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Abstract. In the algebraic group model (AGM), an adversary has to
return with each group element a linear representation with respect to
input group elements. In many groups, it is easy to sample group ele-
ments obliviously without knowing such linear representations. Since the
AGM does not model this, it can be used to prove the security of spuri-
ous knowledge assumptions. We show several well-known zk-SNARKs use
such assumptions. We propose AGM with oblivious sampling (AGMOS),
an AGM variant where the adversary can access an oracle that allows
sampling group elements obliviously from some distribution. We show
that AGM and AGMOS are different by studying the family of “total
knowledge-of-exponent” assumptions, showing that they are all secure
in the AGM, but most are not secure in the AGMOS if the DL holds.
We show an important separation in the case of the KZG commitment
scheme. We show that many known AGM reductions go through also in
the AGMOS, assuming a novel falsifiable assumption TOFR. We prove
that TOFR is secure in a version of GGM with oblivious sampling.

Keywords: Admissible encoding · algebraic group model · elliptic-curve
hashing · FindRep · KZG extractablity · oblivious sampling

1 Introduction

GGM. One of the most influential idealized models of computation in cryptogra-
phy is the generic group model (GGM, [Nec94,Sho97,Mau05]). GGM models the
situation where an adversary A operates in a (usually abelian, possibly bilinear)
group. In the GGM, A’s operations on group elements are “generic” (typically
addition, equality test, pairing operation), i.e., they do not depend on the con-
crete group. One models this either by giving the adversary access to random
encodings [Sho97] or abstract handles of group elements [Mau05], together with
oracles that perform group operations and equality tests on given encodings
(resp., handles). A cannot access any other information about the group ele-
ments, including their bit representations. A does not even have access to the

⋆ This is a full version of [LPS23].
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group description, except (usually) its order. Most elliptic-curve cryptanalysis
algorithms are generic. That is, the algorithms do not exploit any particular
structure of the group.

While the GGM is used widely to argue about security in group-based set-
tings, the GGM has several well-known weaknesses [Fis00,Den02] that have moti-
vated researchers to propose more realistic idealized models. In particular, GGM
makes the questionable assumption that the adversary cannot conduct more ef-
ficient attacks by accessing the bit-presentation of group elements.

AGM. Fuchsbauer et al. [FKL18] proposed the more realistic algebraic group
model (AGM) with algebraic adversaries. The AGM does not assume the adver-
sary’s ignorance about the group description or bit-representation of the group
elements. Instead, the AGM is a generalized knowledge assumption [Dam92],
stating that an algebraic adversary A must know a linear representation of an
output group element with respect to input group elements. Notably, a group el-
ement’s creation can depend on the group description and already known group
elements’ bit-presentation. The knowledge of the linear representation is mod-
eled by requiring the adversary, together with each group element, to output a
linear dependence from the group elements seen thus far. More formally, given
(for example) input group elements [x1, . . . , xn]1

3, if the adversary outputs [y]1,
it has to also output integers v1, . . . , vn such that [y]1 =

∑n
i=1 vi[xi]1.

Oblivious Sampling. Since a real-life adversary is not restricted to group oper-
ations and equality tests, AGM does not always capture all (known) possible
attacks. In particular, it was realized early [Bro01] in the context of GGM that
one must additionally model the adversary’s ability to sample group elements
obliviously without knowing the linear representations.

We point out (we seem to be the first to make this connection) that in the
case of elliptic curve groups, oblivious sampling is not just a theoretical pos-
sibility but concrete and provable (see Section 2.1 for a proof) attack due to
admissible encodings [BF01,SW06,Ica09,BCI+10,FT10,WB19]. Admissible en-
codings are efficiently computable functions E from F = Zp to elliptic curve
groups that are regular (small preimage sizes) and preimage sampleable (given
[y]1 ∈ Im(E), one can efficiently recover its whole preimage). Admissible encod-
ings allow an adversary A to sample group elements obliviously without knowing
their discrete logarithms [Ica09] and even linear representations: A can do it by
sampling s ←$ F and outputting E(s). Since admissible encodings exist for all
curves and are often constant-time computable, we argue that elliptic curve group
adversaries are not algebraic. We emphasize that admissible encodings are just
one approach to oblivious sampling. Many others may exist, and it is crucial to
guarantee security against all of them.

3 Let ê : G1 ×G2 → GT be a bilinear pairing. Let the order of the groups be a prime
p and denote F = Zp. We use the standard additive bracket notation, denoting a
group element as z · [1]κ = [z]κ ∈ Gκ, where [1]κ is a generator of an additive abelian
group Gκ, by [z]κ. We denote the pairing by • : G1 ×G2 → GT .
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Without modeling oblivious sampling, one can prove in the GGM and the
AGM the security of spurious knowledge assumptions [Bro01,SPMS02,BFS16].
Consider the following SpurKE (spurious knowledge of exponent) assumption:
if the adversary on input [1]1 outputs [x]1 then it must know x. First, we only
consider groups where the DL (discrete logarithm) assumption holds since other-
wise, SpurKE and many other knowledge assumptions hold trivially. As already
argued in [Bro01], if the adversary samples [x]1 obliviously (and DL holds), then
SpurKE does not hold. However, SpurKE holds in the standard GGM and AGM
(even when DL holds); in AGM, the linear representation is just x. It is a severe
shortcoming of standard GGM and AGM that assumptions like SpurKE can be
proven secure. SpurKE is not the only bad apple: the AGM allows one to prove
the security of many similar spurious knowledge assumptions.

This shortcoming of AGM has misled researchers to use SpurKE. In the
KZG polynomial commitment scheme [KZG10], the committer gets as an input
a public key pk = ([1, x, . . . , xd]1, [1, x]2). To commit to a polynomial f(X) =∑d
i=0 fiX

i, the committer computes [c]1 ←
∑d
i=1 fi[x

i]1. (See Section 5.3 for the
full construction.) Campanelli et al. [CFF+20] (the full version of [CFF+21]),
Section 7.3, suggest a trivial proof of knowledge for KZG commitment, where
the proof is empty. They motivate this by AGM since, in AGM, the polynomial
coefficients can be extracted from [c]1 alone. However, extracting the polynomial
directly from a commitment corresponds to the SpurKE assumption and is thus
intractable.

Similarly, in the knowledge-soundness proof of Plonk [GWC19], Gabizon et
al. write the following (Remark 3.2, [GWC19]): “the algebraic group model is
crucial for allowing us to model both binding and knowledge soundness in one
clean game - without it, we typically cannot require E to return the polynomial
immediately after A’s commitment.”. Again, the authors rely on immediate ex-
traction from the commitment, hence relying on SpurKE. This does not neces-
sarily imply a vulnerability in Plonk. (We show later that the polynomial can be
extracted if a KZG commitment is opened at some evaluation point.) However,
it shows that SpurKE has been used (albeit sneakily) in well-known, widely de-
ployed SNARKs like Plonk. In Appendix E, we give more details, showing that
a common trick used to optimize quadratic tests in KZG-based zk-SNARKs re-
sults in non-extractability. We will leave it to future work to establish whether
such SNARKs (including other KZG-based SNARKs in the literature) can be
proven secure in AGMOS. Even if they are secure, they will need a different se-
curity proof. More generally, this shows that relying on SpurKE and equivalent
assumptions is more common than expected.

Modelling Oblivious Sampling. An augmented GGM that models oblivious sam-
pling is often called GGM with hashing (GGMH, [Bro01,BFS16,ALSZ21]). In
GGMH, the adversary is given access to an oracle that obliviously samples from
the uniform distribution over the group.

[FKL18] briefly discusses the oblivious sampling issue under the heading
of “Integrating AGM with random oracles,” stating that algebraic adversaries
cannot do oblivious sampling. They extend AGM to the setting of protocols that
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explicitly use a random oracle (RO) that outputs group elements (in particular,
to prove the security of the BLS signature scheme). In such cases, they consider
RO answers semantically equivalent to input elements. Thus, they require that
an algebraic adversary knows a representation of its output group elements as
a linear combination of inputs and RO answers. We will call this extension
RO-AGM. [FKL18] does not analyze the security of protocols where the honest
participants do not use RO, but the adversary uses RO to obliviously sample
group elements.

[Lip22] added oblivious sampling to the AGM. However, for this, [Lip22] uses
the fully-programmable random oracle (FPRO, [Nie02,FLR+10]) model. FPRO
is even less realistic than the non-programmable random oracle (NPRO) model,
where the reduction is only allowed to query and forward the answers of the
RO. Moreover, this does not model admissible encodings that are real-world,
well-defined, non-programmable, deterministic functions.

Let us try to understand the issues we face, including how the FPRO comes
in. First, by the definition of the AGM, an algebraic adversary A always returns
a linear representation of its output, which is typically used in a reduction proof.
For instance, we can prove in AGM that Computational Diffie-Hellman (CDH) is
not easier to break than DL. An algebraic CDH adversary A, on input [1, a, b]κ,
computes [ab]κ, and must also output integers v1, v2, v3 such that [ab]κ = v1[1]κ+
v2[a]κ + v3[b]κ. A DL reduction B can set the DL challenge as [a]κ, sample a
random integer b, and invoke A. Observe that if A succeeds in attacking CDH,
the polynomial V (X) = v1 + v2X + v3y − Xb has a as a root. Thus, B can
compute and return a. The discrete logarithm a will be correctly computed if
V is a non-zero polynomial in X. 4 However, when proving SpurKE and similar
assumptions, we should not assume that A returns the linear representation.

The (more challenging) second issue concerns how one constructs reductions
B in the AGM, like the one one above. In a typical AGM proof, one analyzes an
assumption with a verification polynomial V (X) that depends on the discrete
logarithms of the input and output group elements. B uses the extracted linear
representation to extract all V ’s coefficients. The verification equation stipulates
that V (x) = 0. After that, one analyzes two cases. “Case A” (algebraic), where
V is a zero polynomial: typically, either V (X) = 0 is impossible (computational
assumptions) or the extraction succeeds (knowledge assumptions).

Alternatively, one is in “Case X” (X-related case) where V (X) ̸= 0 as a
polynomial but V (x) = 0. In this case, one constructs a reduction to a standard
computational assumption like (d1, d2)-PDL (Power Discrete Logarithm, given
[1, y, . . . , yd1 ]1 and [1, y, . . . , yd2 ]2 for random y, it is intractable to recover y).

A typical reduction B to PDL implicitly embeds random affine functions
of B’s input trapdoor y to all the coordinates of x. (This step is only needed
when V is multivariate.) This results in a univariate polynomial V ∗, such that
V ∗(Y ) ̸= 0 but V ∗(y) = 0. Using univariate polynomial factorization, B recovers
y. Consider the case of oblivious sampling with RO. Then, [x]1 also includes

4 The actual reduction is slightly more complicated since we need to guarantee that
V is a non-zero polynomial.
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RO answers, which means that a PDL reduction must implicitly embed y to the
RO answers. Since now the RO must be programmed, this results in using the
FPRO model in [Lip22]. See [Lip22] for a discussion on the differences between
this approach and the approach of [FKL18].

Since SpurKE-like assumptions do not hold (assuming DL holds) in [Lip22]’s
version of AGM, this answers one of our concerns. Unfortunately, it still relies on
using FPRO. Pitfalls of FPRO are well understood; see [Nie02,FLR+10] for ex-
tended discussions. Modeling admissible encodings (existing, efficient functions)
via a RO would remove one of the advantages of the AGM over the GGM, the
ability to argue about concrete bit representations of existing real-life objects.

Moreover, the outputs of most admissible encodings are not distributed uni-
formly, while the GGMH, the RO-AGM of [FKL18], and [Lip22] only consider
the uniform distribution. Since both GGMH and RO-AGM only consider uni-
formly distributed outputs, they do not model properly admissible encodings
also in this aspect. For example, Icart’s admissible encoding [Ica09] has domain
size ≈ 5/8 of the group size, and thus it can be easily distinguished from an RO
that outputs uniformly random group elements. In addition, one can choose a
non-uniform input distribution for the admissible encoding or combine several
known admissible encodings. Even if one is willing to use the FPRO model,
one has the problem of embedding the input of the PDL adversary to the RO
answers that come from non-uniform distributions. It is not clear how to do it
generically.

Main Questions of this Work. The previous discussion leads us to the following
question: how to extend the AGM to model oblivious sampling without needing
the FPRO (or even the NPRO)? This modeling should take into account that
admissible encodings can be used to sample from non-uniform distributions.

Our Contributions. Firstly, we formally establish that oblivious sampling is pos-
sible in elliptic curve groups using admissible encodings. Thus, an oblivious sam-
pling extension to AGM is indeed needed.

Our modeling focuses on the bilinear setting; the non-bilinear setting follows
directly by restricting the adversary. We consider (EF ,DF)-AGMOS adversaries
(AGM with oblivious sampling) A that obtain group elements as inputs and out-
put field or group elements. Here, EF is a family of encoding functions, and DF
is a family of distributions. We allow A to use an oracle O to obliviously sam-
ple elements from G1 or G2. A inputs to O adversarially chosen E ∈ EF and
D ∈ DF . O samples a random s←$ D and then outputs E(s) and s. The model
executes O correctly and honestly (it is non-programmable) without leaking any
side information. With any group element [z]κ, A must output a linear repre-
sentation with respect to all previously seen group elements, including oracle
answers from the same group. Reasonable choices for EF may be admissible
encodings or some other oblivious sampling functions. We also describe a sim-
pler version of AGMOS where oracles respond with uniformly random group
elements and discuss the implications of that.
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To tackle the issue of reductions to PDL, we define a new family of falsi-
fiable assumptions, (EF ,DF)-TOFR (Tensor Oracle FindRep). We prove that
(EF ,DF)-TOFR holds in a version of GGM augmented by a distribution ora-
cle O (all previous GGMH variants consider uniform distributions), under the
assumption that DF contains well-spread distributions (i.e., distributions with
min-entropy ω(log λ), where λ is the security parameter).

We prove that (a version of) the Flexible Uber assumption [BBG05,Boy08],
the Power Knowledge of Exponent (PKE) assumption [DFGK14], EUF-CMA
of Schnorr’s signature [Sch91], and the extractability of the KZG polynomial
commitment scheme [KZG10] hold in the AGMOS. Crucially, in the last case,
extractability is only possible when the committer additionally opens the poly-
nomial at some point. Immediate extraction from the commitment is intractable,
as we discussed earlier. In typical AGMOS proofs, we construct two reductions:
one to the new TOFR assumption and the second one to the PDL assumption.
To simplify PDL reductions, we define an intermediate assumption FPR (Find
Polynomial Representation) and reduce it to PDL. The FPR assumption hides
many of the complexities of typical PDL reductions and can also be used in
standard AGM proofs.

Let TotalKE be the assumption family stating that an adversary, whose
input is ([1]1, [1]2), knows the discrete logarithms of all output group elements.
Most of such assumptions are insecure in the standard model due to oblivious
sampling (if DL holds), while they hold in the AGM. We show that such spurious
assumptions do not hold in AGMOS, under the hardness of DL, obtaining a
(conditional) separation with AGM.

1.1 Technical Overview

Feasibility of Oblivious Sampling. We give a more detailed proof of a claim
from [Ica09] that computing the DL of a group element G = E(s), given G and
s, where E is an admissible encoding and s is a random input, is roughly as hard
as computing the discrete logarithm of a random group element. This implies
that adversaries in the elliptic curve setting can indeed sample group elements
obliviously (i.e., without knowing their DLs).

Definition of AGMOS. Suppose p = (p,G1,G2,GT , ê) is a concrete bilinear
group, κ ∈ {1, 2}, and F = Zp. Let EF = {EFp,κ}p,κ be a set of encodings
(e.g., admissible encodings), with EFp,κ containing encodings from F to Gκ. Let
DF = {DFp}p be a family of distributions over F.

We allow (EF ,DF)-AGMOS adversaries to query (p-dependent) non-
programmable oracles O1 and O2. Given adversarially chosen E and D as inputs,
Oκ(E,D) is defined as follows: if E /∈ EFp,κ or D /∈ DFp, it aborts. Otherwise,
it samples s←$ D, computes [q]κ ← E(s), and returns [q]κ and s.

We require that for every non-uniform probabilistic polynomial time (PPT)
A, there exists a non-uniform PPT extractor ExtA, such that: if the adversary
returns a group element [y]κ, ExtA returns with an overwhelming probability
a linear representation (γκ, δκ) of [y]κ with respect to the already seen group
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elements (including oracle answers) from Gκ. More precisely, for κ ∈ {1, 2},
ExtA extracts vectors γκ and δκ and a vector of oracle answers [qκ]κ, such that
yκ = γ⊺

κxκ + δ⊺κqκ.

Security proofs in AGMOS. Security proofs in the AGMOS follow the general
strategy of security proofs in the AGM but with some crucial differences. Since
the adversary’s output y = γ⊺xκ + δ⊺qκ depends on the oracle answers, the
usual PDL reduction strategy is not sufficient. In the AGM, the polynomial
V (X) corresponding to the assumption’s verification (a pairing-product equa-
tion) depends only on the challenger’s trapdoors (e.g., a and b in the CDH
assumption). In the case of several trapdoors, the PDL reduction embeds its
input [x]κ to all trapdoors. Since we want to avoid FPRO, in the AGMOS, the
reduction cannot embed [x]κ to the oracle answers.

Due to that, the AGMOS proof strategy looks as follows. We work with a
verification polynomial V (X,Q), where Qκi is an indeterminate corresponding
to [qκi]κ (the ith answer ofOκ). This polynomial is such that V (x,q) is equal to 0
iff the challenger accepts the adversary’s output. Note that the actual verification
equation, used in the definition of the assumption, is a function of the adversary’s
inputs and outputs. However, since the outputs have all the form y = γ⊺xκ +
δ⊺qκ, V can be written as a polynomial in (X,Q). Importantly, V ’s coefficients
can be computed from the internal variables of the challenger and the elements
extracted by the AGMOS extractor.

In the AGM proof of a computational assumption, one considers two cases.
In Case A of an AGM proof, V (X) = 0 as a polynomial. One typically shows
that this case never materializes. In Case X of an AGM proof, V (X) ̸= 0 as a
polynomial but V (x) = 0. One then constructs a PDL reduction that embeds
the challenge (given as a tuple of group elements) to x (given as group elements),
obtaining a univariate polynomial V ∗(X). The reduction uses polynomial fac-
torization to find V ∗(X)’s roots. One of these roots is necessarily the discrete
logarithm of the reduction’s input.

An AGMOS proof strategy of computational assumptions is more compli-
cated. In Case A of an AGMOS proof, V (X,Q) = 0 as a polynomial. However,
V is generally more complicated than in an AGM proof, and thus one has to be
more careful when showing that V (X,Q) = 0 is impossible. Later, we use this
difference to separate AGM and AGMOS.

