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Abstract. Authenticated encryption is a cryptographic mechanism that allows com-
municating parties to protect the confidentiality and integrity of message exchanged
over a public channel, provided they share a secret key. Some applications require
committing authenticated encryption schemes, a security notion that is not covered
by the classical requirements of confidentiality and integrity given a secret key. An
authenticated encryption (AE) scheme is committing in the strongest sense when it
is impossible to generate the same ciphertext for different (K, [N, ]A, P ) tuples, with
K the key, N the nonce, A the associated data and P the plaintext.
In this work, we present authenticated encryption schemes for which we provably
reduce their confidentiality, integrity and commitment security to the security of an
underlying sponge function. In particular, we instantiate them with SHAKE128 and
SHAKE256, offering 128 and 256 bits of security strength and based on the security
claim in the SHA-3 standard FIPS 202. Cryptanalysis of reduced-round versions of
SHA-3 and SHAKE functions suggests that the number of rounds can be divided
by two without noticeable security degeneration, and this had lead to the definition
of TurboSHAKE128 and TurboSHAKE256; hence we also instantiate our scheme
with these functions, offering the same security strength at twice the speed. The AE
schemes we propose therefore have the unique advantages that 1) their security is
based on a security claim that has received a large amount of public scrutiny and that
2) it makes use of the standard Keccak-p permutation that has dedicated hardware
support on more and more CPUs.
In more details, we build two online AE modes on top of a sponge function, in multiple
layers. At the bottom layer, we use a variant of the duplex construction, referred to
as overwrite duplex or OD for short, that uses an overwrite operation leading to a
smaller state footprint. Our first AE mode is nonce-based and built using a variant of
the SpongeWrap mode on top of OD, and security-equivalent to it. Our second AE
mode makes use of the Deck-BO mode published at Asiacrypt 2022, an online version
of a Synthetic Initial Value (SIV) authenticated encryption scheme. It requires a
deck function that we build on top of the OD, again security-equivalent to it.
Keywords: Committing authenticated encryption · sponge/duplex · construction ·
SHA-3 · TurboSHAKE

1 Introduction
Authenticated encryption (AE) is a cryptographic mechanism that provides both confiden-
tiality and integrity under a secret key. When a sender and a receiver hold such a secret
key K that was not shared with anyone else, then the successful decryption of a ciphertext
C authenticates the origin of the decrypted plaintext, and the receiver knows that it comes
from the legitimate sender. However, as soon as the key is leaked or under adversarial
control, we fall outside of AE’s usual definition and all bets are off. In general, AE does
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not ensure the integrity of the key, and one ciphertext C could succesfully decrypt under
two (or more) different keys.

It has been proved that there are widely used AE methods, like AES-GCM and
ChaCha20Poly1305, where one can successfully decrypt a ciphertext to different plaintexts
using different keys [GLR17]. Schemes that are susceptible to this are said to not commit
to the key. On the contrary, the property of key-commitment guarantees that a ciphertext
can only be decrypted using the same key that was used to create it. This can be
extended with the general name of committing AE to also include the inability to generate
colliding ciphertexts for different (K, [N, ]A,P ) tuples, with K the key, N the nonce, A
the associated data and P the plaintext.

Certain settings or applications require the committing property, as shown in the
following examples. Dodis et al. [DGRW18] and Grubbs et al. [GLR17] showed how to
exploit AE schemes which do not commit to the key in the context of abuse reporting
in Facebook’s end-to-end encrypted message system. When encrypting attachments in
Facebook’s message franking protocol, it is in fact possible to send abusive images that
cannot be reported. In [ADG+22], Albertini et al. study weaknesses of key rotation in key
management services, envelope encryption, and “Subscribe with Google” [Alb], due to the
lack of key commitment. In these contexts, they introduce new attacks against standardized
AE schemes, such as AES-GCM-SIV and OCB, which they turn into practical ones by
creating binary polyglots (i.e., files which are valid in two different file formats). In [CR22],
Chan and Rogaway present a new attack on GCM and OCB where, for any ciphertext C
generated under a “honest” key, the adversary can provide a legitimate decryption under
another known key. In [LGR21], Len et al. built a practical partitioning oracle attack
that recovers passwords from Shadowsocks proxy servers by exploiting the lack of key
commitment. They also discuss how some early implementations of the OPAQUE protocol,
for password-based key exchange, could be vulnerable to partitioning oracle attacks due to
using non-committing AEAD.

The notion of committing encryption was introduced in 2003 by Gertner and Herzberg [GH03],
who studied the problem in both the symmetric and asymmetric settings, but did not
consider deterministic or authenticated encryption. In 2010, Abdalla et al. [ABN10]
introduce the term robustness to denote the difficulty of producing a ciphertext valid under
two different encryption keys. Their work covers public-key and identity-based encryption
settings with honestly generated keys. Their robustness notion was then strengthened by
Farshim et al. [FLPQ13] to include robustness against adversarially-chosen keys. Farshim
et al. ported the notion of robustness to the AE setting in 2017, with the name key-
robustness [FOR17]. Later, Grubbs et al. [GLR17] and Dodis et al. in [DGRW18] defined
variants of committing AE schemes to support message franking, i.e., verifiable abuse
reporting in end-to-end encrypted message systems like Facebook’s Messenger. Grubbs et
al. [GLR17] consider committing to the header and message. Bellare and Hoang [BH22]
and Chan and Rogaway [CR22] independently and contemporarly gave a number of com-
mitting AE definitions, the strongest requiring that the ciphertext commits to key, nonce,
AD, and plaintext. Bellare and Hoang also consider multi-input committing security,
where more than two input tuples that give the same ciphertext are requested to the
attacker. More recently, Menda et al. [MLGR23] introduced a new framework that allows
to define commitment security with a better granularity in terms of what the adversary
can control. In fact, in real settings, the attacker will not have full control over the input
and will have to respect application-specific constraints. For instance, in the attack against
Facebook’s message franking protocol of [DGRW18], the attacker has to build a ciphertext
that decrypts under two input tuples with equivalent nonces. In the key rotation attack of
Albertini et al. [ADG+22], the keys must be previously imported in the key management
service and therefore cannot be freely chosen by the attacker.

