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Abstract The KHAPE-HMQV protocol is a state-of-the-art highly ef-
ficient asymmetric password-authenticated key exchange protocol that
provides several desirable security properties, but has the drawback of
being vulnerable to quantum adversaries due to its reliance on discrete
logarithm-based building blocks: solving a single discrete logarithm al-
lows the attacker to perform an offline dictionary attack and recover the
password. We show how to modify KHAPE-HMQV to make the protocol
quantum-annoying : a classical adversary who has the additional ability
to solve discrete logarithms can only break the protocol by solving a dis-
crete logarithm for each guess of the password. While not fully resistant
to attacks by quantum computers, a quantum-annoying protocol could
offer some resistance to quantum adversaries for whom discrete logar-
ithms are relatively expensive. Our modification to the protocol is small:
encryption (using an ideal cipher) is added to one message. Our analysis
uses the same ideal cipher model assumption as the original analysis
of KHAPE, and quantum annoyingness is modelled using an extension
of the generic group model which gives a classical adversary a discrete
logarithm oracle.

Keywords: password-authenticated key exchange · quantum-resistant
· quantum-annoying · generic group model

1 Introduction

A wide-spread method for authentication in client-server situations involves a key
exchange where the server is authenticated through a public key infrastructure,
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while the client authenticates themselves with a password by transmitting the
password directly over the encrypted channel. This method is suboptimal since
the user’s password is exposed to the server.

A password authenticated key exchange (PAKE) protocol enables two parties
to perform a key exchange, authenticated using mutual knowledge of a shared
password, without revealing the password to the network or to each other. The
setting of PAKEs allows two kinds of attacks: online attacks (the adversary
interacting with either party), and offline attacks (the adversary operating locally
based on what is has observed from previous online interactions). Password-
based protocols are always vulnerable to online dictionary attacks, where the
adversary can rule out one password guess with each online interaction with
a party. The goal of a PAKE is to ensure that offline dictionary attacks are
infeasible, for example because of an intractability assumption. While PAKEs
have been known for decades, there was little progress in adoption for many
years, but there is renewed interest in adoption of PAKEs via a variety of recent
and ongoing standardization efforts [18,6,19,1,2].

This paper focuses on KHAPE [10], a compiler that turns a key hiding au-
thenticated key exchange (KH-AKE) and a PAKE into an asymmetric PAKE
(aPAKE). Asymmetric PAKEs improve upon regular PAKEs by forcing an at-
tacker to perform an exhaustive search on the password even after server com-
promise, since the value stored by the server cannot be used to impersonate the
client. The OPAQUE framework [13] introduced the notion of strong asymmet-
ric PAKEs (saPAKE), which further guarantees that no pre-computation can
be performed to aid in the exhaustive search for the password in the case of
server compromise. This is achieved by combining an oblivious pseudo-random
function (OPRF) and a PAKE.

Most PAKEs are based on the hardness of solving the discrete logarithm prob-
lem (see [11] for an overview), making them vulnerable to attacks by quantum
computers, thus motivating the question of building PAKEs that are quantum-
resistant. The obvious answer is to build new PAKEs that rely on post-quantum
intractability assumptions, and post-quantum PAKEs are starting to emerge
in the literature. These new PAKEs (e.g., see [4]) are based on key encapsu-
lation mechanisms to match the standardized quantum-secure encryption [15].
However, there may be other interim options requiring fewer modifications by
augmenting existing protocols.

Quantum-annoying PAKEs. During the CFRG PAKE standardization process
in 2019, it was observed [20] for one of the Diffie–Hellman-based candidates that
even if an attacker could solve discrete logarithms, they could not immediately
recover the password. Instead, an attacker seemed to have to do a discrete log-
arithm for each guess of the password even during an offline dictionary attack:
this property was named “quantum-annoying”. If solving such a problem remains
reasonably expensive, then a moderate level of security can still be achieved.

Eaton and Stebila [7] developed a formalization of the quantum-annoying
property for PAKEs by considering a classical adversary working in the generic
group model who is given the additional power of a discrete logarithm oracle.
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They showed that the base version of the symmetric PAKE protocol CPace [3]
was quantum-annoying in the generic group model. One main characteristic of
CPace that lead to it being quantum-annoying is that the password π shared by
the client and server is used to derive a generator gπ of the group, and then a
Diffie–Hellman key exchange is performed using that generator (gxyπ ). But from
the perspective of an adversary who only sees Diffie–Hellman public keys (gxπ
and gyπ), no information is gained about the password π since for each π′ there
is an x′ such that gx

′

π′ = gxπ.

Our contributions. Whereas CPace is a symmetric PAKE, the KHAPE-HMQV
protocol constructed by the KHAPE compiler [10] is an asymmetric PAKE, so
compromise of a server using KHAPE-HMQV does not enable the adversary to
impersonate a user without first performing an offline dictionary attack. How-
ever, the protocol is not quantum-annoying: after seeing just a single transcript,
a single discrete logarithm computation suffices to enable an offline dictionary
attack to recover the user’s password. We address this vulnerability by presenting
the QA-KHAPE protocol, a quantum-annoying variant of KHAPE-HMQV. As
shown in Fig. 1, our modifications entail encapsulating an additional key into the
server-stored credentials, which is later used by the principals to encrypt their
Diffie–Hellman key-pairs prior to exchanging messages. This effectively means
that each guess of the password causes the transcript to decrypt (under a sym-
metric key dependent on the password) to a different pair of Diffie–Hellman
public keys, so a new discrete logarithm must be performed each time.

The changes to the protocol require only minimal computational and commu-
nication overhead, with the same number of rounds as KHAPE-HMQV and only
a single additional ideal cipher ciphertext (increasing the server-client cipher-
text from three to four elements). The client-server communication remains un-
changed, and the protocol requires two additional ideal cipher computations, one
encryption, and one decryption.

We show that QA-KHAPE is quantum-annoying following the methodology
of [7]: the adversary is a classical adversary in the generic group model with
the addition of a discrete logarithm oracle. In Section 3.1, we define a secur-
ity game in the generic group model tailored to capturing the core quantum
annoying property of the QA-KHAPE protocol. In Section 4, we apply this to
show that QA-KHAPE is secure in a quantum-annoying variant of the standard
Bellare–Pointcheval–Rogaway (BPR) security model for asymmetric password
authenticated key exchange.

Limitations. Just as in the original security proof of KHAPE by [10], our analysis
also relies on the ideal cipher assumption. Care must be taken for an instantiation
of the IC, which is discussed in [10, Section 8].

Further, we wish to highlight for the reader that the “quantum annoying”
security notion is an intermediate notion below fully quantum-resistant. One
limitation of the quantum annoying security notion is that it has a narrow view
of quantum capabilities: by using a formalism in the generic group model with
a discrete logarithm oracle, we are effectively assuming that the only quantum



4 Tiepelt, Eaton and Stebila

operation an adversary will do is run Shor’s algorithm, which is certainly less
than the full power available to a polynomial time quantum computer.

Even just considering security against quantum computers running Shor’s
algorithm, a protocol “secure” in the quantum-annoying model is still vulnerable
to attacks by quantum computers, it is just that the attack scales in the size of
the password space. This leads to the question of the cost of computing a discrete
logarithm on a quantum computer. While it is impossible to predict the efficiency
of quantum computers in the far future, current research suggests that the first
generations of quantum computers capable of solving cryptographically relevant
discrete logarithm problems will require significant resources in order to do so
[17,8,9,16]. These estimates are undoubtedly coarse and may be off by several
orders of magnitude, but it is plausible that even for early cryptographically
relevant quantum computers, computing a single discrete logarithm will not be
cheap, and that computing millions of discrete logarithms to find the password
in a quantum-annoying PAKE may be prohibitively expensive.

