss relevant applications in Section 5
and conclude in Section 6.

2 Preliminaries

To introduce the different terminology and related concepts of signatures with randomizable keys,
we follow the approach of [DS19]. However, unlike [DS19], we do not consider combinations of keys

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 3

nor take into account the particular structure of a given homomorphism. Instead, we opt to abstract
the idea of “allowable” transformations to provide more general definitions. This is the main reason
to propose a different name and a slightly different formalization. In the following, we present the
required notation and basic definitions.

Notation. PPT stands for probabilistic polynomial time. We use λ to denote the security parameter;
ϵ(λ) for a negligible function. r ←$ S denotes sampling r from set S uniformly at random. We
write A(x; y) to specify that A uses randomness y on input x. Similarly, A(x, [y]) indicates that y
is an optional parameter. We denote the signature (resp. message, public-key, secret-key and key-
randomizer) space by SIG (resp. M, PK, SK and KR).

Definition 1 (Signatures With Randomizable Keys). A signature scheme with randomizable
keys (SWRK) consists of the following algorithms:

PPGen(1λ) is a PPT algorithm that, given λ, outputs public parameters pp.
KGen(pp) is a PPT algorithm that, given pp, outputs a key pair (sk, pk).
Sign(pp, sk,m) is a PPT algorithm that, given pp, a message m and a secret key sk, outputs a signature
σ on m.
Verify(pp,m, σ, pk) is a deterministic algorithm that takes as input pp, m, σ, and public key pk. It
outputs 1 if and only if σ is a valid signature on m.
RandPK(pp, pk, ρ) is a PPT algorithm that, given pp, a key randomizer ρ, and pk, outputs a new
public key pk′ s.t. pk′ = T (pk, ρ) for some transformation T .
RandSK(pp, sk, ρ) is a PPT algorithm that, given pp, ρ, and sk, outputs a new secret key sk′ s.t.
sk′ = T̃ (sk, ρ) for some transformation T̃ .
Adapt(pp, [m], σ, ρ, pk) is a PPT algorithm that takes as input pp, m (optional), σ, ρ, and pk. It com-
putes an adapted signature σ′ under a new public key pk′ s.t. pk′ = T (pk, ρ) for some transformation
T and outputs (pk′, σ′).
VerKey(pp, sk, pk) is a deterministic algorithm that takes as input pp and a key pair (sk, pk). If (sk, pk)
is a valid key pair it outputs 1 and 0 otherwise.

Security requires the scheme to be at least correct and unforgeable. To support the Adapt algo-
rithm, SWRK should provide adaptability in the sense of the aforementioned context hiding notion
and (perfect) adaption correctness (i.e., signatures adapted with Adapt should verify as long as the
original signature does). However, there are SWRK schemes that support key randomization but not
adaption. While one could distinguish between SWRK and aSWRK (adaptable SWRK), for simplicity,
we keep the term SWRK and assume the schemes provide adaption unless otherwise explicitly men-
tioned. In what follows, we present these properties based on the literature. In Section 4, we revisit
them and include new ones as part of our systematization effort.

Definition 2 (Correctness). A SWRK scheme is correct if for every security parameter λ, message
m s.t. pp←$ PPGen(1λ) and (sk, pk)←$ KGen(pp) : Pr

[
σ ← Sign(sk,m) : Verify(m,σ, pk) = 1

]
= 1.

Definition 3 (EUF-CMA). A SWRK scheme is existentially unforgeable under adaptively chosen-
message attacks, if for all PPT adversaries A with access to a signing oracle Sign, the following
probability is negligible,

Pr
[
pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp),
(m∗, σ∗)←$ASign(sk,·)(pk)

:
∀ m ∈ Q : m∗ ̸= m ∧
Verify(m∗, σ∗, pk) = 1

]
,

where Q is the set of queries that A has issued to the signing oracle.

For unforgeability, one can also consider the strong variant in which the oracle keeps track of
mesage-signature pairs and the adversary wins if (m∗, σ∗) /∈ Q.

Definition 4 (Signature Adaption). A SWRK scheme provides signature adaption if, for every
security parameter λ, message m, and key randomizer ρ, the advantage of any adversary A defined
by AdvAdapt

Γ,A (λ) := 2 · Pr
[
ExpAdapt

Γ,A (λ)⇒ true
]
− 1 = ϵ(λ), where ExpAdapt

Γ,A (λ) is shown in Fig. 1.

A stronger notion for signature adaption is called perfect adaption (see Definition 5) and it states
that distinguishing between a fresh signature and an adapted signature should be hard even when the
original signature is known to the adversary. Both notions can be stated with unconditional security
against unbounded adversaries or restricted to computational security (PPT adversaries).

4 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

Experiment ExpAdapt

Γ,A (λ)

pp←$ PPGen(1λ); b←$ {0, 1}; (sk, pk)←$ KGen(pp); ρ0, ρ1 ←$ KR;σ ← Sign(sk,m)

τ0 ← Adapt(m,σ, ρ0, pk); τ1 ← (RandPK(pk, ρ1), Sign(RandSK(sk, ρ1),m))

b′ ←$A(τb); return b = b′

Fig. 1. Signature adaption experiment.

Definition 5 (Perfect Adaption). A SWRK scheme provides perfect adaption if, for every se-
curity parameter λ, message m, and key randomizer ρ, it holds that {σ,Adapt(m,σ, ρ, pk)} and
{σ,RandPK(pk, ρ), Sign(RandSK (sk, ρ),m)} are identical distributions where pp←$ PPGen(1λ), b←$

{0, 1},(sk, pk)←$ KGen(pp), and σ ← Sign(sk,m).

For simplicity, the previous definitions for signature adaption consider honest parameters and
honestly generated keys. However, one can also address what happens when any (or both) of the
previous is maliciously generated as in [FHS19, KSD19, CLPK22].

3 Literature Review

We present an overview of previous work on the topic, unifying syntax and notation in accordance
to Section 2. We also compare and discuss the shortcomings of each work whenever it corresponds,
setting the grounds for our systematization.

3.1 Equivalence Class Signatures

While the prime focus of Structure-Preserving Signatures on Equivalence Classes (i.e., SPS-EQ or
Equivalence Class Signatures) [HS14, FHS19] is message randomization; they have inspired and have
been used to build SWRK. We identify two lines of work in this regard. The first one is mercurial
signatures [CL19], which are malleable signatures that allow transformations on all: the message,
signature and key spaces. Consequently, they can be viewed as SWRK whenever the message is not
randomized. There are two constructions: i) [CL19] (based on [FHS19]) in the generic group model
(GGM), and ii) [CLPK22] (based on [KSD19]) in the standard model. The second line of work is
signatures with flexible public keys (SFPK [BHKS18]), which solely focuses on equivalence classes on
the key space and, thus, key randomization. In both mercurial signatures and SFPK, any individual
message or key is actually a class representative, and privacy and unforgeability are defined over these
classes. SFPK constructions exist under standard assumptions [BHKS18], in the common reference
string model (CRS, [BHKS18]) and in the random oracle model (ROM, [HS21]). Regardless of the
specific equivalence relation in which an SPS-EQ acts, they all require some form of signature adaption
(as in Def. 4), which should also provide unlinkability with respect to a class. This stronger property
has been studied with some variations and referred to under different names such as class-hiding,
origin-hiding, as well as perfect adaption when the context is clear. In the following, we present the
relevant work on signatures acting on equivalence classes of keys alongside the formalizations of such
variations.

Adaption in Mercurial Signatures. The original definition of class-hiding for SPS-EQ from
[HS14] focused on messages and signatures. It only considered that given an honestly generated
signature, changing the message using randomness µ and adapting the signature should look like
a random message-signature pair. The subsequently developed notion of perfect adaption [FHS15,
FHS19, KSD19] explicitly states that adapting a message-signature pair with randomness µ should
look like a fresh signature for the same message. This notion was also extended to consider potentially
maliciously generated parameters, signatures, and keys.

Mercurial signatures include three functions to randomize keys and signatures, RandPK, RandSK,
and ConvertSig. They also provide a fourth function, ChangeRep which randomizes the message space
and signature together, but our systemzatization does not consider message space randomizations. The
ConvertSig algorithm in [CL19] outputs a valid signature which will verify under a new representative
of a public key class, randomizing the signature but leaving the message representative unchanged.
The public key can then be randomized with RandPK to output a new public key which correctly

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 5

Experiment ExpPKCH-MS
Γ,A (λ)

pp←$ PPGen(1λ); b←$ {0, 1}; ρ←$ KR

(sk1, pk1)←$ KGen(pp); (sk02, pk
0
2)←$ KGen(pp)

pk12 ← RandPK(pk1, ρ); sk
1
2 ← RandSK(sk1, ρ)

b′ ←$ASign(sk1,·),Sign(sk
b
2,·)(pk1, pk

b
2); return b = b′

Oracle Sign(sk,m)

return Sign(sk,m)

Fig. 2. Public key class-hiding experiment from [CL19].

verifies with the new signature from ConvertSig when the same key converter is supplied to both
functions (ConvertSig and RandPK). We can consider our Adapt function from Section 2 as running
the two functions simultaneously. In [CL21], the ConvertSig algorithm is extended to also randomize
the message representative alongside the signature. If the identity of the message space is passed to
ConvertSig in [CL21], it will operate exactly like the ConvertSig from [CL19]. Adaptability for mercurial
signatures is formalized as origin-hiding for ConvertSig (Def. 6) and origin-hiding for ChangeRep in
[CL19].

Definition 6 (Origin-Hiding for ConvertSig [CL19]). A mercurial signature scheme, Γ , is origin-
hiding for ConvertSig if, given any tuple (pk, σ,m) that verifies, and given a random key randomizer
ρ, ConvertSig(σ, pk, ρ) outputs a new signature σ′ such that σ′ is a uniform random signature in SIG
for m, i.e., σ′ ∈ {σ∗| Verify(RandPK(pk, ρ),m, σ∗) = 1}.

We also observe that the notion of origin-hiding was formalized in a slightly different way in
[CLPK22] where the authors follow the terminology from [FHS19, KSD19]. In that work, a definition
is given for perfect adaption of signatures w.r.t. the key space under maliciously generated keys in
the honest parameters model. As in [CL19], the construction from [CLPK22] only achieves a weaker
notion of perfect adaption under honestly generated keys in the honest parameter model. To the best
of our knowledge, it remains an open problem to build a mercurial signature scheme with perfect
adaption under maliciously generated keys.

Inspired by previous work, [CL19] considered the notion of public key class-hiding (Def. 7). It states
that an adversary cannot succeed in determining whether message-signature pairs are being generated
from keys in the same equivalence class, i.e., valid key randomizations, or distinct equivalence classes.

