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Abstract. Re-randomizable Replayable CCA-secure public key encryp-
tion (Rand-RCCA PKE) schemes guarantee security against chosen-
ciphertext attacks while ensuring the useful property of re-randomizable
ciphertexts. We introduce the notion of multi-user and multi-ciphertext
Rand-RCCA PKE and we give the first construction of such a PKE
scheme with an almost tight security reduction to a standard assump-
tion. Our construction is structure preserving and can be instantiated
over Type-1 pairing groups. Technically, our work borrows ideas from
the state of the art Rand-RCCA PKE scheme of Faonio et al. (ASI-
ACRYPT’19) and the adaptive partitioning technique of Hofheinz (EU-
ROCRYPT’17). Additionally, we show (1) how to turn our scheme into
a publicly-verifiable (pv) Rand-RCCA scheme and (2) that plugging
our pv-Rand-RCCA PKE scheme into the MixNet protocol of Faonio
et al. we can obtain the first almost tightly-secure MixNet protocol.

1 Introduction

Security against chosen-ciphertext attacks (CCA) is considered to be the stan-
dard notion of security for PKE schemes. This security definition, formulated by
Rackoff and Simon [RS92], is elegant and easy to understand, and it has shown,
by any means, to withstand the test of time.

Replayable and Re-Randomizable CCA security. Canetti, Krawczyk and
Nielsen [CKN03] pointed out that CCA security is not necessary for implement-
ing secure channels. They showed that “replayable chosen-ciphertext” (RCCA)
security suffices for secure channels, and might in fact allow for more efficient
instantiations. Subsequently, Groth [Gro04] showed that RCCA PKE schemes
(called Rand-RCCA secure) can have re-randomizable ciphertexts. Specifically,
Groth constructed a scheme with a ciphertext re-randomization procedure that,
given a ciphertext as input, produces a fresh and unlinkable ciphertext which de-
crypts to the same message. Such a re-randomization procedure opens the door
for applications that require secure communication and anonymity. For instance,
PKE schemes that are re-randomizable and RCCA-secure enable anonymous
and secure message transmissions (see Prabhakaran and Rosulek [PR07]), Mix-
Nets (see Faonio et al. [FFHR19] and Pereira and Rivest [PR17]), Controlled
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Functional Encryption (see Naveed et al. [NAP+14]), and one-round message-
transmission protocols with reverse firewalls (see Dodis, Mironov, and Stephens-
Davidowitz [DMS16]).

Tight Security. Yet another criticism to the original definition of CCA security
is that while the definition postulates that the message underlying one single
ciphertext remains protected even under CCA attacks, in the real world, a PKE
scheme is used to protect a large amount of ciphertexts from possibly many
users.

Now, it is well-known that security for one single ciphertext implies, through
a hybrid argument, security for many ciphertexts and many users. However, it is
unclear how much concrete security a PKE scheme really offers when it is used in
the wild. This question, initially posed by Bellare, Boldyreva and Micali [BBM00]
created a fruitful area of research which investigates how tight the security of
an encryption scheme translates to the trust that we have with respect to the
cryptographic assumption that it relies on.

In more detail, a tight security reduction ensures that for any attack on the
PKE scheme, there exists an attack on the assumption that is similar both in
terms of complexity (i.e. the running time, the space required, etc.) and suc-
cess probability. Thus, in the setting of tight security reductions, the number of
ciphertexts considered by the security definition matters.

By now, many CCA-PKE schemes have been proved to have tight security
in the multi-ciphertext and multi-user setting: some notable examples are the
works of [GHKW16,GHK17,HLLG19,Hof17,LJYP14,LPJY15]. However, tight
security in the context of Rand-RCCA security has not been studied, although in
particular the above Rand-RCCA use cases feature a large number of ciphertexts
or users.

1.1 Our Contributions

We initiate the study of tight security for Rand-RCCA secure PKE schemes in
the multi-ciphertext and multi-user setting. Our main contributions are a new
security definition for RCCA security in multi-ciphertext and multi-user setting
(hereafter, mRCCA security), and a Rand-mRCCA PKE scheme whose mRCCA
security (almost3) tightly reduces to the Dd-MDHH assumption in symmetric
(a.k.a. type-1) pairing groups. Moreover, as an application, we revise the protocol
for universally composable MixNet based on Rand-RCCA PKE from [FFHR19].
In the following paragraphs, we elaborate more about each of the contributions.

Multi-user Multi-ciphertext RCCA security. In the security experiment
of the (single-ciphertext) RCCA security notion, the decryption oracle, called
“guarded decryption oracle”, can be queried on any ciphertext, including the
challenge ciphertext. However, when decryption leads to one of the challenge
messages (M0, M1), the oracle answers with a special symbol ⋄ (meaning “same”).

3 As most of the tightly-scure schemes, the security reduction suffers from a small
multiplicative loss that is however independent of the number of uses of the scheme.
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As a warm-up, consider a trivial extension to the case of (single-user) multi-
ciphertext RCCA security where the attacker is given:

– an encryption oracle that, on input a pair of messages M0, M1, returns some
valid encryption of Mb where b is the challenge bit,

– and a guarded decryption oracle that, on input a ciphertext C, returns a
message M, or the special indexed symbol ⋄j if C corresponds to an encryption
of a message that was given as input to the encryption oracle as j-th query.

We notice that this trivial extension of RCCA security to multiple ciphertexts
is impossible to achieve. Namely, consider the following generic attacker A that
makes three queries to the encryption oracle: (i) A sends (M1, M2), and receives
back CA; (ii) sends (M2, M3), and receives back CB ; (iii) sends (M3, M1), and receives
back CC . A now queries the decryption oracle with CC . If the bit b is 0, the
decryption oracle returns ⋄2; if b is 1, the decryption oracle returns ⋄1.

Yet another natural extension of the single-ciphertext RCCA security notion
to the multi-ciphertext setting is to consider a guarded decryption oracle that
upon input a ciphertext C either returns a message or the special symbol ⋄, but
without notifying the adversary of which index j triggered the special symbol.
Even if this definition avoids the attack described above, it is not as convenient as
we would like it to be. Roughly speaking, the guarded decryption oracle reveals
to the adversary that the queried ciphertext is a replay attack, but it doesn’t
tell which ciphertext was replayed; therefore, the larger the number of challenge
ciphertexts, the less informative the output of the guarded decryption oracle will
be. In particular, this definition is not sufficient for our MixNet application.

“In medio stat virtus”, as the saying goes: the definition we propose is weaker
than the first attempted (yet impossible to achieve) definition, but stronger
than the above-mentioned definition. To build some intuition, in an equivalent
version of the single-ciphertext RCCA security definition, the guarded decryption
oracle would output the minimal set of messages that the queried ciphertext
could decrypt to and such that such set does not trivially break the RCCA
security definition: namely, if the ciphertext is a replay attack then the oracle
replies with the set of challenge messages {M0, M1}, otherwise with a message
M′ ̸∈ {M0, M1}. We take a similar approach in our (multi-user) multi-ciphertext
RCCA definition. The guarded decryption oracle outputs the minimal set of
messages that the ciphertext could decrypt to without trivially breaking security.
This set of messages includes all the pairs of challenge messages for which at least
one of them is equal to the decryption of the queried ciphertext. To support the
claim that our definition is indeed the most natural extension of RCCA to the
multi-ciphertext setting, we prove that the simulation-based notion for RCCA
security from [CKN03] is tightly implied by our mRCCA security notion. In
a nutshell, we show that the (computational variational) distance between the
view in the ideal world and in the real world is bounded by the advantage of
an adversary with the same computational resources as the environment in the
multi-ciphertext RCCA security game. We elaborate on the details in Section 4.

A Tightly-Secure Rand-mRCCA PKE scheme. Our starting points are
the recent work of Faonio et al. [FFHR19] which is the state of art for Rand-
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RCCA PKE scheme, and the tightly-secure CCA PKE schemes based on the
adaptive partitioning techniques of Hofheinz [Hof17] and Gay et al. [GHKP18].
Very briefly, the main idea of our construction is to encrypt the message similarly
to [FFHR19], and additionally append a non-interactive proof of consistency
for (part of) the ciphertext; the latter proof needs to have a (weak) form of
simulation soundness property that can be obtained information-theoretically.
Namely, using the notation of [Hof17], we append to the ciphertext a benign proof
for the consistency of part of the ciphertext (which lies in a linear language) of
a proof system that is statistically sound even when the adversary has oracle
access to simulated proofs for a larger language that includes the disjunction of
two linear spaces.

Some technical details. To go from the rough idea described above to the
actual scheme, we need to overcome two technical problems. The first prob-
lem is that our benign proof system needs to be re-randomizable (or, to better
say, “malleable” as it needs to be able to re-randomize proofs of re-randomized
statements), as we are aiming to construct a Rand-PKE scheme. We notice that
none of the benign proof systems or affine notions we are aware of (such as
[AJOR18,GHK17,GHKP18,Hof17]) are re-randomizable. To solve this problem,
we introduce a new malleable proof system based on the work of Abdalla, Ben-
hamouda and Pointcheval [ABP15], with the necessary security guarantees.

The second (and more challenging) technical problem is that we need to
reconcile the adaptive partitioning technique with the Rand-RCCA technique of
[FFHR19]. In particular, at the core of the adaptive partitioning technique there
is a complex argument that shows that the decryption oracle can safely reject
ill-formed ciphertexts even when the adversary can observe (many) ill-formed
challenge ciphertexts. In some sense, these challenge ciphertexts are the only ill-
formed ciphertexts that correctly decrypt, while all other ill-formed ciphertexts
produced by the adversary do not. However, in our security proof the adversary
can easily produce ill-formed ciphertexts that correctly decrypt, simply by re-
randomizing challenge ciphertexts.

In more detail, the adaptive partitioning technique moves the challenge ci-
phertexts back and forth between two different linear spaces (different from
the linear space of honestly-generated ciphertexts). In our proof, differently
than in previous works, we need to carefully define the relationship between
these different linear spaces. In particular, it is necessary to make sure that
re-randomizations of the challenge ciphertexts still lie in the prescribed linear
space (and thus can be identified by our technique when answering ⋄). More
technically, a ciphertext for our scheme can be parsed as a vector [x] in the
source group (the CPA-part of the ciphertext) plus two zero-knowledge proofs
of consistency. The vector [x] for a well-formed ciphertext lies in the affine space
defined by the encrypted message and the span of a matrix [D∗] which is part of
the public key. Re-randomization works by summing up a random vector from
the span of D∗ to x (and updating the proofs accordingly). To apply the adap-
tive partitioning techniques, we move the challenge ciphertexts back and forth
from two well-crafted distinct super spaces of D∗. Thanks to this choice, we can
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recognize the challenge ciphertexts after re-randomization by multiplying the de-
crypted ciphertext by a matrix orthogonal4 to D∗. Thus, like previous adaptive
partitioning approaches, we separate the randomness space of the PKE scheme
into an honest part (the span of D∗) and a normally unused part (spanned
by the vectors in the mentioned super spaces, independent of D∗) that is also
used to hide the messages. In our view, the main technical insight is that the
span of D∗ is used for re-randomization, while the other space is kept fixed
for the challenge ciphertexts. We highlight that in order for the aforementioned
strategy to work smoothly, we preferred to follow a flavor of adaptive parti-
tioning as in Gay et al. [GHKP18], where secret keys are randomized, instead
of the original strategy of Hofheinz [Hof17], where ciphertexts are randomized.
Finally, the original adaptive partitioning strategy relies on the pairwise univer-
sality of a hash proof system [CS98] that guarantees simpler statements about
linear languages. We adapt this proof system to re-randomizable statements
by considering higher-dimensional languages and refining the “core lemma for
Rand-RCCA” from [FFHR19]. We highlight that this lemma was designed for
the single-ciphertext scenario, thus, some extra care is needed in our adaptive
partitioning argument, more in detail, when defining the notion of critical query.
In particular, a critical query is commonly defined as a decryption query for an
ill-made ciphertext that would decrypt without errors under one of the random-
ized secret keys; the usual goal is to show that an adversary cannot make such a
query. In our case, we need to refine this notion by additionally specifying when
(allegedly) re-randomizations of challenge ciphertexts are critical. Since each one
of the challenge ciphertexts is an ill-made ciphertext that decrypts correctly un-
der one of the randomized keys, we cannot consider critical a re-randomization of
such a challenge ciphertext when it decrypts correctly under the same random-
ized key. Thus after having recognized a decryption query as a re-randomization
we make sure that this ciphertext is decrypted only using a specific (an univo-
cally linked) secret key; on the other hand, other kind of decryption queries can
be safely decrypted with any of the secret keys. This rule allows eventually to
use the lemma of [FFHR19], which provides security even given an interface for
decryption of re-randomizations of one challenge ciphertext under one specific
secret key.

Extensions and applications. Following the strategy of [FFHR19] we show
that our Rand-mRCCA PKE can be used to instantiate a PKE with the nice
property of public-verifiable ciphertexts (pv-Rand-mRCCA PKE). We propose
two pv-Rand-mRCCA PKE schemes: one based on the Matrix Diffie-Hellman
Assumption (MDDH), and a second more efficient scheme based on a newMDDH
assumption (see Section 1.2 for the details) which we prove secure in the generic
group model. As an application of our framework, we show that we can plug a
pv-Rand-mRCCA scheme into the MixNet protocol of [FFHR19]. Instantiating

4 This operation could be roughly interpreted as an “extended decryption” of the
ciphertexts (since D∗ encodes partial information of the secret key), however, we are
not only interested to identify the encrypted message but also to uniquely link the
decrypted (possibly rerandomized) ciphertext with one of the challenge ciphertexts.
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such protocol with our schemes, we obtain an (almost) “tightly-secure” MixNet
protocol: namely a protocol, the first of its kind, whose security guarantees
depend linearly on the number of mixer parties but only logarithmically on
the number of mixed messages. To compare with the state of the art for MixNet
protocols, we notice that the Bayer and Groth [BG12] proof of shuffle is based
on the Fiat-Shamir transform applied to a multi-round Sigma protocol, thus
the security reduction degrades with the number of rounds of the underlying
Sigma-Protocol, while the proof of shuffle in the bilinear-paring setting of Fauzi
et al. [FLSZ17] relies on new kinds of Dn-KerMDH assumptions (proved to hold
generically in the same paper) where n is the number of shuffled ciphertexts.