Generic solutions have been presented to turn existing AE schemes into committing
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AE schemes. Some examples are the following. Farshim et al. [FOR17] propose a generic
composition which applies a collision-resistant pseudorandom function (PRF) to the entire
message or ciphertext, to achieve key-committing. As a practical instantiation, they
propose using a hash function with a key, for example HMAC or KMAC. Grubbs et
al. [GLR17] presented compactly committing AE, where a small portion of the ciphertext
commits to the message. This requires computing HMAC and AES-CTR mode over the
message. In [ADG+22], Albertini et al. propose a construction to transform any AE
scheme into a key-committing one. The solution consists in deriving a new encryption
key and a commitment string from the scheme’s key, by using a collision resistant hash
function like SHA256. An instantiation of such generic composition is deployed as part
of the AWS Encryption SDK [Ama], an open source client-side encryption library [Tri].
Chan and Rogway [CR22] also propose a generic construction that makes a nonce-based
AE scheme committing in the strongest sense. The additional computational cost is a
hash call over the tag. Bellare and Hoang [BH22] introduce two generic constructions.
The former makes use of a committing PRF, which is a generalization of a key-robust
PRF based on a block cipher. This construction however does not guarantee resistance
against nonce-misuse. The latter construction preserves misuse-resistance and makes use
of the same key-robust PRF and a collision resistant PRF. Dodis et al. [DGRW18] design
encryptment schemes as a building block to achieve compact committing AE. They give
a concrete encryptment scheme that uses a compression function and a padding scheme.
In the appendix of their work, the authors also discuss a SPongeWrap-like encryptment
scheme, but without discussing the full details.

None of these generic solutions achieves the efficiency of AES-GCM, and the majority
of them requires two passes and the use of more than one primitive.

Alternative solutions exist that aim to achieve commitment for specific schemes. One of
such solutions consists in adding a padding block to the plaintext and verify the correctness
of the key by checking the presence of such padding block upon decryption [ADG+22,
Kra19]. However the effectiveness of such padding solution is not guaranteed for every AE
scheme, but must be verified on a case-by-case basis, which was done for AES-GCM and
ChaCha20Poly1305 [ADG+22]. Moreover, Menda et al. [MLGR23] show that this padding
zeros transform, while designed to achieve key-commitment, does not achieve commitment
in the strongest sense. In [BH22], Bellare and Hoang also propose modifications to GCM
and AES-GCM-SIV to make them key-committing. With the addition of the generic
transformation cited above, they become committing in the strongest sense. However,
these solutions are intrusive, as they require modifications to GCM and AES-GCM-SIV.

1.1 Our contribution
In this work we propose two AE schemes based on the sponge functions SHAKE and
TurboSHAKE, whose collision resistance guarantees commitment security. Our schemes
have two unique advantages. The first is that their security is based on the security claim of
a NIST standard that has received a large amount of public scrutiny: the SHA-3 standard
FIPS 202 [NIS15]. The second is that they make use only of the standard Keccak-p
permutation that has dedicated hardware support on more and more CPUs (e.g., the
recent Apple™ processors).

We build our schemes in multiple layers, as depicted in Figure 1:

• At the bottom is the hashing layer that we instantiate with SHAKE and Tur-
boSHAKE.

• Then, we define a duplexing interface for SHAKE and TurboSHAKE that we call
overwrite duplex or OD. It is a duplex object that provides incremental hashing. Like
the Overwrite mode defined in [BDPV11b], the given input block overwrites part
of the state instead of being XORed into it. This is more efficient when the state
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needs to be cloned between calls, since the part of the state being overwritten does
not need to be copied. Concretely, in the case of (Turbo)SHAKE128, this means 40
bytes instead of 200.

• Finally, on top of these, we build two committing AE schemes. The first one uses
the nonce-based authenticated encryption mode that we call ODWrap and that is
similar to SpongeWrap [BDPV11b]. The second one builds upon the Deck-BO
mode [BDH+22], an online version of the SIV AE mode, using upperdeck on top of
OD.

We prove that the confidentiality, integrity and commitment security of our two AE
schemes, and the distinguishing security of the intermediate constructions, all reduce
to the security of the underlying sponge functions, i.e., SHAKE and TurboSHAKE. As
SHAKE and TurboSHAKE are resistant against inner collisions, the fact that tags in our
AE schemes are essentially hashes of all inputs makes them naturally committing.

SHAKE TurboSHAKE

overwrite duplex (OD)

upperdeck

(Turbo)SHAKE-BO
(Turbo)SHAKE-Wrap

hashing

incremental hashing

deck function

authenticated encr.

Figure 1: Hierarchy

2 Preliminaries
In this section, we first introduce our notation. Then we recall some definitions related
to authenticated encryption and the jammin cipher, our security reference. Finally we
recall SHAKE and TurboSHAKE and define how we encode our inputs and split them
into blocks.

2.1 Notation
Most strings that we consider in this work are byte strings and we denote the empty
string by ε. The byte length of a string X is denoted by |X|. The concatenation of two
strings X,Y is denoted as X||Y and their bitwise addition as X + Y , with the resulting
string having length min(|X|, |Y |). Bit values are noted with a typewriter font, such as
01101. Byte string values are noted with a typewriter font and preceded by 0x, e.g., 0x1F.
The repetition of a bit is noted in exponent, e.g., 03 = 000. Similarly, for bytes, e.g.,
0x003 = 0x000000. In a sequence of m strings, we separate the individual strings with a
comma, i.e., x1, x2, . . . xn. Finally, ⊥ denotes an error code.

2.2 AE and the jammin cipher
A nonce-based authenticated encryption scheme with associated data (AD) is usually
specified as a pair of algorithms (wrap, unwrap). wrap is a deterministic function that takes
as input a 4-tuple (K,N,A, P ) with key K, nonce N , associated data A, and message P ,
and outputs a ciphertext C. The ciphertext C includes the tag and hence has size |P |+ τ ,
where τ is called expansion or tag length in bytes. unwrap takes a 4-tuple (K,N,A,C)
and returns a plaintext P or an error ⊥. A scheme is called correct if

unwrap(K,N,A, wrap(K,N,A, P )) = P
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for any tuple (K,N,A, P ). The separation between a nonce and A is for many schemes an
artificial one and one may merge the nonce N into the associated data A. In this, simpler,
representation the nonce data element is transformed into a nonce requirement, namely
that the A field shall be unique for each plaintext P for a given key K.

The typical formulation of security notion for an AE scheme requires an adversary to
distinguish between two oracles. The first one, in the real world is the AE scheme. The
second one, in the ideal world outputs random responses. In a wrap query with (A,P ), the
real oracle returns wrap(K,A,P ) while the ideal oracle returns a random string of |P |+ τ
bytes (with τ = t/8 and t the tag length in bits). In this work, we will use the jammin
cipher as ideal model [BDH+22].

The aim of the jammin cipher is to serve as an ideal-world model when proving or
claiming a distinguishing bound for AE schemes, including if they support sessions. In
modern applications, parties do not limit to exchange individual messages, but usually
have to encrypt and authenticate sequences of messages in bi-directional communications.
A session deals with the authentication of such sequences of messages by intermediate tags,
which ensure that a message is authenticated in the context of previously sent messages.
Also, the support for sessions allows using it as an online AE scheme: a long message can
be split in chunks that are encrypted separately, and each ciphertext authenticates the
partial message decrypted up to that point. Note that any session-supporting AE can also
naturally work in a non-session mode by limiting the sessions to a single message A,P .