Definition 7 (Public Key Class-Hiding [CL19]). A mercurial signature scheme has public key
class-hiding if the advantage of any PPT adversary A defined by AdvPKCH-MS

Γ,A (λ) := 2·Pr
[
ExpPKCH-MS

Γ,A (λ)
⇒ true]− 1 = ϵ(λ), where ExpPKCH-MS

Γ,A (λ) is shown in Fig. 2.

Definition 7 is similar to class-hiding from [FHS19] as both challenge the adversary to distinguish
whether two values are from the same equivalence class or not. However, in Def. 7, the values are keys
(instead of messages), so the adversary is additionally given access to signing oracles. Both definitions
assume that the values (keys and messages) are honestly generated.

Signatures with flexible public keys. Signatures with flexible public keys (SFPK) introduced
by Backes et al. [BHKS18] consider equivalence classes solely on the public key space. One of the
goals of the authors was to construct a SFPK scheme for which the public key space would be the
message space of existing equivalence class signatures, i.e., a vector of group elements of one of the
pairing groups. The authors combined their SFPK scheme with the equivalence class signature scheme
from [HS14], which allowed them to build short static group signatures, and the first sublinear ring
signature scheme without ROM or a CRS.

The class-hiding notion introduced in [BHKS18] (Def. 8) gives the adversary access to the random
coins used by KeyGen. This strong notion makes the primitive useful in constructing ring signatures
satisfying a strong anonymity property (i.e., anonymity against full key exposure [BKM09]). This idea
contrasts with the properties of mercurial signatures, as the latter do not fulfill this strong notion of
class-hiding (i.e., an adversary can recognize a public key using the secret key). However, the relaxed
property has been proven useful in some settings, e.g., [GL23], allowing signers to recognize their
randomized public key from a key/signature pair but without being able to link the signature to a
particular signing process.

6 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

Experiment ExpPKCH-SFPK
Γ,A (λ)

pp←$ PPGen(1λ); b←$ {0, 1}; ρ←$ KR
{ski, pki}i∈{0,1} ←$ KGen(pp)

pk′ ← RandPK(pkb, ρ); sk
′ ← RandSK(skb, ρ)

b′ ←$ASign(sk′,·)({ski, pki}i∈{0,1}, pk
′); return b = b′

Oracle Sign(sk,m)

return Sign(sk,m)

Fig. 3. Class-hiding experiment from [BHKS18].

Definition 8 (Class-Hiding [BHKS18]). A SFPK scheme, Γ , has class-hiding if the advantage
of any PPT adversary A in the ExpPKCH-SFPK

Γ,A experiment is negligible as defined by AdvPKCH-SFPK
Γ,A (λ) :=

2 · Pr
[
ExpPKCH-SFPK

Γ,A (λ)⇒ true
]
−1 = ϵ(λ), where ExpPKCH-SFPK

Γ,A (λ) is shown in Fig. 3.

SFPK can also be built in a way that class-hiding is conditional. In this line, Backes et al. [BHKS18]
define an alternative key generation algorithm, TKeyGen, that outputs an additional trapdoor along-
side the key pair. The former allows the identification of any public key in relation to the key pair but
class-hiding holds as long as this trapdoor is unknown. This trapdoor is also used by the challenger
in the unforgeability experiment to verify the winning conditions, i.e., that the public key output by
the adversary is in relation to the challenged key. Keypairs generated by KeyGen and TKeyGen should
be indistinguishable for all the previous conditions to hold. This indistinguishability allowed Backes
et al. to define class-hiding w.r.t. the former and unforgeability regarding the latter. Unforgeability
holds even if the adversary is given the trapdoor. But, linking public keys using the corresponding
secret key cannot be secure in such a case.

Backes et al. [BHKS18] also introduce the notion of key recovery, allowing the signer to retrieve
the signing key for public keys generated by third parties, i.e., via randomizing the original key. They
show that this property has applications for stealth addresses and give a construction in the standard
model. Unfortunately, due to its specific public key structure, the construction cannot be combined
with the SPS-EQ of [HS14]. In the same paper, the authors define SFPK in the presence of multiple
signers, modeled as a setup algorithm for generating public parameters for all signers. For this case,
they consider the properties of class-hiding and unforgeability in the presence of maliciously generated
parameters.

In follow-up work, Backes et al. [BHSB19] introduce a weaker notion called class-hiding with key
corruption. Instead of giving the random coins used in KeyGen, the challenger provides just the secret
keys for the challenged public keys. This weaker notion allowed for a more efficient SFPK scheme
(a construction that is enough for their group signature application). The authors also proposed the
idea of a canonical representative, i.e., a distinct public key for each relation that represents the whole
class. An example representative used in [BHSB19] consists of a vector of group elements, where the
first element is a specified group generator.

Lastly, Hanzlik and Slamanig [HS21] used the same combination of SFPK and SPS-EQ (as in
[BHKS18] and [BHSB19]) to construct efficient anonymous credentials. The authors also introduce
the idea of split signing for SFPK, a technique allowing the distribution of the signing process between
two parties. In brief, one party performs the essential operations (i.e., using the secret key) while the
other performs computationally inefficient operations without requiring the secret key. This technique
allowed Hanzlik and Slamanig to run parts of the SFPK signing process on a constrained smart card
while the user’s smartphone performs the more computationally complex operation without being
able to sign by itself.

3.2 Signatures with Re-Randomizable Keys

Fleischhacker et al. [FKM+16] introduce signatures with (perfect) re-randomizable keys Such a signa-
ture scheme allows to “re-randomize” (or simply randomize) both the signing and the verification key
separately; but, it is required that the re-randomization is perfect (re-randomized keys must have the
same distribution as the original ones). Their main motivation is to construct sanitizable signatures
which allow a signer to authenticate a message so that another dedicated party (the sanitizer) can
modify parts of it without invalidating the signature.

Their work gives an unforgeability notion (Def. 9) for signatures with (perfectly) re-randomizable
keys. The new unforgeability notion requires it to be infeasible for an adversary to output a forgery

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 7

Experiment ExpUNF
Γ,A (λ)

Σ ← ∅; pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp); (ρ∗,m∗, σ∗)←$ASign(·,sk)(pk)

pk∗ ← RandPK(pk, ρ∗); return m /∈ Σ ∧ (Verify(m∗, σ∗, pk) ∨ Verify(m∗, σ∗, pk∗))

Oracle Sign(sk,m, ρ)

Σ ← Σ ∪ {m}; if ρ = ⊥ return Sign(sk,m); return Sign(RandSK(sk, ρ),m)

Fig. 4. Unforgeability experiment from [FKM+16].

Experiment ExpUNL
Γ,A (λ)

pp←$ PPGen(1λ); b←$ {0, 1}; ρ←$ KR; (sk1, pk1)←$ KGen(pp)

(sk02, pk
0
2)←$ KGen(pp);m← ASign(sk1,·)(pp, pk1)

pk12 ← RandPK(pk1, ρ); sk
1
2 ← RandSK(sk1, ρ);σ ←$ Sign(skb2,m)

b′ ←$ASign(sk1,·)(pk1, σ, pk
b
2); return b = b′

Oracle Sign(sk,m)

return Sign(sk,m)

Fig. 5. Unlinkability experiment from [BCG+20].

under either the original or a re-randomized key, even when they control the randomness. The authors
note, however, that security does not trivially follows from the “standard” regular notion of (existen-
tial) unforgeability. In fact, schemes as the one from Boneh and Boyen [BB04] or Camenisch and
Lysyanskaya [CL04] are insecure w.r.t. this stronger notion although their keys can be randomized.
Nevertheless, Fleischhacker et al. give two constructions fulfilling their security notion. The first one
is in the ROM and is a somewhat folklore variant of Schnorr [Sch90], also discussed in [DS19] and
[BCG+20]. The second one is secure in the standard model and is a variant of a scheme given by
Hofheinz-Kiltz [HK08, HK12]. Bowe et al. [BCG+20] refer to the Schnorr variant as a randomiz-
able signature and provide a similar formalization for the unforgeability property under the name
of existential unforgeability under randomization. The difference is that the adversary in [BCG+20]
can only obtain signatures for the initial secret key and not from re-randomized ones. Therefore, the
unforgeability notion presented in [BCG+20] is strictly weaker than the one from [FKM+16].

Definition 9 (Unforgeability under Re-Randomized Keys [FKM+16]). A signature scheme
Γ under re-randomizable keys is unforgeable if, for every security parameter λ, message m and key ran-
domizer ρ, the advantage of any PPT algorithm A defined by AdvUNF

Γ,A (λ) := 2· Pr
[
ExpUNF

Γ,A (λ)⇒ true
]
−

1 = ϵ(λ), where ExpUNF
Γ,A (λ) is shown in Fig 4.

The authors of [FKM+16] aim to construct so called unlinkable sanitizable signatures [BFF+09,
BFLS10] and thus require unlikability on re-randomized keys. We note that this unlinkability is
already baked into their correctness notion, requiring that, for uniform randomness, re-randomized
and fresh keys are identically distributed. Bowe et al. [BCG+20] introduce an explicit unlinkability
notion that they consider a “computational relaxation” of the previous one from [FKM+16]. Their
definition (Def. 10) is close to the class-hiding notion from [CL19] but weaker since the adversary
is only able to get signatures from one of the keys. Furthermore, Bowe et al. define re-randomizable
signatures as providing existential unforgeability and a property called injective randomization. The
latter states that obtaining the same randomized key for two different key randomizers is impossible.

Definition 10 (Unlinkability [BCG+20]). A signature scheme Γ is unlinkable if, for every secu-
rity parameter λ and key randomizer ρ, the advantage of any PPT algorithm A defined by AdvUNL

Γ,A (λ) :=
2· Pr

[
ExpUNL

Γ,A (λ)⇒ true
]
− 1 = ϵ(λ), where ExpUNL

Γ,A (λ) is shown in Fig. 5.

3.3 Signatures with Key Blinding

Eaton et al. [ESS21], motivated by applications in anonymity networks, used the term key blinding
to describe signature schemes for which the public key can be randomized (i.e., masked or blinded,
in their terminology). Similar to other works, given two randomized public keys and associated key
randomizers, there should be no way to tell if they were generated from the same initial public key
or not without knowledge of such key.