Assuming V (X,Q) ̸= 0, an AGMOS proof has more cases. Case X of an
AGMOS proof corresponds to the case where we can construct a PDL ad-
versary. Due to how the sampling oracle’s answers are created, one can write
V (X,Q) = V h(X) + V t(X,Q), where V h does not depend on Q while each
term of V t depends on some indeterminate Qκi. In Case X, V (X,Q) ̸= 0 as a
polynomial but V t(x,Q) = 0 as a polynomial. We divide Case X into two sub-
cases. In Subcase X.1, the adversary does not use oracle answers, which means
that V t(X,Q) = 0 as a polynomial (δ = 0 for all group elements output by the
adversary). Thus, the non-zero polynomial V (X,Q) does not depend on Q. As
in the AGM, we reduce the security of the proved assumption to the PDL.
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In Subcase X.2, V t(X,Q) ̸= 0 but V t(x,Q) = 0. In this case, the coefficient
of some Qκi or Q1iQ2j is a non-zero polynomial in X that evaluates to zero
at X = x. As in Subcase X.1, we can reduce the security to the PDL by using
polynomial factorization to return PDL’s input, but the reduction is different.

Case Q of an AGMOS proof is the remaining case when Cases A and X do
not hold. That is, V t(x,Q) ̸= 0 (but the verifier accepts, V (x,q) = 0). Now we
are in a situation where V t ̸= 0 as a polynomial (thus, V depends nontrivially
on at least one Qκi) but V (x,q) = V h(x)+V t(x,q) = 0 for [qκi]κ chosen from
some distribution from DFp.

For a concrete V , the probability that V (x,q) = 0 is negligible over the
choice of q. However, V (whose coefficients depend on the linear representations)
is fixed after the adversary A sees the oracle’s answers. Since, for any q, one
can choose a bad V so that V (x,q) = 0, this probabilistic argument does not
work. Fortunately, A only knows [qκi]κ as group elements. It seems reasonable
to assume that for any adversarial input (chosen by the reduction) and for [q]κ
coming from a well-spread distribution (in particular, q is non-zero with an
overwhelming probability), it is difficult to construct a low-degree polynomial in
Q that evaluates to zero at the oracle answers. In a few paragraphs, we formulate
this as a new assumption, TOFR. In Case Q, we construct a reduction to TOFR.

To summarize, an AGMOS proof of a computational assumption has the
following structure:

– Case A: V (X,Q) = 0. This case is typically impossible.
– Case X: V (X,Q) ̸= 0 and V t(x,Q) = 0.
• Case X.1: V t(X,Q) = 0. Reduces to PDL.
• Case X.2: V t(X,Q) ̸= 0. Reduces (differently) to PDL.

– Case Q: V (X,Q) ̸= 0 and V t(x,Q) ̸= 0. Reduces to TOFR.

FPR assumption. To automatize PDL reductions in AGMOS proofs, we define
a new intermediate assumption Find Polynomial Representation (FPR). FPR is
a tautological assumption of Case X (both subcases). FPR states that it is hard
to find a non-zero multivariate polynomial f that evaluates to zero at the given
input trapdoor. We first reduce FPR to PDL (without using idealized models).
We define two variants of FPR that have incomparable reductions to PDL; the
best choice depends on the context. The actual security reductions of Case X to
FPR are straightforward. The definition of FPR is an independent contribution
applicable to both AGM and AGMOS proofs.

Handling Knowledge Assumptions. The AGMOS proofs of knowledge assump-
tions follows the above blueprint for AGMOS proofs of computational assump-
tions. In particular, there will be Case A, Case X, and Case Q. Case X and Case
Q are similar to the case of computational assumptions. (Although, as we will
see, case X may not be needed in some knowledge assumption reductions.) De-
pending on the case, we construct a reduction to either FPR or TOFR. Recall
that Case A did not materialize in the case of computational assumptions. In the
case of knowledge assumptions, in an AGMOS proof, we construct a knowledge
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assumption extractor Ext that uses the AGMOS extractor Ext as a subroutine.
We show that if Ext succeeds, so does Ext.

The new assumption TOFR. The new (EF ,DF)-TOFR (Tensor Oracle Find-
Rep, see Definition 2) assumption states the following. Given oracle access to the
sampling oracles O1 and O2 (that are defined w.r.t. some (EF ,DF) as before),
it is intractable to output a vector v ̸= 0 such that (1∥q⊺

1∥q
⊺
2∥(q1⊗q2)

⊺) ·v = 0.
Here, [qκ]κ is the vector of Oκ answers.

TOFR generalizes the classical FindRep [Bra94] and KerMDH assump-
tions [MRV16]. Recall that FindRep assumes that given a uniformly random
vector of group elements [x]κ, it is difficult to find a non-zero vector v, such that
v⊺x = 0. FindRep is tightly secure under the discrete logarithm assumption.

Our AGMOS reductions work for any family (EF ,DF) for which (EF ,DF)-
TOFR is secure, but clearly, TOFR itself is not secure for any (EF ,DF). For
example, it is trivial to break TOFR if the encoding function is a constant
function that maps any input to [1]κ. The adversary can easily output v =
(1, . . . , 1,−(ℓ− 1)), where ℓ is the length of the vector (1∥q⊺

1∥q
⊺
2∥(q1 ⊗ q2)

⊺).
However, when (EF ,DF) implements oblivious sampling (adversary does not

know DL of E(s) for s ←$ D), we expect (EF ,DF)-TOFR to hold since it is
similar to the FindRep assumption. Such is the case with admissible encodings.

We provide further confidence to this claim in Section 8. We first define GGM
with oblivious sampling (GGMOS), a novel version of GGM where the generic
adversary has (in addition to the regular operations) access to an oblivious sam-
pling oracle. The oracle takes as an input a distribution D ∈ OFp over F and
returns a GGM label of x sampled from D. Here D can be seen as distribution
over F, induced by E(D′) where E ∈ EFp,κ and D′ ∈ DFp. Note that model-
ing EFp,κ itself is not possible in GGMOS since it may depend on the concrete
structure of the group (see Section 8 for further discussion).

We prove that (EF ,DF)-TOFR is secure in GGMOS, assuming that all
distributions from DFp have min-entropy ω(log λ), i.e., are well-spread. Thus,
the strength of TOFR depends crucially on DF . However, this proof should
only be taken as implying a necessary requirement for DF since EF cannot be
entirely accurately modeled in GGMOS, as mentioned above.

While GGMOS is an interesting notion by itself, due to the lack of reduc-
tions (to FPR and TOFR), it is considerably simpler to model GGM than AGM
with oblivious sampling. From the three novel aspects of AGMOS proofs (mod-
ified Case A, Subcase X.2, and the new Case Q), GGMOS proofs only need
to deal with the first one. Note also that GGMOS is similar to the existing
GGMH [Bro01,BFS16,ALSZ21]; however, GGMH only models adversarial ac-
cess to uniformly random sampling.

Example AGMOS proofs. In Section 5 and Appendix C, we present a few ex-
ample AGMOS security proofs. We picked our examples such that they show-
case a variety of different aspects of AGMOS. We prove that a variant of the
Flexible Uber assumption [BBG05,Boy08] is secure under FPR and TOFR (see
Section 5.1 for why we chose a variant). This proof follows closely the general
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proof strategy mentioned above. We also prove that the (bilinear) Power Knowl-
edge of Exponent (PKE) assumption [DFGK14] is secure under TOFR. As with
many knowledge assumptions, this AGMOS proof does not need to rely on FPR
or PDL. Intuitively this is because knowledge assumptions (typically) do not
require that computing something is hard. We prove that the KZG polynomial
commitment scheme [KZG10] is extractable under FPR and TOFR. Crucially,
extractability is only possible when the committer opens the polynomial at some
point. Extractability based only on the commitment corresponds to SpurKE, as
discussed earlier. Here, we see a combination of an extractability property and a
computational hardness property (binding), which is why both assumptions are
needed. Finally, we show that Schnorr’s signature [Sch91] is tightly EUF-CMA
secure under DL and TOFR. This one is mainly interesting because it shows
another advantage of AGM/AGMOS, the ability to prove tight reductions for
protocols, which are not known to be tightly secure in the standard or RO model.

Separating AGM and AGMOS. As demonstrated with SpurKE, unconditional
security of knowledge assumptions in the AGM does not imply the same in the
AGMOS (or in the standard model). In Section 6, we consider the TotalKE
assumption that states that an adversary A on input ([1]1, [1]2) must know the
discrete logarithm of each of its output group elements. We prove that if A
outputs more than R elements either in G1 or G2, where R is the number of
distinct (pairing-product) verification equations that define the assumption, then
A’s some output element must depend non-trivially on some qκi. Thus, under
the DL assumption, A does not know its discrete logarithm.

Interestingly, this result uses the Chevalley-Warning theorem [Che35,War35]
on the number of roots a low-degree multivariate polynomial can have over finite
fields. To our knowledge, this is the first use of the Chevalley-Warning theorem
to prove impossibility results in the pairing-based setting. We hope our result
inspires further use of this theorem in (pairing-based) cryptography.

When R = 1, we give a characterization of all TotalKE assumptions that can
be proven secure in groups where the DL assumption holds. Since all TotalKE
assumptions hold in the AGM, this separates the AGM and the AGMOS in all
but a small number of TotalKE cases. Here, separation means the following: in
the AGM, most of the TotalKE assumptions hold independently of the DL, while
in the AGMOS, these assumptions do not hold if the DL holds.

In the GGMH and GGMOS, one is only concerned about Case A (Case X
and Case Q cannot appear). However, Case A is handled similarly in GGMOS
and AGMOS. Hence, we also obtain a separation between GGMH and GGMOS.

AGMOS with Uniform Oracle. We also present a more simplified version of
AGMOS where the oracle responds with uniformly random group elements. This
model is more restrictive (for example, admissible encodings do not produce
uniform outputs) but has other benefits. In particular, it relies on a weaker
version of TOFR. We prove that if we did allow programming, then that version
of TOFR would be implied by the PDL assumption.
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More Related Work. Rotem and Segev [RS20] formalized algebraic adver-
saries for decisional problems. We only focus on computational and knowledge
problems in this work. Recently, Zhandry and Zhang et al. [Zha22,ZZK22] have
shown un-instantiability results for AGM. Although significant issues, we are
not trying to solve these problems in the current work.

Many more works combine RO and AGM [FPS20,KMSV21,GT21] to model
idealized hash functions. However, the point of those works is not to strengthen
AGM with oblivious sampling.

[Lip19] was an early eprint that was never published. It contained a few mis-
takes. In particular, it considered an initial variant of AGMOS, but without the
“TOFR” case. As such, it was incomplete and has been since withdrawn. [Lip22]
covers some of the results of [Lip19] (like a new variant of Groth16 SNARK and
its proof in [Lip22] AGM model), but importantly it did not consider arbitrary
oblivious sampling distributions and encodings. [Lip22] got over the missing
TOFR case by using the FPRO. The current paper corrects and improves on
another set of techniques from [Lip19]. It also does not use FPRO.

2 Preliminaries

Let F = Zp. Vectors are, by default, column vectors. We write (a//b) to show
concatenation of vectors a and b. For a matrixA,Ai denotes its ith row andA(j)

denotes its jth column. Let 0n be a zero vector of length n. F(≤d)[X1, . . . , Xk]
denotes the set of k-variate polynomials of total degree ≤ d over F. For f ∈
F[X1, . . . , Xm], deg(f) denotes the total degree of f and degXi

(f) denotes the
individual degree of Xi in f . PPT denotes probabilistic polynomial-time; λ ∈ N
is the security parameter. Let negl(λ) be an arbitrary negligible function and
poly(λ) be an arbitrary polynomial function. A probability is overwhelming if it is
greater 1−negl(λ) for some negligible function negl(λ). A random variable X has
min-entropy k, denoted H∞(X) = k, if maxx Pr[X = x] = 2−k. A distribution is
well-spread if it has super-logarithmic min-entropy, H∞(X) = ω(log λ); that is,
maxx Pr[X = x] = 2−ω(log λ) = λ−ω(1) = negl(λ). For an algorithm A, Im(A) is
the image of A, i.e., the set of valid outputs of A. RNDλ(A) denotes the random
tape of A (for given λ), and r ←$ RNDλ(A) denotes the uniformly random choice
of r from RNDλ(A). By y ← A(x; r) we denote the fact that A, given an input
x and a randomizer r, outputs y. Let [1, n] denote {1, 2, . . . , n}.

Bilinear Groups. A bilinear group generator Pgen(1λ) returns (p,G1,G2,GT , ê),
where G1, G2, and GT are three additive cyclic (thus, abelian) groups of prime
order p, and ê : G1 × G2 → GT is a non-degenerate efficiently computable
bilinear pairing. Recall F = Zp. The bilinear pairing is Type-3 (there is no
efficient isomorphism between G1 and G2). We use the standard additive bracket
notation, writing [a]κ to denote agκ where gκ = [1]κ is a fixed generator of Gκ,
κ ∈ {1, 2, T}. We denote ê([a]1, [b]2) by [a]1 • [b]2. We use the bracket notation
together with matrix notation, e.g., AB = C iff [A]1 • [B]2 = [C]T .
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Let d1(λ), d2(λ) ∈ poly(λ). Pgen is (d1(λ), d2(λ))-PDL (Power Discrete Loga-

rithm [Lip12]) secure if for any λ and non-uniform PPT A, Advpdld1,d2,Pgen,A(λ) :=

Pr
[
A(p, [(xi)d1i=0]1, [(x

i)d2i=0]2) = x | p← Pgen(1λ), x←$ F
]
= negl(λ) .

Algebraic Group Model. AGM [FKL18] is a recent idealized model of computa-
tion. Essentially, in the AGM, one assumes that each non-uniform PPT algorithm
A is algebraic in the following sense. Assume A’s input includes xκ = [xκ]κ and
no other elements from the group Gκ. We assume that if A outputs a vector [yκ]κ
of group elements, then A knows a matrix γκ, such that yκ = γ⊺

κxκ. Note that
the underlying protocol can be interactive. In such a case, the outputs of earlier
rounds cannot depend on the inputs of the later rounds. One can formalize this
by requiring specific entries of γκ are zero.

Fix Pgen. More precisely, a non-uniform PPT algorithm A is algebraic if
there exists a non-uniform PPT extractor ExtA, such that for any vector of
group elements x = ([x1]1, [x2]2), Adv

agm
Pgen,A,ExtA(λ) :=

Pr

[
y1 ̸= γ⊺

1x1∨
y2 ̸= γ⊺

2x2

p←$ Pgen(1λ); r ←$ RNDλ(A);
([y1]1, [y2]2)← A(p,x; r); (γ1,γ2)← ExtA(x; r)

]
= negl(λ) .

2.1 Admissible Encodings

A map E : S → R between finite sets is an admissible encoding [BCI+10] iff
Computable: E is PPT computable,
ϱ-regular: for any y ∈ R, the preimage size |E−1(y)| of y under E is ≤ ϱ for a

small constant ϱ (ϱ = 4 in [Ica09]),
Sampleable: given y in the image of E, one can efficiently compute its full

preimage E−1(y).
Boneh and Franklin [BF01] defined admissibility slightly differently; we fol-
low the definition of [BCI+10]. Many admissible encodings are known. In
Appendix A.1, we describe two admissible encodings, one by Boneh and
Franklin [BF01] and another one by Icart [Ica09].

Next, we prove a claim of Icart [Ica09] that computing the discrete logarithm
of E(s) is roughly as hard as computing the discrete logarithm of a uniformly
random element of G. (Icart [Ica09] only gave a proof sketch.) This result is
significant since it shows that efficient oblivious sampling is possible in elliptic
curve groups.

Another corollary of the sampleability is that one can efficiently recognize
whether some P ∈ Gκ belongs to Im(E). Within the proof (the claim does not
depend on it), we use the quantity ψE := |Im(E)|/|F|. As proven in [FT10],
while Icart’s admissible encoding has ϱ = 4, it has ψE ≈ 5/8 > 1/ϱ.

Let D be a distribution over Gκ for some κ ∈ {1, 2}. We say that the discrete
logarithm assumption over D holds in Pgen if, for any non-uniform PPT A,

AdvdlPgen,D,A(λ) := Pr
[
A(p, [x]κ) = x | p← Pgen(1λ), [x]κ ←$ D

]
= negl(λ) .
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In the following, E(F) refers to the distribution E(s) for s ←$ F and Gκ is the
uniform distribution over Gκ.

Theorem 1. Let E : F→ Gκ be a ϱ-regular admissible encoding. For any non-
uniform PPT A, there exists a non-uniform PPT C such that AdvdlPgen,E(F),A(λ) ≤
ϱ|Gκ|
|F| · Adv

dl
Pgen,Gκ,C(λ).

Before proving Theorem 1, we state and prove the following technical lemma.
Recall, ψE := |Im(E)|/|F|. Let Im(E) refers to the uniform distribution over
Im(E).

Lemma 1. Let E : F → Gκ be a ϱ-regular admissible encoding. For
any non-uniform PPT A, there exists a non-uniform PPT B such that
AdvdlPgen,E(F),A(λ) ≤ ϱψE · Adv

dl
Pgen,Im(E),B(λ).

Proof (Lemma 1). Let A be a discrete logarithm adversary whose input is [x]κ =
E(s) for s←$ F. We construct a trivial adversary B that computes the discrete
logarithm of [x]κ sampled from Im(E). B([x]κ) just invokes A to compute v ←
A([x]κ) and then returns v. Let us analyze the success probability of B.

For i ∈ [1, ϱ], let Ti = {[x]κ : |{s ∈ F : E(s) = [x]κ}| = i} be the set of
group elements in Im(E) with the preimage size i and Ni := E−1(Ti) = {s ∈ F :
E(s) ∈ Ti} be the set of field elements that E brings to Ti. Clearly, |Ni| = i|Ti|.
Since Ti = E(Ni), U(Ti) = E(U(Ni)). Since {T1, . . . , Tϱ} is a partition of Im(E),

AdvdlPgen,Im(E),B(λ) =Pr [A([x]κ) = x | [x]κ ←$ Im(E)]

=
∑ϱ
i=1 Pr [A([x]κ) = x | [x]κ ←$ Ti] · |Ti|

|Im(E)|

=
∑ϱ
i=1 Pr [A([x]κ) = x | s←$ Ni; [x]κ ← E(s)] · |Ni|

i|Im(E)|

≥ 1
ϱψE
·
∑ϱ
i=1 Pr [A([x]κ) = x | s←$ Ni; [x]κ ← E(s)] · |Ni|

|F|

= 1
ϱψE
· Pr [A([x]κ) = x | s←$ F, [x]κ ← E(s)]

= 1
ϱψE
· AdvdlPgen,E(F),A(λ) . ⊓⊔

Proof (of Theorem 1). Assume B is a non-uniform PPT adversary against the
discrete logarithm problem for P ←$ Im(E). We construct an adversary C against
the standard discrete logarithm problem with uniformly random challenge P ←$

Gκ. C invokes B to compute the discrete logarithm v of P . C aborts if B does
not succeed. Otherwise, C returns v. Clearly,

AdvdlPgen,Gκ,C(λ) ≥ Pr [B([x]κ) = x ∧ [x]κ ∈ Im(E) | [x]κ ←$ Gκ]

=
|Im(E)|
|Gκ|

· AdvdlPgen,Im(E),B(λ) .

