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Abstract. We present SCALLOP-HD, a novel group action that builds
upon the recent SCALLOP group action introduced by De Feo, Fouotsa,
Kutas, Leroux, Merz, Panny and Wesolowski in 2023. While our group
action uses the same action of the class group Cl(O) on O-oriented curves
where O = Z[f

√
−d] for a large prime f and small d as SCALLOP,

we introduce a different orientation representation: The new represen-
tation embeds an endomorphism generating O in a 2e-isogeny between
abelian varieties of dimension 2 with Kani’s Lemma, and this repre-
sentation comes with a simple algorithm to compute the class group
action. Our new approach considerably simplifies the SCALLOP frame-
work, potentially surpassing it in efficiency — a claim to be confirmed
by implementation results. Additionally, our approach streamlines pa-
rameter selection. The new representation allows us to select efficiently
a class group Cl(O) of smooth order, enabling polynomial-time genera-
tion of the lattice of relation, hence enhancing scalability in contrast to
SCALLOP.
To instantiate our SCALLOP-HD group action, we introduce a new tech-
nique to apply Kani’s Lemma in dimension 2 with an isogeny diamond
obtained from commuting endomorphisms. This method allows one to
represent arbitrary endomorphisms with isogenies in dimension 2, and
may be of independent interest.

1 Introduction

The group action framework is a powerful abstract tool to build cryptographic
protocols such as non-interactive key exchange [CLM+18], signatures [BKV19],
threshold schemes [CS20,DFM20], ring signatures [BKP20], group signatures
[BDK+23], partial-blind signatures [KLLQ23], updatable encryption [LR22], and,
among other things, various applications as discussed in [ADFMP20].

Isogenies provide the only known way to instantiate this framework in a
manner resistant to quantum computers. There are two achievable flavours of
group action: the “restricted” group action (REGA) such as the one introduced
for the CSIDH key exchange in [CLM+18], and the “full” variant (EGA) in-
troduced for the CSI-FiSh signature scheme in [BKV19]. While the restricted
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variant is already interesting, the full variant is required by the more elaborate
constructions.

Unfortunately, isogeny-based group action suffer from various problems. First,
the underlying hard problem can be solved in subexponential time by a quantum
computer [BLMP19,BS20,Pei20] which renders their security hard to estimate
and reduces their efficiency. Second, current methods for instantiating the full
variant require subexponential precomputation as demonstrated in [BKV19,DFFK+23]
and reaffirmed in a recent blog post by Panny4. This makes it computationally
infeasible to obtain the full variant that meets the quantum security require-
ments from NIST.

The second obstacle is what motivated the introduction of the recent SCAL-
LOP scheme in [DFFK+23] where the precomputation (while still subexponen-
tial) is much more practical than in the setting of CSI-FiSh [BKV19]. The au-
thors of SCALLOP demonstrated the interest of their constructions by scaling
the parameters to sizes known to be computationally unreachable in the setting
of CSI-FiSh. However, the efficiency of SCALLOP is much worse than CSIDH,
and the amount of precomputation required to reach the higher levels of security
(equivalent to the CSIDH-8192 variant of [CSCDJRH22] for instance) promises
to be quite extensive.

The improvements in scalability achieved by SCALLOP, when compared to
CSI-FiSh, arise from using a distinct group and set in the group action. However,
in order to define their group action, the set elements are no longer just j-
invariants of supersingular elliptic curves, but curves together with extra data
called “orientation”. The necessity of carrying the orientation and computing
the group action on the orientation is what renders the efficiency of SCALLOP
bad in comparison to CSI-FiSh.

Recently, the field of isogeny-based cryptography has seen a major break-
through with the successful cryptanalysis of the SIDH key exchange scheme
by [CD23,MMP+23,Rob23]. This result was obtained by embedding isogenies
between elliptic curves (isogenies of dimension 1) inside isogenies of higher di-
mension (2, 4 and 8) using Kani’s Lemma [Kan97]. Since then, these novel ideas
have been used several times to build some post-quantum protocols such as
encryption [BMP23], signature [DLRW23], or VRF [Ler23]. In short, our new
construction SCALLOP-HD uses these ideas to represent orientations more ef-
ficiently and this leads to various improvements over SCALLOP that we list in
the next section.

1.1 Contribution.

In this work, we revisit the SCALLOP group action with the high dimensional
isogenies at the heart of the attacks against SIDH. We show that these new
techniques, and in particular, the idea of Robert [Rob22] that an arbitrary de-
gree isogeny can be efficiently represented using high dimension isogenies allows
us to simplify the framework of SCALLOP. Concretely, the improvements of

4 https://yx7.cc/blah/2023-04-14.html
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SCALLOP-HD compared to the original SCALLOP can be summarized as fol-
lows:

1. A new orientation representation that uses the embedding techniques based
of higher dimensional isogenies.

2. A simplified algorithm to compute the group action using Kani’s Lemma in
dimension 2 that we expect will improve the efficiency.

3. The improvement from a subexponential to a polynomial complexity of the
computation of the class group’s lattice of relation: the bottleneck in the
precomputation required by SCALLOP. This leaves only the complexity re-
quired for performing lattice reduction algorithms on the lattice of relation
the non-polynomial time part in precomputation of the SCALLOP-HD group
action.

In doing so, we introduce a novel way of applying Kani’s Lemma in dimension
2 by building isogeny diamonds from two endomorphisms lying in the same
quadratic order. This can be used to represent orientations and endomorphisms
in dimension 2. We believe this new technique is interesting in its own right,
and it was recently used in [Ler23] to provide a new algorithm to perform the
Deuring correspondence using isogenies in dimension 2. We also briefly discuss
another example where this new technique can be used in a recent endomorphism
division algorithm in Remark 13.

Organization of the paper. The rest of this paper is organized as follows.
In Section 2, we introduce necessary mathematical background. Then, Section 3
explains how to construct group action from isogenies and outlines the progress
towards obtaining a scalable EGA. In Section 4, we present the new orientation
representation alongside the resulting group action formula. Section 5 introduces
the SCALLOP-HD group action. Section 6 discusses some remarks on the se-
cruity of SCALLOP-HD. We conclude in Section 7 by summarizing the paper
and discussing future work.

2 Preliminaries

2.1 Quaternion algebras, supersingular elliptic curves, isogenies and
the Deuring correspondence

Quaternion algebras Let p be a prime and let Bp,∞ denote the unique (up to
isomorphism) quaternion algebra ramified precisely at p and ∞. We fix a Q-basis
⟨1, i, j,k⟩ of Bp,∞ that satisfies i2 = −q, j2 = −p and k = ij = −ji for some
integer q. A fractional ideal I in Bp,∞ is a Z-lattice of rank 4. We denote by n(I)
the norm of I as the largest rational number such that n(α) ∈ n(I)Z for any
α ∈ I. An order O is a subring of Bp,∞ that is also a fractional ideal. An order is
called maximal when it is not contained in any other larger order. A fractional
ideal is integral if it is contained in its left order OL(I) = {α ∈ Bp,∞ | αI ⊂ I},
or equivalently in its right order OR(I) = {α ∈ Bp,∞ | Iα ⊂ I}.
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Supersingular elliptic curves and isogenies Let E,E1, E2 be elliptic curves de-
fined over a finite field of characteristic p. An isogeny from E1 to E2 is a non-
constant rational map that is simultaneously a group homomorphism. An isogeny
from a curve E to itself is an endomorphism. The set End(E) of all endomor-
phisms of E forms a ring under addition and composition. End(E) is either an
order in an imaginary quadratic field and E is called ordinary, or a maximal
order in Bp,∞, in which case E is called supersingular.