8 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

Experiment ExpUNL
Γ,A (λ)

Σ ← ∅; b←$ {0, 1}; pp←$ PPGen(1λ); {ski, pki}i∈{0,1} ←$ KGen(pp)

(ρ∗, st)← ARandPK1(·),Adapt1(·,·)
1 (1λ); pk∗ ← RandPK(pkb, ρ

∗);Σ ← Σ ∪ {(pk∗, ρ∗)}

b′ ←$ARandPK2(·),Adapt2(·,·)
2 (pk∗); return b = b′

Oracle RandPK1(ρ)

pk′ ← RandPK(pk1, ρ)

Σ ← Σ ∪ {(pk′, ρ)}
return pk′

Oracle RandPK2(ρ)

if ρ = ρ∗ then return pk∗

else pk′ ← RandPK(pk1, ρ);Σ ← Σ ∪ {(pk′, ρ)}
return pk′

Oracle Adapt1(m, ρ)

if ρ /∈ Σ return ⊥ else (σ, ·)← Adapt(m,Sign(sk1,m), ρ, pk1); return σ

Oracle Adapt2(m, ρ)

if ρ /∈ Σ return ⊥; if ρ = ρ∗ then (σ, ·)← Adapt(m, Sign(skb,m), ρ, pkb); return σ

else (σ, ·)← Adapt(m,Sign(sk1,m), ρ, pk1; return σ

Fig. 6. Unlinkability experiment from [ESS21].

Signatures with key blinding must satisfy two security requirements: unforgeability and unlink-
ability. For the former, they rely on the “standard” unforgeability notion with the caveat that an
adversary has to provide a tuple (ρ, σ,m) instead of (m,σ, pk) for verification to succeed. For the
latter, they introduce a notion of unlinkability for signatures with key blinding (Def. 11). This notion
captures the fact that even if an adversary has access to the RandPK and Adapt oracles, they still
cannot distinguish a randomized key created from the original public key from one randomized from a
random key. They introduce a property called independent blinding, which asks that the distribution
of the output of the blinding function is independent of its input (essentially, it is non-deterministic).
Hence, even if an adversary sees n randomizations from a public key, they will learn no information
about the original public key.

Definition 11 (Unlinkability [ESS21]). A signature scheme Γ is unlinkable if, for every security
parameter λ, message m and key randomizer ρ, the advantage of any PPT adversary A defined by
AdvUNL

Γ,A (λ) := 2· Pr
[
ExpUNL

Γ,A (λ)⇒ true
]
− 1 = ϵ(λ), where ExpUNL

Γ,A (λ) is shown in Fig. 6.

More recently, Eaton et al. [ELW23] extended the study of signatures with key-blinding in an at-
tempt to capture other applications ([ESS21] only considered anonymity networks). The unlinkability
property from [ELW23] differs slightly from the previous one and states that an adversary without
knowledge of the long-term public key but who observes many blinded public keys and signatures that
verify under those blinded public keys cannot distinguish between a blinding key of the long-term pub-
lic key or a blinding of a freshly generated public key. Compared with [ESS21], this formalization
(Def. 12) does not allow the adversary to query the RandPK oracle for a chosen ρ, which allows them
to receive a corresponding randomized public key. The authors’ interest in this modified notion of
unlinkability is that it allows for a key blinding scheme that admits an unblinding functionality. This
can be necessary for certain applications where only trusted parties execute the unblinding process.
Hence, they treat the ρ as privileged information unavailable to the adversary. However, this property
can be considered weaker as the adversary is restricted from learning ρ. We also note that they call
this unlinkability with unblinding property “bidirectional” blinding. This contrasts with the notion of
“one-way” blinding from [ESS21] where no unblinding is supported.

Definition 12 (Unlinkability [ELW23]). A signature scheme Γ is unlinkable if, for every security
parameter λ, message m and key randomizer ρ, the advantage of any PPT adversary A defined by
AdvUNL

Γ,A (λ) := 2· Pr
[
ExpUNL

Γ,A (λ)⇒ true
]
− 1 = ϵ(λ), where ExpUNL

Γ,A (λ) is shown in Fig. 7.

Both works base their techniques on two conditions: (1) an adversary with access to a blinding
oracle and signing oracle cannot distinguish between a new blinding of a long-term key and a blinding
of a freshly-chosen key (the blinded public keys is independent of the long-term public key), and (2)
signatures with an identical distribution that are produced from blinded public keys depend only on

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 9

Experiment ExpUNL
Γ,A (λ)

Σ ← ∅; b←$ {0, 1}; pp←$ PPGen(1λ); {ski, pki}i∈{0,1} ←$ KGen(pp); ρ∗ ←$ KC

pk∗ ← RandPK(pkb, ρ
∗);Σ ← Σ ∪ {(pk∗, ρ∗)}; b′ ←$ARandPK(pk1),Adapt(·,·)(pk∗)

return b = b′

Oracle RandPK()

ρ′ ←$ KC; pk′ ← RandPK(pk1, ρ
′);Σ ← Σ ∪ {(pk′, ρ′)}; return pk′

Oracle Adapt(m, pk)

if pk /∈ Σ return ⊥; if pk = pk∗ then (σ, ·)← Adapt(m, Sign(skb,m), ρ, pkb)

else ρ∗ ← Σ(pk∗); (σ, ·)← Adapt(m,Sign(sk1,m), ρ∗, pk1); return σ

Fig. 7. Unlinkability experiment from [ELW23].

Experiment ExpSUNF
Γ,A (λ)

Σ ← ∅; pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp); (ρ∗,m∗, σ∗)←$ASign(sk,·,·)(pk)

if ρ∗ = ⊥ then pk∗ ← pk else pk∗ ← RandPK(pk, ρ∗)

return Verify(m∗, σ∗, pk∗) ∧ (ρ∗,m∗, σ∗) /∈ Σ

Oracle Sign(sk,m, ρ)

Σ ← Σ ∪ {(ρ,m, σ)}; if ρ = ⊥ return Sign(sk,m); return Sign(RandSK(sk, ρ),m)

Fig. 8. Unforgeability experiment from [ELW23].

the blinded public key and not on long-term public key (signatures leak no information about the long-
term public key). Nevertheless, the two scenarios are quite different and talking about unlinkability
in both cases may be confusing.

The unlinkability notion from [ESS21] considers an adversary who aims to extract the long-term
public key when confronted with (possibly many) randomizations of it for which they know the
key randomizer (i.e., blinding factor). However, one can also consider an adversary who knows the
long-term public key and aims to link it with a randomized public key without knowledge of the
key randomizer (as in the previous unlinkability notions). For this reason, we propose a different
formalization in Section 4 (Def. 17), to better capture this issue.

The work of [ELW23] also introduces a notion of strong unforgeability, as seen in Def. 13. This
property considers any tuple of the form (ρ∗,m∗, σ∗) for which σ∗ was not the result of a call to
Sign(sk,m∗) a valid forgery. The adversary should, in this case, be able to modify σ∗ or ρ∗ (or both).
A weaker notion of this property only allows the adversary to modify σ∗, which would allow for forged
signatures to be valid under any ρ.

Definition 13 (Strong Unforgeability [ELW23]). A signature scheme Γ is strongly unforgeable
if, for every security parameter λ, message m and key randomizer ρ, the advantage of any PPT ad-
versary A defined by AdvSUNF

Γ,A (λ) := 2· Pr
[
ExpSUNF

Γ,A (λ)⇒ true
]
− 1 = ϵ(λ), where ExpSUNF

Γ,A (λ) is shown
in Fig. 8.

3.4 Signatures with honestly randomized keys

Deterministic wallets (further discussed in Section 5.4) require a signature scheme with certain prop-
erties as outlined in [DFL19]. For example, they require a perfect randomization property equivalent
to that of [CL19]. Further, they require unforgeability under honestly rerandomized keys (Def. 14),
which states that an adversary cannot produce a forgery as long as keys are correctly randomized.

Definition 14 (Unforgeability under honestly rerandomized keys [DFL19]). A signature
scheme Γ has unforgeability under honestly rerandomized keys if, for every security parameter λ,
message m and key randomizer ρ, the advantage of any PPT adversary A defined by AdvUNF−hrk

Γ,A (λ) := 2·
Pr

[
ExpUNF−hrk

Γ,A (λ)⇒ true
]
− 1 = ϵ(λ), where ExpUNF−hrk

Γ,A (λ) is shown in Fig. 9.

Def. 14 is strictly weaker than Def. 9 from Section 3.2, since the adversary doesn’t control the
randomness used to convert the challenge key. Furthermore, the adversary is only allowed to query
the signing oracle for randomizations of the secret key but not the secret key itself.

10 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

Experiment ExpUNF−hrk

Γ,A (λ)

Σ1 ← ∅;Σ2 ← ∅; (sk, pk)←$ KGen(1λ); (m∗, σ∗, ρ∗)← ASign(sk,·,·),Rand()(pk)

pk∗ ← RandPK(pk, ρ∗); return m∗ ̸∈ Σ1 ∧ ρ∗ ∈ Σ2 ∧ Verify(pk∗, σ∗,m∗)

Oracle Sign(sk,m, ρ)

If ρ ̸∈ Σ2, return ⊥; sk′ ← RandSK(sk, ρ)

σ ← Sign(sk′,m);Σ1 ← Σ1 ∪ {m}; return σ

Oracle Rand()

ρ←$ KR;Σ2 ← Σ2 ∪ {ρ}; return ρ

Fig. 9. Unforgeability under honestly rerandomized keys experiment from [DFL19].

3.5 Updatable signatures

Updatable signatures [CRS+21] are the signature equivalent to updatable encryption (UE) [BLMR13],
i.e., the main motivation is periodical key-rotation. They work with the concept of epochs (keys are
updated in every new epoch) and require an update token ρe+1 to move (i.e., adapt) signatures
produced under a key in epoch e to signatures valid under the key in the next epoch e+1. Cini et al.
[CRS+21] consider constructions from key-homomorphic signatures [DS19] as well as dedicated ones.

Updatable signatures include a function, Next, which can be thought of as being a bundled function
for RandPK and RandSK that samples its own key randomizer. We recall their unforgeability notion in
Appendix C (Def. 19). In the game, the adversary can use the oracles to obtain signatures, updates of
signatures (Update), public keys (Next), secret keys (CorruptKey), and update tokens (CorruptToken),
with the restriction that trivial forgeries are excluded. To capture them, the authors in analogy to UE
in [LT18] create a recursively defined set (S∗ in Def. 19) of messages and epochs that the adversary
must be able to compute by correctness (cf. [CRS+21] for details). In other words, the definition
does not count forgeries if the adversary’s forgery is under a key on which they’ve either corrupted a
signature from the previous key along with an update token or a signature from the next key along
with an update token.