Combining this with Lemma 1, we get that for any non-uniform PPT A,
there exists a non-uniform PPT B and C such that AdvdlPgen,E(F),A(λ) ≤ ϱψE ·
AdvdlPgen,Im(E),B(λ) ≤

ϱ|G|
|F| · Adv

dl
Pgen,G,C(λ). ⊓⊔
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Note that the result of Theorem 1 is relevant when (ϱ · |G|)/|F| = poly(λ).
Moreover, since E is sampleable, A can use E−1([x]κ) as the side information.

Note also that the elliptic curve hashing construction E(h(s)) from [Ica09]
is an oblivious sampling function given that E is an admissible encoding and
h : F→ F is a random oracle. This is easy to see. Suppose Ah is a non-uniform
PPT algorithm that given (E(h(s)), s) for s ←$ F can compute the DL of E(s)
with some probability ε. Additionally, Ah has access to a random oracle h. Then
we can construct a non-uniform PPT B that, given (E(s), s) as an input, outputs
DL of E(s) with the same probability ε. B samples a random r ←$ F and a
random function h such that h(r) = s. It then returns the output of Ah(E(s), r).
Assuming that B’s success probability is negligible, the success probability of A
must also be negligible.

3 AGM with Oblivious Sampling

Next, we define AGMOS, a more realistic variant of AGMOS that gives the ad-
versary oblivious sampling oracles that return group elements without revealing
their discrete logarithm. We define AGMOS in the pairing-based setting. How-
ever, it can be restricted to a group-based setting or generalized to a multilinear-
map-based setting.

Sampling oracles. Fix p← Pgen(1λ). Let EFp,κ be a set of (polynomially many)
functions F → Gκ. Let DFp be a family of distributions over F. We introduce
two oracles O1 and O2, one for each group G1 and G2. To simplify notation,
we denote O = (O1,O2). The ith query (E,D) to Oκ consists of a function
E ∈ EFp,κ and a distribution D ∈ DFp. The oracle samples a random field
element si ←$ D and returns [qκi

]κ ← E(si) and si.
We will denote the adversary’s initial input (e.g., input from the challenger)

in Gκ by [xκ]κ. We assume [xκ]κ always includes [1]κ. Let x = ([x1]1, [x2]2). In
interactive protocols, x is updated sequentially (we will not formalize it). The
adversary’s view consists of all group elements that the adversary has seen up
to the given moment. This includes the adversary’s initial input, elements sent
by other parties during the interaction, and oracle answers.

Definition. Let O be as above. We require that for any non-uniform PPT oracle
adversary AO, there exists a non-uniform PPT extractor ExtOA, such that: if
AO(x) outputs a vector of group elements [y]κ, on input x = ([x1]1, [x2]2), then
with an overwhelming probability, ExtOA outputs field-element matrices γ, δ, and
[qκ]κ (Oκ’s answer vector), such that

y = γ⊺xκ + δ⊺qκ . (1)

Here, γ and δ have the natural restriction that outputted group elements should
only depend on the current state (group elements, including oracle answers, seen
thus far) and not on the future information.
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Oκ(E,D)

if E /∈ EFp,κ ∨ D /∈ DFp then return ⊥;fi
s←$ D; [q]κ ← E(s); return ([q]κ, s);

Fig. 1. The description of the oblivious sampling oracle Oκ, where κ ∈ {1, 2}.

Definition 1 (AGMOS). Let EF = {EFp,κ} be a collection of functions. Let
DF = {DFp} be a family of distributions. A non-uniform PPT algorithm A is
an (EF ,DF)-AGMOS adversary for Pgen if there exists a non-uniform PPT
extractor ExtA, such that for any x = (x1,x2), Adv

agmos
Pgen,EF,DF,A,ExtA(λ) :=

Pr

 y1 ̸= γ⊺
1x1 + δ⊺1q1 ∨

y2 ̸= γ⊺
2x2 + δ⊺2q2

p← Pgen(1λ); r ← RNDλ(A);
([y1]1, [y2]2)←$AO(p,x; r);

(γκ, δκ, [qκ]κ)
2
κ=1 ← ExtOA(p,x; r) :

 = negl(λ) .

O is the non-programmable oracle depicted in Fig. 1. Here, [qκ]κ is required to
be the tuple of elements output by Oκ. We denote by qlκ the number of Oκ calls.

In Section 7, we present a simplified version of the model, where Oκ returns
only uniformly random group elements.

Discussion. One can rewrite the whole framework in the usual AGM terminol-
ogy, requiring that the adversary returns together with each group element an
explanation of how it depends on the group elements seen thus far. This is a
purely cosmetic choice.

In our proofs, we will only extract everything after the adversary has output
its last group element, handling the adversary’s outputs in Gκ as a vector [yκ]κ.
This allows for convenient matrix-vector notation. However, this choice is also
purely cosmetic, and one can extract the explanations one by one.

We parameterize the AGMOS with arbitrary families EF and DF . For the
sake of brevity, we will often assume that the parameters are clear from the
context. In modeling, we will stay agnostic to the concrete choice of the families
EF and DF , but as we will see, the security of the TOFR assumption will
significantly depend on this choice. Functions that can be reasonably included
in EF should satisfy two properties:
1. They should induce well-spread distributions from well-spread distributions.

Thus, for each well-spread distribution D, the distribution defined by E(s),
where s←$ D, should be well-spread.

2. It should be hard to compute the discrete logarithm of E(s), knowing s,
when s is sampled from a well-spread distribution.

See Section 8 for why it seems crucial to consider well-spread distributions. For
example, if EF includes scalar multiplication map [·]1 : s 7→ [s]1, which does
not satisfy 2, the intuition that any party cannot know the discrete logarithm
of E(s) does not work anymore. Thus, including [·]1 to EF will not result in a
meaningful model.
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Similarly to GGMH, one can consider oracles who do oblivious sampling di-
rectly by sampling from some distribution over Gκ. Such a model is less realistic
than using random seeds s and functions. In particular, our model allows the
adversary to also learn the input of the encoding function. In particular, Theo-
rem 1 motivates that the adversary may be able to do it without knowing their
discrete logarithms. Admissible encodings are the only maps for which we are
aware of concrete proofs (see Theorem 1) that relate the difficulty of comput-
ing the discrete logarithm from their image to the general discrete logarithm
assumption.

3.1 Further Formalization

Next, we will introduce more notation. We assume that the adversary’s input
is x(x) = (x1(x),x2(x)), where x is a vector of trapdoors not known to the
adversary. For simplicity, the input always includes group generators ([1]1, [1]2).
Here, x includes both CRS trapdoors and the trapdoors generated by other
parties (e.g., the challenger) during the protocol. Let X be a vector of indeter-
minates corresponding to trapdoors x and thus x(X) is a vector of polynomials
(or possibly rational functions, though we will not analyze this case) in X.

Let Q = (Q1,Q2) be the vector of indeterminates corresponding to the
concatenation of vectors of oracle outputs [q1]1 and [q2]2. As in Section 3,
[qκi]κ = Eκi(sκi) for sκi ←$ Dκi, where Eκi ∈ EFp,κ and Dκi ∈ DFp. We
denote the adversary’s outputs in Gκ as a vector yκ(x,qκ) corresponding to a
vector of polynomials yκ(X,Qκ) .

In an AGMOS security proof, the proved assumption5 is accompanied by
one or more “verification polynomials” Vi. For example, on input [1, x1, x2]1, the
CDH-in-G1 adversary outputs [y]1 = [y(x1, x2,q1)]1, where (due to the defini-
tion of the AGMOS) y is an adversarially chosen polynomial. The adversary is
successful if V (x1, x2,y) = 0, where V (X1, X2,y) := X1X2 − y(X1, X2,Q1).
In the general case, the adversary is successful if each verification polynomial
evaluates to 0 at the concrete point (x,y), where y depends on (x,q).

Formalizing Verification Equations. In the pairing-based setting, assumptions
are defined by one (or more) verification polynomial equation in the challenger
input and the adversary’s output. Let us call this explicit verification polynomial
V expl.

In AGMOS (as it was in AGM) the challenger, upon queried the knowledge
extractor, checks the polynomial equation, defined by replacing adversary’s out-
puts in V expl with their linear representation. Since the adversary’s outputs yκ
are affine functions in Qκ, each addend in the linear representation of [yκi]κ in
Gκ must depend on at most one oracle answer. Therefore, we can define the

5 One can prove the security of a concrete assumption or a concrete primitive/protocol.
We will call all things we prove in the AGMOS assumptions instead of each time
saying “an assumption or the security of a protocol”.
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implicit verification polynomial as

V (X,Q) := V h(X) + V t(X,Q) for V h(X) := γ⊺ph, V t(X,Q) := δ⊺pt (2)

for vectors γ and δ that can be computed from the outputs of the AGMOS
extractor, and vectors ph and pt that depend on X. The latter two equalities
follow from Eq. (1).

Example 1 (CDH in G1). Recall that on input [1, x1, x2]1, the CDH adversary
outputs [y]1 = [y(x1, x2,q1)]1. The challenger checks if [x1]1•x2[1]2 = [y]1• [1]2.
Thus, the explicit verification polynomial is V expl(X,y) = X1X2−y. Taking into
account that y = γ⊺x1(X) + δ⊺Q1 (and changing signs), we get that

V (X,Q) = γ1 + γ2X1 + γ3X2 −X1X2 +
∑

δiQ1i .

Thus, ph = (1, X1, X2, X1X2)
⊺, pt = Q1, γ = (γ1, γ2, γ3,−1)⊺, and δ = (δ1, . . .).

Example 2 (KE). The KE (knowledge-of-exponent) assumption [Dam92] for
Pgen in Gκ holds if for any non-uniform PPT A, there exists a non-uniform
PPT extractor ExtA, such that AdvkePgen,κ,A,ExtA(λ) :=

Pr

[
y2 = xy1 ∧
y∗
1 ̸= y1

p← Pgen(1λ);x←$ F; r ← RNDλ(A);
[y1,y2]κ ← A(p, [x]κ; r);y∗

1 ← ExtA(p, [x]κ; r)

]
= negl(λ) .

The KE adversary outputs y1 = y1(x,q1) and y2 = y2(x,q1) and the extractor
outputs vectors γi and δi, such that y1(X,Q1) = γ⊺

1(
1
X )+δ⊺1Q1 = γ11+γ12X+∑

i δ1iQ1i and y2(X,Q1) = γ21 + γ22X +
∑
i δ2iQ1i. Clearly, V

expl(X,y1,y2) =
y2 −Xy1, while V (X,Q1) can be expressed as follows:

V (X,Q1) =y2(X,Q1)−X · y1(X,Q1)

=γ21 + (γ22 − γ11)X − γ12X2 + δ⊺2Q1 −Xδ⊺1Q1 .

Here, V h(X) = γ21 + (γ22 − γ11)X − γ12X2 and V t(X,Q1) = δ⊺2Q1 −Xδ⊺1Q1.

Observe that V h(X) does not depend on Q while each term of V t(X,Q)
depends on either some indeterminate Qκi or some product Q1iQ2j . Since
Qκi are indeterminates, it follows from δ ̸= 0 that V t(X,Q) ̸= 0 and hence
V (X,Q) ̸= 0. If δ = 0, then the verification success does not depend on the
answers of the oracles. In this case, one essentially has an AGM proof where one
does not have to consider the additional details of AGMOS. On the other hand,
if δ ̸= 0 is non-zero, then the verification polynomial has at least one term, say
vQκk or vXQκk, with a non-zero coefficient v. This case is new to AGMOS and
has to be analyzed separately.

4 New Assumptions

4.1 TOFR

According to Section 1.1, in Case Q of AGMOS proofs, we have to handle the
case when V t(x,Q) ̸= 0 but (since the verifier accepts) V (x,q) = 0. As outlined
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in Section 1.1, there are several differences between the AGM and the AGMOS
proofs. However, only Case Q requires us to rely on a new assumption.

Intuitively, TOFR is a simplified version of the tautological assumption in
Case Q of AGMOS proofs. The latter states that it is difficult to output the coef-
ficients of a polynomial V (see Eq. (2)), such that V t(x,Q) ̸= 0 but V (x,q) = 0.
Recall that V (X,Q) = γ⊺

x
h + δ⊺xt. In our AGMOS proofs, we let the TOFR

reduction generate the input trapdoors x. Thus, the input of a TOFR assump-
tion is just ([1]1, [1]2); moreover, xh = 1, and γ is a single field element. Writing
v := ( γδ ), by Eq. (2), V t(X,Q) = δ⊺xt ̸= 0 iff δ ̸= 0 and V (x,q) = 0 iff

v⊺x = 0. Here, xt =
( q1

q2
q1⊗q2

)
, and x =

(
xh

xt

)
=
(

1
xt

)
. Clearly, v⊺x = 0 cannot

hold if δ = 0 but γ ̸= 0. Hence δ ̸= 0 and v⊺x = 0 is equivalent to v ̸= 0 and
v⊺x = 0. We get the following assumption.

Definition 2 (TOFR). Let EF be some family of function and DF a family of
distributions. We say that Pgen is (EF ,DF)-TOFR (Tensor Oracle FindRep)
secure if for any non-uniform PPT A, AdvtofrPgen,EF,DF,A(λ) :=

Pr

[
v ̸= 0 ∧ v⊺ ·

(
1
q1
q2

q1⊗q2

)
= 0 p← Pgen(1λ);v ← AO(p)

]
= negl(λ) .

Here, O, q1, and q2 are as in Definition 1.

Discussion. In Section 8.2, we prove that TOFR is secure in a variant of GGM
where the adversary can call an oracle that samples group elements from well-
spread distributions, i.e., has more power compared to the GGM.

TOFR is related to the following well-known assumption. Let
d(λ) ∈ poly(λ). Pgen is d-FindRep (Find Representation, [Bra94])

secure in Gκ if for any non-uniform PPT A, Advfindrepd,Pgen,κ,A(λ) :=

Pr
[
v ̸= 0 ∧ v⊺x = 0 | p← Pgen(1λ);x←$ Fd;v ← A(p, [x]κ)

]
= negl(λ) .

FindRep can be tightly reduced to the discrete logarithm assumption. For
the sake of completeness, we reprove this well-known result.

Lemma 2 ([Bra94]). Let d ≥ 1. For any non-uniform PPT A, there exist a

non-uniform PPT B such that Advfindrepd,Pgen,κ,A(λ) ≤ AdvdlPgen,κ,B(λ) + 1/|F|.

Proof. The discrete logarithm adversary B embeds its challenge [y]κ to a Find-
Rep challenge [x]κ by sampling r, s←$ Fd and then setting [x]κ ← r[1]κ+s[y]κ.
If A succeeds, i.e., returns a non-zero representation v, such that v⊺x ̸= 0, then
B returns y′ ← −v⊺r/v⊺s. Note that [x]κ is uniformly random over Gdκ and s
is independent of x and thus of v. Thus, if v is non-zero, Pr[v⊺s = 0] = 1/|F|.
Then, 0 = v⊺x = v⊺(r + sy). Solving for y, we get y = −v⊺r/v⊺s. Thus, if A
succeeds, then B works correctly, except with the probability 1/|F|. ⊓⊔

There are two essential differences between FindRep and TOFR. Firstly,
instead of getting [qκi]κ as inputs, a TOFR adversary A can query the oracle to
obtain [qκi]κ adaptively. Secondly, TOFR oracle is non-programmable. However,
even if we ignore the second issue, the reduction to DL is non-obvious. We could
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modify the described reduction so that ri and si are sampled on the fly. However,
before each query, the adversary can adaptively choose a new distribution for
the oracle answer. It is unclear how to choose ri and si to make each [qκi]κ to be
from the correct distribution. We propose a more restrictive model in Section 7,
where the oracle returns only uniformly random group elements. In that case,
relying on a weaker version of TOFR is possible. We prove that if we allow
programming, this weaker version of TOFR is equivalent to (1, 1)-PDL.

4.2 FPR

Recall a typical step in an AGM/AGMOS security proof. According to Eq. (2),
the verification polynomial has form V (X,Q) = V h(X) + V t(X,Q). We know
that V (x,q) = 0 for (uniformly random) x and oracle answers q. In one of the
proof branches (that we call Case X), we have V t(x,Q) = 0 but V (X,Q) ̸= 0.
One then constructs a reduction to PDL. We automate this step by defining a
tautological assumption for a typical Case X and then relate it to PDL.

Definition 3 (FPR). Let m ≥ 1, d1, d2, dT , dg ≥ 0 and d = (d1, d2, dT , dg). Let
X = (X1, . . . , Xm). We say that Pgen is (d,m)-FPR (Find Polynomial Repre-

sentation) secure if for any non-uniform PPT adversary A, AdvfprPgen,d,m,A(λ) :=

Pr

[
g(X) ∈ F(≤dg)[X1, . . . , Xm]∧
g(X) ̸= 0 ∧ g(x) = 0

p← Pgen(1λ);x←$ Fm;

g(X)← AOfpr
d,m(x,·)(p)

]
= negl(λ) ,

where the oracle Ofpr
d,m(x, ·) takes an input (κ, f). If κ ∈ {1, 2, T} and f ∈ F[X]

such that degXi
(f) ≤ dκ for all i, it returns [f(x)]κ. Otherwise, it returns ⊥.

We will omit the subscript for simplicity and write Ofpr(x, ·).

We use techniques from [RS20,Rot22] to show that FPR reduces to PDL.
Let us borrow some notation from [Rot22]. For a non-zero polynomial f ∈
F[X1, . . . , Xm], define hi ∈ F[Xi, . . . , Xm] as follows: (1) h1 = f , (2) for i ∈ [2,m]:

If hi−1 = 0, then hi := 0. Otherwise, write hi−1 =
∑d
j=0 gj(Xi, . . . Xm)Xj

i−1 as
a polynomial in (F[Xi, . . . , Xm])[Xi−1]; here, d = degXi−1

hi−1. Let j
∗ be the

minimal index, such that gj∗ is a non-zero polynomial over F. Define hi := gj∗ .
If no such index j∗ exists, set hi = 0. Define seq(f) := {h1, . . . , hm}.