The jammin cipher is parameterized by a ciphertext expansion function WrapExpand(),
which here we specify as always adding t = 8τ bits as tag, hence WrapExpand(p) = p+ t.
It supports bi-directional communication with wrap and unwrap calls in any order, and it
achieves the highest possible security, i.e., the cryptograms it produces are as random as
injectivity allows, while behaving deterministically, meaning equal inputs give same output.
More details about the jammin cipher can be found in [BDH+22] and in Appendix A.

In the jammin cipher, the encryption context of a wrap query is the sequence composed
of the (A,P ) inputs received during the previous wrap and unwrap queries and of the A
value of the current wrap query. Also, we say that the encryption context is a nonce iff all
wrap queries with non-empty plaintext have a different encryption context.

For some AE modes a strong bound on the distinguishing advantage from the jammin
cipher can be proven without a nonce requirement. Such modes will leak information due
to the fact that equal ciphertexts with equal encryption contexts indicate equal plaintexts.
Other AE modes require the associated data A of the first message of a session to be a
nonce for a provable strong bound on the distinguishing advantage from the jammin cipher.
They are usually more efficient but the consequences of nonce violation are more serious.
In the sequel, we define one scheme on which we put a nonce requirement, while for the
other we do not.

2.3 SHAKE and TurboSHAKE

SHAKE128 and SHAKE256 are two eXtendable Output Functions (XOF) standardized
by NIST in [NIS15]. They are defined on top of the Keccak[c] sponge function. Both
internally use the permutation Keccak-p[1600, nr = 24] and are parameterized by the
capacity c. The capacity determines the security strength level as well as the efficiency
since the number of bits a sponge function can absorb or squeeze per call to the underlying
permutation is r = b− c. Here, b is the permutation width and r the (bit) rate, and we
denote with R = r/8 the rate in bytes. In particular, this is c = 256 for SHAKE128 and
c = 512 for SHAKE256, giving (byte) rates of R = 136 and R = 168, respectively.

An instance of SHAKE takes as input a variable length string M and an output length
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d and appends four bits to M before processing it. In particular,

SHAKE128(M,d) = Keccak[256](M ||1111, d) and
SHAKE256(M,d) = Keccak[512](M ||1111, d) .

TurboSHAKE is a family of XOFs that was originally introduced for use in Kanga-
rooTwelve [BDP+18] and later formally defined in [BDH+23]. As SHAKE, it is param-
eterized by the capacity c and is based on the permutation Keccak-p[1600, nr] but with
nr = 12 rounds.

It was introduced with the aim of having a more efficient version of Keccak. We
consider two instances: TurboSHAKE128 with c = 256 and TurboSHAKE256 with c = 512.

An instance of TurboSHAKE takes as input a message M , that is a byte string of
variable length and a domain separator parameter D, a byte with value in the range
[0x01, . . . , 0x7F]. The function processes these two inputs as follows. It appends the byte
D to M and pads the resulting string with the minimum number of bytes 0x00 until
M ′ = M ||D||0x00∗ has length a multiple of the rate R. Then it bitwise adds the byte
0x80 is to the last byte of M ′.

2.4 Byte strings and trailers
In most real-world use cases keys, plaintexts, tags or associated data that are strings of
bytes. Nevertheless, as we go down the stack of our constructions as depicted in Figure 1,
the need for domain separation may require us to go down to the bit level and consider
strings that have a length that is not a multiple of 8.

In this paper, we distinguish between payload strings, made of bytes, and trailers
that are bit strings of length at most 7 bits; We encode trailers in single bytes and
compactly specify constant trailers as an integer value, similarly to the approach taken in
the definition of TurboSHAKE’s domain separation byte D [BDH+23]. For a n-bit trailer
e = (e0, e1, . . . , en−1), we define its integer equivalent E = padint(e), with

padint(e) = 2n +
n−1∑
i=0

2iei .

For instance, padint(ε) = 1 and padint(011) = 14. The inverse function, unpad(S),
interprets the binary representation of S ≥ 1 as a string of bits, from the least to the
most significant bit, and removes the last bits ‘0’ of S, if any, then the last bit ‘1’.

Representing a trailer with an integer value, sufficiently small to fit in a byte, makes
descriptions match implementations closely. A byte representing a trailer can be easily
integrated into a byte string. The length of the trailer is unambigous: Using the padint
function works like padding with the pattern 10∗, where the padding bit ‘1’ comes from
the 2n term. In some cases, this padding may even coincide with padding requirements in
lower levels, thereby simplifying layered descriptions.

Two layers may need to add trailers for domain separation. An easy case is when the
lower layer prepends a bit e to a trailer, represented as the integer E, that come from
the upper layer. The resulting trailer is represented as E′ = padint(e||unpad(E)), which
simplifies to E′ = e+ 2E. For simplicity, in the sequel, we do not distinguish between a
trailer as a short string of bits and its integer representation.

2.5 Parsing into blocks
In several places we need to split byte strings into a sequence of blocks short enough to
serve as input to a duplexing call. We specify our algorithm to do that in Algorithm 1.
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Algorithm 1 Functions to parse byte strings into block sequences
Definition of parse(X, `1, `2)
Input: Byte string X, length `1, and length `2
Output: sequence x of blocks x1, x2, . . . x|x| of at least one block
Split X into a first block of `1 bytes and remaining blocks of `2 bytes. The last block
may be shorter than `1 if |x| = 1, and shorter than `2 if |x| > 1.

3 Duplexing (Turbo)SHAKE
In this section, we define the overwrite duplex (OD) interface to sponge functions, and
in particular for the SHAKE and TurboSHAKE XOFs. It is the lower layer on top of
which we will build our authenticated encryption schemes. In a nutshell, the OD object is
stateful and provides incremental hashing.

The OD construction combines the ideas of the duplex and overwrite constructions,
both introduced in [BDPV11b]. Similarly to the duplex construction, the caller can invoke
it as many times as needed with a length-bounded string, and each time the object produces
a digest of the sequence of strings received so far. Unlike the duplex construction, however,
the (payload) input block overwrites the state instead of being XORed into it.

We define the OD construction in terms of the permutation underlying the corresponding
sponge function and prove that the security strength of OD and of sponge are equal.

3.1 Specification of the OD interface
The OD object is parameterized with a permutation f , a block length ρ (in bytes) and a
capacity c (in bits). For SHAKE and TurboSHAKE, f is Keccak-p[1600] with 24 or 12
rounds, respectively. The capacity is c = 256 for 128-bit security strength and c = 512 for
256-bit security strength. Finally, ρ = (1600− c− 64)/8.

An OD object can be created by initializing it with a secret key K or by cloning another
OD object. There are two cloning methods, one that discards the outer part and one that
does not. It supports incremental hashing by means of duplexing calls, where each call
takes as input a block and a trailer (B,E), with |B| ≤ ρ and E ∈ {1, . . . , 63}, and returns
up to ρ bytes of output. The output of duplexing call depends on the sequence of blocks
and trailers (Bi, Ei) received so far. The OD object keeps track of what it returned and
the squeezeMore method allows returning more output in between duplexing calls. See
Figure 2 for an illustration.