1.2 Related Work

Prabhakaran and Rosulek [PR07] introduced the first Rand-RCCA PKE in the
standard model. Abstracting the scheme of [PR07], and solving a long-standing
open problem, recently Wang et al. [WCY+21] introduced the first receiver-
anonymous Rand-RCCA PKE. Faonio and Fiore [FF20] introduced a practical
Rand-RCCA PKE in the random oracle model. Considering the state of the
art on pairing-based Rand-RCCA PKE schemes, the most relevant works are
the Rand-RCCA PKE scheme of Chase et al. [CKLM12], the recent works of
Libert, Peters and Qian [LPQ17], and of Faonio et al. [FFHR19]. In Table 1
we offer a comparison, in terms of security properties and functionalities, of our
schemes of Section 5, i.e. PKE1,PKE2 and PKE3, and the previous schemes.
From a technical point of view, our schemes inherit from the scheme of [FFHR19],
however, we notice that our schemes are instantiated on type-1 pairing group,
while [FFHR19] is instantiated on type-3 pairing group (see the next section
and Section 1.3 for more details). On the other hand, our schemes are the only
ones that have (almost) tight-security reductions. In Table 2 we compare the
most efficient Rand-RCCA PKE schemes with ours. In particular, we instantiate
PKE1 and PKE2 under DLIN assumption for type-1 pairing group (d = 2 and,
because of the security of the benign proof system, n = 6) while we instantiate
PKE3 under U9,4-TMDDH assumption. We compare the number of operations
required by the three algorithms (Enc, Rand and Dec) and the size of ciphertext.
In particular, we have considered the cost of exponentiations in the source and
target groups, and the number of pairings. We give only a rough estimation
of the costs of PKE2 and PKE3 to provide some intuition on the considerable
efficiency gap between them: their cost is derived in terms of group elements and
operations needed to instantiate the proof systems for PKE2 (resp. PKE3) under
D6,2-MDDH (resp. U9,4-TMDDH) assumption from [EHK+13] and [FFHR19].

We note that PKE2 and PKE3 are far from being considered practical, while
PKE1 is considerably less efficient than [FFHR19]. Indeed, our main goal is
to prove feasibility. We view our work as a potential first towards a tightly
secure practical solution. For instance, while the first tightly IND-CCA se-
cure PKE schemes were highly impractical, state-of-the-art schemes such as
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PKE Group Assumption Struc. Pub. Tight

Setting Pres. Ver.

[CKLM12], [LPQ17] Type-3 SXDH ✓ ✓

[FFHR19] Type-3 Dd+1,d-MDDH ✓∗ ✓

PKE1 Type-1 Dn,d-MDDH ✓∗ ✓

PKE2 Type-1 Dn,d-MDDH ✓∗ ✓ ✓

PKE3 Type-1 Un,d-TMDDH ✓∗ ✓ ✓

Table 1. Comparison of the properties of a selection of Rand-RCCA-secure PKE
schemes. The symbol ∗ indicates that the structure-preserving property of the schemes
is not strict since ciphertexts contain some elements in GT .

PKE |C| Enc ≈ Rand Dec

[FFHR19] (1) 3G1+2G2+GT 4E1+5E2+2ET +5P 8E1+4E2+4P

PKE1 7G1+2GT 14E1+2ET +14P 48E1+36ET +49P

[LPQ17] 42G1+20G2 79E1+64E2 1E1+142P

[FFHR19] (2) 14G1+15G2+4GT 36E1+45E2+6ET +5P 2E1+50P

PKE2 380G1+330GT ≈ 180E1+110ET +38P ≈ 6E1+400P

PKE3 105G1+9GT ≈ 261E1+9ET +16P ≈ 6E1 + 11P

Table 2. Efficiency comparison among the best Rand-RCCA-secure PKE schemes.
We denote as Ei the cost of 1 exponentiation in Gi, P the cost of computing a bi-
linear pairing. In the third column, we consider the cost of Enc that is almost always
comparable with the cost of Rand. The first two schemes are privately verifiable, while
the last four are publicly verifiable. We consider the most efficient instantiations for
PKE1,PKE2 (DLIN), for PKE3 (U9,4-TMDDH) and for [FFHR19] (SXDH). The costs
of the last two schemes are approximated.

[GHKW16,GHK17] have a realistic break-even point5. We hope for a similar
development with Rand-RCCA PKE schemes.

Our benign proof system uses the “OR-Proof” technique6 from [ABP15]. We
notice that, in the context of tightly-secure reductions, the same technique from
[ABP15] has been used in [HLLG19] to instantiate their (Leakage-Resilient) Ar-
dent Quasi-Adaptive Hash Proof System. We stress that in our work, in contrast
with [HLLG19], the main reason to use the technique from [ABP15] is because
of its nice linear property that, in turn, allows for malleable proof system.

1.3 Open Problems

Our approach is semi-generic, as we work with pairing-based cryptography. We
leave as open problem to provide a generic framework to instantiate (almost)

5 For the same security parameter, the work of [GHKW16,GHK17] outperform state-
of-the-art non-tightly secure schemes like Kurosawa-Desmedt [KD04] around 230

ciphertexts.
6 We compare our malleable benign proof system with their SPHFs in Section 5.
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tightly-secure Rand-RCCA-secure PKE. Possible starting points are the HPS-
based frameworks of [WCY+21] for Rand-RCCA schemes and [HLLG19] for
tightly-secure (LR-)CCA-secure schemes. Recently, Faonio and Russo [FR22]
improved over the mix-net protocol of [FFHR19], giving a more efficient instan-
tiation based on non publicly-verifiable Rand-RCCA PKE schemes; however,
their construction requires a leakage-resilient scheme. We leave as open problem
the extension of our analysis to tightly-secure LR-RCCA PKE schemes to extend
their approach.

On the Instantiability with Asymmetric Pairings Our construction re-
quires type-1 pairings, which are less efficient than type-3 ones. Hence, it is
natural to ask whether we can instantiate our construction also from type-3
pairings. Unfortunately, we do not know how to do so, since it is not clear how
to reconcile the adaptive partitioning technique [Hof17] with a Rand-RCCA con-
struction in settings with type-3 pairings (such as the one from [FFHR19]).

In a nutshell, ciphertexts from the Rand-RCCA construction from [FFHR19]
carry elements from both source groups G1 and G2 in the ciphertext (and this
also seems like a typical property of encryption schemes in type-3 pairing set-
tings). Hence, ciphertext re-randomization also needs to modify (and “refresh”)
elements from G1 and G2.

Now if we try to obtain tight security by applying the “adaptive partitioning”
strategy to such a scheme, we would add consistency proofs to each ciphertext,
essentially stating that all involved elements are chosen from the right joint
distribution (or from some related distributions only used during the proof).
Since the group elements in the scheme from [FFHR19] are tied together (even
across G1 and G2), these proofs consider statements that involve both groups
simultaneously.

This last property can be problematic for our overall proof strategy: follow-
ing the adaptive partitioning strategy would mean to gradually inject entropy
into the challenge ciphertexts, in our concrete case by introducing challenge-
dependent randomness in the secret keys that are used in the decryption oracle
and to produce (“ill-formed”) challenge ciphertexts. In case of the scheme from
[FFHR19], this gradual randomization affects secret keys that refer to G1, as
well as secret keys referring to G2.

The problem with this approach is now that randomizing both types of secret
keys requires more entropy, and it is not clear where this entropy should come
from. In fact, moving parts of the ciphertext outside of a certain linear space
(like we did with our value of u in our proof of Theorem 3) allows to inject the
corresponding secret keys with additional entropy, but this entropy always refers
to one single group (G1 or G2). Reconciling the entropy from both groups into
one additional random function (like our function Pi) seems difficult.

In fact, an instantiation based on type-3 pairings seems to require new “en-
tropy management” techniques to tightly randomize many challenge ciphertexts.
We leave the construction of a tightly Rand-RCCA secure PKE scheme as an
interesting open problem.
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2 Preliminaries

A function is negligible in λ if it vanishes faster than the inverse of any polynomial
in λ. We write f(λ) ∈ negl(λ) when f is negligible in λ.

For any bit string τ ∈ {0, 1}∗, we denote by τ [i] the i-th bit of τ and by τ|i
the bit string comprising the first i bits of τ .

A symmetric (type-1) bilinear group G is a tuple (q,G1,GT , e,P1), where
G1 and GT are groups of prime order q, the element P1 is a generator of G1,
e : G1×G1 → GT is an efficiently computable, non-degenerate bilinear map. Let
GGen be a probabilistic polynomial time algorithm which on input 1λ, where λ
is the security parameter, returns a description of a symmetric bilinear group G.
Elements in Gi, are denoted in implicit notation as [a]i := aPi, where i ∈ {1, T}
and PT := e(P1,P1). Every element in Gi can be written as [a]i for some a ∈ Zq,
but note that given [a]i, a ∈ Zq is in general hard to compute (discrete logarithm
problem). Given a, b ∈ Zq we distinguish between [ab]i, namely the group element
whose discrete logarithm base Pi is ab, and [a]i · b, namely the execution of the
multiplication of [a]i and b, and [a]1 · [b]1 = [a · b]T , namely the execution of a
pairing between [a]1 and [b]1. Sometimes, to simplify the notation, we will write
[a] instead of [a]1 for elements in the source group.

Vectors and matrices are denoted in boldface. We extend the pairing oper-
ation to vectors and matrices as e([A]1, [B]1) = [A⊤ · B]T and e([y]1, [A]1) =
[y ·A]T . Let span(A) denote the linear span of the columns of A. Given a set
of vectors V in some vector space over Zq, span(V ) denotes its linear span.
Dn,d is a matrix distribution if outputs (in probabilistic polynomial time, with
overwhelming probability) matrices in Zn×d

q .

Tensor Product. We define the transformation T that maps a matrix A =
(a1, . . . ,an) ∈ Zn×m

q to the vector T (A) = (a⊤1 , . . . ,a
⊤
n )

⊤ ∈ Zn·m
q . Namely, the

transformation concatenates the columns of A to form a vector of length n ·m.
We define the tensor product between two vectors a,b to be a⊗b := T (a ·b⊤).
Similarly, given A ∈ Zn×m

q and B ∈ Zn′×m′

q , we define the vector product
between two matrices A⊗B to be the matrices:(

T (a1b
⊤
1 ), . . . , T (a1b

⊤
n′), . . . , T (anb

⊤
1 ), . . . , T (anb

⊤
n′)
)
∈ Zn·n′×m·m′

q .

We can show the following property:

(A ·R)⊗ (B · S) = (A⊗B) · (R⊗ S) (1)

Our results will be proven secure under the Matrix Decisional Diffie-Hellman
Assumption.

Definition 1 (MDDH Assumption in G1, [EHK+13]). The Dn,d-MDDH
assumption holds if for all non-uniform PPT adversaries A,

|Pr [A(G, [A]1, [Aw]1) = 1]− Pr [A(G, [A]1, [z]1) = 1]| ∈ negl(λ),

where the probability is taken over G = (q,G1,GT , e,P1) ← GGen(1λ), A ←
Dn,d,w← Zd

q , [z]1 ← Gn
1 and the coin tosses of adversary A.
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For Q ∈ N, W ←$ Zd×Q
q and U ←$ Zn×Q

q , we consider the Q-fold Dn,d-MDDH
assumption, which states that distinguishing tuples of the form ([A]1, [AW]1)
from ([A]1, [U]1) is hard. That is, a challenge for the Q-fold Dn,d-MDDH as-
sumption consists of Q independent challenges of the Dn,d-MDDH Assumption
(with the same A but different randomness w). In [EHK+13] it is shown that
the two problems are equivalent, where the reduction loses at most a factor n−d.

Lemma 1 (Random self-reducibility of Dn,d-MDDH, [EHK+13]). Let
n, d,Q ∈ N with n > d and Q > n − d. For any PPT adversary A, there exists
an adversary B such that T (B) ≈ T (A)+Q ·poly(λ), with poly(λ) independent
of T (A), and

AdvQ−MDDH
G1,Dn,d,A(λ) ≤ (n− d) ·Advmddh

G1,Dn,d,B(λ) +
1

q − 1

where, given A←$ Un,d, W←$ Zk×Q
q and U←$ Zn×Q

q :

AdvQ−MDDH
G1,Dn,d,A(λ) := |Pr [A(G, [A]1, [AW]1) = 1]− Pr [A(G, [A]1, [U]1) = 1] |,

Corollary 1. Let n, d, d′ ∈ N with n > d and d′ ≥ d. For any PPT adversary
A, there exists an adversary B such that T (B) ≈ T (A) + poly(λ), with poly(λ)
independent of T (A), and

Advmddh
G1,Dn,d′ ,A(λ) = Advmddh

G1,Dn,d,B(λ).

We state a tighter random-self reducibility property for case of the uniform
distribution U .

Lemma 2 (Random self-reducibility of Un,d-MDDH, [EHK+13]). Let
n, d,Q ∈ N with n > d and Q > n − d. For any PPT adversary A, there exists
an adversary B such that T (B) ≈ T (A)+Q ·poly(λ), with poly(λ) independent
of T (A), and

AdvQ−MDDH
G1,Un,d,A(λ) ≤ Advmddh

G1,Un,d,B(λ) +
1

q − 1

Lemma 3 (Dn,d-MDDH⇒ Un,d-MDDH, [EHK+13]). Let Dn,d be a matrix
distribution. For any adversary A on the Un,d-distribution, there exists an adver-
sary B on the Dn,d-assumption such that T (B) ≈ T (A) and Advmddh

G1,Un,d,A(λ) =

Advmddh
G1,Dn,d,B(λ).

Lemma for Rand-RCCA security. The main technical tool employed by
[FFHR19], to which they refer as their “core lemma”, roughly speaking says
that, for any u ∈ Zd+1

q , the projective hash function with hash key f ,F that

maps v to (f +Fv)⊤u is pair-wise independent with respect to the quotient set
Zd+2
q /span(E) when given as side information the matrix FE where E ∈ Zd+2×d

q .

We generalize their result to u ∈ Zn
q and E ∈ Zn′×d

q for any n > d and n′ > d+1.
For the sake of clarity, in this paper we prefer to call this lemma the “Rand-
RCCA lemma”, rather than “core lemma” (for Rand-RCCA) as in [FFHR19],
because the core technical parts of our work and theirs are different.
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Lemma 4 (Rand-RCCA Lemma). Let d be a positive integer. For any ma-
trix D ∈ Zn×d

q , E ∈ Zn′×d
q where n > d and n′ > d + 1, and any (possibly

unbounded) adversary A:

Pr

 u ̸∈ span(D)

(v − v∗) ̸∈ span(E)

z = (f + Fv)⊤u

:
f ←$ Zn

q ,F←$ Zn×n′

q ,

(z,u,v)←$AO·(D,E, f⊤D,F⊤D,FE)

 ≤ n · n′

q
.

where the adversary outputs a single query v∗ to O that returns f + F · v∗.