More recently, a preprint has examined the “multiple discrete logarithm”
problem induced by the quantum annoying model [12]. In this work, the authors
show that it is possible to (asymptotically) solve m discrete logarithm problems
(in a generic group) with a quantum computer more efficiently than m times
the cost of a single Shor’s instance. In particular, their algorithm solves m dis-
crete logarithms with around logm times fewer quantum group operations (if
m = Ω(log p), where p is the size of the group). This comes at the expense of re-
quiring large quantum memory to compute everything simultaneously. Whether
this represents a concrete improvement to the ability of an adversary to break
quantum annoying security (and if so, how large the grouping m should be) is
an interesting open question. Our proofs bound the adversary’s success probab-
ility in terms of the number of discrete logarithm oracle queries made. If it is
a practical improvement to group such queries, this does not affect our proofs,
only how the induced bounds translate to real-world estimates of adversary cost.

2 Preliminaries

2.1 Quantum Annoying-ness in the Generic Group Model.

In the normal generic group model there is a multiplicative public representation
of group elements taken uniformly from {0, 1}κ, and an additive secret represent-
ation in Zp. The public representations have no intrinsic structure, and so any
information about the group is obtained through the group operation oracle.
Let ⟨g⟩ = G be a generic group of size p with group operation ◦. When gw ◦ gv
is queried, for example (gv, gw) 7→ gv+w, a table Tggm is used to retrieve the
secret representations of gv and gw, v, w ∈ Zp. Then v+w (mod p) is the secret
representation of gv+w. If gv+w has already been given a public representation,
that is returned. Otherwise, a uniformly random string is sampled from {0, 1}κ,
assigned as a new public representation to gv+w in the table Tggm, and provided
back to the querier. Similarly, the discrete logarithm oracle Dlog : G×G→ Zp

takes as input two group elements and outputs the discrete logarithm. The query
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Dlog(gv, gw) can be responded to by looking up gv and gw in Tggm and returning
w · v−1 (mod p).

The generic group model is a powerful tool, but limited in its ability to reason
about whether the adversary’s interactions with the discrete logarithm oracle are
sufficient to determine Dlog(g, gt) for a specific group element gt. Naturally, if
they have made exactly this query, the discrete logarithm is known. But other
queries, such as Dlog(g, g2t ), are also sufficient to make Dlog(g, gt) knowable.

The framework of [7] simulates the generic group model in such a way that
such specific statements can be made. Let G1, G2, . . . Gµ be a collection of (pub-
lic representations of) group elements whose discrete logarithm (with respect to
the group generator g) are of potential interest to the adversary. When we main-
tain the group, rather than imbuing these group elements with specific secret
representations in Zp, we instead denote each as a formal independent variable
χ1, . . . , χµ. Group operations now correspond to addition over a vector space of
dimension µ+1. For example, in computing (G1◦G1)◦G2 we would calculate the
secret representation as 2χ1+χ2 and give this a unique public representation in
{0, 1}κ. Thus, secret representations can now be written as a linear combination
of the χi variables, i.e., α0 +

∑
i αiχi.

Thinking about how these secret representations interact with the Dlog
oracle is how we can start to reason about what discrete logarithms are. Say the
adversary queries Dlog(A,B), and the secret representation of A is α0+

∑
αiχi

(respectively with β for B). If the adversary is given the response δ (so that
Aδ = B), this imposes a constraint on our variables. Specifically, it says that
δ (α0 +

∑
αiχi) = β0 +

∑
βiχi, which we can rewrite as

µ∑
i=1

(δαi − βi)χi = β0 − δα0. (1)

This linear constraint lets us define an equivalence relation: if two secret repres-
entations are the same ‘modulo’ the linear constraints imposed by responses to
Dlog, they should have the same public representation. Consequently, if, mod-
ulo these constraints, a secret representation χi is equivalent to some a ∈ Zp,
then Dlog(g,Gi) has taken on a definite value a, whether or not it was actually
queried. Otherwise, it can still take on any possible value.

By taking the coefficients of the χi variables in Equation 1 we can construct
a matrix D and a vector r⃗ (we write vectors as column vectors), so that the set
of constraints is easily summarized as Dχ⃗ = r⃗. Similarly, a secret representation
a0 +

∑
aiχi can be written as the pair (a0, a⃗). In more detail, the equivalence

relation can be defined as follows:

Definition 1. For group elements ga, gb with secret representation (a0, a⃗) and
(b0, b⃗), we say that ga is (D, r⃗)-equivalent to gb if there exists an ω⃗ ∈ ZqD

p such
that ω⃗TD = a⃗T − b⃗T and ω⃗T r⃗ = b0 − a0.

Note that this is indeed an equivalence relation (reflexivity is proven by taking
ω⃗ = 0⃗, symmetry is proven by taking −ω⃗, and transitivity is proven by taking
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ω⃗1+ ω⃗2). The reason that this definition gives us what we want is that when it is
satisfied, we have that b0−a0 = ω⃗T r⃗ = ω⃗TDχ⃗ = (⃗aT − b⃗T )χ⃗ = a⃗T χ⃗− b⃗T χ⃗, telling
us that a0 +

∑
aiχi = b0 +

∑
biχi, as we expect. We can now describe how the

G and the Dlog oracle are simulated in full detail. Note that the simulation
is not efficient [7, Sec. 4], since the simulation requires to search through all
previous queries to check if a linear relationship exists. However, the purpose of
the framework is to give an information-theoretic bound (in the generic group
model) relative to the number of discrete logarithm queries to define a specific
discrete logarithm, thus the exact efficiency is not relevant.

Dlog(gV , gW ): If gV or gW do not exist in Tggm, then abort. Otherwise, let
(v0, v⃗), (w0, w⃗) be secret representations of gV , gW respectively. Sample a random
vector s⃗ such that Ds⃗ = r⃗ and compute δ = (w0 + ⟨w⃗, s⃗⟩)/(v0 + ⟨v⃗, s⃗⟩) mod p.
Add the row δv⃗T − w⃗T to D, and value w0 − δv0 to vector r⃗. Then δ is the
discrete logarithm that is returned. This corresponds to [7, Alg. 2].
◦(gV , gW ): If gV or gW do not exist in Tggm, then abort. Otherwise, for the

secret representations (v0, v⃗), (w0, w⃗), let (z0, z⃗) = (v0 +w0, v⃗+ w⃗). If z appears
in Tggm, return the corresponding public representation. Otherwise, check if there
exists an entry (f0, f⃗) of Tggm that is (D, r⃗)-equivalent to (z0, z⃗). If so, return
the public representation of that entry. If no such (D, r⃗)-equivalent entry exists,
sample a new public representation, add the entry Tggm[gZ ] = (z0, z⃗) and return
gZ . This corresponds to [7, Alg. 5].

With this setup, we can prove Lemma 1, which is a generalization of [7,
Lemma 1] and an instantiation of which is used in a game hop in Section 3.2.

Lemma 1 (Unique Solutions). Let ga and gb be public representations of
group elements, with corresponding secret representations (a0, a⃗), (b0, b⃗). Let (D, r⃗)
be the current set of constraints on discrete logarithms. Then the discrete logar-
ithm of gb with respect to ga is defined if and only if [⃗bT |b0] is in the rowspace

of the matrix
[
−D r⃗
a⃗T a0

]
.