Proposition 1 (Lemma 5.5 of [Rot22]). Let f ∈ F[X1, . . . , Xm] be non-zero.
Let seq(f) = {h1, . . . , hm} be as above. Then: (1) For each i ∈ [1,m], hi ̸= 0.
(2) For each root α = (α1, . . . , αm) ∈ Fm of f(X), there exists i0 ∈ [1,m] such
that v(Xi0) := hi0(Xi0 , αi0+1, . . . , αm) is a non-zero polynomial and v(αi0) = 0.

We reduce FPR to PDL in the standard model (not in the AGMOS).

Theorem 2. Let m ≥ 1 and d1, d2, dg ≥ 0 with dg = poly(λ). Let d =
(d1, d2, d1 + d2, dg). If the (d1, d2)-PDL assumption holds, then the (d,m)-FPR
assumption holds.
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B(p, [(xi)d1i=0]1, [(x
i)d2i=0]2)

i∗ ←$ [1,m];α1, . . . , αi∗−1, αi∗+1, . . . , αm ←$ Fm−1;
Define implicitly αi∗ = x;

g(X)← AOfpr(x,·)(p);
Define seq(g) = {h1, . . . , hm};
v(X) := hi∗(X,αi∗+1, . . . , αm); if v(X) = 0 then return ⊥;fi
Find the set of roots S of v(X);
return s ∈ S such that either s · [1]1 = [x]1 or s · [1]2 = [x]2;

Fig. 2. The FPR reduction B to PDL assumption in Theorem 2.

Proof. Let A be a non-uniform PPT (d,m)-FPR adversary. In Fig. 2, we depict a
(d1, d2)-PDL adversary B. B gets (p, [(xi)d1i=0]1, [(x

i)d2i=0]2) as an input. B samples
α←$ Fm, except that for a randomly chosen position i∗, it implicitly sets αi∗ ←
x. If A queries (κ, f) for some κ and f , B answers with

[f(x)]κ ←
∑di
i=0 fi(α1, . . . , αi∗−1, αi∗+1, . . . , αm)[xi]κ ,

where fi is defined by f(X) =
∑di
i=0 fi(X1, . . . , Xi∗−1, Xi∗+1, . . . , Xm)Xi

i∗ and
di = degXi

f . In case of GT queries, B can compute [1, . . . , xd1+d2 ]T by pairing
input elements.

If A succeeds, then g is a non-zero multivariate polynomial satisfying
g(x) = 0. By Proposition 1, there exists i0 ∈ [1,m] such that v(Xi0) :=
hi0(Xi0 , αi0+1, . . . , αm) is a non-zero univariate polynomial. Suppose that i0 =
i∗, which happens with probability 1/m. Using Proposition 1 again, v(X) is
a non-zero polynomial satisfying v(x) = 0. Thus, B succeeds in computing x.
Here, dg = poly(λ) since it might otherwise take superpolynomial time to find

the roots. Thus, AdvfprPgen,d,m,A(λ) ≤ m · Adv
pdl
d1,d2,Pgen,B(λ). ⊓⊔

Note that (d,m)-FPR is secure even when dT > d1 + d2. Let us denote
d∆ := dT − (d1 + d2). Then (d,m)-FPR reduces trivially to (d′,m)-FPR, where
d′ = (d1 + d∆, d2, dT , dg). By Theorem 2, (d′,m)-FPR (and thus also (d,m)-
FPR) reduces to (d1 + d∆, d2)-PDL.

In Appendix B.1, we construct another reduction to PDL, which sometimes
gives a tighter reduction to PDL. See Appendix B.2 for their comparison.

5 Example AGMOS Security Proofs

For concreteness, we give four explicit security proofs in AGMOS. We will see
that the proof strategy for computational assumptions (see Section 5.1) and
knowledge-type assumptions (see Section 5.2) is different. We also give an ex-
tractability proof of KZG commitment scheme, which mixes both extractability
and computational hardness proof types (see Section 5.3). In Appendix C, we



Algebraic Group Model with Oblivious Sampling 21

present a tight reduction of Schnorr’s signature scheme that includes the han-
dling of additional oracles for signing and hashing.

In the rest of this section, we assume that EF is some family of encoding and
DF is some family of distributions for which the (EF ,DF)-TOFR holds.

5.1 The Split Flexible Uber Assumption

The Flexible Uber assumption [BBG05,Boy08] is a family that covers many
commonly used computational assumptions. Instead of proving that each such
assumption is secure, proving the Flexible Uber assumption makes sense. How-
ever, a Flexible Uber adversary outputs a GT element. Since GT (a subgroup of
the multiplicative group of a finite field) is not a generic group [JR10], we prefer
not to handle adversaries who output GT elements.6 Instead, we prove the AGM
security of a slightly weaker assumption, Split Flexible Uber.

For a vector of m-variate polynomials R = (f1, . . . , fr) over F and x ∈ Fm,
we denote R(x) := (f1(x), . . . , fr(x)).

Definition 4 (Split Flexible Uber Assumption). Let m ≥ 1 be an in-
teger and X = (X1, . . . , Xm). Let p ← Pgen(1λ). Let R1 = (f1, . . . , fr1),
R2 = (g1, . . . , gr2), and RT = (h1, . . . , hrT ) be three tuples of m-variate polyno-
mials from F[X], where f1 = g1 = h1 = 1. The (R1,R2,RT , dt)-computational
Split Uber assumption for Pgen, states that for any non-uniform PPT adversary
A, AdvsfuberPgen,R1,R2,RT ,A(λ) :=

Pr

 t ∈ F[X] ∧ deg t ≤ dt ∧
t(X) ̸∈ span{figj} ∪ {hk}∧
[y1]1 • [y2]2 = [t(x)]T

p← Pgen(1λ);x←$ Fm;
ck← ([R1(x)]1, [R2(x)]2, [RT (x)]T ) ;
(t, [y1]1, [y2]2)← A(ck)

 = negl(λ) .

We say t is non-trivial if t ∈ F[X], deg t ≤ dt, and t(X) ̸∈ span{figj} ∪ {hk}.
In the Flexible Uber assumption, the adversary outputs (t, [z]T ) and the re-

quirement is that [z]T = [t(x)]T . Given (t, [y1]1, [y2]2) output by a Split Flexible
Uber adversary, one can construct a Flexible Uber adversary that outputs t to-
gether with [z]T ← [y1]1 • [y2]2. Thus, if one can break the Split Flexible Uber
assumption, one can break the Flexible Uber assumption.

It is easy to see that the Split Flexible Uber assumption implies (among
many other assumptions) the CDH assumption in G1. One sets R1 = {f1, f2}
where f1(X1) = X1 and f2(X2) = X2 (and R2 = RT = ∅). This means the
adversary gets an input [x1, x2]1 for x1, x2 ←$ F. To break the CDH assumption,
the adversary should output [y]1 = [x1x2]1, which is computationally hard since
otherwise, the uber adversary could output [y]1, [1]2 and t(X1, X2) = X1 ·X2.

Let us introduce some additional notation for Theorem 3. For κ ∈ {1, 2, T},
let dκ be such that for any f ∈ Rκ and any i ∈ [1,m], degXi

(f) ≤ dκ. Let
d = (d1, d2, dT , dg), where dg = max (dt,m · (d1 + d2)).

6 One can extend AGMOS to allow arguing about adversarial outputs from GT , but
it is just our preference not to do so. See [JR10] for a discussion.
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Theorem 3. If the (d,m)-FPR and (EF ,DF)-TOFR assumptions hold, then
the (R1,R2,RT , dt)-computational Split Flexible Uber assumption holds in the
AGMOS.

Proof. Let A be a non-uniform PPT Split Flexible Uber assumption AGMOS
adversary that with some non-negligible probability outputs t, [y1]1, and [y2]2,
such that t is non-trivial and y1y2 = t(x). Since A is an AGMOS adversary, there
exists an extractor ExtA that extracts γ, δ, such that [y1]1 = γ⊺

1 [f(x)]1+δ⊺1 [q1]1
and [y2]2 = γ⊺

2 [g(x)]2 + δ⊺2 [q2]2, where [qκ]κ is the tuple of sampling oracle
answers in Gκ. Let qlκ be the number of oracle queries in Gκ for κ ∈ {1, 2}.
Define

Y1(X,Q1) =
∑
fi∈R1

γ1ifi(X) +
∑
δ1iQ1i ,

Y2(X,Q2) =
∑
gi∈R2

γ2igi(X) +
∑
δ2iQ2i .

Thus, [y1]1 = [Y1(x,q1)]1 and [y2]2 = [Y2(x,q2)]2. Next, assume that both
A and ExtA succeeded. The verifier checks that [V (x,q)]T = [0]T , where for
s1(X) :=

∑r1
i=1 γ1ifi(X) and s2(X) :=

∑r2
i=1 γ2igi(X),

V (X,Q) :=Y1(X,Q1)Y2(X,Q2)− t(X)

=(s1(X) +
∑
δ1iQ1i)(s2(X) +

∑
δ2iQ2i)− t(X)

=V h(X) + V t(X,Q) ,

(3)

where V h(X) = s1(X)s2(X)− t(X) and

V t(X,Q) = s1(X)
∑
i δ2iQ2i + s2(X)

∑
i δ1iQ1i +

∑
i,j δ1iδ2jQ1iQ2j .

Observe that deg sκ ≤ m · dκ for κ ∈ {1, 2}. Note that V t = 0 in an AGM proof.
Let us now consider the three AGMOS cases.
Case A: V (X,Q) = 0. Then also V h(X) = s1(X)s2(X) − t(X) = 0. How-

ever, s1(X) is in the span of fi and s2(X) is in the span of gi. Contradiction to
the assumption t /∈ span{figj}. Thus, this case never materializes.

Case X: V (X,Q) ̸= 0 and V t(x,Q) = 0. In Fig. 3, we define a (d,m)-
FPR adversary Bfpr. Recall that Bfpr has access to an oracle Ofpr(x, ·), where
x←$ Fm is a trapdoor vector sampled by the challenger. Bfpr queries [r(x)]κ ←
Ofpr(x, (κ, r)) for various κ ∈ {1, 2, T} and r(X) ∈ Rκ to construct ck ←
([R1(x)]1, [R2(x)]2, [RT (x)]T ). Note that Ofpr(x, ·) will accept those queries
since degXi

(r) ≤ dκ for all i ∈ [1,m]. Then, Bfpr will run A and ExtA on input
ck. Bfpr aborts if ExtA fails. Otherwise, Bfpr learns polynomials defined Eq. (3).

Next, Bfpr follows one of the two strategies. Case X.1: if V t(X,Q) = 0,
then V (X,Q) = V h(X) ̸= 0, but 0 = V (x,q) = V h(x). Since deg V h ≤
max(m · (d1 + d2), dt) = dg, then Bfpr can output V h to break (d,m)-FPR.

Case X.2: if V t(X,Q) ̸= 0 ∧ V t(x,Q) = 0 (this subcase does not occur in
AGM proofs), at least one of the coefficients of someQκi orQ1iQ2j is a non-zero
polynomial that evaluates to 0 at X = x. Since the coefficient of each Q1iQ2j

does not depend on X, it must be that for some κ and i∗, p(X) := sκ(X)δκi∗ is
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BOfpr(x,·), AO

fpr (p) BAO
tofr (p)

For κ ∈ {1, 2, T}, q ∈ Rκ: [q(x)]κ ← Ofpr(x, (ι, q)); x←$ Fm;

ck← ([R1(x)]1, [R2(x)]2, [RT (x)]T ) ;

r ← RNDλ(A); (t, [y1]1, [y2]2)← AO(p, ck; r);

(γκ, δκ, [qκ]κ)
2
κ=1 ← ExtOA(p, ck; r); // e.g., [y1]1 = γ

⊺
1 [f(x)]1 + δ

⊺
1 [q1]1;

if ExtA failed then return ⊥;fi
Define V, V h, V t as in Eq. (3);

if V (X,Q) ̸= 0 ∧ V t(X,Q) = 0 then return V h(X);fi

if V t(X,Q) ̸= 0 ∧ V t(x,Q) = 0 then
s1(X)←

∑
γ1ifi(X); s2(X)←

∑
γ2igi(X);

find sκ(X)δκi∗ ̸= 0;return sκ(X)δκi∗ ;fi

if V t(x,Q) ̸= 0 then return v = (V h(x)//s2(X)δ1//s1(X)δ2//δ1 ⊗ δ2);

return ⊥;

Fig. 3. Flexible Uber assumption: the FPR adversary Bfpr and the TOFR adversary
Btofr in Theorem 3. The differences are dashed boxed (Bfpr) or dotted boxed (Btofr).

a non-zero polynomial that has x as a root. Observe that deg p(X) ≤ max(m ·
d1,m · d2) ≤ dg. Thus, Bfpr can output p(X) to break (d,m)-FPR.

Case Q: V t(x,Q) ̸= 0. (This case does not occur in AGM.) In Fig. 3, we
depict a TOFR adversary Btofr. Btofr samples x to construct ck ← ([R1(x)]1,
[R2(x)]2, [RT (x)]T ). It runs A to obtain (t, [y1]1, [y2]2), such that t is a non-
trivial polynomial and [y1]1 • [y2]2 = [t(x)]T and then uses ExtA to extract field
elements γ, δ such that [y1]1 = γ⊺

1 [f(x)]1 + δ⊺1 [q1]1 and [y2]2 = γ⊺
2 [f(x)]2 +

δ⊺2 [q2]2. If the verifier accepts,

0 = V (x,q) = V h(x) + s2(x)
∑
δ1iq1i + s1(x)

∑
δ2iq2i +

∑
δ1iδ2jq1iq2j

(see Eq. (3)). Thus, B outputs v = (V h(x)//s2(x)δ1//s1(x)δ2//δ1⊗ δ2). Since
V t(x,Q) ̸= 0, then v ̸= 0 and B breaks the TOFR assumption.

Thus, either the algebraic extractor fails, or, if it succeeds, we get one of
the above cases. Hence, AdvsfuberPgen,R1,R2,RT ,dt,A(λ) ≤ Advagmos

Pgen,EF,DF,A,ExtA(λ) +

AdvfprPgen,d,m,Bfpr
(λ) + AdvtofrPgen,EF,DF,Btofr

(λ). This concludes the proof. ⊓⊔

5.2 The PKE Assumption

Let us recall the Power Knowledge of Exponent (PKE) assumption [DFGK14].

Definition 5. The (asymmetric) d(λ)-PKE assumption holds for Pgen, if for
every non-uniform PPT adversary A, there exists a non-uniform PPT extractor
ExtA, such that Advpked,Pgen,A,ExtA(λ) :=

Pr

 y1 = y2 ∧
y1 ̸=

∑d
i=0 γix

i

p← Pgen(1λ);x←$ F; r ← RNDλ(A);
([y1]1, [y2]2)← A(p, ([xi]1, [xi]2)di=0; r);
(γi)

d
i=0 ← ExtA(p, ([x

i]1, [x
i]2)

d
i=0; r)

 = negl(λ) .
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(See [Gro10] for another variant of PKE.) Our AGMOS analysis shows that the
PKE stays secure even if the adversary can sample new group elements from
non-uniform distributions. We are not aware of any prior result of this type.

Theorem 4 (d-PKE). If the (EF ,DF)-TOFR assumption holds, then d(λ)-
PKE holds in the AGMOS.

Proof. Let A be an AGMOS adversary for the d-PKE assumption that gets as
an input ([xi]1, [x

i]2)
d
i=0. Let us denote x = (xi)di=0. The challenger accepts the

adversary’s output if A outputs [y1]1, [y2]2 such that y1 = y2. The adversary
wins the game if the challenger accepts, but no efficient extractor can recover µ
such that µ⊺x = y1 = y2 with an overwhelming probability. As before, [q1]1,
[q2]2 are vectors of query responses from the oracle.

We construct a PKE extractor ExtA. Since A is an AGMOS adversary, there
exists an AGMOS extractor ExtA that extracts (γκ, δκ)κ ∈ Fd+1 × Fqlκ for
κ ∈ {1, 2}, such that γ⊺

1 [x]1 + δ⊺1 [q1]1 = [y1]1 and γ⊺
2 [x]2 + δ⊺2 [q2]2 = [y2]2 with

an overwhelming probability. Here, qlκ is the number of oracle queries in Gκ.
In Fig. 4, we depict ExtA. ExtA runs both A and ExtA. ExtA returns ⊥ if

ExtA fails or δ :=
(
δ1

δ2

)
̸= 0ql1+ql2 . Otherwise, µ := γ1 = γ2. Thus, ExtA returns

µ. Since δ = 0ql1+ql2 , y1 = y2 = µ⊺x. Hence, A can win iff either (1) ExtA fails
or (2) ExtA succeeds but δ ̸= 0ql1+ql2 .

The probability ε0 := Pr[y1 = y2 ∧ ExtA fails] is ε0 ≤ Advagmos
Pgen,EF,A,ExtA(λ),

which is negligible by definition for an AGMOS adversary A. Consider now
the case (2). Let ε1 := Pr[y1 = y2 ∧ ExtA succeeds ∧ δ ̸= 0ql1+ql2 ]. We build
a reduction Btofr to TOFR assumption. Assume that A outputs ([y1]1, [y2]2)
such that y1 = y2 and that ExtA succeeds in extracting a linear representation
((γκ, δκ) for κ ∈ {1, 2}). That is, we are going to bind the probability Pr[δ ̸=
0ql1+ql2 | y1 = y2 ∧ ExtA succeeds] ≥ ε1.

The TOFR reduction Btofr(p) (also depicted in Fig. 4) samples x ←$ F and
uses it to construct an input ([x]1, [x]2) for A. It then runs ExtA to obtain γ, δ.
Since y1 = y2, we get that 0 = y1 − y2 = (γ1 − γ2)

⊺x + δ⊺1q1 − δ⊺2q2 +
0⊺
ql1ql2

(q1 ⊗q2). Btofr returns
(
(γ1 − γ2)

⊺x//δ1//− δ2//0ql1ql2

)
. If δ ̸= 0ql1+ql2 ,

Btofr has broken TOFR assumption.
We get that Advpked,Pgen,A,ExtA(λ) ≤ Advagmos

Pgen,EF,A,ExtA(λ) +

AdvtofrPgen,EF,DF,Btofr
(λ) = negl(λ). This concludes the proof. ⊓⊔

5.3 Extractability of The KZG Polynomial Commitment Scheme

In a polynomial commitment scheme (PCS, [KZG10]), the committer first com-
mits to a polynomial f(X) and then opens it to an evaluation f(α) at some point
α chosen by the verifier. In the current paper, we focus on the non-randomized
PCSs (like the first PCS construction inf [KZG10]) since such PCSs are used to
construct many efficient SNARKs.

