
Kirby: A Robust Permutation-Based PRF
Construction

Abstract. We present a construction, called Kirby, for building a variable-input-
length pseudorandom function (VIL-PRF) from a b-bit permutation. For this con-
struction we prove a tight bound of b/2 bits of security on the PRF distinguishing
advantage in the random permutation model and in the multi-user setting. Similar
to full-state keyed sponge/duplex, it supports full-state absorbing and additionally
supports full-state squeezing, while the sponge/duplex can squeeze at most b − c
bits per permutation call, for a security level of c bits. This advantage is especially
relevant on constrained platforms when using a permutation with small width b. For
instance, for b = 256 at equal security strength the squeezing rate of Kirby is twice
that of keyed sponge/duplex. This construction could be seen as a generalization of
the construction underlying the stream cipher family Salsa. Furthermore, we define a
simple mode on top of Kirby that turns it into a deck function with parallel expansion.
This is similar to Farfalle but it has a much smaller memory footprint. Furthermore
we prove that in the Kirby construction, the leakage of intermediate states does not
allow recovering the key or earlier states.
Keywords: permutation-based cryptography · provable security · multi-user security
· PRF · lightweight · deck function · leakage resilience

1 Introduction
Permutation-based cryptography has become increasingly popular in the last years. Many of
the proposed schemes make use of the sponge [BDPV07], duplex [BDPA11] and monkeydu-
plex constructions [BDPVA12]. For example, the winner of the NIST SHA-3 competition,
the family of extendable output functions (XOF) Keccak [BDPV11] is based on the sponge
construction. More recently, the NIST lightweight cryptography competition was won
by the authenticated encryption scheme Ascon [DEMS21] that is based on a variant of
monkeyduplex [BDPVA12]. These schemes have the property that part of the permutation
output cannot be presented at the final output. This is called the inner state. Its size
is called the capacity c and the security of sponge/duplex is limited to c bits. If we
denote the permutation width by b, this leaves a rate of only b− c. Moreover, they are
strictly serial in nature: the construction imposes a strict sequence in the execution of
permutation calls. However, modern keyed application of duplex/sponge supports full-state
absorbing [BDPVA12].

Around the time of the advent of sponge and duplex construction the stream cipher
family Salsa was introduced in [Ber08], and later an improved variant called ChaCha was
proposed in [B+08] In these ciphers a cryptographic permutation is applied to an input
consisting of the key, a nonce, a fixed constant and the (block) counter. The corresponding
keystream block is the sum of the permutation output and the input. The security goal
is to achieve a pseudorandom function (PRF). Their advantage compared to sponge and
duplex is that a keystream block is b bits instead of b−c. In sponge-vocabulary, it supports
full-state squeezing. Moreover, it is fully parallelizable.

A more recent permutation-based construction that combines advantages of Salsa/ChaCha
and sponge/duplex is Farfalle [BDP+16]. It builds a so-called doubly extendable crypto-
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graphic keyed (deck) function that support both variable-length input and output. Like
Salsa and ChaCha it supports full-state squeezing and is parallelizable and like sponge it
is variable-input-length (VIL) and variable output length (VOL). It has been instantiated
with the Keccak permutation under the name Kravatte and with the Xoodoo permutation
in [DHAK18] under the name Xoofff.

Our Contribution. In Section 3, we introduce a novel permutation-based VIL-PRF
construction called Kirby.

Kirby is suitable to build efficient lightweight cryptographic primitives with low memory
footprint and/or low latency (as shown in Fig. 1). It is inspired by the sponge construction
and Salsa. Over sponge and duplex it has the advantage that it offers full-state squeezing
and over Salsa it has the advantage that it has arbitrary-length input. Kirby could also be
seen as a generalization of Salsa [Ber08] and XSalsa [Ber11], as discussed in Section 3.3.
We also introduce in Section 8 a mode on top Kirby that uses injective prefix-free input
and counter encoding, resulting in a deck function. The squeezing phase of the Kirby deck
mode is similar to that of Farfalle [BDP+16] but Kirby has a significantly smaller memory
footprint. Table 1 summarizes a comparison between Kirby and existing permutation-based
schemes.

In Section 6, we prove a tight bound on the PRF distinguishing advantage in
the random permutation model and in the multi-user setting supporting arbitrary key
distributions. Kirby employs identifiers to enhance multi-user security, a practice observed,
among others, in the sponge-based PRF Muffler [BBN22]. In the same vein [DMA17]
considered the multi-target security of the keyed duplex construction in the presence of a
global nonce and later this was generalized by Dobraunig and Mennink [DM24] by treating
different restrictions on the initialization of the keyed duplex.

In our construction, full-state squeezing is possible thanks to continuous feedforward
as in the Davies-Meyer construction employed in Merkle-Damgård hashing [Mer89,Dam89,
PGV93]. The presence of feed-forward allows us to prove a tight bound on the leakage
resilience in the random permutation model in Section 7. The stream cipher construction
from Chen et al. [CLMP21] and Kirby share the security objective that the leakage of a
state does not compromise the recovery of the key or earlier states. However, Kirby is
based on a public primitive, whereas the approach of Chen et al. relies on a keyed primitive,
resulting in significant differences in the security models and proofs.

Our PRF and leakage resilience bounds are two special cases of one distinguishing
game that is defined in Section 4 and for which we prove a bound in Section 5. We also
introduce in Section 8 a mode on top Kirby that uses injective prefix-free input and counter
encoding, resulting in a deck function.

Table 1: Comparison of Kirby with permutation-based designs. "Multi" means that a
dedicated bound exists for multi-user security that can surpass the single-user one with
generic composition.
Name

Full State Construction Security Proof
Leakage Resilience RefAbsorb Squeeze Single Multi

Farfalle ! ! %1 % %(Not LR) [BDP+16]
Keyed Sponges ! % ! ! [DMA17,DM24] !(Sometimes, e.g., [DM19]) [BDPV07,BDPA11]
(X)Salsa % ! ! % %(XSalsa not LR) [Ber08,Ber11]
Kirby ! ! ! ! ! This work

1While there exists no formal security analysis of Farfalle, [ABJ+22] describes and proves the security
of Farasha, which is a Farfalle-like construction.
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Figure 1: Example of iteration of Kirby (Algorithm 1), for an input sequence E with
n = 3.

2 Preliminaries
Notation. We introduce here useful notation. We will use N to denote the set of natural
numbers excluding 0. Let m,n ∈ N such that m ≤ n. We use Jm,nK to denote the set
{m,m + 1, . . . , n}. We use the letter b to denote the width of a permutation and κ for
the length of the keys. Let d ∈ N. The set {0, 1}d denotes the strings of length d bits,
and {0, 1}∗ denotes

⋃
a∈N{0, 1}a. Moreover, {0, 1}d+ denotes the strings with length a

multiple of d, i.e., {0, 1}d+ =
⋃
a∈N{0, 1}ad. Let s, s′ ∈ {0, 1}∗. We denote the length of s

as |s|. The empty string is represented by ε. We write s||s′ for the concatenation of s and
s′. For two string s1 and s2 of equal length, we use s1 ⊕ s2 to denote the bitwise addition
of s1 and s2.

