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Abstract. In 2022, Moriya, Onuki, Aikawa, and Takagi proposed a new
framework named generalized Montgomery coordinates to treat one-
coordinate type formulas to compute isogenies. This framework general-
izes some already known one-coordinate type formulas of elliptic curves.
Their result shows that a formula to compute image points under isoge-
nies is unique in the framework of generalized Montogmery coordinates;
however, a formula to compute image curves is not unique. Therefore,
we have a question: What formula is the most efficient to compute image
curves in the framework of generalized Montogmery coordinates?

In this paper, we analyze the costs of formulas to compute image curves
of 3-isogenies in the framework of generalized Montgomery coordinates.
From our result, the lower bound of the costs is 1M + 1S as a formula
whose output and input are in affine coordinates, 2S as an affine formula
whose output is projective, and 2M + 3S as a projective formula.

Keywords: isogeny-based cryptography; Vélu’s formulas; elliptic curves;
generalized Montgomery coordinates.

1 Introduction

Isogeny-based cryptography is one of the candidates for post-quantum cryptog-
raphy that resists quantum computers. This cryptography is based on Isogeny
Problem of elliptic curves. The main merit of using isogeny-based cryptosystems
is that they can achieve enough security under short data sizes; however, they
need a lot of computational costs. Every isogeny-based cryptosystem has isogeny
computations in its heart. Therefore, how to compute isogenies between elliptic
curves efficiently is one of the interesting research themes in both computational
algebra and isogeny-based cryptography.

One useful method to compute isogenies on elliptic curves is to rely on one-
coordinates type formulas such as formulas of x-coordinates of Montgomery
curves [Ren18,CH17,MR18]. One-coordinates type formulas are based on Vélu’s
formulas [Vél71] and have been proposed in some different forms of elliptic curves
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by individual researchers independently (e.g., w-coordinates of Edwards curves
[KYPH19], w-coordinates of Huff’s curves [HZHL20,DKW20]).

In 2022, Moriya, Onuki, Aikawa, and Takagi proved that these one-coordinates
type formulas come from the same framework named generalized Montgomery
coordinates [MOAT22]. This paper showed that formulas to compute image
curves of isogenies derived from generalized Montgomery coordinates are not
unique; however, the differences arise from a division polynomial that is deter-
mined by the degree of the target isogeny. More precisely, if rational functions
ϕ1(α, h) and ϕ2(α, h) are formulas to output image curves of ℓ-isogenies, then
the difference ϕ1 − ϕ2 is a product of the ℓth division polynomial and a rational
function whose denominator cannot be divided by the ℓth division polynomial.
Naturally, the difference among formulas provides the difference in their compu-
tational costs. Thus, we have the following question:

What is the most efficient formula to compute image curves of
isogenies in the framework of generalized Montgomery coordinates?

Formulas in the case of 3-isogenies can be described as follows:

−6h3 + αh2 + 6h+ (3h4 + 4αh3 + 6h2 − 1)
φ(α, h)

ϕ2(α, h)
,

where h is an indeterminate corresponding to a kernel of a 3-isogeny, α corre-
sponding to a domain curve, and φ(α, h) and ϕ2(α, h) are polynomials in Z[α, h].
Therefore, we can theoretically find the most efficient formula to compute image
curves of 3-isogenies by considering the above rational function.

1.1 Contribution

In this paper, we find the lower bound of the cost to compute image curves of
3-isogenies in the framework of generalized Montgomery coordinates. We define
costs as numbers of multiplications and squarings, and describe the cost of a
multiplications and b squarings as aM+ bS. The formula

−6h3 + αh2 + 6h

that was proposed in [Ren18] is one of the most efficient formulas in those whose
input and output are in affine coordinates, and its cost is 1M+1S. As an affine
formula whose outputs are in projective coordinates, the formula

(−27h4 + 18h2 + 1 : 4h)

is one of the most efficient formulas, and its cost is 2S. As a projective formula,
the formula

−27h4 + 18h2 + 1

4h
= (−27H4 + 18H2Z2 + Z4 : 4HZ3)

that proposed in [CLN16] is one of the most efficient formulas, and its cost is
2M+ 3S.
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Fig. 1. Propositions and lemmas to prove Theorem 9

The main part of this paper is the proof of the result of project formulas
(Theorem 9). This proof composes of some propositions and lemmas. Lemma 7
shows that there is no formula of degree 2 or less. Proposition 11 is the proposi-
tion of the case that the degree of the formula is more than 4, Proposition 14 is
that of the case that the degree of the formula is 3, and Proposition 16 is that
of the case that the degree of the formula is 4. Moreover, we need some lemmas
to prove Proposition 16. Figure 1 shows the outline of the relationship between
these propositions and lemmas.

Organization. In Section 2, we introduce some mathematical concepts (iso-
genies and generalized Montgomery coordinates). Section 3 provides the lower
bound of costs to compute image curves under 3-isogenies and formulas that
can be computed in the lower bound cost. In Section 3.1, we give the setting
of analysis. In Section 3.2, we analyze affine formulas, and in Section 3.3, we
analyze projective formulas. Finally, we conclude this paper in Section 4.

2 Preliminaries

In this section, we introduce some knowledge about isogenies and generalized
Montgomery coordinates. Refer to [Sil09] and [MOAT22] for more detail.

Let E1, E2 be elliptic curves. If a morphism f : E1 → E2 is surjective and a
group morphism, we call f an isogeny. From an elliptic curve E1 and its finite
subgroup G, Vélu’s formulas output an elliptic curve E2 and a separable isogeny
f : E1 → E2 with ker f = G [Vél71]. We often denote E2 by E1/G. If an isogeny
f is a separable isogeny whose kernel is a cyclic group of order ℓ, we call f an
ℓ-isogeny.

Let k be a field, and E an elliptic curve defined over k. A coordinate of an
elliptic curve is a function h : E → k, where k is the algebraic closure of k. Note
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that a function can be treated as a map from E to the projective line P1
k
. Let

P be a point in E. An affine coordinate of P is a value h(P ) ∈ k for some
coordinate h, and a projective coordinate of P is an element (H(P ) : Z(P )) in
P1
k
for some coordinate (H : Z) : E → P1

k
. One-coordinate type formulas are

formulas in which all points are represented as images of one fixed coordinate.

Remark 1. The definition of coordinates may not be compatible with those in
other papers. This definition is reasonable to consider one-coordinate type for-
mulas of elliptic curves.

Let k be a field of characteristic other than 2. Let E be an elliptic curve
over k, let G be a finite subgroup of E, and let R be a subset of E such that
R = R0 + G for some R0 ∈ 1

2G ∖ G (i.e., 2R0 ∈ G and R0 ̸∈ G). A generalized

Montgomery coordinate of E with respect to G and R is a function hG,R : E → k
satisfying

div hG,R = 2
∑
R∈R

(R)− 2
∑
P∈G

(P ).

A normalized generalized Montgomery coordinate hG,R is a generalized Mont-
gomery coordinate such that hG,R(P +R) = 1

hG,R(P ) for any P ∈ E and R ∈ R.

Let R1 be a point in E such that 2R1 ∈ G and R1 ̸∈ G ∪ R. A generalized
Montgomery coefficient of hG,R is a value

αhG,R = −hG,R(R1)−
1

hG,R(R1)
.

Note that αhG,R is determined only from hG,R. A generalized Montgomery co-
efficient can be regarded as a parameter of an elliptic curve. This is an analogy
for the fact that a Montgomery coefficient can be regarded as a parameter of
a Montgomery curve. For a generalized Montgomery coefficient, we have the
following lemma:

Lemma 2 ([MOAT22, Proposition 21]). For any positive odd integer m,
there exist polynomials Φm, Ψm ∈ Z[α, h] such that, for any elliptic curve E
and any normalized generalized Montgomery coordinate hG,R, the following three
properties hold:

– It holds that

hG,R(mP ) =
hG,R(P )Φ2

m(αhG,R , hG,R(P ))

Ψ2
m(αhG,R , hG,R(P ))

;

– The highest-degree monomial of Φm(α, h) in the variable h is h
m2−1

2 ;

– The highest-degree monomial of Ψm(α, h) in the variable h is m · hm2−1
2 .

We call Ψm themth division polynomial of generalized Montgomery coordinates.
We denote it by ψm.

Let ℓ be an odd integer, Q a point in E of order ℓ, and f : E → E/⟨Q⟩ an
ℓ-isogeny with ker f = ⟨Q⟩. Let hG,R be a normalized generalized Montgomery



Lower bound of costs to compute image curves of 3-isogenies 5

coordinate of E such that gcd (#G, ℓ) = 1. Then, a function hf(G),f(R) is a
normalized generalized Montgomery coordinate of E/⟨Q⟩, and it holds that

hf(G),f(R)(f(P )) = hG,R(P )

(ℓ−1)/2∏
i=1

(
hG,R(P )hG,R(iQ)− 1

hG,R(P )− hG,R(iQ)

)2

. (1)

This is a formula to compute ℓ-isogenies. For an integer ℓ, there is a rational
function ϕ1(α, h)/ϕ2(α, h) such that

αhf(G),f(R)
=
ϕ1(αhG,R , hG,R(Q))

ϕ2(αhG,R , hG,R(Q))

for all (E, hG,R, Q) and f : E → E/⟨Q⟩ with ker f = ⟨Q⟩. This is a formula to
compute image curves of ℓ-isogenies. More precisely, we can define “a formula
to compute image curves of ℓ-isogenies” as follows:

Definition 3 (A formula to compute image curves of ℓ-isogenies).
Let ℓ be a positive integer. A formula to compute image curves of ℓ-isogenies is
a rational function ϕ1/ϕ2 satisfying

αhf(G),f(R)
=
ϕ1(αhG,R , hG,R(Q))

ϕ2(αhG,R , hG,R(Q))

for all (k,E, hG,R, Q, f) such that:

– k : a field of characteristic other than 2 and ℓ,
– E : an elliptic curve defined over k,
– hG,R : a normalized generalized Montgomery coordinate with gcd (#G, ℓ) = 1,
– Q : a point in E of order ℓ,
– f : an ℓ-isogeny f : E → E/⟨Q⟩ with ker f = ⟨Q⟩.

We know there are some different formulas to compute image curves of ℓ-isogenies
(e.g., [Ren18] and [MR18]). The following theorem shows these differences come
from division polynomials.

