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Abstract

In this paper, we examine the algebraic XSL attack on the Ad-
vanced Encryption Standard (AES). We begin with a brief introduc-
tion and we present an overview of AES, then, in Section 3, we present
the algebraic attack on ciphers like AES, following with the XL and
XSL algorithms in Section 4 and Section 5. Then, we present the XSL
first and second attacks, also their aplicability on BES. We see how
and if the algorithm has been improved since it firstly appeared. We
conclude with Section 10.

1 Introduction

AES encryption is a widely used symmetric key encryption algorithm that
is recognized for its security and efficiency. It is a standard for encrypting
sensitive information, including financial transactions and confidential com-
munications. Many cryptographers have tried to break the algorithm, but
the only one that was thought to be successful is the XSL attack, to prove
later that this is not effective either. In this article, we are going to analyze
the types of XSL algorithms, attacks, their implementation, and use in the
future.
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2 Overview of block ciphers

2.1 AES

The Advanced Encryption Standard, also known as the Rijndael al-
gorithm, is a 128 bits block cipher encryption for electronic data established
by NIST in 2001[1] and has been adopted by the US government as a sub-
stitute for DES. It is performed on a 4x4 array of bytes:

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15


The key size determines the number of rounds required to convert the

plaintext into ciphertext. For example, 10 rounds are needed for 128-bit
keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys.

The first round is the AddRoundKey, where each byte of the state is
XORed with a corresponding byte from the round key.

For the remaining n-1 rounds, the following operations are performed:

• SubBytes (replacing each byte in the state array with a corresponding
value from a S-box table),

• ShiftRows (shifting the rows of the state array cyclically to the left),

• MixColumns (diffusing the cipher by multiplying each column of the
current state with a fixed polynomial), and

• AddRoundKey.

The final round includes SubBytes, ShiftRows, and AddRoundKey, but
not MixColumns, as not significantly improve the security of the algorithm
and has a different structure in decryption compared to encryption.

2.2 Rijndael vs Serpent

In 2001, the finalists of AES selection process were Rijndael algorithm
(proposed by Joan Daemen and Vincent Rijmen [2]) and Serpent algorithm
(designed by Ross Anderson, Eli Biham, and Lars Knudsen [3]). In the end,
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Rijndael won and AES is an adaptation of it, of fixed 128 bits block size and
a key size of 128, 192, or 256 bits, besides the original algorithm which has
the block and key size multiple of 32 bits, starting from 128 up to 256 bits.

In contrast, the Serpent algorithm has the same block and key sizes as
the standardized AES but has more negative votes because does not allow
for an efficient future software implementation.

2.3 Block ciphers operation modes

A block cipher is a symmetric encryption algorithm that encrypts data
in fixed-size blocks, typically with a block size of 128 bits. The encryption
process involves dividing the plaintext message into blocks, and then each
block is encrypted using the encryption key to produce the corresponding
ciphertext block. The key is then used in reverse to decrypt the ciphertext
and recover the original plaintext.

AES encryption algorithm can operate in different modes, each with its
own strengths and weaknesses. The most commonly used modes are:

Electronic Codebook (ECB) mode: In ECB mode, the plaintext
message is divided into blocks and each block is encrypted independently
using the same encryption key. ECB mode is simple to implement but is
not secure, as repeated blocks of plaintext will produce the same ciphertext,
leading to patterns in the encrypted data.

Cipher Block Chaining (CBC) mode: In CBC mode, each block of
plaintext is XORed with the ciphertext of the previous block before being
encrypted. This makes it more secure than ECB mode, as it ensures that
repeated blocks of plaintext will not produce the same ciphertext.

Counter (CTR) mode: In CTR mode, a counter is used to generate
a stream of keystream bits, which are XORed with the plaintext to produce
the ciphertext. CTR mode is highly efficient and can be used for parallel
encryption and decryption, making it suitable for hardware acceleration.

Galois/Counter Mode (GCM): GCM is a mode of operation that
provides both encryption and authentication. It uses a Galois field to encrypt
the data and generate a unique tag that is sent along with the encrypted data
to verify its authenticity upon decryption.