Given a finite set S, x $←− S means that x is the result of a uniform random sampling in
S. Similarly, if D represents a distribution, x $←− D signifies that x is generated using the
distribution D. The set of permutations over b bits is denoted by Perms(b). For n, k ∈ N
such that n ≥ k, (n)k denotes the falling factorial of n of degree k, i.e.,

(n)k =
k−1∏
i=0

(n− i) .

A string E ∈ {0, 1}∗ is a prefix of E′ ∈ {0, 1}∗, denoted by E ≺ E′ if E′ truncated to
its first |E| bits is equal to E. Moreover, a set E ⊂ {0, 1}∗ is prefix-free if for any E,E′ ∈ E
distinct, E is not a prefix of E′. Given E,E′ ∈ {0, 1}∗ such that E ≺ E′, E′ \ E denotes
the string obtained by removing from E′ its first |E| bits.

Key Sampling. Similarly to the work of Daemen et al. [DMA17], we assume that the
keys of the µ users K1, . . . ,Kµ ∈ {0, 1}κ are generated using an arbitrary distribution Dkey.
This distribution is characterized by two essential parameters: the min-entropy and the
minimum collision entropy. The min-entropy of a distribution Dkey is defined by

Hmin(Dkey) = max
m∈J1,µK,x∈{0,1}κ

− log2

(
Pr
(

K1, . . . ,Kµ
$←− Dkey : Km = x

))
.

The minimum collision entropy is defined by

Hcol(Dkey) = max
m,m′∈J1,µK,m6=m′

− log2

(
Pr
(

K1, . . . ,Kµ
$←− Dkey : Km = Km′

))
.

In the case where Dkey denotes uniform sampling, we have Hmin(Dkey) = Hcol(Dkey) = κ.

Indistinguishability. Let W0,W1 be two worlds, and consider a distinguisher D placed
in worldWa, for a

$←− {0, 1}, that we denote by DWa . Without loss of generality, we assume
that D is a deterministic algorithm that never makes queries for which it already knows
the answer. The advantage of D is defined as follows:

Adv(W0,W1)(D) =
∣∣Pr

(
DW0 = 1

)
−Pr

(
DW1 = 1

)∣∣ .
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H-coefficient Technique. In the proof, we will use the H-coefficient technique [Pat08,
CS14]. Consider two worlds W0 and W1. We summarize the interaction between D and
the world in a transcript, which contains tuples of queries-responses. Denote by τ0 (resp.,
τ1) the probability distribution of the transcript in W0 (resp., W1). Consider a partition
of all the possible transcripts as T = TGOOD ∪ TBAD. If there exists ε1, ε2 > 0 such that

∀τ ∈ TGOOD,
Pr (τ1 = τ)
Pr (τ0 = τ) ≥ 1− ε1 ,

and Pr (τ0 ∈ TBAD) ≤ ε2 ,

then

Adv(W0,W1)(D) ≤ ε1 + ε2 .

3 Specification and Design Rationale
In this section, we describe the Kirby construction specification with a simple algorithm
and deliver some design rationales to link the different elements of the construction with
the associated features. In order to avoid length-extension-like attacks, the set of strings
queried to Kirby must form a prefix-free set.

3.1 Kirby Specification
Kirby operates on a b-bit state S and for its iterations it makes use of a transformation F
consisting of the permutation P with a feedforward: F(S) = P (S) + S. It takes as input a
sequence of b-bit blocks E of length at least 1. First, it initializes the state S with the
concatenation of a κ-bit key K and a (b− κ)-bit key identifier id. It sequentially absorbs
the blocks of E by adding each block to the state one by one and then applying F to the
result. After all blocks of E have been absorbed, it returns the state S as output Z.

It is instantiated by choosing the key length κ and a permutation P . We define formally
the Kirby construction in Algorithm 1. We show in Fig. 1 a schematic of the Kirby
construction with a 3-block input.

Algorithm 1 Definition of construction Kirby[P, κ].
Require: P is a b-bit permutation
Input: bit strings key K, identifier id, input block sequence E = (E1, . . . , En)
Output: a b-bit string Z
S ← K||id
S ← S ⊕ P (S)
for i = 1 to n do

S ← S ⊕ Ei
S ← S ⊕ P (S)

end for
return Z ← S

3.2 Design Rationale
The Kirby construction builds a VIL-PRF from a permutation. Its main objectives are
to be simple, versatile, robust, have good multi-user provable security in the random
permutation model and allow for compact implementation.

The overall design of Kirby relies solely on bitwise additions and the permutation itself.
We opted for bitwise addition due to its typically low cost in hardware implementations.
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It is worth noting that this operation could alternatively be replaced by modular additions
or by word-by-word modular additions, as done for example in Salsa20 with 32-bit words.
The memory required by a round-based implementation of Kirby instantiated with an
iterated permutation is only twice the width of the permutation. Altogether, Kirby offers
compactness in its design.

The critical path of the construction for single-block inputs E, which is the minimal
time between availability of the last block (i.e. latency) of E and that of the output,
is the critical path of the permutation, the input block addition, a b-bit padded string
and the feedforward addition. The initialization step taking the key and identifier can be
pre-computed and hence does not impact the latency.

In the latter sections, we show how using identifiers, the feedforward, and the restriction
on prefix-freeness of the input are essential to obtain a good security bound.

3.3 Comparison with Salsa
Kirby can be seen as a generalization of the construction underlying the stream cipher
Salsa20 [Ber08]. Salsa20 operates on a state S of size 512 bits, which is itself split into 16
different 32-bit words. S is initialized with the 64-bit counter, the 64-bit nonce, the 256-bit
key, and a 128-bit constant. Then, the permutation is applied to S, and each 32-bit word
of the output is fed-forward with the corresponding word in S by adding them modulo 232.
Moreover, Salsa20 has been generalized to XSalsa20 [Ber11] in the fact that it supports
longer nonces. In XSalsa20, the 128 first bits of the nonce, along with the 256-bit key
and the 128-bit constant are fed into the permutation. Then, 256 bits of the obtained
output are truncated, forming a key to Salsa20, with the remaining 64 bits of the nonce
and 64-bit counter used as such.