Theorem 4. Let ℓ be an odd prime. If two rational functions ϕ1(α,h)
ϕ2(α,h)

and ϕ3(α,h)
ϕ4(α,h)

are formulas to compute image curves of ℓ-isogenies, then it holds that

ϕ1(α, h)

ϕ2(α, h)
− ϕ3(α, h)

ϕ4(α, h)
= ψℓ(α, h) ·

φ1(α, h)

φ2(α, h)
,

where φ1, φ2 ∈ Z[α, h] and φ2(αhG,R , hG,R(Q))) ̸= 0 for all (E, hG,R) with
gcd (#G, ℓ) = 1 and Q of order ℓ.

Proof. Combine [MOAT22, Theorem 10] and Definition 3. ⊓⊔

3 Settings and affine formula

In this section, we explain the settings for analysis and analyze the computational
costs of affine formulas to compute image curves of 3-isogenies.
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3.1 Settings for analysis

From a formula in [CH17, Theorem 1], we have

αhf(G),f(R)
= −6hG,R(Q)3 + αhG,RhG,R(Q)2 + 6hG,R(Q),

where Q is a point of order 3 in E. From [MOAT22, Example 1], the 3rd division
polynomial of computational coordinates is

3h4 + 4αh3 + 6h2 − 1.

Therefore, Theorem 4 shows that if ϕ1(α, h)/ϕ2(α, h) is a formula to compute
image curves of 3-isogenies and ϕ1, ϕ2 ∈ Z[α, h], then

ϕ1(α, h)

ϕ2(α, h)
= −6h3 + αh2 + 6h+ (3h4 + 4αh3 + 6h2 − 1)

φ(α, h)

ϕ2(α, h)
(2)

for some φ ∈ Z[α, h]. We try to get the lower bound of costs of these formulas.
In this paper, we define a cost of a formula as a number of mulitiplications

and squarings. Because the effects of additions and subtractions are small, we
ignore their costs. Moreover, because the effects of divisions are huge, we do not
consider computational algorithms that involve divisions. We denote the cost of
a times multiplications and b times squarings by aM+ bS, and we assume that
1M ≥ 1S ≥ (2/3)M.

We can compute a× b by a− 1 times additions of b. In this paper, we do not
take into account this kind of algorithms whose cost varies with input because
it seems inefficient and is hard to be analyzed.

3.2 Affine formula

In this subsection, we discuss the costs of affine formulas defined as follows:

Definition 5 (Affine formulas). An affine formula is a formula whose input
is given in an affine coordinate.

We have the following theorem.

Theorem 6. If all inputs are given in affine coordinates and αhf(G),f(R)
is output

by an affine coordinate, the lower bound of costs of the formulas to compute the
generalized Montgomery coefficient of the codomain of 3-isogenies is 1M + 1S,
and the following formula can be computed with this lower bound.

−6h3 + αh2 + 6h.

If all inputs are given in affine coordinates and αhf(G),f(R)
is output by projective

coordinates, the lower bound of costs of the formulas to compute codomains of
3-isogenies are 2S, and the following formula can be computed with this lower
bound.

(−3(3h2 − 1)2 + 4 : 4h).
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To prove this theorem, we introduce the following lemma.

Lemma 7. Let ϕ1/ϕ2 be an affine formula to compute codomains of 3-isogenies.
Then deg ϕ1 ≥ 3 or deg ϕ2 ≥ 3.

Proof. Suppose that deg ϕ1 < 3 and deg ϕ2 < 3. It holds that

ϕ1(α, h)− (3h4 + 4αh3 + 6h2 − 1)φ(α, h) = (−6h3 + αh2 + 6h)ϕ2(α, h).

By comparing degrees of both sides of the equation, we have deg φ ≤ 1. Since
ϕ2 ̸= 0, we have φ ̸= 0. Moreover, considering the highest-degree terms of both
sides, we get

φ(α, h) = c1(6h− α) + c2,

where c1, c2 ∈ Z and c1 ̸= 0. Since the highest-degree term of the left hand
side is c1(6h− α)(3h4 + 4αh3), the highest-degree term of ϕ2 is c1(3h

2 + 4αh).
Furthermore, since the coefficient of α2h2 of the left-hand side is 0, we have

ϕ2(α, h) = c1(3h
2 + 4αh) + c3h+ c4,

where c3, c4 ∈ Z. Terms of degree 4 of the left-hand side is −c2(3h4 + 4αh3)
while those of degree 4 of the right-hand side is c3h(−6h3 + αh2). Therefore,
c2 = c3 = 0. Hence, terms of degree 3 of the left-hand side is −c16h2(6h−α) while
those of degree 3 of the right-hand side is c16h(3h

2+4αh)h+c4(−6h3+αh2). We
have c1 = c4 = 0. This contradicts ϕ2 ̸= 0. Therefore, it holds that deg ϕ1 ≥ 3
or deg ϕ2 ≥ 3. ⊓⊔

We now show the proof of Theorem 6.

Proof of Theorem 6. From Lemma 7, we have deg ϕ1 ≥ 3 or deg ϕ2 ≥ 3. To
compute terms of degree 3, we need at least 1M+1S cost, and to compute those
of degree 4, we need at least 2S cost. It is easy to check that to compute terms
of degree 5 or more, we need more cost than 1M+ 1S.

In the case that the generalized Montgomery coefficient is output by an
affine coordinate, there are no formulas with the cost of 2S for the following
reason. Suppose that there is a formula with the cost of 2S. This formula can
be represented by

−6h3 + αh2 + 6h+ c(3h4 + 4αh3 + 6h2 − 1), (3)

where c ∈ Z \ {0}. On the other hand, from the cost to compute this formula,
we have that this formula can be represented by

c1(c2(c3h+ c4α+ c5)
2+ c6h+ c7α+ c8)

2+ c9(c3h+ c4α+ c5)
2+ c10h+ c11α+ c12,

where c1, . . . , c12 ∈ Z. Since there are no terms of degree 2 or more in the variable
α in the formula (3), c4 = c7 = 0. However, there is the αh3 term in the formula
(3). This is a contradiction. Therefore, 1M + 1S is the lower bound of costs of
formulas. The following formula can be computed with this lower bound.

−6h3 + αh2 + 6h = h2(−6h+ α) + 6h.
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In the case that the generalized Montgomery coefficient is output by projec-
tive coordinates, the following formula can be computed with this lower bound.

((−6h3 + αh2 + 6h)4h− (3h4 + 4αh3 + 6h2 − 1) : 4h) = (−3(3h2 − 1)2 + 4 : 4h).

This completes the proof of Theorem 6. ⊓⊔

4 Projective formula

In the previous section, we analyzed costs of the formulas in the case that all
inputs are given in affine coordinates. However, when using the formulas in
isogeny-based cryptography, all inputs and outputs are usually given in projec-
tive coordinates. Therefore, we need to analyze projective formulas.

4.1 Terminology

We define projective formulas as follows:

Definition 8 (Projective formulas). A project formula is a formula with
input and output in projective coordinates.

If (ϕ1(A,C,H,Z) : ϕ2(A,C,H,Z)) is a projective formula, then there is an
affine formula ϕ̃1(α, h)/ϕ̃2(α, h) such that

ϕ1(A,C,H,Z)

ϕ2(A,C,H,Z)
=
ϕ̃1(A/C,H/Z)

ϕ̃2(A/C,H/Z)
.

These are more complicated to analyze than affine formulas. For simplicity, we
assume that all polynomials appearing in the computations are homogeneous in
this paper. Note that there are computations in which non-homogeneous poly-
nomials appear. For example, 4H2Z = (H2 + Z)2 − (H2 − Z)2. We think such
computations are not efficient; however, it is an open problem whether, in the
most efficient computation of formulas, nonhomogeneous polynomials do not
appear.

Now, we have the following theorem.

Theorem 9. If all inputs are given in projective coordinates and αhf(G)f(R)
is

output by projective coordinates, the lower bound of costs of the formulas to
compute codomains of 3-isogenies are 2M+3S. Moreover, the following formula
can be computed with the lower bound.

(−3(3H2 − Z2)2 + 4Z4 : 4HZ3) = (−27H4 + 18H2Z2 + Z4 : 4HZ3).

The main goal of this section is to prove this theorem. We separate the situation
into three cases to prove it. Let ϕ1/ϕ2 be irreducible over Z. The first case is of
deg ϕ1 = deg ϕ2 > 4 (Proposition 11). The second case is of deg ϕ1 = deg ϕ2 = 3
(Proposition 14). The third case is of deg ϕ1 = deg ϕ2 = 4 (Proposition 16).
Theorem 9 follows from these propositions by a straightforward. Therefore, we
prove these propositions instead of proving Theorem 9.

Before proving, we define the following concept for convenience.
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Definition 10 (Seed polynomials). The computations of formulas are per-
formed as follows.

deg 1 deg n
2 or more deg n formula

H u′n/2 u′n

Z
a−−→ M or S−−−−−→ · · · u′′n/2

a−−→ M or S−−−−−→ u′′n
a−→ ϕ1

ϕ2

A
...

...

C u
(mn/2)

n/2 u
(mn)
n

We call a homogeneous polynomial appearing after a multiplication or a squaring

in the computation a seed polynomial (e.g., u′n, . . . , u
(mn)
n and u′n/2, . . . , u

(mn/2)

n/2

in the above diagram).

We can estimate the cost by the number of seed polynomials appearing in the
computation. For example, the formula

(−27H4 + 18H2Z2 + Z4 : 4HZ3)

can be computed in 2M+ 3S as the follow diagram:

deg 1 deg 2

H H − Z (H − Z)2 9H2 − 6HZ + Z2

Z
a−−→ H + Z

S−−→ (H + Z)2
a−−→ −3H2 − 2HZ + Z2

A 2H (2H)2 9H2 + 6HZ + Z2

C −3H2 + 2HZ + Z2

deg 4 formula

M−−→ −27H4 + 18H2Z2 − 8HZ3 + Z4 a−−→ 4(−27H4 + 18H2Z2 + Z4)
−27H4 + 18H2Z2 + 8HZ3 + Z4 16HZ3

(4)

Polynomials (H − Z)2, (H + Z)2, (2H)2, −27H4 + 18H2Z2 − 8HZ3 + Z4 and
−27H4 + 18H2Z2 + 8HZ3 + Z4 are seed polynomials in this diagram.

4.2 Degree of formula > 4

We now prove the case that the degree of a projective formula is more than 4.

Proposition 11. Let (ϕ1 : ϕ2) be a projective formula to compute image curves
of 3-isogenies such that the degree of the formula is more than 4 (i.e., deg ϕ1 =
deg ϕ2 > 4 and ϕ1/ϕ2 is irreducible over Z), then the cost to compute this formula
is 2M+ 3S or more.
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The proposition follows from the following lemma by a straightforward.

