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Abstract
Key Transparency (KT) refers to a public key distribution
system with transparency mechanisms proving its correct
operation, i.e., proving that it reports consistent values for
each user’s public key. While prior work on KT systems have
offered new designs to tackle this problem, relatively little
attention has been paid on the issue of scalability. Indeed, it is
not straightforward to actually build a scalable and practical
KT system from existing constructions, which may be too
complex, inefficient, or non-resilient against machine failures.

In this paper, we present OPTIKS, a full featured and op-
timized KT system that focuses on scalability. Our system
is simpler and more performant than prior work, support-
ing smaller storage overhead while still meeting strong no-
tions of security and privacy. Our design also incorporates
a crash-tolerant and scalable server architecture, which we
demonstrate by presenting extensive benchmarks. Finally, we
address several real-world problems in deploying KT systems
that have received limited attention in prior work, including
account decommissioning and user-to-device mapping.

1 Introduction

The term Key Transparency (KT) refers to a key distribution
system—a key directory—that provides transparency guar-
antees for its operation. These transparency properties are
often implemented using cryptographic proof techniques, but
may in some cases be implemented using trusted execution
environments as well. While KT cannot prevent the system
from misbehaving (for example, making an unrequested key
update on a user’s account), it ensures any incorrect behavior
will be detected either immediately, or with a delay. By itself,
KT does not imply security or privacy for key management;
different applications may impose different constraints on
these aspects of the system.

The importance of KT is particularly evident in end-to-
end encrypted (E2EE) communication. If the communication
service simply distributes the public keys of communication

partners, nothing would prevent it from inserting itself into
the conversation as a meddler-in-the-middle (MitM) and cap-
turing traffic intended for the victim. Realizing this obvious
problem, some communication system providers have imple-
mented mitigations like security codes, which require scan-
ning QR codes for text-based messaging or reading out long
strings of numbers among participants for calls or meetings.
However, using these techniques requires manual interaction.
KT provides an automated way of checking that the users are
getting the correct keys: as it requires no user interaction, it
provides a much more usable and secure solution.

In a KT system, the server maintains the directory of user
public keys. It periodically publishes a privacy-preserving1

commitment to its current directory on a bulletin board. The
server produces a cryptographic proof of consistency along
with any keys it distributes: the purpose of this proof is to show
that the keys distributed are both the latest and consistent with
the commitment posted on the bulletin board. A KT system
supports two types of queries. The user devices can monitor
their own key history by asking for their key history and proof.
Users can also ask for the latest key of their contacts.

In recent years, KT has gained much traction, both in indus-
try [2, 19] and academia [3, 4, 7, 12, 13, 16, 18]. The increased
interest in KT is also evident from the recently developing
IETF standardization effort [14]. Very recently, WhatsApp an-
nounced its plan to deploy KT [10], based off of the academic
papers SEEMless [3] and Parakeet [12].

While there has been a rich body of literature on KT sys-
tems, most of these prior systems suffer from scalability con-
cerns and miss out on important features that we address in
the present work. To the best of our knowledge, Parakeet is
the first paper tackling some of the scalability challenges that
arise when moving from academic proposals to large-scale

1Privacy: The keys maintained by a user as well as their key updates can
be sensitive information. Accordingly, academic and industry proposals [2–
4, 10, 12, 13] and recent standardization efforts [14] have emphasized privacy
as an explicit goal for KT systems. Thus, we also aim for privacy as a goal of
our system: in particular, lookups for a client’s key should not leak anything
about other keys stored by the system outside of what is returned by the
lookup itself.
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deployments. While Parakeet is an important first step, in this
work, we show that we can achieve the same level of secu-
rity and almost the same level of privacy as Parakeet using
a much simpler KT system that is highly scalable. The main
scalability and deployability challenges we address are:

Improving storage cost. Most KT systems are built using
a core data structure that is append-only—its state grows
forever. The append-only property is crucial for these KT
systems to achieve security but obviously presents a severe
limitation in practice in terms of massive storage costs. Para-
keet is the only KT system to date that addresses this issue, but
their solution is very complex and non-trivial to implement.

Post-Compromise Security. In any large-scale deployment,
compromises may happen eventually. Post-Compromise Se-
curity (PCS) for KT [4] helps recover from such compromises.
In particular, PCS helps a KT system recover privacy for all
updates which occur after the server’s (private) state compro-
mise. [4] is the only work to consider this issue, again at the
cost of significant complexity.

Flexible and reliable architecture. Designing a crash-tolerant
and scalable server architecture is essential for a KT system,
since the bulk of the work of a KT system is performed by the
server. The server’s design should ideally include a flexible
storage API so that data can be persisted in any external stor-
age (database) smoothly. As long as the data in the database is
consistent, any part of the server can fail and be recovered by
simply reloading the state of the directory from the database.
It is also vital that the the server’s work is easily parallelizable
for performance. Previous KT works present only the proto-
col or, at best, a prototype. We provide a full architecture and
implementation for a scalable, reliable system.

In addition to the above, we introduce the following impor-
tant features that prior work on KT systems has not addressed.

User account decommissioning. The security of a KT system
heavily relies on the assumption that a user comes online in-
termittently to monitor their own key history. But the obvious
question of what happens when a user deletes their account
is often overlooked. If a user deletes her account, she will
never come back online; this means a malicious party can
keep impersonating that user account to her contacts. This
behavior will go undetected unless the user communicates
with her contacts through some out-of-band channel to inform
them that she is no longer using the system. Existing KT sys-
tems do not account for this, which presents another serious
limitation of current work in this space.

Public-facing username. All KT systems assume some user
identifier, which we call the username. The key directory then
maps each username to a device-key, or a list of device keys.

It is crucial that these usernames are human-readable and
human-memorable identifiers, such as phone numbers or
email addresses, which the users can share with each other
out-of-band. To understand why, let us consider a toy exam-

ple. Say, both Alice and Bob are registered with the server
with their usernames alice and bob, respectively. But, the
(malicious) server tells Alice that Bob’s username is bobfake
and tells Bob that Alice’s username is alicefake. The server
can maintain 4 accounts now: alice, bob, alicefake, and
bobfake. Since Alice will monitor her own account (alice)
and Bob will monitor the account he thinks belongs to Alice
(alicefake), no inconsistency will ever be caught by the KT
system. In other words, a KT system can only ensure that a
consistent view of the history of the key evolution is main-
tained for each username and that the username is unique
within the system.

To meaningfully translate this guarantee for users, it is of
paramount importance that the users know each other by the
correct usernames. However, many E2EE communication sys-
tems have an internal immutable representation of a username
(such as a Uniquely Universal Identifier, or UUID) and this
is what they use to index the directory. This UUID is differ-
ent from the public-facing username [11]. It is meaningless
to expose these UUIDs directly to human users. Moreover,
many services may choose to allow a user to pick multiple
public-facing usernames that internally represent the same
UUID (such as multiple email addresses). We argue that KT
systems should aim for the stronger goal of providing security
no matter which username a user’s contact chooses for key
lookups. No KT systems to date allow for this.

Supporting multiple user devices. In practice, users often
have multiple devices they use with an E2EE service, so any
practical KT system will need to incorporate mechanisms for
multi-device support. While this feature has been considered
in Keybase [9] and Parakeet [12], they do not address the
challenge of handling device names, which are also typically
UUIDs. In particular, introducing devices begs the question
of what exactly is mapped to public keys. For instance, it
would be impractical to simply map device names to keys
since such device names are meaningless to human users and
are therefore harder to check for inconsistencies by users. A
KT system would therefore need to have a meaningful way
of mapping public-facing usernames to lists of device names.