Therefore, Kirby could be seen as a Salsa-like construction that supports arbitrary-
length input and with full-state absorption. However, Kirby differs from Salsa20 in several
aspects. Firstly, Kirby systematically applies a feed-forward with bitwise addition after
each permutation call. Additionally, XSalsa20 overwrites a part of the state with the data
to absorb, while with Kirby the diversifier is added block by block to the state, allowing
thus full-state absorption. Lastly, Kirby is designed with multi-user security in mind,
featuring identifiers with a dedicated security proof.

4 Security Model
We will prove the security of Kirby under two different security models, specified in
respectively Sections 4.1 and 4.2, and describe in this paragraph the common setup. Our
security proofs will be in the multi-user scenario. Namely, the construction is assumed to
be used simultaneously by µ users, split as µ = µ1 + · · ·+µs, where µi users share the same
identifier. We represent this quantity by a vector µ := (µ1, . . . , µs). In the two security
models, the adversary has access to a primitive oracle OP , which takes as input a string in
{0, 1}b, and a bit that denotes the direction of the query. The adversary has additionally
access to µ construction oracles, denoted by OC1 , . . . ,OCµ . The set of strings queried via
the construction oracles is denoted by E, and contains elements of form (m,E), where the
block sequence E ∈ {0, 1}b+ has been queried to the oracle OCm . For m ∈ J1, µK, Em is
defined as follows:

Em =
{
E ∈ {0, 1}b+ | (m,E) ∈ E

}
.

The key and identifier of user m are denoted respectively by Km and idm. We will use
IK[m] as an abbreviation for Km||idm. We will assume that the adversary always make at
least one query to each oracle OCm , as otherwise, we can rather use the security bound for
a number of users equal to the number of queried construction oracles.
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4.1 Indistinguishability
Our goal is to prove an upper bound on the advantage of any adversary to distinguish µ
instances of Kirby based on a random permutation from µ independent random oracles,
under the assumption that for each construction oracle OCm , the set of queried strings Em
is prefix-free.

K1, . . . ,Kµ
$←− Dkey

KirbyK1,id1 · · · KirbyKµ,idµ P/P−1

$
WR WI

RO1

$

· · · ROµ

$

P/P−1

$

D
Figure 2: Illustration of the indistinguishability security game. The symbol $ on top of an
oracle means that the underlying primitive is sampled uniformly at random, and KirbyK,id
denotes the construction Kirby initialized with the key K and the identifier id.

Specification of the Worlds. The security model is a special type of distinguishing
game, akin to multi-user PRF. The adversary has to distinguish between the so-called
real and ideal worlds, which are denoted respectively by WR and WI . In both worlds, the
adversary D has access to a primitive oracle OP and µ construction oracles denoted by
OC1 , . . . ,OCµ , as described in detail at the beginning of Section 4. Let s be the number of
coordinates in µ, and x1 . . . , xs ∈ {0, 1}b−κ be pairwise distinct. Let Expandµ ∈ (J1, sK)µ
denote the array generated by repeating in order each element t ∈ J1, sK a number of times
equal to the value of the element of µ at position t. Let idm = xExpandµ[m]. Each of the
worlds is specified as follows:

• In WR, P
$←− Perms(b), K1, . . . ,Kµ

$←− Dkey, OCm gives access to Kirby construction
based on the permutation P , the key Km, and the identifier idm, while OP gives
access to P or P−1;

• In WI , P
$←− Perms(b), OCm gives access to a random oracle ROm, and OP gives

access to P or P−1. We stress that RO1, . . . ,ROµ are independent.

Fig. 2 illustrates the security game.

Metrics for Queries. In this paragraph, we specify how the queries of the distinguisher
to the oracles are measured. Indeed, the permutation and construction queries are counted
separately, and in the real world one construction query has a practical cost which depends
on the length of the input block string E. More precisely, if E has ` blocks of b bits, the
associated construction query has a cost of `+1 (the extra call comes from the initialization
phase). Additionally, if a second construction query is made to the same oracle with input
E′ ∈ {0, 1}b`′ that has a common prefix of x blocks with E, then this construction query
has cost `′ − x. We define M to be the total cost in terms of minimal permutation queries
that are required by construction queries in WR. In the example above, M = `+ `′ − x.
M will be also referred to as the online complexity. Moreover, we define by N the number
of permutation queries made by the adversary. N will be also referred to as the offline
complexity.

We now have all ingredients to define the security model. Let Dkey a distribution
for the key sampling procedure. Consider 1 ≤ s < 2b−κ, and µ = (µ1, . . . , µs) ∈ Ns be
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such that
∑s
i=1 µi = µ. We define AdvPRF

Kirby (N,M,µ,Dkey) as the maximum advantage
Adv(WR,WI)(D) over all distinguishers D such that:

• D has access to µ construction oracles in both WR and WI ;

• In WR, keys are sampled according to Dkey, identifiers are partitioned according to
µ;

• For each m ∈ J1, µK, the set Em is prefix-free;

• The construction queries made by D require in WR a minimum number of permuta-
tion evaluation equal to M without considering duplicate evaluations from repeated
prefixes (see paragraph “Metrics for queries” of Section 4.1 for more detailed expla-
nations);

• D makes N permutation queries.

The quantity AdvPRF
Kirby (N,M,µ,Dkey) is bounded in Lemma 1.

4.2 Leakage Resilience
Leakage resilience captures the property that revealing a state SE after absorption of a
block sequence E ∈ {0, 1}b+ does not compromise the secrecy of any state SE′ obtained
after absorbing a prefix block sequence E′ ≺ E if E′ has never been queried. These latter
states, stemming from unqueried prefixes, will be referred to as “earlier states”. Note that
the earlier states include the state containing the key.

At first sight, such a property seems already captured by the PRF distinguishing game,
as the latter indicates among others that having access to one state does not compromise
the secrecy of the earlier intermediate states. However, in the leakage resilience setting,
the adversary has slightly more freedom notably in the fact that its queries to each
construction oracle do not necessarily form a prefix-free set. To illustrate this point,
consider the following scenario: i) a construction query is made with input (E1, E2), the
adversary obtains the associated state ii) later on, a construction query to the same oracle is
made with input (E1, E

′
2) with E2 6= E′2, but this time, the state after having absorbed E1

leaks. The queries do not form a prefix-free set, thus such a scenario would not be covered by
the PRF distinguishing game. Moreover, as the adversary is adaptive, we cannot swap the
queries at steps (i) and (ii) without loss of generality on the class of adversaries considered.
We suspect that adaptivity in that case does not help the adversary to increase its success
probability, but this needs to be proven formally, as explained in [Mau02,JÖS12]. Instead,
we opted for slightly extending the class of adversaries considered by the distinguishing
game. Looking ahead, in Section 5 we extend the prefix-freeness condition to the two
conditions 1 and 2. Theorem 1 bounds the distinguishing advantage of such adversaries,
and Lemma 2 leverages the theorem to bound the leakage resilience of Kirby.