More formally, a polynomial commitment scheme over a field F is a tuple of
PPT algorithms PC = (KC, com, open,V), such that:
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ExtA(p, [x]1, [x]2; r) BAO
tofr (p)

x←$ F; r ← RNDλ(A);
[y1,y2]1 ← AO(p, [x]1, [x]2; r); (γκ, δκ, [qκ]κ)

2
κ=1 ← ExtOA(p, [x]1, [x]2; r);

// [y1]1 = γ
⊺
1 [x]1 + δ1[q1]1, [y2]1 = γ

⊺
2 [x]2 + δ2[q2]2

if δ :=
(

δ1
δ2

)
̸= 0ql1+ql2 then return ((γ1 − γ2)

⊺
x//δ1//− δ2//0ql1·ql2) ;

if δ = 0ql1+ql2 then return γ1;fi

return ⊥;

Fig. 4. ExtA and Btofr in the proof of Theorem 4 (PKE). Here, x = (xi)di=0. The
differences between are boxed (Ext) or dotted boxed (Btofr).

(1) KC : (1λ, d) 7→ (ck, td) is a randomized commitment key generation algo-
rithm, where d is the maximum degree of committed polynomials, ck is a
commitment key and td is a trapdoor.

(2) com : (ck, f(X)) 7→ (c,d) is a deterministic commitment algorithm that,
given a polynomial f(X) ∈ F[X] of degree ≤ d, outputs commitment infor-
mation c and decommitment information d.

(3) open : (ck, c, α,d) 7→ (f(α), π) is a deterministic opening algorithm that,
given an evaluation point α, outputs f(α) together with opening proof π.

(4) V : (ck, c, α, η, π) 7→ 0/1 is a deterministic verification algorithm that, given
candidate value η for f(α), outputs 1 if η = f(α) and 0, otherwise.

Definition 6. A polynomial commitment scheme PC is extractable for Pgen, if
for any d = poly(λ) and every non-uniform PPT adversary A, there exists a
non-uniform PPT extractor ExtA, such that AdvextPgen,PC,d,A,ExtA(λ) :=

Pr

 V(ck, c, α, η, π) = 1∧(
c ̸= com(f(X))∨
deg f > d ∨ f(α) ̸= η

) p← Pgen(1λ); (ck, td)← KC(p, d);
r ← RNDλ(A); (c, α, η, π)← A(p, ck; r);
f(X)← ExtA(p, ck; r)

 = negl(λ) .

The KZG PCS. Let f(X) be a polynomial of degree ≤ d. In Fig. 5, we depict
the famous Kate-Zaverucha-Goldberg (KZG, [KZG10]) polynomial commitment
scheme. Its security is based on the fact that (X − α) | (f(X)− η)⇔ f(α) = η.
Next, we prove in AGMOS that KZG is extractable. Since KZG extractability is
a knowledge assumption, one could expect that it is sufficient to assume TOFR
just as in the proof of PKE. However, if the adversary can efficiently compute
x (i.e., PDL does not hold), then one can compute an accepting opening [π]1 =
[c − η]1/(x − α) for any values η and α. Thus, similarly to the AGM proofs
of KZG extractability, one has to assume FPR (or PDL). The extractability
of a PCS combines both an extractability property (extracting f(X)) and a
computational hardness property (it is hard to find (α, η) such that f(α) ̸= η).

Remark 1. In the case of KZG, the stronger extractability notion, where the ad-
versary who only produces cmust know f is not secure in the AGMOS (assuming
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KC(1λ, d): output p← Pgen(1λ), x←$ Z∗
p, ck = ([(xi)di=0]1, [1, x]2).

com(ck, f(X)): [c]1 ← [f(x)]1 =
∑d

j=0 fj [x
j ]1; return ([c]1,d = f(X));

open(ck, [c]1, α,d = f(X)): π(X) ← (f(X)− f(α)) /(X − α); [π(x)]1 ←∑n−1
j=0 πj [x

j ]1; return (η = f(α), [π(x)]1);
V(ck, [c]1, α, η, [π(x)]1): check [c− η]1 • [1]2 = [π(x)]1 • [x− α]2.

Fig. 5. The KZG polynomial commitment scheme.

DL is secure); essentially, this notion is equivalent to SpurKE. This is the flaw in
say [CFF+21,GWC19], mentioned in the introduction. While we leave the study
of the security of such SNARKs for future work (it might be that they are secure
but need a different security proof), we emphasize that one should not use the
stronger extractability notion. In Appendix E, we give a concrete example why
this is needed, showing that a common trick used to optimize quadratic tests in
KZG-based zk-SNARKs results in non-extractability.

Below, we consider d = (d, 1, d+ 1, dg).

Theorem 5 (Extractability of KZG). If the (d,m)-FPR and (EF ,DF)-
TOFR assumptions hold, then KZG is extractable in the AGMOS.

Proof. Let A be a non-uniform PPT KZG extractability AGMOS adversary that
with some non-negligible probability outputs ([c]1, α, η, [π]1) such that c − η =
π · (x − α). Let x1 = (xi)di=0. Since A is an AGMOS adversary, there exists an
extractor ExtA that extracts γ1, δ1, γ2, and δ2, such that [c]1 = γ⊺

1 [x1]1+δ⊺1 [q1]1
and [π]1 = γ⊺

2 [x1]1+δ⊺2 [q1]1, where [q1]1 is the tuple of sampling oracle answers
in G1. As before, let qlκ be the number of oracle queries in Gκ for κ ∈ {1, 2}.

Define c(X,Q) = γ1(X)+
∑ql1
i=1 δ1iQ1i and π(X,Q) = γ2(X)+

∑ql1
i=1 δ2iQ1i,

where deg γ1,deg γ2 ≤ d. Note [c]1 = [c(x,q1)]1 and [π]1 = [π(x,q1)]1. The
verification ascertains that V (x,q) = 0, where

V (X,Q) = c(X,Q)− η − π(X,Q)(X − α) = V h(X) + V t(X,Q) , (4)

with V h(X) = γ1(X)−η−γ2(X)(X−α) and V t(X,Q) =
∑ql1
i=1(δ1i+αδ2i)Q1i−

X
∑ql1
i=1 δ2iQ1i.

We construct a KZG extractor ExtA in Fig. 6. ExtA aborts when ExtA fails.
Otherwise, it returns γ1(X) ∈ F(≤d)[X]. Let us argue that ExtA succeeds if there
is no abort. We consider the usual three cases.

Case A: V (X,Q) = 0. If V (X,Q) = 0, then each of its coefficients is 0. In
particular, the coefficient of XQ1i is δ2i, and thus δ2i = 0. The coefficient of
Q1i is δ1i + αδ2i = δ1i, and thus δ1i = 0. Thus, δ1i = δ2i = 0. Hence, we are
back in the AGM setting, with V (X,Q) = V h(X) = 0, meaning that γ1(X) =
η+γ2(X)(X−α). In particular, c(α) = γ1(α) = η and f(X) := γ1(X) ∈ F(≤d)[X]
returned by ExtA satisfies [c]1 = [c(x,q1)]1 = [f(x)]1.

Case X: V (X,Q) ̸= 0 and V t(x,Q) = 0: We show that this case can hap-
pen only with negligible probability through a reduction to FPR. In Fig. 6,
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ExtA(p;x; r) BAO
fpr (p;x) BAO

tofr (p; [1]1, [x]2) // x = ([1, . . . , xd]1, [1, x]2)

r ←$ RNDλ(A); x←$ F ; ([c]1, α, η, [π]1)← AO(p,x; r); // y1 = ( cπ )

(γκ, δκ, [qκ]κ)
2
κ=1 ← ExtOA(p,x; r); if ExtA failed then return ⊥;fi

Define V (X,Q), V h(X), V t(X,Q) as in Eq. (4);

if V (X,Q) = 0 then return c(X)←
∑d

i=0 γ1,i+1X
i;fi

if V (X,Q) ̸= 0 ∧ V t(X,Q) = 0 then return V h(X);fi

if V (X,Q) ̸= 0 ∧ V t(x,Q) = 0 then
βi(X)← −δ2iX + δ1i + αδ2i; find βi∗(X) ̸= 0; return βi∗(X);fi

if V t(x,Q) ̸= 0 then return (V h(x)//δ1 + (α− x)δ2//0ql2+ql1ql2);fi

return ⊥;

Fig. 6. KZG extractability: the extractor ExtA, the FPR adversary Bfpr, and the TOFR
adversary Btofr in the proof of Theorem 5, where the differences are either boxed (ExtA),

dashedboxed (Bfpr) or dottedboxed (Btofr).

we depict the FPR adversary Bfpr that works in this case. Bfpr obtains x =
([1, x, . . . , xd]1, [1, x]2) from d + 1 calls to the FPR oracle. It then calls A on
input x. Bfpr extracts (γ1, δ1,γ2, δ2) by using the AGMOS extractor. If the
extractor fails, Bfpr aborts.

Case X.1: if V (X,Q) ̸= 0 and V t(X,Q) = 0, V h(X) is a non-zero polynomial
with x as a root and V h has a degree at most d+1 ≤ dg. Thus, Bfpr is successful.

Case X.2: if V t(X,Q) ̸= 0 and V t(x,Q) = 0, then let us write V t(X,Q) =∑ql1
i=1 βi(X) · Q1i, where βi(X) = −δ2iX + δ1i + αδ2i. Since V t(x,Q) = 0,

then βi(x) = 0 for i ∈ [1, ql1]. If all βi(X) have degree less than 1 (i.e., they
are constants), then βi(X) = βi(x) = 0 and it contradicts the condition that
V t(X,Q) ̸= 0. Thus, there exists a degree-1(≤ dg polynomial βi∗(X) = −δ2i∗X+
δ1i∗ + αδ2i∗ , such that βi∗(x) = 0. This shows that Bfpr is successful in this case
too.

In both cases, Bfpr breaks the FPR assumption.
Case Q (V t(x,Q) ̸= 0): In Fig. 6, we depict a TOFR adversary Btofr.

Btofr samples x to construct
(
[1, . . . , xd]1, [1, x]2

)
. It then runs A to obtain

([c]1, α, η, [π]1), such that [c− η]1 • [1]2 = [π]1 • [x−α]2 and uses ExtA to extract
field elements γ, δ such that [c]1 = γ⊺

1 [x1]1+δ⊺1 [q1]1 and [π]1 = γ⊺
2 [x1]1+δ⊺2 [q1]1.

If the verifier accepts, 0 = V (x,q) = V h(x)+
∑ql1
i=1(δ1i+αδ2i)q1i−x

∑ql1
i=1 δ2iq1i.

(see Eq. (4)). Thus, B outputs

v ←
(

V h(x)
δ1−(x−α)δ2

0ql2+ql1ql2

)
.

Since V t(x,Q) ̸= 0, then v ̸= 0 and B breaks the TOFR assumption.

Thus, AdvextPgen,kzg,A,ExtA(λ) ≤ Advagmos
Pgen,EF,A,ExtA(λ) + AdvfprPgen,d,m,Bfpr

(λ) +

AdvtofrPgen,EF,DF,Btofr
(λ). This concludes the proof. ⊓⊔
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6 AGM-AGMOS Separation

Next, we will explain why some knowledge assumptions that are secure in the
AGM, by definition, are not secure in the AGMOS (assuming DL is hard) while
others might be secure. We will study general (publicly-verifiable) knowledge
assumptions with some fixed verification equations. For the sake of simplicity, we
will somewhat restrict the latter class. In particular, we only study the strongest
possible knowledge assumption (the “TotalKE”). Later results of this section
also only hold when the adversary’s input is ([1]1, [1]2) (i.e., it does not depend
on any trapdoors; this means that outputting a linear representation is the same
as outputting discrete logarithms), but we will start with the general case.

We will extensively rely on the notation introduced in Section 3.1. We will also
introduce matrix-vector notation to clarify the exposition; while this notation
is only used in the current section, we find the tensor notation to be more
cumbersome in this concrete case. Let ilκ/olκ be the length of the input/output
in Gκ and qlκ be the number of oracle queries in Gκ. A publicly-verifiable pairing-
product verification polynomial can be written as V expl(x,y) = ( x1

y1 )
⊺
M( x2

y2 ) for
some public matrix M . Let M =

(
M11 M12

M21 M22

)
for submatrices M ij . Here, say,

M11 ∈ Fil1×il2 and M22 ∈ Fol1×ol2 . The AGMOS extractor extracts the matrices
γκ ∈ Folκ×ilκ and δκ ∈ Folκ×qlκ from [y1]1 and [y2]2.

Let Γ and ∆ be indeterminates corresponding to γ and δ. Similarly to
γκ and δκ, we think of Γ κ and ∆κ as (olκ × ilκ and olκ × qlκ) matrices. Let

P κ(Γ ,∆) :=
(

I ilκ 0ilκ×qlκ
Γ κ ∆κ

)
be the matrix so that ( xκ

yκ ) = P κ(γ, δ)(
xκ
qκ ). Define

N(Γ ,∆) :=P ⊺
1(Γ ,∆)MP 2(Γ ,∆)

=
(

I il1
0il1×ql1

Γ 1∈Fol1×il1 ∆1

)⊺
·
(
M11 M12

M21 M22

)
·
(

I il2
0il2×ql2

Γ 2 ∆2

)
=
(

M11+Γ ⊺
1M21+(M12+Γ ⊺

1M22)Γ 2 (M12+Γ ⊺
1M22)∆2

∆⊺
1 (M21+M22Γ 2) ∆⊺

1M22∆2

)
.

Note that while M corresponds to V expl, N corresponds to V . Let

fM (Γ ,∆) =
(

0il1×il2 (M12+Γ ⊺
1M22)∆2

∆⊺
1 (M21+M22Γ 2) ∆⊺

1M22∆2

)
be equal to N(Γ ,∆), except that its top left submatrix is 0. We rewrite fM = 0
as the following equivalent system of polynomial equations in (Γ 1,Γ 2,∆1,∆2):

(M12 + Γ ⊺
1M22)∆2 = 0il1×ql2 , ∆⊺

1 (M21 +M22Γ 2) = 0ql1×il2 ,

∆⊺
1M22∆2 = 0ql1×ql2 .

(5)

Clearly, for a fixed Γ = γ, Eq. (5) is a system of il1ql2+ il2ql1+ql1ql2 polynomial
equations, where the sum of the total degrees of all polynomials is at most il1ql2+
il2ql1 + 2ql1ql2. Moreover, the system Eq. (5) has ol1ql1 + ol2ql2 indeterminates.

Note also that V t(X,Q) =
(
x1(X)
Q1

)⊺
fM (γ, δ)

(
x2(X)
Q2

)
.
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Analysis of the TotalKE assumption. Let us assume il1 = il2 = 1, in particular,
there are no input indeterminates X. We will leave the general case for future
work. Let TotalKE be the parameterized assumption that states the following:
if the adversary, on input ([1]1, [1]2), outputs the specified number of group
elements in G1 and G2 and the specified verification equation holds, then one
can extract a linear representation of any output element with respect to the
adversary’s input elements. Since il1 = il2 = 1, the nontrivial linear relation is
just the discrete logarithm of the output element.

Definition 7. Let il1 = il2 = 1, ol1, ol2 ≥ 1, and R ≥ 1. Let
M [i] ∈ F(ol1+il1)×(ol2+il2) for i ∈ [1, R]. Let Vi(y) =

(
1
y1

)⊺
M [i]

(
1
y2

)
. The

(ol1, ol2, {Vi}Ri=1)-TotalKE assumption holds for Pgen, if for every non-uniform
PPT adversary A, there exists a non-uniform PPT extractor ExtA, such that
AdvtotalkePgen,ol1,ol2,{Vi}R

i=1,A,ExtA
(λ) :=

Pr

 y ∈ Fol1 ∧ z ∈ Fol2 ∧
∀i ∈ [1, R].Vi(y, z) = 0∧
(y, z) ̸= (y∗, z∗)

p← Pgen(1λ); r ← RNDλ(A);
([y]1, [z]2)← A(p, [1]1, [1]2; r);
(y∗, z∗)← ExtA(p, [1]1, [1]2; r)

 = negl(λ) .

We emphasize that for any choice of ilκ and olκ, TotalKE is secure in the AGM.
The simplest TotalKE-type assumption is the SpurKE assumption, mentioned
in the introduction: if A(p, [1]1) outputs [x]1, then one can extract x. SpurKE
holds in the AGM , but it is clearly false when one can sample obliviously. Thus,
it is also false in the AGMOS, and in the standard model due to the existence
of admissible encodings Section 2.1.

We are interested in for which choices of (ol1, ol2, {Vi}), the TotalKE assump-
tion is secure in AGMOS, assuming both TOFR and DL holds.

Theorem 6. Fix (p,G1,G2,GT , ê) such that DL is hard in each group. Fix il1 =
il2 = 1 and ql1, ql2, ol1, ol2 ≥ 1. If fM [1](Γ ,∆) = . . . = fM [R](Γ ,∆) = 0 has
a common solution (γ, δ) such that δ ̸= 0, then the (ol1, ol2, {Vi})-TotalKE
assumption is not secure in the AGMOS. If this holds, we say M is TotalKE-
incompatible. Otherwise, it is TotalKE-compatible.

As a first step, we show that it is sufficient to consider one oracle query in
both groups.

Lemma 3. Let M ∈ Fn×m, where n = il1 + ol1 and m = il2 + ol2. If the system
in Eq. (5) has a solution (γκ, δκ ∈ Folκ×qlκ)2κ=1 for some ql1, ql2 > 1 with non-
zero δ1 ̸= 0, then it has a non-zero solution (γκ, δ

′
κ ∈ Folκ)2κ=1 with δ′2 = 0ol2 .

A dual claim holds for δ2 ̸= 0.

Proof. For any M ∈ Fn×m, let Eq. (5) hold for some γ1,γ2, and δ1 ∈ Fol1×ql1 ,
δ2 ∈ Fol2×ql2 , such that δκ ̸= 0 for some κ ∈ {1, 2}. W.l.o.g., assume κ = 1.

Then, δ
(k)
1 ̸= 0 for some k. Then, clearly, Eq. (5) has a non-zero solution when

setting ql1 = ql2 = 1: the solution is (γκ, δ
′
κ)

2
κ=1 with δ′1 = δ

(k)
1 , δ′2 = 0ol2 . ⊓⊔
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Thus, in the rest of this subsection, we assume qlκ = 1; in particular, δκ ∈
Folκ . For the same reason, Theorem 6 can be equivalently stated for ql1 = ql2 = 1.

Assume the system fM (Γ ,∆) = 0 has a common solution (γ, δ) where δ is
non-zero. We emphasize that δ has different semantics than γ, and, under TOFR
and DL, recovering the discrete logarithm of δ is hard for any party. Thus, the
TotalKE extractor can only recover the discrete logarithms in the case δ = 0.