The Deuring correspondence Fix a supersingular elliptic curve E0, and an order
O0 ≃ End(E0). The curve/order correspondence allows one to associate to each
outgoing isogeny φ : E0 → E1 an integral left O0-ideal, and every such ideal
arises in this way (see [Koh96] for instance). Through this correspondence, the
ring End(E1) is isomorphic to the right order of this ideal. This isogeny/ideal
correspondence is defined in [Wat69], and in the separable case, it is explicitly
given as follows.

Definition 1. Given I an integral left O0-ideal coprime to p, we define the I-
torsion E0[I] = {P ∈ E0(Fp2) : α(P ) = 0 for all α ∈ I}. To I, we associate the
separable isogeny φI of kernel E0[I]. Conversely given a separable isogeny φ, the
corresponding ideal is defined as Iφ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(φ)}.

We summarize properties of the Deuring correspondence in Table 1, borrowed
from [DFKL+20].

Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorphism)

(E1, φ) with φ : E → E1 Iφ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ
deg(φ) n(Iφ)

Table 1. The Deuring correspondence, a summary [DFKL+20].

2.2 Quadratic orders and orientations on supersingular elliptic
curves

Let d be a positive square-free integer and K = Q(
√
−d) be an imaginary

quadratic field with discriminant DK . Let O ⊆ K be an order with discrim-

inant DO. Explicitly, O = Z[DO+
√
DO

2 ]. Any element α ∈ O can be written as

x + yDO+
√
DO

2 with x, y ∈ Z, and {1, α} is a Z-basis of O if and only if y = 1.
One can compute the norm of α and thus derive the norm form fO of O:

fO(x, y) = x2 +DOxy + y2
DO(DO − 1)

4
.
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For any order O, the class group Cl(O) consists of the invertible fractional

ideals of O up to principal factors and is of order D
o(1)
O . When O = OK is the

maximal order, computing Cl(OK) takes time LDK
(1/2) classically [HM89] and

polynomial time quantumly [BS16]. When O = Z + fOK where f is a prime
and Cl(OK) = {1}, there is a simple characterization of Cl(O) as discussed
in [FFK+23, Appx. A]. Specifically, Cl(O) satisfies the following short exact
sequence

1 → O∗
K/O

∗ → (OK/(f))
∗/(O/(f))∗ → Cl(O) → 1,

and they showed that

(OK/(f))
∗/(O/(f))∗ ∼=

{
F∗
f if f splits in K,

F∗
f2/F∗

f if f is inert in K.

In particular, this suggests that Cl(O) is always cyclic as it is isomorphic to a
quotient of a cyclic group, and Cl(O) is easy to compute in these cases. Further-

more, this implies that #Cl(O) =
(
f −

(−1
f

))
1

|O∗
K |/2 .

Quadratic orders and their class groups are playing an increasingly important
role in isogeny-based cryptography, in particular since Colò and Kohel introduced
orientations on supersingular elliptic curves in [CK20]. In what follows, we recall
the basic definitions and important properties regarding orientations.

Definition 2. Let E be a supersingular elliptic curve over Fp2 , K be an imag-
inary quadratic field and O ⊆ K be a suborder. Then a K-orientation on E is
a ring homomorphism ι : K ↪→ End(E) ⊗ Q. This K-orientation induces an
O-orientation on E if ι(O) = End(E) ∩ ι(K). In this case, the pair (E, ι) is
called a O-oriented curve and E is a O-orientable curve.

Note that here we use O-orientation to indicate the primitive O-orientation from
[CK20].

Let E′ be another supersingular curve and φ : E → E′ be an isogeny. Let ι
be a K-orientation on E, then there is an induced K-orientation ι′ = φ∗(ι) on
E′ defined to be φ∗(ι)(ω) := 1

deg(φ)φ ◦ ι(ω) ◦ φ̂ ∈ End(E′) ⊗ Q. An isogeny of

K-oriented elliptic curves φ : (E, ι) → (E′, ι′) is an isogeny φ : E → E′ such
that ι′ = φ∗(ι); we call this a K-oriented isogeny. A K-oriented isogeny is a
K-isomorphism if it is an isomorphism of the underlying curves.

For a fixed imaginary quadratic order O ⊆ K, we consider the collection of
all O-oriented curves and define the following set:

SO(p) = {(E, ι) | (E, ι) is an O-oriented curve}/ ∼,

where two oriented curves are equivalent if they are K-isomorphic.
Here we recall the following conditions for the set SO(p) to be non-empty.

Proposition 3 ([Onu21, Proposition 3.2]). The set SO(p) is not empty if
and only if p does not split in K and does not divide the conductor of O.
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When SO(p) is non-empty, the set of invertible O-ideals acts on it. Specifi-
cally, let a be an such an ideal and (E, ιE) ∈ SO(p), then

a ⋆ (E, ιE) := (Ea, ιEa
),

where Ea is the codomain of the isogeny ϕa whose kernel is E[a] := ∩a∈a ker ιE(a)
and ιEa

is the induced orientation on Ea by ϕa. Principal O-ideals act trivially
on (E, ιE), therefore this action induces an action of Cl(O) on SO(p). It was
shown in [Onu21] that this is action is free and it has one or two orbits.

2.3 New isogeny representation in higher dimensions

An isogeny representation is a way to effectively represent the isogeny so that
there is an efficient algorithm for evaluating the isogeny on given points. Com-
mon representations include rational maps, isogeny chains, and kernel repre-
sentation. However, these methods are no longer compact or efficient when the
degree d of the isogeny is a large prime and the kernel points are defined over a
large degree extension field of Fp.

The Deuring correspondence allows us to efficiently represent such isogenies
with their corresponding ideals in maximal quaternion orders, this is call the
ideal representation. This, however, reveals the endomorphism rings for both
the domain and codomain curve. To remedy the situation, Leroux in [Ler22a]
introduced another representation called the suborder representation which is not
strictly an isogeny representation but satisfies a weaker definition as introduced
in [CII+23] and requires to reveal the endomorphism ring of the domain curve.

Finally, Robert [Rob22] suggested to use the techniques used in SIDH attacks
[CD23,MMP+23,Rob23] to obtain a new isogeny representation, by embedding
the desired isogeny between supersingular elliptic curves into an isogeny between
abelian varieties of higher dimension. While not named as such in Robert’s
paper, we refer to it as high dimension representation in our paper. This new
representation doesn’t reveal the endomorphism rings and is much more efficient
than suborder representation. It consists only of evaluation of the isogeny to be
represented on points of smooth order, and in the right setting it can be pretty
easy to compute. While used destructively at first, it has been recently used
constructively for building various protocols [DLRW23,Ler23,BMP23,DMS23].
For a detailed account of of the “old” isogeny representations, like the kernel or
ideal representation, see [Ler22b]. In what follows, we explain in more details the
idea of high dimension representation in dimension 2. The main result behind
this representation is Kani’s Lemma [Kan97] that we present below as Lemma 4.

Lemma 4 (Kani). Let us consider a commutative diagram of isogenies between
principally polarized abelian varieties of dimension g

A′ φ′
// B′

A

ψ

OO

φ // B

ψ′

OO
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where φ and φ′ are a-isogenies and ψ and ψ′ are b-isogenies for integers a, b.
The isogeny F : A×B′ −→ B ×A′ given in matrix notation by

F :=

(
φ ψ̃′

−ψ φ̃′

)
is a d-isogeny between abelian varieties of dimension 2g with d = a+ b, for the
product polarisations.