The security game underlying leakage resilience is not a distinguishing game, but rather
a guessing game, and is illustrated in Fig. 3. The adversary has access to the construction
oracles and primitive oracles from the real world WR from Fig. 2, and has additional access
to a forgery oracle Forge. The latter takes as input a tuple ((m,E), S) with m ∈ J1, µK,
E ∈ {0, 1}b+, and S ∈ {0, 1}b, and returns > whenever the following three conditions are
satisfied:

• The input (m,E) is a prefix of an element in E;

• The input (m,E) does not contain a prefix in E;

• S equals to OCm(E).
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If at least one of these conditions is not satisfied, Forge returns ⊥. We assume that the
adversary submits all of its forgery attempts at the end of the game, as the adversary can
act as if its forgery attempts failed, and postpone its queries to Forge at the end of the
game.

K1, . . . ,Kµ
$←− Dkey

Forge KirbyK1,id1· · ·KirbyKµ,idµ P/P −1

$

D
Figure 3: Illustration of the leakage resilience security game. The symbol $ on top of an
oracle means that the underlying primitive is sampled uniformly at random, and KirbyK,id
denotes the construction Kirby initialized with the key K and the identifier id.

Metrics for Queries. Compared to the indistinguishability security game, the adversary
has additional access to the oracle Forge, and we denote by t the total number of queries
to this oracle. The probability that an adversary A has one of its Forge-queries returning
> is denoted by AdvLR

Kirby (A).
Let Dkey a distribution for the key sampling procedure. Consider 1 ≤ s < 2b−κ, and

µ = (µ1, . . . , µs) ∈ Ns be such that
∑s
i=1 µi = µ. We define AdvLR

Kirby (N,M, t,µ,Dkey) as
the maximum advantage AdvLR

Kirby (A) over all adversaries A such that:

• A has access to µ construction oracles (OCm)m∈J1,µK;

• The keys are sampled according to Dkey, identifiers are partitioned according to µ;

• A makes N permutation queries;

• The construction queries made by A require in WR a minimum number of per-
mutation evaluations equal to M without considering duplicate evaluations from
repeated prefixes (see paragraph “Metrics for queries” of Section 4.1 for more detailed
explanations);

• A makes t queries to the oracle Forge at the end of the interaction.

5 General Indistinguishability Theorem
In this section, we provide a security proof that bounds the advantage of an adversary in
the distinguishing game from Section 4.1, but that covers a class of adversaries slightly
larger than the one we target for the PRF advantage. This result will be useful for the PRF
indistinguishability advantage, as well as the leakage resilience. The theorem and proof
can be found in Section 5.1, while Section 5.2 discusses the tightness of the bound. The
adversaries in this distinguishing game are constrained by specific relationships between
construction and permutation queries. These restrictions are captured by conditions 1
and 2.

Condition 1. For any construction query with input (m,E′), the adversary did not make
construction queries before it with input (m,E) with E ≺ E′.
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Condition 2. None of the following scenarios occur:

• There exists a forward permutation query with input X such that at the moment of
the query, there exists two construction queries (m,E), (m,E′), each with outputs Z
and Z ′ respectively, and such that E ≺ E′ and X equals the XOR of Z with the first
block of E′ \ E.

• There exists an inverse permutation query with input Y such that at the moment of
the query, there exists two construction queries (m,E), (m,E||e), each with outputs
Z and Z ′ respectively, and such that Y = Z ⊕ Z ′ ⊕ e.

These two conditions prevent that the adversary trivially manages to distinguish the real
world WR from the ideal world WI . At a high-level view, the adversary could distinguish
between WR and WI in two ways: either in WR it is able to easily find two different
construction queries that have the same output (the associated bad event is named COL
in the proof), or it detects in WI the disconnection between construction and permutation
queries outputs (the associated bad event is named GUESS in the proof). Condition 1
prevents trivial ways to set COL, as it forbids the adversary to freely choose in WR the
permutation inputs inside construction evaluations. On the other side, condition 2 targets
GUESS. It forbids the adversary to make permutation queries for which it already knows
the answer in the WR, or extend via permutation queries its knowledge of intermediate
states that are located between two known states S1, S2, where S1 is associated to a
path that is a prefix to the one associated to S2. The latter event is undesirable as the
adversary can reach S2 from S1 by making solely permutation queries, and detect in WI

the inconsistency.

5.1 Main Theorem and Proof
Theorem 1. Let µ = (µ1, . . . , µs) ∈ Ns, and N,M ∈ N such that

∑s
i=1 µi ≤M . Let WR

and WI be the worlds described in Section 4.1. Consider a distinguisher D such that:

• D has access to µ construction oracles in both the real world and the ideal world;

• In WR, keys are sampled according to Dkey, identifiers are partitioned according to
µ;

• D respects conditions 1 and 2;

• The construction queries made by D require inWR a minimum number of permutation
evaluations equal toM without considering duplicate evaluations from repeated prefixes
(see paragraph “Metrics for queries” of Section 4.1 for more detailed explanations);

• D makes N permutation queries.

Then we have

Adv(WR,WI)(D) ≤ 3M(M − 1)
2b + NM

2b +
∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) + N maxi µi
2Hmin(Dkey) .

The remainder of this subsection is dedicated to the security proof.

Transcript Notation. In the following, we define the transcript induced by the in-
teraction between the distinguisher and the oracles. Denote by q the total number of
construction queries. The transcript is an ordered list with N + q elements. Each permuta-
tion query results in the addition of a tuple (X,Y, d) to the transcript, where d ∈ {fwd, inv}
denotes the direction of the query, and Y = P (X). Similarly, each construction query
appends to the list a tuple (m, idm,path = E,Z), where 1 ≤ m ≤ µ refers to the oracle
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S2

Figure 4: Illustration of the intermediate states in the real world. For this particular exam-
ple, the tuples (m,S), (m, (E1), S1), (m, (E1, E2), S2) belong to the extended transcript T .

called, idm is the identifier used, the path E is the input block sequence absorbed, and Z
is the output of the construction oracle.

For the sake of the proof, we allow the oracles to release additional information
after the interactive phase, right before the distinguisher outputs its decision bit. More
precisely, in the extended transcript that we call T , the elements associated to permutation
queries are kept unchanged. Moreover, in the real world, the states IK[m] are appended
to the transcript. In the ideal world, the states IK[m] computed from dummy keys
K1, . . . ,Kµ

$←− Dkey are appended to the transcript. Additionally, one construction query
(m, idm,path = (E1, . . . , En), Z) is split into following n+ 1 transcript elements:

• A construction initialization element: (m,path = ε, S)

• n different construction absorb elements. For instance if n = 4 we have

– (m,path = (E1), S)
– (m,path = (E1, E2), S)
– (m,path = (E1, E2, E3), S)
– (m,path = (E1, E2, E3, E4), S)

We call a path E final if the construction has presented an output Z for it, and there
exists no E′ ∈ {0, 1}b+ such that E ≺ E′ and E′ has been queried to OCm . A path which
is not final is called intermediate.