Algorithm 2 defines the OD construction and uses the following conventions. For an
input block B shorter than ρ bytes, let pad10∗(B) be padding of B to the block length
ρ bytes: pad10∗(B) = B||0x01||0x00∗ such that the resulting string has ρ bytes. We do
not pad an input block B of exactly ρ bytes, but we distinguish between padded and
not-padded blocks in the domain separator byte D, namely, D = 2E in the former case
and D = 1 + 2E in the latter.

While a duplexing call overwrites the state with the (padded) input block, it XORs
the input trailer after applying to it an encoding function trailenc(). The trailer encoding
function is specific for the underlying sponge functions. For TurboSHAKE, we define it as

TurboSHAKE: trailenc(D) = D||0x006||0x80 .

The format of trailenc(D) is chosen so as to match that TurboSHAKE’s domain separation
byte and padding, see Theorem 1 for more details. For SHAKE, this is slightly different
to account for the suffix 1111 that FIPS 202 appends to the input string: We define the
encoding function as

SHAKE: trailenc(D) = D||0x1F||0x005||0x80 ,
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since padint(1111) = 0x1F.

0

0

f f f

B1

E1∥0c

Z1 B2

E2∥0c

Z2

· · ·

Bn

En∥0c

Zn Zn+1 Zn+2 Zn+3

· · ·

init duplexing duplexing duplexing
squeeze
more

squeeze
more

squeeze
more

Figure 2: Illustration of the OD construction. Note that neither the padding of the input
blocks Bi nor the encoding of the trailer Ei is explicitly depicted in this figure, please see
Algorithm 2 for more details on this.

Algorithm 2 Definition of od[f, ρ, c]
Parameters: b-bit permutation f , payload byte rate ρ and capacity c

Interface OD.initialize()
Initialize OD’s attributes s← 0b = 0x00b/8 and o← ρ

Interface OD.duplexing(B,E, `) with |B| ≤ ρ, E ∈ {1, . . . , 63} and ` ≤ ρ
if |B| = ρ then
Replace the first ρ bytes of s with B
XOR the next bytes of s with trailenc(1 + 2E)

else
Replace the first ρ bytes of s with pad10∗(B)
XOR the next bytes of s with trailenc(0 + 2E)

s← f(s)
return the first ` bytes of s, then set o← `

Interface OD.squeezeMore(`) with ` ≤ ρ− o
return ` bytes of s starting from offset o, then update o← o+ `

Interface OD.clone()
return a new od[f, ρ, c] object initialized with (s, o) = (OD.s,OD.o)

Interface OD.cloneCompact()
return a new od[f, ρ, c] object initialized with s = OD.s except the first ρ bytes that
are set to 0x00 and with o = ρ

3.2 Equivalence to (Turbo)SHAKE
We here show that any output of an od[f, ρ, c] object with f = Keccak-p[1600, nr = 12]
can be obtained by calls to TurboSHAKE[c] with an input that can be formed from the
strings absorbed and squeezed by the OD object. This means that any attack on the OD
object translates to an attack on the TurboSHAKE instance and hence they are
security-equivalent. We focus on TurboSHAKE128, but the proofs for TurboSHAKE256,
SHAKE128 and SHAKE256 are essentially the same.
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The output of an OD object to the n-th duplexing call is fully determined by
the sequence of inputs (B1, E1, . . . , Bn, En) that it received in the n duplexing calls
OD.duplexing(Bi, Ei, `i) since its initialization with OD.initialize(). The output of any
intermediate OD.squeezeMore(`) calls can be seen as the delayed output of the most recent
duplexing calls. Moreover, the output lengths `i ≤ ρ for i < n do not influence the
output of the n-th duplexing call. Without loss of generality, we therefore treat the case
of full-block outputs, that is, output blocks of ρ bytes.

Theorem 1. The full-block output of the n-th duplexing call to OD is the ρ-byte output of
TurboSHAKE128 applied to an input that is an injective mapping of (B1, E1, . . . , Bn, En).

Proof. We first preprocess the sequence (B1, E1, . . . , Bn, En) by applying the padding to
blocks Bi shorter than ρ bytes and transforming Ei accordingly, as the OD object does
during duplexing calls. We call the resulting sequence (β1, D1, . . . , βn, Dn). More precisely,
if |Bi| < ρ, βi ← pad10∗(Bi) and Di = 0 + 2Ei. Otherwise βi ← Bi and Di = 1 + 2Ei. As
the parity of Di indicates whether padding was applied and the padding itself is injective,
this mapping is injective.

We denote by TS(M,D) the output of TurboSHAKE128 with byte string M and trailer
D as inputs, truncated to its first ρ bytes, and by OD(β1, D1, . . . , βn, Dn) the full-block
output of OD to the preprocessed input sequence (β1, D1, . . . , βn, Dn).

We first prove the theorem for n = 1: we express OD(β1, D1) as TurboSHAKE128
applied to an input that is an injective mapping of (β1, D1) and then proceed recursively.

Before the first duplexing call the state of the OD object is all-zero and overwriting equals
XORing. We XOR β1||D1, in total ρ+1 bytes, that fits in a single b−c-bit block. From the
TurboSHAKE128 specifications, we see that for a single-block OD(β1, D1) = TS(β1, D1).
Clearly, the mapping from (β1, D1) to the TurboSHAKE128 input is injective.

For the second duplexing call, we need to take into account a major difference between
the OD object and the plain sponge construction underlying TurboSHAKE: The former
overwrites the input block in the state, while the latter XORs it. Referring to [BDPV11b],
overwriting the (outer part of) the state is actually equivalent to first XORing the block
with the previous output and then XORing the result into the state. This can be expressed
as follows: OD(β1, D1, β2, D2) = TS(β1||trailenc(D1)||(β2 ⊕OD(β1, D1)), D2).

We can continue recursively. Let O(β1) = β1 and

O(β1, D1, . . . , βn) = O(β1, D1, . . . , βn−1)||trailenc(Dn−1)
||(βn ⊕OD(β1, D1, . . . , βn−1, Dn−1)).

Then OD(β1, D1, . . . , Dn) = TS(O(β1, D1, . . . , βn), Dn).
We can now finish the proof with the recursion on the injectivity of the input map-

ping to the TurboSHAKE128 input and so by proving that if (β1, D1, . . . , βn−1, Dn−1) →
(O(β1, D1, . . . , βn−1), Dn−1) is injective, then (β1, D1, . . . , βn, Dn)→ (O(β1, D1, . . . , βn), Dn)
is injective too. By assumption, any difference in the first n− 1 components of the map-
ping’s input necessarily leads to a difference in the mapping’s output, so let us consider
the case of two inputs that have the same first n− 1 components. In this case, the value
OD(β1, D1, . . . , βn−1, Dn−1) is fixed, and XORing βn with it preserves the injectivity.