Proof. The discrete logarithm is defined if and only if there exists an α such
that gαa is (D, r⃗)-equivalent to gb. By definition, this is the same as the existence
of α, ω⃗ such that ω⃗TD = αa⃗T − b⃗T , and ω⃗T r⃗ = b0 − αa0. We can rewrite this

relation as
[⃗
bT | b0

]
=
[
−ω⃗TD + αa⃗T | ω⃗T r⃗ + αa0

]
=
[
ω⃗
α

]T [−D r⃗
a⃗T a0

]
.

This establishes that if the discrete logarithm is defined, [⃗b | b0] is indeed in
the rowspace, and if it is in the rowspace that the discrete logarithm is defined
(and equal to the α value that is the scalar for the ‘a’ row). ⊓⊔

Corollary 1. Let gb be the public representation of a group element and (b0, b⃗)
the corresponding secret representation. Let g be the generator of the group, which
has secret representation (1, 0⃗). Then the discrete logarithm of gb with respect to
g is defined if and only if b⃗ is in the row span of D.

Proof. We apply Lemma 1 with a⃗ = 0⃗. Since the zero vector cannot affect the
row span, we can conclude that b⃗T must be in the row span of D.
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Table 1. Examples for simulation of queries to the generic group model group oper-
ation and the ideal cipher. The queries are in order from top to bottom. The public
representations returned from the oracle are uniformly random strings that contain no
information beyond what was given in the query and particularly are sampled inde-
pendently.

Oracle Label Public Representation Secret Representation

Initialization g0 11001100110111101 1
◦(g0, g0) g0g0 11001010110011101 2

IC ga 11011000101110001 χa (uniformly random index a)
IC gb 11000111111001110 χb (uniformly random index b)
◦(ga, gb) gagb 10111100011100111 χa + χb

Table 2. Example simulation of the Dlog oracle with public and secret representations
as in Table 1 and with a generic group of size p = 29. The vector s⃗ is sampled at random
such that Ds⃗ = r⃗, and δ is the returned discrete logarithm as described in the Dlog
oracle. For the vector s⃗ only the relevant entries are displayed as integers in Z29, and all
other entries are marked with ∗, denoting a random integer which does not impact the
computation of δ. The first Dlog query adds a zero-vector to D, since the Dlog (i.e.,
2) was already defined by the secret representation. Since D and r⃗ are empty, there is
no restriction on the choice of s⃗. The 2nd and 3rd query return a random integer δ in
the solution space. The response to the 4th query was already constrained by the 2nd
and 3rd query, which can also be seen by checking that the vector corresponding to b⃗
was already in the row span of D before this query was received.

Add to D Add to r⃗
Dlog(gv, gw) gv gw s⃗ δ χ1 χa χb

Dlog(g, g1) 1 2 (∗, ∗, ∗) 2 (forced by relations) 0 0 0 0
Dlog(g, ga) 1 χa (∗, 13, ∗) 13 (random in Zp) 0 −1 0 −13
Dlog(ga, gc) χa χa + χb (∗, 13, 4) (13+4)

13
≡ 8 mod 29 (random in Zp) 0 7 −1 0

Dlog(g, gb) 1 χb (∗, 13, 4) 4 (forced by relations) 0 0 −1 −4

For the other direction we know that there exists some ω⃗ such that ω⃗TD = b⃗T .
Then we claim that the discrete logarithm between g and gb is b0 + ω⃗T r⃗. This is
because we want (b0 + ω⃗T r⃗, 0⃗) to be (D, r⃗)-equivalent to gb, and indeed we can
see that −ω⃗ satisfies −ω⃗TD = −b⃗T and −ω⃗T r⃗ = b0 − (b0 + ω⃗T r⃗) as desired. ⊓⊔

Table 1 gives an example of queries defining public and secret representa-
tions of the generic group model. Table 2 gives an example for simulating Dlog
queries, showing the cases where the Dlog can take a uniformly random value
in Zp and when the Dlog between two elements is already defined (but has not
yet been queried).
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2.2 Security Model for Asymmetric PAKE

The BPR00 model [5] for security of an asymmetric password-authenticated
key exchange protocol is defined by the interaction of a set of instances Πi

P

of principals P , which are either a client C or server S, and i denotes the i-th
such instance. Each principal takes as input a long-lived (LL) secret. The client’s
LL secret is a password π; the server’s secrets are the credentials credS [C] that
are established during a Registration phase. The model further defines a set
of oracles that correspond to an adversary’s interaction with principals that
run the protocol in question. The adversary may receive a passive transcript
(Execute queries), or actively engage (Send queries) in the communication.
They may further request the session key (Reveal queries) or corrupt instances
(Corrupt queries) which effectively returns the principal’s long-lived keys (weak
corruption). The security is defined by the adversary’s probability to decide if
they received a session key or a random string after submitting a Test query
to a fresh instance. In the setting of quantum-annoying-ness, fresh means that
neither the instance nor any partnered instance may be corrupted. A challenge
bit that is sampled uniformly random before any interaction takes place decides
which of the two (i.e., real-or-random) is the case. In the generic group model, the
adversary additionally gets access to the group operation and discrete logarithm
oracle (cf. Section 2.1). A protocol is quantum-annoying in the BPR00 model, if
the adversary’s advantage to output the challenge bit is bounded by the number
of Send queries (qSend) and discrete logarithm queries (qDlog),

AdvQA-BPR
Protocol(A) =

∣∣∣∣Pr [A guesses challenge bit]− 1

2

∣∣∣∣ ≤ qSend + qDlog

N
+ ϵ , (2)

with a password space of size N and ϵ negligible in the security parameter κ.

2.3 KHAPE-HMQV

The KHAPE compiler [10] transforms a key-hiding authenticated key exchange,
a PAKE, a random oracle, and an ideal cipher into an asymmetric PAKE which
provides key establishment with key integrity and confirmation, mutual authen-
tication and forward secrecy. A highly efficient instantiation [10, Fig. 14] uses
the HMQV [14] protocol, the security of which is based on the computational
Diffie–Hellman problem.

KHAPE is split into a registration and an aPAKE phase. During registration
the server generates the KH-AKE key-pairs (a,A := ga), (b, B := gb), partially
encrypts them using the password as a key, e ← IC.E(π, a,B), and stores the
ciphertext along with (A, b). All other values are discarded. In the aPAKE phase
the server generates a key-pair (y, Y ) and sends (Y, e) to the client. The client de-
crypts e using their password and generates a key pair (x,X). A Diffie–Hellman
session is computed from (a, x,B, Y ) which is used to derive a key-confirmation
value τ , and later the session key. The key confirmation is sent along with the
value X to the server, who computes the equivalent Diffie–Hellman session from
(b, y, A,X), verifies the key confirmation, and either computes a session key and
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Registration on Server input (π,C) (a,A), (b,B) fresh AKE keys; sk $←− {0, 1}κ

e← IC1.E(π, a,B, sk )

store credS [C] = (b, A, e, sk )

aPAKE C(sid, S, π) S(sid, C, credS [C]

y $←− Zp, Y ← gy
e, Y

a,B, sk ← IC1.D(π, e)

x $←− Zp, X ← gx

hX ← H1(sid, C, S,X), hY ← H1(sid, C, S, Y )

σC ←
(
Y ·BhY

)x+hX ·a

k1 ← H2(sid, C, S,X, Y, σC)

cX ← IC2.E(sk, X)

τ ← prf(k1, 1)
cX , τ ▷ In KHAPE-HMQV, X is sent instead of cX

X ← IC2.D(sk, cX)

hX ← H1(sid, C, S,X), hY ← H1(sid, C, S, Y )

σS ←
(
X ·AhX

)y+hY ·b

k2 ← H2(sid, C, S,X, Y, σS)

if τ ̸= prf(k2, 1): γ = K2 = ⊥
else: γ ← prf(k2, 2), K2 ← prf(k2, 0)

γ
if γ ̸= prf(k1, 2): K1 ← ⊥
else: K1 ← prf(k1, 0)

Figure 1. QA-KHAPE: quantum-annoying variant of KHAPE-HMQV [10, Fig 14],
with our changes compared to KHAPE-HMQV highlighted.

a new key confirmation (which is send to the client), or sets both to ⊥. The
client checks the key confirmation and computes the session key, or sets it to ⊥.