Given (m,path = E,S) ∈ T , the sampling method for S varies depending on the
adversary’s world:

• In the real world, S is the state after having absorbed the path E with the key Km.
In particular, if E is intermediate, then S is called an intermediate state.

• In the ideal world, S equals ROm(E).

To simplify the notation, when the path E equals ε, we omit it. There may be duplicates
among the construction absorb elements and these are removed from the transcript. There
are µ construction initialization elements.

The construction absorb elements in the transcript can be arranged in a graph and
form a forest. Each construction init element is a root of a tree and its nodes are the
construction absorb element where the path is the sequence of edges one has to follow
to get to the root (in reverse order). Quite naturally, the blocks of the path E form
the labels of the edges. For example node [m,path = (E1, E2, E3)] is the parent of node
[m, path = (E1, E2, E3, E4)]. The nodes are labeled with the state S and we denote the
state of a node reached by following the path E in tree m by S[m,E]. We denote the
label of the parent of the node in position [m,E] by [m,par(E)] and the last block of a
path E by Elast. The minimum number of blocks that must be presented as input to the
construction is the number of edges in the graph. However, we also consider the identifiers
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loaded in the init operation as input and therefore, M is the total number of nodes in the
graph.

One important remark is that every transcript that can be produced in the real world
is also reachable in the ideal world. However, the converse is not true as the ideal world
can produce intermediate states that do not conform to Kirby. Indeed, in the ideal world
the permutation queries and construction queries are independent, and the intermediate
states are generated randomly and uniformly, so that they might be incompatible with the
bijectivity of a permutation. These transcripts are referred to as permutation-inconsistent.

Bad Transcripts Definition. We define here two bad events called respectively COL
and GUESS, each split into sub-events. To facilitate notation, in the following, we
implicitly assume the existence of the nodes listed at the beginning of each bad event.

COLkey : [m] 6= [m′] with IK[m] = IK[m′] ,
COLfwd1 : [m,E] 6= [m′, E′] with S[m,par(E)]⊕ Elast = S[m′,par(E′)]⊕ E′last ,

COLfwd2 : [m,E], [m′] with IK[m′] = S[m,par(E)]⊕ Elast ,

COLinv1 : [m,E] 6= [m′, E′] with S[m,E]⊕ S[m,par(E)]⊕ Elast =
S[m′, E′]⊕ S[m′,par(E′)]⊕ E′last ,

COLinv2 : [m,E], [m′] with IK[m′]⊕ S[m′] = S[m,E]⊕ S[m,par(E)]⊕ Elast ,

COLinv3 : [m] 6= [m′] with IK[m]⊕ S[m] = IK[m′]⊕ S[m′] ,

COLfwd : COLfwd1 ∨COLfwd2 ,
COLinv : COLinv1 ∨COLinv2 ∨COLinv3 ,

COL : COLkey ∨COLfwd ∨COLinv ,

GUESSkey : [m], (X,Y, fwd) with X = IK[m] ,
GUESSfwd : [m,E], (X,Y, fwd) with X = S[m,par(E)]⊕ Elast ,

GUESSinv1 : [m,E], (X,Y, inv) with Y = S[m,E]⊕ S[m,par(E)]⊕ Elast ,

GUESSinv2 : [m], (X,Y, inv) with Y = IK[m]⊕ S[m] ,

GUESSinv : GUESSinv1 ∨GUESSinv2 ,
GUESS : GUESSkey ∨GUESSfwd ∨GUESSinv .

In the real world COLkey is set when two different states are initialized with the
same key and same identifier. COLfwd (resp., COLinv) concerns the state right before
(resp., right after) a permutation evaluation, so that COL prevents collisions between
intermediate states (after data absorption). At a high-level view, the goal of COL is
twofold. First, it guarantees that every permutation call at the construction level associated
to a path that is not a prefix of another path has a new permutation call. Secondly, this
bad event, coupled with condition 2, prevents the ideal world to release intermediate
states that are permutation-inconsistent. On the other hand, GUESS corresponds to
the adversary in the real world being able to guess a permutation evaluation that was
used by the construction. More precisely, GUESSkey corresponds to the adversary able
to guess one of the initial states, and GUESSfwd (resp., GUESSinv) corresponds to a
forward (resp., inverse) successful permutation query. A transcript T is called bad if it
sets COL ∨GUESS. Some of the bad events are illustrated in Fig. 5.

Application of the H-coefficient Technique. Denote by TReal (resp., TIdeal) the
probability distribution on transcripts induced by the real (resp., ideal) world, and let τ be
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Km||idm P

A B

Km′ ||idm′ P

A′ B′

P

E1

Z

C D
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E′1

Z ′

C ′ D′

Figure 5: Illustration of the bad events in the real world. COLkey corresponds to A = A′,
COLfwd to C = C ′, C = A′, or C = A (not all cases listed), COLinv to D = D′, D = B,
D = B′, or B = B′ (not all cases listed). GUESSkey corresponds to (A,B, fwd) or
(A′, B′, fwd) ∈ T . GUESSfwd corresponds to (C,D, fwd) or (C ′, D′, fwd) ∈ T . Finally,
GUESSinv is set whenever either (A,B, inv), (A′, B′, inv), (C,D, inv), or (C ′, D′, inv) ∈
T .

a good transcript. In particular the transcript is permutation-consistent, thus reachable in
the real world. Moreover, in the real world, with a good transcript, every permutation call
which does not correspond to a repeated subpath is fresh, so that τ induces N+M different
permutation calls. On the other side, in the ideal world, one transcript corresponds to N
permutation outputs, and M random states. Therefore,

Pr (TReal = τ)
Pr (TIdeal = τ) = (2b)N × (2b)M

(2b)M+N
≥ 1 .