If ker φ̃ ∩ kerψ′ = {0}, the kernel of F is

ker(F ) = {(φ̃(x), ψ′(x)) | x ∈ B[d]}.

Similarly, if kerφ ∩ kerψ = {0}, then

ker(F̃ ) = {(φ(x), ψ(x)) | x ∈ A[d]}.

The commutative diagram in Lemma 4 is often called as an isogeny diamond.
Following the notations introduced in [Ler23], we call a 2dim-representation of
an isogeny φ : A → B between two elliptic curves A,B any data from which
the isogeny F obtained by applying Lemma 4 with g = 1 can be computed
efficiently. The idea is that φ can be recovered from F by pre-composition with
any embedding A→ A×B′ that acts as the identity on A, and post-composition
with the canonical projection B ×A′ → B.

To represent the orientation of our SCALLOP-HD group action in Sec-
tion 4.1, we will use the 2dim-representation of an endomorphism with a com-
mutative diagram obtained from two commuting endomorphisms.

Remark 5. One could also embed the isogeny φ in isogenies between abelian vari-
eties in dimension 4 or 8, as discussed for the SQISignHD protocol in [DLRW23].
The higher the dimension, the easier it is to generate the isogeny diamond, how-
ever, the complexity of computing isogenies between abelian varieties scales ex-
ponentially with the dimension. This is why it is generally better to use the small-
est possible dimension. In SQISignHD, it is argued that dimension 2 isogenies
do not provide a clear advantage over the original SQISign scheme [DFKL+20]
due to the complexity to set-up the isogeny diamond, which is the main reason
why SQISignHD works with dimension 4 and dimension 8. In our case, thanks
to the idea of using isogeny diamond built from commuting endomorphisms, we
will be able to work dimension 2 to achieve better efficiency.

3 Group action in isogeny-based cryptography

Informally, a group action is a map of the form ⋆ : G ×X → X, where G is a
group and X is a set, such that for any g1, g2 ∈ G and any x ∈ X, we have

g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ X.

We revisit here the concepts of effective group action (EGA) and restricted effec-
tive group action (REGA) from [ADFMP20], which capture the essence of two
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types of group actions used in isogeny-based cryptography. To clarify the distinc-
tion between the two and align with subsequent discussions, we exclude details
concerning the set X — specifically, membership testing, unique representation,
and the existence of the origin in X.

Definition 6. (EGA) A group action (G,X, ⋆) is effective if the following prop-
erties are satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:
(a) Membership testing, i.e., to decide if a given bit string represents a valid

group element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group

element in G.
(c) Sampling, i.e., to sample an element g from a distribution DG on G.
(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. There exists an efficient algorithm that given (some bit-string representation
of) any g ∈ G and any x ∈ X, outputs g ⋆ x.

Definition 7. (REGA) Let (G,X, ⋆) be a group action and let g = {g1, . . . , gn}
be a (not necessarily minimal) generating set for G. The action is said to be
g-restricted effective if the following properties are satisfied:

1. G is finite and n = poly(log |G|).
2. There exists an efficient algorithm that given any i ∈ [n] and any bit string

representation of x ∈ X, outputs gi ⋆ x and g−1
i ⋆ x.

Existing instantiation of this definition from isogenies are all based on the
ideal class group action. Specifically, it’s the action of Cl(O) on SO(p) for some
imaginary quadratic O as defined in Section 2.2. This action can be made a
REGA immediately by choosing a generating set g = {l1, . . . , ln}, where each li
is a prime ideal of small norm. To further convert this action into an EGA, chal-
lenges arise in sampling elements from a distribution DG on G, and computing
the action g ⋆x for g ∈ G sampled from DG and x ∈ X. In this paper, we restrict
our interest to the uniform distribution UG.

In [BKV19], Beullens, Kleinjung, and Vercauteren laid out a general strategy
to turn the class group action from a REGA to an EGA as follows:

1. Offline phase:
1.1 Class group computation - Compute a generator g of the class group

Cl(O), which is possible because generically Cl(O) is cyclic.
1.2 Construct the lattice of relations L - This lattice is generated by the

column vectors of the following matrix

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
r1 r2 r3 . . . rn #Cl(O)


,
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where r′is are integers such that [li] = [gri ].
1.3 Lattice reduction - Compute a reduced basis of L suitable for solving

approximate-CVP.
2. Online phase:

2.1 Solve approximate-CVP - Given ge ∈ Cl(O), solve approximate-CVP to

find a decomposition ge =
∏i=n
i=1 l

ei
i with small exponents.

2.2 Group action evaluation - Compute the action (
∏i=n
i=1 l

ei
i ) ⋆ (E, ιE) for

(E, ιE) ∈ SO(p).

This strategy allowed Beullens, Kleinjung and Vercautern to extend the
REGA behind the CSIDH key exchange [CLM+18] to an EGA, leading to the
construction of the signature scheme CSI-FiSh. They worked with the imaginary
quadratic order Z[

√
−p] which has a discriminant of 154 digits. The primary chal-

lenge for them was computing the class group Cl(Z[
√
−p]), and the remaining

steps were efficient, essentially due to the fact that they could use a relatively
small n and consequently, a lattice with rather small dimension. However, their
method can’t be scaled for bigger prime p due to the infeasibility of the class
group computations.

To address this, SCALLOP[DFFK+23] proposed the use of a distinct class
of quadratic orders of the form O = Z[f

√
−d], where f is a large prime and

d is a small positive integer. While this sidesteps the class group computation
challenges as discussed in Section 2.2 and enhances scalability, it introduces
representation complexities for the set elements — oriented curves (E, ιE). In
order to achieve an efficient representation, an generator of O of smooth norm
should be found, constraining the choice of f and yielding a class group with a
non-smooth size. Consequently, the second step of precomputation — computing
the lattice of relation — remains subexponential in time due to the need to
solve discrete logarithms in groups with subexponential order sizes. Moreover,
SCALLOP demands more computations to perform the group action, rendering
it much slower than CSI-FiSh.

The security of CSIDH, CSI-FiSh and SCALLOP relies on the hardness of
the vectorization problem. Abstractly, for a transitive group action, this problem
is defined as follows.

Problem 8. (Vectorization) Given x, y ∈ X, find g ∈ G such that y = g ⋆ x.

According to [Wes22, Proposition 3], the fastest known generic classically
method to solve the vectorization problem associated to the group action has
complexity lO(1)|DO|1/4 where l denotes the length of the input. In the setting
of SCALLOP, this is log(p+ |DO|)O(1) min(p1/2, f1/2) [DFFK+23, Section 4].

The main quantum approach to solve the vectorization problem is given by
Kuperberg’s abelian hidden-shift algorithm [Kup05] and descendants, where the
hidden “shift” corresponds to the secret group element g given x and y = g ⋆ x.
Despite known to take sub-exponential time, determining the precise quan-
tum cost for concrete group actions is hard. Since 2020, a series of papers
[BLMP19,BS20,Pei20,CSCDJRH22] studied the quantum security of CSIDH,
leading to the conclusion that CSIDH-512 and CSIDH-1024 could not achieve



10 Mingjie Chen and Antonin Leroux

NIST security level 1. Instead, [BS20] recommended that the CSIDH prime p
should be upgraded to at least 2260 or 5280 bits, according to what they named
as aggressive and conservative modes, respectively. [CSCDJRH22] recommended
to use a CSIDH prime of 4096 bits for the level 1 security and 6144 bits for level
2. These analyses, together with the desire of obtaining EGAs from isogeny,
have spurred the urgency to scale. Since the ideas of the quantum algorithms
essentially work for all CRS style group action, we will also model the secu-
rity of SCALLOP using the analyses for CSIDH. Specifically, this means we
match the size of the field characteristic p and the class group size #Cl(O) with
that of CSIDH to estimate the quantum security level of SCALLOP. In this
line of research, CSI-FiSh was only able to scale to achieve the security level of
CSIDH-512, and SCALLOP managed to scale to achieve the security level of
CSIDH-1024.