Our Contributions. In this work, we present OPTIKS, a
new KT system that addresses the challenges mentioned
above. To keep our design simple and easy to parse, we split
the design into two parts: OPTIKS-core and OPTIKS-ext.

OPTIKS-core. We begin by constructing OPTIKS using an
append-only data structure (a simplified version of ordered
Zero-Knowledge Sets (oZKS) [3,4,12]). The resulting simpli-
fied protocol, which we refer to as OPTIKS-core, already out-
performs the current state-of-the-art system Parakeet, while
achieving the same level of security and privacy (it leaks a tiny
bit more than Parakeet, which we also show how to reduce).
Crucially, OPTIKS-core reduces the storage cost by almost a
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half when compared to Parakeet2. In particular, for a key direc-
tory of 1 million keys, Parakeet has a storage cost of roughly
1.1 GB, whereas OPTIKS-core requires only 517 MB.

OPTIKS-ext. While our OPTIKS-core protocol is already
very performant, it does not have all the features and opti-
mizations that are desirable for a full-fledged KT system. We
describe how to add these features to OPTIKS-core in Sec-
tion 5. In particular, we show how to modify OPTIKS-core to
keep the core data structure compact, so that it does not grow
indefinitely. In our new compaction strategy, the server’s pri-
vate state automatically refreshes periodically. This means we
get a limited form of post-compromise security. To the best of
our knowledge, ours is the first full-featured KT system that
provides a limited form of PCS security ( [4] defined and built
PCS for the core data structure: Zero-Knowledge Sets. But
they did not build a PCS-secure KT system). We also add all
the additional features we described above in OPTIKS-ext.

Flexible and reliable architecture. One of the core con-
tributions of OPTIKS is its flexible and extensible system
architecture, which is crucial for maintaining a large-scale
deployment. We split the design of OPTIKS into three main
components: a Query Service, a lightweight Update Service,
and an Update Task. The two services are instantiated as
web services with REST APIs. The Update Service simply
receives and stores key update requests in a database, from
which the Update Task periodically pulls them for processing.
The Query Service responds to query requests and period-
ically receives updates from the Update Task. The Query
Service leverages our storage API that allows a portion of
the data to reside in RAM and the rest in a database. We
show that a model of eventual consistency, where replicated
databases may lag behind the primary database and not reflect
the latest changes immediately, suffices for OPTIKS. With
this, the Query Service’s operations can be parallelized even
across multiple virtual machines.

Experiments. We provide detailed benchmarks for our sys-
tem, dividing them into micro-benchmarks and full-system
benchmarks. To demonstrate that our system is more scalable
than prior work, we run it on benchmarks significantly larger
than any presented in prior work. For example, for a key di-
rectory of 220 keys, a single instance of our Query Service
can serve more than 4000 queries per second at a bandwidth
of around 20 MB/s (Figure 2), while our Update Service/Task
can process more than 1000 updates per second while sustain-
ing a latency of one second (Figure 3a). For a much larger
key directory of 226 keys, our Query Service can still serve
2240 queries per second at a bandwidth of 13.89 MB/s, and
our Update Service/Task can process still around 280 updates
per second; in this case the latency remains still less than 4
seconds on average. All of these experiments include the cost
of database access, networking, and REST API overhead. We

2Parakeet already outperforms older KT systems in terms of storage cost

note that the major bottleneck for our update rate is database
write performance, since we use costly multi-table transac-
tions to simplify our implementation.

Comparison with prior systems. To contextualize the per-
formance of our system with prior work, we provide detailed
comparison with state-of-the art KT systems. The system
most closely comparable to ours is Parakeet [12]. We show
that we outperform Parakeet in both performance and storage
cost. For example, it takes OPTIKS less than 100 seconds to
update 100K keys to a key directory with 500K keys, whereas
Parakeet reports a time of 19 minutes.

We also compare with Merkle2 [7], demonstrating that
our update rate is more than 100 times that of Merkle2 and
our query rate is 1.67 times that of Merkle2. For a rather
small key directory of 220 keys, our memory cost is only
517 MB, whereas Merkle2 requires as much as 22 GB. For
larger directories the difference would be even more dramatic.
We note, however, that due to its lack of privacy and full
end-to-end benchmarks, the scope of comparison between
Merkle2 and OPTIKS is limited.

Finally, we compare with SEEMless [3], which also does
not present full end-to-end benchmarks, limiting our ability to
compare. For a key directory of 224 keys, our average query
and key update times are less than 2.5% of those reported for
SEEMless. Our average query verification time (Table 3) is
less than 1% of that reported for SEEMless, while our query
is on average 71% smaller in size.

2 System Setup and Overview

Our KT system models a central server that stores a directory
of usernames and the corresponding public keys. There exist
intermittent time intervals that we refer to as epochs, which
we expect to be on the order of seconds, during which the
server updates the directory it stores with new key update
requests and posts a commitment to this data. Our system also
includes longer time intervals (e.g. a month) that we refer to as
time periods, which we will discuss in Section 5. Users of the
system can query the server to look up another user’s key(s) or
to get the history of the updates to their own key(s). We also
assume that third-party auditors (though the users can play
the role of the auditors as well) audits the commitments for
consistency. We now describe this process in more detail, with
an overview of our assumptions, the security properties we
expect such a system to meet, and a summary of our solution.

Participants. Our system has the following participants:

• Users. A user can register an account with the server and
also may permanently leave the system by decommission-
ing their account. Associated to each user is a username,
such as an email or human-readable string, that represents
their public-facing identity in the system. Also associated
to each user is an internal, unique, and static user id, such as
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a UUID, that is not exposed to human users of the system.
Note that in practice a username may change or multiple
usernames may be associated with a user (e.g., if they add an
extra email to their account), so the user id always uniquely
identifies the user within the system.

• Client devices. Each user has at least one device which they
use to communicate (e.g. phones, computers, etc.), where
each device has its own public key that must be stored and
distributed by the system on the device’s behalf. We do
not assume any coordination between the user’s devices.
Clients may update their public keys, look up the keys of
other clients in the system, and also check the history of
updates to their keys. Associated to each client is an internal,
unique device id, such as a UUID, that is not exposed to
human users of the system.

• Server. The server maintains the directory mapping users to
their public keys and distributes these keys among the users
of the system when queried. It posts a public commitment
to the data each epoch. In this work, we also refer to the
server as the “service provider.”

• Auditors. Auditors verify updates made by the server are
well-formed via the publicly posted commitments. To en-
sure privacy, this verification does not involve checking
the public keys themselves are correct (indeed, this task
falls onto clients, as we mention above). Auditors can be
third-party entities or security-conscious users.

• Bulletin board. The server posts the commitments to its
directory on a public bulletin board to which other partici-
pants of the system have access. The bulletin board should
be tamper proof as well as append-only and also all partici-
pants should have a consistent view of its contents.

Assumptions. As is standard in any KT system, we assume
that the server can be malicious and distribute incorrect keys
for its users (in the hope of mounting a MitM attack). How-
ever, the server is trusted to exercise access control and not
give out every client’s public key to everyone else. In other
words, the server is trusted for privacy.

The client devices can be malicious in that they may aim
to learn private information (public keys, how often a certain
user changes her key, etc.) about other clients who are not on
their contact list.

We assume there exists at least one honest auditor who
verifies each update made by the server via commitments
posted to the bulletin board.