Now, it remains to upper bound the probability to obtain a bad transcript in the ideal
world. We start with the probability of COL. First, COLkey can be set only at the end
of the interaction. A collision can only occur between keys that have the same identifier.
Therefore,

Pr
(
DWI sets COLkey

)
≤
∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) . (1)

To address the event
∨2

x=1 COLfwdx ∨
∨3

x=1 COLinvx, that we denote by IntCOL
for brievty, we will approach this by reasoning query-wise. For the purpose of this discussion,
we keep track of the order at which the intermediate states S[m,E] are generated. For
the states generated at the end of the interaction, we impose that a state S[m,E] with
E 6= ε is always sampled before its parent S[m,par(E)]. It is important to note that
this rule applies not only to the non-interactive phase, but also to the interactive phase
thanks to condition 1. Moreover, for this case we can assume that the dummy states
IK[m] are generated at the beginning of the interaction without impacting this probability
computation. Let then i ∈ J1,MK represent a specific intermediate state number. We
denote by IntCOL[i] the event that the sampling of the ith intermediate state triggers
IntCOL. By basic probability theory, we have

Pr (IntCOL) ≤
M∑
i=1

Pr (IntCOL[i] | ¬IntCOL[i− 1]) ,

where IntCOL[0] denotes an event always set. We first treat forward collisions (i.e., we
assess (COLfwd1 ∨COLfwd2) [i]). Thanks to the restriction on the order of sampling,
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this event can be set only if the ith state has form S[m,par(E)] and the collision responsible
of the bad event has form S[m,par(E)]⊕ Elast, where S[m,E] has already been sampled.
Now, for every node [m,E] child of the ith state, and for every previously sampled
node [m,E′] (with E′ possibly the empty string), S[m,par(E)] ⊕ Elast collides with
S[m,par(E′)]⊕ E′last (or IK[m′] if E′ = ε) with probability 1

2b . We denote NChild(i) as
the number of child nodes of node i. We have

Pr ((COLfwd1 ∨COLfwd2) [i] | ¬IntCOL[i− 1]) ≤ NChild(i)× (M − 1)
2b .

Regarding inverse collisions (i.e., (COLinv1 ∨COLinv2 ∨COLinv3) [i]), this event can
be bounded similarly, with a slight subtelty in the fact that the states S[m] are also parent
nodes, thus they are doubly counted.

Therefore, using that the sum of all child nodes equals to the number of edges (hence
at most M), we obtain

Pr (IntCOL) ≤
M∑
i=1

NChild(i)× 3(M − 1)
2b

≤ 3M(M − 1)
2b . (2)

Combining (1) and (2) together, we obtain

Pr
(
DWI sets COL

)
≤ 3M(M − 1)

2b +
∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) . (3)

We now focus on the probability of GUESS. Let Nfwd be the number of forward
permutation queries, and Ninv be the number inverse permutation queries, so that N =
Nfwd + Ninv. We start with GUESSkey. This event can be only set at the end of the
interaction. One forward permutation query of the adversary fixes the identifier, so that
one query targets at most maxi µi keys simultaneously. Therefore,

Pr
(
DWI sets GUESSkey

)
≤ Nfwd maxi µi

2Hmin(Dkey) . (4)

For GUESSinv2, we similarly have

Pr
(
DWI sets GUESSinv2

)
≤ Ninv maxi µi

2Hmin(Dkey) . (5)

Regarding GUESSfwd∨GUESSinv1, there are three possibilities to set this event: i)
this event is set only at the end of the interaction ii) this event is set during the interactive
phase, right after a permutation query, and iii) this event is set during the interactive
phase, right after a construction query. Let us first show that case ii) is an impossible
case. In the context of GUESSfwd, this sub-case would presuppose that, at the time of
the permutation query, the adversary already knows two states S[m,par(E)] and S[m,E′]
where E ≺ E′ via construction queries. Now, in the context of GUESSinv1, this sub-case
would imply that at the moment of the query, the adversary already made the construction
queries (m,par(E)) and (m,E). However, given such construction query histories, the act
of making the permutation queries specified in the bad event is explicitly prohibited by
condition 2. Consequently, we can conclude that case ii) is an impossible occurrence.

The remaining cases i) and iii) can be upper bounded similarly to
∨2

x=1 COLfwdx ∨∨3
x=1 COLinvx. Indeed, for i ∈ J1,MK, the ith generated state can trigger the event

(GUESSfwd ∨GUESSinv1) [i] only if it has form S[m,par(E)], where S[m,E] has
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necessarily already been sampled. Therefore, we obtain

Pr
(
DWI sets GUESSfwd ∨GUESSinv1

)
≤ NfwdM

2b + NinvM

2b

≤ NM

2b . (6)

Combining (4), (5), and (6) together, we obtain

Pr
(
DWI sets GUESS

)
≤ NM

2b + N maxi µi
2Hmin(Dkey) . (7)

We can therefore conclude by plugging (3) and (7) together, which gives the probability
that a bad transcript occurs in the ideal world.

5.2 Tightness of the Bound
The bound of Theorem 1 is tight when the number of blocks per construction query
is small, and in the case of uniform key sampling. The distinguishers described below
make construction queries that form a prefix-free set for each oracle. Setting COL,
GUESSfwd ∨GUESSinv, or GUESSkey allows in a straightforward way to mount
distinguishing attacks that succeeds with probability close to the proven bound, and we
describe them in the following.

Attack with M2 ≈ 2b/2. The following attack exploits COLfwd ∨COLinv, and uses
only one construction oracle.

1. Make ≈ 2b/2 construction queries with input (Di||0b||1), for Di
$←− {0, 1}b−1. In both

worlds, with high probability, there exists i 6= j such that Zi = Zj ;

2. For every collision with Zi = Zj , make a construction query with input (Di||02b||1)
and (Dj ||02b||1). Denote the answers by respectively Z ′i and Z ′j .

3. If there exists a collision Z ′i = Z ′j from step 2, return 0, otherwise 1.
In the real world, it is likely that there exists a pair i 6= j such that a collision occurs
after having absorbed Di||0 and Dj ||0, resulting in a collision Zi = Zj that carries over to
the construction query described in 2. In the ideal world, it is unlikely that the collision
carries over, so that the distinguisher almost always return 1 while interacting with the
ideal world.

Attack with NM ≈ 2b. The following attack exploits directly GUESSfwd∨GUESSinv,
and uses only one construction oracle.

1. Make N inverse permutation queries and obtain (Xi, Yi, inv) ∈ T , with Yi sampled
uniformly at random without repetition;

2. Make M construction queries with input (Di||1), where Di is sampled uniformly at
random without repetition;

3. If there exists i, j such that Yi⊕Xi = Zj , let S = (Di||1)⊕Xi. Then S is a candidate
for the init state in the real world.

4. Take D ∈ {0, 1}b−1 which has not been sampled before. Make one construction query
with input (D||1), obtain Z, and make one forward permutation query with input
S ⊕ (D||1). Call the output Y , and if Z = Y ⊕ S ⊕ (D||1), return 0, otherwise 1.

In the real world, with high probability the adversary will guess correctly the key, while
in the ideal world, having in step Item 4 the construction query matching the permutation
query is highly unlikely.
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Attack when
∑
i µi(µi − 1) ≈ 2κ. The adversary makes a constant number of construc-

tion queries to each oracle (for example 10 queries to each oracle), and if there exists
m 6= m′ such that the outputs are all the same, then the adversary is in the real world
with high probability.

Attack with N ≈ 2κ/maxi µi. One can directly exploit GUESSkey to mount an
attack, by making forward queries with the identifier associated to the largest number of
users. The attack is then similar to the attack exploiting GUESSfwd ∨GUESSinv.