Cini et al. [CRS+21] also include an unlinkable updates under chosen message attack definition,
which ensures that updated signatures are indistinguishable from fresh ones. This definition of un-
linkability does not involve distinguishing the origin of a randomized public key, but instead, only
distinguishing the origin of a signature (the origin being which value the challenge value was adapted
from). Because of this, we also defer its presentation to Appendix C. Nevertheless, we note that this
definition of unlinkability [CRS+21] is implied by perfect adaption (Def. 5) since the adversary is
stronger in the adaptability game (the adversary does not receive corruption and update oracles).

Klooß et al. [KLR19] construct a one-time signature (instantiated based on the one-time SPS from
[KPW15]) with an updatable signature notion to provide integrity in UE. Their construction is only
proven secure under non-randomizable keys and is a one-time signature. Whether their approach can
be adapted to provide security for randomizable keys and sign multiple messages without leading to
forgeries (perhaps using the compiler from [KPW15]) remains open.

4 Systematization

In this section, we propose unifying definitions to capture all the relevant properties of SWRK: un-
forgeability, unlinkability and unextractability. Subsequently, we classify the existing constructions.

4.1 Unforgeability

We opt to merge the definitions from [FKM+16] and [DFL19] (Def. 9 and Def. 14) to consider
two cases: when the key randomizer is honestly generated and when the adversary can arbitrarily
pick it. To reflect this, we parametrize the definition (Def. 15) by α, where α = 0 means the key
randomizer is honestly generated. As in [ELW23], our experiment also captures strong unforgeability.
It is worth noting here that schemes supporting the adaptability of signatures cannot achieve strong
unforgeability. In other words, those notions are mutually exclusive.

Definition 15 (α-Unforgeability). Let α ∈ {0, 1}. A SWRK scheme is α-unforgeable w.r.t. equiva-
lence classes if the advantage of any PPT adversary A defined by Advα−UNF

SWRK,A(λ) := 2·Pr
[
Expα−UNF

SWRK,A(λ)⇒
true]− 1 = ϵ(λ), where ExpUNF

SWRK,A(λ) is shown in Fig. 10.

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 11

Experiment Expα−UNF

SWRK,A(λ)

Σ1 ← ∅;Σ2 ← ∅; pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp)

(m∗, σ∗, ρ∗)←$ASign(sk,·,·),Rand()(pk); pk∗ ← RandPK(pk, ρ∗)

return (m∗ , σ∗) /∈ Σ1 ∧ (ρ∗ ∈ Σ2 ∨ α = 1) ∧ Verify(m∗, σ∗, pk∗)

Oracle Sign(sk,m, ρ)

if ρ ̸∈ Σ2 ∧ α = 0 return ⊥
if ρ = ⊥ σ ←$ Sign(sk,m)

else σ ← Sign(RandSK(sk, ρ),m)

Σ1 ← Σ1 ∪ {(m,σ)}; return σ

Oracle Rand()

ρ←$ KR
Σ2 ← Σ2 ∪ {ρ}
return ρ

Fig. 10. Our α-unforgeability experiment. Solid boxes refer to strong unforgeability.

Experiment Exp(α,β,γ)−UNL
SWRK,A (λ)

st← ∅; b←$ {0, 1}; ρ←$ KC; if α = 0 then pp←$ PPGen(1λ) else (pp, st)← A0(st, 1
λ)

if β = 0 then {ski, pki}i∈{0,1} ←$ KGen(pp) else ({ski, pki}i∈{0,1}, st)← A1(st, pp)

if ∃ i ∈ {0, 1} : VerKey(ski, pki) = 0 return 0

pk′ ← RandPK(pkb, ρ); sk
′ ← RandSK(skb, ρ)

if γ = ∅ then b′ ←$A2(pk
′, pk0, pk1, st) else b′ ←$ASignγ(·)

2 (pk′, pk0, pk1, st)

return b = b′

Oracle Signγ(m, pk)

if (pk, sk) /∈ K(γ) return ⊥ else return Sign(sk,m)

Fig. 11. Our (α, β, γ)-unlinkability experiment.

4.2 Unlinkability

We propose a parametrized definition, (α, β, γ)-unlinkability (Def. 16), which is inspired by the notion
of (O1,O2, α)-anonymity from [PS19]. In our case, we use α ∈ {0, 1} to denote whether or not the
scheme is secure against adversarially chosen parameters. Similarly, β ∈ {0, 1} denotes if the scheme
is secure against adversarially chosen keys. Finally, the parameter γ denotes the set of keys for the
signing oracle available to the adversary. For ease of exposition, we supply γ to a function K6, resulting
in the following scenarios to consider:

– K(0) = {∅}: no signing oracle is available to the adversary.
– K(1) = {(sk′, pk′)}: the signing oracle for the randomized key is available.
– K(3) = {(sk′, pk′), {(ski, pki)}i∈{0,1}}: all signing oracles are available.

Definition 16 ((α, β, γ)-Unlinkability). Let α, β ∈ {0, 1} and γ a set of keys parametrizing the
signing oracle Sign. A SWRK scheme has (α, β, γ)-unlinkability if the advantage of any PPT adversary
A = {A0,A1,A2} defined by Adv(α,β,γ)−UNL

SWRK,A (λ) := 2·Pr
[
Exp(α,β,γ)−UNL

SWRK,A (λ)⇒ true
]
−1 = ϵ(λ), where

Exp(α,β,γ)−UNL
SWRK,A (λ) is shown in Fig. 11.

For schemes that support perfect adaption the adversary can run the Adapt algorithm by herself
on the signatures obtained through the oracles. Thus, the adversary can locally compute signatures
from randomized secret keys.

Definition 16 captures unlinkability for the following configurations: (0,0,0), (0,0,1), (0,0,3), (1,0,0),
(1,0,1), (1,0,3), (0,1,0), (0,1,1), (1,1,0) and (1,1,1). We assume that the secret keys are not given to
the adversary for configurations (·, 0, ·). However, as discussed in [BHKS18], the adversary could be
given those keys or even the random coins used to generate the key pairs. In such a case, one gets
an unlinkability notion, which we call unlinkability under key leakage. Knowledge of the secret key
provides a strictly stronger notion than (·, 0, 3) but weaker than the case where the adversary can
generate the keys. For simplicity, we denote this intermediate notion as (·, 0, 3∗) and stress that Def. 16
can easily be updated so that the adversary receives the secret keys or random coins.
6 We will use the shorthand forms of 0, 1 or 3 to instantiate γ.

12 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

Experiment Exp(α,β)−UNE
SWRK,A (λ)

st← ∅; γ ← ⊥; b←$ {0, 1}; if α = 0 then pp←$ PPGen(1λ) else (pp, st)← A0(st, 1
λ)

if β = 0 then ρ←$ KC else (ρ, st)← A1(st, pp); {ski, pki}i∈{0,1} ←$ KGen(pp)

pk′b ← RandPK(pkb, ρ); sk
′
b ← RandSK(skb, ρ); b

′ ←$ASign(·,·)
2 (pk′b, ρ, st); return b = b′

Oracle Sign(m, γ)

if γ = b return Sign(skb,m) elseif γ = b− 1 return Sign(skb−1,m)

elseif γ =⊥ return Sign(RandSK(skb, ρ),m) else return ⊥

Fig. 12. Our (α, β)-unextractability experiment.

4.3 Unextractability

We have seen how in some scenarios the adversary is given access to randomizations of the long-term
public key and the key-randomizer, but not to the long-term public key. The security notion for this
case differs from the usual unlinkability one that is used, e.g., in the context of anonymous credentials
(see Section 5), where the adversary knows the long-term public key and tries to identify its random-
izations without knowledge of the key-randomizer. Since information given to the adversary differs
in each setting, we see the former notion as orthogonal to the latter instead of weaker or opposed.
For this reason, we introduce the notion of (α, β)-unextractability (Def. 17), where (α, β) ∈ {0, 1}) to
better capture it. In our experiment, the adversary can arbitrarily pick the parameters (parametrized
by α) and/or the key-randomizer (parametrized by β) —assuming the strongest variant—, and is
given an honestly randomized key for which they must determine the corresponding long-term public
key.

Definition 17 ((α, β)-Unextractability). Let α, β ∈ {0, 1}. A SWRK scheme has (α, β)-unextrac-
tability if the advantage of any PPT adversary A = {A0,A1, A2} defined by Adv(α,β)−UNE

SWRK,A (λ) := 2·
Pr

[
Exp(α,β)−UNE

SWRK,A

(λ)⇒ true]− 1 = ϵ(λ), where Exp(α,β)−UNE
SWRK,A (λ) is shown in Fig. 12.

4.4 Classification

An up-to-date classification of SWRK constructions based on our proposed formalization is given in
Table 1. We include schemes that were not originally conceived as SWRK but that can easily be
adapted to as discussed in Appendix B.

5 Applications

5.1 Anonymity networks: Tor

Anonymity networks allow users to conceal their internet history from website operators, Internet
Service Providers (ISPs), and any intermediaries in the network path. The most famous one is the
Tor network alongside its onion services.

As defined by version 3 of Tor’s rendezvous specification [TTP23], the Ed25519 signature scheme
[BDL+12] is used as a SWRK. Long-term keys in this signature scheme are made w.r.t. a generator G
of a cyclic group of large prime size ℓ and are an integer a ∈ [ℓ− 1]. The corresponding public key is
A = Ga, which can be randomized using a nonce τ and hash function H to obtain ρ← H(τ ∥A) with
ρ ∈ [ℓ−1]. The randomized key pair, (ρ ·a mod l, Aρ), is entirely fresh and compatible with Ed25519
for signing and verification (see Appendix A.1 for more details). The application requires the scheme
to provide two essential properties: unlinkability and unforgeability. As discussed by [ESS21, Hop13],
Tor’s functionality, when instantiated in their post-quantum setting, achieves 1-UNF and (1, 0, 3)-UNL
when seen as a SWRK. Furthermore, a randomized public key is treated as completely public in Tor
and should leak no information about the long-term public key. Hence, the scheme should be at
least (0, 1)-UNE (i.e., to provide “key-blinding without unblinding” following the terminology from
[ELW23]).