If such a non-zero solution exists, then from the fact that the verifier accepts,
it does not follow that one can extract the discrete logarithms of all adversary’s
outputs. Thus, on our hypothesis, the TotalKE assumption is secure iff for any
Γ = γ, fM (Γ ,∆) = 0 has only a zero solution in ∆.

6.1 Classification of TotalKE-Compatible Matrices

We will use the following classic result. See Appendix D.1 for the proof.

Proposition 2 (Chevalley-Warning theorem [Che35,War35]). Let Fq
be a finite field of size q and characteristic p. If r polynomials fj ∈ F[t1, . . . , tn]
satisfy

∑
deg fj < n, then the number of common roots of fj is divisible by p.

As a corollary (that suffices for the current work), if the system of solutions
has at least one solution, it must have another solution. In particular, if it has a
zero solution (X1 = . . . = Xn = 0), then it must have a non-zero solution.

TotalKE-Incompatible Cases. Let deg fM [i] be the sum of the degrees of
all il1ql2 + il2ql1 + 2ql1ql2 polynomials involved in the system fM [i] = 0,
where we consider only ∆ as the indeterminates. For a fixed R, let deg f :=∑
i≤R deg fM [i]. Lemma 4 separates AGM and AGMOS.

Lemma 4. Let il1, il2 = 1 and ql1 = ql2 = 1. For i ∈ [1, R], fix any M [i]
and the corresponding verification equation Vi. If either ol1 > R or ol2 > R,
then there exists a non-zero common solution with δ ̸= 0. Thus, if DL holds,
(ol1, ol2, {Vi}Ri=1)-TotalKE is not secure in the AGMOS for any M [i].

Proof. W.l.o.g., assume ol1 ≥ ol2. Fix any γ. Recall that for a fixed Γ = γ,
fM [i](γ,∆) = 0 is a system of homogeneous polynomial equations of summatory
degree il1ql2 + il2ql1 + 2ql1ql2 ≤ 4 in ol1ql1 + ol2ql2 = ol1 + ol2 variables. Since
the polynomials in Eq. (5) do not have constant terms, the equation systems
fM [i](γ,∆) = 0 have at least one common solution (δ = 0). By the Chevalley-
Warning theorem, if ol1 + ol2 > deg f(γ,∆), then there must exist a non-zero
common solution δ. This must hold for any γ.

Recall il1 = il2 = ql1 = ql2 = 1. Thus, the system in Eq. (5) consists of three
polynomials of degrees 1, 2, and 2, correspondingly. In the case ol2 = 0, most
of the polynomials disappear and thus deg fM [i] ≤ 1. Hence, deg f ≤ R. The
claim follows from the Chevalley-Warning theorem.

Assume now ol2 ≥ 1. Hence, deg fM [i] ≤ 4 and deg f ≤ 4R. Because of
that, we can immediately use the Chevalley-Warning theorem to get a non-tight
solution with the requirement ol1 + ol2 > 4R.
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For a tighter solution, we use the structure of the polynomials. Set δ2 ← 0.
Then, we have ol1 remaining variables and deg fM [i](γ,∆1,0) ≤ 1. By the
Chevalley-Warning theorem, the system of equations has a non-zero common
solution in ∆1 as soon as ol1 > R. Dually, by setting δ2 = 0, the system of
equations has a non-zero common solution as soon as ol2 > R.

Finally, finding a non-zero common solution is an algorithmically simple task.
In all cases, we have a system of R linear equations in ol1 variables that is
guaranteed to have a nontrivial solution. This solution can be found efficiently
by using Gaussian elimination. ⊓⊔

The Chevalley-Warning theorem is a very powerful tool that can be used in
much more general cases than handled in Lemma 4. We consider its use to prove
similar bounds another important contribution of the current paper.

TotalKE-Compatible Cases. Let R = 1. It follows from Lemma 4 that (if DL
holds) TotalKE does not hold unless ol1 ≤ 1 and ol2 = 0, or ol1 + ol2 ≤ 2 and
ol2 ≥ 1. That is, either ol1 = 1 and ol2 = 0 (the case ol1 = ol2 = 0 is vacuous)
or ol1 = 1 and ol2 = 1. (The case ol1 = 0 and ol2 = 1 is dual.)

In the rest of this section, we will give a list of all TotalKE-compatible matri-
ces in the case of a single verification equation. We will leave the case of il1 > 1
or il2 > 1 or R > 1 for future work.

Lemma 5. Let ilκ = qlκ = 1 and R = 1 (thus there is a single matrix M).
Assume that DL holds.
1. Let ol1 = 1 and ol2 = 0. Then M is TotalKE-compatible iff M21 ̸= 0. Thus,

the only possibly secure TotalKE assumption involves verification equation
[y]1 • [1]2 =M11[1]1 • [1]2 for M11 chosen by the verifier.

2. Let ol1 = 1 and ol2 = 1. Then M is TotalKE-compatible iff M22 = 0 and ei-
therM21 ̸= 0 orM12 ̸= 0. Thus, the only possibly secure TotalKE assumption
involves verification equation M12[y]1 • [1]2+[1]1 •M21[z]2 = −M11[1]1 • [1]2
for non-zero M12 or M21, where the verifier chooses M12, M21, and M11.

Proof. We recall from Theorem 6 thatM is TotalKE-incompatible iff f(Γ ,∆) =
0 has a solution (γ, δ) such that δ is non-zero.

(Item 1). Since il1 = ol1 = ql1 = 1, γ1 = γ1 ∈ Fol1×il1 = F and δ1 = δ1 ∈
Fol1×ql1 = F. Since ol2 = 0, there is no δ2 and thus the system Eq. (5) consists
of only one polynomial, f(Γ ,∆) = ∆1M21. Thus, f(γ, δ) = 0 iff δ1M21 = 0.
This has a non-zero solution δ1 ̸= 0 iff M21 = 0. Then, M =

(
M11
0

)
for some

M11 ∈ F. The claim follows.
(Item 2). Then γ1, γ2, δ1, and δ2 have dimension one. In this case, the equa-

tion f(γ, δ) = 0 in Eq. (5) simplifies to

δ2(γ1M22 +M12) = 0 , δ1(γ2M22 +M21) = 0 , δ1δ2M22 = 0 .

For this to have a non-zero solution in (δ1, δ2), we need that, say, δ1 ̸= 0. From
the second equation, we then get M21 = −γ2M22. Hence, there are only zero
solutions iff M22 = 0 and M21 ̸= 0 (that is, M =

(
M11 M12

M21 0

)
for M21 ̸= 0);
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in every other case, one can choose γ2 that makes the equation hold. Choosing
δ2 = 0 means no other restrictions exist.

The case δ2 ̸= 0 is dual. The claim follows since ( 1z )
⊺(M11 M12

M21 0

)(
1
y

)
=M11+

M12y +M21z and we either need M21 ̸= 0 or M12 ̸= 0. ⊓⊔

Clearly, the result makes intuitive sense. For example, the verification equation in
Item 2 includes one unknown group element in both groups and some constants.
Since Qκi is only available in Gκ, they cancel out, and thus δ = 0.

We will give some concrete examples in Appendix D.2.

7 AGMOS with Uniform Oracle

We propose a simplification of the general AGMOS, where the oracle produces
uniformly random group elements. We call this AGM with Uniform Oblivious
Sampling (AGMUOS). GGM with uniform sampling is known [BFS16,ABLZ17],
and Lipmaa’s variant of AGMOS [Lip22] also focused on uniform sampling.

Note that AGMUOS with uniform sampling does not accurately model, for
example, admissible encodings. Since a noticeable fraction of the group is not in
the image of an admissible encoding, outputs of standard admissible encodings
are easily distinguishable from uniformly random group elements. Nevertheless,
the uniform model is easier to state, will rely on a weaker assumption, and
is still helpful as a predictor for the security of assumptions. In fact, we are
unaware of any assumption that can be proven secure in the uniform model but
is insecure in (EF ,DF)-AGMOS when (EF ,DF)-TOFR holds. Moreover, the
standard security proof approach for AGMOS (such as in Section 5) carries over
to AGMUOS, with the only difference being the underlying assumption.

We define AGMOS with uniform sampling in the pairing-based setting, just
as the general model. Let p ← Pgen(1λ) be the description of the pairing. We
define a uniform sampling oracle U that takes as an input κ ∈ {1, 2} and returns
a uniformly random group element [q]κ ←$ Gκ. Importantly, we assume that
U is non-programmable. That is, security reductions cannot modify outputs of
U . Besides that, the model is almost identical. For the sake of completeness, we
state the complete definition below.

Definition 8 (AGMUOS). A non-uniform PPT algorithm A is an AG-
MUOS adversary for Pgen if there exists a non-uniform PPT extractor ExtA,
such that for any x = (x1,x2), Adv

agmuos
Pgen,A,ExtA(λ) :=

Pr

 y1 ̸= γ⊺
1x1 + δ⊺1q1 ∨

y2 ̸= γ⊺
2x2 + δ⊺2q2

p← Pgen(1λ); r ← RNDλ(A);
([y1]1, [y2]2)←$AU (p,x; r);

(γκ, δκ, [qκ]κ)
2
κ=1 ← ExtUA(p,x; r) :

 = negl(λ) .

Here, [qκ]κ is the tuple of elements output by U on input κ ∈ {1, 2}. We denote
by qlκ the number of U calls on input κ.

As mentioned before, proofs are essentially identical in AGMUOS, except we
can rely on a weaker version of TOFR. We define a uniform oracle version of the
TOFR assumption that we call Uniform Tensor Oracle FindRep (UTOFR).
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Definition 9 (UTOFR). We say that Pgen is UTOFR (Uniform Tensor Or-
acle FindRep) secure if for any non-uniform PPT A, AdvutofrPgen,A(λ) :=

Pr

[
v ̸= 0 ∧ v⊺ ·

(
1
q1
q2

q1⊗q2

)
= 0 p← Pgen(1λ);v ← AU (p)

]
= negl(λ) .

Here, U , q1, and q2 are as in Definition 8.

In fact, if we did allow programming U , then this assumption could be re-
duced to the (1, 1)- PDL assumption. Although we do not allow programming
in general, it does indicate that UTOFR is a relatively weak assumption.

Lemma 6. Suppose U is programmable. Then, (1, 1)-PDL implies UTOFR.
More formally, for any non-uniform PPT A, there exist a non-uniform PPT
B such that AdvutofrPgen,A(λ) ≤ Advpdl1,1,Pgen,B(λ) + negl(λ).

Proof. The discrete logarithm adversary B runs A while embedding its challenge
([y]1, [y]2) to the queries of the oracle U . On a query κ to U , B samples rκ,i, sκ,i ←$

F and returns [qκi]κ ← rκ,i[1]κ + sκi[y]κ. If A succeeds, it returns a non-zero
representation v, such that v⊺

q ̸= 0. Let us denote v = (v0//v1//v2//v3),
where subvectors correspond to 1, q1, q2 and q1 ⊗ q2 respectively. Then,

0 =v0 + v⊺
1q1 + v⊺

2q2 + v⊺
3(q1 ⊗ q2)

=v0 + v⊺
1(r1 + s1y) + v⊺

2(r2 + s2y) + v⊺
3((r1 + s1y)⊗ (r2 + s2y))

=v0 + v⊺
1r1 + v⊺

2r2 + v⊺
3(r1 ⊗ r2)

+ (v⊺
1s1 + v⊺

2s2 + v⊺
3(r1 ⊗ s2 + s1 ⊗ r2)) · y + v⊺

3(s1 ⊗ s2) · y2 .

We can view this as a quadratic equation in y. If the coefficient of y or y2 is
non-zero, then B can solve the equation for y and break the PDL assumption.

Let us analyze the probability of that happening. Note that v1, v2, v3 cannot
be zero vectors at the same time since then also v0 = 0, which implies that the
whole vector v is a zero-vector.

The vectors s1 and s2 are information-theoretically hidden from the adver-
sary (they are blinded by r1 and r2 respectively). The probability that s1 or s2
contain a zero element is bounded by (ql1 + ql2)/F. Additionally, if s1 and s2
do not contain a zero, then neither does s1 ⊗ s2. Let us suppose that this is the
case. Now, we look at two cases.

1) Suppose v3 ̸= 0. Then, according to Schwartz-Zippel lemma, the proba-
bility that v⊺

3(s1 ⊗ s2) = 0 is bounded by 2/Fql1+ql2 .
2) Suppose v3 = 0, but v1 or v2 are non-zero. Then the coefficient of y is

v⊺
1s1 + v⊺

2s2. The probability that this coefficient is 0 is bounded by 1/Fql1+ql2 .
Thus, except for negligible probability, B breaks (1, 1)-PDL. ⊓⊔

8 GGM with Oblivious Sampling And TOFR

Next, we will cryptanalyze TOFR using GGM with oblivious sam-
pling (GGMOS), a more realistic version of the GGM with hashing
(GGMH, [Bro01,BFS16,ALSZ21]). We base GGMOS on Shoup’s GGM [Sho97]
in the bilinear setting.
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8.1 GGM with Oblivious Sampling

Let us recall the random representation (RR)/Shoup’s GGM model, as defined
in [Sho97,Zha22]. Let S ⊆ {0, 1}∗ be a set of binary strings of cardinality at least
p. For κ ∈ {1, 2, T}, let ικ : Fp → S be three random injections, called labelling
functions. Intuitively [x]κ = ικ(x). All parties can make the following queries to
the group oracle:
1. Labelling: The party submits (x, κ), where x ∈ Zp, κ ∈ {1, 2, T} and re-

ceives the string ικ(x).
2. Group operation: The party submits (s1, s2, α1, α2, κ). The group oracle

checks if there exists x1 and x2 such that ικ(xi) = si, for i ∈ {1, 2}. If yes,
it returns ικ(α1x1 + α2x2) and otherwise returns ⊥.

3. Pairing operation: The party submits (s1, s2, α1, α2). The group oracle
checks if there exists x1 and x2 such that ι1(x1) = s1, and ι2(x2) = s2. If
yes, it returns ιT (α1x1α2x2) and otherwise returns ⊥.
GGMH gives the adversary an additional operation to create uniformly ran-

dom group elements. With GGMOS, we will go a step further, and just like with
AGMOS, we will allow oblivious sampling from potentially non-uniform distri-
butions chosen by the adversary. More precisely, fix OF = {OFp}: a family of
distributions over Fp.
4. Oblivious sampling: The party submits (D,κ), where D ∈ OFp is a dis-

tribution and κ ∈ {1, 2}. The oracle samples x←$ D and returns ικ(x).
All operations have unit cost.

We briefly explain why oblivious sampling is defined here differently com-
pared to AGMOS. Suppose E is an encoding function and D is its input dis-
tribution, such as in AGMOS. Since the labeling function’s representation is
hidden from the adversary, how to model E in generic groups is unclear. On the
one hand, if we try to model E by defining it from Fp to S, then there is no
relation between the seed s and the exponent x, such that E(s) = [x]κ. On the
other hand, we could define E as a function from Fp to Fp and use the labeling
function on the evaluation to sample group elements. However, then we are back
in the case depicted above, where we only need distributions over Fp. In fact, the
generic adversary does not see the encoding input. Thus an oblivious sampling
operation where the party submits a function E : Fp → Fp and a distribution
D is equivalent to an oblivious sampling operation, where the party submits the
distribution defined by E(D).

8.2 TOFR Security in the GGMOS

We prove that TOFR holds against generic adversaries in GGMOS, allowing
sampling from any well-spread distribution.

We will need the following min-entropy version of the Schwartz-Zippel lemma.

Proposition 3 ([GV13]). Let F ∈ F[X1, . . . , Xm] be a non-zero polynomial
of (total) degree at most d. Let Di (i = 1, . . . ,m) be probability distributions on
F such that H∞(Di) ≥ log p − τ , where 0 ≤ τ ≤ log p. If xi ←$ Di, i ∈ [1,m],
are chosen independently, then Pr[F (x1, . . . , xm) = 0] ≤ 2τ · d/p.
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We will use Proposition 3 with the setting τ = log p − ω(log λ). In this case, if
H∞(Di) ≥ ω(log λ) then Pr[F (x1, . . . , xm) = 0] ≤ 2log p−ω(log λ) · d/p = d/λω(1).

For each distribution D, and function E, we define the distribution E(D),
defined over the image of E as the one induced by first sampling s ←$ D and
then evaluating E(s).

Before proving its security, we describe how to interpret TOFR in GGMOS.
TOFR depends on a family of functions EFp,κ = {E : F→ Gκ}. As already ar-
gued, such functions seem incompatible with generic groups. For each function
E ∈ EFp,κ, we can define E′ as E′(s) = x, where E(s) = [x]κ. We argue that it
is sufficient to parametrize TOFR only with distributions to analyze its security
against generic adversaries. In fact, let OF = {OFp} be the family of distribu-
tions defined by E′(D) for each E ∈ EFp,κ, D ∈ DFp. When a TOFR adversary
in the standard model queries the oracle with (E,D), the generic adversary will
query it with the distribution E′(D). Note that even if E′ is not efficiently com-
putable, we assume that oblivious sampling operations have unitary cost. Let
{I} be the identity function. Then the (EF ,DF)-TOFR assumption and the
({I},OF)-TOFR are equivalent in GGMOS.

Theorem 7. Fix Pgen. Let DF = {DFp} be a family of well-spread distribu-
tions. Let EF = {EFp,κ} be a family of functions such that, if D ∈ DFp is a
well-spread distribution, then, for each E ∈ EFp,κ the distribution E′(D) is well-
spread. Suppose that the identity function is included in EF . Let OF = {OFp}
be the family of functions defined by E′(D) for each E ∈ EFp,κ, D ∈ DFp. The
({I},OF)-TOFR assumption holds for Pgen against OF-GGMOS adversaries
that execute o(

√
2χp) group operations, where χp := minD∈OFp H∞(D).

Proof. Let A be a OF-GGMOS adversary against ({I},OF)-TOFR assumption
(see Definition 2) that, given (p, [1]1, [1]2) and access to the group oracle, outputs
a vector v ̸= 0, such that v⊺ · (1,q⊺

1 ,q
⊺
2 ,q

⊺
1 ⊗ q2)

⊺ = 0.
Here, qκi are the exponents associated to the strings returned by the TOFR

oracle. Thus, the TOFR oracle on input (D,κ) for the iκ-th oracle call, where
D ∈ OFp,κ, queries the group oracle for an oblivious sampling operation on
input (D,κ), and then receives and forwards to the adversary the string ικ(qi).

Assume that A makes ql queries to the TOFR oracle. Since we work in the
GGMOS, after T computational steps, the adversary has strings of at most T
elements, including the oracle answers. We can consider each element as the
evaluation of T known but, w.l.o.g., different, ql-variate, total degree-≤ 2 poly-
nomials Fi in Q. Formally this procedure corresponds to a hybrid argument
defined by the following group oracle.
1. Labelling queries: The party submits (x, κ), where x ∈ Zp, κ ∈ {1, 2, T}.