3.3 PRF security
In our constructions, we always input a key in the first duplexing call of an OD object and
use it as a PRF of the subsequent inputs. Referring to Theorem 1, having a key in the
first duplexing call is equivalent to calling the underlying sponge function with the key as
a prefix. Distinguishing the keyed OD from a random oracle is therefore upper bounded
by the sum of two distinguishing advantages:
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• guessing the key correctly—this is upper bounded by N/2k with N the time com-
plexity expressed in the (equivalent) number of calls to the permutation and k the
length of the key in bits;

• distinguishing the keyed sponge function from a random oracle—following the claimed
security of (Turbo)SHAKE, this is upper bounded by M2/2c+1 with M the data
complexity expressed in input and output blocks.

4 (Turbo)SHAKE-Wrap
In this section we specify nonce-based authenticated encryption schemes based on the
ODWrap mode. We first specify it and discuss its distinguishing advantage from the
jammin cipher and its committing security.

4.1 Specification of ODWrap
In Algorithm 3, we specify the nonce-based session-supporting authenticated encryption
mode ODWrap on top of OD. This mode is inspired by spongeWrap defined in [BDPV11b]
and is illustrated in Figure 3.

Upon initialization, the underlying OD object is loaded with a secret key K. A wrap
call takes as input associated data A and plaintext P and returns a ciphertext C of |P |+ τ
bytes, with τ the tag length in bytes. An unwrap call takes as input associated data A
and ciphertext C with |C| ≥ τ and returns a plaintext P of |C| − τ bytes or an error ⊥ in
case the ciphertext is not authentic. Before unwrapping, a clone is made of the OD object,
allowing a roll-back in case of an invalid cryptogram.

Each ciphertext authenticates all previous messages in the session since initialization.
Both A and P can be empty, leading to 4 cases. If P is empty, the ciphertext is basically
a tag of length τ . For confidentiality it is important that the sequence of A strings before
the first plaintext P is each time different for a given key K.

A wrap call first splits the A and P in sequences of blocks of ρ or less and absorbs
them in a number of serial duplexing calls of the underlying OD object, where the trailer
is used to indicate type of block and the purpose of the corresponding OD output. As a
matter of fact, instead of absorbing the blocks of P , it first encrypts the block by adding
to it the output of the previous duplexing call and absorbs the resulting ciphertext blocks
instead. After absorbing the complete ciphertext, the first τ bytes of OD output serves as
tag.

If there is no A in a message, it encrypts the first block of the plaintext by the output
of the last duplexing call of the previous wrap call (or the init call). As that was already
used for tag generation, this block will be at most ρ− τ bytes long.

0

0

f f f f f f f

K

1∥0c

a1

2∥0c · · ·

a|a|

3∥0c

p1

c1

4∥0c

p2

c2

4∥0c

p3

· · · 4∥0c

c|p|−1

p|p|

c|p|

5∥0c

T

Figure 3: Illustration of the ODWrap mode merged with the underlying OD construction.
This figure shows a first call W.initialize(K) and then W.wrap(A,P ). Neither the padding
of the input blocks nor the encoding of the trailers is explicitly depicted in this figure.
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Algorithm 3 Definition of ODWrap[OD object with ρ, t].
Require: OD = od[f, ρ, c]

Interface: W.initialize(K) with K ∈ Z∗2
OD.initialize()
OD.duplexing(K, 1, 0)
τ = t/8

Interface: C ←W.wrap(A,P )
a← parse(A, ρ, ρ)
if (|A| > 0) AND (|P | > 0) then

p← parse(P, ρ, ρ)
for i = 1 to |a| − 1 do OD.duplexing(ai, 2, 0)
c1 ← p1 + OD.duplexing(a|a|, 3, |p1|)
for i = 2 to |p| do ci ← pi + OD.duplexing(ci−1, 4, |pi|)
T ← OD.duplexing(c|p|, 5, τ)

else if (|A| = 0) AND (|P | > 0) then
p← parse(P, ρ− τ, ρ)
c1 ← p1 + OD.squeezeMore(|p1|)
for i = 2 to |p| do ci ← pi + OD.duplexing(ci−1, 4, |pi|)
T ← OD.duplexing(c|p|, 5, τ)

else
for i = 1 to |a| − 1 do OD.duplexing(ai, 2, 0)
T ← OD.duplexing(a|a|, 6, τ)

return C, the concatenation of c (empty if |P | = 0) and T

Interface: P ←W.unwrap(A,C), may return ⊥
if (|C| < τ) then return ⊥
OD′ ← OD.clone()
(C ′||T )← C with |T | = τ
a← parse(A, ρ, ρ)
if (|A| > 0) AND (|C| > τ) then

c← parse(C ′, ρ, ρ)
for i = 1 to |a| − 1 do OD.duplexing(ai, 2, 0)
p1 ← c1 + OD.duplexing(a|a|, 3, |c1|)
for i = 2 to |c| do pi ← ci + OD.duplexing(ci−1, 4, |ci|)
T ′ ← OD.duplexing(c|c|, 5, τ)

else if (|A| = 0) AND (|C| > τ) then
c← parse(C ′, ρ− τ, ρ)
p1 ← c1 + OD.squeezeMore(|c1|)
for i = 2 to |c| do pi ← ci + OD.duplexing(ci−1, 4, |ci|)
T ′ ← OD.duplexing(c|c|, 5, τ)

else
for i = 1 to |a| − 1 do OD.duplexing(ai, 2, 0)
T ′ ← OD.duplexing(a|a|, 6, τ)

if T = T ′ then
return P , the concatenation of p (empty if |C| = τ)

OD← OD′
return ⊥
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4.2 Indistinguishability from the jammin cipher
The security strength of ODWrap is defined by the advantage of distinguishing it from
the jammin cipher when keyed with an unknown uniformly selected k-bit key. When an
adversary can start multiple sessions with first wrap calls that have the same associcated
data A but different single-block plaintexts P , ODWrap can be immediately distinguished
from the jammin cipher as the keystream used for encrypting the different plaintexts P is
the same, and therefore P + C is the same for all these messages. For the jammin cipher
this is extremely unlikely to happen. Therefore, for its security, ODWrap requires the A
of the first wrap call of all sessions with the same K to be unique, hence a nonce.

The distinguishing advantage is upper bound by the sum of two distinguishing advan-
tages:

• between ODWrap when instantiated with a random oracle instead of (Turbo)SHAKE
and the jammin cipher;

• between (Turbo)SHAKE where the input starts with a secret key K and a random
oracle.