4 2dim-representation of orientations and endomorphisms

In this section, we introduce a new representation called 2dim-representation of
orientations and endomorphisms. Since representing an endomorphism θ amounts
to representing any θ + n ∈ Z[θ], representing orientations and endomorphisms
are essentially the same thing in different languages. Therefore, even though the
results in this section are mostly stated with respect to orientations, they apply
to endomorphisms as well.

In Section 4.1, we introduce the definition of our 2dim-representation for ori-
entations and discuss how to recover the orientation from the 2dim-representation,
then in Section 4.2, we show that any orientation (endomorphism) admits a
2dim-representation that can be computed in polynomial time. Finally, in Sec-
tion 4.3, we conclude with a formula that computes the Cl(O)-action on the set
SO(p) with set elements given by 2dim-representations.

While our 2dim-representation is introduced to represent orientations ap-
pearing in SCALLOP-HD, this technique can be applied in other algorithms in
isogeny as well.

4.1 2dim-representation

Let (E, ιE) be an O-oriented supersingular elliptic curve. Motivated by the idea
of 2dim representation of isogenies, we introduce the following definition.

Definition 9. Let O be an imaginary quadratic order with discriminant DO

and odd conductor f . Given an O-oriented supersingular elliptic curve (E, ιE),
take any ω ∈ O such that O = Z[ω] and define ωE := ιE(ω). Let β ∈ O such
that n(ω) + n(β) = 2e and gcd(n(β), n(ω)) = 1. Let P,Q be a basis of E[2e].
Then the tuple (E,ω, β, P,Q, ωE(P ), ωE(Q)) is called a 2dim-representation of
(E, ιE).

Given a 2dim-representation (E,ω, β, P,Q, ωE(P ), ωE(Q)) of (E, ιE), let βE :=
ιE(β), we immediately have the following isogeny diamond.
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E E

E E.

ω̂E

ω̂E

βE βE

From here, we can define an isogeny FE : E2 → E2 by the matrix

FE :=

(
ω̂E β̂E
−βE ωE

)
.

And as discussed in Section 2.3, if kerωE ∩ kerβE = {0}, then

kerFE = {(ωE(R), βE(R)) | R ∈ E[2e]}.

Since β is a translated scalar multiplication of ωE , knowing the evaluation of ωE
on E[2e] suffices to compute kerFE .

4.2 Computing a 2dim-representation

Now, we explain how to compute a 2dim-representation for an O-orientation
when the discriminant DO is equal to 5 mod 8.

Proposition 10. Let O be an imaginary quadratic order of discriminant equal
to 5 mod 8, then any (E, ιE) ∈ SO(p) admits a 2dim-representation as in Def-
inition 9.

Proof. To prove this result, it suffices we can always find e ∈ N, ω, β ∈ O such
that

O = Z[ω], gcd(nω), n(β)) = 1n(ω) + n(β) = 2e.

Using the explicit representation of O given in Section 2.2, ω = x + DO+
√
DO

2

and β = y + zDO+
√
DO

2 for some integers x, y, z. Therefore, the last condition
above translates to finding an integer solution of the following equation:

x2 +DOx+
DO(DO − 1)

4
+ y2 +DOyz +

DO(DO − 1)

4
z2 = 2e. (1)

Rewriting Eq. (1) and multiply both sides by 4 gives rise to the following:

(2x+DO)2 + (2y +DOz)
2 = 2e+2 +DO(z2 + 1). (2)

This equation can be solved efficiently by taking a random z and trying to
express 2e+2+DO(1+ z2) as a sum of two-squares with Cornacchia’s algorithm.
When e is large enough, we will be able to try enough z that one will give a
solution. No matter what value of z we choose, we see that 2e+2 +DO(1 + z2)
is either equal to 1 mod 4 or 2 times a number that is equal to 1 mod 4. As
all number that can be written as a sum of two squares satisfy this constraint,
we see that there is no obstacle there. Moreover, when DO = 5 mod 8, we can

see that the norm of ω = x+ DO+
√
DO

2 is always odd. Thus, n(ω) and n(β) are
coprime since they sum to a power of 2.
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We now detail the resolution of Eq. (2) with the OrientDiamondDim2 algo-
rithm. The name suggests this algorithm is for building an isogeny diamond for
a 2dim-representation of an orientation. Proposition 12 shows that such a di-
amond can be constructed in polynomial time. We also consider a constant C
that is an implicit parameter of OrientDiamondDim2.

Algorithm 1 OrientDiamondDim2(DO)

Input: An imaginary quadratic order O with discriminant DO = 5 mod 8.
Output: ω, β ∈ O such that O = Z[ω], n(ω)+n(β) is a 2-power and gcd(n(β), n(ω) =

1.
1: Let e be the smallest integer such that 2e+2 > C(log |DO|)|DO|.
2: Set x := 0, y := 0.

3: for z ∈ [1, ⌊
√

2e+1

|DO| − 1⌋] do
4: M := 2e+2 +DO(z

2 + 1).
5: if M is a prime such that M ≡ 1 mod 4 or M = 2M ′ where M ′ is a prime such

that M ′ ≡ 1 mod 4 then
6: Use Cornacchia’s algorithm to find X,Y such that X2 + Y 2 =M .
7: Set x = (X −DO)/2 and y = (Y − zDO)/2.
8: break
9: end if
10: end for
11: if x = 0 and y = 0 then
12: Return ⊥.
13: end if

14: ω := x+
DO+

√
DO

2
, β := y + z

DO+
√

DO

2
.

15: return ω, β.

The complexity statement on Algorithm 1 only holds assuming some plausible
heuristic regarding the distribution of number of the form 2e +D(1 + z2) that
we state below as Heuristic 11.

Heuristic 11. Let e,DO be as in Algorithm 1. If DO = 1 mod 4, and z are
sampled as random integers then the integers 2e+2 + DO(1 + z2) behave like
random odd integers of the same size that are either congruent to 1 mod 4 or
equal to 2 times an integer that is equal to 1 modulo 4.

Proposition 12. Assuming Heuristic 11, and DO = 5 mod 8, OrientDiamondDim2
is correct, runs in O (poly (C log(|DO|))), and there exists a constant C ′ such that
the computation has succeeded with probability at least:

1− (1− C ′/ log(|DO|))
√
C log(DO).

Proof. The correctness of Algorithm 1 follows from the observation that the out-
puts ω, β will always satisfy that O = Z[ω], gcd(n(ω), n(β)) and n(ω) + n(β) =
2e. The complexity follows from the fact that we perform O(

√
C log(|DO)| it-

eration of the loop and that the operations required inside each iteration are
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logarithmic in |DO|. The integers M have size C(log |DO|)|DO| and we assume
that they behave like random integers under Heuristic 11, therefore there is a
constant C ′ such that either M/2 or M is prime with probability higher than
C ′/(log |DO|). The bound on the success probability follows directly from there.