If ικ(x) has already been defined, the oracle returns it. Otherwise, s ←$ S,
defines ικ(x) = s, and the oracle returns s.

2. Group operations: The party submits (s1, s2, α1, α2, κ). The group oracle
checks if there exists polynomials χ1(X) and χ2(X) such that ικ(χ2(X)) =
si, for i ∈ {1, 2}. If this is not the case it returns ⊥. If yes, it checks if
ικ(α1χ1(X)+α2χ2(X)) has already been assigned and returns it. Otherwise
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it samples a random element in S, defines its label as ικ(α1χ1(X)+α2χ2(X))
and returns the random string.

3. Pairing operations: The party submits (s1, s2, α1, α2). The group ora-
cle checks if there exists χ1(X) and χ2(X) such that ι1(χ1(X)) = s1 and
ι2(χ2(X)) = s2. If yes, it returns ιT (α1χ1(X)α2χ2(X)) and otherwise re-
turns ⊥.

4. Oblivious sampling operations: The party submits (D,κ), where D ∈
OFp is a distribution and κ ∈ {1, 2}. In its internal state, the oracle saves
the distribution D associated with this query. Then, it defines a new inde-
terminate Q, s←$ S, and defines ικ(Q) = s. Finally, it returns s.

In this case, injections ικ are defined “lazily” by sampling random strings on
the fly when the adversary queries the oracle for group elements associated with
unseen polynomials. At the end of the execution, the oracle samples variables
qκi ←$ Dκi, where the distribution Dκi is the one received in the (κ, i)-th query.

The adversary can only win if Fi(q) = Fj(q) for two distinct polynomials
Fi and Fj . Fix i ̸= j. We define τ := log p − χp, then 2τ · (2/p) = 2/2χp . By
applying Proposition 3, the probability that Fi(q)−Fj(q) = 0 is ≤ 2/2χp . Thus,
the probability that Fi(q) = Fj(q) for any i, j is bounded by (2T 2)/2χp . Thus, A
succeeds with probability bounded away from 0 by a constant only if the number
of group operations is at least T = Ω(

√
2χp). ⊓⊔

Clearly, the bound T = Ω(
√
2χp) is precise. This bound explains why we

require that DF consist of well-spread distributions.
In fact, this section aims to argue why the restriction on considering well-

spread distributions looks necessary. The reader should interpret the result in
this section as a piece of evidence that families (EF ,DF) should be chosen such
that any combination of them induces a well-spread distribution. Otherwise,
there could be some generic attack the adversary can perform to recover the
discrete logarithm of an element returned by the oracle. Clearly, the previous
condition is not sufficient. The exponentiation that associates x to [x]κ should
be excluded from EF , despite mapping well-spread distributions into well-spread
distributions. To add a function E, that is not an admissible encoding in EF , one
should prove a result similar to Theorem 1, showing that recovering the discrete
logarithm of E(s) on input s, where s is from any well-spread distribution, is as
hard as the standard DL problem.

8.3 On Well-Spreadness

In Theorem 7, we obtain a GGM lower bound of
√
2χp for the time to

break (EF ,DF)-TOFR. Importantly, this lower bound only depends on χp =
minD∈DFp H∞(D). Thus, if we only aim for polynomial security against generic
adversaries, we can choose DF arbitrarily, as long as χp = ω(log λ), i.e., all
distributions in DF are well-spread.

Next, we will discuss some ramifications of the requirement that χp =
minD∈DFp H∞(D). We also discuss some possibilities of extending the AGMOS.
We will leave the formalization of this discussion for future work.
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If D is an arbitrary well-spread distribution on Gκ, then the best-known algo-
rithms for computing discrete logarithms of elements from D take time |Im(D)|.
When adding some structure to the distribution, it might be possible to apply
baby-step-giant-step or Pollard’s rho algorithms, with the computational com-
plexity of approximately Õ(

√
|Im(D)|). In particular, it is known how to solve

discrete logarithms on intervals in time (1.661 + o(1))
√
|Im(D)| [GPR13]. Since

well-spread distributions can have image size exponential in λ, it seems that
computing discrete logarithms for (worst-case) well-spread distributions is an
intractable problem.

The situation is different when we consider non-uniform adversaries. Recall
that the mode modeD is the most common output of the distribution D. Since
the AGMOS extractor ExtA is existential and non-uniform, we can hardwire
to its code the discrete logarithm of E(modeD) for each distribution D actually
queried by the adversary A. (This does not work if D can depend on the random
coins or the input of A.) If the distribution is non-well-spread, then with a non-
negligible probability, the input of E equals the mode. Thus the constructed
non-uniform extractor succeeds in returning the hardwired discrete logarithm of
the admissible encoding’s output.

Hence, if we consider weak extractors [CD09] (i.e., extractors that suc-
ceed with some non-negligible probability7), then we can also handle the case
where DF contains some non-well-spread distributions. Since here, with a non-
negligible probability, ExtA returns the discrete logarithm as a part of γ and
δ (i.e., not as [q]κ), there is no contradiction with Theorem 7. The resulting
model is sufficiently different from the AGMOS; thus, we leave precise modeling
for future work.

The previous discussion is why, differently from [FKL18], we do not ask the
adversary A itself to output values like γ, δ, but assume the existence of a non-
uniform extractor that does so. That is, we allow for the case that A itself may
not know the discrete logarithms, but we can construct a non-uniform extractor
(who has some values hardwired) that knows them. Importantly, weak extractors
are sufficient in most non-tight security proofs, reducing the advantage of the
reduction only polynomially. Alternatively, as in the DAGM, [RS20], we could
require that A itself returns γ, δ but only with some probability 1/poly(λ).
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A Supplementary Materials for Section Section 2
(Preliminaries)

A.1 More on Admissible Encodings

Boneh and Franklin [BF01] considered supersingular curves, i.e., elliptic curves
E that have exactly q + 1 points over a finite field Fq. When q ≡ 2 (mod 3),
then the map x 7→ x3 is a bijection and thus the curve Eb : y2 = x3 + b is
supersingular, [BF01]. Define E(u) := ((u2−b)1/3, u). Moreover, define E(0) := 0
(the neutral element). Clearly, E(u) is always a point of Eb. Finally, E can be
implemented in time O(log3 q).

Icart [Ica09] proposed the following efficient admissible encoding E. Assume
E : y2 = x3 + ax + b over the field Fq where p > 3 and q = pk ≡ 2 (mod 3).
Define E : Fpk 7→ E, E(u) = (x, y), where x = (v2 − b − u6/27)1/3 + u2/3 and
y = ux+v for v = (3a−u4)/(6u). Moreover, E(0) = 0. As proven in [Ica09], E(u)
is always a point of E and E can be implemented in time O(log3 q). Moreover,
for any point P , the solutions u of E(u) = P are roots of a fixed quadratic
equation. Thus, E−1

a,b(P ) is computable in PPT and |E−1
a,b(P )| ≤ 4 for all P ∈ E.

Hence, q/4 ≤ |Im(E)| ≤ q. Icart [Ica09] conjectured and [FT10] proved that∣∣|Im(E)| − 5
8 |E(Fq)|

∣∣ ≤ λ√q for some constant λ.
Brier et al. [BCI+10] showed that given an admissible encoding E : F→ G

and a usual hash function h : {0, 1}∗ → F, one can efficiently construct elliptic-
curve hashings H : {0, 1}∗ → Im(E) and H : {0, 1}∗ → G. In particular, if h
is a random oracle, then these constructions are indifferentiable from a random
oracle in the sense of [MRH04].

In addition, Shallue and Van De Woestijne [SW06] proposed an admissible
encoding that works with all elliptic curves Ea,b : y2 = x3 + ax + b, a, b ̸= 0.
Wahby and Boneh [WB19] proposed an efficient admissible encoding in the case
of the standard curve BLS12-381. See [BCI+10] for more discussions.

B Supplementary Materials to Section 4 (New
Assumptions)

B.1 FPR∗ Reduction

We define a variation of FPR assumption that we call FPR∗. (d,m)-FPR∗ is
just as (d,m)-FPR, except that it has a new oracle Ofpr∗(x, ·). (We again omit

https://doi.org/10.1007/978-3-031-15982-4_3
https://doi.org/10.1007/978-3-031-15982-4_3
https://doi.org/10.1007/978-3-031-22966-4_9
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B(p, [(σi)d1i=0]1, [(σ
i)d2i=0]2)

z,y ←$ Fm; Implicitly define xj := zj + yjσ for j ∈ [1,m];

g(X)← AOfpr∗ (x,·)(p);
P (X) := g(z1 + y1X, . . . , zm + ymX);
if P (X) = 0 then return ⊥;fi
Find the set of roots S of P (X);
return s ∈ S such that either s · [1]1 = [σ]1 or s · [1]2 = [σ]2;

Fig. 7. The FPR∗ reduction B to PDL assumption.

the subscript.) On input (κ, f), Ofpr∗(x, ·) returns [f(x)]κ if κ ∈ {1, 2, T} and
deg(f) ≤ dκ. That is, the oracle checks the total degree of f , not the maximum
individual degree of the variables.

We recall the following result before proving the reduction to PDL.

Proposition 4 ([BFL20]). Let g(X) be an m-variate non-zero polynomial in
F[X] of a total degree d. Define S(X) := g(Z1+Y1 ·X, . . . , Zm+Ym ·X) ∈ R[X],
where R := F[Z,Y ]. Then the highest X-degree term in S(X) has a coefficient
Smax(Y ) ∈ F[Y ] of degree d.

Theorem 7. Let m, d1, d2, dg ≥ 0 and d = (d1, d2, d1 + d2, dg). If the (d1, d2)-
PDL assumption holds, then the (d,m)-FPR∗ assumption holds. More precisely,
for any non-uniform PPT adversary A, there exists a non-uniform PPT adver-
sary B, such that

Advfpr∗Pgen,d,m,A(λ) ≤ dg/|F|m + Advpdld1,d2,Pgen,B(λ) .

Proof. Let A be a non-uniform PPT (d,m)-FPR∗ adversary. In Fig. 7, we
depict a non-uniform PPT (d1, d2)-PDL adversary B. B gets as an input
(p, [(σi)d1i=0]1, [(σ

i)d2i=0]2). B defines implicitly x = z + yσ for z,y ←$ Fm.

While B does not know σ, B can homomorphically compute [xk11 · · · · · xkmm ]κ
for κ ∈ {1, 2}, as long as

∑m
i=1 ki ≤ dκ. In the case of GT elements, B first com-

putes [(σi)d1+d2i=0 ]T ; thus, monomials [xk11 · · · · · xkmm ]T can have the total degree
d1 + d2. B can simulate any Ofpr∗ query (κ, f) from A as long as κ ∈ {1, 2, T}
and deg f ≤ dκ, where dT := d1 + d2. Note that x1, . . . , xm are distributed just
as in the FPR∗ assumption since zj is uniformly random.

Next, B runs A(p) and simulates responses of Ofpr∗(x, ·) as just described.
Eventually A returns g(X). If A is successful, then g is a non-zero m-variate
polynomial of degree ≤ dg such that Vh(x) = 0.

We define a new polynomial S(Y ,Z) := g(Z1 + Y1 ·X, . . . , Zm + Ym ·X) ∈
R[X], where R = F[Y ,Z]. According to the Proposition 4, the coefficient of the
highest degree term (in X) is a polynomial Smax(Y ) in F[Y ], and it has the
same total degree as g(X). We define P (X) := g(z1 + y1 ·X, . . . , zm + ym ·X).
Note that y is information-theoretically hidden from A since it is blinded by z.
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Hence, Smax is independent of y. Thus, P (X) = 0 only if Smax(y) = 0, which
according to Schwartz-Zippel lemma happens with probability ≤ dg/|F|m.

If P (X) ̸= 0 (which happens with an overwhelming probability when dg ≪
p), P (σ) = g(z + yσ) = 0 and B can find roots of P to recover σ. Thus,

Advfpr∗Pgen,d,m,A(λ) ≤
dg

|F|m + Advpdld1,d2,Pgen,B(λ). ⊓⊔

B.2 Comparison of FPR and FPR∗.

Let us understand how the two assumptions and corresponding reductions differ,
especially when using them in Case X of AGMOS proofs.

It is always possible to use an assumption from one of the two families for
the Case X reduction since FPR and FPR∗ only differ in how the polynomial
query oracle checks the degrees. In particular, on an input (κ, f), the oracle
Ofpr checks that the individual degree of each variable in f is at most dκ and
Ofpr∗ checks that the total degree of f is at most dκ. If Case X reduces to
(d,m)-FPR, for d = (d1, d2, dT , dg), then it also reduces to (d∗,m)-FPR∗, where
d∗ = (m ·d1,m ·d2,m ·dT , dg). This is so since if degXi

(f) ≤ dκ for all i ∈ [1,m],
then deg(f) ≤ m · dκ. Vice-versa, if Case X reduces to (d,m)-FPR∗, for some d,
then it also reduces to (d,m)-FPR. Clearly, if the total degree of deg(f) ≤ dκ,
then degXi

(f) ≤ dκ for all i ∈ [1,m].
However, there can be a significant difference when considering reductions to

PDL. Let us look at two examples.

When FPR is better. Consider an assumption where the adversary gets as
an input [(xiyj)di,j=0]1 and has to output [xd+1yd+1]1. When we go through the
AGMOS proof, following the blueprint in Section 1.1, we find that for Case
X we can construct a reduction Bfpr to (d,m)-FPR assumption, where d =
(d, 0, 0, 2(d+ 1)) and m = 2. By applying Theorem 2, we get that there exists a

non-uniform PPT Bpdl such that AdvfprPgen,d,m,Bfpr
(λ) ≤ 2 · Advpdld,0,Pgen,Bpdl

(λ).

However, for FPR∗ the natural reduction B∗fpr is to the (d∗,m)-FPR∗ assump-
tion, where d∗ = (2d, 0, 0, 2(d + 1)) and m = 2. Then, by applying Theorem 7,

we get that there exists B∗pdl such that Advfpr∗Pgen,d,m,B∗
fpr
(λ) ≤ (2(d+ 1)) /|F|2 +

Advpdl2d,0,Pgen,B∗
pdl
(λ). In the latter case, we obtain a reduction to a provably

stronger [BFL20] PDL, and thus in this case, we recommend using the former
reduction.

When FPR∗ is better. Let us consider a simple assumption where the ad-
versary gets as an input [x1, . . . , xm]1 for x1, . . . , xm ←$ Fm and has to output
[
∏m
i=1 xi]1. In this case, the total and individual degrees are the same. Thus,

there are a reductions Bfpr and B∗fpr, which respectively reduce the Case X to
(d,m)-FPR and to (d,m)-FPR∗, where d = (1, 0, 0,m). Then, by applying The-
orem 2 and Theorem 7 respectively, we get that

AdvfprPgen,d,m,Bfpr
(λ) ≤ m · Advpdl1,0,Pgen,Bpdl

(λ) (6)
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Pgen(1λ): output p←$ Pgen, where p cointains the description of a hash function
H;

KGen(p): sk = x←$ Zp; output ([1]1, pk = [x]1);
Sign(sk,m ∈ F): r ←$ F; c← H([r]1,m, [x]1); z← cx+ r; return σ = (r, z);
Vf(pk,m ∈ F, σ = ([r]1, z)): c← H([r]1,m, [x]1); Check z[1]1 = c[x]1 + [r]1;

Fig. 8. Schnorr’s signature scheme Σ.

and

Advfpr∗Pgen,d,m,B∗
fpr
(λ) ≤ m/|F|m + Advpdl1,0,Pgen,B∗

pdl
(λ) . (7)

Here, FPR∗ is unquestionably a better choice for large values of m. Even more,
as m increases, tightness in Eq. (6) gets linearly worse, whereas in Eq. (7), it
improves slightly.

These two examples give general guidelines for choosing between FPR and
FPR∗. If the queried polynomials contain multivariate monomials, but m is
small, then likely FPR is the better choice. However, if the queried polynomials
are univariate and have a small degree, but m is large, then FPR∗ might be the
better option. We recommend trying both reductions to see which works best
for a concrete AGMOS proof.

C Schnorr’s Signature Scheme

In a signature scheme, the signer (who knows the secret signing key x) signs a
message m, obtaining a signature σ. The verifier (who only knows the public
verification key pk) checks, given m and σ, if σ is a valid signature on m. The
signature scheme is EUF-CMA (existential unforgeability under chosen-message
attack) secure, if it is infeasible to create an accepting signature without knowing
x, even when one is given access to an adaptive signing oracle. For the sake of
convenience, we use pairing-based notation, but we emphasize that Schnorr’s
signature does not use pairings. That is, G1 can be any cyclic group where DL
is expected to hold.

Definition 10. A signature scheme Σ = (KGen,Sign,Vf) is EUF-CMA secure
for Pgen, if for every non-uniform PPT adversary A, Adveufcma

Pgen,Σ,A(λ) :=

Pr

[
m∗ /∈ Q∧
Vf(pk,m∗, σ∗) = 1

p← Pgen(1λ); (pk, sk)← KGen(p);
Q← ∅; (m∗, σ∗)← ASign∗(pk)

]
= negl(λ) .

Here, the oracle Sign∗(m) sets σ ← Sign(sk,m), appends m to Q, and returns σ.

Schnorr [Sch91] proposed an efficient signature scheme that is EUF-CMA
secure the FPRO model and tightly EUF-CMA secure when one relies both on
the AGM and the FPRO model. See Fig. 8.
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An AGM security proof of Schnorr needs to emulate signing queries and hash
queries. In AGMOS, we need to additionally deal with (non-emulated) sampling
queries. As in [FPS20], given an input ([r]1,m, pk = [x]1), the signing oracle
Sign∗ does the following: if the same input was received before, output the same
c as before. Otherwise, sample random c←$ F, z←$ F, and choose [r]1 so that the
verifier accepts, i.e., [r]1 ← [z]1− c[x]1. Thus, each emulation succeeds perfectly.
Similarly, the hash oracle H stores all input/output paairs but otherwise acts
honestly by outputting a random field element if it was not queried before in the
same inputs. (See Fig. 9.)

We will next prove that it is secure in the AGMOS + FPRO model, where
one only models the hash oracle H as an FPRO. Cases A and X.1 in our proof
correspond to the AGM proof of [FPS20], while Q is new. We emphasize that
more than 90% of the following proof follows [FPS20] very closely, demonstrating
that in the case of more complicated AGM proofs, adding the AGMOS part to
it is “relatively” easy compared to the AGM proof itself.

Theorem 8 (EUF-CMA of Schnorr). If the (d,m)-FPR and (EF ,DF)-
TOFR assumptions hold, then Schnorr is EUF-CMA secure in the AGMOS.