Our system also relies on all participants having a consis-
tent view of the commitments posted to the bulletin board,
which we highlight is a core requirement in all KT systems.
As discussed in [3, 7, 12, 13], this could be implemented, for
instance, via a gossip protocol or by posting the commitments
to a blockchain. Furthermore, we assume the clients, server,
and bulletin board have approximately synchronized clocks.

Although we do not model this, we assume that the server

enforces some kind of access control for clients querying
its system, e.g. rate limiting key lookups or executing key
lookups only if the requesting user is a contact of the user
whose key is being queried.

Our system relies on users being able to verify the history
of their key updates. Therefore, users must have some way of
keeping track of their devices and the approximate times of
their key updates. This is an assumption made of other KT
systems like SEEMless [3]. One way to facilitate this is to
enable users to add notes to their key updates, such as “added
new laptop.” Also crucial to our system is that clients must
be online to check their key history each time period. We
utilize this assumption as part of our scalability optimizations,
which we discuss in Section 5. Given that time periods are
long, we expect most clients will achieve this in practice and,
indeed, this is a common assumption of KT systems [7, 12].
Moreover, this is an improvement over many KT systems
which assume that a client must be online each epoch to
check their keys [13].

Lastly, the core data structure underlying our KT system
is a dictionary that uses a key-value abstraction. Since our
construction involves public keys, wherever possible we dis-
ambiguate between the two by referring to them either as
dictionary keys or public keys explicitly. However, where it is
clear from context, we will simply say “key” to mean either
dictionary key or public key.

Security Properties. At a high level, we expect OPTIKS to
achieve the following security properties. We present these
definitions in more detail in the full version.
• Completeness. When the server is honest, a user that looks

up another user’s key should receive the latest value of that
key, and this should be consistent with what other users of
the system see. This also means that all proofs the server
provides during a lookup must verify.

• Soundness. Assuming that all epochs are audited, the server
cannot lie about a key’s value during a lookup without the
inconsistency being caught during a history check.

• Privacy. A KT system should maintain privacy for the users
of the system and updates to their keys. We model this with
a definition that says participants of the system (excluding
the server) should not learn anything from queries to the
server except for some well-defined leakage function. For
instance, a key lookup for a user should not leak anything
about the keys of other users of the system.

3 Building Blocks

In this section, we introduce the primitives Private Authenti-
cated History Dictionaries (PAHD) and ordered zero knowl-
edge sets (oZKS) which form the core of our construction.

Private Authenticated History Dictionaries. We define
Private Authenticated History Dictionaries (PAHD), a new
cryptographic primitive which forms the basis for OPTIKS.
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This primitive extends the authenticated history dictionary
introduced and used by VeRSA [17]. At a high level, a PAHD
enables storing and committing to data using a dictionary key-
value abstraction. A server can update what it stores, which
begins a new epoch with a new commitment to the dictionary,
by adding new key-value pairs or updating the values for
existing keys. Notably, the structure preserves the history of
changes for keys. Clients can look up a key to retrieve its latest
value, along with a proof that the value is correct. Clients can
also check the update history for a particular key to learn
when it was updated and to what values—this can be used
to verify that the recorded history of changes is accurate. We
also assume that associated with a PAHD is a randomness
space R from which a random seed can be chosen to initialize
a PAHD. We provide an informal overview of this primitive
below and a detailed description in the full version.
• PAHD.Init: The initialization algorithm outputs the initial

commitment to the empty dictionary.
• PAHD.Upd: The update algorithm updates the dictionary

with a set of key-value pairs and outputs the updated dictio-
nary and update proof.

• PAHD.Lkup / PAHD.VerLkup: The lookup algorithm re-
trieves the value v for key k along with a membership proof
if k is in the dictionary or non-membership proof if k is not.
The lookup verification algorithm then verifies this proof.

• PAHD.Hist / PAHD.VerHist: The history algorithm returns
the set of values that key k has been assigned over time, the
epochs during which each value was assigned, and the mem-
bership proofs for each key-value mapping. The history
verification algorithm verifies the proofs that are returned.

• PAHD.Audit: The audit algorithm verifies the update proof
between two consecutive commitments.

Security definitions. We present an overview of the security
properties that a PAHD should meet below and formalize the
definitions in the full version.

• Completeness. Completeness captures the following cor-
rectness properties: if a PAHD is initialized and updated
honestly, then auditing between any two epochs should suc-
ceed, the lookup for any key k should return its latest value
v and should verify, and the history check for k should re-
turn the correct history of values and the epochs they were
added and should also verify.

• Soundness. PAHD soundness guarantees that, assuming
the data store has been audited successfully by an honest
auditor each epoch, a lookup for a key k cannot return some
value v that is inconsistent with what the history algorithm
returns for k at that epoch. For a PAHD scheme that meets
soundness, this means that the server cannot lie about a
key’s value during a lookup without the inconsistency being
caught during a history check. However, this does mean
that the user who added the key must perform such history
checks to verify that the key’s value is correct.

• Privacy. The privacy goal for PAHD is that the outputs of

Upd (which is used for auditing), Lkup, and Hist should
not leak anything beyond the answer and what is specified
by a well-defined leakage function L on the directory’s
state. We model this using a real-ideal world computational
indistinguishability game where a simulator must simulate
the outputs of these algorithms using the given leakage.

To instantiate a PAHD scheme, we make use of ordered
Zero-Knowledge Sets, which we define next.

Ordered Zero-Knowledge Sets. An ordered Zero-
Knowledge Set (oZKS) is a primitive that lets a potentially
malicious prover to commit to a collection of (label, value)-
pairs such that the prover can later prove the membership or
non-membership of labels in the collection succinctly. The
primitive also enables append-only updates to the collection
of pairs. This primitive additionally requires a strict ordering
on elements inserted by attaching the epoch of insertion along
with the label-value pairs and committing to this as part of the
data. This primitive is zero-knowledge because the commit-
ment does not leak information about the collection of data
and the proofs do not leak information about any other data
in the collection.

oZKS builds on the aZKS primitive introduced in [3]. Prim-
itives closely related to oZKS were defined in [4, 12, 15]. We
provide an informal overview of this primitive below and a
detailed description in the full version.
• oZKS.Init: The initialization algorithm outputs an initial

commitment to the empty datastore.
• oZKS.Update / oZKS.VerifyUpd: The update algorithm

adds a set of new label-value pairs to the datastore, out-
putting the new commitment to the data and an update
proof. The update verification algorithm then verifies the
update proof between consecutive commitments.

• oZKS.Query / oZKS.Verify: The query algorithm returns
the value associated to the queried label, along with the
query proof and the epoch that the label was added (or ⊥
and a non-membership proof if the label is not a member).
The query verification algorithm verifies the value returned
by a query using the proof.

Construction. We construct an oZKS from an append-only
strong accumulator (aSA), a simulatable verifiable random
function (sVRF), and a simulatable commitment scheme
(sCS), as in [3, 12].

The aSA is constructed from a Merkle Patricia Trie and
serves to commit to a dictionary. The label-value pairs serve
as the leaves of the tree, where labels are used to specify
the location of the leaf. Instead of using the label directly
(which could leak sensitive information), we use the sVRF to
compute the positions of the labels in the tree. We then use
the sCS to commit to the label’s value; this commitment and
the epoch when the label was added serve as the value stored
for each label.

Security Definitions. Just as for an aZKS, we expect an oZKS
to meet completeness, soundness, and privacy. We describe
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these definitions in detail and show that our construction
meets them in the full version and provide a brief overview
of soundness and privacy below.