⊓⊔

Remark 13. We choose to work with isogenies in dimension 2 of degree n = 2e for
efficiency of computing such isogenies in practice, and we later choose p such that
2e-torsion is defined over Fp2 in the set up of SCALLOP-HD. However, in other
use cases of our 2dim-representation technique for representing orientations and
endomorphisms, it might be interesting to have n to be a powersmooth integer.
We believe the results above generalize easily to the powersmooth situation.
Therefore, our 2dim-representation can be applied to [MW23, Algorithm 1] to
replace the isogeny computations in dimension 8 with computations in dimension
2, improving its efficiency.

4.3 Class group action evaluation

Let [a] ∈ Cl(O) where a is an integral O-ideal such that gcd(n(a), 2) = 1. We
now explain how to calculate the group action introduced in Section 2.2 in the
context of the 2dim-representation.

Let (E,ω, β, P,Q, ωE(P ), ωE(Q)) be a 2dim-representation of (E, ιE), to cal-
culate a 2dim-representation for (Ea, ιEa

), we can keep the same ω and β. Since
gcd(n(a), 2) = 1, {ϕa(P ), ϕa(Q)} form a basis of Ea[2

e]. By definition,

ιEa
(ϕa(P,Q)) =

1

n(a)
ϕa ◦ ωE ◦ ϕ̂a(ϕa(P,Q)) = ϕa(ωE(P,Q)).

Let {R,S} be a basis for Ea[2
e], such as the one computed by a deterministic

algorithm that computes a basis. Given P,Q, ωE(P ), ωE(Q) ∈ E[2e], to compute
ιEa

(ω)(R) and ιEa
(ω)(S), we first write R,S as linear combinations of ϕa(P )

and ϕa(Q), then compute ιEa
(ω)(R) and ιEa

(ω)(S) from ιEa
(ϕa(P )) = ϕa(ω(P ))

and ιEa
(ϕa(Q)) = ϕa(ω(Q)).

5 SCALLOP-HD group action

In this section, we introduce SCALLOP-HD, an effective group action (EGA).
SCALLOP-HD builds on SCALLOP by using choosing the same group action,
i.e., Cl(O) acts on SO(p) for O = Z[f

√
−d]. However, SCALLOP-HD deviates

from SCALLOP by representing the set elements different. Precisely, SCALLOP-
HD uses the 2dim-representation for (E, ιE) ∈ SO(p). It turns out that this
choice significantly simplifies the group action computation, and removes some
of the constraints on parameter choices, which essentially is due to the fact that
we no longer need to find a generator of O of smooth norm, removing the trade-
off between the smoothness of the generator norm and the group size #Cl(O).
As has been mentioned before, SCALLOP-HD has better scalability and has the
potential of being more efficient.
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5.1 Outline of SCALLOP-HD

It’s clear from Section 3 that to introduce an EGA using the class group action,
one needs to

1. specify the group and the set,
2. convert the action into a REGA by choosing the set g as in Definition 7,
3. and derive an EGA following the stragety outlined in Section 3.

To define the group action, we start with choosing the field characteristic p
and the quadratic order O, they determine the group Cl(O) and the set SO(p).
When making these choices, there are two aspects one needs to take into con-
sideration – first, from a security point of view, the vectorization problem of
the action should be hard; second, from an efficiency point of view, p should
be of a particular form so that the torsion points involved in subsequent calcu-
lations are defined over Fp2 , and additionally O should be an order for which
#Cl(O) is as smooth as possible for an efficient generation of the lattice of rela-
tion L (Section 3). In SCALLOP-HD, each element (E, ιE) will be given using
the 2dim-representation, and we also specify the relevant parameters ω, β as a
part of the group action definition. We discuss the details in Section 5.2.

To perform the group action, it’s essential to possess an element from the set
SO(p). Acquiring this element, given our choice of of O, isn’t straightforward.
We introduce the SetUpCurveHD algorithm in Section 5.3 specifically for this
purpose.

Once the group action is set up, we proceed in the conventional manner to
convert it into a REGA. Let {ℓ1, . . . , ℓn} be the first n odd primes that split in
O for n = O(log f), then we choose the set g to consist of the ideals {l1, . . . , lk}
with li being one of the prime ideal above ℓi. To further convert the REGA to
an EGA, the offline phase is discussed in Section 5.4 and the online phase is
discussed in Section 5.5.

5.2 Set up the group action

In this section, we explicit various choice of parameters for setting up the group
action.

Choice of the quadratic order. Let O0 = Z[
√
−d] be an imaginary quadratic

order of class number equal to 1 and discriminant equal to d = 5 mod 8, as
in SCALLOP, we choose O to be of the form Z + fO0 for a large prime f .
The size of f will be determined by the target security level. For the efficient
precomputation of the lattice of relations (elaborated further in Section 5.4), we

want to ensure that #Cl(O) =
(
f −

(−1
f

))
1

|O∗
0 |/2

is as smooth as possible.

To find a good f , we generate powersmooth integers s that have the same
size as f and are divisible by 4. This is achieved by multiplying together powers
of random integers below a specified smoothness bound, and then multiplying
the outcome by 4. Following this, one checks whether s+ 1 or s− 1 is prime. If
either is, it becomes the value of f . Since prime numbers are ample, this step
runs in polynomial time with a polynomial size smoothness bound.
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Choosing the field characteristic p. To ensure that the set SO(p) is non-empty,
we need to choose p that does not split in O and does not divide the conductor f
according to Proposition 3. Moreover, the form of p is determined by the torsion
subgroups needed. To efficiently represent the orientation, we require that 2e-
torsion is defined over Fp2 . For efficient computation of the group action, we
also require to have the

∏
1≤i≤n ℓi-torsion defined over Fp2 . These conditions on

torsion points amounts to selecting a prime of the form:

p = c2e
n∏
i=1

ℓi ± 1,

where c is a small cofactor.

Representing the orientation. Recall that a 2dim-representation of an orientation
is given by the tuple (E,ω, β, P,Q, ωE(P ), ωE(Q)). Once we have fixed O from
the previous discussion, we can determine the integer e and ω, β ∈ O for instance
using the OrientDiamondDim2 algorithm.

In SCALLOP-HD group action, ω, β will be part of public parameters, there-
fore, they can be omitted from the orientation representation. Furthermore, we
can use a deterministic algorithm that computes a basis of E[2e] for any curve
E, this way we omit P,Q from the representation to make it even compacter.
That being said, in the actual application of SCALLOP-HD group action, the
orientation representation will be of the form (E,ωE(P ), ωE(Q)).

5.3 Set up a starting curve

The computation of one O-oriented curve is necessary to set-up the scheme. This
starting curve can be used to generate every other oriented curve by applying the
group action. Concretely, computing one 2dim-representation for a O-oriented
curve means the following: compute any f -isogeny starting from an O0-oriented
curve E0 and evaluate it on a basis of E0[2

e].
For this, we propose to revisit SetUpCurve [DFFK+23, Algorithm 1] as our

setting remains very similar to SCALLOP. Since the conductor f is a big prime,
we cannot hope to compute any isogeny of degree f directly. The trick behind
SetUpCurve is to use an endomorphism of norm fS where S is a smooth integer
and to express the f isogeny as the composition of this endomorphism and an
isogeny of degree S. Such endomorphisms can be found with the FullRepresent-
Integer [DFLLW23, Algorithm 1] as soon as fS ≈ p. Since our ultimate goal
is to evaluate the orientation on the 2e torsion, the best option would be to
take S coprime to 2, and with our choice of prime characteristic, we would have
S =

∏
i ℓi. Unfortunately, since 2e ≈ f2, we have f

∏
i ℓi ≈ p/f . This means

that we must include other factors in S to reach the desired size. The only
remaining available torsion is the power of 2. Since 2e/2 ≈ f , we should have
f2e/2

∏
i ℓi ≈ p. This means that we will be able to find endomorphisms of norm

ℓh1f2
e/2
∏
i>1 ℓi for some small exponent h. In that case, we can circumvent the

fact that S is not coprime to 2 by using a trick presented in [DLRW23, section
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5.4] to cut the computation of the 2-dimensional isogeny in two, which allows us
to divide by two the torsion requirement. For the group action computation, we
prefer to use the full 2e-torsion because the computation is more direct, but for
the set-up of the scheme it is not a problem to sacrifice a bit of efficiency. The
idea we just outlined gives the algorithm SetUpCurveHD that we describe below.