In the quantum-annoying setting, KHAPE-HMQV is susceptible to an offline
attack on the password using a single discrete logarithm query. Given a transcript
(e, Y,X, τ) an adversary can determine a list of possible values for KH-AKE
key-pairs: each password guess πi gives a pair of candidate values (ai, Bi) ←
IC.D(πi, e). Additionally, they can query the discrete logarithm oracle once on
the value X, receiving x. Then for each password guess (i.e., for each ai, Bi), they
can verify if the Diffie–Hellman completion results in the key-confirmation value
τ from the transcript, effectively providing an offline method to check passwords.

2.4 Quantum-Annoying KHAPE-HMQV

Our QA-KHAPE protocol, presented in Fig. 1, is a quantum-annoying aPAKE.
The construction is based on KHAPE-HMQV and requires only minimal changes,
which are highlighted in the figure. During the registration phase the server gen-
erates an additional secret key sk which is then encrypted using the π and stored
as part of the credentials. Correspondingly, during the aPAKE phase the client
decrypts e obtaining this key sk, which they use to encrypt the ephemeral value
X, resulting in the ciphertext c, which is then sent to the server. Briefly speaking,
QA-KHAPE is quantum-annoying because an adversary receiving a transcript
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must now solve a discrete logarithm for every decryption of c or e to verify if a
password guess was correct. This comes at the cost of an additional secret key
to be stored as credentials, which increases the size of first message from server
to client. The client has to perform one additional decryption and encryption,
while the server has to perform one additional decryption.

Security. The QA-KHAPE protocol is a quantum-annoying aPAKE in the gen-
eric group (cf. Section 2.1), ideal cipher and random oracle model and features
mutual authentication and key confirmation. No perfect forward secrecy can be
achieved in the setting of quantum-annoying for KHAPE-HMQV, because com-
promise of any party releases a static secret that, together with the public value
e, removes all the ambiguity on the group elements in question (i.e., A,B,X).
This enables an offline attack on the password using only a single discrete log-
arithm query. Note that a quantum-annoying PAKE achieving perfect forward
secrecy would mean to establish a secure, authenticated key without taking ad-
vantage of the password or credentials, which seemingly contradicts the main
point of a PAKE; establishing this formally is an interesting question for future
work.

All other properties of KHAPE-HMQV are preserved, for example, security
based on the computational Diffie–Hellman assumption against purely classical
attackers, and thus a full fall back to security of KHAPE-HMQV. The quantum-
annoying security is summarized in our main contribution, Theorem 1.

Theorem 1. Let G be a cyclic group of size p, H1,H2 be random oracles and
IC1, IC2 ideal ciphers with ciphertext space {0, 1}n1 , {0, 1}n2 respectively. Let
qSend, qExec, qHi

, qICi
, q◦, qDlog be the number of queries to the QA-BPR oracles,

and let ϵprf an adversary’s chance to distinguish prf from a random function. Let
N be the size of the password space for π. Then the advantage of an adversary
to win the QA-BPR game for the QA-KHAPE protocol in Fig. 1 is bounded by

AdvQA-KHAPE
QA-BPR ≤ qDlog + qSend

N
+ ϵ (3)

ϵ :=
qExec + qSend

ϵ−1
prf

+
(qIC1

+ qIC2
+ q◦)

2 + (qDlogq
2
◦)

p
+

qExec

2n1
+

qExec + qSend

2n2

+
qSend · (q◦ + 1)

p
+

(2qIC1
+ qIC2

)

p
+

(qIC1
)

2κ
+

(2q2IC1
+ q2IC2

)

p
+

(q2IC1
)

2κ
+

qH2

p

We prove Theorem 1 in two steps: first, in Section 3.1, we introduce the
KHAPECORE-game that captures the quantum-annoying property of QA-KHAPE
in the generic group model. Briefly speaking, the game models the aPAKE
without key-confirmation values and is defined such that any adversary can only
win if they query the correct Diffie–Hellman completion to the random oracle.
This allows us to quantify the number of discrete logarithm queries required,
and to prove that every password guess requires either an online interaction, or
a respective discrete logarithm query. Formally, this is captured in Theorem 2
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which we prove in Section 3.2. Second, we reduce the QA-BPR-security of the
QA-KHAPE protocol to the KHAPECORE-game, which is represented by The-
orem 1 and which we prove in Section 4. Together, these yield the proof of the
quantum-annoying property.

3 Generic Group Security: KHAPECORE

We define a game KHAPECORE that captures the quantum annoying property
of the protocol in Fig. 1, namely the indistinguishability of the keys k1, k2 from
random, which translates the approach of [7, Sec 3] into the setting of an aPAKE.

3.1 Security Game

The game is defined over a set [L] registrants; each l ∈ [L] is associated with
static, secret variables πl, skl, al, Bl and a static, public variable el. The vari-
ables are set on initialization of the KHAPECORE-game via the Registration
oracle (cf. Algorithm 1), along with uniformly random sampled challenge bit s.
Additionally, each registrant l is associated with a counter ctrl initialized to 0
corresponding to the interaction with the lth set of static variables. Each in-
teraction is called an instance. The adversary may interact with an arbitrary
number of registrants and instances through a set of oracles, eventually allowing
the adversary to obtain the keys k1, k2. The challenge bit determines if these
keys are real (if s = 0), in which case they are computed from Diffie-Hellman
session, or random (if s = 1).

Interface. The oracles take as input a value l matching a set of static vari-
ables which are used by the game to respond to a query. Ephemeral variables
for an instance (l, ctrl) are stored for consistent use by the other oracles. The
PassiveExec oracle (cf. Algorithm 2) corresponds to a passive execution of
the protocol in Fig. 1, excluding the key confirmation values. The ActiveC or
ActiveS oracles (cf. Algorithms 4 and 5), correspond to interacting with, or im-
personating, either party in the QA-KHAPE protocol, and thus at most one of
the two may be queried for each instance. The Active oracles compute, depend-
ing on the value of the challenge bit s, either a key value kl,ctrl,i from the input
and the static variables or output a uniformly random string. The GetStatic
oracle (cf. Algorithm 3) mimics the corruption of parties, which causes the game
to reprogram the outputs of the Active oracles into the respective positions be-
fore it returns the secret static variables. Finally, the adversary is given access to
the random oracles H1,H2, the block-ciphers IC1, IC2 modeled by ideal ciphers
and access to an interface of the generic group model.