4 OPTIKS-core: Core OPTIKS Protocol

In this section, we describe a simple, lightweight PAHD con-
struction which we use as the core of OPTIKS, referred to
as OPTIKS-core. For simplicity, we assume that each user
has one client device and so we use usernames directly as
the dictionary keys and the corresponding cryptographic pub-
lic keys as the values. (We consider the multi-device setting
in Section 5.) Our protocol relies on an oZKS as described in
Section 3 for its core building block.

▷ PAHD.Init(r): The server chooses a random seed and ini-
tializes an empty oZKS via oZKS.Init by giving r as input.
The oZKS commitment is returned as the initial commit-
ment and the oZKS initial state is stored in the server’s
state. The server also initializes the epoch to 0 and stores
this in its state.

▷ PAHD.Upd(stt−1, [k j,v j] j): The server adds the key-value
pairs that are input to the oZKS to create a new commit-
ment to the dictionary. It first checks that all the keys to
be updated are unique; if not, it returns ⊥. In order to dif-
ferentiate between versions for a key, the server uses the
key concatenated with its version number as the oZKS la-
bel. We assume that the server keeps track of the version
number for each key in its state. Thus, for each key-value
pair (k,v), the server first checks if the key already exists
in the oZKS. If it does not, the server uses (k | 1) as the
label. Otherwise, if the key is already at version n, then
the server uses (k | n+ 1). Once all the label-value pairs
have been formed, the server adds them to the oZKS via
oZKS.Update. The server increments the epoch t − 1 in
its state to t, and the resulting oZKS commitment comt
serves as the PAHD commitment for epoch t. The oZKS
update proof πupd serves as the PAHD update proof Π

Upd
t

for epoch t and is stored in the server’s state. The server
also stores in its state the new oZKS datastore and state.

▷ PAHD.Lkup(stt ,k): For a lookup request for key k, the
server retrieves from its state the latest oZKS commitment
comt and the latest version number α for k (where α = 0 if
k is not in the PAHD). If k is in the PAHD, then the server
forms labels (k | 1), . . . ,(k | α) and calls oZKS.Query for
each label to get back [(πi,vi, ti)]αi . To retrieve the non-
membership proof πα+1 for the next version of the key (or
to prove that k is not in the dictionary when α = 0), the
server calls oZKS.Query for label (k | α+1). The server
returns either vα as the value for k if α > 0 or ⊥ otherwise.
The server returns as its lookup proof:

– Correct version i is set at epoch ti: For each i ∈ [1,α],
πi serves as the membership proof for (k | i) with value vi

and associated epoch ti in oZKS w.r.t. comt . This means
the server must return [(πi,vi, ti)]αi as part of the proof.

– Server could not have shown version α + 1: Proof
πα+1 serves as the non-membership proof for (k | α+1)
in oZKS w.r.t. comt .

▷ PAHD.VerLkup(comt ,k,v,π): The client verifies each
membership proof for labels (k | i) for i ∈ [1,α] and
non-membership proof for (k | α + 1) w.r.t. comt via
oZKS.Verify. The client also checks that version α is less
than the current epoch t, since otherwise this would imply
multiple versions were added in the same epoch 3. We want
to preserve a total ordering of key versions and so wish to
prevent this from happening. Lastly, the client verifies that
the update epochs t1, . . . , tα are monotonically increasing.

▷ PAHD.Hist(stt ,k): This algorithm proceeds the same as
Lkup, except that in its syntax it explicitly returns all key
versions rather than including them in the proof. Looking
ahead, history checks will be different when we introduce
our scalability optimizations in Section 5.

▷ PAHD.VerHist(comt ,k, [(vi, ti)]ni ,Π
Ver): This algorithm

proceeds identically to that of VerLkup.
▷ PAHD.Audit(com j,com j+1, j, j + 1,ΠUpd

j+1): The audi-

tor verifies the oZKS update proof in Π
Upd
j+1 via

oZKS.VerifyUpd and then checks that j + 1 ≤ t, where
t is the current epoch.

Security and Privacy of OPTIKS-core. We formally prove
the security of privacy of OPTIKS-core in the full ver-
sion.Here, we give an informal description of the leakage of
OPTIKS-core. During updates, our protocol leaks the number
of keys to be updated and the set of keys that were queried to
Lkup or Hist since the previous update. Both lookups and his-
tory checks leak the value and epoch of addition for each ver-
sion of a key. Our leakage profile is therefore nearly the same
as that for SEEMless and Parakeet, except that key lookups
in their protocols leak only the version number for the key
and the value and epoch of addition for the latest key ver-
sion. Looking ahead, we will describe how to minimize such
leakage for lookups in Section 5.

Comparison with SEEMless [3] and Parakeet [12]. While
our protocol has some similarities to that of SEEMless and
Parakeet (which itself is based off SEEMless), so we present
a detailed comparison here. The first major difference is that,
the data needed to be stored by our core protocol is half that of
SEEMless and Parakeet (before compaction). This is because
when a key is updated in SEEMless and Parakeet, they must
add an extra label to the oZKS indicating that the prior key
version is stale, in addition to the label storing the new key
version. This means that two labels must be added to the
oZKS during each key update in their protocols, while our
protocol requires only one label to be added.

3Since we have very short epochs, this is not a limitation
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Another major benefit of our protocol is that a history check
in our protocol is far more efficient. Both SEEMless and Para-
keet require adding special marker nodes to the oZKS for key
versions that are powers of 2, which require checking approx-
imately three proofs for each key version in addition to check-
ing a number of proofs that are logarithmic in the number of
total epochs. Our protocol simply requires checking a single
proof for each key version and one non-membership proof.
We also note that audit costs for our protocols are equivalent,
with the caveat that Parakeet requires slightly more checks
due to verifying the deletion of appropriate elements.

These improvements come at the cost of more expensive
lookups. Our lookup algorithm is equivalent to a history
check, meaning that the number of proofs needed to be sent
and verified is linear in the number of key versions. In con-
trast, SEEMless and Parakeet require verifying only three
proofs. As we describe above, this also means that our pro-
tocol leaks more for lookups as well, with the benefit of this
being a simpler and more efficient protocol.

In the next section, we describe how to enhance our proto-
col to gain the best of both worlds: overall efficiency improve-
ments that improve scalability and reliability while also in
turn reducing extra leakage and overhead costs for lookups.

Comparison with Merkle2 [7]. Merkle2 [7], another KT
system, is currently under consideration for standardization
by the IETF working group on KT [14], so we briefly compare
its protocol to OPTIKS. However, we emphasize that Merkle2

cannot be truly compared to OPTIKS because their assump-
tions make it unsuitable for our use-case and it also lacks the
strong privacy guarantees required for KT (see Section 1 for
more discussion on this). In particular, [7] strongly relies on
an external PKI to build a KT system. Since the fundamental
goal of a KT system is building a transparent PKI for client
keys, basing it on an external PKI does not serve the purpose.

At a high level, Merkle2 trades off small update proof costs
for large storage costs, while we opt for much smaller storage
costs and larger update proof costs. We believe ours is the
right trade-off because the large storage costs of Merkle2

prove unscalable in practice, while auditing our update proofs
are still practical even at large scale.

5 OPTIKS-ext: Full Featured OPTIKS

As described in Section 1, there is a lot more to making the
system deployable beyond the base protocol. Here we discuss
in detail how we address those challenges by describing our
full-featured protocol OPTIKS-ext. In particular, we describe
scalability and reliability optimizations as well as important
feature additions to our core protocol.