Lemma 12. Let (ϕ1 : ϕ2) be a projective formula. If the highest degree of seed
polynomials is 5 or more appearing in the least cost computation of (ϕ1 : ϕ2),
then at least 6 seed polynomials are needed to compute the formula.

Proof. Let n be the highest degree of seed polynomials in the computation of
(ϕ1 : ϕ2) with the least cost. In this proof, we show the following three claims:

Claim 1: There are at least two seed polynomials of degree n.
Claim 2: There are at least two seed polynomials of degree n/2 or more and

less than n.
Claim 3: There are at least two seed polynomials of degree n/4 or more and

less than n/2 if the number of seed polynomials of degree n/2 or more is 4.

Because n ≥ 5, there is at least one seed polynomial of degree n/4 or more
and less than n/2. Therefore, if these claims hold, we find at least six seed
polynomials.

Claim 1. There is at least two seed polynomials of degree n.

Proof of Claim 1. Suppose that there is only one seed polynomial of degree n.
We denote this polynomial by un. Note that we assume that there are no non-
homogeneous polynomials in the computation. From the definition of seed poly-
nomials, all polynomials of degree n appearing in the computation are obtained
by adding un’s. Therefore, if the final result of the computation is two polyno-
mials of degree n, the result ϕ1/ϕ2 becomes a constant function. If the degree
of the final result of the computation is less than n, since we cannot compute
polynomials of degree n − 1 or less from un, we have un is not needed in the
computation. This contradicts that the computation we consider has the least
cost. Therefore, there are at least two seed polynomials of degree n. ⊓⊔

Claim 2. There are at least two seed polynomials of degree n/2 or more and less
than n.

Proof of Claim 2. For computing seed polynomials of degree n, we need at least
one seed polynomial of degree n/2 or more and less than n. Suppose that there
is only one seed polynomial of degree n/2 or more and less than n. We denote
this seed polynomial by un/2. It is easy to see that all seed polynomials of degree
n should be cu2n/2 or v · un/2, where c ∈ Z and v is a polynomial of degree less

than n/2. Therefore, we compute (ϕ′1un/2 : ϕ′2un/2) = (ϕ1 : ϕ2) for some ϕ′1 and
ϕ′2. However, we can compute cun/2 more efficiently than cu2n/2, and compute v

more efficiently than v · un/2. Hence, we can compute (ϕ′1 : ϕ′2) more efficiently
than (ϕ′1un/2 : ϕ′2un/2). This contradicts that the computation we consider has
the least cost. Therefore, we need at least two seed polynomials of degree n/2
or more and less than n. ⊓⊔

Claim 3. There are at least two seed polynomials of degree n/4 or more and less
than n/2 if the number of seed polynomials of degree n/2 or more is 4.
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Proof of Claim 3. From Claim 1 and 2, there are two seed polynomials of degree
n and two seed polynomials of degree n/2 or more and less than n. Suppose that
there is only one seed polynomial of degree n/4 or more and less than n/2. We
denote this seed polynomial by un/4. Let un/2 and u′n/2 be seed polynomials of

degree n/2 or more and less than n with deg un/2 ≤ deg u′n/2.
Here we have the following two cases:

Case 1: deg un/2 < deg u′n/2.

Case 2: deg un/2 = deg u′n/2.

We find contradictions in both cases.

Case 1: We have the following four cases:

(un/2, u
′
n/2) =


(v · un/4, v′ · un/4)
(v · un/4, cu2n/4)
(v · un/4, c(v · un/4)2)
(cu2n/4, v

′ · u2n/4)

,

where c ∈ Z, and v and v′ are polynomials of degree less than n/4. Since
deg un/2 < deg u′n/2, we have deg (un/2 · u′n/2) > n and deg u′2n/2 > n, and

we do not compute un/2±u′n/2. Hence, the seed polynomials of degree n are

du2n/2, w · un/2, or w′ · u′n/2, where d ∈ Z, and w and w′ are polynomials of

degree less than n/2. Therefore, seed polynomials of degree n have the one
of following forms:

d(v · un/4)2, d(cu2n/4)
2, w · (v · un/4), w · (cu2n/4),

w′ · (v′ · un/4), w′ · c(v · u2n/4), w′ · (v′ · u2n/4).
(5)

Since these are divisible by un/4, we can instead compute

d(v2 · un/4), d(c2u3n/4), w · v, w · (cun/4),
w′ · v′, w′ · c(v · un/4), w′ · (v′ · un/4).

(6)

We can compute these polynomials except for the first two polynomials more
efficiently than corresponding polynomials in (5) respectively. The first poly-
nomial d(v2 · un/4) is computed in the same cost as d(v · un/4)2; however,
we need to compute a polynomial except for the first two polynomials in
(6) in the case in which the first polynomial appears. Therefore, we can also
compute polynomials more efficiently in this case. The second polynomial
d(c2u3n/4) is computed less efficiently than d(cu2n/4)

2. In the case in which

the second polynomial appears, we have (un/2, u
′
n/2) = (cu2n/4, v

′ · u2n/4).
Therefore, the seed polynomials of degree n are d(cu2n/4)

2 and w′ · (v′ ·u2n/4).
Since both of them are divisible by u2n/4, we can instead compute dc2u2n/4 and

w′·v′. We can compute these more efficiently than d(cu2n/4)
2 and w′·(v′·u2n/4).

Consequently, we find the more efficient way to compute seed polynomials
of degree n in each case. This is a contradiction.
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Case 2: We have the following two cases:

(un/2, u
′
n/2) =

{
(v · un/4, v′ · un/4)
(cu2n/4, c

′u2n/4)
,

where c, c′ ∈ Z, and v and v′ are polynomials of degree less than n/4. The
seed polynomials of degree n are (dun/2+d

′u′n/2)·(eun/2+e
′u′n/2) or (dun/2+

d′u′n/2)
2, where d, d′, e, e′ ∈ Z. If (un/2, u′n/2) = (cu2n/4, c

′u2n/4), then ϕ1/ϕ2
is a constant. This is a contradiction. If (un/2, u

′
n/2) = (v · un/4, v′ · un/4),

then a seed polynomial of degree n is (dv · un/4 + d′v′ · un/4)2 or
(dv · un/4 + d′v′ · un/4) · (ev · un/4 + e′v · un/4). We can instead compute
(dv + d′v′)2 or (dv + d′v′) · (ev + e′v), and these are more efficient. This is a
contradiction.

Contradictions in both cases complete the proof of Claim 3. ⊓⊔

As mentioned in the first paragraph, from Claim 1, 2, and 3, there are at
least 6 seed polynomials in the computation. This completes the proof of Lemma
12. ⊓⊔

Lemma 12 is not only for Proposition 11. As the diagram (4), the result of
the computation is not needed to be irreducible. It is because the outputs of the
computation are in projective coordinates. Therefore, there is a possibility that
the degree of polynomials output is higher than deg ϕ1. Lemma 12 also covers
most such cases. We give the following lemma that follows from Lemma 12 for
simplicity.

Lemma 13. Let (ϕ1 : ϕ2) be a projective formula. If the highest degree of seed
polynomials appearing in the computation of (ϕ1 : ϕ2) is 5 or more, then the cost
of the computation is 2M+ 3S or more regardless of the degree of the formula.

4.3 Degree of formula = 3

In this subsection, we prove the case that the degree of the formula is 3.

Proposition 14. Let (ϕ1 : ϕ2) be a projective formula to compute image curves
of 3-isogenies such that the degree of the formula is 3 (i.e., deg ϕ1 = deg ϕ2 = 3
and ϕ1/ϕ2 is irreducible over Z), then it holds that

(ϕ1 : ϕ2) = (27AH2 +AZ2 + 48CHZ : 4AHZ + 3CH2 + 9CZ2).

Moreover, the cost to compute this formula is 2M+ 3S or more.

Proof. Let ϕ̃1(α, h)/ϕ̃2(α, h) be an affine formula corresponding to (ϕ1 : ϕ2).
Remind the equation (2), and define a polynomial φ as in (2). Since deg ϕ̃1 ≤ 3
and degα ϕ̃2 + degh ϕ̃2 ≤ 3, it holds that

ϕ̃2(α, h) = c1(3h+ 4α)h+ c2α+ c3h+ c4,
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where c1, . . . , c4 ∈ Z. Moreover, we have

φ(α, h) = c1(6h− α) + c5,

where c5 ∈ Z. By definition of φ, it holds that

ϕ̃1(α, h) = (−6h3 + αh2 + 6h)ϕ̃2 + (3h4 + 4αh3 + 6h2 − 1)φ. (7)

The terms of degree 4 of the right-hand side of (7) are

(−6c3 + 3c5)h
4 + (−6c2 + c3 + 4c5)αh

3 + c2α
2h2.

Therefore, c2 = c3 = c5 = 0. The terms of degree 3 of the right-hand side of (7)
are

(18c1 − 6c4 + 36c1)h
3 + (24c1 + c4 − 6c1)αh

2.

Since max {degα ϕ̃1, degα ϕ̃2}+max {degh ϕ̃1, degh ϕ̃2} ≤ 3, we have c4 = 9c1 or
c1 = c4 = 0. Therefore, it holds that

ϕ̃1(α, h)

ϕ̃2(α, h)
=

27αh2 + α+ 48h

3h2 + 4αh+ 9
.

Hence, the only formula of degree 3 is

(ϕ1 : ϕ2) = (27AH2 +AZ2 + 48CHZ : 4AHZ + 3CH2 + 9CZ2).

We now consider the cost to compute this formula. Note that it holds that
deg ϕ1 = deg ϕ2 ≥ 3 from Lemma 7. We only need to consider the cases that the
highest degree of seed polynomials appearing in the computation is 3 or 4 from
Lemma 13. By the same discussion as in the proof of Claim 2 in Lemma 12, there
are two different seed polynomials of degree 2. Since there are two different seed
polynomials of degree 3 or more, if the number of seed polynomials of degree 2 is
four or more, then the cost of the computation is more than 2M+3S. Therefore,
we only need to consider the following two cases:

a) There are two seed polynomials of degree 2.
b) There are three seed polynomials of degree 2.

a) Two seed polynomials of degree 2:
Denote seed polynomials of degree 2 by u′2 and u′′2 . The important fact to

estimate the cost is that for any (c1, c2) ∈ Z2 \ {(0, 0)}, the rational function

c127H
2 + c1Z

2 − 48c2HZ

4c1HZ − 3c2H2 − 9c2Z2
(8)

is irreducible over Z (Lemma 15).
We consider the following two cases:

Case 1: degA u
′
2 = degA u

′′
2 = 0.