Output Feedback (OFB) mode: In OFB mode, a pseudorandom bit
stream is generated and XORed with the plaintext to produce the ciphertext.
OFB mode is particularly useful for streaming data, as it ensures that errors
in the encrypted data will not propagate to subsequent blocks.
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3 Algebraic Attack on AES-like Ciphers

AES can be represented as algebraically closed equations over GF (28) [6].
It can also be represented as a system of multivariate quadratic equations
over GF(2) with plaintext, ciphertext and key bits as variables. [4]

The Multivariate Quadratic (MQ) problem involves finding a solution to
systems of equations that consist of multiple variables and are expressed as
quadratics. This problem is considered NP-Hard for any general field [5],
meaning there is no known efficient algorithm to solve it. In fact, solving a
system of quadratic equations in any finite field is considered NP-Complete,
which means it’s a difficult computational problem. Despite the lack of a
polynomial-time solution for the MQ problem in general, there are algorithms
that can run efficiently for specific cases where the system of equations is
over-defined.

The process of an algebraic attack on the MQ problem consists of two
phases: generating equations and solving the resulting system.

4 XL Algorithm

The XL [6] (extended linearization) algorithm was introduced by Cour-
tois, Klimov, Patarin, and Shamir in the year 2000 as an improvement to the
relinearization method for solving large systems of overdefined multivariate
quadratic polynomial equations. The XL algorithm works by expanding the
initial system of equations through monomial multiplications, creating a new
system that is viewed as a linear equation in the resulting monomials.

The XL (extended linearization) algorithm is effective in solving the MQ
problem when the number of equations surpasses the number of variables.
It achieves this by growing the initial equation system by incorporating new
dependent equations that are not linearly related to the original set. The
expansion process is performed using multiplications with monomials of re-
stricted degrees.

The XL algorithm accepts as input the initial system of equations A
(which has at least one solution), and a degree bound D ∈ N.

If we consider a system of m quadratic equations and n variables over a
finite field K,

f1(x1, ..., xn) = 0, ..., fm(x1, ..., xn) = 0,

the algorithm simply multiplies the original equations by all monomials Mi
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up to a prescribed degree D − 2, and attempts to solve the system of all
resulting equations

Mi · fj(x1, ..., xn) = 0

of degree at most D by linearization.
One of the drawbacks of the XL algorithm is that as the degree bound D

increases, so does the size of the expanded system, often leading to a signif-
icant growth. Additionally, a large number of linearly dependent equations
are generated during the expansion, resulting in a larger system. Despite this,
the equations produced by the XL algorithm tend to be sparse in general.

Unfortunately, the complexity of the XL method in general is not known
[7], nor do we even know under what precise conditions the algorithm termi-
nates. However, experimentally, it is more efficient than relinearization for
proper choices of D. These experiments also show that even a little overdefi-
nition helps a lot. Clearly the work depends a great deal on D.

5 XSL Algorithm

The XSL algorithm, which stands for ”eXtended Sparse Linearization”,
operates differently from the XL algorithm in the way that equations are
multiplied by monomials. In the XL algorithm, all monomials up to a cer-
tain degree are used for multiplication, whereas in the XSL algorithm, only
specific, ”carefully selected monomials” are utilized for this purpose.

There are different versions of the XSL algorithm. The first version was
proposed in [8], where two different attacks were described: the first one
eliminating the key schedule equations (but requiring a number of plaintext-
ciphertext pairs), and a second, more specific attack, that used the key sched-
ule equations (and should work with a single plaintext-ciphertext pair). Later
a different version of the algorithm was introduced in [9] (called “compact
XSL”).

The objective of the XSL algorithm is to generate fewer new monomials
during the equation expansion process, in comparison to the XL algorithm.
This is achieved by being selective about the monomials used for multiplica-
tion. Additionally, the XSL algorithm includes a final step, known as the T’
method, which aims to produce new linearly independent equations without
creating additional monomials.

The XSL algorithm consists of four main steps [10]:

5



1. Process the existing set of equations, by choosing certain sets of mono-
mials and equations that will be used during the later steps of the
algorithm.

2. Select the value of the parameter P, and multiply the chosen equations
by the product of P − 1 selected monomials. This is the “core” of the
XSL attacks and should generate a large number of equations whose
terms are the product of the monomials chosen earlier.

3. Perform the T’ method, in which some selected equations are multi-
plied by single variables. The goal is to generate new equations without
creating any new monomials. Iterate with as many variables as nec-
essary until the system has enough linearly independent equations to
apply linearization.

4. Apply linearization, by considering each monomial as a new variable
and performing Gaussian elimination. This should yield a solution for
the system.