Proof. The original lemma was proved in [FFHR19] for slightly different pa-
rameters, namely for matrices D ∈ Zd+1×d

q and E ∈ Zd+2×d
q and with upper

bound 1/q to the winning probability of the adversary. We show here that their
lemma holds for generic n, n′ > d. To show this we reduce to the case proved in
[FFHR19]. We parse the matrices D and E as follows:

D =

(
D̄

D′

)
·P and E =

(
E′

Ē

)
P′

where D̄ has d+1 rows and Ē has d+2 rows and P,P′ are two uniformly random
permutation matrices. Now consider the reduction to the original lemma where
we use the matrices D̄, Ē, We obtain from the challenger the public parameters

(f̄
⊤
D̄, F̄

⊤
D̄, F̄Ē) for uniformly random f̄ , F̄. Now consider the vector f and

matrix F implicitly defined as follows:

f =

(
f̄

f ′

)
and F =

(
F′ F̄

F′′ F′′′

)
where f ′,F′,F′′,F′′′ are uniformly random, and can be sampled by the reduction.
Notice that we can compute the public parameters for the adversary as follows:

f⊤D← (f̄
⊤
D̄+ f ′⊤D′)P, F⊤D←

(
F′⊤D̄+ F′′⊤D′

F̄
⊤
D̄+ F′′′⊤D′

)
P

FE←
(

F′E′ + F̄Ē

F′′E′ + F′′′Ē

)
P′

moreover, we can handle the oracle query v∗ ∈ Zn′

q of the adversary using the
oracle of the reduction. Specifically, let v̄∗ be the last d+2 rows of v∗ and v′ be
remaining rows, the reduction queries v̄ to its own oracle and obtain ȳ = f̄+F̄v̄∗.
The reduction can return to the adversary

y←
(

ȳ + F′v′

f ′ + (F′′|F′′′)v∗

)
Finally, the adversary returns (z,u,v), the reduction outputs tuple (z̄, ū, v̄)
where ū are the first d+ 1 rows of u, v̄ are the last d+ 2 rows of v and:

z̄ ← z − (F′v′)⊤ū− (f ′ + F′′v′ + F′′′v̄)⊤u′

11



where v′,u′ are the remaining rows of respectively v,u.
We need to prove that the forging probability of our reduction is as claimed

in the statement of the lemma. To do so notice that if u ̸∈ span(D) then we can
write u = Dr + z for a non-zero vector z. Thus ū ̸∈ span(D̄) if there exists a
non-zero entry in the first d + 2 rows of z ·P. In the worst case z has only one
non-zero coordinate. Thus the probability that ū ̸∈ span(D̄) is d+1

n . A similar

argument shows that the probability of v̄ − v̄∗ ̸∈ span(Ē) is d+2
n′ . Notice that

the permutation matrices P,P′ are independent of the view of the adversary,
thus the aforementioned events are independent of the winning probability of A,
which concludes the proof of the lemma.

3 Non-Interactive Proof Systems (NIPS)

Definition 2 (Proof system). Let L = {Lpars} be a family of languages
with Lpars ⊆ Xpars , and with efficiently computable witness relation R. A non-
interactive proof system (NIPS) PS = (PGen,PPrv,PVer,PSim) for L consists
of the following PPT algorithms:

– PGen(1λ, pars) outputs a proving key ppk, a verification key psk.
– PPrv(ppk , x, w), x ∈ L and R(x,w) = 1, outputs a proof π.
– PVer(psk , x, π), x ∈ X and a proof π, outputs a verdict b ∈ {0, 1}.
– PSim(psk , x), x ∈ L, outputs a proof π.

Completeness: For all pars, all (ppk , psk) in the range of PGen(1λ, pars), all
x∈L, and all w with R(pars, x, w)=1, we have PVer(psk , x,PPrv(ppk , x, w))=1.

When ppk ̸= psk we say that the proof system is designated verifier. In the def-
inition above we let the verification and proving key depend on the parameters
of the relation, namely, the proof systems are quasi-adaptive as defined by Jutla
and Roy [JR13]. All the NIPSs of this paper are structure-preserving. The usual
definition of structure-preserving postulates that all the public interfaces are vec-
tors in the source groups, all the private material is in Zq and all the algorithms
can be described with pairing-product equations. We consider the version of the
structure-preserving property of [FFHR19] where the proof π could lie in the
target group.

Benign Proof Systems. All relevant security properties of a benign NIDVPS
are condensed in the following definitions, taken verbatim from [Hof17].

Definition 3 (Benign proof system). Let PS be an NIDVPS for L as in
Definition 2, and let Lsim = {Lsim

pars}, Lver = {Lver
pars}, and Lsnd = {Lsnd

pars} be

families of languages. We say that PS is (Lsim,Lver,Lsnd)-benign if the following
properties hold:

(Perfect) zero-knowledge. For all pars, all (ppk , psk) that lie in the range of
PGen(1λ, pars), and all x ∈ L and w with R(pars, x, w) = 1, we have that
the distribution PPrv(ppk , x, w) is equivalent to PSim(psk , x).

12



(Statistical) (Lsim,Lver,Lsnd)-soundness. Let Expsnd
A,PS be the game played

by A in Fig. 1. Let Advsnd
PS,A(λ) be the probability that Expsnd

A,PS(λ) = 1.
We require that for all (possibly unbounded) A that only make a polynomial
number of oracle queries, Advsnd

PS,A(λ) is negligible.

Non-Interactive Zero-Knowledge Proof Systems. We adapt Definition 2
for the case of publicly verifiable proof systems by requiring the prover key
and the verification key to be identical, and we refer to such key as the common
reference string. (Nontrivial) proof systems with this syntax are commonly called
zero-knowledge proof systems (NIZKs).

Notice that in the syntax of proof system we give in Definition 3 both the
simulator PSim and the verifier PVer receive as input the verification key, while
in the usual definition of NIZK the simulator receives a simulation trapdoor.
This difference is only syntactical.

We say that a NIZK PS for L is adaptively sound if it is statistically (∅,L, ∅)-
sound according to Definition 3.

Definition 4. Let PS be a NIPS for L as in Definition 2, we say that PS is
(ϵ, T )-composable zero-knowledge if there exists a PPT algorithm PGen such
that:

– For all pars, the distributions induced by the first output of PGen(1λ, pars)
and PGen(1λ, pars) are ϵ-close for any adversary with running time T .

– For all pars, all (ppk , psk) that lie in the range of PGen(1λ, pars), and all
x ∈ L and w with R(pars, x, w) = 1, we have the following equivalence of
distributions:

PPrv(ppk , x, w) ≡ PSim(psk , x).

Malleable NIPS. We use the definitional framework of Chase et al. [CKLM12]
for malleable proof systems. For simplicity of the exposition we consider only the
unary case for transformations (see the aforementioned paper for more details).
Moreover, we adapt their definition to the quasi-adaptive setting by having trans-
formation that depends on the pars. Let T = (Tel, Twit) be a pair of efficiently
computable functions, that we refer to as a transformation.

Definition 5 (Admissible transformation). We say that an efficient rela-
tion R is closed under a transformation T = (Tel, Twit) if for any (pars, x, w) ∈ R
the pair (pars, Tel(pars, x), Twit(w)) ∈ R. If R is closed under T then we say that
T is admissible for R. Let T be a set of transformations, if for every T ∈ T , T
is admissible for R, then T is an allowable set of transformations.

We are ready to define malleable proof systems.

Definition 6 (Malleable NIPS). Let PS be an NIPS for L as in Defini-
tion 2, and let PEvl(ppk , x, π, T ) be a PPT algorithm that takes as inputs ppk,
an instance x, a proof π, and a transformation T ∈ T , and it outputs a proof

13



Experiment Expsnd
A,PS

b← 0

pars ← A(1λ)

(ppk , psk)←$ PGen(1λ, pars)

AOsim(·),Over(·,·)(ppk)

return b

Oracle Over(x, π)

if x ∈ Lver
pars :

return PVer(psk , x, π)

if x ∈ Xpars \Lsnd
pars ∧ PVer(psk , x, π)

?
= 1 :

b← 1

return ⊥

Oracle Osim(x)

if x ∈ Lsim
pars :

return PSim(psk , x)

else return ⊥

Experiment Expder-priv
A,PS

b∗ ←$ {0, 1}

(ppk , psk)←$ PGen(1λ, pars)

(x,w, π, T )← A(ppk , psk)

if V(ppk , x, π)
?
= 0 ∨R(x,w)

?
= 0 :

b←$ {0, 1}
return b

if b∗
?
= 0 :

π′ ← PPrv(ppk , Tel(pars, x), Twit(w))

else π′ ← PEvl(ppk , x, π, T )

b← A(π′)

return b
?
= b∗

Fig. 1: Security experiments for benign soundness and derivation privacy of NIPS.

π′. We say that PS and PEvl form a malleable proof system for L with set T of
allowable transformations for R, if, for all pars, (ppk , psk) that lie in the range
of PGen(1λ, pars), all T ∈ T , and all x, π we have PVer(psk , Tel(pars, x), π

′) = 1
if and only if PVer(psk , x, π) = 1.

Definition 7 (Derivation Privacy). Let PS be a malleable NIPS for L with
relation R and an allowable set of transformations T and corresponding PEvl.
We say that PS is derivation private if for any PPT adversary A:

Adv
der-priv
A,PS (λ) :=

∣∣∣Pr [Exp
der-priv
A,PS (λ) = 1

]
− 1

2

∣∣∣ ∈ negl(λ)

where Expder-priv is the game described in Fig. 1. Moreover we say that PS
is perfectly (resp. statistically) derivation private when for any (possibly un-
bounded) adversary the advantage above is 0 (resp. negligible).

Similarly to [FFHR19], we additionally require a technical property to show re-
randomizability of our encryption scheme that we call tightness for proofs, which
roughly speaking says that it is hard to find a proof for a valid instance that
does not lie in the set of the proofs created by the prover.

Definition 8 (Tightness for Proofs). We say that a NIZK has tight proofs
if for any (possibly unbounded) adversary A the following probability is negligible
in the security parameter:

Pr

[
π ̸∈ {PPrv(ppk , x, w;ω)}ω∈{0,1}λ

∧ PVer(psk , x, π) = 1
:
(ppk , psk)←$ PGen(1λ, pars)

(x,w, π)← A(ppk)

]
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We notice that the property above is true for Groth-Sahai Proofs, for the quasi-
adaptive proof system of Kiltz and Wee [KW15] and for designated-verifier proof
system based on projective hash functions. In particular, for GS proofs, for
any commitment to the witness, the prover generates a proof that is uniformly
distributed over the set of all the possible valid proofs. The proofs of Kiltz and
Wee and the proofs for proof system based on projective hash functions are
unique, therefore the condition is trivially true.

3.1 Our Malleable NIDVPS based on type-1 pairing

The scheme we propose is inspired by the work of [ABP15] which shows how
to instantiate the disjunction of two SPHFs for two languages based on diverse
vector spaces. We do not need such a functionality for our benign proof system,
indeed our proof system is for linear space, i.e. the prover can generate proofs
for elements that belong to the span of of matrix D. On the other hand, the
security property of our benign proof system allows for soundness even in pres-
ence of simulated proofs for elements in two (possibly distinct) super-spaces of
the prescribed linear space. In other words, while [ABP15] enables for SPHFs
for (arbitrary) disjoint linear spaces, our goal is to enable for proof system for
linear spaces with enanched soundness properties (w.r.t. simulated proofs from
disjoint super-spaces).

Let D ∈ Zn×d
q . We show that the following PS is a NIPS for L = span([D]1):

– PGen(pars) parses pars as prmG, [D]1 ∈ Gn×d
1 where n, d ∈ N, samples k←$

Zn2

q , let In be the identity matrix of dimension n, set:

psk ← k and ppk ← (k⊤[D⊗ In]1,k
⊤[In ⊗D]1,k

⊤[D⊗D]T )

– PPrv(ppk , [u]1, r) computes π ← k⊤[D⊗D]T · (r⊗ r) for [u]1 = [D]1r
– PSim(psk , [u]1) computes π ← k⊤([u]1 ⊗ [u]1)

– PVer(psk , [u]1, π) returns 1 if and only if k⊤([u]1 ⊗ [u]1)
?
= π

The first two vectors in the ppk are necessary to enable for the malleability of the
proof system. While the third element of the public key could be efficiently de-
rived from the previous two, we decide to publish it to speed up re-randomization
and proving time. Consider the set T of admissible transformations for Zn

q :

T = {T : Tel(pars, [u]1) = [u]1 + [D]1r̂; Twit(r) = r+ r̂} (2)

We note that any transformation T in the set above is uniquely determined by
the vector r̂, thus, whenever it is clear from the context, we will simply use r̂ to
identify the transformation. Let PEvl(ppk , r̂, [u]1, π) the algorithm that computes

π̂ ← π + k⊤[In ⊗D]1 · [u⊗ r̂]1 + k⊤[D⊗ In]1 · [̂r⊗ u]1 + k⊤[D⊗D]T · r̂⊗ r̂.

We show that PS and PEvl form a malleable proof system for the set of trans-
formation T and the language L.
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Theorem 1. Let L = span([D]1) and let Lsnd = Lsim = {[u]1 : [u]1 = [D0]1r ∨
[u]1 = [D1]1r}, and Lver = Zn

q , where Di = D∥D̄i for i ∈ {0, 1}, D ∈ Zn×d
q and

D̄0, D̄1 ∈ Zn×d′

q . PS is a (Lsim,Lver,Lsnd)-benign proof system for L as long as

n2 > 2n · d+ 2d′
2
, moreover, PS and PEvl form a malleable proof system for L

and the set of transformation T defined in Eq. (2).

Proof. In what follows, we prove each of the properties.

Completeness and Malleability. It is easy to prove that our benign proof
system is complete, as by Eq. (1) for any u = Dr we have (u⊗ u) = (D⊗D) ·
(r⊗ r). We prove that our scheme is malleable (Definition 6) with respect to set
of transformation T defined in Eq. (2), i.e., we prove that for any [u] and any
transformation r̂, a proof π for [u] verifies if and only if the proof π̂ obtained
executing PEvl on π and the transformation r̂ verifies for [u+Dr̂]. For the first
direction of the implication:

π̂ = π + k⊤ (In ⊗D) · (u⊗ r̂) + k⊤ (D⊗ In) · (r̂⊗ u) + k⊤ (D⊗D) · (r̂⊗ r̂)

= k⊤ (u⊗ u) + k⊤ ((Inu)⊗ (Dr̂)) + k⊤ ((Dr̂)⊗ (Inu)) + k⊤ ((Dr̂)⊗ (Dr̂))

= k⊤(u⊗ u+ u⊗ (Dr̂) + (Dr̂)⊗ u+ (Dr̂)⊗ (Dr̂))

= k⊤ ((u+Dr̂)⊗ (u+Dr̂))

We highlight that the second equation holds because of the definition of π and
(1), while the third equation is obtained by grouping the previous line by k⊤.
The sequence of equations above also proves the other direction; indeed, if π ̸=
k⊤u⊗ u, then π̂ ̸= k⊤(u+Dr̂)⊗ (u+Dr̂).

Soundness. We recall that D ∈ Zn×d
q , D̄i ∈ Zn×d′

q . If we only consider the view
of the adversary given the verification key and the outputs of the simulation ora-
cle we have that the proving key is uniformly distributed over a set of cardinality
qn

2−2nd−2d′2
. Therefore, we require that n2 > 2n · d+ 2d′

2
holds.