Case 2: degA u
′
2 > 0 or degA u

′′
2 > 0.
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Case 1: Since ϕ1 and ϕ2 have terms of degree 1 in the variable A, we need
to multiply a polynomial of degree 1 in the variable A in the computation.
Therefore, there is a seed polynomial of degree 3. We denote this seed poly-
nomial by u′3, and denote the polynomial of degree 1 used to compute u′3 by
c1A+ c2C + c3H + c4Z, where c1 ̸= 0 and c1, . . . , c4 are integers. By substi-
tuting c1A = −(c2C + c3H + c4Z), we can get rid of u′3 from the results of
the computation. If this operation reduces the degree of ϕ1/ϕ2, considering
the H3 and Z3 terms leads to c3 = c4 = 0. Moreover, from the fact that (8)
is irreducible, the reduced degree of ϕ1/ϕ2 is 2 or more. We suppose that the
highest degree of seed polynomials is 3, and the number of seed polynomials
of degree 3 is only 2. We denote these seed polynomials by u′3 and u′′3 . It is
clear that ϕ1 = d1u

′
3 + d2u

′′
3 and ϕ2 = d3u

′
3 + d4u

′′
3 for some d1, . . . , d4 ∈ Z.

Therefore, erasing u′3 decreases the degree of ϕ1/ϕ2 to 0. This is a contra-
diction. Hence, if the highest degree of seed polynomials is 3, the number of
these seed polynomials is at least 3. In this case, the cost of the computation
is 3M+ 2S or more. If the highest degree of seed polynomials is 4, the cost
of the computation is at least 2M+ 3S as the following diagram.

deg 1 deg 2 deg 3 deg 4

H,Z,A,C
a−−→ M or S−−−−→ u′2

a−−→ M−−→ u3
a−−→ M−−−−→ u′4

M or S−−−−→ u′′2
a−−→ M or S−−−−→ u′′4

(9)

Case 2: We fix degA u
′
2 > 0, and denote the polynomial of degree 1 used to

compute u′2 by c1A + c2C + c3H + c4Z, where c1 ̸= 0 and c1, . . . , c4 are
integers. In this case, we can erase u′2 in the computation by substituting
c1A = −(c2C + c3H + c4Z). If u

′′
2 is also vanished by this operation, the

results of the computation are

(c1A+ c2C + c3H + c4Z)ϕ1, (c1A+ c2C + c3H + c4Z)ϕ2.

Therefore, the highest degree of seed polynomial should be 4. Suppose that
there is no seed polynomial of degree 3. In this case, all seed polynomials of
degree 4 can be represented by d1u

′2
2 +d2u

′
2u

′′
2+d3u

′′2
2 . This is a contradiction

since it can be divided by (c1A+c2C+c3H+c4Z)
2. Therefore, we have there

is at least one seed polynomial of degree 3, and the cost of the computation
is 2M + 3S or more as (9). For this reason, we can assume that u′′2 will
not be erased by this operation. If the highest degree of seed polynomials
is 3, all seed polynomials of degree 3 can be represented by v(d1u

′
2 + d2u

′′
2),

where v is a polynomial of degree 1, and d1, d2 ∈ Z. Therefore, erasing u′2
always decreases the degree of ϕ1/ϕ2 to 1 or less. This contradicts the same
discussion in Case 1. We next consider the case that the highest degree of
seed polynomials is 4. Suppose that there are no seed polynomials of degree
3. Here, all seed polynomials of degree 4 are represented by
(d1u

′
2 + d2u

′′
2)(d3u

′
2 + d4u

′′
2), where d1, . . . , d4 ∈ Z. Therefore, erasing u′2

decreases the degree of ϕ1/ϕ2 to 0. This is a contradiction. Hence, there is
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at least one seed polynomial of degree 3, and the cost of the computation,
in this case, is 2M+ 3S or more.

Consequently, the cost of the computation is 2M+ 3S or more if there are two
seed polynomials of degree 2.

b) Three seed polynomials of degree 2:

Denote seed polynomials of degree 2 by u′2, u
′′
2 , and u

′′′
2 . If the highest degree

of seed polynomials is 3, the cost of the computation is 2M+3S or more because
we need a multiplication to compute a seed polynomial of degree 3. We suppose
that the highest degree of seed polynomials is 4. Note that we do not need to
consider the case that there are seed polynomials of degree 3 as (9). Denote two
seed polynomials of degree 4 by u′4 and u′′4 . Now, we prove the following claim:

Claim 4. Both u′4 and u′′4 are computed by multiplications.

If this claim holds, we need at least two multiplications. Therefore, the cost of
the computation is 2M+ 3S or more.

Proof of Claim 4. Suppose that u′4 is computed by a squaring, and let u′4 =
(e1u

′
2 + e2u

′′
2 + e3u

′′′
2 )2 for e1, e2, e3 ∈ Z. We focus on terms of degree 2 in the

variable A of u′4 and u′′4 .

If u′4 and u′′4 have terms of degree 0, 3 or 4 in the variables A and C, then
the results of the computation are d3(d1u

′
4+d2u

′′
4) and d4(d1u

′
4+d2u

′′
4) for some

d1, . . . , d4 ∈ Z, since we need to cancel terms of degree 0, 3 or 4 in the variables
A and C. However, this is a contradiction because ϕ1/ϕ2 becomes a constant
map. Therefore, u′4 and u′′4 have no terms of degree 0, 3, and 4 in the variables
A and C.

Therefore, it holds that e1u
′
2 + e2u

′′
2 + e3u

′′′
2 is a polynomial of degree 1 in

the variables A and C. It is because if not, u′4 has terms of degree 0 or 4 in the
variables A and C. Hence, we have the following two cases:

Case 1: u′4 has terms of degree 2 in the variable A.

Case 2: u′4 has no terms of degree 2 in the variable A and has terms of degree
2 in the variable C.

Case 1: Terms divisible by A2 of u′4 can be represented by c3A
2(c1H + c2Z)

2

for some c1, c2, c3 ∈ Z \ {0}. In this case, terms divisible by A2 of u′′4 can be
represented by c5A

2(c21H
2 + c4HZ + c22Z

2) for some c4, c5 ∈ Z \ {0} since
4AHZ is the only term of ϕ2 of degree 1 in the variable A. By considering
the terms divisible by A2 of ϕ1, we have

c4c3A
2(c1H+c2Z)

2−2c1c2c5A
2(c21H

2+c4HZ+c22Z
2) = c(27A2H2+A2Z2)

for some c ∈ Z. By comparing coefficients of both sides of A2H2 and A2Z2

terms, we have (c1/c2)
2 = 27. This contradicts c1, c2 ∈ Z.
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Case 2: Terms divisible by C2 of u′4 can be represented by c3C
2(c1H + c2Z)

2

and those of u′′4 can be represented by c5C
2(c21H

2 + c4HZ + c22Z
2) for some

c1, . . . , c5 ∈ Z \ {0} for the similar reason as in Case 1. We have

c4c3C
2(c1H+c2Z)

2−2c1c2c5C
2(c21H

2+c4HZ+c22Z
2) = c(3C2H2+9C2Z2)

for some c ∈ Z. By seeing the C2H2 and C2Z2 terms, we have (c2/c1)
2 = 3.

This contradicts c1, c2 ∈ Z.

The above discussions complete the proof of Claim 4. ⊓⊔

Hence, the cost of the computation is 2M + 3S or more if there are three
seed polynomials of degree 2.

Consequently, the cost of the formula computation is 2M+3S or more. This
completes the proof of Proposition 14. ⊓⊔

Lemma 15. For any (c1, c2) ∈ Z2 \ {(0, 0)}, the rational function

c127H
2 + c1Z

2 − 48c2HZ

4c1HZ − 3c2H2 − 9c2Z2

is irreducible over R.

Proof. Since

c127H
2 + c1Z

2

−3c2H2 − 9c2Z2

is not constant for all (c1, c2) ∈ Z2 \ {(0, 0)}, the given rational function in the
lemma is not constant for all (c1, c2) ∈ Z2 \ {(0, 0)}.

Suppose that there is a polynomial d1H+d2Z ∈ R[H,Z] such that c127H
2+

c1Z
2− 48c2HZ and 4c1HZ− 3c2H

2− 9c2Z
2 is divisible by d1H + d2Z for some

c1, c2 ∈ Z \ {(0, 0)}. If d1 = 0, then c1 = c2 = 0. This is a contradiction, and we
have d1 ̸= 0. Put r = −d2/d1. We substitute H = rZ into the rational function.
Then we get

c127r
2 + c1 − 48c2r = 0, 4c1r − 3c2r

2 − 9c2 = 0.

We have (
27r2 + 1 −48r

4r −3r2 − 9

)(
c1
c2

)
=

(
0
0

)
.

Since (c1, c2) ̸= (0, 0), it holds that

(27r2 + 1)(−3r2 − 9)− (−48r)(4r) = −9(3r2 + 1)2 = 0.

This contradicts r ∈ R. This completes the proof of Lemma 15. ⊓⊔
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4.4 Degree of formula = 4

In this subsection, we prove the case that the degree of the formula is 4.

Proposition 16. Let (ϕ1 : ϕ2) be a projective formula to compute image curves
of 3-isogenies such that the degree of the formula is 4 (i.e., deg ϕ1 = deg ϕ2 = 4
and ϕ1/ϕ2 is irreducible over Z), then the cost to compute this formula is 2M+3S
or more. Moreover, the following formula can be computed with the lower bound.

(−3(3H2 − Z2)2 + 4Z4 : 4HZ3) = (−27H4 + 18H2Z2 + Z4 : 4HZ3).

To prove this proposition, we consider the following three cases. The first case
is of degA,C ϕ1 = degA,C ϕ2 = 2 (Lemma 18), the second case is of degA,C ϕ1 =
degA,C ϕ2 = 1 (Lemma 19), and the final case is of degA,C ϕ1 = degA,C ϕ2 =
0 (Lemma 20). Because Lemma 17 shows that degA,C ϕ1 = degA,C ϕ2 ≤ 2,
Proposition 16 follows from these three lemmas by a straightforward.

We now prove the four lemmas for Proposition 16.

Lemma 17. Let (ϕ1 : ϕ2) be a projective formula to compute image curves of
3-isogenies such that the degree of the formula is 4 (i.e., deg ϕ1 = deg ϕ2 = 4
and ϕ1/ϕ2 is irreducible over Z), and let ϕ̃1(α, h)/ϕ̃2(α, h) be an affine formula
corresponding to (ϕ1 : ϕ2). Then degα ϕ̃1 and degα ϕ̃2 are 2 or less.