Output. The KHAPECORE-game outputs 1 if the adversary’s output matches
the challenge bit s or if they if they query H2(l,m,X, Y, σl,C) (respectively
H2(l,m,X, Y, σl,S)) after submitting a query ActiveC(l, e, Y ) (respectively
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Algorithm 1 Registration(l)
1: πl

$←− [N ], skl
$←− {0, 1}κ

2: al, bl $←− Zp

3: Bl ← gbl , Al ← gal

4: el ← IC1.E(πl, al, Bl, skl)
5: Store πl, skl, el, Al, bl

Algorithm 2 PassiveExec(l)
Require: l ≤ L

1: Get stored πl, skl, el, Al, bl
2: Increment ctrl
3: xl,ctrl , yl,ctrl

$←− Zp

4: Xl,ctrl ← gxl,ctrl , Yl,ctrl ← gyl,ctrl

5: cl,ctrl ← IC2.E(πl, Xl,ctrl)
6: Store Yl,ctrl , ctxtl,ctrl
7: return el, Yl,ctrl , cl,ctrl

Algorithm 3 GetStatic(l)
Require: l ≤ L

1: Mark l corrupted; Get stored πl, skl

2: for m = 0, . . . , ctrl do
3: for kl,m, cl,m ← ActiveC(l, e, Y )
4: a,B, sk← IC1.D(πl, e)
5: hX = H1(l,m,Xl,m), hY = H1(l,m, Y )
6: σC ← (Y ◦BhY ))xl,m+hX ·a

7: H2(l,m,Xl,m, Y, σC) := kl,m,1

8: for kl,2 ← ActiveS(l, c)
9: Get stored Yl,m

10: X ← IC2.D(skl, c)
11: hX = H1(l,m,X), hY = H1(l,m, Yl,m)
12: σS ← (X ◦AhX

l,m)yl,m+hY ·bl,m

13: H2(l,m,X, Yl,m, σS) := kl,m,2

14: return (πl, skl)

ActiveS(l, c)), but before querying GetStatic(l) on the instance. The ad-
versary is then said to win the game. The restriction on the GetStatic oracle
mimics the fact that forward secrecy cannot be achieved in the quantum annoy-
ing model. The conditions under which the game outputs 1 are analogous to the
winning conditions of [7, Sec. 3.1].

Theorem 2 (Security of KHAPECORE). Let qAEC
, qAES

be the number
of queries to the Active and qPE the number of queries to the PassiveExec
oracle. Let qICi

, qHi
, q◦, qDlog be the number of queries to the ideal cipher, random

oracle, group operation and discrete logarithm oracles respectively. Then A’s
probability to win the KHAPECORE-game is bounded by

Pr [KHAPECORE ⇒ 1] ≤ 1

2
+

qAEC
+ qAES

+ qDlog

N
+ ϵCORE (4)

ϵCORE :=

// G0 ⇝ G1

(qIC1
+ qIC2

+ q◦)
2 + (qDlogq

2
◦)

p
+

// G3 ⇝ G4

(qAEC
+ qAES

) · (q◦ + 1)

p

+
qPE

2n1
+

qPE + qAE

2n2

// G2 ⇝ G3

+
(2qIC1

+ qIC2
)

p
+

(qIC1
)

2κ
+

(2q2IC1
+ q2IC2

)

p
+

(q2IC1
)

2κ

// G1 ⇝ G2

.

(5)

3.2 Proof of Theorem 2

The proof of Theorem 2 shows, informally, that the adversary’s chance to win
the KHAPECORE-game is limited by their ability to query the Dlog oracle
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Algorithm 4 ActiveC(l, e, Y )

Require: l ≤ L

1: Increment ctrl; Get stored πl

2: a,B, sk← IC1.D(πl, e)
3: xl,ctrl

$←− Zp, Xl,ctrl ← gxl,ctrl

4: cl,ctrl ← IC2.E(sk, Xl,ctrl)
5: if challenge s = 0 or l corrupted :
6: hX = H1(l, ctrl, Xl,ctrl), hY =

H1(l, ctrl, Y )
7: σC ← (Y ◦BhY ))xl,ctrl

+hX ·a

8: kl,ctrl,1 = H2(l, ctrl, Xl,ctrl , Y, σC)
9: else kl,ctrl,1 ← {0, 1}

n

10: return kl,ctrl,1, cl,ctrl

Algorithm 5 ActiveS(l, c)

Require: l ≤ L

1: Increment ctrl; Get stored skl

2: if challenge s = 0 or l corrupted :
3: X ← IC2.D(skl, c)
4: hX = H1(l, ctrl, X), hY =

H1(l, ctrl, Yl,ctrl)

5: σC ← (X ◦AhX
l )yl,ctrl+hY ·bl,ctrl

6: kl,ctrl,2 = H2(l, ctrl, X, Yl,ctrl , σl,C)
7: else kl,ctrl,2 ← {0, 1}

n

8: return kl,ctrl,2

on the correct group element, or any of the Active oracles on a ciphertext
encoding a group element the discrete logarithm of which is known to them. In
the KHAPECORE-game, the group elements in question are computed as

σC =
(
Y ·BhY

)x+hX ·a
= Y x · Y hx·a ·BhY ·x ·Bhy·hx·a

= gxy · ghX ·a·y · ghY ·b·x · ghY ·hX ·a·b

= Xy ·AhX ·y ·XhY ·b ·AhX ·hY ·b =
(
X ·AhX

)y+hY ·b
= σS ,

(6)

where computing σC , σS depends on either the knowledge of Dlog(g,B) or
Dlog(g,X). The framework presented in Section 2.1, allows us to quantify if
these element are knowable based on the number of discrete logarithm queries.
This is possible, because the relevant group elements X,B are encrypted under
the ideal cipher. On a decryption query the ideal cipher can return a public rep-
resentations that does not admit a relation to a previously received group element
known by the adversary. To learn any such relation, the adversary then has to
query the Dlog oracle. Specifically, the relevant group elements {Bl,i, Xl,i}i∈[N ]

correspond to decryptions of (e, c) using a password guess πi and ski as keys re-
spectively. In the KHAPECORE-game, the correct pair Bl,i, Xl,i is chosen during
the Registration phase and in the Active oracles. Due to the values being en-
crypted by the ideal ciphers, the simulation does not need to commit to any
actual pair Bi, Xi.

We prove this by presenting a sequence of game hops where the the initial
game G0 (cf. Section 3.2) is the KHAPECORE-game as defined in Section 3.1,
and G4 (cf. Section 3.2) is modified such that the keys k1, k2 are chosen uni-
formly random for every instance, and where the discrete logarithm of g and the
group elements B,X remain undefined unless sufficiently constrained by queries
to the Dlog and Active oracles. They are undefined because the ciphertexts
(e, c) are indistinguishable from random strings, and the key pair (π, sk) is no
longer defined from the PassiveExec or Active oracles. That means that the
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correct values for (B,X) may correspond to any of the N possible pairs. As long
as there is a degree of freedom left for these representations, the discrete logar-
ithm relative to g is also not defined, and the random oracle cannot be queried
on the respective Diffie–Hellman completion. These are only defined either if
an instance is corrupted, or if sufficiently many discrete logarithms have been
queried, allowing to quantify the adversary’s probability to win relative to the
number of Dlog queries.

G0 (KHAPECORE-game). This is the KHAPECORE as described in Section 3.1.