To see this, think of k as formal variable and notice that publishing the
information k⊤ (D⊗ In) counts for n · d equations; also, k⊤ (In ⊗D) counts
for n · d equations which in total gives us 2n · d equations. Moreover, in order
to simulate proofs for [u]1 ∈ span([Di]) the oracle gives away, at the worst

case, the equations k⊤ (D̄i ⊗ D̄i

)
which count for d′

2
equations for each i ∈

{0,1} which sum up to 2d′
2
equations in total. Indeed, expanding k⊤ (Di ⊗Di)

we obtain k⊤ (D⊗D|D̄i ⊗D|D⊗ D̄i|D̄i ⊗ D̄i

)
. The vectors k⊤ (D̄i ⊗D

)
and

k⊤ (D⊗ D̄i

)
can be computed given the proving key and D0,D1. In fact, com-

puting k⊤ (D⊗ I)
(
I⊗ D̄i

)
we obtain k⊤ (DI⊗ ID̄i

)
= k⊤ (D⊗ D̄i

)
. And in a

similar way, we can compute k⊤ (D̄i ⊗D
)
. In total we are giving up 2n ·d+2d′

2

equations and the length of our key k is n2.
Notice that the adversary can gather additional information about the prov-

ing key k through the verification oracle. Indeed, whenever it sends a query
([u]1, π) with [u]1 ∈ Lver \Lsnd either it wins the security game or the adversary
learns that π ̸= k⊤[u]1 ⊗ [u]1.
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Consider the hybrid experiment Hj where the first j-th queries ([u]1, π) to
the verification oracle with [u]1 ̸∈ Lsnd are answered with 0, in particular, the bit
b is left unmodified, while the remaining queries are handled as in the soundness
experiment. Clearly, H0 is the original experiment, while HQ where Q is an
upper bound on the number of verification oracle queries made by the adversary
is a trivial experiment where the adversary cannot win (since the bit b will
never be set to 1), thus Pr [HQ = 1] = 0. The distinguishing event between
two consecutive hybrids is the event that the adversary wins the soundness
experiment at the j-th query, which happens with probability 1/qn

2−2nd+2d′2 ≤
1/q, as it is the same as the event of guessing an uniformly random vector from a

subspace of dimension n2−2nd+2d′2 of Zn2

q , thus Pr [Hj = 1] ≤ Pr [Hj+1 = 1]+
1/q. Finally, by the triangular equation and noticing that Q is polynomial in the
security parameter we can conclude our proof of soundness.

Derivation Privacy and Zero-Knowledge. The scheme satisfies perfectly
derivation privacy and zero-knowledge. For the former, notice that, for any
r̂, we have that PPrv(ppk , [u + Dr̂]1, r + r̂) = k⊤[D ⊗ D]T · ((r + r̂) ⊗ (r +
r̂)) = PEvl(ppk , π, r̂). For the latter, given an instance [u]1 such that [u]1 =
[D]1r, we have that PSim(psk , [u]1) = k⊤([u]1 ⊗ [u]1) = k⊤([Dr]1 ⊗ [Dr]1) =
PPrv(ppk , [u]1, r).

4 Rand RCCA PKE for multi-users and multi-ciphertexts

A re-randomizable PKE (Rand-PKE) scheme PKE is a tuple of five algorithms:

Setup(1λ) upon input the security parameter 1λ produces public parameters
prm, which include the description of the message (M) and ciphertext space
(C).
KGen(prm) upon input the parameters prm, outputs a key pair (pk, sk).

Enc(pk, M) upon inputs a public key pk and a message M ∈M, outputs a cipher-
text C ∈ C.
Dec(pk, sk, C) upon input the secret key sk and a ciphertext C, outputs a message
M ∈M or an error symbol ⊥.
Rand(pk, C) upon inputs a public key pk and a ciphertext C, outputs another
ciphertext C′.

Definition 9 (multi-user and multi-ciphertext Replayable CCA Secu-
rity). Consider the experiment ExpmRCCA in Fig. 2, with parameters λ, an ad-
versary A, and a PKE scheme PKE. We say that PKE is indistinguishable
secure under replayable chosen-ciphertext attacks in the multi-user and multi-
ciphertext setting (mRCCA-secure) if for any PPT adversary A:

AdvmRCCA
A,PKE(λ) :=

∣∣∣∣Pr [ExpmRCCA
A,PKE(λ) = 1

]
− 1

2

∣∣∣∣ ∈ negl(λ).
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Experiment ExpmRCCA
A,PKE(λ)

b∗ ←$ {0, 1}

prm← Setup(1λ)

b′ ← AOkgen(),Oenc(·,·,·),Odec(·)(prm)

return b′
?
= b∗

Oracle Okgen()

z ← z + 1

Qz ← DisjointSet()

(pkz, skz)← KGen(prm)

return pkz

Oracle Oenc(j, M0, M1)

if j /∈ [z] :

return ⊥
Qj .union({M0, M1})
C←$ Enc(pkj , Mb∗)

return C

Oracle Odec(j, C)

M← Dec(skj , C)

J ← Qj .find(M)

if J ≠ ⊥ :

return ⋄J
return M

Fig. 2: The multi-user and multi-ciphertext RCCA Security Experiment.

In Fig. 2, for each user j we define Qj to be a partition of the set of the challenge
messages sent to the encryption oracle for the user j. To do so we use the classical
“Disjoint-Set” (also called “Union-Find”) data structure from Tarjan [Tar75].
Whenever two challenge messages are submitted to the encryption oracle, indeed,
we merge the sets to which they belong so that a future call to the guarded
decryption oracle behaves consistently. This allows us to express in Fig. 2 the
syntax of the encryption and the guarded decryption oracle in terms of three
operations: DisjointSet() that allows to initialize the partition (initially empty),
union(S) that adds to the partition the minimal subset of the challenge messages
that contains the messages in S meanwhile maintaining invariant the partition
property (i.e. a collection of disjoint sets), and find(M) that returns the set in the
partition where M belongs to, or ⊥ if M is not in the set of challenge messages
of the user j. We confirm that our definition is indeed the right multi-user and
multi-ciphertext extension of the IND-RCCA definition of [CKN03] by showing
that our definition tightly implies the UC-RCCA definition of the same paper7.
In Fig. 3 we recall the definition of the ideal functionality FRPKE which formalizes
the notion of replay security for public-key encryption scheme in the universal
composability model.

Theorem 2. Let PKE be a PKE scheme with message space D. There exists
a simulator S such that for any static-corruption environment Z with running
time TZ there exists an adversary B whose running time is O(TZ(λ)) such that:∣∣∣Pr [RealZ,ΠPKE (λ) = 1]− Pr

[
IdealFRPKE

Z,S (λ) = 1
]∣∣∣ ≤ 2Advmumc−RCCA

B,PKE (λ) + TZ
|D|

7 In [CKN03], the IND-RCCA notion implies the UC-RCCA notion with a loss of
security that is proportional to the running time of the environment.
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Key Generation: Upon receiving a value (KeyGen, id) from some party Pi

1. Hand (KeyGen, id) to the adversary.
2. Receive a value e from the adversary, and hand e to Pi.
3. If this is the first activation then record the value e.

Encryption: Upon receiving from some party Pj a value (Encrypt, id, e′,m)

1. If m /∈ Dk then return an error message to Pj .
2. If m ∈ Dk then hand (Encrypt, id, e′, Pj) to the adversary. (If e′ ̸= e or e

is not yet defined then hand also the entire value m to the adversary.)
3. Receive a ciphertext c from the adversary, record the pair (c,m), and hand

c to Pj . (If e
′ ̸= e or e is not yet defined then do not record the pair (c,m).

If the tag c already appears in a previously recorded pair then return an
error message to Pj .

Decryption: Upon receiving a value (Decrypt, id, c) from Pi (and Pi only)

1. If there is a recorded pair (c,m) then hand m to Pi.
2. Otherwise, hand the value (Decrypt, id, c) to the adversary, and receive a

value (α, v) from the adversary. If α = plaintext then hand v to Pi. If
α = ciphertext then find a stored pair (c′,m) such that c′ = v, and hand
m to Pi. (If no such c′ is found then halt.)

Fig. 3: The ideal functionality FRPKE, when parameterized by message domain
ensemble D = {Dλ}λ∈N and security parameter λ, and interacting with an
adversary S, and parties P1, . . . , Pn.

Proof. The simulator is the same as the one presented at Pag 14 of [CKN03]. In
particular:

– At first activation of the simulator it sets the set of random messages M∗

to be the empty set.

– When S receives the message (KeyGen, id) from the ideal functionality, then
it runs pk, sk←$ KGen(prm), returns pk to the ideal functionality and stores
the keypair.

– When S receives a message (Encrypt, id, e′, Pj) if e
′ = pk then the simulator

samples an uniformly random message M∗ from the set Dλ \M∗ and adds M∗

into the setM∗, computes C←$ Enc(pk, M∗), store te tuple (C, M∗) and returns
C, otherwise it additionally receives a message M from the ideal functionality,
it returns Enc(e′, M).

– When S receives a message (Decrypt, id, c) from the ideal functionality it
first computes M = Dec(sk, c). If it exists a recorded tuple (C, M) then it
returns (ciphertext, C) otherwise it returns (plaintext, M).

We reduce to our multi-ciphertext RCCA security notion of Definition 9. Con-
sider the reduction B that runs the environments Z and answers its messages as
follows:
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– Upon message (KeyGen, id) to party Pi, if this is the first activation then B
queries its own key generation oracle and receives pk which returns as output
of Pi. Else it generates a keypair and returns pk as output of Pi.

– Upon message (Encrypt, id, e′, M) from Z to a party Pj , it check that M ∈ Dλ

and otherwise it returns an error as output of Pj . If e = pk it samples a ran-
dom message M∗ ←$ Dλ\M∗ and stores the message in the listM∗ of random
messages. Additionally, it asserts that the message from the environment M is
not present inM∗, if such event happens it abort. It sets (M0, M1)← (M, M∗)
and queries its own encryption oracle obtaining C which returns as output
of Pj .

– Upon message (Decrypt, id, c) sent by the environment to Pi, it queries with
c the decryption oracle. If the decryption oracle return ⋄J let A = J \M∗, if
|A| > 1 then the reduction aborts, else A = {M} and it returns M as output
of Pj . If the decryption oracle returns M then it returns M as output of Pj .

Eventually, the reduction outputs the same decision bit of the environment Z.
It is easy to check that if we condition on the event that the reduction B

does not abort then the view of the environment is exactly the same as in the
real world if the challenge bit of the RCCA experiment is 0 and exatly the same
as in the ideal world when the challenge bit of the RCCA experiment is 1.

Let Abort be such event, we compute the probability of Abort conditioned
on the challenge bit being 0. Notice that, since the event can be checked effi-
ciently, there exists a reduction B′ with running time less or equal to the running
time o B such that Pr [Abort|b∗ = 1] ≤ Pr [Abort|b∗ = 1]+AdvmRCCA

B′,PKE(λ). The
reduction B′ runs B and returns 1 if B aborts and otherwise it outputs a random
bit.

Notice that when b = 0 the random messages inM∗ are not in the view of Z
(since the ciphertexts contain encryption of the real messages), thus the prob-
ability that Abort happens because the environment sends (Encrypt, id, e′, M),
where M ∈M∗, is upperbounded by |M∗|/|Dλ|. Moreover, notice that when the
decryption oracle returns ⋄J , since the random messages M∗ chosen by the re-
duction are all different, the common element in all the encryption queries that
made them to be included in J , by the Definition 9, must be the real message
sent by the Z.

Summing up all together, taking the maximum between the advantage of B
and B′, and noticing that |M∗| ≤ TZ we obtain the bound in the statement of
the theorem.

We move now to the definition of perfect re-randomizability as defined in
[FFHR19]. Roughly speaking, a PKE is re-randomizable if there exists a proce-
dure that creates fresh and unlinkable ciphertexts from an old ciphertext. In the
RCCA setting, we also face the issue of defining what re-randomization for mali-
ciously crafted ciphertexts should be. In [FFHR19], this is handled by imposing
that it is hard to find such malicious ciphertexts.

Definition 10 (Perfect Re-randomizability, [FFHR19]). We say that
PKE is perfectly re-randomizable (Re-Rand, for short) if the following three
conditions are met:
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1. (Indistinguishability) For any λ ∈ N, for any prm ← Setup(1λ), for any
(pk, sk)← KGen(prm, 1ℓ), for any M ∈ M and any C ∈ Enc(pk, M) the follow-
ing two distributions are identical

C0 ←$ Enc(pk, M) and C1 ←$ Rand(pk, C);

2. (Correctness) For any λ ∈ N, any prm ← Setup(1λ), any (pk, sk) ←
KGen(prm, 1ℓ), for any (possibly malicious) ciphertext C and every C′ ←$

Rand(pk, C) it holds

Dec(sk, C′) = Dec(sk, C).

3. (Tightness of Decryption) For any (possibly unbounded) adversary A and
any sequence of parameters {prmλ ← Setup(1λ)}λ∈N the following probability
is negligible in the security parameter:

Pr

[
∃M : C ̸∈ Enc(pk, M) ∧ Dec(sk, C) = M ̸= ⊥ :

(pk, sk)←$ KGen(prmλ)

C← A(pk)

]
.

Finally, we define the notion of public verifiability for PKE schemes.

Definition 11 (Public Verifiability). PKE = (Setup,KGen,Enc,Dec,Rand)
is a public key scheme with publicly verifiable ciphertexts if there is a determin-
istic algorithm Ver which, on input (pk, C) outputs an error symbol ⊥ whenever
Dec(pk, sk, C) = ⊥, else it outputs valid.

5 Our Rand-RCCA PKE Scheme

We present our scheme in Fig. 4. With the goal of improving readability for
developers, all the operations (and in particular the pairing operations) in the
figure are described explicitly using e for the pairing and · for the exponen-
tiations. The scheme can be summarized as a type-1 pairing group version of
the scheme in [FFHR19] where we additionally append a benign proof to prove
almost tight-security. The main technical component from [FFHR19] to obtain
RCCA security is the consistency check at decryption time which checks that

[y]T
?
= f⊤[u]T + [x]⊤1 F

⊤[u]1

Perfect Re-randomizability. We prove that the scheme presented in Fig. 4
is perfectly rerandomizable, according to Definition 10. We start by introducing
the following lemma.

Lemma 5. For any [x]1 and r̂, let [x̂]1 = [x]1 + [D∗]1r̂, we have that

(f⊤ + [x̂]⊤1 F
⊤)[û]1 = (f⊤ + [x]⊤1 F

⊤)[u]1 + [f⊤D]T · r̂
+ e([x]1, [F

⊤D]1 · r̂) + e([FD∗]1 · r̂, [û]1)
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Setup(1λ)

prmG = (q,G1,GT , e,P1)←$ GGen(1λ)

M← G1; C ← Gn+2
1 ×GT × P

prm← (prmG,M, C)
return prm

KGen(prm)

D←$ Dn,d,a←$ Zn
q

D∗ ← (D⊤, (a⊤D)⊤)⊤

f ←$ Zn
q ,F←$ Zn×n+1

q

pars ← (prmG, [D]1)

ppk , psk ← PGen(pars)

pk← ([D∗]1, [f
⊤D]T , [F

⊤D]1, [FD
∗]1, ppk)

sk← (a, f ,F, psk)

return (pk, sk)

Enc(pk, [M]1)

r←$ Zd
q

[u]1 ← [D]1 · r, π ← PPrv(ppk , [u]1, r)

[p]1 ← [a⊤D]1 · r+ [M]1

[x]1 ← ([u⊤]1, [p]1)
⊤

[y]T ←
(
[f⊤D]T + e([x]⊤1 , [F

⊤D]1)
)
· r

return C := ([x]1, [y]T , π)

Dec(sk, C)

parse C as ([x]1, [y]T , π)

parse [x⊤]1 as ([u⊤]1, [p]1)

[M]1 ← [p]1 − [a⊤u]1

[y′]T ← f⊤e([1]1, [u]1) + e(F[x]1, [u]1)

b1 ← [y′]T
?
= [y]T , b2 ← PVer(psk , [u]1, π)

if b1 ∧ b2 return [M]1else ⊥

Rand(pk, C)

parse C as ([x]1, [y]T , π)

parse [x⊤]1 as ([u⊤]1, [p]1)

r̂←$ Zd
q , [x̂]1 ← [x]1 + [D∗]1 · r̂

[ŷ]T ← [y]T + [f⊤D]T · r̂+ e([x]1, [F
⊤D]1 · r̂) + e([FD∗]1 · r̂, [û]1)

π̂ ← PEvl(ppk , [u]1, π, r̂)

return Ĉ := ([x̂]1, [ŷ]T , π̂)

Fig. 4: Rand-RCCA PKE scheme PKE based on the Dn,d-MDDH assumption
in type-1 bilinear groups. P is the support of the proofs for PS.