Proof. If deg ϕ̃2 < 2, it is easy to see that degα ϕ̃1, degα ϕ̃2 ≤ 2. We can assume
deg ϕ̃2 ≥ 2. Remind the equation (2). Since the terms of degree 5 or more in ϕ̃1
are deleted, the highest degree terms of ϕ̃2 have h(3h+4α) as a factor. Therefore,
it holds that degh ϕ̃2 ≥ 2. Since

max {degα ϕ̃1, degα ϕ̃2}+max {degh ϕ̃1, degh ϕ̃2} = 4,

we have degα ϕ̃1, degα ϕ̃2 ≤ 2. ⊓⊔

Lemma 18. Let (ϕ1 : ϕ2) be a projective formula to compute image curves of
3-isogenies such that the degree of the formula is 4 (i.e., deg ϕ1 = deg ϕ2 = 4 and
ϕ1/ϕ2 is irreducible over Z). If degA,C ϕ1 = degA,C ϕ2 = 2, the cost to compute
this formula is 2M+ 3S or more.

Proof. Let ϕ̃1(α, h)/ϕ̃2(α, h) be an affine formula corresponding to (ϕ1 : ϕ2). As
we have already seen, there is a polynomial φ(α, h) ∈ Z[α, h] such that

ϕ̃1

ϕ̃2
= −6h3 + αh2 + 6h+ (3h4 + 4αh3 + 6h2 − 1)

φ

ϕ̃2

Note that degh ϕ̃2 ≤ 2 because degH,Z ϕ2 = 2. Since deg ϕ̃1 ≤ 4, polynomials φ

and ϕ̃2 can be represented by

ϕ̃2(α, h) = (3h+ 4α)h(c1α+ c2) + c4α+ c5h+ c6,

φ(α, h) = (6h− α)(c1α+ c2) + c3,
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where c1, . . . , c6 ∈ Z. As degh ϕ̃1 ≤ 2, a forceful calculation leads to

c3 = 4c′5, c4 = 9c1 + 3c′5, c5 = 2c′5, c6 = 9c2,

where c′5 ∈ Z. Therefore, we have

φ(α, h) = (6h− α)(c1α+ c2) + 4c′5, (10)

ϕ̃1(α, h) = (27c1 + 3c′5)α
2h2 + c1α

2 + 27c2αh
2

+ 36c′5h
2 + (18c′5 + 48c1)αh+ c2α+ 48c2h− 4c′5, (11)

ϕ̃2(α, h) = (3h+ 4α)h(c1α+ c2) + (9c1 + 3c′5)α+ 2c′5h+ 9c2. (12)

From Lemma 13, we only consider the case that the highest degree of seed
polynomials appearing in the computation is 4. By the discussion in the proof
of Lemma 12, there are two different seed polynomials of degree 2. Since there
are at least two different seed polynomials of degree 4, if the number of seed
polynomials of degree 2 is four or more, then the cost of the computation is
2M+ 3S or more. Hence, we only need to consider the following cases:

a) There are two seed polynomials of degree 2.
b) There are three seed polynomials of degree 2.

a) Two seed polynomials of degree 2:
We denote seed polynomials of degree 2 by u′2 and u′′2 . We now prove that

there is at least one seed polynomial of degree 3. If so, then the cost of the
computation is 2M+ 3S or more, as the diagram (9).

Suppose that there is no seed polynomial of degree 3 in the computation.
In this case, ϕ1 and ϕ2 can be represented by d1u

′2
2 + d2u

′
2u

′′
2 + d3u

′′2
2 for some

d1, d2, d3 ∈ Z. Put ũ′2(α, h) = u′2(α, 1, h, 1), and ũ
′′
2(α, h) = u′′2(α, 1, h, 1). Then,

ϕ̃1 and ϕ̃2 are represented by

ϕ̃1 = d′1ũ
′2
2 + d′2ũ

′
2ũ

′′
2 + d′3ũ

′′2
2 ,

ϕ̃2 = d′′1 ũ
′2
2 + d′′2 ũ

′
2ũ

′′
2 + d′′3 ũ

′′2
2 ,

(13)

for some d′1, d
′
2, d

′
3, d

′′
1 , d

′′
2 , d

′′
3 ∈ Z.

Polynomials ũ′2 and ũ
′′
2 are not constant for the following reason. Suppose that

ũ′2 is a constant. Then we have deg ũ′′2 = 2 from Lemma 7 and the equations
(13). Therefore, we have d′′3 = 0 and deg ϕ̃2 ≤ 2 because the polynomial ϕ̃2 has
no terms of α2h2, h4, and α4 from the equation (12). This derives c1 = 0. As
ϕ̃1 has no term of h4, the equations (13) show that there is no term of h2 in
ũ′′2 and ϕ̃2. Hence, we have c2 = 0 and deg ϕ̃2 ≤ 1. Since deg ũ′′2 = 2, it holds
that d′′2 = 0 and c′5 = 0. However, this is a contradiction because ϕ̃1 = ϕ̃2 = 0 if
c1 = c2 = c′5 = 0.

Since max {degA ϕ1, degA ϕ2} = 2, we have degA u
′
2 ≥ 1 or degA u

′′
2 ≥ 1. It

also holds that degH u′2 ≥ 1 or degH u′′2 ≥ 1 since max {degH ϕ1, degH ϕ2} = 2.
Therefore, since ũ′2 and ũ′′2 are not constant, we can take polynomials v′ and v′′

satisfying the following properties by replacing u′2 and u′′2 if necessary:
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– v′|u′2 and v′′|u′′2 ,
– deg v′ = 1 and deg v′′ = 1,
– degA v

′ = 1 and degH v′′ = 1.

We put v′ = e′1A+ e′2H + e′3C + e′4Z and v′′ = e′′1A+ e′′2H + e′′3C + e′′4Z, where
e′1 ̸= 0, e′′2 ̸= 0, and e′1, . . . , e

′
4, e

′′
1 , . . . e

′′
4 ∈ Z.

We now consider the following two cases:

1. Equations v′(α, 1, h, 1) = 0 and v′′(α, 1, h, 1) = 0 have no common roots.
2. Equations v′(α, 1, h, 1) = 0 and v′′(α, 1, h, 1) = 0 have a common root.

Case 1: Note that

v′(α, 1, h, 1) = e′1α+ e′2h+ e′3 + e′4,

v′′(α, 1, h, 1) = e′′1α+ e′′2h+ e′′3 + e′′4 ,

and e′1, e
′′
2 ̸= 0. Since there are no common roots of polynomials v′(α, 1, h, 1)

and v′′(α, 1, h, 1), it holds that (e′1 : e′2) = (e′′1 : e′′2). Put r = e′2/e
′
1 ̸= 0. From

the equations (13), by substituting α = −rh into ϕ̃1 and ϕ̃2, they become
polynomials of degree 2 or less. By substituting α = −rh into (12), we have

(−c1)(3− 4r)rh3 + c2(3− 4r)h2 + (−9c1r − 3c′5r + 2c′5)h+ 9c2.

Since this polynomial should be of degree 2 or less, it holds that r = 3/4 or
c1 = 0. By substituting α = −rh into (11), we have

(27c1+3c′5)r
2h4−27c2rh

3+(c1r
2+36c′5−18c′5r−48c1r)h

2+(−r+48)c2h−4c′5.

Since this polynomial should also be of degree 2 or less, we have c2 = 0
and c′5 = −9c1. Since ϕ̃2(α, h) ̸= 0, we have c1 ̸= 0 and r = 3/4. Next, we
substitute α = −rh+ r′, where r′ is a rational number such that
v′(−rh + r′, 1, h, 1) = 0. By substituting α = −rh + r′ into (13), these
equations become (ũ′′2(−rh+ r′, h))2 multiplied by a constant. We have

ϕ̃2(−rh+ r′, h) = −3c1r
′h2 + (4r′2 − 9/2)c1h− 18c1r

′

by substituting α = −rh + r′ into (12). As the degree of ϕ̃2(−rh + r′, h)
must be even, we have r′ ̸= 0. Since the equation ϕ̃2(−rh + r′, h) = 0 has
only one root, it holds that (4r′2 − 9/2)2 − 4(3r′)(18r′) = 0. However, it is
easy to check that the roots of this equation are not in Q. This contradicts
r′ ∈ Q.

Case 2: Denote a common root of v′(α, 1, h, 1) and v′′(α, 1, h, 1) by (α0, h0).
Since

ψ3 · φ = ϕ̃1 − (−6h3 + αh2 + 6h)ϕ̃2,

we have ψ3(α0, h0)φ(α0, h0) = 0, where ψ3 is the 3rd division polynomial of
generalized Montgomery coordinates. From equations (12) and (10), it holds
that

4ϕ̃2 − (3α+ 2h) · φ = 3α2(c1α+ c2) + 36c1α+ 36c2 = 3(c1α+ c2)(α
2 + 12).
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Therefore, if φ(α0, h0) = 0, we have c1α0 + c2 = 0 since α0 ∈ Q. From
the equation (10), it holds that c′5 = 0. However, it is easy to see that
if c′5 = 0, then ϕ̃1 and ϕ̃2 can be divided by c1α + c2. This is a contra-
diction because degA,C ϕ1 = degA,C ϕ2 = 2. Thus, we have φ(α0, h0) ̸= 0
and ψ3(α0, h0) = 0. Note that h0 ̸= 0 because ψ3(α, 0) = −1 ̸= 0. We
have ϕ̃1(α, h0) and ϕ̃2(α, h0) are divisible by (α − α0)

2 from the equations
(13). Therefore, it holds that ψ3(α, h0) can be divided by (α − α0)

2 since
φ(α0, h0) ̸= 0. However, because h0 ̸= 0, we have that ψ3(α, h0) is of degree
1. This is a contradiction.

Both cases lead to contradictions. Therefore, there is at least one seed polynomial
of degree 3.

b) Three seed polynomials of degree 2:
We denote seed polynomials of degree 2 by u′2, u

′′
2 , and u

′′′
2 . We only need to

consider the case that there are only two seed polynomials of degree 4, and there
are no seed polynomials of degree 3. We denote these two polynomials of degree
4 by u′4 and u′′4 . We want to show that at least two of these seed polynomials are
obtained by multiplications. If 4 or more of these seed polynomials are obtained
by squarings, then we have the following two cases:

– All seed polynomials of degree 2 and at least one seed polynomial of degree
4 are obtained by squarings.

– At least two seed polynomials of degree 2 and all seed polynomials of degree
4 are obtained by squarings.

Therefore, it is sufficient to prove that u′′′2 and u′′4 should be obtained by multi-
plications when u′2, u

′′
2 , and u

′
4 are obtained by squarings.