We start with an element (E0, ι0) ∈ SO0(p). Let O0 be a maximal quaternion
order such that End(E0) ∼= O0, and we can fix an explicit isomorphism ρ0 : O0 ↪→
End(E0), we write ω0 for ι0(

√
−d). Then, the orientation ι0 is derived from the

inclusion O0 ⊆ O0 and the isomorphism ρ0.

Algorithm 2 SetUpCurveHD(p, f)

Input: p, f, e, ω, β as defined in Section 5.2 and O0, (E0, ι0) as defined above.
Output: A 2dim-representation for (E, ιE) ∈ SO(p) where O = Z+ fO0.
1: Set h such that ℓh1 > p/(f2e/2

∏
i>1 ℓi) and compute γ ∈ O0 of norm

f2e/2ℓh1
∏

i>1 ℓi with FullRepresentInteger. Repeat that, until O0⟨γ, f⟩ do not com-
mute with ω0.

2: Compute the isogeny ψ : E0 → E′ of degree 2e/2
∏

i ℓi corresponding to the ideal

O0⟨γ, 2e/2
∏

i ℓi⟩.
3: Compute P0, Q0 a basis of E0[2

e] and compute R0, S0 = ι(P0, Q0).
4: Compute the points P0, Q0, R0, S0 = ρ0(γ)(P0, Q0, R0, S0).
5: Make the list (φi : E

′ → Ei)1≤i≤m of all isogenies of degree ℓh−1
1 from E′.

6: for i ∈ [1,m]: do
7: Compute Pi, Qi, Ri, Si = ([(ℓh1

∏
i>1 ℓi)

−1 mod 2e/2])φi ◦ ψ(P0, Q0, R0, S0).
8: Compute Ri, Si = [f ](Ri, Si).
9: Try to use Pi, Qi, Ri, Si to build two isogenies F1 : E2

i → C and F̂2 : E2
i → C.

10: If it works, check that F = F2 ◦F1 is a dimension 2 representation for endomor-
phisms ωEi , βEi .

11: If yes, verify that tr(ωEi), n(ωEi) is the same as tr(ω), n(ω). If yes, break from
the loop.

12: end for
13: Set E = Ei, and compute a deterministic basis P,Q of E[2e].
14: Use F to compute R,S = ωE(P,Q).
15: return (E, (R,S)).

Proposition 14. SetUpCurveHD is correct and terminates in O(cpoly(log(p)).

Proof. To prove correctness, we need to verify that the output (E, (R,S)) is
a correct 2dim-representation of an element in SO(p). Let us assume that the
verification made in the loop passed. We will start by proving correctness under
that assumption, then we will justify why the verification always passes.

When the verification passes, it means that there exists ωE ∈ End(E) of same
norm and trace as ω. Thus, Z[ωE ] ∼= Z[ω] = O, and sending ω to ωE defines
a O-orientation ιE on E (we explain later in the proof why this is an optimal
embedding of O into End(E)). Moreover, R,S = ωE(P,Q) for a deterministic
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basis {P,Q} of E[2e]. Therefore, (E, (R,S)) = (E,ωE(P,Q)) is a valid 2dim-
representation of (E, ιE) ∈ SO(p).

Now, let us justify that there always is an i that passes the verification. The
element γ ∈ O0 provides us with a principal ideal O0γ, whose corresponding
isogeny ρ0(φγ) is an endomorphism of E0. Moreover, we have that (up to com-
posing with some isomorphisms if necessary) φγ = ψ′◦φ◦φf where φf : E0 → E
has degree f , φ : E → E′ has degree ℓh−1

1 and ψ′ : E′ → E0 has degree
2e/2

∏
i ℓi. By [DFFK+23, Proposition 16], E is an O-orientable curve unless

φf corresponds to one of the 1 +
(
d0
f

)
horizontal f -isogenies of domain E0.

Let us assume for now that it is not. The endomorphism ωE = ιE(ω) is equal
to [x] + φf ◦ ρ0(i) ◦ φ̂f . By design, the ideal ⟨γ, 2e/2

∏
i ℓi⟩ corresponds to the

isogeny ψ̂′. Thus, we have that the isogeny ψ computed in Step 2, is the isogeny
ψ̂′. Then, if we take the index i0 such that φi0 = φ̂, we get that Ei0 is the
curve E that we are looking for. Then, it can be verified that Pi0 , Qi0 is equal to
[2e/2]φf (P0, Q0), so it is a basis of Ei0 [2

e/2]. It can also be verified that the equal-
ity Ri0 , Si0 = φf ◦ ω0 ◦ φ̂f (Pi0 , Qi0). From there, the image points ωE(Pi0 , Qi0)
and βE(Pi0 , Qi0) can be recovered, and this is enough to build the two isogenies
F̂2 and F1 as described in [DLRW23, Section 5.4]. Then, F is the correct endo-
morphism on E2 constructed from isogeny diamond formed by ωE and βE , and
so the check for norm and trace equality will pass.

To finish the proof of correctness, we simply need to prove that the case
where φf might be one of the bad isogenies cannot happen. In that case, we
have that φf is one of the horizontal isogenies and since O0 has class number
one, this means that φf commutes with ω0 which is equivalent to the fact that
ideal corresponding to φf commutes with i. Since this ideal is exactly equal to
O0⟨γ, f⟩, this situation is prevented from happening.

Regarding complexity, we have ℓh−1
1 < p/(f2e/2

∏
i ℓi) and since we have

f = O(2e/2), the loop is repeated at most O(c) times. The computations over the
quaternions are in O(poly(log(p)). Then, since we have the explicit isomorphism
ρ0, we can compute ψ and evaluate ρ0(γ) over the 2e-torsion in O(poly(log(p))
(remember that the 2e-torsion is defined over Fp2 and 2e < p). Then, the com-
putation of each φi is in O(poly(log(p)) and computing si and checking the
trace has O(poly(log(p)) complexity with the CheckTrace algorithm introduced
in [Ler22a]. Computing the norm can be done very similarly with the same com-
plexity. This proves the result. ⊓⊔

5.4 Offline phase

The remaining operations required to be done in the precomputation are exactly
the same as in SCALLOP. First, we need to generate the relation lattice asso-
ciated to the ideal basis (li)1≤i≤n. Second, we need to find a reduced basis of
this lattice. These operations can be done exactly as explained in [DFFK+23].
The lattice of relations is generated by solving some discrete logarithms in the
class group. Then, the reduced basis is found using standard lattice reduction
techniques.
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The only real difference between SCALLOP and our new construction is the
complexity of those operations. In particular, with our choice of quadratic order,
the generation of the lattice of relations takes polynomial time. Indeed, the choice

of f ensures that the class group has order
(
f −

(−1
f

))
1

|O∗
0 |/2

with a polynomial

smoothness bound. This means that the Pohlig-Hellman method succeeds in
solving discrete logarithm in polynomial time and so the full lattice of relations
can be generated in polynomial time (whereas it has sub-exponential complex-
ity in general). Unfortunately, the complexity of the basis reductions remains
subexponential, which means that the overall complexity of the precomputation
is still subexponential. However, as explained in [DFFK+23], the dimension of
the relation lattice is quite small in practice and so a nearly-optimal basis can
be found efficiently.