Proof.

(f⊤+x̂F⊤)û = (f⊤ + (x+D∗r̂)⊤F⊤)(u+Dr̂)

=(f⊤ + x⊤F⊤)u+ (f⊤ + x⊤F⊤)(Dr̂) + (D∗r̂)⊤F⊤u+ (D∗r̂)⊤F⊤Dr̂

Notice that the third term can be rewritten as:

(D∗r̂)⊤F⊤u = (FD∗r̂)⊤u

Indistinguishability First, we want to focus on property (1) that says that
the re-randomization of an honest encryption is identically distributed to a fresh
encryption.

Let C := ([x]1, [y]1, π) be an encryption of [M]1 with randomness fixed to r, and
let Ĉ := ([x̂]1, [ŷ]T , π̂) ←$ Rand(pk, C) be its re-randomization with randomness
r̂. We show that Ĉ is identically distributed to a fresh encryption of [M]1 with
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randomness (r+ r̂). Notice that for any vector r, the random variable (r+ r̂) is
uniformly distributed.

It is straightforward to verify that this holds for the element [x̂]1, indeed:

x̂ = D∗(r+ r̂) + (0⊤, M)⊤.

The proof that [ŷ]T is correctly distributed, follows easily from Lemma 5. What
is left to prove is that the element π̂ is also correctly distributed. We recall that
π̂ is the result of PEvl(ppk , [Dr]1, π, r̂). Because of the correctness of the proof
system PS, it holds that π̂ is identical to PPrv(ppk , [D(r+ r̂)]1, (r+ r̂)) that is
exactly the distribution of [y]T computed by Enc(ppk , M; (r+ r̂)).

Correctness Next, we prove the second property of Definition 10, namely that
for any ciphertext C, it holds that Dec(sk, C) = Dec(sk, C′), where C′ is the output
of a valid rerandomization of C, with some randomness r̂.

First, we notice that Rand adds to x an encryption of [0]1, therefore if the
third line of Dec(sk, C) computes [M]1, the same happens in Dec(sk, C′). Second, if
C is valid, then the correctness follows from the proof given above: C′ is also valid
and Dec(sk, C) = Dec(sk, C′). Finally, we are left with proving that if Dec(sk, C) =
⊥, then also Dec(sk, C′) returns ⊥. Assume by contradiction that Dec(sk, C) =
M ̸= ⊥. Then it must be true that [ŷ]T = (f +Fx̂)⊤[û]1 and π̂ = k⊤([û]1⊗ [û]1).
For the same proof given above (going from bottom to the top of the equations),
and for the correctness of the benign proof system PS, we obtain that [y]T =
(f +Fx)⊤[u]1, π = k⊤([u]1 ⊗ [u]1), and thus Dec(sk, C) = M ̸= ⊥, that results in
a contradiction.

Tightness of Decryption The last property we need to prove is the third one
of Definition 10. We observe that, given a vector [u]1, there exists a unique value
π := k⊤([u]1 ⊗ [u]1) such that PVer(psk , [u]1, π) = 1. Assume there exists an
adversary who is able to produce a ciphertext that does not decrypt to ⊥, yet it is
not in the encryption range of the scheme, namely there exists no message M, and
no randomness r such that Enc(pk, M; r) outputs C. Given the above observation,
it must be the case that the first component of the ciphertext, i.e. [u]1, is not in
the span of [D]1: in [FFHR19] it is proven that the probability that an adversary
succeeds in forging a valid [y]T in such case, is lower or equal than 1

q .

Security. We prove that the security of the scheme reduces to the Dn,d-MDDH
assumption. Below we state the main theorem.

Theorem 3. For every PPT adversary A that makes at most QEnc encryption
and QDec decryption queries, there exist adversaries Bmddh, Bsnd with similar
running time T (Bmddh) ≈ T (Bsnd) ≈ T (A) + (QEnc + QDec) · poly(λ), where
poly(λ) is a polynomial independent of T (A), and such that

AdvRCCA
A,PKE(λ) ≤ O (d logQEnc) ·AdvMDDH

G1,Dn,d,Bmddh(λ)

+ logQEnc ·Advsnd
Bsnd,PS(λ) +O

(
n2QDecQEnc logQEnc

q

)
.
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Proof. We give a proof only for the single-user, multi-ciphertext case, i.e., when
the adversary calls the key generation oracle only once. The proof can be easily
generalized8 to the multi-user case almost equivalently to [BBM00,GHK17].

To simplify the notation, since we are in the single-user setting, we omit the
index j (which specifies the user) from both encryption and decryption queries.
We let G0 be the ExpmRCCA

A,PKE experiment, and we denote with ϵi the advantage

of A to win Gi, i.e. ϵi := |Pr [Gi = 1]− 1
2 |.

The games keep track of the number of challenge ciphertexts produced.
Specifically, let ctr be a variable that counts the number of challenge cipher-
texts output by the encryption oracle: ctr is set to 0 at the beginning of the
games and, whenever the adversary calls the encryption oracle, it is increased.

Game G1. This game is identical to the previous one, but the encryption ora-
cle computes the values [y]T and [p] using secret keys (instead of public keys).
Specifically, upon the j-th query to the encryption oracle, the game computes
the ciphertext Cj = ([xj ], [yj ]T , πj) as described by the encryption procedure,

but where we compute [yj ]T ← f⊤[uj ]+ [xj ]
⊤F⊤[uj ] and [pj ]← a⊤[uj ]+ [Mj,b∗ ].

By linearity, this game is perfectly equivalent to the previous one, thus ϵ1 = ϵ0.

Game G2. This game is identical to the previous one, but the encryption oracle
simulates the benign proofs π. We rely on the perfect zero-knowledge of the
benign proof system. The reduction is standard, therefore we omit it. Since the
proof system satisfies perfect zero-knowledge we have ϵ2 = ϵ1.

Game G3. At the very beginning, the game additionally samples matrices
D̄b ←$ Zn×d

q for b ∈ {0, 1}, and sets Db ←
(
D|D̄b

)
. The encryption oracle

in this game samples [u] from the span of [D0]. We apply a standard reduction
to the QEnc-fold Dn,d-MDDH assumption, twice, and we prove that no adver-
sary can distinguish this game from the previous one: we first tightly switch the
vectors in the challenge ciphertexts from the span of [D] to uniformly random
vectors of Gn

1 ; next, we use the QEnc-fold Dn,2d-MDDH assumption to switch
these vectors from random to the span of [D0]. To be formal, we build ad-
versaries B, B′ such that for a polynomial p(λ) independent of T (A), we have
T (B) ≈ T (B′) ≈ T (A) + (QEnc +QDec) · p(λ) and

|ϵ3 − ϵ2| ≤ AdvQEnc−MDDH
G1,Dn,d,B(λ) +AdvQEnc−MDDH

G1,Dn,2d,B′(λ)

Let ([D], [V]) be the QEnc-fold Dn,d-MDDH challenge received by B, with [D] ∈
Gn×d

1 and [V] := ([v1], . . . , [vQEnc
]) ∈ Gn×QEnc

1 . Then, B samples the secret ma-
terial a ←$ Zn

q , f ←$ Zn
q ,F ←$ Zn×n+1

q , generates the keys for the benign proof
system, running PGen([D]), and finally sends the public key to A. On the j-the

8 We rely on the self-reducibility of the MDDH assumption: in particular, we can
generate m different matrices Dj (one for each user) from one single challenge of
the (many-fold) MDDH-assumption and adapt accordingly the ciphertexts, namely,
by mapping the ciphertext for the j-th user through the same linear transformation
that maps the MDDH-challenge matrix to the matrix Dj .
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query to the encryption oracle, B sets

[uj ]← [vj ]

[yj ]T ← f⊤[uj ]T + [xj ]
⊤F⊤[uj ]

B has generated the secret key itself, so it can perfectly simulate the decryption
oracle. In case [V] = [DR], B perfectly simulates G2. In case [V] is uniformly

random over Gn×QEnc

1 , B simulates an intermediary game H. Analogously, we can
build an adversary B′ on the QEnc-fold Dn,2d-MDDH assumption, who simulates

H if [V] is uniformly random over Gn×QEnc

1 , and game G3 if [V] = [D0R].
Altogether, this proves the claim stated above: from Lemma 1 and Corollary 1,
we obtain an adversary B′′ such that T (B′′) ≈ T (A) + (QEnc + QDec) · poly(λ)
where poly is independent of T (A) and

|ϵ3 − ϵ2| ≤ 2(n− d)Advmddh
G1,Dn,d,B′′(λ) +

2

q − 1
.

Game G4. In this experiment, we add an explicit check to the decryption oracle.
First recall that D∗ is defined in Fig. 4 as the matrix whose first n rows are equal
to the matrix D and last row is equal to a⊤D. Upon query C := ([x], [y]T , π) to
the decryption oracle, where [x]⊤ := ([u]⊤, [p]), the oracle additionally checks
that:

u ∈ span(D) ∨ ∃j : D∗⊥xj = D∗⊥x (3)

where D∗⊥D∗ = 0, and QEnc = {Cj = ([xj ], [yj ]T , πj) : j ≤ [ctr]} is the set
of challenge ciphertexts. If the condition holds, the decryption oracle proceeds
by running the decryption procedure as usual, otherwise it returns ⊥ to the
adversary. We notice that the new condition can be checked efficiently since we
know D ∈ Zn×d

q and a ∈ Zn
q .

The distinguishing event between G4 and G3 is that the adversary queries
the decryption oracle with a ciphertext that would not decrypt to ⊥ (according
to the original decryption rules of G3), but where Eq. (3) holds. We call such
query to the decryption oracle a “critical query”, i.e. a decryption query where:

– [u] /∈ span([D]) and ∀j : D∗⊥xj ̸= D∗⊥x (the latter condition implies that
[u] is not the result of an honest rerandomization of a previous challenge
ciphertext)

– the proof π is valid, and [y]T = f⊤[u]T + [x]⊤F⊤[u], i.e., the consistency
check holds.

In other words, a critical decryption query consists of a ciphertext that does not
decrypt to ⊥ (according to the original decryption rules), is not a rerandomiza-
tion of a challenge ciphertext, but has a [u] that could not have been generated
in an “honest” encryption. For this step, we refer to Lemma 6.

Game G5. This game is equivalent to G4, but we modify the rules of the
decryption oracle once again. For any j, let Mj,0 and Mj,1 be the challenge
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messages queried by A at the j-th query to the encryption oracle. Upon de-
cryption oracle query C = ([x], [y]T , π), if ∃j : D∗⊥xj = D∗⊥x where recall
QEnc = {([xj ], [yj ], πj) : j ≤ ctr}, and both the proof π verifies and the consis-
tency check holds, then the decryption oracle immediately returns the symbol
⋄J where J ← Q.find(Mj,0).

Notice that we can rewrite the decryption procedure as M = (−a⊤, 1)[x].
We observe that the vector (−a⊤, 1) is in the span of D∗⊥, since it holds that
(−a⊤, 1)D∗ = −a⊤D + a⊤D = 0. Thus, at any decryption query, if D∗⊥xj =

D∗⊥xj for some challenge ciphertext Cj then (−a⊤, 1)[xj ] = (−a⊤, 1)[x], and
therefore the decryption oracle would compute the message Mj,b∗ and output
the symbol ⋄J , where J = Q.find(Mj,b∗). Moreover, notice that Q.find(Mj,b∗) =
Q.find(Mj,0) by definition of the security experiment. This shows that ϵ5 = ϵ4.

Game G6. In this last step, we encrypt random messages. Formally, at the j-th
encryption query the oracle (on input messages Mj,0, Mj,1 ) encrypts the message
Mj,b∗ +Rj , where Rj is random. Clearly, it holds that ϵ6 = 0 as in fact, because of
the change introduced in G6, the ciphertexts are independent of the challenge
bit b∗, and, by the changes introduced in G4 and G5, the decryption queries are
independent of the challenge bit. We prove thatG5 andG6 are indistinguishable.

We first observe switching from a⊤ to a⊤ + r⊤D⊥ for a random r and using
the vector a⊤ + r⊤D⊥ both for the encryption and decryption oracle queries
does not change the view of the adversary. So consider a new game G′

5, identical
to G5 but where we set a⊤ + r⊤D⊥ instead of a.

Let [uj ] = [D0]rj be the first component of the j-th challenge ciphertext,
computed by the encryption oracle. It holds that [pj ] = (a⊤ + r⊤D⊥)[uj ] +

[Mjb∗ ], which is equal to a⊤[uj ]+ [Mjb∗ ]+ r⊤(D⊥[D0])rj . We show that the term

r⊤(D⊥[D0]), is statistically close to a random vector [v]. The reason is that for
any fixed choice of the columns of D̄0, the rows of D⊥ are linearly independent
with overwhelming probability (over D⊥).

We now reduce to MDDH to show that |ϵ6 − ϵ5′ | is negligible in the security
parameter for any adversary A: formally, we build an adversary B such that
T (B) ≈ T (A) + (QEnc +QDec) · poly(λ) and:

|ϵ6 − ϵ5′ | ≤ Advmddh
G1,U2d+1,2d,B(λ).

Let [B] ∈ G2d+1×2d
1 , and let ([h1], . . . , [hQEnc

]) ∈ G2d+1×QEnc

1 be the U2d+1,2d-
MDDH challenge received in input. We indicate the upper values of [hj ] as
[hj ] ∈ G2d

1 , and we indicate its lower values as [hj ] ∈ G1. In the reduction, the

encryption oracle sets [uj ]← D0[hj ], which implicitly sets rj = hj . Also it sets
[pj ] = [Mjb∗ ] + a⊤[uj ] + [hj ]. If ([B], [h1], . . . , [hQ]) is a real MDDH challenge, B
simulates the game G5′ . Indeed, it must hold that hj = Bsj , for some sj ∈ Z2d

q .

Also, let [B] be the upper square matrix of [B], and let [B] be the last row of

[B]. [hj ] = [B]sj = [B]B
−1

rj . And we have that the distribution of [B]B
−1

is
statistically close to a random element v. Otherwise, B simulates the game G6.
Finally, by applying Lemma 1, Lemma 2 and Lemma 3, we can always build a
new adversary C such that T (C) ≈ T (A) + (QEnc +QDec) · poly(λ) and:
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|ϵ6 − ϵ5| = |ϵ6 − ϵ5′ | ≤ (n− d)Advmddh
G1,Dn,d,C(λ) +

1

q − 1
.

Lemma 6. The security games G3 and G4 defined for the proof of Theorem 3
(security of the RCCA symmetric scheme, see Fig. 4) are computationally indis-
tinguishable. For any PPT adversary A, we build PPT adversaries B, B′ with
running times similar to A such that:

|ϵ3 − ϵ4| ≤ O(d logQEnc)AdvMDDH
G1,Dn,d,B(λ) + logQEncAdvsnd

B′ (λ)

+O
(

n2QDecQEnc logQEnc

q

)
Proof. We denote the probability that the adversary A wins game Hx by ϵHx .
In the following, we will bound ϵH0

via a sequence of games.