6 PRF Advantage of Kirby
Lemma 1. Let µ = (µ1, . . . , µs) ∈ Ns, and N,M ∈ N such that

∑s
i=1 µi ≤M . We have

AdvPRF
Kirby (N,M,µ,Dkey) ≤ 3M(M − 1)

2b + NM

2b +
∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) + N maxi µi
2Hmin(Dkey) .

Interpretation of the Bound. This security bound captures a wide range of use-cases
regarding the identifiers. In particular, when all identifiers are distinct, this translates to
µ = (1, . . . , 1), and the bound simplifies to

AdvPRF
Kirby (N,M,µ,Dkey) ≤ 3M(M − 1)

2b + NM

2b + N

2Hmin(Dkey) . (8)

Taking Dkey to be uniform sampling, and assuming that each user has an online complexity
limited by 264, this translates to M ≤ µ264, and we obtain

AdvPRF
Kirby (D) ≤ µ2

2b−130 + µN

2b−64 + N

2κ .

One can reasonably assume that an adversary D has a computational power limited to
N � 2128. Therefore, a key length satisfying κ ≥ 128 allow the rightmost term to be
negligible. Taking a small permutation width such as b = 256, the distinguishing advantage
remains negligible as long as the number of users stays way below 264 (note that given 264

users, κ cannot be larger than 192 due to the identifiers being encoded over 256− κ bits).
On the other hand, when no identifier is used, this means that µ = (µ), and the bound

becomes

AdvPRF
Kirby (N,M,µ,Dkey) ≤ 3M(M − 1)

2b + NM

2b + µ(µ− 1)
2× 2Hcol(Dkey) + Nµ

2Hmin(Dkey) .

Compared to (8), there is a security degradation in the key length compared to the case
where all identifiers are distinct. More precisely, targeting the same security strength, the
key length should be increased by log(µ), and the key length should be larger than 2 log(µ).
For example, with the same assumptions as previously, if aiming for an equivalent security
strength (i.e., 128 bits), the key length should be increased to at least 192.

Proof of Lemma 1. The statement from Lemma 1 differs from Theorem 1 only in that
conditions 1 and 2 form the theorem are replaced by a prefix-freeness condition in the former.
An adversary that respects the prefix-freeness condition respects necessarily conditions 1
and 2. Therefore, we can directly bound the quantity AdvPRF

Kirby (N,M,µ,Dkey) using
Theorem 1.
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7 Leakage Resilience of Kirby
Lemma 2. Let µ = (µ1, . . . , µs) ∈ Ns, and N,M, t ∈ N such that

∑s
i=1 µi ≤ M , and

t ≤ 2b−1. We have

AdvLR
Kirby (N,M, t,µ,Dkey) ≤ 2t

2b + 3M(M − 1)
2b + (N +M)M

2b +∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) + (N +M) maxi µi
2Hmin(Dkey) .

As it is reasonable to assume that the online complexity M is smaller than the offline
complexity N , the bound for the leakage resilience is comparable to the one obtained for
the PRF distinguishing advantage modulo constant factors, and the extra 2t/2b term.

Proof of Lemma 2. The proof consists of multiple small security reductions, and eventually
leverages Theorem 1. Consider an adversary A with resources specified by the theorem
statement. We implicitly assume that the distinguishers keep track of all of their past
primitive and construction queries, and never make a query for which they already know
the answer according to their query history. We will re-use some notation from the proof of
Theorem 1. Notably, we will use the graph representation of the adversarial construction
queries, where the nodes of the graph are denoted by [m,E], and S[m,E] denotes the
state of a node reached after absorbing E in the construction oracle OCm .

Step 1: Transform the Adversary into a Distinguisher. From A, we build a
distinguisher D1 which replaces forgery queries by construction queries at the end of the
interaction. If one of the attempts by A results in a successful forgery, D1 returns 0,
otherwise 1. It is worth noting that we have constructed a distinguisher compatible with
the distinguishing game from Fig. 2. However, D1 does not satisfy constraints 1 and 2.
We have

Pr
(
DWR

1 = 0
)

= AdvLR
Kirby (A) .

The extra construction queries made by D1 to check whether A made a forgery do not
increment the block cost of the construction queries, as these forgery attempts must
correspond to intermediate states that were computed beforehand. Therefore, D1 makes
at most N permutation queries and construction queries with at most M blocks.

Step 2: Make the Distinguisher Satisfy Condition 1. Now, from D1, we build
another distinguisher D2 that aims to satisfy condition 1. D2 acts as follow:

• D2 relays faithfully every permutation query to D1;

• For every construction query from D1 with input (m,E′), if there exists already
a construction query (m,E) such that E ≺ E′, then D2 replaces the construction
query by the appropriate permutation queries that allows to compute S[m,E′] from
S[m,E]. Otherwise, D2 relays faithfully the construction query.

Remember that A, thus D2, interacts with the real world. Therefore, this change only
consists of replacing some construction queries by permutation queries. Therefore,

Pr
(
DWR

1 = 0
)

= Pr
(
DWR

2 = 0
)
.

D2 makes at most N +M permutation queries, and construction queries with at most M
blocks.
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Step 3: Be Generous. Now, from D2, we build another distinguisher D3 that queries
any intermediate state that is sandwiched in-between two construction queries. More
precisely,

• D3 relays faithfully every primitive and construction query to D2;

• Additionally, before every construction query with input (m,E), if there exists
(m,E′) ∈ E such that E ≺ E′2, then D3 makes all of the intermediate construction
queries between node [m,E] and [m,E′], starting from the lowest-level nodes in the
graph, finishing thus with node [m,E].

This distinguisher does not violate condition 1, as the extra step never makes the dis-
tinguisher query a state of a parent node before the one of its child node. Note that
the resources of D3 do not change over the ones of D2, as the extra construction queries
made have already been captured in the construction query cost. Doing these extra
queries give more information to the distinguisher, but this does not change the forgery
success probability. Importantly, these supplementary intermediate states queried are not
considered as challengeable by the oracle Forge at the moment when the queries are made.
We have

Pr
(
DWR

2 = 0
)

= Pr
(
DWR

3 = 0
)
.

Step 4: Remove Trivial Permutation Queries. From D3, we build a distinguisher
D4 that replaces the trivial permutation queries with the associated construction queries.
In more detail,

• On a forward permutation query with input X, D4 checks whether there exist
(m,par(E)), (m,E) ∈ E such that X = S[m,par(E)] ⊕ Elast. If this condition is
satisfied, D4 outputs to D3 S[m,E]⊕ S[m,par(E)]⊕ Elast. If the condition is not
satisfied, D4 faithfully relays the query.