Reducing storage. A major downside of OPTIKS-core is
that it must store all past key updates, resulting in storage
that grows indefinitely. To avoid this, we must find a way to
safely delete old data, without compromising the transparency

guarantees. Parakeet [12] does this with a complex system
of bookkeeping. We propose a much simpler solution: we
consider time periods of a fixed length (e.g., a month). At
the beginning of each time period, we start a new PAHD
structure, copying over each key along with its latest version.
We assume that users perform a history check at least once
a time period. (The only other system to consider limiting
storage, Parakeet, makes a similar assumption.) The user is
responsible for verifying that their latest key version from the
previous time period is accurately copied to the current time
period. The service thus only needs to retain the two most
recent PAHDs—all earlier data can be archived or deleted.

Overall, this change means that lookups will only retrieve
key updates from the current time period, which may signifi-
cantly reduce lookup cost, particularly for users with frequent
updates. History checks will return key versions from the
current time period and the previous one. Finally, note that
auditors will not need to audit the transition between time
periods.

Post-compromise security. Because we generate a fresh
PAHD with a fresh server secret every time period, we get a
limited form of post-compromise security. In particular, if the
service provider’s state is revealed at some point, it will not
affect the privacy of key updates from future time periods.

Queries w.r.t. different commitments. If we want to sup-
port a very high query throughput, one option (as described
in Section 6), is to have multiple servers responding to
oZKS queries (i.e. generating oZKS membership and non-
membership proofs). However, this introduces the possibility
that these servers might be slightly out-of-sync and thus an-
swer queries w.r.t. different epochs. Note also that a PAHD
lookup response actually consists of many oZKS query re-
sponses. Thus, we must consider the possibility that these
oZKS query responses are distributed to different oZKS
servers who respond w.r.t. different epochs. One option is
to require strong consistency between servers, i.e. that they
are always answering queries w.r.t. the same epoch, but this
is expensive. Instead, we show in the full version of the paper
that we can relax our PAHD to account for this.

Client caching and reducing bandwidth overhead. At
the end of Section 4, we discuss how OPTIKS-core makes
storage and efficiency improvements that sacrifice some of
the efficiency and privacy of lookups. We now describe some
improvements that enable us to improve our lookup costs.

First, we observe that when a client performs a lookup, the
client can record the latest version number; on subsequent
lookups for the same key, the client only needs to retrieve
membership/non-membership proofs for subsequent versions.
The append-only property guarantees that the earlier versions
will still be in the data structure. For example, if the client has
already performed a lookup for a contact’s key in the current
time period and that key has not changed since, then the client
only needs to retrieve and verify a single non-membership
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proof. If only a single key has been added since then, then the
client only needs to check a membership proof for the latest
key version and a non-membership proof.

The above cases indicate an efficiency improvement over
the lookup protocols of SEEMless and Parakeet, which require
always checking three membership/non-membership proofs.
We note that for new lookups with many key versions, our
algorithm remains more expensive; however we conjecture
this is an outlier case, especially given that lookups return key
versions only for the current time period. Clients could thus
cache the most recent version numbers for their most frequent
contacts and extend similar savings to history checks.

For the second optimization, we note that our lookup as
described in the core protocol requires sending all of the
user’s previous public keys in order to check membership
proofs, which increases the bandwidth required for lookups.
We can avoid this by modifying our oZKS primitive so that
it checks membership proofs without also verifying the asso-
ciated value. For a lookup the client just needs to know the
current key and that the server stored prior versions of the
key; knowing the values of the old keys is unnecessary. This
would mean that lookups could send the membership proofs
for old key versions without needing to send their associated
values, reducing bandwidth.

These optimizations also reduce the leakage of lookups,
since only the most recent value of the key and the epoch of
addition for the new versions to be checked need to be leaked.

Account decommissioning. When a user stops using the
system, they will presumably no longer be auditing their key
history. We would still like to make sure that a malicious ser-
vice provider cannot replace their key and impersonate them
in future communications. To do this, we add an additional
oZKS4 which stores the usernames that have been decom-
missioned. This oZKS will not be reset at each time period;
instead, the service provider will continue adding to the same
oZKS throughout. This means our storage will need to grow
with the number of decommissioned accounts, but this growth
will be much slower than the total number of key updates.
A lookup for a key will return the usual oZKS proof and an
additional proof that the associated username is not in the
decommissioned-account oZKS. When the user requests that
their account be decommissioned, we add their username to
the decommissioned-account oZKS, and return a membership
proof when this is done. We provide more details on specific
algorithm updates in the full version of the paper.

Supporting multiple devices and usernames. While our
protocol thus far has assumed that each user has a single
client device with a static username that can be mapped to
their device’s public key by the server, in practice it is often
the case that a user will have multiple devices they wish to
use with the same account. Furthermore, a user may wish to

4We only need an oZKS, not a full PAHD, as we do not want entries in
this datastructure to change once they have been added.

change the usernames associated with their account, e.g. if
they use multiple email addresses, they may wish to associate
an additional email with their account.

Because we want a single account corresponding to all of
these usernames, it might seem like it makes more sense to
index the user accounts based on an internal user id. However,
as discussed in Section 1, this presents a serious problem
for transparency, since users will have no way of knowing
whether the internal user ids they are given are correct. To
address this, we change our key-update PAHD to map device
ids to public keys and add two additional PAHD structures.
The first PAHD (called username PAHD) maps each user-
name to its associated user id, and the other (called device-list
PAHD) maps each user id to a list of its associated device
ids. In response to a lookup for a particular username, the
service will return the corresponding user id and a proof w.r.t.
the username PAHD, the list of devices and a proof w.r.t. the
device-list PAHD, and the current public keys for each device5

along with proofs according to the key-update PAHD. This
provides the desired transparency and has the advantage that
changing one device’s public key, adding/removing a device,
or adding/removing a username requires an update to only a
single PAHD entry. We present more details on these changes
to our protocol in the full version of the paper.

6 System Architecture

We now describe the details of our system architecture.

Overview. To benchmark OPTIKS in realistic scenarios, we
implemented a system comprising the following components:

• Query/Update Service. Web services providing REST APIs
for key queries and key updates.

• Update Task. A periodically running task that updates the
oZKS and writes required changes to a database.

• oZKS and VRF Cache. We implement the oZKS primitive
as a C++ library. The Query Service and the Update Task
both hold local copies of the oZKS data. The oZKS has
a built-in cache to store VRF proofs and values for fast
repeated access.

• Storage/Database. As an append-only data structure, the
oZKS can grow to be very large, and may not fit in RAM of
most machines. We have built a flexible storage mechanism
into the oZKS that allows the user to set up almost any
kind of storage back-end they want. We instantiate this
with a Microsoft SQL Server database with an adjustable
in-memory cache.

• Service Provider. A Service Provider calls the Query Ser-
vice and Update Service APIs on behalf of client devices.

5Or if the Lookup specifies a particular device, it can just return the
current key and proof for that device. In either case, it will return the list of
devices and proof w.r.t. the device-list PAHD.
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Service Provider

Query Service

Update Service

Database

Client devices
Update Task

oZKS + VRF cache

Figure 1: Our system architecture.

• Bulletin Board. At the change of each epoch, the Update
Task pushes the newly computed oZKS root commitment
and update proofs to the public bulletin board. We did not
implement the bulletin board, as it is a simple component
and is not a bottleneck in the system.

In practice, the Service Provider will need to handle access
control using any standard methods. This is beyond the scope
of OPTIKS, so in our research prototype the REST APIs do
not implement any kind of access control. The architecture
of our implementation is depicted in Figure 1 and we will
discuss it next in more detail, component by component.