5.5 Online phase

We now describe precisely an algorithm GroupAction to perform the group action
for SCALLOP-HD given an ideal a =

∏
1≤i≤n l

ei
i where li is an ideal of norm ℓi. In

GroupAction below, we restrict to the case a =
∏
i li to simplify the exposition as

the generic algorithm simply consists in several executions of the sub-algorithm
for
∏
i li.

Proposition 15. Algorithm 3 GroupAction is correct and runs in

Õ

(
poly (log(p) log(f)n)

√
max
1≤i≤n

ℓi

)
.

Proof. Let us start by proving correctness. We discuss the details for the first two
“if” cases, and for the last “if” case, we simply replace ω by ω̂ in the following
discussion. Since ω, β ∈ O we have that the endomorphisms ωE , ιE(β) commutes
and since we have 2e = n(ω)+n(β), by Lemma 4, the 2e-isogeny FE : E2 → E2

is correctly computed from its kernel. Then, we have that F (0, R) = (⋆, ωE(R))
for any point R. Thus, we do have Ui = ωE(Pi), Vi = ωE(Qi) for each 1 ≤ i ≤ n.
The kernel of ωE−λi is equal to (ω̂E−λi)(E[ℓi]) and since ω̂E = [2tr(ω)]−ωE , the
point Ri computed is a generator of ker(ωE−λi) = kerφli = kerφa∩E[ℓi]. Thus,
the computation of φa is correct, and the computation of the 2dim-representation
of a⋆(E, ιE) is correct by the formulas given in Section 4.3. The last step is merely
changing the evaluation to the deterministic basis using linear algebra.

For the complexity, the 2e-isogeny FE can be computed evaluated inO (poly (log(p)e)) =
O (poly (log(p) log(f))). Then, since the points of E[ℓi] are defined over Fp2 , the
cost to compute the bases Pi, Qi and to compute Ui, Vi through evaluation of F
is O (poly (log(p) log(f)n)).

Finally, using the Velusqrt formulas introduced in [BDFLS20], it is possible to
compute the isogeny φa of norm

∏
1≤i≤n ℓi in Õ

(
poly (log(p)n)

√
max1≤i≤n ℓi

)
.

This proves the result. ⊓⊔
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Algorithm 3 GroupAction((E, ιE), a)

Input: p, f, e, ω, β as defined in Section 5.2, 2dim-representation (E,ωE(P ), ωE(Q))
of (E, ιE), and an ideal a =

∏
1≤i≤n li, where each li is an ideal of prime norm ℓi

Output: 2dim-representation of a ⋆ (E, ιE) = (Ea, ιEa)
1: Compute a deterministic basis P,Q of E[2e].
2: Set xβ , yβ the values in Z such that β = xβ + yβω.
3: if n(O⟨ω, 2⟩) = 2, DO ≡ 0 mod 4 and O⟨ω, 2⟩ = O⟨β, 2⟩ then
4: Compute P0 the generator of kerωE ∩ E[2].
5: Compute F : E2 → E2 the 2e-isogeny of kernel ⟨(ωE(P ), [xβ ]P +

[yβ ]ωE(P )), (ωE(Q), [xβ ]Q+ [yβ ]ωE(Q))⟩+ {(0, 0), (0, P0)}.
6: Compute the value λi such that li = O⟨ω − λi, ℓi⟩.
7: else if n(O⟨ω, 2⟩) = 1 or O⟨ω, 2⟩ = O⟨β, 2⟩ then
8: Compute F : E2 → E2 the 2e-isogeny of kernel generated by (ωE(P ), [xβ ]P +

[yβ ]ωE(P )), (ωE(Q), [xβ ]Q+ [yβ ]ωE(Q)).
9: Compute the value λi such that li = O⟨ω − λi, ℓi⟩.
10: else
11: Compute F : E2 → E2 the 2e-isogeny of kernel generated by (P−ωE(P ), [xβ ]P+

[yβ ]ωE(P )), (Q− ωE(Q), [xβ ]Q+ [yβ ]ωE(Q)).
12: Compute the value λi such that li = O⟨ω̂ − λi, ℓi⟩.
13: end if
14: for i ∈ [1, . . . , n] do
15: Let Pi, Qi be a basis of ℓi in E[ℓi].
16: Compute (⋆, Ui) = F (0E , Pi) and (⋆, Vi) = F (0E , Qi).
17: Set Ri as one point of order ℓi among {[2tr(ω)−λi]Pi−Ui, [2tr(ω)−λi]Qi−Vi}.
18: end for
19: Compute φa : E → Ea, the isogeny of kernel Ga =

⋂
1≤i≤n⟨Ri⟩.

20: Compute a deterministic basis R,S of Ea[2
e].

21: Compute ιEa(ω)(R) and ιEa(ω)(S) using φa(ωE(P )) and φa(ωE(Q)).
22: return Ea, ιEa(ω)(R), ιEa(ω)(S).
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6 Some remarks on security

The security of SCALLOP-HD is identical to that of SCALLOP because the
group action has the same exact structure. In this section, we take the opportu-
nity to discuss the impact of recent developments from the papers [CII+23,CV23]
on the security of SCALLOP and SCALLOP-HD.

In [DFFK+23], one proposed method to attack SCALLOP is to compute the
ideal corresponding to the isogeny φf of degree f connecting the O0-oriented
curve E0 with the O-oriented curve E. In [CII+23], a polynomial-time quantum
algorithm is introduced to perform that computation when there is an efficient
way to evaluate this f -isogeny on points of powersmooth order. Since the en-
domorphism ωE can be written as d + φf ◦ ω0 ◦ φ̂f for some integer d and
ω0 ∈ End(E0), the security of SCALLOP then reduces to the following question:

Can we use the effective orientation ωE revealed in SCALLOP(-HD) to
evaluate φf?

As far as we know, the answer to this question is no (at least not in polynomial
time). In fact, the problem of evaluating the descending isogeny φf was already
discussed in [DFFK+23, Section 7] even though the algorithm from [CII+23]
didn’t exist at the time. The discussion presented in [DFFK+23, Section 7] is
still relevant and justifies why evaluating φf from ωE appears hard. One possible
way to reduce the search space introduced in [DFFK+23, Section 7] would be
to use non-trivial self-pairings (i.e. pairing such that e(P, P ) is not 1). However,
there are no known self-pairings in the context of SCALLOP(-HD) and some
negative results regarding the existence of these objects were even recently shown
in [CHM+23].

Recently, [CV23] introduced a generalization of the “lollipop method” to re-
cover an isogeny from a partial torsion information. More concretely, it targets
the following setting. Let φ : E0 → E be an isogeny of degree f and P,Q be a
basis of E0[N ] for some big enough integer N . The goal is to recover φ from the
knowledge of T, S where T, S is a basis of E[N ] equal to X · φ(P,Q) for some
secret matrix X contained in some subset of GL2(Z/NZ). Typically, [CV23]
targets the case where X is diagonal, but they introduce a generic framework
that can handle a broader variety of families of Xs. The fact that X is un-
known is the main obstacle to apply the usual isogeny recovery attacks or the
attack from [CII+23]. The paper [CV23] shows how to overcome this obstacle
when the parameters d,N, p allow the existence (and efficient computation) of
an endomorphism ρ ∈ End(E0) satisfying various constraints.