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 13

Scheme A PA α-UNF (α, β, γ)-UNL (α, β)-UNE Setting
Schnorr [Sch91, BCG+20, FKM+16] ✓ ✗ 1-UNF (1,0,3*) ✗ (EC)DL & ROM
BLS [BLS04, DS19] ✓ ✓ 1-UNF (1,1,3) ✗ BG & ROM
Katz-Wang [KW03, GJKW07, DS19] ✓ ✗ 1-UNF (1,0,3) ✗ (EC)DL & ROM
Guillou-Quisquater [GQ90, DS19] ✓ ✗ 1-UNF (0,1,3) ✗ RSA(CRS) & ROM
Waters [Wat05, BFG13, DS19] ✓ ✓ 1-UNF (1,1,3) ✗ BG & CDH
Pointcheval-Sanders [PS16, DS19] ✓ ✓ 0-UNF (1,1,3) ✗ BG & GGM
AGOT [AGOT14, DS19] ✓ ✓ 0-UNF (1,1,3) ✗ BG & GGM
Ghadafi [Gha16, DS19] ✓ ✓ 0-UNF (1,1,3) ✗ BG & GGM
EdDSA [ELW23] ✗ ✗ 1-UNF† (1,1,3) (0, 1)-UNE (EC)DL
ECDSA [ELW23] ✓ ✗ 1-UNF (1,1,3) (0, 1)-UNE (EC)DL
Hofheinz-Kiltz [HK08, HK12, FKM+16] ✗ ✗ 1-UNF (1,1,3) ✗ BG & q-SDH
BHKS1 (Scheme 4) [BHKS18] ✓ ✓ 1-UNF‡ (1,0,3∗) ✗ BG & DLIN & DDH
BHKS2 (Scheme 5) [BHKS18] ✓ ✓ 1-UNF‡ (0,0,3∗) ✗ BG & DLIN & DDH
Crites-Lysyanskaya [CL19] ✓ ✓ 1-UNF‡ (1,0,3) ✗ BG & GGM
CLPK [CLPK22] ✓ ✓ 1-UNF‡ (0,0,3) ✗ BG & CRS
ESS (Dilithium) [ESS21] ✗ ✗ 1-UNF (1,0,3) (0, 1)-UNE MLWE
ESS (Picnic) [ESS21] ✗ ✗ 1-UNF (1,0,3) (0, 1)-UNE MPC-in-the-head
ESS (LegRoast) [ESS21] ✗ ✗ 1-UNF (1,0,3) (0, 1)-UNE PRF
ESS (CSI-FiSh) [ESS21] ✓ ✗ 1-UNF (1,0,3) (0, 1)-UNE CSIDH
US (Fig. 7) [CRS+21] ✓ ✓ 1-UNF (1,1,3) ✗ BG & ROM
HRK (Fig. 10) [DFL19] ✗ ✗ 0-UNF (1,1,3) ✗ (EC)DL

Table 1. Classification of SWRK schemes in terms of their adaption (A), perfect adaption (PA), unforgeability
(α-UNF, where † refers to the strong variant and ‡ means equivalence classes), unlinkability ((α, β, γ)-UNL,
where ∗ means that keys can be leaked to the adversary) and unextractability ((α, β)-UNE) properties.

5.2 Rate-limiting Privacy Pass

Privacy Pass [DGS+18] is a protocol that relies on challenges (e.g., human attestations) to assess if a
client is honest (i.e., not fraudulent) to give certain amount of unlinkable and unforgeable tokens, to
use in future interactions if the client is deemed honest (i.e., they solve the challenge successfully).
The goal is to reduce the number of challenges presented to a client as these can impact usability.
This is particularly useful for clients who are assigned to IPs with poor reputations.

An extended protocol version [CDVW23, DIW23] includes a third party, dividing the function-
alities into attestation and issuance. Clients interact with an attester and issuer service to produce
tokens. A rate-limited version [HIP+23] extended this architecture with the ability for the attester
to limit the number of tokens clients can request, but without the attester learning which services
a specific client interacts with. The scheme requires key-randomization, with the attester’s ability
to rollback the process. To prevent a dictionary attack (see Appendix A.2), the protocol requires
unlinkability, and unforgeability. As discussed by [ELW23], the functionality of rate-limiting Privacy
Pass (as an example of a key-blinding signature scheme) achieves 1-UNF† (the strong notion is only
provided in the ECDSA version) and (1, 1, 3)-UNL, given our definitions. Note that in Privacy Pass a
randomized public key is treated as private information and never given to the adversary. [ELW23]
cites this scheme as an example of “key-blinding with unblinding”.

5.3 Anonymous Credentials

Anonymous credentials (see Appendix A.3 for background) are usually represented with signatures
on the user attributes. However, knowledge of the signer can reveal sufficient information to fully
de-anonymize users in some scenarios. This problem has been studied in different settings [CL19,
CL21, BEK+21, CLPK22, CDLPK23, MBG+23]. SWRK can help them as they provide issuer-hiding
features. Potential solutions to this problem present different properties. The recent construction, for
example, from [CL19, CL21] only provides (1, 0, 3)-UNL (which can be considered “weak”), as seen in
Section 4. The same applies to [CDLPK23], which uses the construction from [CL19], and [CLPK22],
which gives a different construction with the same unlinkability notion.

14 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

Another desired property is to allow the signer to delegate their power to other users. In delegatable
anonymous credentials, a verifier often sees a chain of public keys (as in [CL19, Fuc11]). In this chain,
the root is unrandomized and trusted by the verifier, the intermediate keys are those of delegators
and the last key is from the user who performs the credential showing. This means that (1)-UNF is
a desirable property. Unlinkability over public key equivalence classes is desirable as well. Without
these two properties, each key in the chain would need an attached (randomizable) proof ensuring
that it is computed correctly.

5.4 Deterministic Wallets & Stealth Addresses

Deterministic wallets tackle the problem of a user who wants to send money through a blockchain
from many different transactions to their wallet without linking it to each transaction (see also
Appendix A.4 for hot/cold wallets). This can be achieved using different keys (where the user generates
a new key for each transaction). However, this causes the number of keys to scale with the number of
transactions. Deterministic wallets provide a single key pair, where the public key can be randomized
so that a single wallet can have multiple unlinkable keys, thus requiring at least (0, 0, 3)-UNL as it
needs to support randomized wallets that create further transactions (signatures). With deterministic
wallets, we further need to assume the signature scheme is unforgeable for honestly randomized keys
since the user will only send money to these honestly created wallets. This means that even if an
adversary forges a signature for a randomized public key (if it was maliciously randomized), the wallet
will have no value to steal. Thus, they can be realized with a signature scheme that achieves 0-UNF.

Stealth addresses techniques are aimed to generate one-time addresses for each transaction so that
the privacy of cryptocurrencies is increased. The technique has many implementations: the ones using
SWRK are among the most relevant. In them, the user can use RandPK on the recipient’s public key
and send money to the randomized public key. The transaction is finalized with the user sending
the randomizer to the recipient, allowing for the redemption of funds. Since the new address can
be chosen maliciously, the stealth address application requires at least (0, 0, 3)-UNL and 1-UNF. As
shown in the recent work by Pu et al. [PTDH23], stealth addresses are closely related to asynchronous
remote key generation for FIDO tokens [FGK+20]. In this application, the primary device registers
randomized public keys in the name of the backup device (e.g., stored in a safe). In case the primary
device is lost, the backup device can restore the secret key and successfully authenticate to the server
while leveraging the registration which is solely executed with the primary device. Both devices use
a key agreement protocol to generate a shared randomizer, allowing the backup device to recompute
it later. This application requires at least (0, 0, 3)-UNL and 1-UNF, since the primary device could
potentially be malicious.

5.5 Stronger Security for NIZK Proofs

As shown in [DS19], key-homomorphic signatures can be used to generically lift non-interactive witness
indistinguishable and zero-knowledge proofs that provide soundness (or knowledge soundness) to ones
that provide the stronger notion of simulation soundness (or simulation extractability) . The basic
idea is to extend a proof for a language L to a language L∨Lkey and to add a public key of a signature
scheme into the CRS. Loosely speaking, during proof computation one signs the proof with a secret
key corresponding to a freshly sampled signature key pair. To prove the language Lkey, one proves
that one knows a key randomizer that converts the fresh public key to the one in the CRS. This can
only be done by the simulator knowing the trapdoor of the CRS (i.e., the corresponding signing key).
This application requires at least (0, 0, 0)-UNL, 1-UNF and signature adaption. In [ARS20, AGRS23],
the approach has been adapted to updatable signatures that provide (black-box) extractability (not
to be confused with Def.17) i.e., to make the key randomizer (black-box) extractable. These features
can be used in generic constructions inspired by the aforementioned in [DS19] to build zk-SNARKs
and circuit-succinct NIZK proofs with an updatable CRS [GKM+18].

6 Conclusions

6.1 Future work

As we saw in Sec. 5, SWRK have an array of practical, real-world privacy-preserving applications.
However, in some cases, said applications are realized with weaker properties, so improving on this as-
pect is of utmost interest. To mention, anonymous credentials will benefit from signature constructions

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 15

that achieve stronger unlinkability, such as (0, 1, 3)-UNL or (1, 1, 3)-UNL. Furthermore, the majority
of the constructions are not quantum-safe, and will benefit from instantiations in a post-quantum
setting. The work of [ESS21] starts this area of research, but more analysis is needed.

6.2 Final Remarks

We proposed a general framework to analyze the security of SWRK, providing an up-to-date literature
review. Our definitions offer a flexible yet formal way to fully characterize signature constructions.
They can help implementers to better identify the properties captured by a given scheme, helping
avoid security risks. Moreover, our framework constitutes a step forward for standardization efforts
in the area as it provides fine-grained separations between each notion. To justify our approach, we
discussed practical applications for which such distinctions are highly relevant and classified all known
constructions. As a result, we identified exciting areas to explore as previously outlined.

Acknowledgements. Daniel Slamanig was supported by the European Union through the Horizon
Europe research programme under grant agreement n◦101073821 (Sunrise) and by the Austrian
Science Fund (FWF) and netidee SCIENCE under grant agreement P31621-N38 (Profet).

References

ABC+12. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and Brent Waters.
Computing on authenticated data. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 1–20. Springer, Heidelberg, March 2012.

ADE+20. Nabil Alkeilani Alkadri, Poulami Das, Andreas Erwig, Sebastian Faust, Juliane Krämer, Siavash
Riahi, and Patrick Struck. Deterministic wallets in a quantum world. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1017–1031. ACM Press,
November 2020.

AGOT14. Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. Structure-preserving signa-
tures from type II pairings. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 390–407. Springer, Heidelberg, August 2014.

AGRS23. Behzad Abdolmaleki, Noemi Glaeser, Sebastian Ramacher, and Daniel Slamanig. Universally
composable NIZKs: Circuit-succinct, non-malleable and CRS-updatable. Cryptology ePrint
Archive, Report 2023/097, 2023. https://eprint.iacr.org/2023/097.

ALP12. Nuttapong Attrapadung, Benoît Libert, and Thomas Peters. Computing on authenticated data:
New privacy definitions and constructions. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 367–385. Springer, Heidelberg, December 2012.