We also note that we did not implement a PAHD as a sepa-
rate component. Rather, it is implemented as a combination of
the oZKS and logic embedded in the Query Service, Update
Service, and Update Task.

oZKS and VRF cache. Our implementation of the oZKS is
a C++ library, which both the Query Service and the Update
Task depend on. For a cryptographic hash function, we use
BLAKE2 [1]. The library is publicly available at https://
GitHub.com/Microsoft/oZKS.

The oZKS can run in two modes, with different pros and
cons: stored mode and linked mode.

• Stored mode. The Merkle tree nodes are held in a cus-
tomizable storage system, e.g., a hash table in memory, or
a database with a memory cache. In stored mode, updates
to specific nodes can be easily retrieved from the storage
as needed. The downside is that the stored mode is slower,
both for queries and for updates, and has a memory over-
head due to hash tables maintaining the nodes in memory.
The oZKS instance running in the Query Service uses the
stored mode to allow for fast and flexible updates.

• Linked mode. The Merkle tree nodes are all allocated in
memory in a linked tree, which allows for very fast queries
and updates. The nodes can still be mapped to a storage,
such as a database, but partial updates to the linked tree are
difficult to implement. This makes linked mode unsuitable
for the Query Service. Instead, our Update Task runs the
oZKS instance in linked mode to leverage fast updates.

The VRF cache is implemented as an LRU (Least Recently
Used) cache and is built into the oZKS library. Its size is a
system parameter and depends on the expected load and query

distribution. Since the Query Service needs to repeatedly
produce both existence and non-existence proofs, its instance
of the oZKS uses the VRF cache. The Update Task only needs
the VRF values once (it does not even need the proofs) for
the updates it processes and has no need for the VRF cache.

Storage/Database. The size of the oZKS (and other associ-
ated data) can grow to be very large, and in some cases may
not fit entirely in RAM. The large size is particularly problem-
atic for the Query Service machines that will need to handle
a lot of traffic and quickly scale horizontally according to
demand. In particular, it is impractical for the Query Service
to have to read the full oZKS data into memory, all at once,
before being able to respond to queries.

We built a flexible abstract storage mechanism into the
oZKS that allows the user to create almost any kind of stor-
age back-end they prefer. The storage mechanism supports
batched stores as well as flexible per-node reads to enable
efficient communication of data between our system compo-
nents.

We instantiated the storage mechanism using Microsoft
SQL Server as a backing database with an adjustable in-
memory cache. The database tables used in our implementa-
tion are as follows:

• The User-Versions table contains one record per client
device and key version, describing the full key history
information and other relevant metadata.

• The Batch-to-Update table contains one record per each
pending key update. The Update Service writes these
and the Update Task reads and clears them.

• The Cached-Updates table is written to by the Update
Task. It contains information for the Query Service for
updating its local oZKS.

• The Update-Proofs table stores update proofs as com-
puted and stored there by the Update Task. It also holds
the corresponding oZKS root commitment.

• The Tree-Nodes table ensures crash resilience of the
system. It stores a complete copy of the oZKS that al-
lows any in-memory representations to be easily rebuilt.
The Update Task updates the Tree-Nodes as it finishes
processing.

A note on consistency and reliability. Microsoft SQL Server
provides an ACID consistency model to ensure transactions
are atomic, consistent, isolated, and durable. Worldwide avail-
ability is achieved using active geo-replication, where the
database is replicated in the same or different regions. This is
a type of read-replication, where the replicated databases are
only available for reading. In this case, SQL Server provides
a model of eventual consistency, where replicated databases
may lag behind the primary database and might not reflect
the latest changes immediately. However, the data on the
secondary databases is guaranteed to be transactionally con-
sistent, which means that only committed changes will be
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replicated. This suffices for our purposes.
The reliability of our system relies on the reliability of

the backing database component. As long as the data in the
database is consistent, any part of the system can fail and be
recovered by simply reloading the state of the directory from
the database. This is the main reason why our system relies
on updating each epoch through a database transaction: if
the transaction completes successfully, the system is known
to be in a consistent state. If the transaction failed for any
reason, the system would still be in the previous consistent
state. Modern databases provide a host of techniques to ensure
the integrity of the data stored in them, as well as known
techniques and procedures to recover from a catastrophic
event. In the case of SQL Server’s active geo-replication,
for example, any of the replicas can take over the role of an
instance that suffered a catastrophic failure, providing quick
disaster recovery. Relying on the data integrity that a modern
database provides makes our system reliable as well.

Query Service. This responds to clients’ query requests as
they are forwarded to it by the Service Provider. It also returns
the epoch number that the query response is valid for, so that
the client can verify the proof against the correct oZKS root
commitment. The oZKS runs in stored mode.

The Query Service holds (in memory) a copy of the oZKS
and associated data, such as the full public keys and other
metadata. All the data is backed by the database, from which
updates are retrieved to memory when the epoch changes.
Holding a copy separate from that of the Update Task is
important to avoid service interruptions on epoch changes.

Since the Query Service needs to be able to handle a high
volume of queries, it is essential for it to have a low computa-
tion overhead. To aid in this, the Query Service utilizes the
VRF cache that stores most commonly requested VRF proofs
for both existence and non-existence proofs. The Merkle
proofs themselves are impractical to cache, but we note that
they are much faster to compute than the VRF proofs even
for very large oZKS instances.

In practice, one can run an arbitrary number of Query Ser-
vice instances to improve scalability, for example, each serv-
ing a different subset of the oZKS labels. In this case, the
different Query Services may respond with respect to slightly
different epochs, because they are not guaranteed to be ex-
actly synchronized. In our experiments we limit to a single
instance. We describe how our protocol may be updated to
accommodate multiple Query Service instances in the full
version of the paper.

Update Service. The Update Service is entirely independent
of the oZKS. It receives key update requests from the Service
Provider and processes each as follows: (1) retrieve the latest
existing version of the key from the database; (2) increment
the key version by 1, or use 0 if no prior version was found;
(3) write the update request data to the database.

Update Task. The Update Task reads the incoming updates
from the database and adds them as a batch to the oZKS
to form a new epoch. The updated oZKS is then saved to
the database, along with additional information. This process
runs every certain period of time, which can be configured
depending on the service load. The oZKS runs in linked mode.
The Update Task executes the following steps: (1) read the
existing update requests from the database; (2) compute VRF
values for the new keys; (3) insert the requests as a batch
in the oZKS, keeping track of the nodes that were modified;
(4) update the Merkle tree nodes in the database; (5) write
in a separate database table the list of updated nodes; (6)
write entries in the database for each added key; (7) write
update proofs and the new oZKS root commitment in the
database; and (8) delete from the database the processed
update requests. This operation runs as a single atomic multi-
table transaction, which ensures consistency of the system.
Once the transaction is committed, the update proofs and new
oZKS root commitment are published to the bulletin board.

The Merkle tree insert operations in the oZKS update pro-
cess are parallelizable. As the Merkle tree gets populated,
the node labels at the top of the tree will not change. For
example, if we have an empty tree and insert labels 0x0000,
0x0001, 0x8000 and 0x8001, the root will have two children
with labels 0 and 1. No matter how many more labels are
inserted to the tree, the labels of the children of the root will
not change. We group the labels that we intend to insert into
the oZKS by their first bit, and launch two threads: one that
inserts the labels whose first bit is 0, and one that inserts the
labels whose first bit is 1. As more labels are inserted, the tree
becomes populated with more top-level nodes whose labels
will not change, and we may be able the next time to launch
four threads instead of two. The first part of the update pro-
cess is then to check how many threads are possible to launch.
Next, we group the labels to insert and insert them using their
assigned threads. Finally, the top nodes are recomputed after
the update threads are complete.