First, we prove the following claim:

Claim 5. Terms that do not appear in ϕ1 and ϕ2 (e.g., A4 and C4) also do not
appear in u′4 and u′′4 .

Proof of Claim 5. Suppose that there are terms that do not appear in ϕ1 and ϕ2,
but appear in u′4 or u

′′
4 . Since we need to get rid of these terms from the results of

the computation, the computational results are represented by d3(d1u
′
4 + d2u

′′
4)

and d4(d1u
′
4+d2u

′′
4) for some d1, . . . , d4 ∈ Z. This contradicts the fact that ϕ1/ϕ2

is not constant. We conclude that the terms that do not appear in ϕ1 and ϕ2
also do not appear in u′4 and u′′4 . ⊓⊔

Put u′4 = (d1u
′
2 + d2u

′′
2 + d3u

′′′
2 )2, where d1, d2, d3 ∈ Z. There are no A2, AC,

C2, H2, HZ, and Z2 terms in d1u
′
2+d2u

′′
2+d3u

′′′
2 from Claim 5 and the fact that

there are no A4, A2C2, C4, H4, H2Z2, and Z4 terms in ϕ1 and ϕ2. We define
a (6× 3)-matrix V as its i-th column is an alignment of coefficients of A2, AC,

C2, H2, HZ, and Z2 terms in u
(i)
2 . From the above, the vector V · t(d1, d2, d3)

is the zero vector, where t∗ is a symbol for transpose. Therefore, it holds that
rankV ≤ 2. Since u′2 and u

′′
2 are obtained by squarings, the matrix V is non-zero.

Therefore, we have rank V = 1 or rankV = 2.
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Case rankV = 1: Since rankV = 1, we have

u′2(A,C,H,Z) = e7(e5(e1A+ e2C) + e6(e3H + e4Z))
2,

u′′2(A,C,H,Z) = e8(e5(e1A+ e2C)− e6(e3H + e4Z))
2,

for some e1, . . . , e8 ∈ Z.
If degA,C u

′′′
2 = 2 or degH,Z u

′′′
2 = 2, then

u′′′2 (A,C,H,Z)

= (e′5(e1A+ e2C) + e′6(e3H + e4Z))(e
′′
5(e1A+ e2C) + e′′6(e3H + e4Z))

= e9(e
2
5(e1A+ e2C)

2 + e26(e3H + e4Z)
2) + e10(e1A+ e2C)(e3H + e4Z),

where e′5, e
′′
5 , e

′
6, e

′′
6 , e9, e10 ∈ Z, e10 = e′5e

′′
6 + e′′5e

′
6, e

′
5e

′′
5 = e9e

2
5, and

e′6e
′′
6 = e9e

2
6. In this case, it holds that u′4 and u′′4 can be divisible by

(e1A+ e2C)(e3H + e4Z). This contradicts the degree of ϕ̃1/ϕ̃2 is 4.
If degA,C u

′′′
2 = degH,Z u

′′′
2 = 1, then it holds that

u′′′2 (A,C,H,Z) = (e11A+ e12C)(e13H + e14Z),

where e11, . . . , e14 ∈ Z. Therefore, we can compute seed polynomials of de-
gree 4 by using (e1A + e2C)(e3H + e4Z) and (e11A + e12C)(e13H + e14Z).
Hence, we can reduce this case to one that there are only two seed polynomi-
als of degree 2. From the same discussion for the case of two seed polynomials
of degree 2, there is at least one seed polynomial of degree 3. This is a con-
tradiction.

Case rankV = 2: Note that d1u
′
2+d2u

′′
2+d3u

′′′
2 does not have terms of degree

2 in the variables of A,C or H,Z as mentioned before. Since rank V = 2, if it
holds that V · t(d′1, d′2, d′3) = 0, then the vector (d′1, d

′
2, d

′
3) is in Q(d1, d2, d3).

Let
u′′4 = (d′′1u

′
2 + d′′2u

′′
2 + d′′3u

′′′
2 )(d′′′1 u

′
2 + d′′′2 u

′′
2 + d′′′3 u

′′′
2 )

for d′′1 , d
′′
2 , d

′′
3 , d

′′′
1 , d

′′′
2 , d

′′′
3 ∈ Z. Since gcd (u′4, u

′′
4) ∈ Z, we have (d′′1 , d

′′
2 , d

′′
3)

is not in Q(d1, d2, d3). Therefore, the polynomial d′′1u
′
2 + d′′2u

′′
2 + d′′3u

′′′
2 has

terms of degree 2 in the variables of A,C or H,Z. Because u′′4 does not have
A4, A2C2, C4, H4, H2Z2, and Z4 terms, the seed polynomial u′′4 should be
obtained by a multiplication.
We now prove that u′′′2 is obtained by a multiplication. Suppose that u′′′2 is
obtained by a squaring. Note that we need a multiplication of polynomials
with terms of degree 2 in the variables of A,C or H,Z to compute u′′4 . From
Claim 5, we can put

u′′4(A,C,H,Z) = (e1A
2 + e2AC + e3C

2)(e4H
2 + e5HZ + e6Z

2),

where e1, . . . , e6 ∈ Z. Let W1 and W2 be (3× 3)-matrices satisfying
V = t(tW1 | tW2). There are vectors (d′1, d

′
2, d

′
3) and (d′′1 , d

′′
2 , d

′′
3) such that

V · t(d′1, d′2, d′3) = t(e1, e2, e3, 0, 0, 0), V · t(d′′1 , d′′2 , d′′3) = t(0, 0, 0, e4, e5, e6).
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Since rankV = 2, it holds that rankW1 = rankW2 = 1. Therefore, polyno-
mials u′2, u

′′
2 , and u

′′′
2 can be represented by

u′2(A,C,H,Z) = (e11(e7A+ e8C) + e12(e9H + e10Z))
2,

u′′2(A,C,H,Z) = (e13(e7A+ e8C) + e14(e9H + e10Z))
2,

u′′′2 (A,C,H,Z) = (e15(e7A+ e8C) + e16(e9H + e10Z))
2,

for some e7, . . . , e16 ∈ Z. It is easy to check that u′4 and u′′4 can be divided by
(e7A+ e8C)(e9H+ e10Z). This is a contradiction. Therefore, u′′′2 is obtained
by a multiplication.

Consequently, we proved u′′4 and u′′′2 are obtained by multiplications. There-
fore, the cost of the computation is 2M+ 3S or more.

From the above discussions, we complete the proof of Lemma 18. ⊓⊔

Lemma 19. Let (ϕ1 : ϕ2) be a projective formula to compute image curves of
3-isogenies such that the degree of the formula is 4 (i.e., deg ϕ1 = deg ϕ2 = 4 and
ϕ1/ϕ2 is irreducible over Z). If degA,C ϕ1 = degA,C ϕ2 = 1, the cost to compute
this formula is 2M+ 3S or more.

Proof. Let ϕ̃1(α, h)/ϕ̃2(α, h) be an affine formula corresponding to (ϕ1 : ϕ2). As
we have already seen, there is a polynomial φ(α, h) ∈ Z[α, h] such that

ϕ̃1

ϕ̃2
= −6h3 + αh2 + 6h+ (3h4 + 4αh3 + 6h2 − 1)

φ

ϕ̃2
.

Since deg ϕ̃1 ≤ 4 and degh ϕ̃2 ≤ 3, polynomials φ and ϕ̃2 can be represented by

ϕ̃2(α, h) = (3h+ 4α)h(c1h+ c2) + c4α+ c5h+ c6,

φ(α, h) = (6h− α)(c1h+ c2) + c3,

where c1, . . . , c6 ∈ Z. Since degα ϕ̃1 ≤ 1 and degh ϕ̃1 ≤ 3, it holds that c4 = 0
and c3 = 2c5 − 18c1. Then, we have

ϕ̃1(α, h) = (−54c1 + 9c5)αh
3 + (18c2 + c6)αh

2 + (54c2 − 6c6)h
3 + c1αh

+ (−114c1 + 18c5)h
2 + (−6c2 + 6c6)h+ c2α+ 18c1 − 2c5, (14)

ϕ̃2(α, h) = (3h+ 4α)h(c1h+ c2) + c5h+ c6. (15)

From Lemma 13, we only need to consider the case that the highest degree of
seed polynomials appearing in the computation is 4. From the proof of Lemma
12, there are two different seed polynomials of degree 2. Since there are at least
two different seed polynomials of degree 4, if the number of seed polynomials of
degree 2 is four or more, then the cost of the computation is 2M+ 3S or more.
Hence, we only need to consider the following cases:

a) There are two seed polynomials of degree 2.
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b) There are three seed polynomials of degree 2.

a) Two seed polynomials of degree 2:
We denote seed polynomials of degree 2 by u′2 and u′′2 . If there is a seed

polynomial of degree 3 in the computation, the cost of the computation is 2M+
3S or more as the diagram (9). Suppose that there is no seed polynomial of degree
3 in the computation. Put ũ′2(α, h) = u′2(α, 1, h, 1) and ũ

′′
2(α, h) = u′′2(α, 1, h, 1).

Then, there are integers d′1, d
′
2, d

′
3, d

′′
1 , d

′′
2 , d

′′
3 satisfying

ϕ̃1(α, h) = d′1ũ
′2
2 + d′2ũ

′
2ũ

′′
2 + d′3ũ

′′2
2 ,

ϕ̃2(α, h) = d′′1 ũ
′2
2 + d′′2 ũ

′
2ũ

′′
2 + d′′3 ũ

′′2
2 .

If necessary, we replace u′2 and u′′2 . We can assume that degα ũ
′
2 ≥ 1. Note that

u′2 is a seed polynomial. There are r, r′ ∈ Q such that ũ′2(rh + r′, h) = 0. We
have

ϕ̃1(rh+ r′, h) = d′3 · ũ′′2(rh+ r′, h)2, ϕ̃2(rh+ r′, h) = d′′3 · ũ′′2(rh+ r′, h)2.

From the equation (15), it holds that

ϕ̃2(rh+ r′, h) = (3 + 4r)c1h
3 + (4c1r

′ + 3c2 + 4c2r)h
2 + (c5 + 4c2r

′)h+ c6.
(16)

From the equation (14), we have

ϕ̃1(rh+ r′, h)

= (−54c1 + 9c5)rh
4 + ((−54c1 + 9c5)r

′ + (18c2 + c6)r + 54c2 − 6c6)h
3

+ ((18c2 + c6)r
′ − 114c1 + 18c5 + c1r)h

2 + (c1r
′ − 6c2 + 6c6 + c2r)h

+ c2r
′ + 18c1 − 2c5. (17)

We now have the following two cases:

Case 1: ϕ̃2(rh+ r′, h) = 0.
Case 2: ϕ̃2(rh+ r′, h) ̸= 0.