ARS20. Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. Lift-and-shift: Obtaining sim-
ulation extractable subversion and updatable SNARKs generically. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1987–2005. ACM Press,
November 2020.

BB04. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer,
Heidelberg, May 2004.

BB18. Johannes Blömer and Jan Bobolz. Delegatable attribute-based anonymous credentials from dy-
namically malleable signatures. In Bart Preneel and Frederik Vercauteren, editors, ACNS 18,
volume 10892 of LNCS, pages 221–239. Springer, Heidelberg, July 2018.

BBD+10. Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz, Stefan Katzen-
beisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering, and Dominique
Schröder. Redactable signatures for tree-structured data: Definitions and constructions. In
Jianying Zhou and Moti Yung, editors, ACNS 10, volume 6123 of LNCS, pages 87–104. Springer,
Heidelberg, June 2010.

BCC+09. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav
Shacham. Randomizable proofs and delegatable anonymous credentials. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer, Heidelberg, August 2009.

BCG+20. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
ZEXE: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and
Privacy, pages 947–964. IEEE Computer Society Press, May 2020.

BCM11. Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks
and tampering. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073
of LNCS, pages 486–503. Springer, Heidelberg, December 2011.

https://eprint.iacr.org/2023/097

16 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

BDL+12. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89, September 2012.

BEK+21. Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin. Issuer-hiding
attribute-based credentials. In Mauro Conti, Marc Stevens, and Stephan Krenn, editors, CANS
21, volume 13099 of LNCS, pages 158–178. Springer, Heidelberg, December 2021.

BF11. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168.
Springer, Heidelberg, May 2011.

BFF+09. Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page, Jakob
Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable signatures revisited. In
Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 317–336.
Springer, Heidelberg, March 2009.

BFG13. David Bernhard, Georg Fuchsbauer, and Essam Ghadafi. Efficient signatures of knowledge and
DAA in the standard model. In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel,
and Reihaneh Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS, pages 518–533. Springer,
Heidelberg, June 2013.

BFKW09. Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace:
Signature schemes for network coding. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009,
volume 5443 of LNCS, pages 68–87. Springer, Heidelberg, March 2009.

BFLS10. Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Unlinkability of
sanitizable signatures. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume
6056 of LNCS, pages 444–461. Springer, Heidelberg, May 2010.

BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arith-
metic circuit ABE and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May
2014.

BHKS18. Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Signatures with flex-
ible public key: Introducing equivalence classes for public keys. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 405–434. Springer,
Heidelberg, December 2018.

BHSB19. Michael Backes, Lucjan Hanzlik, and Jonas Schneider-Bensch. Membership privacy for fully
dynamic group signatures. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2181–2198. ACM Press, November 2019.

BKM09. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. Journal of Cryptology, 22(1):114–138, January 2009.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomor-
phic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, August 2013.

BLS04. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of
Cryptology, 17(4):297–319, September 2004.

BM99. Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 431–448. Springer, Heidelberg, August 1999.

BPT12. Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond the linear barrier:
IBE, encryption and signatures. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012,
volume 7658 of LNCS, pages 331–348. Springer, Heidelberg, December 2012.

CDD17. Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-secure delegatable cre-
dentials with attributes and their application to blockchain. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 683–699. ACM Press, Oc-
tober / November 2017.

CDHK15. Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf Kohlweiss. Compos-
able and modular anonymous credentials: Definitions and practical constructions. In Tetsu Iwata
and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 262–288.
Springer, Heidelberg, November / December 2015.

CDL+13. Jan Camenisch, Maria Dubovitskaya, Anja Lehmann, Gregory Neven, Christian Paquin, and
Franz-Stefan Preiss. Concepts and languages for privacy-preserving attribute-based authenti-
cation. In Simone Fischer-Hübner, Elisabeth de Leeuw, and Chris Mitchell, editors, Policies
and Research in Identity Management, pages 34–52, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

CDLPK23. Aisling Connolly, Jérôme Deschamps, Pascal Lafourcade, and Octavio Perez Kempner. Protego:
Efficient, revocable and auditable anonymous credentials with applications to hyperledger fabric.
In Progress in Cryptology – INDOCRYPT 2022: 23rd International Conference on Cryptology

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 17

in India, Kolkata, India, December 11–14, 2022, Proceedings, page 249–271, Berlin, Heidelberg,
2023. Springer-Verlag.

CDVW23. Sofia Celi, Alex Davidson, Steven Valdez, and Christopher Wood. Privacy pass issuance protocol,
2023.

CFW14. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with efficient veri-
fication for polynomial functions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 371–389. Springer, Heidelberg, August 2014.

CGT23. Alishah Chator, Matthew Green, and Pratyush Ranjan Tiwari. Sok: Privacy-preserving signa-
tures. IACR Cryptol. ePrint Arch., page 1039, 2023.

Cha85. David Chaum. Security without identification: Transaction systems to make big brother obsolete.
Commun. ACM, 28(10):1030–1044, oct 1985.

CKLM14. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Malleable signa-
tures: New definitions and delegatable anonymous credentials. In Anupam Datta and Cedric
Fournet, editors, CSF 2014 Computer Security Foundations Symposium, pages 199–213. IEEE
Computer Society Press, 2014.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May 2001.

CL03. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio
Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS, pages
268–289. Springer, Heidelberg, September 2003.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–72.
Springer, Heidelberg, August 2004.

CL19. Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous credentials from mercurial
signatures. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 535–555.
Springer, Heidelberg, March 2019.

CL21. Elizabeth C. Crites and Anna Lysyanskaya. Mercurial signatures for variable-length messages.
PoPETs, 2021(4):441–463, October 2021.

CLPK22. Aisling Connolly, Pascal Lafourcade, and Octavio Perez-Kempner. Improved constructions of
anonymous credentials from structure-preserving signatures on equivalence classes. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS,
pages 409–438. Springer, Heidelberg, March 2022.

CRS+21. Valerio Cini, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks, and Erkan Tairi. Up-
datable signatures and message authentication codes. In Juan Garay, editor, PKC 2021, Part I,
volume 12710 of LNCS, pages 691–723. Springer, Heidelberg, May 2021.

DDH+15. Denise Demirel, David Derler, Christian Hanser, Henrich Pöhls, Daniel Slamanig, and Giulia
Traverso. Prismacloud d4.4: Overview of functional and malleable signature schemes. 2015.

DFL19. Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of deterministic wallets. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 651–668. ACM Press, November 2019.

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy
pass: Bypassing internet challenges anonymously. PoPETs, 2018(3):164–180, July 2018.

DIW23. Alex Davidson, Jana Iyengar, and Christopher Wood. The privacy pass architecture, 2023.
DS16. David Derler and Daniel Slamanig. Key-homomorphic signatures and applications to multiparty

signatures. Cryptology ePrint Archive, Report 2016/792, 2016. https://eprint.iacr.org/2016/
792.

DS19. David Derler and Daniel Slamanig. Key-homomorphic signatures: definitions and applications
to multiparty signatures and non-interactive zero-knowledge. Designs, Codes and Cryptography,
87(6):1373–1413, Jun 2019.

ELW23. Edward Eaton, Tancrède Lepoint, and Christopher A. Wood. Security analysis of signature
schemes with key blinding. Cryptology ePrint Archive, Paper 2023/380, 2023.

ER22. Andreas Erwig and Siavash Riahi. Deterministic wallets for adaptor signatures. In Vijayalak-
shmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng, editors, ES-
ORICS 2022, Part II, volume 13555 of LNCS, pages 487–506. Springer, Heidelberg, September
2022.

ESS21. Edward Eaton, Douglas Stebila, and Roy Stracovsky. Post-quantum key-blinding for authenti-
cation in anonymity networks. In Patrick Longa and Carla Ràfols, editors, LATINCRYPT 2021,
volume 12912 of LNCS, pages 67–87. Springer, Heidelberg, October 2021.

FD02. Lucas C. Ferreira and Ricardo Dahab. Blinded-key signatures: Securing private keys embedded
in mobile agents. In Proceedings of the 2002 ACM Symposium on Applied Computing, SAC ’02,
page 82–86, New York, NY, USA, 2002. Association for Computing Machinery.

https://eprint.iacr.org/2016/792
https://eprint.iacr.org/2016/792

18 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

FD04. L.C. Ferreira and R. Dahab. Optimistic blinded-key signatures. In IEEE First Symposium
onMulti-Agent Security and Survivability, 2004, pages 65–72, 2004.

FGK+20. Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain
Nilsson. Asynchronous remote key generation: An analysis of yubico’s proposal for W3C We-
bAuthn. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020, pages 939–954. ACM Press, November 2020.

FHS15. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind sig-
natures in the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 233–253. Springer, Heidelberg, August
2015.

FHS19. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Journal of Cryptology, 32(2):498–
546, April 2019.

FKM+16. Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder, and
Mark Simkin. Efficient unlinkable sanitizable signatures from signatures with re-randomizable
keys. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part I, volume 9614 of LNCS, pages 301–330. Springer, Heidelberg, March 2016.

Fuc11. Georg Fuchsbauer. Commuting signatures and verifiable encryption. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 224–245. Springer, Heidelberg, May
2011.

Gha16. Essam Ghadafi. Short structure-preserving signatures. In Kazue Sako, editor, CT-RSA 2016,
volume 9610 of LNCS, pages 305–321. Springer, Heidelberg, February / March 2016.

GJKW07. Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature schemes with
tight reductions to the Diffie-Hellman problems. Journal of Cryptology, 20(4):493–514, October
2007.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-SNARKs. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728.
Springer, Heidelberg, August 2018.

GL23. Scott Griffy and Anna Lysyanskaya. PACIFIC: Privacy-preserving automated contact tracing
scheme featuring integrity against cloning. Cryptology ePrint Archive, Report 2023/371, 2023.
https://eprint.iacr.org/2023/371.

GQ90. Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS,
pages 216–231. Springer, Heidelberg, August 1990.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg,
April 2008.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic sig-
natures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM
STOC, pages 469–477. ACM Press, June 2015.

HHH+08. Stuart Haber, Yasuo Hatano, Yoshinori Honda, William Horne, Kunihiko Miyazaki, Tomas
Sander, Satoru Tezoku, and Danfeng Yao. Efficient signature schemes supporting redaction,
pseudonymization, and data deidentification. In Masayuki Abe and Virgil Gligor, editors, ASI-
ACCS 08, pages 353–362. ACM Press, March 2008.

HIP+23. Scott Hendrickson, Jana Iyengar, Tommy Pauly, Steven Valdez, and Christopher Wood. Rate-
limited token issuance protocol, 2023.