Using this same principle it would be possible to launch
multiple Update Tasks to update different parts of the tree,
if the tree was very large and could not fit in the memory of
a single machine. The tree would be partitioned as it grows
and its top nodes become constant. This would of course
require a synchronization mechanism between the different
Update Tasks to coordinate the computation of the top node
hashes and publishing the root hash and append proofs. In our
experiments, the tree is not that large, so we only parallelize
updates within a single Update Task instance.

7 Performance

In this section we discuss the performance of our implementa-
tion. First, we look at the performance of the oZKS and VRF
implementations in isolation. Next, we evaluate a fully imple-
mented system, including the Query Service, Update Service,
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Keys RAM VRF caching QPS

220 734 MB Cache hit 143,000
Cache miss 16,700

222 3.54 GB Cache hit 129,000
Cache miss 15,000

224 14.7 GB Cache hit 120,000
Cache miss 13,900

226 60.2 GB Cache hit 112,000
Cache miss 12,400

Table 1: Benchmarks for the oZKS implementation as in-
stantiated for our Query Service. Columns in order from left
to right indicate: (1) total number of keys in the oZKS; (2)
RAM consumption to hold the oZKS and all associated data
in memory; (3) whether the VRF proof was in the VRF cache;
(4) the query rate (Queries Per Second) on a single thread.

and Update Task. Finally, we compare our performance to
Parakeet [12], Merkle2 [7], and SEEMless [3].

oZKS and VRF Benchmarks. As we explained in Section 6,
the oZKS runs in two modes: stored mode (for Query Service)
and linked mode (for Update Task). We perform two sets of
experiments, one for the stored mode and one for the linked
mode. For our oZKS and VRF benchmarks we used an Azure
E16ads_v5 virtual machine, with 16 vCPUs @ 2.60 GHz and
128 GB of RAM.

Since the oZKS computations the Query Service performs
are easily parallelizable, we run these experiments on a single
thread. To demonstrate the importance and potential benefit
of the VRF cache (recall Section 6), we rig the experiments
in two ways: ensuring VRF cache hits or cache misses. For
different oZKS sizes (i.e., number of keys in the oZKS), we
show the total memory footprint and the query throughput.
We performed the test twice by querying either for keys that
are present and for keys that are not present in the oZKS; we
report numbers for the slower case (generally, for keys that
are not present), although the difference is very small. The
results are in Table 1.

Keys RAM Total time (s) UPS
220 517 MB 6.66 140,000
222 2.00 GB 27.6 144,000
224 7.95 GB 120 132,000
226 32.0 GB 520 126,000

Table 2: Benchmarks for the oZKS implementation as instan-
tiated for our Update Task. Columns in order from left to right
indicate: (1) total number of keys inserted in the oZKS; (2)
RAM consumption to hold the oZKS and all associated data
in memory; (3) total time to insert the keys; (4) the key update
rate (Updates Per Second) on 16 threads, when the oZKS has
the denoted size.

The Update Task processes updates using 16 threads. We
insert new keys in batches of 1024 to be consistent with the
full system benchmarks below. For different oZKS sizes, we
show the total memory footprint, the total time it took to insert
all of the keys, and the update throughput. The results are in
Table 2.

We note that while both instantiations of the oZKS keep
the full node, key, and necessary metadata in RAM, the linked
mode instantiation is more efficient in terms of compute
memory, as we explained in Section 6. However, this can
be addressed by using a more fine-tuned hash table imple-
mentations for the in-memory data structures, splitting the
responsibility of the service into several machines, or storing
only the most commonly accessed nodes in memory using
our flexible storage system. Despite its performance, linked
mode is unsuitable for applying efficient updates to parts of
the tree, as our Query Service requires.

Our VRF is implemented by adapting the IRTF internet
draft ECVRF [6] to use the fast FourQ curve [5]. The time
to compute a VRF value (without a proof) was on average
20.5 µs. Computing the proof took more than twice as much,
47.0 µs. Verifying the proof is the costliest operation at a
measured 95.6 µs.

Finally, we measure the query result and update proof ver-
ification time and data size. The update proof results apply
only to a single added key and will scale linearly with the size
of the insert batch. These are presented in Table 3.

Keys Query Update
Time (µµµs) Size (KB) Time (µµµs) Size (KB)

220 102.9 2.10 12.6 1.89
222 103.4 2.27 13.7 2.06
224 104.2 2.44 14.7 2.23
226 104.8 2.67 15.6 2.40

Table 3: Benchmarks for the oZKS proof verification time and
data size. The experiments run on a single thread. Columns
in order from left to right indicate: (1) total number of keys
inserted in the oZKS; (2) the time to verify the query result
(VRF proof and Merkle proof) on a single thread; (3) the data
size of the query response; (4) the time to verify the update
proof for a single added key on a single thread; (5) the data
size of the update proof for a single added key. The data sizes
do not include networking protocol overhead.

System Benchmarks. In this section we describe our full
system benchmarking process and present results for multiple
scenarios. We will focus on smaller benchmarks to enable
clear comparisons to prior work. However, we want to also
scale up the benchmarks to be more realistic in size and load.

We omit the Service Provider, as its role is to mainly me-
diate requests and implement authentication logic. We run
the Query Service, the Update Service, the Update Task, and
the database in Azure in the West US 3 region. We call the
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service from a stress tester application running in Azure in
the West US 2 region.

The Query Service was implemented in two components:

• A front-facing web server that provides the Query REST
API, hosted in Azure in a P3V3 service plan (1 machine
with 8 vCPUs and 32 GB of RAM);

• A back-end component that holds the oZKS in mem-
ory. This component runs in an Azure virtual machine
(E16ads_v5, with 16 vCPUs @ 2.60 GHz and 128 GB
of RAM) that runs a web server providing an internal
REST API that the front-facing server calls to obtain
lookup proofs.

Both Query Service components were multi-threaded by the
ASP.NET runtime. They access a Microsoft SQL Server 2022
Enterprise database, running on an Azure E16ds_v4 virtual
machine with 16 vCPUs and 128 GB of RAM.

We wanted to find the maximum query rate, i.e., the maxi-
mum number of queries per second the Query Service could
support. To test this, a small program was written that contin-
uously sends query requests to the REST API. The number
of instances of this program running simultaneously was in-
creased until the maximum query throughput was found. Two
different tests for the query rate where run: (1) a test for find-
ing the maximum query rate when querying for keys with a
single version in their history, and (2) a test for finding the
maximum query rate when querying for keys with 10 versions
in their history. We also show the average sizes of the query
responses. The results are in Figure 2.

The Query Service performance is limited by networking
(compare to Table 1). The communication cost is linear in the
number of key versions and logarithmic in the size of the key
directory, which explains the lower performance when the
history contains 10 key versions. In practice, client devices
can keep track of which key versions they have verified, elim-
inating the need to check all prior key versions repeatedly.
Furthermore, the Query Service can be scaled horizontally
to alleviate the burden of handling so many simultaneous
network connections.

The Update Service was implemented in a web server that
provides the Update REST API, hosted in Azure in a P3V3
service plan (1 machine with 8 vCPUs and 32 GB of RAM).
The Update Task was implemented in a separate Azure vir-
tual machine (E16ads_v5, with 16 vCPUs @ 2.60 GHz and
128 GB of RAM). The Update Service was multi-threaded by
the ASP.NET runtime and the Update Task was running on
16 threads. We measured the maximum key update rate, i.e.,
the maximum number of key updates per second the Update
Service and Update Task could support. We also measured the
average time it took to create a new epoch. The epoch time
was limited below to 1 second. The results are in Figure 3a.