G1 (GGM). We modify the responses to the group operation ◦ and Dlog or-
acle by simulating the generic group as described in Section 2.1. The generator
initially given to the adversary is g1 = g, which corresponds to the secret rep-
resentation 1. The secret representation of the neutral element is 0. Recall that
the password space is of size N . The secret variables are represented as a set
{χl,i, χl,i}i∈[N ] corresponding to the pairs Bl,i, Xl,i that can be obtained when
querying the ideal ciphers on possible values for πl or skl. The ideal cipher ICi is
maintained via a table TICi

. On query IC1.D(π, e), if TIC1
[π, e] is defined, return

TIC1 [π, e]. Otherwise, sample a random index j $←− [N ] for the secret representa-
tion and a public representation gV

$←− {0, 1}n, both of which are added to the
table Tggm[χi,j ] := gV ; The public representation gV is returned. The simulation
of IC2 is analog.

The modification changes the distribution of the group elements: public rep-
resentations returned from the ideal ciphers (on new inputs) in the simulation
are unique, whereas the adversary would expect a collision after √p new quer-
ies. Additionally, the adversary would expect to see collisions between random
public representations, and the elements returned from (sufficiently many) group
operations. This happens with probability (qIC1

+ qIC2
+ q◦)

2/p.
Further, a group element may be assigned two distinct public representations,

if first computed from group operations and then returned from an IC query (or
vice versa). For example, if the public representation gx was returned from an
IC query, and the representation gx̄ = gx was assigned from group operations,
then the adversary may detect the modification by computing Dlog(g1, gx) = x.
The probability that this happens for group elements randomly assigned by the
ideal cipher and for all Dlog queries is qDlogq

2
◦/p. Overall, the adversary can

distinguish the two games with probability at most

(qIC1
+ qIC2

+ q◦)
2 + qDlogq

2
◦

p
. (7)

G2 (Ideal Ciphers Output). We change the ideal ciphers to output unique, ran-
dom values when queried on a new input. On query IC1.D(π, e), if TIC1 [π, e] is
not defined, the ideal cipher IC1 samples key pairs a, b $←− Zp and sk← {0, 1}κ,
generates public keys A = ga, B = gb and a key sk ← {0, 1}κ, and programs
TIC1

[π, e] := a,B, sk. In the case of a collision, i.e., if (a,B, sk) has been as-
signed to a value in the map TIC1

[π, ·] for any value ·, G2 aborts. Since (a,B, sk)
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are independent random variables, the probability for an abort is bounded by
2qIC1/p+qIC1/2κ, neglecting the a deduction for a simultaneous collision of all vari-
ables. Since the values a,B, sk are unique, two different queries will never output
the same values, whereas the adversary would eventually expect a collision in
G1. The same argument applies to IC2. In total, the divergence is bounded by

2qIC1
+ qIC2

p
+

(qIC1
)

2κ
+

2q2IC1
+ q2IC2

p
+

(q2IC1
)

2κ
. (8)

G3 (Random Ciphertexts). We modify the game to not sample any keys π
and sk and to output random strings e $←− {0, 1}n1 , c $←− {0, 1}n2 in the Pass-
iveExec and ActiveC oracles, which removes the game’s commitment to any
value stored in (e, c). Analogous to the modification in G2, the game aborts if
the values were previously assigned. At the same time the GetStatic oracle is
changed to reflect the modification: the simulation first decrypts the ciphertext
using freshly sampled keys π and sk. The Dlog oracle provides the values neces-
sary to compute the Diffie–Hellman session such that the output of the Active
oracles can be programmed into the correct position of the ideal cipher. For a
detailed algorithm of the modified (and “final”) PassiveExec and GetStatic
oracle we refer the reader to Appendix A1. The distribution of (e, c) returned by
PassiveExec and ActiveC is the same as in G2 unless it aborts. Since (e, c)
are sampled uniformly random from the ciphertext space, the probability for
this to happen is bounded by

qPE

2n1
+

qPE + qAEC

2n2
. (9)

G4 (Embed Random Keys). The Active oracles are modified to always return
random strings k $←− {0, 1}κ for non-corrupted instances. To notice this change,
the adversary must query H2(ctr, X, Y, σi), where the Diffie–Hellman completion
σi depends on either the knowledge of Dlog(g,X) and B, or the knowledge of
Dlog(g,B) and X, both of which are not defined by the game unless GetStatic
has been queried, in which case the adversary cannot win the game anymore.

The probability that Dlog(g,X) or Dlog(g,B) are knowable to the ad-
versary is bounded by Corollary 1, which tells us that the discrete logarithms
are defined if an only if b⃗, x⃗ are in the row span of D. Both, b⃗ and x⃗, are basis
vectors with a 1 at the position of the random index associated with the re-
spective secret variable. The number of basis vectors that can appear in the row
span are upper bounded by the rank of the matrix D, which is increased by 1 for
each Dlog query. Therefore, the probability that the adversary can force the
definition for any one value out of N many of these is bounded by qDlog/N.

Remark: Only public representations returned from the ideal ciphers, and
possibly group elements that come from group operation applied to these group
elements, provide useful input to the Dlog oracle, since the discrete logarithm
relation for group elements originating purely from g is already known to the
adversary. Therefore, the probability is

min(qIC1
+ qIC2

, qDlog)

N
≤ qDlog

N
. (10)
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Additionally, the adversary may submit a query with a group element, the
discrete logarithm of which is known to them. The input ê to the ActiveC oracle
is either a value formerly returned from a previous query to PassiveExec, in
which case the adversary must also query the ideal cipher and the Dlog oracle
and there is a chance of (q◦+1)/p that the discrete logarithm of the group element
decrypted by ActiveC is known to them. If ê was crafted by the adversary, i.e.,
if they queried the ideal cipher on values â, B̂, ŝk such that the discrete logarithm
of B̂ is known to them, then they expect an 1/N chance that there choice of p̂w
was correct, and that ActiveC used b̂ to compute the Diffie–Hellman session.

In total, this result in a divergence for ActiveC queries bounded by

qAEC
· (q◦ + 1)

p
+

qAEC

N
. (11)

For ActiveS , the adversary may submit a value ĉx for which the same arguments
hold, resulting in a total probability for either of both occurring of

(qAEC
+ qAES

) · (q◦ + 1)

p
+

(
qAEC

+ qAES

)
N

. (12)

Finally, the adversary’s advantage to distinguish the simulation from the real
game based on Dlog queries depends on the knowledge of at least one key from
a Active oracle, resulting in a factor of min(qAEC

+ qAES
, 1), thus bounding the

overall divergence by

min(qAEC
+ qAES

, 1)·(
(qAEC

+ qAES
) · (q◦ + 1)

p
+

(
qAEC

+ qAES
+min(qIC1

+ qIC2
, qDlog)

)
N

)
(13)

≤
(qAEC

+ qAES
) · (q◦ + 1)

p
+

(
qAEC

+ qAES
+ qDlog

)
N

(14)

.
In G4, the PassiveExec and ActiveC oracle output random values as

ciphertexts e, c that do not commit to any values a,B, π or X. Particularly,
the values Dlog(g,X),Dlog(g,B) are defined only upon corruption or after a
number of Active and Dlog queries relative to the password space N . The
Active∗ oracles further output a random key independent of the challenge bit
s = 0. The adversary is left with either guessing the challenge bit, or querying
values to H2. This concludes the proof of Theorem 2. ⊓⊔

4 aPAKE Security: Sketch of Proof of Theorem 1

The security of the QA-KHAPE protocol (cf. Figure 1) is proven in the QA-BPR
(cf. Section 2.2) model. Recall that the adversary may interact through the
Execute, Send, Reveal, Corrupt and Test oracles after the Registration
phase, where the protocol defines how the principals respond. Additionally, the
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adversary has access to the group operation, Dlog and random oracle, ideal
cipher and pseudo-random function prf , as described in Section 2.1, and is
bounded by Theorem 1. In this section we offer a summary of the proof’s main
ideas and provide a complete description in Appendix A2.