HK08. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. In David
Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 21–38. Springer, Heidelberg, August
2008.

HK12. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. Journal
of Cryptology, 25(3):484–527, July 2012.

Hop13. Nicholas Hopper. Proving security of tor’s hidden service identity blinding protocol, 2013.
HS14. Christian Hanser and Daniel Slamanig. Structure-preserving signatures on equivalence classes

and their application to anonymous credentials. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 491–511. Springer, Heidelberg, December
2014.

HS21. Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends: Constructing practical
anonymous credentials. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2004–
2023. ACM Press, November 2021.

JMM19. Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-optimal guarantees
for secure messaging. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I,
volume 11476 of LNCS, pages 159–188. Springer, Heidelberg, May 2019.

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561
https://eprint.iacr.org/2023/371

SoK: Signatures With Randomizable Keys 19

JMSW02. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic sig-
nature schemes. In Bart Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 244–262.
Springer, Heidelberg, February 2002.

JS18. Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-grained state com-
promise: The safety of messaging. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

KLR19. Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA secure updatable encryption with
integrity protection. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I,
volume 11476 of LNCS, pages 68–99. Springer, Heidelberg, May 2019.

KMP16. Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signatures from identifica-
tion schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume
9815 of LNCS, pages 33–61. Springer, Heidelberg, August 2016.

KMPQ23. Saqib A. Kakvi, Keith M. Martin, Colin Putman, and Elizabeth A. Quaglia. Sok: Anonymous
credentials. In Felix Günther and Julia Hesse, editors, Security Standardisation Research, pages
129–151, Cham, 2023. Springer Nature Switzerland.

KPW15. Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. Structure-preserving signatures from standard as-
sumptions, revisited. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 275–295. Springer, Heidelberg, August 2015.

KSD19. Mojtaba Khalili, Daniel Slamanig, and Mohammad Dakhilalian. Structure-preserving signatures
on equivalence classes from standard assumptions. In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 63–93. Springer, Heidelberg,
December 2019.

KW03. Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight security
reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM CCS 2003,
pages 155–164. ACM Press, October 2003.

LRSW99. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In
Howard M. Heys and Carlisle M. Adams, editors, SAC 1999, volume 1758 of LNCS, pages 184–
199. Springer, Heidelberg, August 1999.

LT18. Anja Lehmann and Björn Tackmann. Updatable encryption with post-compromise security. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822
of LNCS, pages 685–716. Springer, Heidelberg, April / May 2018.

MBG+23. Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig. Aggregate
signatures with versatile randomization and issuer-hiding multi-authority anonymous credentials.
Cryptology ePrint Archive, Paper 2023/1016, 2023.

MSBM23. Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer. Practical delegatable anony-
mous credentials from equivalence class signatures. Proc. Priv. Enhancing Technol., 2023(3):488–
513, 2023.

MSM+16. Hiraku Morita, Jacob C. N. Schuldt, Takahiro Matsuda, Goichiro Hanaoka, and Tetsu Iwata.
On the security of the schnorr signature scheme and DSA against related-key attacks. In Soon-
hak Kwon and Aaram Yun, editors, ICISC 15, volume 9558 of LNCS, pages 20–35. Springer,
Heidelberg, November 2016.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue Sako, editor,
CT-RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Heidelberg, February / March
2016.

PS19. Sunoo Park and Adam Sealfon. It wasn’t me! - Repudiability and claimability of ring signatures.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694
of LNCS, pages 159–190. Springer, Heidelberg, August 2019.

PTDH23. Sihang Pu, Sri AravindaKrishnan Thyagarajan, Nico Döttling, and Lucjan Hanzlik. Post quantum
fuzzy stealth signatures and applications. Cryptology ePrint Archive, Paper 2023/1148, 2023.

San20. Olivier Sanders. Efficient redactable signature and application to anonymous credentials. In
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part II, volume 12111 of LNCS, pages 628–656. Springer, Heidelberg, May 2020.

SBZ02. Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures. In Kwangjo
Kim, editor, ICISC 01, volume 2288 of LNCS, pages 285–304. Springer, Heidelberg, December
2002.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

Sch91. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991.

TTP23. Inc The Tor Project. Tor rendezvous specification - version 3, 2023.
Wat05. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,

editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May
2005.

20 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

Appendix

A Applications: Detailed discussion

A.1 Anonymity networks

We recall the exposition from [ESS21]. At a high level, onion services work by uploading a three-hop
path (defined as a circuit in Tor terminology) to a Tor node called the introduction point, where the
path begins. Once a number of introduction points have been picked, the host builds a set of documents
called “hidden service descriptors” (or “descriptors”) and uploads them to a group of Hidden Service
Directory (HSDir) nodes. These documents list the hidden service’s current introduction points and
describe how to contact the hidden service. Because of Tor’s layered encryption, the introduction
point does not know where the onion service lives, only where the next node in the path lives. To
connect to the onion service, a client uses the .onion address to find the introduction point, which
will then direct their communication towards the onion service.

The .onion address is the long-lived EdDSA public key of the onion service (the long-term mas-
ter identity key). Time in the Tor network is divided into periods: the period length is a consensus
parameter, and the period number is the number of periods that have occurred since the Unix epoch.
So, given the public key, the nonce τ , and the consensus parameters of the Tor network, the key ran-
domizer ρ is computed by hashing together the public key, the nonce, the current period number, and
some parameters of both the Tor network and the signature scheme. The resulting randomized public
key ρA (“key-of-the-day”) is then used to index the descriptors held by the HSDir. Clients can derive
the randomized key from the .onion address (the long-term public key or the “unblinded” version of
the blinded ephemeral key) and query for a descriptor (unusable by entities without knowledge of the
randomized key).

The randomized key serves as a private index from which the descriptor may be queried. This
means that the client is implicitly checking the link between the long-term identity public key from
the .onion address and the randomized public key. For security, it is crucial that only the actual
owner of the .onion address can upload a descriptor to a given index. This is achieved by letting the
onion services upload a signature on the descriptor, which can be verified with the randomized key.
When HSDir’s verify this signature, they ensure that the descriptor is being uploaded by the actual
owner of the identity public key without knowing what the .onion address is.

A.2 Rate-limiting Privacy Pass

In Privacy Pass, tokens are simply evaluations over a client-chosen value using a blinding protocol
(e.g., an OPRF or a publicly verifiable blind RSA signature).

To prevent a dictionary attack whereby the attester masquerades as a client and requests a token
for a service of their choosing, clients sign in a key-blinding manner their token requests to the issuer
with a secret key ppbsk they know. The attester and issuer check this signature. The issuer, in turn,
blinds this request with a long-term secret of their own. The attester then unblinds the response from
the user and assigns this result as the identifier (the corresponding public key). To ensure that the
issuer cannot use this public key and signature to link any two token requests to the same client,
and clients sign their requests with a freshly chosen blind. This lets the issuer check each request for
validity without letting the attester forge requests on behalf of a client.

A.3 Anonymous Credentials

Anonymous credentials (ACs), first introduced by Chaum [Cha85] and Lysanskaya et al. [LRSW99],
allow user authentication without compromising the user’s identity. Initial constructions [CL01, CL03,
CL04] consisted of a signature (representing a credential) on a commitment to the user’s identity (such
as their public key) so that users could prove knowledge of their secret key to show they own a valid
credential. By doing so, a trusted issuer could give out credentials to be used anonymously, i.e.,
verifiers would only know that a user has been issued a credential without learning anything further.
Unlinkable showings for the same credential could be supported if the underlying signature scheme
was randomizable.

Since their introduction, the field of ACs has flourished and rapidly expanded to consider more
efficient constructions and increased functionalities (e.g., [PS16, CDHK15, San20, FHS15, FHS19,

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 21

HS21]). One of the most prominent lines of works (see [KMPQ23] for a recent survey) considers
anonymous attribute-based credentials (ABCs) [CDL+13], allowing the user to obtain a credential
for an attribute set with the ability to show a subset of them in an unlinkable fashion, as done
in [FHS19]. Another related notion is that of delegatable anonymous credentials (DAC) [CDD17,
BB18, BCC+09, MSBM23], which extend ACs to allow for a delegator to issuer credentials on a
root-key-owner ’s behalf. Using a DAC scheme in this way prevents a verifier from knowing which
delegatee issued the credential (only that the delegatee’s public key was signed by the root key).
However, relying on a root authority introduces a single point of failure that can be prohibiting
in some scenarios. To address this issue, very recent work studied the notion of issuer-hiding ACs
(IHAC) [BEK+21, CLPK22, CDLPK23, MBG+23] with [CLPK22] and [CDLPK23] using mercurial
signatures to hide the identity of credential issuers.

Constructing DAC schemes requires additional properties beyond unlinkability and basic un-
forgeability, such as ensuring that the signature scheme can sign public keys and that signatures
are unforgeable w.r.t. equivalence classes. This makes simple use of some signature schemes like
[PS16, Gha16] for DAC not work as [PS16] has public keys in (G2)

2 with messages in Zp. Similarly,
[Gha16] has public keys in (G2)

2 and messages in G1×G2. Furthermore, neither are unforgeable w.r.t.
equivalence classes. In the mercurial signature construction from [CL19], the message and public key
spaces mirror each other ((G1)

ℓ and (G2)
ℓ). This is why mirrored schemes can be used to construct

DAC.

A.4 Deterministic wallets

Deterministic wallets can also be used in a scenario with hot and cold wallets. Here, each the wallet
has its own secret, but the hot wallet is in some precarious location (typically connected to the
Internet), representing a risk when a big amount of money is stored. In contrast, a cold wallet is
stored offline (e.g., in a hardware device). Deterministic wallets facilitate transfers between hot and
cold wallets. In brief, the hot wallet randomizes the cold wallet’s public key so that latter can retrieve
the corresponding secret key, while keeping no secrets in the hot wallet that could lead to a forgery
or privacy violation for the cold wallet.

B Classification of signature constructions

In this section, we give a brief description of how certain signature schemes approach the properties
described in Section 4.