It is easy to see that the distinguishing advantage between ODWrap when instantiated
with a random oracle and the jammin cipher is upper bound by qforge/2t with qforge the
number of forgery attempts. In short, each call to the underlying random oracle has a
different input string thanks to the domain separation bits and the fact that the A of the
first wrap call is a nonce. Therefore all keystreams and tags are uniformly random and
therefore also all ciphertexts C. The only way to distinguish it from the jammin cipher
is by a successful forgery: attempting to unwrap a cryptogram that was not generated
in a call to wrap. As the tag has t bits and all tags are uniformly random, the success
probability for each attempt is 2−t. After qforge attempts, this is upper bound by qforge/2t.
We summarize this in Theorem 2.
Theorem 2. Let D be any fixed deterministic adversary whose goal is to distinguish
(Turbo)SHAKE-Wrap keyed with an unknown uniformly selected k-bit key from J +t, the
jammin cipher with WrapExpand(p) = p+ t. If in the queries of D the encryption context
is a nonce, then the advantage is

∆D((Turbo)SHAKE-Wrap ; J +t) ≤ qunwrap
2t + N

2k + M2

2c+1

with qunwrap the number of unwrap calls D makes, N the time complexity expressed in the
(equivalent) number of calls to the permutation, and M the data complexity expressed in
input and output blocks.

4.3 Committing security
In (Turbo)SHAKE-Wrap the tag is the result of hashing an injective encoding of all input
data received up to that moment. As long as there are no collisions in the tag, the output
commits to all inputs. The committing resistance of (Turbo)SHAKE-Wrap is therefore
given by the security strength against collisions, which is t/2 bits for a tag length of t bits.
Therefore, for tag length t = 256, the scheme guarantees a committing security strength of
128 bits and for tag length t = 512, the scheme guarantees committing security strength of
256 bits. If for a given application less committing security strength is considered sufficient,
a smaller tag length can be chosen, say t = 160 for 80 bits of security.

Note that considering the collisions resistance of the underlying hash function gives us
the strongest notion of committing AE. There may be cases where an attacker must find a
second interpretation of a given, fixed, ciphertext. In that case, the requirement for the
underlying hash function is rather second preimage resistance, and the tag length can be
equal to the security strength level.
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5 The upperdeck construction
In this section, we define a construction to build a deck function on top of OD called
upperdeck and discuss its security.

5.1 Specification of upperdeck
A doubly-extendable cryptographic keyed (deck) function is a keyed primitive that natively
supports variable input and output lengths [DHVV18]. Examples of deck functions are
Kravatte [BDH+17] and Xoofff [DHVV18], two instances of the Farfalle construc-
tion [BDH+17] based on the Keccak-p and Xoodoo permutations, respectively. One of
the main properties of deck functions is incrementality: the cost of computing F (X,Y )
depends only on the processing of Y if F (X) was previously computed. The incrementality
property of deck functions allows to support sessions in a natural way.

In Algorithm 4, we define an interface for a deck function built on top of OD. The
deck function is parametrized with the OD object OD. Upon initialization the key K is
absorbed with a duplexing call with block B = K and trailer E = padint(ε) = 1. Then,
the user can absorb an arbitrarily long string and squeeze as many bits as needed, via a
sequence of calls to the underlying duplex object. This is illustrated in Figure 4.

The input string is given as a byte string X and a trailer E, which typically contains
domain separation bits coming from the higher level. The string X is first split into blocks
x1, x2, . . . , xn such that X = x1||x2|| . . . ||xn. The size of each block is ρ except for the last
block that can be shorter. Therefore, n = d|X|/ρe. Each block is processed by a duplexing
call, with block Bi = xi and with a domain separation bit that indicates whether the
current block is the last one of the input string (bit 1) or not (bit 0). Together with the
last block, we also absorb the trailer E. More formally, we make duplexing calls with
E′ = padint(0) = 2 for i < n and E′ = padint(1||unpad(E)) = 1 + 2E for the last block.
When the last block is absorbed, at most ρ bytes are squeezed. More output bits can be
obtained via duplexing calls with empty blocks and trailer E′ = padint(0) = 2.

We also specify a clone function that limits the copy to the last b/8− ρ bytes of the
state via a call to OD.cloneCompact().

0
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f f f f f f

K

1∥0c

x1

2∥0c · · ·

x|x|−1

2∥0c

x|x|

1+2E∥0c

Y1 ϵ

2∥0c

Y2

· · ·

ϵ

2∥0c

Ym

Figure 4: Illustration of the upperdeck mode merged with the underlying OD construction.
This figure shows the call to F.initialize(K), followed by F.absorbAndSqueeze(X,E, `)
that returns Y . The value T is 1 + 2E. Again, neither the padding of the input blocks nor
the encoding of the trailers is explicitly depicted in this figure.

5.2 Security analysis
We consider adversaries that aim at distinguishing between the instantiation of a construc-
tion using a fixed underlying function (e.g., (Turbo)SHAKE), keyed with a secret and
uniformly chosen k-bit key, and a random oracle. The distinguishing advantage between
an upperdeck instance and a random oracle can be reduced to that of distinguishing an
OD from a random oracle, which is given in Section 3.3. This follows from the fact that
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Algorithm 4 Definition of upperdeck
Parameters: overwrite duplex object OD = od[f, ρ, c]

Interface: F.initialize(K)
OD.initialize()
OD.duplexing(K, 1, 0) // 1 encodes ε

Interface: F.absorbAndSqueeze(X,E, `) returns Y
x← parse(X, ρ, ρ)
for i = 1 to |x| − 1 do

OD.duplexing(xi, 2, 0)
Y ← OD.duplexing(x|x|, 1 + 2E,min(`, ρ))
while |Y | < ` do
Y ← Y ||OD.duplexing(ε, 2,min(`− |Y |, ρ))

return Y

Interface: F.clone() returns F ′
return a new deck object F ′ initialized with OD.cloneCompact()

in upperdeck the sequence of input strings (i.e., byte strings and trailers) is injectively
converted to a sequence of input blocks and trailers.

6 (Turbo)SHAKE-BO
In this section, we define the (Turbo)SHAKE-BO session-supporting AE scheme on top of
an upperdeck instance, and provide security reductions for it.

6.1 Specification of (Turbo)SHAKE-BO
In Algorithm 5, we specify (Turbo)SHAKE-BO on top of the upperdeck construction
instanciated with (TurboSHAKE). This scheme follows the Deck-BO mode, the simplest
of the four robust modes presented in [BDH+22]. It is based on the Synthetic Initial Value
(SIV) approach [RS06] and supports sessions.

Algorithm 5 follows the specifications of Deck-BO given in [BDH+22], although we
make explicit the steps of the Feistel network inside it, we use the interface of upperdeck
and we put the domain separation bits in the trailers (see Section 2.4). This is illustrated
in Figure 5.