• On an inverse permutation query with input X, D4 checks whether there exist
(m,par(E)), (m,E) ∈ E such that Y = S[m,E] ⊕ S[m,par(E)] ⊕ Elast. If this
condition is satisfied, D4 outputs to D3 S[m, par(E)]⊕Elast. Otherwise, D4 faithfully
relays the query.

This transformation only replaces permutation queries that could have been determined
from the construction query history. Therefore, the resources of D4 are not more important
than the ones of D3, and we have

Pr
(
DWR

4 = 0
)

= Pr
(
DWR

3 = 0
)
.

Step 3 forces to fill the gaps between two construction queries where one is prefix of the
other, and step 4 forbids permutation queries for which the answer is already known. As a
consequence, this distinguisher will never make permutation queries that aims to complete
a path between two nodes [m,E] and [m,E′], where E ≺ E′. Therefore, D4 satisfies both
conditions 1 and 2.

2The other direction is forbidden thanks to the previous reduction.
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Final Step: Leverage Theorem 1. By using the triangular inequality, and Theorem 1
with D4, we have

Pr
(
DWR

4 = 0
)
≤ Pr

(
DWI

4 = 0
)

+
∣∣∣Pr

(
DWR

4 = 0
)
−Pr

(
DWI

4 = 0
)∣∣∣

≤ Pr
(
DWI

4 = 0
)

+ Adv(WR,WI)(D4)

≤ Pr
(
DWI

4 = 0
)

+ 3M(M − 1)
2b + (N +M)M

2b +∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) + (N +M) maxi µi
2Hmin(Dkey) .

The forgery queries made by A at the end of the interaction correspond to intermediate
states that do not have any prefix in the set of queried strings by D4. As a consequence, the
reduction from D to D4 never turns these verification construction queries into permutation
queries. Therefore, Pr

(
DWI

4 = 0
)
is the probability that the adversary succeeds a forgery

for a state that is sampled uniformly at random. Finally, noting that one forgery attempt
only targets one state at a time, we obtain

Pr
(
DWI

4 = 0
)
≤ t

2b − t ≤
2t
2b ,

where we used that t ≤ 2b−1. Wrapping up, we have

AdvLR
Kirby (N,M, t,µ,Dkey) ≤ 2t

2b + 3M(M − 1)
2b + (N +M)M

2b +∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) + (N +M) maxi µi
2Hmin(Dkey) ,

and this concludes the proof.

8 Building a Deck Function from Kirby
In this section we define a mode on top of Kirby to build a deck function [DHAK18].
This allows using Kirby for the wide variety of deck function modes [BDH+22]. The most
straightforward application is the generation of a keystream for stream encryption, with a
diversifier as input.

Our deck function uses two mappings that we specify in the following sections. In
Section 8.1 we specify an injective mapping that encodes a sequence of arbitrary-length
strings to single string. In Section 8.2 we specify a mapping that encodes pairs of a string
and an integer to b-bit block string sequences such that its codomain forms a prefix-free
set. In Section 8.3 we specify our deck function mode on top of Kirby using these two
mappings.

We denote the length in bytes of a bytestring M by bytelen(M), the encoding of an
integer x in the range J0, 255K in a byte by encByte(x) and the encoding of an integer x in
the range

q
0, 28B − 1

y
in a B-byte block encBlockB(x).

8.1 Injective Mapping from String Sequences to a Single String
The encoding converts a non-empty sequence of an arbitrary number of strings, each of
arbitrary length, into a single string. It does this by concatenating strings, with each string
followed by an encoding of its byte length. The latter is decodable starting from the end
of the string and this makes the full string decodable.
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We first specify the length encoding in Algorithm 2. It encodes a length as a sequence
of bytes . . . b−2b−1b0. All bytes except the first, namely the one with the smallest index,
have their most significant bit (MSB) set to 1. This allows determining the first byte of
the length encoding string. The value represented by a string b1−n . . . b−2b−1b0 is given by
` =

∑
0<i≤n(bi−n mod 27)27i

Algorithm 2 Length encoding L← encodeLength(`)
Input: integer `
Output: byte string L encoding the integer
x← ` mod 27

`← (`− x)/27

L← encByte(x)
while ` > 0 do

x← ` mod 27

`← (`− x)/27

L← L|| encByte(x+ 27)
end while
return L

We now specify our injective encoding function SequenceToString() in Algorithm 3. It
is injective as the input strings Mi can be recovered one by one from the back. It suffices
the recover the length ` from the end of D, and we can isolate the last input byte string.
This can be applied recursively.

Algorithm 3 Injective encoding SequenceToString(M0, ...,Mm−1)
Input: non-empty sequence of byte strings M0,M1, . . .Mm−1
Output: string D
D ← ε
for all strings Mi do

D ← D||Mi||encodeLength(bytelen(Mi))
end for
return D

8.2 Prefix-Free Encoding
We specify our prefix-free encoding function Prefix() in Algorithm 4. It pads the input
byte sequence to a multiple of B bytes with b = 8B + ` and 0 < ` ≤ 8. It then splits
in B-byte blocks and appends to each block 0` forming the blocks of the output E that
we call the string blocks. Subsequently, it encodes the counter value in a B-byte block,
appends 10`−1 to form the last block of E, called the counter block. Clearly the codomain
forms a prefix-free set as there is domain separation between last blocks and the other
blocks.

8.3 Kirby-DECK
We define Kirby-DECK in Algorithm 5. The deck mode can be efficiently implemented
by the fact that the Kirby inputs E only differ in their last block, i.e., the counter block.
The Kirby state after absorbing the string blocks of E can be cached and then the output
sequence can be computed in parallel by applying the transformation F to the bitwise
sum of that state and the counter block. Hence the total number of calls to F for a deck
function call is the number of string blocks plus dn/Be.
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Algorithm 4 Prefix-free encoding Prefix(D, b, cnt)
Input: string D, the permutation width b and counter value cnt ∈ N ∪ {0}
Output: sequence of b-bit blocks E0, E1, . . . Et−1
`← b mod 8
if ` = 0 then

`← 8
end if
B ← (b− `)/8
i← 0
Pad D with 10∗ padding up to a multiple of B bytes
while bytelen(D) ≥ 0 do

Ei ← first B bytes of D
Ei ← Ei||0`
Remove first B bytes of D
i← i+ 1

end while
Ei+1 ← encBlockB(cnt)||10`−1

Algorithm 5 Kirby-DECK(M, b, n)
Input: sequence of string M = M0,M1, . . . ,Mm−1, the permutation width b and
requested output byte length n ∈ N
Output: n-bit string Z
D ← SequenceToString(M0, ...,Mm−1)
Z ← ε
cnt← 0
while bytelen(Z) < n do

E ← Prefix(D, b, cnt)
Z = Z||Kirby(E)
cnt← cnt +1

end while
Truncate Z to its first n bytes
return Z
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