Pointcheval-Sanders (PS) signatures [PS16]. Derler and Slamanig present a variant of PS signatures
with publicly randomizable keys [DS19]. By exponentiating the public keys with two blinding factors
(one for each element in the public key) one can obtain a uniform random public key. Using those
same blinding factors, one can randomize the signature to verify with the original message and the
updated public key. Signatures randomized this way are identical to a fresh signature issued from the
updated key on the original message, thus it achieves unlinkability with β = 0. Randomizing the keys
in this way though opens up a possibility of forgery, thus making this variant only achieve 0-UNF.
The attack on 1-UNF for this variant from [DS19] works as follows: The adversary queries a signature,
σ, on message, m. They then choose an arbitrary message, m′. They then choose ρ1 = 1, ρ2 = m/m′

as the key randomizer and compute randomized key: pk′ = (X̂ ′, Ŷ ′) = X̂Ŷ ρ1 where the original key
was pk = X̂Ŷ . We can see that the original signature for m verifies for m′ with the new key:

e(σ1, X̂
′(Ŷ ′)m

′
) = e(σ2, g2)

= e(h, gx2 (g
ym/m′

2)m
′
) = e(hx+ym, g2)

= e(h, gx2g
ym
2) = e(hxhym, g2)

If we restrict the randomizations of PS signatures, ensuring that both elements of the public key are
randomized with the same factor, we can achieve 1-UNF. Unfortunately, the public keys randomized
in this way are recognizable since the owner of the secret key can compute X̂y = Ŷ x which holds for

22 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

any randomization of the public key. Hence, it can only achieve (1-0-3)-UNL. We present this variant
below:

PS Signatures with 1-UNF and (1,0,3)-UNL

PPGen(1λ) : Generate bilinear pairing groups, p = G1, g1,G2, g2,Gt, e of prime order p.

KGen(p) : Choose sk = (x, y)←$ Zp, pk = (X̂, Ŷ) = (gx2 , g
y
2). Output sk, pk.

Sign(p, sk,m ∈ Zp) : h←$ G1, σ = (σ1, σ2) = (h, hx+ym).

Verify(p, pk,m) : Check that e(σ1, X̂Ŷ m) = e(σ2, g2).

Adapt(p, pk, σ,m, ρ) : X̂ ′ = X̂ρ, Ŷ ′ = Ŷ ρ, r ←$ Zp, σ
′ = (σr

1 , σ
(ρ+ρm)r
2).

We also observe that this scheme can only sign messages in Zp and so it cannot be used with GS
proofs [GS08] (see Ghadafi signatures below).

Ghadafi signatures [Gha16]. Ghadafi signatures (GSig) are similar to PS signatures in that they use
a randomly sampled group element to ensure unforgeability, but, GSig can sign group elements in a
bilinear pairing, and in particular they are structure-preserving signatures, making them useful for
GS proofs [GS08]. Note also that the signatures can be randomized while looking identical to fresh
signatures, so, like PS signatures, Ghadafi signatures also achieve (1-1-3)-UNL with 0-UNF (using
the variant in [DS19]). Ghadafi signatures do not have an unforgeability definition which respects
equivalence classes, and so they cannot be easily used to construct delegatable anonymous credentials.
The key-randomizable variant of Ghadafi signatures is provided in [DS19]. Similar to PS signatures,
if both elements of the public key are randomized with the same factor, we can achieve 1-UNF, but
then only satisfy (1,0,3)-UNL.

AGOT signatures [AGOT14] Similar to PS signatures and Ghadafi signatures, we can use the variant
in [DS19] to achieve (1-1-3)-UNL with 0-UNF, and use a variant with the same randomness for elements
in keys to achieve 1-UNF and (1,0,3)-UNL.

Updatable signatures[CRS+21] and signatures with honestly randomizable keys [DFL19] These signa-
tures have a strong assumption for their unforgeability definition, that the adversary must produce a
forgery only for keys which have been honestly randomized. Thus, they only achieve 0-UNF.

Guillou-Quisquater [GQ90] Guillou-Quisquater signatures requires a trusted setup in which an RSA
modulus is generated and the secret factorization is then discarded. Because of this trusted setup, the
scheme can only achieve (0-*-*)-UNL. We find a key-randomizable version of the scheme in [DS19].
We can see in this version, that a randomized public key is uniformly distributed across the set
of possible public keys (since a secret key is simply an element in Z∗

N and randomizing it involves
simply multiplying it with another secret key in Z∗

N). Because of this (along with the fact that updated
signatures look exactly like fresh signatures), the randomizable variant achieves (*-1-3)-UNL. Note also
that the first element in the signature is not randomized. Thus, the scheme only achieves adaptability
(Def. 4) instead of perfect adaption (Def. 5). Because one of the elements of the signature is a hash
of the message, it achieves 1-UNF.

Signatures with unforgeability over equivalence classes The signature schemes from [BHKS18, CL19,
CLPK22] all achieve unforgeability with respect to message equivalence classes. With equivalence
classes, one representation of a message class could be a vector of group elements. The class is then
the set of messages in the message space that share some property with that representative. For
example, in [CL19], the equivalence class is RM = {(M,M ′) : ∃µ,Mµ = M ′} where exponentiation is
vector exponentiation and messages are M ∈ Gℓ

1 for some ℓ > 1. We define a class of a representative
by [M]R which is a set holding all message representations with the same class. We show this definition
in Def. 18.

Definition 18 (α-Unforgeability w.r.t. equivalence classes). Let α ∈ {0, 1}. A SWRK scheme
is α-unforgeable if the advantage of any PPT adversary A defined by Advα−UnfEquiv

SWRK,A (λ) := 2·Pr
[
Expα−UnfEquiv

SWRK,A

(λ)⇒ true]− 1 = ϵ(λ), where Expα−UnfEquiv

SWRK,A (λ) is shown in Fig. 13.

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

SoK: Signatures With Randomizable Keys 23

Experiment Expα−UnfEquiv

SWRK,A (λ)

Σ1 ← ∅;Σ2 ← ∅; pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp)

(m∗, σ∗, ρ∗)←$ASign(sk,·,·),Rand()(pk); pk∗ ← RandPK(pk, ρ∗)

return ([m∗]R) /∈ Σ1 ∧ (ρ∗ ∈ Σ2 ∨ α = 1) ∧ Verify(m∗, σ∗, pk∗)

Oracle Sign(sk,m, ρ)

if ρ ̸∈ Σ2 ∧ α = 0 return ⊥
if ρ = ⊥ σ ←$ Sign(sk,m)

else σ ← Sign(RandSK(sk, ρ),m)

Σ1 ← Σ1 ∪ {([m]R)}; return σ

Oracle Rand()

ρ←$ KR
Σ2 ← Σ2 ∪ {ρ}
return ρ

Fig. 13. An α-unforgeability experiment for equivalence classes.

Experiment Expus−euf−cma
Γ,A (λ, q)

(sk1, pk1)←$ KGen(1λ);S, T,K ← ∅3, I = (pk1, sk1,⊥), e := 1

(e∗, σ∗,m∗)← ASign,Next,Update,CorruptKey,CorruptToken(pk1)

S∗ = {(e′,m) : e′ ∈ K ∨ (e′,m) ∈ S ∨ (e′ ∈ T ∧ ((e′ − 1,m) ∈ S∗ ∨ (e′ + 1,m) ∈ S∗))}
return Verify(pke∗ ,m

∗, σ∗) ∧ {{(e∗,⊤)} ∪ {(e∗,m∗)}} ∩ S∗ = ∅
Oracle Sign(e′,m)

if e′ > e : return ⊥
S = S ∪ (e′,m);

return Sign(ske′ ,m)

Oracle Next(1λ)

(pke+1, ske+1, ρe+1) = Next(pke, ske)

I = I ∪ (pke+1, ske+1, ρe+1); e := e+ 1

return pke

Oracle Update(e′,m, σ)

if e′ > e : return ⊥
if Verify(pke′ ,m, σ) ̸= 1 return ⊥
S = S ∪ (e′ + 1,m)

return Update(ρe′+1,m, σ)

Oracle CorruptKey(e′)

if e′ > e : return ⊥
K = K ∪ {e′}
return ske′

Oracle CorruptToken(e′)

if e′ > e : return ⊥
T = T ∪ {e′}
return ρe′

Fig. 14. Unforgeability experiment from [CRS+21].

C Updatable Signature Definitions

We present the unforgeability and unlinkability definitions from [CRS+21] with certain aspects re-
moved to focus on signatures (instead of signatures and MACs) and also combine the definition of a
“valid” adversary (a separate definition in [CRS+21]) into one definition.

The unforgeability definition (Def. 19) assumes the adversary can trivially produce a signature
if they corrupt either a signature from the previous key along with an update token ((e − 1,m) ∈
S∗∧e ∈ T) or a signature from the next key along with an update token ((e+1,m) ∈ S∗∧e ∈ T). But
ensures an adversary cannot produce a forgery if they do not have the appropriate keys and update
tokens. The unlinkability definition (Def. 20) challenges an adversary to distinguish between a new
signature or an updated one, sp the same epoch, on the same message.

Definition 19 (US-EUF-CMA [CRS+21]). An updatable signature scheme Γ has existential un-
forgeability under chosen-message attacks for updatable signatures if, for every PPT adversary A, the
advantage function defined by Advus−euf−cma

Γ,A (λ) := Pr
[
Expus−euf−cma

Γ,A (λ, q)
]
= ϵ(λ), where the experi-

ment Expus−euf−cma
Γ,A (λ, q) is shown in Fig. 147

Definition 20 (Unlinkable updates under chosen-message attacks (US-UU-CMA) [CRS+21]).
A signature scheme, Γ , has unlinkable updates under chosen-message attacks, if for every PPT adver-
sary A, the advantage function defined by Advus−uu−cma

Γ,A (λ) := 2· Pr
[
Expus−uu−cma

Γ,A (λ, q)− 1
]
= ϵ(λ),

where Expus−uu−cma
Γ,A (λ, q) is shown in Fig. 15.

7 Since our focus here is on signatures, we do not consider the updatable MACs from [CRS+21], i.e., we can
remove the verification oracle (Ver′).

24 Sofía Celi , Scott Griffy , Lucjan Hanzlik , Octavio Perez Kempner , and Daniel Slamanig

Experiment Expus−uu−cma
Γ,A (λ, q)

(sk1, pk1)← Setup(1λ);S ← ∅; (e∗,m∗)← ASign,Next,Update,CorruptKey,CorruptToken(pk1)

if (·,m∗) ̸∈ S return 0; e′ = max({e : (e,m∗, ·) ∈ S})
σe ←$ {σ : (e′,m∗, σ) ∈ S}; ∀i ∈ [e∗ − e′]σe′+i = Update(ρe′+i,m

∗, σe′+i−1)

σ(0) = σe∗ ;σ
(1) = Sign(ske∗ ,m

∗)

b←$ {0, 1}; b′ ← A(σ(b)); return e′ < e∗ ∧ b = b′

Fig. 15. Unlinkable updates under chosen mesaage attack game from [CRS+21].

Definition 20 uses the same oracles as in Def. 19 except that T and K are not used and S includes
signatures.

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0009-0006-1941-693X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561

	SoK: Signatures With Randomizable Keys