We also measured the time needed by the Update Task to
add 100K keys with different initial directory sizes, and how
that time is spent in different operations. The Update Task
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Figure 2: Key query rate as the directory grows in size from
1M to 64M. Note the logarithmic scale on the horizontal axis.
Multi-threading on the front-end and back-end components
was controlled by the ASP.NET runtime. The number next to
each data point indicates the server response size in KB.

was configured to read 1,000 pending key updates at a time
from the database. The results are in Figure 3b.

The logarithmically increasing cost of adding keys to the
directory is evident from Figure 3a. Most of the epochs we
observed took 1–5 seconds, but some took much longer due
to unpredictable and fluctuating database response times. The
longest epoch we observed took 13 seconds.

The Update Service/Task performance is strongly limited
by the database performance (compare to Table 2). As can
be seen from Figure 3b, most of the time is spent writing up-
dated information to the database. For example, when the key
directory has 500K keys, nearly 95% is spent in database oper-
ations. This cost is caused by the very expensive (and possibly
avoidable) multi-table transactions that we used to simplify
the implementation. This percentage decreases slightly when
more keys are added, and generally hovers between 4–6%,
which means that any improvement in the database (write)
performance would almost directly translate to a performance
improvement in Figure 3a and Figure 3b.

Comparison with Prior Work. We compare and contrast
our results to most relevant prior works: Parakeet [12],
Merkle2 [7], and SEEMless [3]. We omit comparison to
CONIKS [13], as it cannot scale in a meaningful way to
the kinds of large key directories we are targeting. These sys-
tems all differ from each other and from ours in various ways:
scenario, security model, and optimization goals. Hence, we
compare them only in specific aspects where the the compari-
son is fair and meaningful.

Comparison to Parakeet. Parakeet [12] provides the closest
point of comparison. The authors motivated it as a practical
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Figure 3: Benchmarks for the key update performance.

way to bring key transparency to WhatsApp. They also pre-
sented an estimate that the system would need to be able to
handle at least 120 key updates per second.

The only full system benchmarks for Parakeet that include
database operations are in [12, Fig. 6], which is comparable to
Figure 3b.6 For example, starting from an empty key directory,
Parakeet takes more than 10 minutes to insert the first 100K
keys, whereas OPTIKS takes only 70 seconds. Inserting into
a key directory of 500K keys, Parakeet takes 19 minutes to
insert 100K more keys, whereas OPTIKS takes less than 100
seconds. The authors mention that of the 19 minutes only 12 –
or roughly 63% – were taken by database operations, whereas
for us the database operations took as much as 95%. This
means that our overall performance, already better than Para-
keet, benefits much more from any engineering improvements
to the database performance.

There are no key update rate numbers in a full system
scenario for Parakeet,7 but we can estimate an average from
[12, Fig. 6]. Thus, for an empty directory, Parakeet performs
an estimated 167 updates per second, whereas we reach more
than 1,000 updates per second (Figure 3a). At 500K keys,
Parakeet performs an estimated 90 updates per second, which
is below their stated goal of 120. Even for 226 keys our update
rate is 280 per second.

For key directories of 1 million and 4 million keys, [12]
reports a total storage cost of roughly 1.1 GB and 3.5 GB,

6Note that [12] uses an AWS t3.2xlarge virtual machine, with 8 vCPUs
@ 3.10 GHz, whereas we use a virtual machine with 16 vCPUs @ 2.60 GHz.

7We note that [12, Fig. 9–11] are not comparable to our Figure 3a, as they
omit the full system (e.g., database) overhead.

respectively, whereas our total storage cost for 220 keys and
222 keys is only 517 MB and 2.00 GB (Table 2).8 Extrapo-
lating, [12] estimates to require 850 GB for 1 billion users,
whereas for us the estimated storage is roughly 477 GB.

Comparison to Merkle2. Merkle2 [7] is difficult to compare
to OPTIKS; we discuss this further in the full version of the
paper. They also do not present full system benchmarks, so
we cannot compare end-to-end performance in any case.

We compare the append and lookup throughput in [7, Fig.
13] to our Table 2 and Table 1. For key updates, our reported
update rates are more than 100 times that of Merkle2. For
queries, we note that each Query Service query requires (with
one key per user) two lookups from the oZKS. Thus, it seems
fair to divide our query rate in Table 1 by two. For 220 keys, as-
suming VRF cache misses, we outperform with 8,350 queries
per second the Merkle2 Latest value query with less than
5,000 queries per second.

We compare to the approximate memory cost reported
in [7, Fig. 12]. For 220 keys, this is 22 GB – much larger than
our 517 MB (Table 2). The difference grows for larger key
directories (220 is our smallest example), as Merkle2 has an
asymptotically larger memory cost.

Finally, we compare our proof sizes and verification times
to [7, Table III]. In their setting the key directory has 1 mil-

8Comparing to the oZKS implementation running in the stored mode
(Table 1) with all data loaded in memory would be incorrect, as this figure
includes overhead from generic hash table implementations. We also note
that for a very large key directory we can split both the Query Service and
the Update Task (with slightly more complexity) across multiple machines
to avoid any RAM limitations.
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lion keys; we compare this to a slightly larger 220 size key
directory. Merkle2 has a very small append proof size of 42 B,
whereas our update proof is significantly larger at 1.89 KB.
Their query proofs (for Latest value query) is 9.8 KB, whereas
our proof is smaller at 2.10 KB.

Comparison to SEEMless. While SEEMless [3] presents no
full system benchmarks directly comparable to our results,
we can compare their key update time [3, Figure 5] to our
Table 2. For a key directory with 10 million keys, [3] reports
an average update time of slightly under 0.3 seconds. Adapt-
ing the results of Table 2, at 224 keys our average update
time is roughly 7.6 milliseconds, or just 2.5% of the time of
SEEMless.

For queries, we can compare [3, Table 2] to our Table 1.
Again, we divide our query rates in Table 1 by two to estab-
lish a fair comparison. At 224 keys, our average query time
is roughly 0.14 milliseconds, or just 2.4% of the 6.03 mil-
liseconds reported for SEEMless. For query verification, our
result of 104.2 microseconds in Table 3 is just 1% of the
10.51 milliseconds reported in [3, Table 2].

In SEEMless, for 10 million keys, the authors report an
average query response size of 8.40 KB. At 224 keys our
average query size is just 2.44 KB, or 29% of that.

8 Related Work

We have already discussed how our KT system OPTIKS com-
pares with Parakeet [12], SEEMless [3] and Merkle2 [7] in
Section 4 and Section 7. Here, we briefly describe the other
KT systems from the literature.

Keybase [8] is the only KT system deployed in practice to
our knowledge. It was originally designed as an alternative
to PGP key distribution and did not target privacy as a goal.
CONIKS [13] was the first academic proposal for a KT sys-
tem. The efficiency and privacy guarantees of CONIKS were
improved in SEEMless [3]. VeRSA [16] and Verdict [18] are
other KT systems that use SNARKs and RSA accumulators
instead of Merkle trees, making them more expensive to de-
ploy in practice. They also do not target privacy as a goal
and so leak update patterns of users. Chen et al. [4] was the
first paper that introduced Post Compromise Security (PCS)
for the underlying building block of our primitive: ordered
Zero-Knowledge Sets (oZKS). We describe how we achieve a
limited form of PCS security in OPTIKS-ext in Section 5.
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