Hybrid H0. This hybrid is the same as G3 but immediately outputs 1 if the
adversary makes a “critical query”. Specifically, the hybrid executes G3 but the
decryption oracle upon input C parses it as ([x], [y]T , π) and checks that Eq. (3)
holds; if it holds, the decryption oracle continues as before. Otherwise, returns
the message “critical”, and H0 stops the interaction, immediately returning 1.
Since the hybrid outputs 1 when the distinguishing event between G3 and G4

happens, we have that |ϵ3− ϵ4| ≤ ϵH0 . Also notice that the checks in Eq. (3) can
be efficiently performed given the knowledge of the matrix D.

Hybrid H1. This hybrid is preparatory for the next one. We inject randomness
into the encryption/decryption keys, adding a vector (zD⊥) to the secret key
f⊤, common to all the encryption queries, where z ∈ Zn−d

q . Specifically, at the

very beginning of the experiment we sample the vector z←$ Zn−d
q , we sample f

and compute the public key material [f⊤D] and moreover:

– The encryption oracle, at the j-th query, computes the values [yj ]T as follows:

[yj ]T ← (f⊤ +zD⊥ )[uj ]T + [xj ]
⊤F⊤[uj ]

– Similarly, the decryption oracle, upon input the ciphertext C = ([x], [y]T , π)
computes the bit b1 (i.e. the bit of the consistency check) by computing the

value [y′]T and checking if [y]T
?
= [y′]T where [y′]T is computed as:

[y′]T ← (f⊤ +zD⊥ )[u]T + [x]⊤F⊤[u]

These new rules do not change the view of the adversary since both f⊤ and
f⊤ + zD⊥ are uniformly distributed over Z1×n

q given the public key material

[f⊤D]. Thus we obtain ϵH1
= ϵH0

.

Hybrid H2 Let P : {0, 1}∗ → Z1×n−d
q be an uniformly random function. In this

hybrid we use the following rules for encryption and decryption:



Hybrid Experiments H1,i,x

prm← Setup(1λ)

D←$ Dn,d,D
∗ ← (D⊤, (a⊤D)⊤)⊤

a←$ Zn
q , f ←$ Zn

q ,F←$ Zn×n+1
q

pars ←$ PGen(prmG, ([D]1))

pk← ([f⊤D], [F⊤D]1, [FD
∗]1, ppk)

sk← (a, f ,F, psk)

Q ← DisjointSet()

QEnc ← []

ctr← 0

b∗ ←$ {0, 1}
critical← 0

AOenc,Odec(pk)

return critical

Oracle Oenc(M0, M1)

ctr← ctr + 1

Q.union({M0, M1})

r←$ Zd
q

[u]1 ← Sample [u]1

H1,i,0 : [D0]1 · r
H1,i,1 −H1,i,6 : [Dctr[i+1]]1 · r

[p]1 ← a⊤[u] + Mb∗ , [x]1 ← ([u⊤]1, [p]1)
⊤

[y]T ← (f⊤ + Pi(ctr|i)D
⊥)[u] + [x]⊤F⊤[u]

π ← PSim(psk , [u]1)

C← ([x]1, [y]T , π)

add C to QEnc and return C

Oracle Odec(C)

parse C as ([x]1, [y]T , π)

parse [x⊤]1 as ([u⊤]1, [p]1)

H1,i,2 - H1,i,3

if [u]1 ̸∈ span([D0]1) ∪ span([D1]1) :

return ⊥

if PVer(psk , [u]1, π)
?
= 0

return ⊥
parse QEnc as {([xj ]1, [yj ]T , πj) : j ∈ [ctr]}

if ∃j : D∗⊥xj
?
= D∗⊥x :

I ← {j : D∗⊥xj
?
= D∗⊥x}

else I ← {j : j ≤ ctr}

S ← Decryption Keys

H1,i,0 −H1,i,2 : { j|i}j∈I

H1,i,3 −H1,i,4 : { (j|i∥d)}j∈I

H1,i,5 : { (j|i∥b) : b∈{0, 1}}j∈I

H1,i,6 : { j|i+1}j∈I

for k in S :

[y′]T ← Consistency Check

H1,i,0 −H1,i,2 :

(f⊤ + Pi(k)D
⊥)[u]1 + [x]⊤1 F

⊤[u]1

H1,i,3 −H1,i,6 :

(f⊤ + Pi+1(k)D
⊥)[u]1 + [x]⊤1 F

⊤[u]1

b1 ← [y′]T
?
= [y]T

if [u]1 /∈ span([D]) ∧ b1
?
= 1 :

critical← 1

abort

if b1 ̸= 1 : return ⊥

M← [p]1 − a⊤[u]

J ← Q.find(M)
if J ≠ ⊥ : return ⋄J
else return M

Fig. 5: The Security Experiments H1,i,x. We highlight the differences between
the hybrids using dashed boxes: inside the boxes we describe the involved hybrids
and the operations performed.

– The encryption oracle, at the j-th query, computes the values [yj ]T as follows:

[yj ]T ← (f⊤ + P (j) D⊥)[uj ]T + [xj ]
⊤F⊤[uj ]

– For each decryption oracle query, we first define a set S over which the
decryption oracle iterates to test the consistency check. The definition of the
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set S is carefully crafted to define the behavior of the hybrid experiment in
case of replay attack from the adversary 9.
Recall that ctr counts the number of challenge ciphertexts output by the
encryption oracle and that QEnc = {Cj = ([xj ], [yj ]T , πj) : j ≤ ctr}. Upon
input the ciphertext C = ([x], [y]T , π), the decryption oracle first sets:

S := {j} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]

S := {j : j ≤ ctr} otherwise

then it computes the bit b1 (i.e. the bit of the consistency check for C, see
Fig. 4) differently by checking that

∃j ∈ S : [y]T
?
= (f⊤ + P (j) D⊥)[u]T + [x]⊤F⊤[u].

Moving from H1 to H2 requires a series of hybrids H1,i,i′ , i ∈ [log(QEnc)], i
′ ∈ [6].

We give in Fig. 5 the formal definitions of all these hybrids, and we highlight
their differences.

Hybrid H1,i,0. Let Pi be a random function that takes in input strings of length
i (for i = 0, we can imagine this as a constant function defined on the empty
string) and returns row vectors of length n− d.

– On input the j-th query, the encryption oracle samples [uj ] from the span
of [D0]. The element [yj ]T is computed as

[yj ]T ← (f + Pi(j|i) D
⊥)[uj ] + [xj ]

⊤F⊤[uj ].

– Upon input the ciphertext C = ([x], [y]T , π), define:

S := {j|i} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]

S := {j|i : j ≤ ctr} otherwise

it then executes the same code of the previous hybrid.

When i = 0, for any value j the string j|0 is equal to the empty string, thus,
in H1,0,0, the random function P0 is always called on input the empty string.

In particular, either when D∗⊥[x] = D∗⊥[xj ] holds or when it does not, the
consistency check performed is exactly the same. Thus the difference between
hybrid H1,0,0 and H1 is only syntactical.

Hybrid H1,i,1 This hybrid is equivalent to the previous one, but here the en-
cryption oracle, on input the j-the query, generates [uj ] in the span of [Dj[i+1]].
We rely on the MDDH assumption to prove indistinguishability between the two
hybrids. We proceed in two steps:

9 The reader might have notice that this is where our proof strategy needs to dif-
ferentiate from the original partitioning technique from [GHK17]. In particular, we
conclude the proof of Lemma 6 (see pag. 34) by reducing to Lemma 4, the reduction
will know all the secret keys but one for a (uniformly sampled) random index.
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– We first switch the j-th vector [uj ] computed by the encryption oracle to a
vector in the span of [(D|U)], where U is uniform over Zn×d

q , if the (i+1)-th
bit of the binary representation of j is equal to 1. We call this intermediate
hybrid HAi .

– Finally, we switch the j-th vector [uj ] computed by the encryption oracle to
a vector in the span of [(D|D̄1)] = [D1], if the (i + 1)-th bit of the binary
representation of j is equal to 1.

First we show indistinguishability betweenH1,i,0 andHAi . Let BA be an MDDH-
adversary receiving the QEnc-fold Dn,d-MDDH challenge ([D̄0], [h1], . . . , [hQEnc

])
as input. BA can sample a random matrix D ←$ Dn,d, a random matrix D̄1 ∈
Zn×d
q , the secret material a ←$ Zn

q , f ←$ Zd
q ,F ←$ Zn×n+1

q and the secret
material for the benign proof system (since BA knows D, this can be easily
achieved running PGen([D])). Finally, BA samples a challenge bit b and gives the
public key of the scheme to A. BA simulates the encryption oracle as follows.
On input the j-th pair of messages (M0, M1):

– if the (i+1)-th bit of the binary representation of j is equal to 0, the adversary
sets [uj ]← [D0]rj ,

– else, samples a random vector r̃ ∈ Zd
q , and computes [uj ]← [D]̃r+ [hj ].

Note that BA can still simulate the decryption oracle, because of the knowledge
of the secret material a, f ,F and of the matrix D. Since BA knows both the
matrix D and the vector a, can always find a matrix D∗⊥ such that D∗⊥D∗ = 0.
This allows BA to catch critical queries. If the tuple is a real MDDH tuple, i.e.
[hj ] = [D̄0]rj , the game described is perfectly equivalent to H1,i,0. Otherwise, if
the challenge vectors are uniformly random, the game simulated is equivalent to
HA,i. The next step is to switch the j-th vector [uj ] computed by the encryption
oracle to a vector in the span of [(D|D̄1)] = [D1] if the (i + 1)-th bit of the
binary representation of j is equal to 1. This transformation is similar to the
previous one, therefore we omit the details. Altogether, combining the previous
adversaries, and considering Lemma 1 and Corollary 1, we obtain an adversary
C such that:

|ϵH1,i,1
− ϵH1,i,0

| ≤ 2(n− d)Advmddh
G1,Dn,d,C(λ) +

2

q − 1
.

Hybrid H1,i,2 We add an explicit check to the decryption oracle. Specifically, at
each decryption oracle query the hybrid additionally checks if u ̸∈ span(D0) ∪
span(D1), and if it is the case the decryption oracle returns immediately ⊥ to the
adversary. We rely on the soundness of the underlying benign proof system and
the reduction is standard. In particular, the only condition that would allow to
distinguish between this hybrid and the previous one is to query the decryption
oracle with a ciphertext C = ([x], [y]T , π) where:

– u ̸∈ span(D0) ∪ span(D1)
– the decryption oracle in the hybrid H1,i,1 would not return ⊥.
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For such query it holds that PVer(psk , [u], π) = 1. We build an adversary B
against the (Lsim,Lver,Lsnd)-soundness of the proof system. (Recall that Lsnd =
Lsim = span(D0) ∪ span(D1), and Lver = Zn

q .)
The adversary B samples the secret material a, f ,F; then, it queries the

challenger to obtain the public key of the benign proof system, associated with
the matrix D, and finally gives A all the public key material. The adversary
B can easily simulate the encryption oracle since it knows all the necessary
information. To compute the proof πj associated with the j-th encryption oracle
query, it queries the simulation oracle offered by the challenger: it holds that
uj ∈ Lsim, for all j ∈ [QEnc]. When the adversary makes a decryption query, B
needs to verify that the proof π is accepted by PVer; so, it forwards (u, π) to
the challenger. Since Lver is equal to Zn

q , the verification oracle always returns a
verdict bit, and B can proceed in the natural way the simulation of the decryption
oracle. At some point B queries the verification oracle with some ([u], π) such that
u /∈ span(D0) ∪ span(D1), i.e., u /∈ Lsnd, but PVer(psk , [u], π) = 1. This is the
event that lets B win the soundness game. The adversary B runs in time T (B) ≈
T (A)+(QEnc+QDec) ·poly(λ), where poly is a polynomial independent of T (A).
Moreover, notice that when the distinguishing event happens the adversary B
wins the soundness game, thus:

|ϵH1,i,2 − ϵH1,i,1 | ≤ Advsnd
B,PS(λ).

Hybrid H1,i,3 In this hybrid we increase the entropy of the secret keys during
encryption queries.

– The encryption oracle, at the j-th query, computes the values [yj ]T as follows:

[yj ]T ← (f⊤ + Pi+1(j|i+1) D
⊥)[uj ] + [xj ]

⊤F⊤[uj ].

– The decryption oracle, upon input the ciphertext C = ([x], [y]T , π) addition-
ally checks that ∃d s.t. u ∈ span(Dd) and in such case it sets:

S := {j|i ∥d } if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]

S := {j|i ∥d : j ≤ ctr} otherwise

and it continues executing the same code of the previous hybrid.

We prove that |ϵH1,i,2 − ϵH1,i,3 | is negligible. We first transit to an intermedi-

ate hybrid H′
i where instead of using the function Pi(·)D⊥, we use the function

P ′
i (·) := P

(0)
i (·)D⊥

0 +P
(1)
i (·)D⊥

1 , where P
(0)
i and P

(1)
i are two uniformly random

functions with domain {0, 1}i. Notice that P ′
i (·) is an uniformly random function

that maps strings in {0, 1}i to vectors in rowspan(D⊥
0 ) + rowspan(D⊥

1 ) while
Pi(·)D⊥ is an uniformly random function that maps string in {0, 1}i to vectors
in rowspan(D⊥). Thus the distinguishing event between Hi,j,2 and this interme-
diate hybrid is the event that rowspan(D⊥

0 ) + rowspan(D⊥
1 ) ̸= rowspan(D⊥).
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The latter event happens with probability at most 1/q, in fact the event happens
if and only if the subspace span(D̄0|D̄1) has dimension strictly less than 2d and
recall that the columns of such matrices are sampled uniformly at random. Next,

we define the function P
(b)
i+1 : {0, 1}i+1 → Z1×(n−2d)

q , ∀b ∈ {0, 1}:

P
(b)
i+1(x) =

{
P

(b)
i (x|i), x[i+ 1] ̸= b

P̃i
(b)

(x|i), else

where Pi, P̃i are two uniformly (and independent) random functions. Notice that

P
(b)
i+1 is an uniformly random function.
We define a second intermediate hybrid H′

i+1 where for the encryption oracle
queries instead of using the random function P ′

i applied to the indexes j|i we
use the function P ′

i+1 applied to the indexes j|i+1, and for the decryption oracle
queries we use P ′

i+1 applied to (j|i∥d), where d is such that uj ∈ span(Dd) (as
described in the H1,i,3). We show that H′

i and H′
i+1 are equivalently distributed.

Indeed, in this second intermediate hybrid, at the j-th encryption oracle query
we compute

[yj ]T ← (f⊤ + P ′
i+1(j|i+1))[uj ] + [xj ]

⊤F⊤[uj ].

Moreover we have that P ′
i+1(j|i+1)uj = P ′

i (j|i)uj , in fact:

P ′
i+1(j|i+1)uj =

(
P

(1−j[i+1])
i (j|i)D

⊥
1−j[i+1] + P̃i

(j[i+1])
(j|i)D

⊥
j[i+1]

)
Dj[i+1]rj

=
(
P

(1−j[i+1])
i (j|i)D

⊥
1−j[i+1]

)
Dj[i+1]rj

=
(
P

(0)
i (j|i)D

⊥
0 + P

(1)
i (j|i)D

⊥
1

)
Dj[i+1]rj

= P ′
i (j|i)Dj[i+1]rj = P ′

i (j|i)uj

In the above derivation, we first applied the definitions of Pi+1 and uj , then

we simplified the second term by noticing that D⊥
j[i+1]Dj[i+1] = 0, then for the

same exact reason we can add the component P
(j[i+1])
j (j|i)Dj[i+1], and finally

we have the definition of P ′
i .