6 XSL Ciphers

By definition, an XSL-cipher is a composition of Nr similar rounds:

• X: The first round i = 1 starts with a XOR with the session key Ki−1,

• S: we apply a layer of B bijective S-boxes in parallel, each on s bits,

• L: we apply a linear diffusion layer,

• X: we XOR with another session key Ki.

• If i = Nr we finish, otherwise we increment i and go back to step S.

We denote the key bits used in an XSL-cipher by the variables Kij with
i = 0...Nr and j = 1...s ∗ B. There are Nr + 1 session keys, K0 is the first
and KNr is the last.
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7 XSL Attack

7.1 First XSL Attack

The XSL attack is a method to determine the secret key of a cipher. For
each S-box in the cipher with r equations and t terms, a set of quadratic
equations will be written that fully defines the secret key.

Let A be an S-box of an XSL cipher, called an ”active S-box”. For this
S-box A, we may write r equations of the form:

0 =
∑

αijkXijYik +
∑

βijXij +
∑

γijYij + δ

The number of monomials included in these equations is limited, only
t in total (most of which have the form XijYik). To further expand these
equations, one of the t monomials from other ”passive” S-boxes will be mul-
tiplied. The total number of S-boxes, S, equals B ∗ Nr ∗ (Nr + 1), where
B is the block size and Nr + 1 refers to the number of cipher executions.
A critical parameter, P, is defined such that each equation from each ”ac-
tive” S-box will be multiplied by all possible terms for all subsets of (P -1)
”passive” S-boxes. If P is large, the result will be similar to the general XL
attack.

As a result, the total number of equations generated by this method will
be about:

R ≈ r ∗ S ∗ tP−1 ∗
(
S − 1
P − 1

)
And the total number of terms in these equations:

T ≈ tP ∗
(
S
P

)
However, a lot of them lack independence and the limitations were only to

multiply a specific ”active” equation by one of the monomials T1 to Tt−r, for a
particular ”passive” S-box in the system. Additionally, the rules dictate that
equations containing multiple ”active” S-box products must also be included.

R ≈
(
S
P

)
(tP − (t− r)P )

As we can see, when P grows we will have R/T → 1. In addition, if we
define t’ < t being the number of terms that can be multiplied by x1 and

T ′ ≈ t′ ∗ tP−1 ∗
(
S − 1
P − 1

)
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in order to solve such a system of equations, we need to have T - R < T’
which is true, for a sufficiently large P.

In fact, the attack will always work for some fixed P because it seems [8]
that P will increase with the number of rounds.

7.2 Second XSL Attack

In the second attack, the key schedule is utilized. Similar to before, a
system of equations will be written with a separate variable for each input
and output bit of each S-box, including those in the key schedule. We will
have:

S = Λ ∗B ∗Nr +D + 1

where Λ is the number of plaintexts needed in order to completely determine
the key used in the cipher and D is the number of S-boxes in the key schedule.
But the number of equations is again equal to

R ≈
(
S
P

)
(tP − (t− r)P )

By adding the following equations: Xi+1j =
∑
αjYij ⊕ [Kij] where [Kij]

is the expression of Kij as a linear combination of the Sk ”true” key variable,
and by multiplying with the products of terms of (P - 1) ”passive” S-boxes,
we obtain:

R′ ≈ Λ ∗ s ∗B ∗ (Nr + 1) ∗ (t− r)P−1 ∗
(

S
P − 1

)
What is missing are the linear equations on the key schedule, which arise

from the fact that the Sk key variables are not linearly independent. These
equations are produced by multiplying the products of terms of (P -1) ”pas-
sive” S-boxes and

R′′ ≈ (Sk − Lk) ∗ (t− r)P−1 ∗
(

S
P − 1

)
The attack will work when P is:

R +R′ +R′′

T − T ′
> 1

The objective of XSL is to select an appropriate P so that we get enough
equations. The following computations apply for AES-128, AES-192 and
AES-256 [11]:
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• AES-128: For the smallest P = 7, the parameters R = 4.95 × 1025,
R’ = 4.85 × 1024, T = 5.41 × 1025 and (R + R’ )/T = 1.004, the
complexity of XSL attack is T 2.376 ≈ 2203.