Below, we try to apply this attack to recover the isogeny φf using the knowl-
edge of the orientation. In particular, we will have a look at the case where X
is diagonal. Indeed, when taking N as a product of split primes in O0, P,Q
to be two generators of the eigenspaces of ω0 in E0[N ] and T, S generators of
the eigenspaces of ωE ∈ E[N ], we are exactly in the desired setting where the
unknown matrix is diagonal (since eigenspaces of ω0 are mapped to eigenspaces
of ωE by φf ).
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When N is powersmooth, the points P,Q, T, S can be computed in polyno-
mial time by evaluating ω0 and ωE , and solving some discrete logarithms. The
method introduced in [CD23] works by computing a non-trivial endomorphism
ρ = κ ◦ σ such that [φf ]∗σ can be computed efficiently, the matrix of the action
of ρ in the basis P,Q commutes with the matrix X and deg κ ≤ N2/f2. When
those conditions are satisfied, it can be shown that the image of the isogeny
ψ = [σ]∗φf ◦ κ ◦ φ̂f on T, S can be computed exactly, allowing for its efficient
computation with higher dimensional isogenies. In a number of cases, this is
enough to recover φf directly, but not always. In the setting of SCALLOP-HD,

this is not necessarily new information if the endomorphism ψ̂ ◦ [φf ]∗σ belongs
to ιE(O). On the other hand, when it does not, then we obtain a full quaternion
suborder of End(E) in that matter, and that might be enough to evaluate φf
with an adaptation of [Ler22a, Algorithm 5] and then, we can apply the attack
from [CII+23].

Thus, the question becomes: can we find such an endomorphism ρ satisfying
all the previous constraints? While we do not know how to prove formally that
the answer is always no, we provide examples where we can prove that finding
a suitable ρ is impossible.

As far as we know, there are essentially three types of isogenies σ for which
we have an efficient way to compute the push-forward [φf ]∗σ:

1. The identity.
2. The Frobenius.
3. Horizontal isogenies (used in the group action).

Let us consider the case where σ is the identity. We want to find ρ ∈ End(E0)
that acts as a diagonal matrix on the subgroups generated by P and Q. As we
explained before, we have an attack if we can find ρ ̸∈ Z[ω0] (otherwise we don’t
learn anything new).

Let O0 be a quaternion maximal order isomorphic to End(E0) and I, J , the
two left O0-ideals of norm N corresponding to the subgroups generated by P
and Q under the Deuring correspondence. Then, ρ will act as a diagonal matrix
on the two subgroups if and only if it is contained inside the quaternion order
O = (Z + I) ∩ (Z + J) which is an Eichler order of level N2. This is a lattice
of volume equal to Cp2N4 for some small constant C. And this means the four
successive minimas λ1, λ2, λ3, λ4 satisfy

p2N4 ≤ λ1λ2λ3λ4 ≤ 16Cp2N4 (3)

However, since Z[ω0] is contained inside O by design, and O0 is a quadratic
order of very small discriminant, we know that the two first successive minimas
are 1 and n(ω0) (assuming that ω0 is the element of smallest norm in Z[ω0]∖Z,
which we can do without any loss of generality). Moreover, since ω0 ∈ O, we can
always multiply any element by ω0, this means that we must have λ4 ≤ n(ω0)λ3,
and so we can deduce that λ3 ≥ pN2. This means that the smallest element ρ
we can expect to find in O∖Z[i] has norm greater than pN2. But, to make the
attack work, we need that N2 > f2 deg ρ. These two conditions are clearly not
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compatible, and this means that there is no hope to find a suitable ρ to make
the attack work in this setting.

Let us now consider the case where σ is the Frobenius isogeny. When O0

contains j (which we can assume since the class number of O0 is 1 and it has
been shown in [CPV20] that the only O0-oriented is Fp-rational when p is big
enough), finding ρ when σ is the Frobenius implies that ρ is contained inside
O∩O0j. It can be verified that the successive minimum of this lattice are small
linear combinations of p, pω0, Nj,Nω0j and thus the solutions outside of Z[i]
have norm bigger than N2. Thus, it is once again not possible to find ρ with
N2 > f2 deg ρ. A similar reasoning can be applied to prove that a suitable
endomorphism ρ cannot be found when σ is an O0-horizontal isogeny.

Thus, we have proven that the lollipop method cannot be applied to the
setting of SCALLOP-HD when considering the torsion information revealed by
the orientation on the points whose order is a product of split primes.

The same reasoning cannot be applied if we consider inert primes. Indeed, in
that case, the matrix will probably not be diagonal. However, this also means
that we don’t really know what kind of matrix is required for the endomorphism
ρ. Thus, it seems hard to use the lollipop method in that case.

7 Conclusion and future work

SCALLOP-HD represents the progression of a series of efforts to enhance the
scalability of EGAs based on isogenies. Beginning with CSI-FiSh, which estab-
lished the foundational strategy and gave a notable example, there was a signifi-
cant challenge in computing larger class groups. SCALLOP then built upon the
work of CSI-FiSh by overcoming this limitation, but needed subexponential time
for generating the lattice of relation. SCALLOP-HD takes this advancement a
step further, making precomputation polynomial time except for the lattice re-
duction algorithms. While these algorithms are theoretically subexponential in
complexity, the dimensions are in fact manageable in practice.

SCALLOP-HD is heavily based on the SCALLOP group action [DFFK+23].
The main difference stems from the way the orientation is computed. In SCAL-
LOP, an effective orientation is obtained from an endomorphism of smooth
degree, whereas in SCALLOP-HD, an effective orientation is obtained from a
2dim-representation of an arbitrary degree endomorphism. The relaxation of
the constraint on the degree of the endomorphism is the main advantage of
SCALLOP-HD as it improves scalability and simplifies the group action compu-
tation at the cost of requiring the computation of a 2e-isogeny between abelian
variety of dimension 2.

The 2dim-representation technique we developed in order to represent set
elements in SCALLOP-HD is interesting in its own right. It has already seen
applications in [Ler23] and Remark 13, bringing down the dimension needed to
compute the isogenies between abelian varieties from 4 or 8 to 2.

The main remaining problem is to make an efficient implementation of SCALLOP-
HD. This is a non-trivial task due to the need of isogeny computation in higher di-
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mension. Several algorithms and implementations already exists [CDS20,Kun22],
[MMP+23,BMP23,DLRW23,CDPMR23], but there are some on-going efforts to
improve significantly the efficiency of these computations, and we intend to pro-
vide a full implementation of SCALLOP-HD once the state of the art on this
topic is somewhat stable. In the end, we believe that the efficiency of SCALLOP-
HD’s group action computation could outperform SCALLOP’s due to its sim-
plicity.

Acknowledgements The first author would like to thank Christophe Petit for
helpful feedback.
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CK20. Leonardo Colò and David Kohel. Orienting supersingular isogeny
graphs. J. Math. Cryptol., 14(1):414–437, 2020.

CLM+18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. CSIDH: an efficient post-quantum commutative group
action. In Advances in Cryptology - ASIACRYPT 2018, pages 395–427,
2018.

CPV20. Wouter Castryck, Lorenz Panny, and Frederik Vercauteren. Rational
isogenies from irrational endomorphisms. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
pages 523–548. Springer, 2020.

CS20. Daniele Cozzo and Nigel P Smart. Sashimi: cutting up csi-fish secret
keys to produce an actively secure distributed signing protocol. In
Post-Quantum Cryptography: 11th International Conference, PQCrypto
2020, Paris, France, April 15–17, 2020, Proceedings 11, pages 169–186.
Springer, 2020.
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