Similarly, for the decryption oracle queries with input C = ([x], [y]T , π) where
∃d : u ∈ span(Dd), we have that P ′

i+1(j|i+1)u = P ′
i (j|i)u. The derivation is

identical as before. Thus the two intermediate hybrids are equivalent.
Finally, we show that the second intermediate hybrid, H′

i+1, is statistically
close to Hi,1,3, in fact, the only difference is that in the latter hybrid we use the

function Pj+1(·)D⊥. Equivalently as before, the two random functions are not
equivalently distributed only when span(D̄0∥D̄1) has rank less then 2d, which
happens with probability at most 1/q. Thus we can conclude that |ϵH1,i,2 −
ϵH1,i,3

| ≤ 2
q .

Hybrid H1,i,4 We remove the direct check [u]1 ∈ span([D1]1) ∪ span([D0]1)
introduced in H1,i,2. This removal can only increase the winning probability of
the adversary.

ϵH1,i,3
≤ ϵH1,i,4

.
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Hybrid H1,i,5 To decrypt, we increase the number of keys used by the decryp-
tion oracle to compute the bit b1.

S := {j|i ∥b : b ∈ {0, 1}} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]

S := {j|i ∥b : b ∈ {0, 1}, j ≤ ctr} otherwise

This change can only increase the winning probability of the adversary since
the set of the strings S used in H1,i,5 contains the set of strings used in H1,i,4.

As for non-critical queries, we need to show that the view of the adversary
does not change: in particular, any non-critical query that decrypts to ⊥ inH1,i,4

should decrypt to ⊥ in H1,i,5 as well. This is easy to prove when the decryption
query has [u] ∈ span([D]): indeed, even if we modify the set S, this change does
not affect the way we decrypt such queries (recall that any key Pi+1(·) is then
multiplied by D⊥.) Also, a non-critical query could be a query for which it holds
that there exists j ∈ [QEnc] such that D∗⊥xj is equal to D∗⊥x. If a query of this
form succesfully decrypts in H1,i,4, the same happens in H1,i,5: again, this is
because S in the latter hybrid is a superset of S in H1,i,4. But, it is still possible
that a query of this form decrypts to ⊥ in H1,i,4, but the ‘augmented’ S in this
new hybrid makes the consistency bit b1 be 1, for some new key: we bound the
probability of a similar event since we know that the only way to learn the image
of the random function Pi+1(·) is via oracle queries to Odec and Oenc. By union
bound, we obtain a statistical distance of O(QEncQDec/q).

ϵH1,i,4
−O(QEncQDec/q) ≤ ϵH1,i,5

.

Hybrid H1,i,6 This hybrid is equivalent to the previous one, but the decryption
oracle computes a different set S, as follows:

S := {j|i+1} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]

S := {j|i+1 : j ≤ ctr} otherwise

Notice that the set S as defined in H1,i,6 might be a (strict) subset of the set
S as defined in H1,i,5. Thus the distinghuishing event is that the consistency
check would pass in H1,i,5 but it would not pass in H1,i,6. In particular, such
consistency check passes for an index of the form ji∥1, such that j[i+1] = 0 and
j ≤ ctr, and by the definition of the distinghuishing event the integer represen-
tation of (ji∥1) · 2| logQEnc|−i−1 is bigger than ctr. Thus the key f⊤ +Pi(ji∥1)D⊥

was never used for an encryption query. The only way an adversary can learn
information about one of such keys is via decryption queries. In particular, each
decryption query can at most decrease the set of possibilities (namely a valid y
that matches the consistency check) by one. Moreover, the number of such keys
is (very loosely) upper-bounded by QEnc, thus by union bound over all such keys
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and over all the decryption queries we obtain:

|ϵH1,i,6
− ϵH1,i,5

| ≤ QEnc ·QDec

q −QDec
.

Hybrid H1,i+1,0 We then switch back the distribution of [uj ] to the span of
[D0]. This transition is the reverse of what we have done to move from H1,i,0 to
H1,i,1. We proceed in two steps:

– We first switch the j-th vector [uj ] computed by the encryption oracle to a
vector in the span of [(D|U)], where U is uniform over Zn×d

q , if the (i+1)-th
bit of the binary representation of j is equal to 1.

– Then, we switch the j-th vector [uj ] computed by the encryption oracle to
a vector in the span of [D0].

Altogether we obtain and adversary C such that:

|ϵH1,i+1,0
− ϵH1,i,6

| ≤ 2(n− d)Advmddh
G1,Dn,d,C(λ) +

2

q − 1
.

It is easy to see that ϵH2
= ϵH1,⌈log QEnc⌉,6

. Next, we prove that ϵH2
≤ O(n2)QEncQDec

q .

We reduce the adversary A playing in H2 to an (unbounded) adversary B upon
which we can invoke the Lemma 4. We say that B forged a valid tuple if the
output of B matches the event described in the lemma. For any assignments of
the vector a and of the matrix D in the support of Dn,d, we can consider in the
Lemma 4 the matrix E to be set equal to D∗.

Claim. Pr [H2 = 1] ≤ O(n2)QEncQDec

q .

Let (D,D∗,D⊤f ,D⊤F,FD∗) be the tuple received by B from the challenger.

The adversary B samples uniformly random values (f̄ , F̄) such that f̄
⊤
D = f⊤D,

F̄
⊤
D = F⊤D and F̄D∗ = FD∗. We can think of the tuple (f̄ , F̄) as a “fake”

proving key that matches the verification key given by the challenger. Given D
and a, the reduction B can sample all the secret material needed to simulate the
hybrid H2. In particular, it can compute the proving key and verification key of
the proof system PS and sample the challenge bit. The reduction B samples an
index value j∗Enc ∈ [QEnc] and an index j∗Dec ∈ [QDec]. (Recall that QEnc and QDec

denote the number of encryption, resp. decryption queries made by A.) At the
j-th query to the encryption oracle:

– If j ̸= j∗Enc, the reduction B generates xj following the prescribed algorithms.

Then, it computes yj ←
((

f̄ + F̄xj

)⊤
+ P (j)D⊥

)
uj , where we recall that

P (·) is a random function.
– Else, for j = j∗Enc, B computes xj as prescribed, queries its own oracle with

xj and obtains a value v = f +F · xj , then, it uses v+ P (j)D⊥ to compute

the proof y, associated with uj , namely: yj ←
(
v⊤ + P (j)D⊥

)
uj .
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At the j-th query to decryption oracle with ciphertext C = ([x], [y]T , π) there are
three possible cases. The easiest case to handle is if u ∈ span(D) or ∃j ̸= j∗Enc
such that D∗⊥xj = D∗⊥x. The reduction B can compute the consistency check
using the keys f̄ , F̄ and the random function P .

The second case is when D∗⊥xj∗Enc
= D∗⊥x, in this case let r′ be such that

x− xj∗Enc
= D∗r′ and compute

y′ ← yj∗Enc + f⊤Dr′ + x⊤
j∗Enc

F⊤Dr′ + (FD∗r′)⊤(uj∗Enc
+Dr′)

namely, compute the element [y′]T as if it was computed in the re-randomization
of the ciphertext Cj∗Enc using randomness r′. Notice that, by definition of H2 the
consistency check for [y]T would be computed by checking if

y
?
=
(
(f + Fx)

⊤
+ P (j∗Enc)D

⊥
)
u.

By Lemma 5 and by definition of yj∗Enc , the two checks are equivalent. The last

case is when u ̸∈ span(D) ∧ ∀j : D∗⊥xj ̸= D∗⊥x, i.e., the query might be
“critical”:

– If j < j∗Dec then return ⊥ to the adversary A, in this case we assume that
the query was not critical and that the decryption would fail.

– If j = j∗Dec then output the tuple (y−P (j∗Enc)D
⊥u,u,x) as the forgery of B.

We condition on the event that j∗Dec is the first critical query of A and that,
let the ciphertext sent by A at the j∗Dec query be C = ([x], [y]T , π) we have that

the equation [y]T = (f + P (j∗Enc)D
⊥ + Fx)⊤[u] holds. Let Guess be such event.

Conditioned on such a lucky event, the adversary B indeed produces a valid
forgery, in fact by the definition of a critical query (xj∗Enc

− x) ̸∈ span(D∗) and
u ̸∈ span(D).

We show that the view provided by B to the adversary A up to the j∗Dec-th
decryption query and conditioned on Guess is equivalent to the view of the ad-
versary up to the j∗Dec-th decryption query in the hybrid game H2. The intuition

is that the values P (j)D⊥, for all j, mask the components of (f ,F) and (f̄ , F̄)
that differ. Indeed, we know that for some row vectors v,w,w′, it holds that
f = Dv+ (wD⊥)⊤ and f̄ = Dv+ (w′D⊥)⊤. Similarly, for some V,W and W′,
F = DV + (WD⊥)⊤, and F̄ = DV + (W′D⊥)⊤.

Let P ′ be an uniformly random function, and consider the following function:

P (j) =

{
P ′(j), j = j∗Enc
P ′(j) +∆j , j ̸= j∗Enc

where ∆j = w−w′ +x⊤
j (W−W′). It is not hard to see that P is an uniformly

random function. Now consider the mental experiment where B runs the same
but using the random function P defined above. Since P is uniformly random,
the probability that B forges a valid tuple in this mental experiment is the same

35



as the probability that B forges a valid tuple in the real experiment. Also, for
any j ̸= j∗Enc the value y computed at the j-th encryption oracle query is:

y =
((

f̄ + F̄xj

)⊤
+ P (j)D⊥

)
[uj ] =

((
f̄ + F̄xj

)⊤
+ (P ′(j) +∆j)D

⊥
)
[uj ] =

=

((
f̄ + ((w −w′)D⊥)⊤ + (F̄+ ((W −W′)D⊥)⊤)xj

)⊤
+ P ′(j)D⊥

)
[uj ] =

=
(
(f + Fxj)

⊤
+ P ′(j)D⊥

)
[uj ].

The probability that the reduction B creates a forgery is Pr [H2 = 1 ∧ Guess],
and the two events are independent. Moreover, since Pr [Guess] = (QEncQDec)

−1,

by Lemma 4 we have that Pr [H2 = 1] ≤ n(n+1)QEncQDec

q .

5.1 Publicly-Verifiable Rand-RCCA PKE

We show two publicly verifiable Rand-RCCA PKE schemes based on the scheme
from Section 5. Following the ideas in [FFHR19], we append a malleable NIZK
proof (essentially a Groth-Sahai proof) that [y]T and π are well-formed to the
ciphertexts of PKE from the previous section. The decryption algorithm outputs
the decrypted message only if the NIZK proofs are valid. Public verifiability
follows because the NIZK proofs can be verified using the public parameters.

Let PKE1 = (KGen1,Enc1,Dec1,Rand1) be the scheme of Section 5 instan-
tiated using the benign proof system of Section 3.1, and let PEvl2 and PS2 =
(PGen2,PPrv2,PVer2) form a malleable NIZK system for membership in the re-
lation

R2 =

{
(pk, [x]), ([y]T , π, r) :

y = f⊤u+ x⊤Fu

PPrv1(ppk , [u], r) = π

}
,

and where the allowable set of transformations contains all the transforma-
tions (Tel, Twit) such that it exists r̂ with Tel(pk, [x]) = pk, [x̂], Twit([y]T , π, r) =

[ŷ]T , p̂k, r+ r̂ and ([x̂], [ŷ]T , π̂) = Rand1(pk, ([x], [y]T , π); r̂); each transformation
in the set of allowable transformation is uniquely identified by a vector r̂.

The pv-Rand-PKE scheme PKE2 = (Init,KGen2,Enc2,Dec2,Rand2,Ver) is
identical to PKE1, except that

– KGen2 additionally samples the common reference string for PS2,
– the encryption procedure computes a ciphertext as in PKE1 but additionally

computes a proof π2 for PS2 and outputs a ciphertext C = ([x1], π2),
– the decryption procedure first checks the proof π2 holds w.r.t. the instance

(pk, [x]) and, if so, it outputs M = (−a⊤, 1)[x] (and ⊥ otherwise),
– the re-randomization procedure randomizes [x] as in PKE1 and uses PEvl2

for the remaining part of the ciphertext, and
– Ver2 simply checks the proof π2.

Theorem 4. If PS2 is adaptively sound, (ϵ, O(T ))-composable zero-knowledge,
and perfect derivation private, and PKE1 is mRCCA secure then PKE2 is pub-
licly verifiable, perfectly re-randomizable, and mRCCA-secure. Specifically, for
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any PPT A making up to QEnc encryption queries and QDec decryption queries
and with running time T exist PPT Brcca making the same number of queries
and adversaries Bsnd,Bzk with similar running times

AdvmRCCA
A,PKE2

(λ) ≤AdvmRCCA
Brcca,PKE1

(λ) +Advsnd
Bsnd,PS2

(λ) + ϵ

The proof of the theorem follows by inspection of the proof of Theorem 2 in
[FFHR19]. In more detail, their proof proceeds in two steps. First, it reduces
to the adaptive soundness of the NIZK proof system to claim that if a publicly-
verifiable ciphertext decrypts correctly then its respective non-publicly verifi-
able ciphertext should decrypt correctly too. We notice that this step can be
performed tightly relying either on statistical adaptive soundness of the proof
system or relying on the computational soundness of the proof system when the
language proved by the proof system is witness samplable. The reason is that
the reduction can check which one of the many NIZK-proofs from the adver-
sary breaks adaptive soundness before submitting it as its forgery. The second
step uses composable zero-knowledge to first tightly switch the way the public
parameters are generated and then to switch (all together) the proofs for the
ciphertexts from real to simulated.

To instantiate the malleable NIZK, we consider a construction along the
same line of [FFHR19]. In more detail, [FFHR19] introduced an extension of
the Groth-Sahai proof system that is zero-knowledge even for pairing prod-
uct equations where the GT -elements are variables. Their idea is to commit
the elements in GT using a commitment scheme with nice bilinear proper-
ties. Groth-Sahai Proofs can be instantiated under any Dk-MDDH Assumption
[EHK+13] and, given their nice algebraic properties they posses malleability
property [CKLM12]. The verification equation uses a special projecting bilinear
map ẽ : Gk+1

1 ×Gk+1
2 → Gm

T . In general, the map ẽ with the optimal m depends
on Dk (not only on k), as was proven [HHH+14]. Groth-Sahai Proofs are per-
fect adaptive sound, however we also make use of a QA-NIZK for linear spaces
[KW15] which is computationally adaptive sound. Fortunately, the language to
be proved is witness samplable, thus the tight-security of PKE2 holds. Recall
that we need a NIZK for the following relationship:

R2 =

{
(pk, [x]1), ([y]T , π, r) :

y = f⊤u+ x⊤Fu

PPrv1(ppk , [u]1, r) = π

}
,

We follow a similar approach to [FFHR19], specifically the proof includes:

1. Commitments to [y]T and commitments to [u⊗ u]T .
2. A commitment [c0]1 ∈ G3

1 to [f⊤Dr]1 and commitments [c1]1, . . . , [cn+1]1 to
the components of the vector [F⊤D∗r].