• AES-196: For the smallest P = 7, the parameters R = 8.65 × 1027,
R’ = 8.50 × 1026, T = 9.46 × 1027 and (R + R’ )/T = 1.004, the
complexity of XSL attack is T 2.376 ≈ 2221.

• AES-256: For the smallest P = 7, the parameters R = 3.15 × 1028,
R’ = 3.02 × 1027, T = 3.45 × 1028 and (R + R’ )/T = 1.002, the
complexity of XSL attack is T 2.376 ≈ 2225.

8 XSL Attack on BES

The Big Encryption System (BES) embedding for the AES cipher, in-
troduced by Robshaw and Murphy, simplifies the quadratic equations that
describe the S-box input-output relationship. This results in a significant
decrease in the number of monomials present in the equation system, po-
tentially leading to an exponential reduction in the complexity of the XSL
attack. [12] AES performs operations in the binary field F2, while BES
achieves the same outcome through operations in the field F256. This new
representation is advantageous due to the simplicity of the S-box equation,
as xy = 1 is immediately obtainable rather than having to use 8 quadratic
equations for the input and output bits.

If we consider the set of non-reduced S-box equations and linear equations
and fix the 8 input variables of an S-box, then the removal of each S-box
results in 8 free variables. The number of linearly independent terms is then
equal to or greater than the number of reduced monomials formed by these
8S free variables:

D1 =
P∑
i=0

(
S
i

)
8i

It is enough when solving the collection of extended linear equations with
the extended S-box equations to be of the form (v)(m1) = (m2), where m1

and m2 are reduced monomials of degree at most P - 1 and v is an S-box
variable such that it or its dual occurs in m1. If we set v’ that occurs in m1,
we have the case when v = v’, so we have 16S choices and 8S choices for the
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case when v’ is the dual of v, then the number of relevant equations is:

D2 = 24S ∗
P−2∑
i=0

(
S − 1
i

)
8i

We need D2 > D1 to solve the secret key, then:

• BES-128: For the smallest P = 23, the complexity of XSL attack is
D2.376

1 = (5.9 x 1050)2.376 ≈ 2401

• BES-196: For the smallest P = 33, the complexity of XSL attack is
D2.376

1 = (5.857 x 1078)2.376 ≈ 2622

• BES-256: For the smallest P = 36, the complexity of XSL attack is
D2.376

1 = (3.798 x 1087)2.376 ≈ 2691

according to the table from [11], which gives worse complexity than the
XL attack against AES-128.

9 Improvements

In Asiacrypt 2005, Cid and Leurent [10] gave an analysis of the compact
XSL attack [9] on AES-128 and proved that it is equivalent to a substitution-
thenXL (sXL) method. They concluded that XSL attack is essentially an XL
attack on a system of equations larger than that of the original AES. Thus
compact XSL is not an effective attack against the AES cipher. This partly
answers some uncertainties of the compact XSL attack and suggests that
it may not be an effective method against block ciphers. However, it does
not give us the full answer on whether XSL is effective against AES. This is
because in [10], only the compact XSL attack is analyzed.

Several modifications to the XL algorithm have been proposed, including
the XL SGE (eXtended Linearization with Structured Gaussian Elimination)
algorithm [4]. The XL SGE algorithm aims to reduce the number of linearized
equations generated by the XL algorithm. This reduction is achieved through
the use of structured Gaussian elimination (SGE) on the intermediate sys-
tems generated during the XL process. The resulting reduced systems are
then multiplied with monomials to produce systems with higher algebraic
degrees.
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The XSL attack has a high computational cost, making it no more efficient
in breaking AES than an exhaustive search. This means that it does not
pose a significant threat to the security of block ciphers in the near future.
Nevertheless, the simplicity of the XSL attack has raised concerns among
experts about the algebraic security of AES.
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11 Conclusions

There was some disagreement over the validity of the claims made in the
original XSL paper [7]. Moh and Coppersmith initially claimed to have found
issues with the effectiveness of the T ′ method and with the projections for
the number of linear equations. However, Moh later withdrew part of his
criticisms from his website.

Courtois, talking about the Courtois-Pieprzyk-Murphy-Robshaw attack,
says that no one has yet shown that XSL will break AES. On the other
hand, no evidence has been provided to show that the XSL algorithm cannot
break AES either. The XL family of algorithms remains an area of ongoing
research and the outcome is still uncertain regarding the possibility of AES
being attacked through solving it as an MQ problem.
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