Case 1: If c1 = 0, then c6 = 0, c5 + 4c2r
′ = 0, and (3 + 4r)c2 = 0. Since at

least one of c1, c2, c5, c6 is not zero, we have c6 = 0, c2 ̸= 0, r = −3/4, and
c5 + 4c2r

′ = 0. In this case, we have

ϕ̃1(rh+ r′, h) = −27

4
c5h

4 +
−9c25 + 162c22

4c2
h3 +

27

2
c5h

2 − 27

4
c2h− 9

4
c5

= − 9

4c2
(3c2h+ c5)(c5h

3 − 6c2h
2 + c2).

Since ϕ̃1(rh+ r′, h) = d′3 · ũ′′2(rh+ r′, h)2, it holds that

c5

(
−c5
3c2

)3

− 6c2

(
−c5
3c2

)2

+ c2 = 0.
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We have 27c42 − 18c22c
2
5 − c45 = 0. However, the equation 27x4 − 18x2 − 1 = 0

has no root in Q. This is a contradiction.
If c1 ̸= 0, then c6 = 0, r = −3/4, r′ = 0, and c5 = 0. In this case, we have

ϕ̃1(rh+ r′, h) =
81

2
c1h

4 +
81

2
c2h

3 − 459

4
c1h

2 − 27

4
c2h+ 18c1

=
9

4
(6h2 − 1)(3c1h

2 + 3c2h− 8c1).

Since ϕ̃1(rh+ r′, h) = d′3 · ũ′′2(rh+ r′, h)2, it holds

c1
2

+
3c2√
6
− 8c1 = 0.

Therefore, we have c1 = c2 = 0. However, this contradicts c1 ̸= 0.
Case 2: Since deg (ϕ̃2(rh+ r′, h)) ≤ 3 and ϕ̃2(rh + r′, h) ̸= 0, it holds that

deg (ũ′′2(rh+ r′, h)) ≤ 1. Therefore, it holds that deg (ũ′′2(rh+ r′′, h)) ≤ 1
for any r′′ ∈ Q because ũ′′2 can be represented by

ũ′′2(α, h) = w(α, h) · (α− rh− r′) + ũ′′2(rh+ r′, h),

where w is a polynomial of degree 1 or less in Q[α, h], and we have

ũ′′2(rh+ r′′, h) = w(rh+ r′′, h) · (r′′ − r′) + ũ′′2(rh+ r′, h).

Therefore, from equations (16) and (17), it holds that

(3 + 4r)c1 = 0, (−54c1 + 9c5)r = 0,

(−54c1 + 9c5)r
′′ + (18c2 + c6)r + 54c2 − 6c6 = 0

for any r′′ ∈ Q. Then, we have

(3 + 4r)c1 = 0, c5 = 6c1, (18c2 + c6)r + 54c2 − 6c6 = 0.

Hence, there are the following cases:
Case (i): r = −3/4.
Case (ii): c1 = 0 and r ̸= −3/4.
Case (i): In this case, we have

−(18c2 + c6)
3

4
+ 54c2 − 6c6 = 0.

Therefore, it holds that c6 = 6c2, and

ϕ̃2(rh+ r′, h) = 4c1r
′h2 + (6c1 + 4c2r

′)h+ 6c2.

If ϕ̃2(rh+ r′, h) is a constant, then we have c1 = r′ = 0 or c1 = c2 = 0.
Since c1 = 0 and c2 = 0 leads to c5 = 0 and c6 = 0 respectively, we have
c1 = r′ = 0. Thus, it holds that

ϕ̃1(rh+ r′, h) = (−6c2 + 36c2 −
3

4
c2)h =

117

4
c2h
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from the equation (17). However, ϕ̃1(rh + r′, h) is a constant because
ũ′′2(rh+ r′, h)2 is a constant. This is a contradiction. Therefore, we have
ϕ̃2(rh+ r′, h) is not a constant.
Because deg (ϕ̃2(rh+ r′, h)) ≥ 1 from the above, we have c1r

′ ̸= 0 and
the equation ϕ̃2(rh+ r′, h) = 0 has only one root. Therefore,

(6c1 + 4c2r
′)2 − 4 · (4c1r′) · (6c2) = (6c1 − 4c2r

′)2 = 0.

We have 3c1 = 2c2r
′, and the root of ϕ̃2(rh + r′, h) = 0 is h = −3/2r′.

From the equation (17),

ϕ̃1(rh+ r′, h) =
117

4
c1h

2 +
8r′2 + 351

8r′
c1h+

15

2
c1.

Since h = −3/2r′ is also a root of ϕ̃1(rh+ r′, h) = 0, we have

117

4
· 9

4r′2
c1 −

8r′2 + 351

8r′
· 3

2r′
c1 +

15

2
c1 = 0.

However, the left-hand side of the above equation equals 6c1. This is a
contradiction.

Case (ii): In this case, we have c5 = 0. Therefore,

ϕ̃2(rh+ r′, h) = (3 + 4r)c2h
2 + 4c2r

′h+ c6,

ϕ̃1(rh+ r′, h) = (18c2 + c6)r
′h2 + (−6c2 + 6c6 + c2r)h+ c2r

′. (18)

If c2 = 0, then ũ′′2(rh + r′, h) is a constant. Therefore, the polynomial
ϕ̃1(rh + r′, h) is also a constant, and we have c6 = 0. This is a contra-
diction. Hence, we have c2 ̸= 0.
Since c2 ̸= 0 and 3 + 4r ̸= 0, it holds that ϕ̃2(rh + r′, h) = 0 has only
one root. Therefore,

(2c2r
′)2 − (3 + 4r)c2 · c6 = 0.

From c2 ̸= 0, we have c6 = 4r′2

3+4r c2. It holds that

ϕ̃2(rh+ r′, h) = (3 + 4r)c2

(
h+

2r′

3 + 4r

)2

.

Therefore, we have ϕ̃1

(
− 2r′

3+4r r + r′,− 2r′

3+4r

)
= 0. By substituting this

and c6 = 4r′2

3+4r c2 into the equation (18), we have(
18 +

4r′2

3 + 4r

)
r′
(
− 2r′

3 + 4r

)2

+

(
r − 6 +

24r′2

3 + 4r

)(
− 2r′

3 + 4r

)
+r′ = 0.

If r′ = 0, then c6 = 0 and ϕ̃1(r
′h+ r, h) = (r−6)c2h. Therefore, we have

r = 6 since deg (ϕ̃1(r
′h+ r, h)) is even. Then, it holds that c2 = 0 from
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(18c2+ c6)r+54c2− 6c6 = 0. This is a contradiction. Therefore, it holds
that r′ ̸= 0.
From r′ ̸= 0, we have(

18 +
4r′2

3 + 4r

)
4r′2

(3 + 4r)2
−

(
r − 6 +

24r′2

3 + 4r

)(
2

3 + 4r

)
+ 1 = 0. (19)

Since (18c2 + c6)r + 54c2 − 6c6 = 0 and c6 = 4r′2

3+4r c2, it holds that

4r′2 = (3 + 4r)
18r + 54

6− r
.

Substituting this into the equation (19), we have

(2r + 15)(r2 + 96r + 360)

(6− r)2(3 + 4r)
= 0.

Since r ∈ Q, we have r = − 15
2 . Therefore, it holds that

4r′2 =

(
3− 4 · 15

2

) −18 · 15
2 + 54

6 + 15
2

= 162.

This contradicts r ∈ Q.

Therefore, in both Case (i) and Case (ii), there are contradictions.

Consequently, in all cases, there are contradictions. Hence, there is a seed
polynomial of degree 3 in the computation, and the cost of this computation is
2M+ 3S or more.

b) Three seed polynomials of degree 2:
We can suppose that there are only two seed polynomials of degree 4. We

denote these two polynomials by u′4 and u′′4 . We now prove that these seed
polynomials are obtained by multiplications. For the same reason as Claim 5 in
the proof of Lemma 18, these polynomials do not have terms of degree other
than 1 in the variables A and C. Thus, it holds that degA,C u

′
4 = degA,C u

′′
4 =

1. Therefore, u′4 and u′′4 are obtained by multiplications, and the cost of this
computation is 2M+ 3S or more.

From the above discussions, we conclude that the cost of the computation is
2M+ 3S or more. This completes the proof of Lemma 19. ⊓⊔

Lemma 20. Let (ϕ1 : ϕ2) be a projective formula to compute image curves of
3-isogenies such that the degree of the formula is 4 (i.e., deg ϕ1 = deg ϕ2 = 4
and ϕ1/ϕ2 is irreducible over Z). If degA,C ϕ1 = degA,C ϕ2 = 0, it holds that

(ϕ1 : ϕ2) = (−27H4 + 18H2Z2 + Z4 : 4HZ3).

Moreover, the least cost to compute this formula is 2M+ 3S.
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Proof. Let ϕ̃1(α, h)/ϕ̃2(α, h) be an affine formula corresponding to (ϕ1 : ϕ2). As
we have already seen, there is a polynomial φ(α, h) ∈ Z[α, h] such that

ϕ̃1

ϕ̃2
= −6h3 + αh2 + 6h+ (3h4 + 4αh3 + 6h2 − 1)

φ

ϕ̃2
.

Since deg ϕ̃1 ≤ 4, if deg ϕ̃2 ≥ 2, then the highest degree terms of ϕ̃2 can be
divided by h(3h + 4α). As degα ϕ̃2 = 0, we have deg ϕ̃2 ≤ 1. It is clear that
degφ = 0. We let φ(α, h) = c1, and ϕ̃2(α, h) = c2h + c3, where c1, c2, c3 ∈ Z.
Since degα ϕ̃1 = 0, it is easy to check that c2 = −4c1 and c3 = 0. Therefore,

ϕ̃1

ϕ̃2
=

−27h4 + 18h2 + 1

4h
,

and it holds that

(ϕ1 : ϕ2) = (−27H4 + 18H2Z2 + Z4 : 4HZ3).

Now, we prove the cost of this formula is 2M+ 3S or more. By substituting
A = 0 and C = 0, we can assume all seed polynomials appearing in the compu-
tation are polynomials in Z[H,Z]. From Lemma 13, we only need to consider the
case that the highest degree of seed polynomials appearing in the computation
is 4. From the proof of Lemma 12, there are two different seed polynomials of
degree 2. Since there are at least two different seed polynomials of degree 4, we
only need to consider the following cases:

a) There are two seed polynomials of degree 2.
b) There are three seed polynomials of degree 2.

a) Two seed polynomials of degree 2:
We denote two seed polynomials of degree 2 by u′2 and u′′2 . From the diagram

(9), if there is a seed polynomial of degree 3 in the computation, then the cost of
the computation is 2M+ 3S or more. Suppose that there is no seed polynomial
of degree 3 in the computation.