3. Commitments [cn+2]1, . . . , [cn+2+nd]1 to the elements of the vector [u⊗ r]1.
4. An (extended) GS proof of the equation [y]T = [1]1·[f⊤Dr]1+[x⊤]1·[F⊤Dr]1.
5. An (extended) GS proof of the equation [k⊤D⊗ I]1 · [u⊗ r]1 = π.
6. n2 (extended) GS proofs of the equations [I⊗D]1 · [u⊗ r]1 = [u⊗ u]T .
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7. A proof that the commitments [c0]1, . . . , [cn+1]1 are well formed. This can
be proven with one proof of membership in a linear spaces in each group
[JR14,KW15]. With more detail, the proof shows that [u]1 = [D]1r and that
the commitments commit to r using the basis [f⊤D]1 and [F⊤D]1 to commit.

As the reader might have noticed, the proof is quite expensive, as it contains
more than mn2 elements in GT . In the next paragraph we show how to reduce
the size of the proof relying on a stronger cryptographic assumption.

A more efficient tight-secure pv-Rand-RCCA PKE. To facilitate our
more efficient scheme, we introduce a stronger variant of the MDDH assumption
(cf. Definition 1) in which the adversary gets not only a matrix [A], but also the
tensor product [A ⊗A] in order to distinguish an element from span([A]) and
random.

Definition 12 (Tensor Matrix Diffie-Hellman assumption in Gγ). The
Dℓ,k-Tensor-Matrix-Decisional-Diffie-Hellman (TMDDH) assumption in group
Gγ holds if for all non-uniform PPT adversaries A,

|Pr [A(G, [A⊗A]γ , [A]γ , [Aw]γ) = 1]− Pr [A(G, [A⊗A]γ , [A]γ , [z]γ) = 1]|

is negligible, where the probability is taken over G = (q,G1,G2,GT , e,P1,P2)←
GGen(1λ), A← Dℓ,k,w← Zk

q , [z]γ ← Gℓ
γ , and the coin tosses of adversary A.

The TMDDH assumption can be seen as a generalization of the “square-Diffie-
Hellman” assumption [BDS98,MW96], and as a special case of the “Uber as-
sumption family” [Boy08]. Since a TMDDH adversary gets quadratic terms
[A ⊗ A] “in the exponent”, it is not clear how this assumption relates to the
more standard MDDH assumption. However, we remark that the TMDDH as-
sumption holds generically for large enough dimensions, at least for uniformly
random A.

To explain what we mean by “holds generically”, we give a brief explanation
of the generic group model (in the formulation of Maurer [Mau05]). A generic
adversary on assumptions in a group only interacts through an oracle with the
investigated group. Concretely, this adversary initially gets only the group order
and so-called handles (i.e., running numbers) to the challenge group elements.
The adversary additionally gets access to oracles that allow to test group ele-
ments for zero (which also allows testing for equality), perform the group opera-
tion on two handles (which yields a new handle to the resulting group element),
and potentially to other operations involving group elements (such as a pairing).

It is possible to show that relative to generic adversaries, the Diffie-Hellman
and discrete logarithm assumptions hold [Nec94,Sho97]. In fact, the Uk+1,k-
MDDH assumption even holds against generic adversaries with a symmetric
k-linear map [EHK+13]. We remark that this last fact implies that also the
Uk+1,k-TMDDH assumption holds generically, even in the presence of a (sym-
metric) pairing.

Lemma 7 (Generic security of TMDDH). For k ≥ 4, the Uk+1,k-TMDDH
assumption holds against generic adversaries in a symmetric pairing setting.
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The idea of the second publicly-verifiable PKE scheme is to (1) add in the
public key the values k⊤[D⊗D] and (2) use a malleable proof system PS3 for
membership in the relation

R3 =

{
(pk, [x]), ([y]T , π, r) :

y = f⊤u+ x⊤Fu

k⊤[D⊗D]r⊗ r · [1] = π

}
,

with the same set of allowable transformation as in the previous publicly ver-
ifiable PKE scheme. The languages associated to the relation R2 and R3 are
identical, but we can obtain a more efficient NIZK proof for the relation R3.
More in detail, in contrast with the NIZK-proof of PKE2, the NIZK-proof of
PKE3:

– It does not include the commitments to [u⊗ r] but instead it includes com-
mitments [cn+2], . . . , [cn+2+d2 ] to the components of the vector r⊗ r.

– It does not contain the (extended) GS proofs of step 5 and 6 but instead it
contains a (standard) GS proof for the equations k⊤[D⊗D](r⊗ r) · [1] = π.

Theorem 5. The pv-Rand-PKE scheme PKE3 is publicly verifiable, perfectly
re-randomizable and RCCA-secure. Specifically:

AdvRCCA
A,PKE(λ) ≤AdvTMDDH

G1,Un,d,B(λ) + O (d logQEnc) ·AdvMDDH
G1,Un,d,B′(λ)

+ logQEnc ·Advsnd
B′′,PS(λ) +O

(
n2QDecQEnc logQEnc

q

)
We only sketch the proof, which is only a slight variation of the proof of Theo-
rem 3. Notice that in the proof of Theorem 3 to move from G3 to G4 we use the
Dn,d-MDDH assumption. This step changes with our modified scheme, since we
add [D ⊗D] to the public key. We thus need to rely on the stronger TMDDH
assumption. Also notice that this is the only step in the proof of Theorem 3
where the assumption over the matrix [D] is used. Finally, observe that we can
prove both composable zero-knowledge and computational adaptive soundness
of the NIZK proof system for R3 using the classical Dk-MDDH assumption.

6 Application: Universally Composable MixNet

We can plug-and-play our pv-Rand-RCCA PKE schemes in the MixNet protocol
of [FFHR19] because their protocol works for any pv-Rand RCCA scheme that
has the property of being linear and a property that holds for both PKE2 and
PKE3.

6.1 Linear pv-Rand PKE

Definition 13 (Linear pv-Rand-RCCA PKE,[FFHR19]). We say that
a pv-Rand-RCCA PKE scheme is linear if there exist a group G (for example
G = G1) and parameters ℓ, ℓ′, ℓ′′ ∈ N such that (1) every key pair (pk, sk) we
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can parse pk = ([P], p̂k) and sk = (S, ŝk), where [P] ∈ Gℓ×ℓ′′ and S ∈ Zℓ′×ℓ
q ,

(2) any ciphertext C ∈ C can be parsed as ([y], Ĉ) where [y] ∈ Gℓ, (3) for any
ciphertext C such that Ver(pk, C) = 1 the decryption procedure is linear, i.e., we
have Dec(sk, C) = S · [y] (4) let C′ = Rand(pk, C; r, r) where C′ = ([y′], Ĉ′) be a
re-randomization of C = ([y], Ĉ) and r ∈ Zℓ′′

q then ([y]− [y′]) = [P]r.

Lemma 8. The pv-Rand-RCCA PKE schemes PKE2 and PKE3 defined in Sec-
tion 5.1 are linear schemes.

Proof. Given the definition of [P]1,S,y, l, l
′, l′′ in Definition 13, we set for both

schemes the following:

– l := n+ 1, l′ := 1 and l′′ := d
– P := D∗

– S := (−a⊤, 1)
– y := x

Property 1 and 2 of Definition 13 easily follow from the above definitions. Prop-
erty 3 holds because if the verification procedure outputs 1 when given in input
the ciphertext C, the decryption algorithm returns the message [p]1 − [a⊤u]1 =
(−a⊤, 1)[x]1 = S · y. Property 4 can be easily proved since the difference be-
tween [x̂]1 and [x]1, where [x̂]1 is the first component of Rand(psk , C, r̂), is equal
to [D∗]1r̂ = [P]1r̂.

6.2 The MixNet

The MixNet ideal functionality interacts with n sender parties and m mixer
parties. The i-th sender sends the message Mi, while the mixer can decide to
mix the messages. At the end, when all the mixer have sent their inputs, the
functionality returns the list of sorted messages.

In the full version of Faonio et al. [FFHR19], it is introduced a variant of
the UC model for protocols that are auditable. This denotes protocols that
additionally include an external off-line party, the auditor. The auditor uses
only the transcript of the protocol execution and public parameters to verify the
validity of the public outputs of a protocol execution. For simplicity, we omit
this refinement of the UC model and we present our result in the standard UC
model10. The protocol is divided into 3 phases:

1. at input phase, the sender parties send pv-Rand-RCCA ciphertexts of their
messages and a simulation-extractable11 NIZK of knowledge;

2. at mixing phase, the mixers, one after the other, shuffle the ciphertexts and
compute the so-called check-sum NIZK proofs that paired with the public-
verifiability and the RCCA property are sufficient to prove the validity of
the shuffles;

10 It is easy to see that every protocol secure in their model is also secure in the standard
UC model.

11 Actually, they need a weaker form of soundness called all-but-one soundness, however
simulation extractability is sufficient.
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3. at output phase, the ciphertexts are decrypted. The nice feature of the pro-
tocol is that the statements proved by the check-sum proofs are of constant
size, independent of the number of shuffled ciphertexts.

The NIZK proofs employed in the input-submission phase are needed only
to make sure independence of the inputs. We notice that to obtain our “tightly-
secure” MixNet we need only to make sure that the Rand-mRCCA PKE and the
simulation-extractable NIZK proofs are tight secure. Let Advsim−ext

A,PS (λ) be the
advantage of an adversary A against the simulation extractability experiment
for PS, we are ready now to state the main contribution of this section.

Theorem 6. Let PKE be a linear pv-Rand RCCA PKE, PS be a simulation-
extractable NIZK, and let Π be the MixNet protocol from [FFHR19] instanti-
ated with PKE and PS. The protocol Π realizes FMix with setup assumptions
a threshold decryption functionality FTDec[PKE ] and a common-reference string
functionality FCRS. More in detail, there exist a simulator S and negligible func-
tion negl(λ,m) such that for any static-corruption environment Z with running
time TZ there exist an adversaries B,B′ whose running time is O(TZ(λ)), such
that: ∣∣∣Pr [RealZ,Π(λ) = 1]− Pr

[
{FCRS,FTDec}-HybridFMix

Z,S (λ) = 1
] ∣∣∣

≤ 3AdvmRCCA
B,PKE(λ) +Advsim−ext

B′,PS′ (λ) + negl(λ,m)

We stress that the negligible function negl(λ,m) in the statement of Theorem 6
is independent of the running time of the environment TZ , and only depends on
the number of mixers of the protocol (which we can think as a small number).
The proof of the theorem follows by inspection of the proof of Theorem 5 in
[FFHR19] and observing that the three steps of the proof that reduce to the pv-
Rand-RCCA security of PKE can be performed tightly by relying on the multi-
ciphertext RCCA security definition (cf. Definition 9). In Appendix A we give
more details and we show how to instantiate the necessary simulation-extractable
NIZK using the tightly-secure QA-NIZK based on the MDDH assumption of Abe
et al. [AJOR18]. Thus, instantiating the protocol with PKE2 (resp. PKE3) we
obtain a MixNet protocol that reduces almost-tightly in the number of mixed
messages to the MDDH (resp. TMDDH) Assumption.
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LJYP14. Benôıt Libert, Marc Joye, Moti Yung, and Thomas Peters. Concise multi-
challenge CCA-secure encryption and signatures with almost tight security.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 1–21. Springer, Heidelberg, December 2014.
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A Quasi-Adaptive NIZK Proof of Knowledge for the
Input-Submission Phase

The MixNet protocol, when instantiated with either PKE2 or PKE3 additionally
needs a simulation-extractable NIZK proof system for the relation:

R′ = {(pk, C), (r, M) : [x]1 = [D∗]r+ eM}

where e is the n+ 1-th basis. In particular, it is sufficient the notion of simula-
tion f -extractability, where f is the efficiently computable function that maps
tuples (M, r) to M. Moreover, we can focus on quasi-adaptive NIZK that works
for distribution of relation indexed by the public key pk.

We show a simulation f -extractable QA-NIZK based on the simulation-sound
QA-NIZK for linear spaces of Abe et al.[AJOR18] .

Expsim−ext
A,PS,f,R(λ)

R sampled from the relations distribution R.

(ppk , psk)← PGen(1λ,R); Set Q ← ∅;
(x, π)← A(ppk)SIM(); z ← Ext(psk , x, π);
return x ̸∈ Q ∧ PVer(ppk , x, π) = 1 ∧ ( ̸ ∃w : f(w) = z ∧ (x,w) ̸∈ R)

SIM(x,w):
π ← PSim(psk , x);
Q ← Q∪ {x};
return π.

Fig. 6: The security experiments for the NIZK argument system.

Definition 14. Let PS = (PGen,PPrv,PVer) be a NIZK argument for a lan-
guage L, we say that PS is simulation sound if there exist PPT algorithms
PGen and PVer such that the distribution of the proving key output by PGen
and PGen are identical and the proof system (PGen,PPrv,PVer) is complete and
computational (Lsim,Lver,Lsnd)-sound as per Definition 3 (namely, the proof
system is benign-sound for any PPT adversary) where Lsim = Lver = {0, 1}∗
and Lsnd = L. We call Advsim−sound

A,PS (λ) the advantage of the adversary A in the

security experiment Expsnd described in Fig. 1.

Definition 15. Let PS = (PGen,PPrv,PVer) be a NIZK argument for a rela-
tion R, let f be an efficiently computable function, and consider the experiment
Expsim−ext described in Fig. 6. We say that NIZK is simulation extractable
iff there exists a PPT algorithm Ext such that for all PPT A we have that

Advsim−ext
A,PS (λ) := Pr

[
Expsim−ext

A,PS,f (λ) = 1
]
∈ negl(λ).
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Let PS = (PGen,PPrv,PVer) be a simulation-sound QA-NIZK for linear
spaces. Consider the proof system PS′ = (PGen′,PPrv′,PVer′) for the relation
is R′

pk = {[x], (M, r) : [x] = [D∗]r+ eM} of Zn+1
q and D∗ is sampled as described

in the description of the RCCA-PKE of Section 5 and where:

– PGen′(1λ) samples U ←$ Un+1,2 runs crs ←$ PGen(1λ, [P]1) where P is the
matrix D∗∥U and outputs crs′ = (crs, [U]1).

– PPrv([x], (M, r)) samples s, computes [c] = [U]s+ eM and then it computes a
proof π using PPrv that ([c]− [x]) ∈ span([P]1) (whose witness is the vector
(r⊤, s⊤)⊤) and it outputs π, [c].

– PVer([x], π′) verifies that [c − x] ̸= [0] and that π is a valid proof of mem-
bership in the linear space spanned by [P]1 for [c− x]1.

Lemma 9. Let f be the function that maps (M, r) to M, For any adversary A
exists adversary B such that

Advsim−ext
A,PS′,f (λ) ≤ Advsim−sound

B,PS (λ) +O(1/q).

The extractor uses the trapdoor U to extract from [c] the message M. Assume
that the proof verifies but that the extracted message M′ is not the same as the
message M encrypted in x, then x−c ∈ span(P) implies that e ∈ span(P) which
can happen with probability smaller than O(1/q) over the choice of U and D∗.
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