We consider a sequence of games starting with G0, which corresponds to the
QA-KHAPE protocol illustrated in Figure 1. As we progress to G3, the sessions
keys are chosen independent and uniformly at random, ensuring that the ad-
versary A is reduced to a simple guessing attack. Throughout this reduction
process, we present a an adversary B on the KHAPECORE-game, which main-
tains a mapping between instances of the KHAPECORE-game and instances of
principals in the QA-BPR-model. To achieve this, we utilize a procedure called
CoreMap, which bears resemblance to the getUV procedure described in [7,
App. B.2] (cf. Appendix A1 for further details). Intuitively, two counters ctrC,S

and ctrC,S,sid, are employed to either map to a set of static variables indexed by
l or to an instance ctrl in the KHAPECORE-game. The oracles provided by the
KHAPECORE challenger are referred to as KHAPECORE.Oracle.

In the sequence of games, the first modification occurs in G1, where we re-
place the keys k1, k2 in the Execute oracle with random strings. This change is
reflected in the Corrupt oracle, which now programs the random string instead
of the actual keys into the random oracle. The distinction between G0 and G1 can
be reduced to an attacker on the KHAPECORE-game. To differentiate between
these two games, we can provide an extractor for a winning query: utilizing
the CoreMap, the calls to the Execute and Send oracles can be forwarded
to the KHAPECORE.PassiveExec, which returns (eC,S,sid, YC,S,sid, cC,S,sid),
These outputs can be queries to KHAPECORE.Active∗, which provides
(cC,S,sid, kC,S,1) or kC,S,2. Using from these keys, the confirmation values (τ, γ)
that genuinely follow the protocol are computed.

In the modified game, all calls to the ideal cipher are simulated perfectly by
forwarding queries to, and responses from, the KHAPECORE-game. However,
queries to the random oracle are not simulated perfectly, because the adversary
can submit a query not associated with an instance in the KHAPECORE, and that
gets mapped to different value in the KHAPECORE-game later on. Nonetheless,
in every call to H2 in the KHAPECORE, either the group element X or Y is
chosen uniformly at random from the group, ensuring that the the adversary’s
probability of querying the same group element beforehand is at most qH2/p.

The Test queries in G1 are simulated perfectly, since the keys are chosen uni-
formly at random, ensuring that the key confirmation values follow the expected
distribution. In the non-Test queries, as the KHAPECORE instances are real-
or-random based on the respective challenge bit. Specifically, the keys (k1, k2)
are real-or-random values. However, the adversary can only detect this if they
can query the random oracle H2 for the position of the programmed random
keys. Such a query would immediately be a winning query in the KHAPECORE-
game. Therefore, the adversary’s ability to distinguish between the two games
can be limited by their capability to win the KHAPECORE-game, which can be
quantified relative to the number of Dlog queries they submit.
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In game G2, the modification is extended to the active queries (i.e., Send).
The extractor for the KHAPECORE-game acts nearly identical. The only differ-
ence is that the quantification of KHAPECORE advantage is now also impacted
by the adversary’s ability to query ciphertexts (e, c), the discrete logarithm of the
decryption of which is knowable to them. This adds an additional term for the
number of Send queries. The probability to detect the modifications from the
non-Test queries in game G1 and G2 result in the term (qDlog+qSend)/N + ϵCORE.

The last modification occurs in game G3, where we exchange the sessions keys
with random values. Since the keys (k1, k2) are already random strings, and the
session key is the output of the prf, this can be reduced to the adversary’s ability
to distinguish prf from a random function, i.e., ϵprf. This adds an additional
divergence of (qExecute + qSend)ϵprf and concludes the proof.
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A1 Oracles for Proof of Theorem 2

Algorithms 6 to 8 are detailed oracles for the proof of Theorem 2 in Section 3.2.

Algorithm 6 Sim. of Regis-
tration(l)
1: el $←− {0, 1}n1

2: Store el

Algorithm 7 Sim. of Pass-
iveExec(l)
1: Get stored el; Increment ctrl
2: cctr,X $←− {0, 1}n2

3: yctr ← Zp, Yctr ← gyctr

4: return (Yctr, ectr), (cctr,X)

Algorithm 8 Sim. of GetStatic(l)
Require: l ∈ Z
1: Mark l corrupted; πl ← [N ], skl ← {0, 1}κ

2: for m = 0, . . . , ctrl do
3: for kl,m, cl,m ← ActiveC(l, e, Y )
4: a,B, sk← IC1.D(πl, e)

5: X ← IC2.D(sk, cl,m); x← Dlog(g,X)

6: hX = H1(l,m,X), hY = H1(l,m, Y )
7: σl,m,C ← (Y ◦BhY ))x+hX ·a

8: H2(l,m,X, Y, σl,m,C) := kl,m,1

9: for kl,2 ← ActiveS(l, c)
10: X ← IC2.D(skl, c)

11: a,B, sk2 ← IC1.D(πl, el); b← Dlog(g,B)

12: hX = H1(m, l,X), hY = H1(m, l, Ym,l)
13: σm,l,C ← (X ◦AhX )yl+hY ·b

14: H2(m, l,X, Ym,l, σm,l,S) := km,l,2

15: return (πl, skl)

A2 Full Proof of Theorem 1

We offer the complete proof of Theorem 1 as a sequence of game hops.
First, the function CoreMap(C, S, sid) uses the counter l̄ mapping to the
static variables indexed with l, and ctrl̄, ctrC,S , ctrC,S,sid corresponding to
the instances using these static variables. All variables are initialized to zero.
The CoreMap works as follows: if the ctrC,S,sid > 0, the respective tran-
script ectrC,S

, YctrC,S ,ctrC,S,sid , cctrC,S ,ctrC,S,sid has been generated before and is
returned. Otherwise, if ctrC,S = 0, then this is the first interaction with
registrant l. The reduction sets ctrC,S ← l̄, ctrl̄ ← 1, increments l̄, cor-
responding to ctrl in the KHAPECORE, and sets ctrC,S,sid ← 1. The or-
acle KHAPECORE.PassiveExec(ctrC,S) is queried; the output stored and
returned. If ctrC,S > 0, The reduction sets ctrC,S,sid ← ctrl̄, increments
ctrl̄ and queries KHAPECORE.PassiveExec(ctrC,S). The output is stored in
ectrC,S

, YctrC,S ,ctrC,S,sid , cctrC,S ,ctrC,S,sid and returned.

G0 (Figure 1). This is the real protocol.