We repeat the proof intuition from [FPS20]. In the random oracle model, Schnorr
signatures can be simulated without knowledge of the secret key by choosing
random c and z, setting [r]1 := z[1]1 − c[x]1 and then programming the random
oracle so that H([r]1,m) = c. On the other hand, an adversary that returns a
signature forgery (m∗, ([r∗]1, z

∗)) can be used to compute the discrete logarithm
of the public key pk = [x]1. In the ROM (without AGM), extraction entails
a security loss. In the AGM+ROM, extraction is straight-line and the security
proof thus tight. After querying the signing oracle on messages m1, . . . ,mqs ,
the adversary obtains ([ri]1, zi)1≤i≤qs that verify [ri]1 = zi[1]1 − ci[x]1 with
c∗ := H(R∗,m∗). A valid forgery satisfies

[r∗]1 = z∗[1]1 − c∗[x]1 ,

with z∗ := H([r∗]1,m
∗).

On the other hand, since the adversary is algebraic, when it made its first
query H([r∗]1,m

∗), it provided a representation of [r∗]1 in basis [1, x, r1, . . . , rqs ]1,
that is, (γ, δ) with

[r∗]1 = γ1[1]1+γ2[x]1+
∑qs
i=1 γ2+i[ri]1 = γ1[1]1+γ2[x]1+

∑qs
i=1 γ2+i(zi[1]1−ci[x]1) .

Together with the accepting verification [r∗]1 = z∗[1]1 − c∗[x]1, this yields

(c∗ + γ2 −
∑qs
i=1 γ2+ici) [x]1 = (z∗ − γ1 −

∑qs
i=1 γ2+izi) [1]1 . (8)

Since c∗ was chosen at random after the adversary chose γ, δ, the probability
that c∗ + γ2 −

∑qs
i=1 γ2+ici ̸= 0 is overwhelming, in which case we can compute

the discrete logarithm of x from the above equation.
An AGM proof also has a PDL reduction that we replace with a FPR reduc-

tion. On top of that, in the AGMOS proof, we need to consider Case Q, which
in this case is relatively easy.
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Proof. Let H be a FPRO. Let A be a EUF-CMA AGMOS adversary that makes
at most qs signature queries and qh RO queries. We proceed by a sequence of
three games.

::::::
Game1. This is the EUF-CMA game for the Schnorr signature scheme with

a random oracle H. It maintains a list Q of queried messages and T of val-
ues sampled for H. When it returns a forgery (m∗, ([r∗]1, z

∗)), we can run the
AGMOS extractor ExtA to obtain (γ, δ), such that [r∗]1 = γ1[1]1 + γ2[x]1 +∑qs
i=1 γ2+i[ri]1 +

∑
δi[qi]1.

Assume that, with non-negligible probability ε1, A outputs (m∗, σ∗ =
([r∗]1, z

∗)), such that z∗[1]1 = c∗[x]1 + [r∗]1, where c∗ = H([r∗]1,m, [x]1). More-
over, m∗ /∈ Q. By definition, ε1 = Adveufcma

Pgen,Σ,A(λ).

::::::
Game2. In Game1, when the adversary calls H([r]1,m, [x]1) (say, as the jth

query), we do the following change. The game uses the AGMOS extractor to
obtain an explanation (γ, δ) of [rj ]1 in terms of previous inputs, [rj ]1 = γ1[1]1+

γ2[x]1 +
∑j−1
i=1 γ2+i[ri]1. It returns ⊥ if zi + γ2 −

∑j−1
i=1 γ2+ici = 0. Clearly, for

each call of H, this happens with probability 1/|F|.
Since H is called at most qh times by the adversary and once by the game

when checking the signature, we get that the adversary succeeds in Game1 with
probability ε1 ≥ ε0 − (qh + 1)/p.

::::::
Game3. In Game3, we use the standard method for simulating the Sign oracle

without the secret key by programming the random oracle. Game3 behaves the
same as Game2, except when Sign aborts on line (*). For each signature query,
[rj ]1 is uniformly random, and the size of T is at most qs + qh. Thus, Game3
aborts in line (*) wth probability ≤ (qs + qh)/p. By summing over at most
qs signature queries, the difference of A being in successful in Game3 satisfies
ε2 ≥ ε1 − qs(qs + qh)/p.

Let us now consider the adversary’s success in Game3. Since A is an AGMOS
adversary, there exists an extractor ExtA that extracts γ, δ, such that [r∗]1 =

γ⊺
[
1
x
r

]
1
+δ⊺[q]1, where [r]1 = z−c[x]1 (resp.,[q]1) is the tuple of signing (resp.,

sampling) oracle answers in G1. Let ql1 be the number of sampling oracle queries
in G1. Define

R(X,Q) = γ1 + γ2X +
∑
i≥1 γ2+i(zi − ciX) +

∑
δiQi .

Thus, [r]1 = [R(x,q)]1. Next, assume that both A and ExtA succeeded. The
verifier checks that [V (x,q)]T = [0]T , where

V (X,Q) :=z− cX −R(X,Q)

=z− cX − γ1 − γ2X −
∑
i≥1 γ2+i(zi − ciX)−

∑
δiQi

=V h(X) + V t(Q) ,

(9)

where V h(X) = z− γ1−
∑
i≥1 γ2+izi+ (−c− γ2 +

∑
i≥1 γ2+ici)X and V t(Q) =

−
∑
δiQi. Note that V t = 0 in an AGM proof. Let us now consider the three

AGMOS cases.
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BAO
pdl (p;x) BAO

tofr (p; [1]1) // x = ([1, x]1

j ← 0;Q← ∅;T← ∅; U← ∅;
r ←$ RNDλ(A); x←$ F ; (m∗, σ∗ = ([r∗]1, z

∗))← ASign∗,H,O(p,x; r); // y = ( r∗ )

(γ, δ, [q]1)← ExtOA(p,x; r); if ExtA failed then return ⊥;fi
Define V (X,Q), V h(X), V t(Q) as in Eq. (9);

if m∗ ∈ Q then return ⊥;fi
c∗ ← H([r∗]1,m

∗, [x]1);
(γ, δ)← U([r∗]1,m

∗);

if V (X,Q) ̸= 0 ∧ V t(Q) = 0 then return x←
(z∗ − γ1 −

∑qs
i=1 γ2+izi)

(c∗ + γ2 −
∑qs

i=1 γ2+ici)
;fi

if V t(Q) ̸= 0 then return v ←
(

V h(x)
−δ

)
.;fi

return ⊥;

Oracle H̃([r]1,m)

if return T([r]1,m) = ⊥ then T([r]1,m)←$ F;fi
return T([r]1,m);

Oracle H([r]1,m)

if T([r]1,m) = ⊥ then
T([r]1,m)←$ F;

Game2,3


(γ, δ)← ExtA(p, (x, [r1, . . . , r|Q|]1); r); // [r]1 = γ1[1]1 + γ2[x]1 +

∑|Q|
i=1 γ2+i[ri]1 + δ⊺[q]1

U([r]1,m)← (γ, δ);

if γ2 −
∑|Q|

i=1 γ2+ici = −T([r]1,m) then return ⊥;fi
fi
return T([r]1,m);

Oracle Sign(m)

Game1,2

{
j ← j + 1; rj ←$ Zp; zj ← H̃([rj ]1,m, [x]1); zj ← rj + zjx;
Q← Q∥m; return ([rj ]1, zj);

Game3


j ← j + 1; cj , zj ←$ Zp; [rj ]1 ← zj [1]1 − cj [x]1;
if T([rj ]1,m) = ⊥ then append T([rj ]1,m)← cj ; else return 0;fi ; (*)
Q← Q∥m; return ([rj ]1, zj);

Fig. 9. Schnorr EUF-CMA security: the extractor ExtA, the FPR adversary Bfpr, and
the TOFR adversary Btofr in the proof of Theorem 8, where the differences are either

boxed (ExtA), dashedboxed (Bfpr) or dottedboxed (Btofr). We also marked the lines
that are only used in some of the games.

Case A: V (X,Q) = 0. Then also V h(X) = 0. Looking at the coefficient of X
in V h, it means c = γ2 −

∑
i≥1 γ2+ici. However, in this case we already aborted

in Game2. Thus, this case does not materialize in Game3.
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Case X: V (X,Q) ̸= 0 and V t(x,Q) = 0: First, note that since V t does not
depend on x, Case X.2 (V t(X,Q) ̸= 0 and V t(x,Q) = 0) is impossible. Hence,
here we only need to concentrate on Case X.1 (V (X,Q) ̸= 0 and V t(Q) = 0).

We show that this case can happen only with negligible probability through
a reduction to DL. In Fig. 6, we depict the DL adversary Bpdl that works in
this case. Bpdl obtains x = [1, x]1. It then calls the Game3 adversary A on
input x. (Note that in Game3, Bpdl does not need to know x.) It uses an aux-
iliary table U, storing there for every query H([r]1,m) the linear representation
(w.r.t. x and earlier values [ri]1) of [r]1. Assume that A wins Game3 by returning
(m∗, ([r∗]1, z∗)) and let c∗ = T([r∗]1,m

∗) (which is necessarily defined after the
call c∗ = H([r∗]1,m∗, [x]1)).

Let us argue that (γ, δ) = U([r∗]1,m
∗) ̸= ⊥ and γ2 −

∑|Q|
i=1 γ2+ici ̸= −c∗.

First, m∗ /∈ Q, as otherwise the game would have already aborted. Hence,
T([r∗]1,m

∗) can only have been defined either (1) during a call to H by A,
or (2) undefined when A stops, but defined by the game when calling c∗ =
H([r∗]1,m

∗, [x]1). In both cases, the call sets both T([r∗]1,m
∗) and U([r∗]1,m

∗).

Moreover, γ2 −
∑|Q|
i=1 γ2+ici ̸= −c∗ is satisfied due to the definition of Game2.

From the argument just before the proof (see Eq. (8)), we get that Bpdl computes
the DL of [x]1 correctly. Note that in Case X, the DL adversary succeeds with
the same probability as A in Game3.

Case Q: V t(x,Q) ̸= 0. In Fig. 9, we depict a Game3 TOFR adversary Btofr.
Btofr samples x to construct x1 = [1, x]1. It then runs A to obtain (m∗, σ∗ =
([r∗]1, z

∗)), such that z∗[1]1 = c∗[x]1 + [r∗]1 for c∗ = H([r∗]1,m
∗, [x]1), and uses

ExtA to extract field elements γ, δ such that [r∗]1 = γ⊺
1

[
1
x
r

]
1
+ δ⊺1 [q]1. If the

verifier accepts, 0 = V (x,q) = V h(x)−
∑ql1
i=1 δiqi. (see Eq. (9)). Thus, B outputs

v ←
(
V h(x)
−δ

)
.

(Note that there are ql1 = 0 oracle queries in G2.) Since V
t(Q) ̸= 0, then v ̸= 0

and B breaks the TOFR assumption.

Thus, Adveufcma
Pgen,Σ,A(λ) ≤ qs(qs+qh)+qh+1

|F| + AdvfprPgen,d,m,Bfpr
(λ) +

AdvtofrPgen,EF,DF,Btofr
(λ). This concludes the proof. ⊓⊔

D Supplementary Materials to Section 6

D.1 Proof of Proposition 2

Proof. Let Z be the set of common roots of fj . If y ∈ Fq, then yq−1 = 1

if y ̸= 0 and yq−1 = 0 if y = 0. Let χ :=
∏r
j=1(1 − fq−1

j ) ∈ F[t1, . . . , tn].
Then, for all x ∈ Fol

q , χ(x) = 1 if x ∈ Z and χ(x) = 0 if x /∈ Z. Thus,∑
x∈Fol

q
χ(x) = ♯Z. Since Fq has characteristic p, p | ♯Z holds iff

∑
x∈Fq

χ(x) = 0.

Moreover, degχ =
∑r
j=1 deg(1− f

q−1
j ) = (q − 1)

∑r
j=1 dj < (q − 1)n.

Thus, the theorem follows from the next claim: any polynomial P ∈
Fq[t1, . . . , tn] of degree less than (q − 1)n satisfies

∑
x∈Fol

q
P (x) = 0. We are
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thus only left to prove the claim. For this, observe that P ∈ Fq[t1, . . . , tn] 7→∑
x∈Fn

q
P (x) ∈ Fq is Fq-linear. Thus, it is enough to show the result for a mono-

mial ta11 · · · tann of degree less than (q − 1)n. Next, clearly,∑
x∈Fol

q
xa11 · · ·xann =

(∑
x1∈Fq

xa11

)
· · ·
(∑

x1∈Fq
xann

)
.

If a1 + . . .+ an = deg(ta11 · · · tann ) < (q − 1)n, then we must have ai < q − 1 for
some i. Thus it suffices to show that if 0 ≤ ai ≤ q − 2, then

∑
xi∈Fq

xaii = 0. If
ai = 0, then this sum is q, which is 0 in Fq. Thus, suppose that 1 ≤ ai ≤ q − 2.
The group F∗

q is cyclic, let ω be a generator. Then∑
xi∈Fq

xaii =
∑q−2
k=0(ω

k)ai = (ωai )q−1−1
ωai−1 = 0 .

This proves the theorem. ⊓⊔

D.2 Examples

Let us check some concrete examples. Note that those examples do not precisely
fall into the previous results. Some of them have il1 > 1 but this still works since
the polynomials in x1(X) are linearly independent. Moreover, KE is a privately
verifiable assumption.
SpurKE assumption Consider a variant of TotalKE, where ol1 = 1, ol2 = 0

(the adversary outputs [y]1), and the verifier performs no check. Thus

N = P ⊺
1MP 2 =

(
1 0⊺

γ ∆⊺

)⊺ · ( 1
1 0
y 0

)
· ( 1 ) = ( 0

0 ) .

Thus, from the last row of N = 0, it does not follow that ∆ = 0, and (if the
DL assumption holds) this assumption is not secure in the AGMOS.

KE assumption: verifier checks y2 −Xy1 = 0. Thus

N =P ⊺
1MP 2 =

 1 0 0⊺

0 1 0⊺

γ11 γ12 ∆⊺
1

γ21 γ22 ∆⊺
2

⊺

·

( 1 X
1 0 0
X 0 0
y1 0 −1
y2 1 0

)
· ( 1 0

0 1 ) =

(
γ21 −γ11
γ22 −γ12
∆2 −∆1

)
,

f(Γ ,∆) =
(

0 0
0 0

∆2 −∆1

)
.

Thus, from the last two rows of N being 0 it follows that ∆1,∆2 = 0 and
hence, if the DL assumption holds, KE may be secure in the AGMOS. (As
we will see later, we need to deal with the Case Q for precise implication.)
Note that here, there are no G2 queries, so f is somewhat simpler.

SpurQKE assumption: Consider a variant of TotalKE where ol1 = 2, ol2 = 1.
Denoting the outputs in G1 by y1,y3 and the output in G2 by y2, the verifier
checks y3 − y1y2 = 0. Thus,

N =

(
1 0⊺

γ11 ∆⊺
11

γ12 ∆⊺
12

) ( 1 y2

1 0 0
y1 0 −1
y3 1 0

)(
1 0⊺

γ2 ∆⊺
2

)
=
(
γ12−γ11γ2 −γ11∆⊺

2

∆12−γ2∆11 −∆⊺
11∆2

)
.
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Here, f(Γ ,∆) = 0 implies that ∆2 is zero, but it does not imply that ∆1

(and thus ∆) is zero.
PKE assumption: verifier checks y2 − y1 = 0. Thus

N =P ⊺
1MP 2 =

(
Id+1 0⊺

d+1

γ1 ∆⊺
1

)⊺
·


1 X ... Xd y2

1 0 0 0 0 1
X 0 0 0 0 0
... ... ... ... ... ...
Xd 0 0 0 0 0
y1 −1 0 0 0 0

 · ( Id+1 0⊺
d+1

γ2 ∆⊺
2

)

=

 γ21−γ11 γ22 ... γ2,d+1 ∆⊺
2

−γ12 0 ... 0 0
... ... ... ... ...

−γ1d+1 0 ... 0 0

−∆1 0 ... 0 0

 .

Thus, from f(Γ ,∆) = 0 it follows that ∆ = 0. Hence, if DL holds, PKE
may be secure in the AGMOS. (As we will see later, we need to deal with
the Case Q for precise implication.)

E Oblivious Sampling Attacks For KZG

KZG polynomial commitment scheme has a natural homomorphic property,
com(f(X))+com(g(X)) = com(f(X)+g(X)), which often gets used in practice.
We look at one example, optimizing quadratic tests, where the extractability of
the commitment may not work out. While this is just one concrete example, we
picked it since (a small variant of) t is used [GWC19,CHM+20,CFF+21,LSZ22].

We do not claim an attack on such zk-SNARKs. We will leave it as a future
work to establish which of them are secure (and one just has to rewrite the
security proofs) in the AGMOS and which need some — hopefully minor —
modifications.

Example: Quadratic Test. Most of the known pairing-based Zk-SNARK
verifiers use polynomial equality tests of the form f1(X) · f2(X) = f3(X). In
PCS-based zk-SNARKs, the naive way to test it is as follows. The prover sends
commitments [f1(x)]1, [f2(x)]1, [f3(x)]1 and the verifier responds with a random
challenge α. Then, the prover opens vi = fi(α) for i = 1, 2, 3 and checks that
v1 · v2 − v3 = 0. Since the equality is satisfied on a random point α, with an
overwhelming probability, it also holds for the polynomial equality.

The following is a common optimization of this test, first introduced
in [CHM+20] and subsequently used in almost all pairing-based zk-SNARKs.
First, the prover opens v1 just as before. For the actual test, the prover
and verifier homomorphically compute an intermediate commitment [h(x)]1 ←
v1[f2(x)]1 − [f3(x)]1 and then open this polynomial to 0 at point α. Instead of
sending v1, v2, and v3 and three opening proofs, the prover now only sends v1
and two opening proofs. (The opening proofs are usually additionally batched.)

This approach, however, has a problem with extractability. Suppose f1(X) =
c is a constant polynomial. The adversary can obliviously sample [f2]1 and then
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set [f3]1 ← c[f2]1. The adversary opens f1(X) honestly to the value v1 = f1(α) =
c. In AGMOS, one can then extract f1(X). However, for h(X), the adversary
can compute an opening proof [h(x)/(x − α)]1 = [(cf2 − cf2)/(x − α)]1 = [0]1.
As in the previous example, in AGMOS, one cannot extract f2(X) or f3(X):
instead only can only extract the polynomial cf2(X)− f3(X).

An obvious solution to this problem is to accompany the commitments of
f2(X) and f3(X) with knowledge components; however, this makes the zk-
SNARK less efficient. We will leave it an interesting open question to investigate
this problem and how it influences popular zk-SNARKs like Plonk or Marlin.
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