An instance of Deck-BO is parameterized with the deck function F and the tag length
in bytes τ . Upon initialization, the deck function F is initialized with the key K. A wrap
call takes as input (possibly empty) associated data A and plaintext P . As output, it
gives a ciphertext Z, that encrypts P , and an authentication tag T of τ bytes. The tag is
generated by absorbing A and P , if non-empty, and by squeezing the first τ bytes of the
state. The tag T is thus a pseudorandom function of A and P (and all previous messages)
and is also used as a synthetic diversifier to produce the keystream used to encrypt P .
Domain separation bits are used to distinguish between associated data and plaintext,
as well as between the generation of tag and keystream. To compute the keystream, the
state is cloned but, taking advantage of the overwrite property of the duplex object, only
b/8− ρ bytes of the state must be copied. Upon unwrap, a copy of the state is used to be
able to go back to the original state in case of failure. If the procedure succeeds then the
state is updated with the working copy.
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Figure 5: Illustration of the Deck-BO mode merged with the underlying upperdeck
mode and the OD construction. This figure shows the call to Q.initialize(K), followed
by Q.wrap(A,P ) that returns C. Again, neither the padding of the input blocks nor the
encoding of the trailers is explicitly depicted in this figure.

6.2 Indistinguishability from the jammin cipher
The security strength of (Turbo)SHAKE-BO is defined by the advantage of distinguishing
it from the jammin cipher when keyed with an unknown uniformly selected k-bit key. This
distinguishing advantage is upper bound by the sum of two distinguishing advantages:

• between Deck-BO when instantiated with a random oracle as deck function and the
jammin cipher;

• between upperdeck instantiated with (Turbo)SHAKE whose first block is a secret
key K and a random oracle.

The first is covered by the proven bound for Deck-BO given in [BDH+22, Theorem 3]
which is the probability of a successful forgery plus the probability of tags colliding. In a
forgery attempt, for any unwrap call that the adversary makes, the tag is compared with
a tag generated with the underlying random oracle. This is a uniformly generated string,
and the probability that is equal to the tag is 2−t. For qunwrap unwrap calls, this gives
qunwrap

2t . Tags collision happens with probability 2−t ·
(
q
2
)
for q wrap calls. If we consider at

most σ(context) wrap queries with the same context, this gives
∑

context
(σ(context)

2 )
2t .

Combining the reasoning in Sections 3.3 and 5.2, the second is N
2k + M2

2c+1 , with N the
number of offline calls to the permutation and M the data complexity expressed in input
and output blocks.

We capture the security of (Turbo)SHAKE-BO in Theorem 3 by adding these two
advantages.

Theorem 3. Let D be any fixed deterministic adversary whose goal is to distinguish
(Turbo)SHAKE-BO keyed with an unknown uniformly selected k-bit key from J +t (the
jammin cipher with WrapExpand(p) = p+ t). Assume that the (Turbo)SHAKE instance
stands by its claimed security [BDPV11a, BDH+23]. Then its advantage is

∆D((Turbo)SHAKE-BO ; J +t) ≤ qunwrap
2t +

∑
context

(
σ(context)

2
)

2t + N

2k + M2

2c+1

with qunwrap the number of unwrap calls that D makes, σ(context) the number of wrap queries
with P 6= ε for a given context value, N the number of offline calls to Keccak-p[1600],
and M the data complexity expressed in input and output blocks.

6.3 Committing security
The committing strength of (Turbo)SHAKE-BO is given by the (in)ability of generating
tag collisions. By construction, the tag is computed as the hash of all input data via
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Algorithm 5 Definition of (Turbo)SHAKE-BO
Parameters: deck function F , expansion length τ

Interface: Q.initialize(K)
F.initialize(K)

Interface: Q.wrap(A,P ) returning C
if |P | = 0 then
return C ← F.absorbAndSqueeze(A, 4, τ) // 4 encodes 00

if |A| 6= 0 then
F.absorbAndSqueeze(A, 5, 0) // 5 encodes 10

F ′ ← F.clone()
T ← F.absorbAndSqueeze(P, 14, τ) // 14 encodes 011
Z ← P + F ′.absorbAndSqueeze(T, 13, |P |) // 13 encodes 101
return C ← Z||T

Interface: Q.unwrap(A,C) returning P or ⊥
if |C| = τ then
F ′ ← F.clone()
P ← ε
C ′ ← F ′.absorbAndSqueeze(A, 4, τ) // 4 encodes 00
if C ′ 6= C then return ⊥

else if |C| > τ then
parse C as Z||T with |T | = τ
F ′ ← F.clone()
if |A| 6= 0 then
F ′.absorbAndSqueeze(A, 5, 0) // 5 encodes 10

F ′′ ← F ′.clone()
P ← Z + F ′′.absorbAndSqueeze(T, 13, |Z|) // 13 encodes 101
T ′ ← F ′.absorbAndSqueeze(P, 14, τ) // 14 encodes 011
if T ′ 6= T then return ⊥

else return ⊥
F ← F ′

return P

(Turbo)SHAKE. Therefore, the committing security strength is given by the minimum of
c/2 and t/2, half the tag length t. In (Turbo)SHAKE, c = 256 or 512, and if we choose
t ≥ c this guarantees a committing security strength of 128 and 256 bits, respectively.

7 Performance
In this section, we discuss the performance of the different schemes, {TurboSHAKE,SHAKE}
× {128, 256} × {-Wrap, -BO}. Giving performance for various platforms would never be
exhaustive, so instead we express the cost relative to that of hashing with the standard
function SHAKE128. We focus on the cost for long messages, i.e., the slope for increasing
sizes of associated data, plaintext or ciphertext. Also, we make the assumption that the
evaluation of the permutation dominates the cost.

Table 1 evaluates the cost of the different schemes under these assumptions, and we
now explain where the values come from.

Let us first discuss the relative cost of the OD layer. SHAKE128 processes input and
output blocks of 168 bytes per call to the permutation, whereas ρ = 160 bytes and ρ = 128
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Table 1: Cost of the different schemes relative to SHAKE128.

. . . -Wrap . . . -BO
A P or C

TurboSHAKE128 0.525 0.525 1.050
TurboSHAKE256 0.656 0.656 1.313

SHAKE128 1.050 1.050 2.100
SHAKE256 1.313 1.313 2.625

bytes for OD on top of (Turbo)SHAKE128 and (Turbo)SHAKE256, respectively. Due to
OD’s smaller payload block size, this induces a relative cost of 168/160 = 1.05 for OD on
top of SHAKE128 and of 168/128 = 1.3125 with SHAKE256. Due to their lower number
of rounds, the "Turbo" variants benefit from a factor-2 speed-up, so the cost is divided
by 2 in these cases.

Next, we discuss the relative cost of ODWrap. This mode requires only one pass of
the associated data, plaintext or ciphertext. Thanks to the duplexing, producing keystream
blocks does not induce any extra costs. Associated data, plaintext or ciphertext blocks
translate directly to OD’s payload blocks, so the long-message performance of ODWrap
is the same as that of the OD layer.

Finally, we discuss the relative cost of Deck-BO. This mode needs one pass of the deck
function to process the associated data. Here again, associated data blocks from Deck-BO
translate directly to OD’s payload blocks. However, it needs two passes to process the
plaintext or ciphertext, so the cost per plaintext or ciphertext byte is twice that of the
underlying OD.