G1 (Passive Sessions). The game is modified by replacing the keys k1, k2
with random values for passively observed sessions. Particularly, on input
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Execute(C, S, sid), we set k1 = k2 ← {0, 1}κ and compute the key con-
firmation values τ, γ and sessions keys using the prf . The adversaries or-
acle calls to all instances l for which Execute has been called are simu-
lated as follows: First, the simulation invokes CoreMap(C, S, sid) to obtain
k1, c

′
X from KHAPECORE.ActiveC(ctrC,S,sid, e, Y ), is used to compute the

confirmation values τ, γ. On a Corrupt(C,S) query, the extraction calls
KHAPECORE.GetStatic(ctrC,S) returning πl, skl, which programs the key k1
returned by a KHAPECORE.Active oracle into the correct position of the ran-
dom oracle H2. The extraction receives a,B, sk from the ideal cipher on query
IC1.D(sk1, e) as well as the discrete logarithm b from KHAPECORE.Dlog(B).
It then computes A ← ga. Let P be a table corresponding to all N passwords.
The extraction sets π ← P[sk1], i.e., the sk1’th entry of the table and returns
π, (e,A, b, sk), which is a perfect simulation.

For the queries H1(sid, C, S, ∗), if the entry ctrC,S,sid is defined, the query is
forwarded to the KHAPECORE-challenger, and the result is returned. Otherwise,
a random value is sampled uniformly at random from the range ofH1, and a table
is maintained for consistent responses. H2(sid, C, S, ∗) is simulated analogous to
H1. All queries to IC1 and IC2 are forwarded to the KHAPECORE-challenger.
In Section 4 the divergence qH2/p from this simulation, i.e., the random oracle
and ideal cipher queries, has already been discussed.

Finally, the adversary may query a Test or Reveal query, receiving the
session key from the KHAPECORE-game, In the first case, if a Test query has
been received, extraction either simulates either G0, if the KHAPECORE chal-
lenge bit is zero, or G1, if the KHAPECORE challenge bit s is one. When s = 0,
the values of e, cX as well as τ, γ are distributed as expected (i.e., as in G0),
since the keys k1 = k2 are identical and thus γ can also be computed from k1.
On the other hand, if s = 1, the key k1 is chosen uniformly random as expected,
and thus the key confirmation values also have the expected distribution.
In the second case, if a Reveal query has been received, key k1 returned
from the simulation is real-or-random, but would be expected to always be real,
resulting in a divergence. However, from an adversary detecting this change
an extraction of a winning query to the KHAPECORE can be provided: In or-
der to notice the change, the adversary A has to query the random oracle on
H2(sid, C, S,X, Y, σC) or H2(sid, C, S,X, Y, σS), both of which allow to instantly
win the KHAPECORE-game. Note that the key confirmation values returned by
the aPAKE impact the advantage to win the KHAPECORE, since even a passive
execution allows to verify if a derived session key is correct. Therefore, the term
min(qAEC

+ qAES
, 1) is 1. Further, the inputs to CoreMap.Active∗ are sampled

in KHAPECORE.PassiveExec such that no new group elements, the discrete
logarithm of which is knowable to the adversary, have to be considered in the
probability to win the KHAPECORE-game. Consequently, the number of these
queries is exactly the number of Execute queries. The probability to detect the
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difference between game G0 and G1 is then bounded by

qDlog

N
+ ϵpassiv +

qH2

p
(15)

ϵpassiv :=
(qIC1

+ qIC2
+ q◦)

2 + (qDlogq
2
◦)

p
+

q2IC1
+ qExecute

2n1
+

q2IC2
+ qExecute

2n2
. (16)

G2 (Active Sessions). In G2, the modifications(i.e., replacing k1, k2 with random
strings), are extended to active sessions:

For an active session impersonating a client C, the oracle calls are mod-
ified as follows: On input Send(C, l,M = (S, sid)) the simulation responds
with the values e, Y retrieved from KHAPECORE.PassiveExec. On input
Send(C, l,M = (S, sid, cX , τ)) we sample the k2 ← {0, 1}κ uniformly at ran-
dom and computes τ ′ ← prf(k2, 1). The session key and the key confirmation
value are generated from k1, k2 based on τ = τ ′ as in an genuine execution of
the protocol.

For an active session impersonating a server S, the oracle calls are modified
as follows: On input Send(C, l,M = (S, sid, e, Y )) the simulation samples a uni-
formly random value for k1 ← {0, 1}κ and computes the key confirmation value
τ using the prf. On input Send(C, l,M = (S, sid, γ)) we compute γ′ ← prf(k1, 2)
and set the session key conditionally on the outcome of γ = γ′ (i.e., as in the real
protocol). On queries to the random oracle, ideal cipher, Reveal and Corrupt
the reduction behaves identical to G1, and thus the divergence is identical.
Eventually, the adversary may query a Test or Reveal query receiving a ses-
sion key from the KHAPECORE. To bound the adversaries chance to detect the
modification, a similar extractor of a winning query to the KHAPECORE-game
is provided. Similarly to Appendix A2, the reduction calls CoreMap to map
instances of the QA-BPR-game to instances of the KHAPECORE-game. The ex-
traction of a winning query on the adversary Send queries to clients and servers
is examined separately.

Impersonation of clients: On Send(C, l,M = (S, sid)) the extraction calls
CoreMap(C, S, sid), which causes ctrC,S to become defined if it previously
was not, and the retrieved values e, Y are returned. On Send(C, i,M =
(S, sid, cX , τ)) the reduction calls CoreMap(C, S, sid) to subsequently obtain
k2 ← KHAPECORE.Active(ctrC,S , cX). The key confirmation value τ ′ is com-
puted from the obtained key using the prf . The session key and key confirmation
value are set conditioned on τ = τ ′ as in the real protocol.

Impersonation of Server : On Send(S, i,M = (C, sid, j, e, Y )), the reduction
calls CoreMap(C, S, sid), which causes ctrC,S to become defined it it previously
was not. Then the reduction calls k1 ← KHAPECORE.Active(ctrC,S , e, Y ) and
computes the key confirmation value τ genuinely using the prf , and returns
cX , τ . On Send(S, i,M = (C, j, γ, sid)), the reduction computes γ′ from the
key k2 using the prf and compares this to γ. If they match, the session key
is set to K1 ← prf(k1, 0), and otherwise, to ⊥. For Send the arguments are
analogous to G1: If Test was queried, the reduction simulates G1 (and thus
G0) perfectly if the KHAPECORE challenge bit s = 0, and simulates G2 if s =
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1(except for inconsistencies in the random oracle). Otherwise, the adversary
can detect the change only by querying the random oracle on either of the
two inputs H2(sid, C, S,X, Y, σC) or H2(sid, C, S,X, Y, σS), both of which are
winning queries for the reduction in KHAPECORE.

The number of Active queries for which the adversary may choose the input
is bounded by the number of Send queries, bounding the difference between
game G1 and G2 by

(qDlog + qSend)

N
+ ϵactiv +

qH2

p
(17)

with

ϵactiv :=
(qIC1

+ qIC2
+ q◦)

2 + (qDlogq
2
◦)

p
+

q2IC1
+ qSend

2n1
+

q2IC2
+ qSend

2n2
(18)

.

G3 (Random Sessions Keys). The final modification in G3(i.e., replacing the
session keys with random strings) was discussed in Section 4, resulting in the
term (qExec + qSend)ϵprf. The sessions keys are now uniformly random and inde-
pendent of the password and credentials leaving adversary to a guessing attack.

The probability that the adversary can distinguish G0 from G3 is bounded
by

(qDlog + qSend)

N
+

qH2

p
+ (qExec + qSend)ϵprf + ϵ , (19)

with

ϵ ≤
(qIC1

+ qIC2
+ q◦)

2 + (qDlogq
2
◦)

p
+
(q2IC1

+ qSend + qExec)

2n1
+
(q2IC2

+ qSend + qExec)

2n2
.

(20)
This conclude the proof. ⊓⊔
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