In this case, polynomials ϕ1 and ϕ2 can be represented by linear combinations
of u′22 , u

′
2u

′′
2 , and u

′′2
2 . We put

u′2 = e1H
2 + e2HZ + e3Z

2, u′′2 = e′1H
2 + e′2HZ + e′3Z

2,

where e1, e2, e3, e
′
1, e

′
2, e

′
3 ∈ Z. Then, vectors t(−27, 0, 18, 0, 1) and t(0, 0, 0, 4, 0)

are linear combinations of the following vectors:

v1 :=


e21

2e1e2
2e1e3 + e22

2e2e3
e23

 , v2 :=


e1e

′
1

e1e
′
2 + e2e

′
1

e1e
′
3 + e2e

′
2 + e3e

′
1

e2e
′
3 + e3e

′
2

e3e
′
3

 , v3 :=


e′21

2e′1e
′
2

2e′1e
′
3 + e′22

2e′2e
′
3

e′23

 .
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Focusing on t(−27, 0, 18, 0, 1), we have (e1, e
′
1) ̸= (0, 0) and (e3, e

′
3) ̸= (0, 0).

Moreover, focusing on t(0, 0, 0, 4, 0), we have (e2, e
′
2) ̸= (0, 0). Therefore, it is

easy to see that at least one of the second components of v1, v2, v3 is not zero.
We let i be an integer such that vi is a vector whose second component is not
zero. Then, {vi, t(−27, 0, 18, 0, 1), t(0, 0, 0, 4, 0)} is a basis of ⟨v1, v2, v2⟩. Hence,
if the second component of v ∈ ⟨v1, v2, v3⟩ is zero, then v is a linear combination
of t(−27, 0, 18, 0, 1) and t(0, 0, 0, 4, 0). By computing (e1e

′
2+ e2e

′
1)v1− (2e1e2)v2,

we have

(e1e
′
2 + e2e

′
1)v1 − (2e1e2)v2 =


e21(e1e

′
2 + e2e

′
1)− (2e1e2)(e1e

′
1)

0
∗
∗

e23(e1e
′
2 + e2e

′
1)− e3e

′
3(2e1e2)

 .

Since this vector is a linear combination of t(−27, 0, 18, 0, 1) and t(0, 0, 0, 4, 0),
we have

e21(e1e
′
2 + e2e

′
1)− (2e1e2)(e1e

′
1) = −27(e23(e1e

′
2 + e2e

′
1)− e3e

′
3(2e1e2)). (20)

By considering (e1e
′
2+ e2e

′
1)v3− (2e′1e

′
2)v2 and (e′1e

′
2)v1− (e1e2)v3, we also have

e′21 (e1e
′
2 + e2e

′
1)− (2e′1e

′
2)(e1e

′
1) = −27(e′23 (e1e

′
2 + e2e

′
1)− e3e

′
3(2e

′
1e

′
2)), (21)

e21(e
′
1e

′
2)− e′21 (e1e2) = −27(e23(e

′
1e

′
2)− e′23 (e1e2)). (22)

We now prove that e1, e2, e3, e
′
1, e

′
2, e

′
3 ∈ Z\{0}. Note that (ej , e

′
j) ̸= (0, 0) for

all j = 1, 2, 3, and (e1, e2, e3) ̸= (0, 0, 0), (e′1, e
′
2, e

′
3) ̸= (0, 0, 0). Suppose that at

least one of e1, e2, e3, e
′
1, e

′
2, e

′
3 is zero. From symmetry of e1, e2, e3 and e′1, e

′
2, e

′
3,

we only need to consider the cases of e1 = 0, e2 = 0, and e3 = 0.

Case e1 = 0: Note that e′1 ̸= 0. Substituting e1 = 0 into (20) and (22), we
have 0 = e23e2 and 0 = e23e

′
2. Since (e2, e

′
2) ̸= (0, 0), it holds that e3 = 0.

Substituting e1 = e3 = 0 into (21), it holds that (e′21 + 27e′23 )e2 = 0. This
contradicts e′1 ̸= 0, e′3 ̸= 0, and e2 ̸= 0.

Case e2 = 0: We can suppose e1 ̸= 0 from the previous case. Substituting
e2 = 0 into (20), we have (e21 + 27e23)e1 = 0. Therefore, it holds that e1 = 0.
This is a contradiction.

Case e3 = 0: We can suppose e1 ̸= 0 and e2 ̸= 0. Substituting e3 = 0 into
(20), we have e1e

′
2 = e2e

′
1. Substituting e3 = 0 and e1e

′
2 = e2e

′
1 into (20), we

have e′3 = 0. This is a contradiction.

In all cases, there are contradictions. Therefore, e1, e2, e3, e
′
1, e

′
2, e

′
3 are not zeros.

By calculating (20)×e′21 +(21)×e21, we have

0 = (e23e
′2
1 + e21e

′2
3 )(e1e

′
2 + e2e

′
1)− 2e1e3e

′
1e

′
3(e1e

′
2 + e2e

′
1)

= (e1e
′
3 − e3e

′
1)

2(e1e
′
2 + e2e

′
1).

Therefore, e1e
′
3 = e3e

′
1 or e1e

′
2 + e2e

′
1 = 0.
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Case e1e
′
2 + e2e

′
1 = 0: From the equation (21), we have

(e′1e
′
2)(e1e

′
1) = −27(e′1e

′
2)(e3e

′
3).

Since e′1e
′
2 ̸= 0, it holds that e1e

′
1 = −27e3e

′
3. By substituting e2e

′
1 = −e1e′2

and e′3 = (e1e
′
1)/(−27e3) into the equation (22), we have

0 = e21(e
′
1e

′
2)− e′1e1(−e1e′2) + 27e23(e

′
1e

′
2)− 27

(
e1e

′
1

−27e3

)2

(e1e2)

= (2e21 + 27e23)(e
′
1e

′
2)−

e31e
′
1(−e1e′2)
27e23

=
1

27e23
(54e21e

2
3 + 272e43 + e41)(e

′
1e

′
2).

Since 54e21e
2
3 + 272e43 + e41 ̸= 0 and e′1e

′
2 ̸= 0, this is a contradiction.

Case e1e
′
3 = e3e

′
1: From the equation (20), we have

e21(e1e
′
2 − e2e

′
1) = −27e23(e1e

′
2 − e2e

′
1).

Since e21+27e23 ̸= 0, we have e1e
′
2 = e2e

′
1. By substituting e′2 = (e2e

′
1)/e1 and

e′3 = (e3e
′
1)/e1 into v2 and v3, we have v2 = (e′1/e1)v1 and v3 = (e′21 /e

2
1)v1.

This is a contradiction.

Hence, in each case, there are contradictions. We conclude that there is a seed
polynomial of degree 3 in the computation, and the cost of the computation is
2M+ 3S or more.

b) Three seed polynomials of degree 2:
We denote three seed polynomials of degree 2 by u′2, u

′′
2 , and u

′′′
2 . In this case,

we can suppose that there are only two seed polynomials of degree 4. We denote
these seed polynomials of degree 4 by u′4 and u′′4 .

We now show that u′4 and u
′′
4 are obtained by multiplications. Suppose that u′4

is obtained by a squaring. Since there are noH3Z terms in ϕ1 and ϕ2, there are no
H3Z terms in u′4 and u′′4 . Therefore, we can represent u′4 by u′4 = (e1H

2+e2Z
2)2

or u′4 = (e1HZ + e2Z
2)2, where e1, e2 ∈ Z.

Case u′
4 = (e1H

2 + e2Z
2)2: The seed polynomial u′′4 has the HZ3 term since

ϕ2 has the HZ3 term and u′4 does not. Let ϕ1 = d′1u
′
4 + d′′1u

′′
4 , where d

′
1, d

′′
1

are integers. As ϕ1 has no HZ
3 terms, we have d′′1 = 0. However, there are no

integers d′1, e1, e2 satisfying ϕ1 = d′1(e1H
2 + e2Z

2)2. This is a contradiction.
Case u′

4 = (e1HZ + e2Z
2)2: The seed polynomial u′′4 has the H4 term since

ϕ1 has the H
4 term and u′4 does not. Let ϕ2 = d′2u

′
4+d

′′
2u

′′
4 , where d

′
2, d

′′
2 ∈ Z.

As ϕ2 has no H4 terms, we have d′′2 = 0. However, there are no integers
d′2, e1, e2 satisfying ϕ2 = d′2(e1HZ + e2Z

2)2. This is a contradiction.

From the above discussions, it holds that u′4 and u′′4 are obtained by multiplica-
tions, and the cost of the computation is 2M+ 3S or more.

Consequently, the cost of the computation is 2M+ 3S or more.
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From [CH17, Appendix A] or the diagram (4), we have already known that
this formula can be computed with the costs of 2M + 3S. This completes the
proof of Lemma 20. ⊓⊔

5 Conclusion

In this paper, we analyzed the general formula to compute image curves of 3-
isogenies in the framework of generalized Montgomery coordinates. The lower
bound of the costs of the formulas is 1M+1S as an affine formula whose output
is also affine, 2S as an affine formula whose output is projective, and 2M + 3S
as a projective formula under some heuristics. The formula

−6h3 + αh2 + 6h

is one of the most efficient formulas as an affine formula whose output is also in
affine coordinates, the formula

(−27h4 + 18h2 + 1 : 4h)

is one of the most efficient affine formulas, and the formula

(−27H4 + 18H2Z2 + Z4 : 4HZ3)

is one of the most efficient projective formulas.

5.1 Future works

One of the most important future works of this study is to analyze formulas to
compute image curves of high-degree isogenies. For recent isogeny-based schemes
(e.g., CSIDH [CLM+18], SQISign [DFKL+20]) need computation of high-degree
isogenies. Therefore, we should extend this result to isogenies of degree more
than 3. Moreover, this extension is also an interesting problem for mathematics.

Another important direction is to make the analysis more precise. In this
paper, we introduced some assumptions to make the analysis simplify. There
is a possibility that these assumptions hide truly efficient formulas. Moreover,
in practice, we often compute image curves and image points under isogenies
(formula (1)) at the same time. This means some computation can be shared in
the computation of these formulas. Therefore, we may be able to compute more
efficiently by this sharing.
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