8 Conclusions
Recent works have highlighted the importance of committing security guarantees for
authenticated encryption schemes in some real-world settings and applications. Widely
used schemes, including AES-GCM and ChaCha20Poly1305, have been proved to not
commit to the key or the other inputs.

In this work we introduce session-supporting authenticated encryption schemes with
inherent committing properties. Our schemes are in fact based on incremental hashing
of all inputs. Specifically, they are based on SHAKE and TurboSHAKE, whose collision
resistance properties guarantee committing security in a natural way. Besides committing
security, the proposed schemes have strong indistinguishably properties based on the
security claim in the SHA-3 standard.

Our schemes have also some implementation advantages. They require a single primitive
in contrast to other committing solutions which usually require two. The underlying
permutation is standard and there is an increasing number of hardware support for it.
The definition of the overwrite duplex object allows smaller state footprint during clone
functions, i.e., 40 bytes instead of 200 for (Turbo)SHAKE128 and 72 instead of 200 for
(Turbo)SHAKE256.
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A The jammin cipher, an ideal-world AE scheme

Algorithm 6 The jammin cipher JWrapExpand(p)

1: Parameter: WrapExpand, a t-expanding function
2: Global variables: codebook initially set to ⊥ for all, taboo initially set to empty

3: Instance constructor: init(ID)
4: return new instance inst with attribute inst.history = ID

5: Instance cloner: inst.clone()
6: return new instance inst′ with the history attribute copied from inst

7: Interface: inst.wrap(A,P ) returns C
8: context← inst.history;A
9: if codebook(context;P ) = ⊥ then

10: C = ZWrapExpand(|P |)
2 \ (codebook(context; ∗) ∪ taboo(context))

11: if C = ∅ then return ⊥
12: codebook(context;P ) $← C
13: inst.history← inst.history;A;P
14: return codebook(context;P )

15: Interface: inst.unwrap(A,C) returns P or ⊥
16: context← inst.history;A
17: if ∃!P : codebook(context;P ) = C then
18: inst.history← inst.history;A;P
19: return P
20: else
21: taboo(context)← C
22: return ⊥

In Algorithm 6, we recall the definition of the jammin cipher [BDH+22]. We describe
it in an object-oriented way, with object instances (or instances for short) held by the
communicating parties. An instance belongs to a given party who initializes it with an
object identifier ID. Such an identifier is the counterpart of a secret key in the real world:
Encryption and decryption will work consistently only between instances initialized with
the same identifier. This setup models independent pairs (or groups) that make use of the
AE scheme simultaneously. For example, Alice and Bob may secure their communication
each using instances that share the same identifier IDAlice and Bob, while Edward and Emma
use instances initialized with IDEdward and Emma. We will informally call an object the set
of instances sharing the same object identifier. This way, all the instances of the same
object have indistinguishable behavior, and this justifies that we collectively call them an
object, whereas instances of different objects are completely independent.

The scheme supports two functions: wrap and unwrap. With the wrap function the
object computes a cryptogram C from a message that has a plaintext P and associated
data A, both arbitrary bit strings. With the unwrap function the object computes the
plaintext P from the cryptogram C and A again. The cryptogram C is the encryption of
P for a given A.

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
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The jammin cipher is parameterized with a function WrapExpand(p) that specifies the
length of the cryptogram given the length p of the plaintext. Typical examples observed
in AE schemes in the literature are WrapExpand(p) = p+ t with t some fixed length, e.g.,
128 for stream encryption followed by a 128-bit tag. For use with the jammin cipher, we
require WrapExpand to satisfy this property, defined below.

Definition 1. A function f : Z≥0 → Z≥0 is t-expanding iff (i) ∀` > 0: f(`) > f(0) and (ii)
∀` : f(`) ≥ `+ t.

When two parties communicate, they usually have more than one message to send
to each other. And a message is often a response to a previous request, or in general its
meaning is to be understood in the context of the previous messages. The jammin cipher is
stateful, where the sequence of messages exchanged so far is tracked in the attribute history.
Initialization sets this attribute to the object identifier and each wrap and (successful)
unwrap appends a message (A,P ). So history is a sequence with ID followed by zero, one
or more messages (A,P ).

A session is the process in which the history grows with the messages exchanged
so far. The wrap and unwrap functions make the history act as associated data, so
that a cryptogram authenticates not only the message (A,P ) but also the sequence of
messages exchanged so far. An important application of this are intermediate tags, which
authenticate a long message in an incremental way.

Finally, a jammin cipher object can be cloned. This is the ideal world’s equivalent of
making a copy of the state of the cipher. This means the user can save the history and
restart from it ad libitum.

A.1 Properties
The jammin cipher enjoys the following properties:

Deterministic wrapping: In a given context, an object wraps equal messages (A,P ) to
equal cryptograms C. It achieves this by tracking the cryptograms in the codebook
archive.

Injective wrapping: An object wraps messages with equal context and A and different P
to different cryptograms. It achieves this by excluding cryptogram values that it
returned in earlier wrap calls for the same context and A.

Random cryptograms: Except for determinism and injectivity, all cryptograms C are
fully random.

Deterministic unwrapping: In a given context, an object unwraps equal cryptograms to
equal responses. It achieves this by tracking in taboo cryptogram values that it
returns an error to.

Correctness: Thanks to deterministic (un)wrapping and injective wrapping, one jammin
cipher object correctly unwraps what another wrapped, whenever their contexts are
equal.

Forgery-freeness: In a given context, an object will only unwrap successfully cryptograms
C resulting from prior wrap calls in the same context.

The jammin cipher does not enforce the encryption context to be a nonce, this is left
up to the higher level protocol or use case.

The jammin cipher takes as encryption context the sequence of messages exchanged so
far, including the associated data in the message containing the plaintext to be encrypted
(in a message without plaintext, there is no encryption and hence no encryption context).
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The advantage of doing authenticated encryption in sessions is immediate as this reduces
the requirement for global diversifiers of one per session rather than one per message.
Session-level diversifiers may even be omitted unless communicating parties wish to start
parallel threads or start afresh from the same shared key.

Definition 2. We say that the encryption context is a nonce iff all wrap queries with
non-empty plaintext have a different context context.

In case of re-use of encryption context, the jammin cipher will leak equality of plaintexts
given equal cryptograms obtained with equal encryption contexts, but nothing more. In
some use cases this may be acceptable. For such use cases, the jammin cipher can serve as
a security reference for modes or schemes. A proven upper bound on the distinguishing
advantage between such a mode and the jammin cipher, proves that leakage is limited
to equal plaintexts and encryption contexts, plus the proven advantage that is typically
negligible.

In particular, stream encryption with a keystream that is generated from the encryption
context is perfectly secure in use cases where the encryption context is a nonce, but its
security completely breaks down when re-using encryption contexts. Therefore, if we wish
security in case of repeating encryption contexts, we must use a more elaborate encryption
mechanism than stream encryption.
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